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1. Introduction

VLSI technologists are fast developing wafer-scale integration 1251. Rather than partitioning
a silicon wafer into chips as is usually done, the idea behind wafer-scale integration is to assemble
ain entire system (or network of chips) on a single wafer, thus avoiding the costs and performance
loss associated with individual packaging of chips. A major problem with assembling a large
systemn of microprocessors on a single wafer, however, is that some of the processors, or cells, on
the wafer are likely to be defectivc, or dead. In this paper, we survey algorithms for constructing
systolic arrays fromi the live cells of a silicon wafer.

Laser-programnming the interconnect of a wafer is one promising means of achieving wafer-
scale integration. This technology was pioneered at IBM [211 and pursued in the direction of
wafer-scale integration at MUT Lincoln Laboratory [25]. Figure 1 shows a scanning electron

4 -4 j

-~ A.

Fiure 1. A close-up of laser- programmable interconnect.

microscope photograph of a portion of a wafer with progra-mmabfe interconnect. Laser welds can
be made between two layers of metal, and by using the beam at somewhat higher power, wires
can be cut. Defective components can thus be avoided by programming connections between only
the good components.*

Figure 2 shows a typical organization of a wafer-scale system with programmable intercon-
nections. The components are organized as- a matrix of cells, and between the cells are channels
through which the interconnect runs. Figure 3 is a close-up of the channel structure. At the
intersection of a horizontal and vertical channel, laser- programmable connections can make a
horizontal and a vertical wire electrically equivalent. Between two cells, connections can be made
from the wires in the channel to the inputs and outputs of the two cells. Given that the inter-

cnetis programmable, weshall adopt ausage of the term "ietomaanelectrically
equivalent portion or the programimable interconnect.

Systolic arrays [ 12, 13, 20] are a desirable architecture for VLSI because all communication
is betwcen nearest neighbors. A realization of a systolic array as a wafer-scale system may lose
this advantage if all nearest, neighbors of a processor are dead, however, because a long wire may



Figure 2. A wafer-scale system of cells and programmablc interconnect.
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Figure 3. The channel striicture of a wafer-scale eystem.

he need1ed to connect electrical ly-adjr-)cent processors. In general, the longest interconnection

between processors is the communication bottleneck of the system. Of the many possible ways

* in which the live cells on a wafer can be connected to form a systolic array, therefore, the one

hat ininimizes the length of the longest wire is most desirable.

To illustrate the suibtleties inherent in configtiring systolic arrays, consider the problem of

crnstricting a linear (i.e., one-dimensional) array uising all of the live cells in an N-cell wafer.

Vn Fort o nately, ir we wish to uiiirnize the length of the longest. wire, the problemn is NP-comnplete

[10]t. lkven inore (liscotiraging is that there are somne arrangements of live and dead cells for which

eviri tdw optimal linear array has unacceptablly mung wires. Thiis optimal solttions -- even if they

could be loind quiickly -are not always practical.

I'%



B y assuming a probabilistic model of cell failure, however, many positive results can be proved.
For example, Pigure 4 illustrates a possible solution to the problem of connecting the live cells
of' a wafer into a linear systolic array. The live cells, which are denotecd by small squares, are
connected together, one after another, in a snake-like pattern. )ead cells, denoted by X's, are

skipped over. With probability at least 1 - O(I/N), the length of the longest wire is O(Ig N),
wherv N is the number of cells in the wafer and where each cell independently has a 50 percent

fX X-

Figure 4. A simple means of constructing a linear systolic array from the live cells on a

wafer.

chance of failure.*
This bound comes from the observation that the length of the longest wire that connects two

9- cells in the array is just the length of the longest sequence of dead cells in the snakc-like string.

For a given set of k cells, the probability that all are dead is 1 /2k, and thus the probability that

any set of 2 Ig N cells are dead is 1/N 2 . Since there are less than N sets of 2 Ig N consecutive
cells, the chances are thus less than one in N of having to skip more than 21gN cells in the

entire snake-like path of length N. Hence the maximum wire length is 0(lg N) with probability

at least, I - O(I/N).
To say that "with probability 1 -0(1/N) the maximum wire length is O(lg N)," is a substan-

tially stronger statement than saying that the expected maximum wire length is O(lg N). This

is because no wire can ever have length greater than O(VN), even in the worst case. Hence the

expected maximum wire length is at most

( - 0(1/ N)). O(Ig N) + 0(1/ N). 0(ViN) = O(lg N)

i" Moreover, the chances that the maximum wire length is much greater than O(Ig N) are miniscule.

In particular, the probability of having to skip more than kIgN dead cells at a fixed point in

-" the snake-like path is less than one in Nk. Hence, every wire has length at most kigN with

probability at least 1 - 1/Nk 1.

*fhre arid throtighout the paper, we ime 0(f(N)) to denote a function that is bo,,rided above by cf(N) for a fixed
,ronatt and o I sidlirientlly large N. We also us,. O(f(N)) t,, denote a function thaIt is bo ,.tid below by e (N),

ar "E(f(N)l L,, (bt',t e artcti,,,l that is bound,,d above by r lf(N) and b'ow by c..(N) or some fix miled rontafits
c, c1  ( ,I cl, atid all stilhacienrtly largv N. We also use IgN to da(I.vte log, N, Ig N to dcitoe (Ig N) 2 , Oud Ig g2 N
t, te fIg v g N )2. Iastly, [zj (hiiotes the largest integer less thr n or equal to, z, and [zl dvnuamas the smallest

uinleger greater than or equal to z.

:.-. it
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J''is pal er presents a survey of algorithms for realizing one- and two-dimensional systolic
arravs as wafcr-scale systems. Unlike many or the heuristics in the literature, the algorithms
here have al' been theoretically analyzed, and bounds on their quality have been mathematically
proved. Th,- analyses make the assurnption that each cell fails independently with probability

p. antd for sniplicity, we assume here that p = = \Ve also assume for ease of explication and
analysis that the width of a cell and the width of a wire are each unity. A more complete
diil.scs"ion of the assumptions and their generalizations can be found in [17].

The algorithrns are organized to aid an engineer in picking an algorithm for implementation.
We try to p t''t enough mathenatics to aii his intuition, but. we do not, for th riost part,

- i.ludh, the hetailed combinatorial arguments appearing in the literature that substantiate the
t.e1T('ctiveess or thi algorithms. Since programming involves many more "real-world" constraints

Sh:,i ,. be considered in an algorithmic analysis, we expect that the engineer might choose a
h , algori h , or example, if it. is easier to code. The algorithins here constitute a menu
of pw .ilihi-s to -tirmulate an intelligent design decision.

l'. reutainder or the paper is divided into 'our sections. Section 2 contains basic com-
* . 1)i torial f',ct.s underlying the probahilistic analyses used in the litera ture. Section 3 gives two

!,,orit h,,s f)r integrating linear arrays. The first, algoritlhin connects aNl the live cells on a wafer,

:mi, the sec md achiev3 somewhat shorter maxi mum wire length by connecting only a large

(1 ),f ,n ,i frn tion of the live cells. Section 4 gives live algorithms For integrating two-dimensional

,rrays, and includes both worst-case and probabilistic bounds. Section 5 discusses provides a
... ,lmlry o' the material covered in the paper and mentions some related work.

2. Coijibinatorial facts
In I he itroduction, we showed thai with probability at least i - O(1/N), a sequence of N

co ', m i; wifer contains no more thai O(lg N) dead cellis in a row. This kind of high probability
Ti. ,idthrlis most, of the algorithms in this paper. We shall uise the term "high probability"

) !, .(,:,in "u ith probability at least 1 - 0(1/N)," where N is th, number of cells on a wafer. We
!Mw Tr,,:Frn some basic facts used in high prohnbility analyses.

Tho fir- . fact. is the standard definition or indepen(ence.

"-t 1. Let .4 and Ii be independent rand'.,n v..riabit,. Then

Pr {A ri, - 'r fA} Pr {f}

-" l : -,'nit fact io' rids the probability of '(. ,,,h of two random events, even if the events are
0 O f Ter dent.

Ylcc 2. Let 1 and B be random variabehi. 7T'l'n

Pr {A U I1} P Pr {A} + Pr {B}

",€
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Proof. This fact follows from the principle of inclusion and exclusion. We always have

Pr {AUB} = Pr{A}+Pr{B}-Pr {Af B},

and since Pr {A nl B} 0, the result follows. I
Fact 2 provides a weak bound if the probabilities involved are large. For example, if the

probability of the individual events are each greater than 1/2, the bound on their union is trivial.
When the probabilities are small, however, the bound can be useful.

The next fact bounds a linear function with an exponential. It is most useful when z is near
zero.

Fact 3. For all x in the range -cc < x < co, we have

1+X<ez. m

We now turn to combinatorial theorems that deal more directly with the statistics of faults
on warers. As was mentioned in the introduction, we shall typically assume that each cell on the
wal'r I'ails independently with probability 1/2.

Fact 4. With high probability, a given rectangular pattern of live and dead cells of size 2 Ig N
never appears on an N-cell wafer.
Proof. The proof follows the analysis for the snake-like scheme in the introduction, which relies
on Fact 2. The generalization from one- to two-dimensional regions is straightforward, as is the
generalization from a pattern consisting solely of dead cells to an arbitrary pattern. I

Of course, Fact 4 does not imply that no pattern will occur, only that the probability that a
given pattern occurs is low. It's like the lottery: somebody will win, but probably not you.

Remarkably, patterns of slightly less than half the size almost always appear on a wafer.

Fact 5. With high probability, a given rectangular pattern of live and dead cells of size
lg N - 2 Ig lg N appecri somewhere on an N-cell wafer.

Proof. Partition the wafer into N/(lg N - 2 Ig Ig N) rectangular regions of size Ig N - 2 Ig Ig N.
'rhe probability that a given one of the regions realizes the pattern is

N

k' The probability that every region avoids the pattern is therefore

N

19 N-2Ig N
e--iN < IsN-NI lg )

,e-< N

using Facts I and 3. 3

iS-



In a region of m cells on a wafer, the expected number of live cells is !m. The actual number

will vary, however. The next fact gives tight bounds on the expected deviation.

Fact 6. Let Y be the random variable indicating the number of live cells in a region with m

celL.. 'hen the expectation of the deviation is

E( X -n): ( vft) .I
2

, . Us that the expected deviation from the mean is O(v/'h). We shall occasionally
.Ii -t actual probability of some given deviation. The next fact provides such a

I- ract 7. Let X be the random variable indicating the number of live cells in a region with ?n

r 0. the probability that the deviation exceeds rV/n i.4

Pr IV Im > rV,_nj =:0(6 2 r2
f' 2

We sca, iise Fact 7 to prove a lower bound on the number of live cells in each of a collection of

" c li, -r,y !arge regions. The next fact shows that if each region contains cIgN cells, for some
Svly large constant c, then with high probability, there are a substantial number of live

cc!!, I the ,ach of' the regions.

Fact, S. For any c > 4, and for any particular collection of N regions on an N-cell wafer,

cach i'ith at least cIgN cells, the probability is at least I - 0(1/N) that every region contains

•2 V /-IgN live cells.

I'-,nf. ThC probability that, a given region does not contain at least c Ig N - V/- Ig N live cells is
2 h ,) O(1 /N 2 ) by Fact 7. By Fact 2, the probability that, all the N regions on the wafer,

oW.'rL ,pitig or not., fail to contain at least Ic lN -- l-IgN cells is at most N O(I/N 2 ) =

()(i/N). U

3. Integrating one-dimensional arrays

•"i: iih prol 'bility, the snake-like s ,, e,, lscribed in the introduction connects all the

I a oTi ;, i \-celI wafer into a line-ar i - y wit h wires of length at most O(lg N). This section

-, rocedur res that sri bstaritially mi w' and generalize this bound. The first connects all
I k ,' l Iflo.1,on awafer with wires of length ()( Iig N ), and the second connects most of the live

. ires of constant length.

IFre presenting the algorithms, we first. observe that with high probability, wires of length

I~~ V a rcquired to connect all the live cells on a wafer. The idea is that somewhere on

S;, :. t wr, is a live cell in the center of a square region of O(lg N) dead cells, an observation

h: ll,,ws directly from Fact 5. (An example of such a region is shown in Figure 5.) Therefore,

"I \r, of' length (V1g N) is required to link the isolated live cell to any other live cell.

%- "1
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Figure 5. An example of an isolated cell.

3.1. The patching method

The first algorithm for integrating a linear systolic array achieves the lower bound of f(\'W)
by partitioning the wafer into squares, forming linear arrays within each square, and then
patching together the ends of the small linear arrays to yield a single linear array consisting
of all the live cells on the wafer.

More precisely, the method is as follows. Partition the wafer into square regions containing
2 lg N cells each, as is shown by the dashed lines in Figure 6. The probability that each of the

J -T r

""""I I I
";<- I X X XoX X

X I X X ---- X

I 
, I

* I I Is

XX X X 1 :"" 'ex ''
O. "--- x 12 log N

,I I I k

IxI
-*"."X X r

X pX

Figure 8. A scheme for constructing linear arrays from all live cells on a wafer with wires
of length O(\/-g-N) and constant channel widths.
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2 Ig, ' clI I., rc dclia in ot ic or Iriore (dt I It stit :,r .t less thlan I / .\ y L 1. I , it iihi

prol)wliiv, :ich of' the sqtiarcs con~ts ;t' ;it i oi live cell.
'II> rt :t linear array out oF I he( live ( !ls mn eaich slimre t ,419 :i n ak(-!Ikv sceliti H[ the

c(liit i' itw ii' -tpre, except Htat wh.i an ptV coluiiitt is erttoiirtttrcd, skii, ocr it. Figure

sI. . I! t o 1! t 11ccIIo IIs 'A.it h soIi d Iinc'i. In Y at ) : H r of'I els MIi I' (, i square c;bI hie l!iink( d

v It '', I- o' lenlg ht .at most 2/'gV, f he wires, in each arine have 1, riL,? I 0! /i7 Nix
Ilt vir,':-, MWIt byV dotted ines in (te figlire, Ir) connuect the small amrvs ii) olec itrev trray.

il - tn tn 1( rc'L,,;o i co Itai ns a.t least. ow.e li\ c cl 1. tl Is OlrCO 1nCc i o!Is ca it be Intad I, witl H I o

-1( -1 '1I 3 2 Ig .Thius, every .ir 1 Ihe completed linear array has length Al~ti,'

p. obability.

3 ' 2 tree method

:ie"l Is akre incorporated in a Ii non r- :I; ra' uz' mgr the pat, )irig imet bed, uhen !he maximum

-h v s &( IgN) with high prohib ihty. Huti the proof of the lowe r boomid suggests that

*o vsi nduce the long wires. Inst-:id of' insisting that all live cells be iincorporated in the
T: supos w j . !1)1 le only require thia' -',t A' heliecelsb n ied. This section describes

ie 'h i can construct a linear airray 1'rom almloF." all of the liv'e eels it constant-length

oeditre relies on the fact thAt. most ive cells on the wafeir are near eac:i othr-. More

it, has been proved [171 that there exists a positive constant c such that for any d
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Figure 7. Constructing a linear array from a spanning tree.

4. Integrating two-dimensional arrays

Tile problem of linking tile live cells on a wafe'r to form a square two-d iinisio nal systolic

array is substantially more difficult than thc corresponding problem for linar arrays. The main

dilliculty with constructing two-dimensional arrays is that constant length wires no longer sulfice

4.. even if we throw away some of the live cells [8]. In fact, it has been shown [17] that with high
probability, every realization of an M-cell two-dimensional array on an N-cell wafer has a wire
of length O(V1gM), for al M = f2(lg 2 N). This result means, for example, that wires of length
"O(Vi-g-N) are required to connect just one percent of the live cells.

In order for an algorithm to be effective in realizing a two-dimensional array, it must respect
the two-dimensional constraints inherent in the problem. For example, consider the following
naive algorithm for realizing an M-cell square two-dimensional array from all the live cells of an
N-cell wafer. We assume for convenience that M ;, N/2 is a perfect square.

'Fake the top v/IM7 live cells on the wafer, breaking ties randomly. These cells, in order left

to right, make the first row of the array. Take the top V'M cells of the remainder as the second
row, in order left to right, and continue similarly to make each row of the array. With high
probability no row of the array cofitains cells from more than three rows of the wafer because
Fact 8 guarantees that every row contains nearly x\I- 0.7\fM7 live cells.

At first, this method does not seem so bad because (Fact 5) the horizontal connections among

the cells of the array have length e(Ig N). The vertical connections are much worse, however.
Consider a vertical line which divides the wafer into left and right halves. Fact 6 says that we
can expect that the number of cells in a given row on one side of the dividing line is at least

Q(V/-) = fl(N'/ 4 ) larger than the number on the other side. Thus, with constant probability,
-. the midpoint of the row is at least O(N'/ 4 ) cells away from the dividing line. Two consecutive

rows have their midpoints on opposite sides of the dividing line half the time, and thus, with
constant probability, a wire connecting the two midpoints has length U(N 1 l4 ). Since there are

VW4 rows, there is a wire of length f(N /4 ) between two of them with high probability. A bound
of e(N'/4 .'-,) for the maximum wire length in the resulting array can be shown with more

detailed analysis.
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4.1. The tree-of-meshes method

This section presents an algorithm which can constuct a two-dimensional array from all the
live cells of an N-cell wafer if the channels have width ft(lg N). All possible configurations of live
and dead cells, however unlikely, can be handled by this technique, but the wire length bounds
are not good. This result will he used as a subroutine in the divide-and-conquer and patching
methods to achieve better bounds for wire length on average-case wafers.

We first show how an N-cell wafer with channels of width O(Ig N) can be viewed as an N-leaf
tree of meshes [2, 14, 15, 16]. The tree of meshes is constructed from a complete binary tree by
replacing nodes of the tree with meshes and single edges of the tree with bundles of edges linking
the meshes. Figure 8 shows a 16-leaf tree of meshes. The root of an N-leaf tree of meshes is a
vN-by-v'- mesh. (We assume for simplicity that v/N is a power of 2.) The nodes at the second
level are VN/_2-by-V/-N meshes, those at the third level are VfN/2-by-v/-N/2 meshes, and so on
until the leaves are replaced by -by-I meshes.

Figure 8. The 16-leaf tree of meshes.

%,', The correspondence between the N-cell wafer and the N-leaf tree of meshes is established as

follows. The first step is to construct. a Ig N-layer three-dimensional layout [18, 26] of the tree of

nieshes. Fold the connections between the root of tlve tree of meshes and each of its two children

so that the children lit naturally on a w.cond layer over the root. Fold Ihe connections to each of

the granlchildren so that they fit naturally over the children on a third layer, and so forth. This

procedure generates a Ig N-layer three-dimensional layout where each layer has area N. Next,

project the three-dimensional layout onto a single layer in the manner of [31, pp. 36-38). Locate

cells of the wafer at the leaves of the tree of meshes. The crosspoints of the meshes become

programmable switches, and the wires of the meshes become the wires in Ig N-width channels.

We now wish to make a two-dimensional array from the M ;z N/2 live leaves of the tree of

nmeshes. (In general, an exact square array is not possible, and thus we shall assume the array to

be formed is missing some border cells, as is shown in Figure 9.) We first use divide-and-conquer

to assign each cell a number from 1 to M. We chop the M-cell array in half vertically into two

suilarrays with [M/2J and rM/2] cells. We recursively assign numbers from I to LM/2j to the

first subarray and numbers from [M/21 to M to the second subarray, alternating the orientation

of the cut between horizontal and vertical at each recursive step.

I I0
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cut-wires

FIgure 9. A 6-by6 array that is missing some border cells.

The assignment is now simple. The ith cell of the array is mapped to the ith live leaf of

the tree of meshes counting from left to right. After swelling the channel capacities by a small

constant factor to accommodate the wires, adjacent cells can be connected by routing wires

through the unique path in the underlying complete binary tree. Routing through the meshes

can be done by treating them as crosspoint switches. The wire lengths are O(V/NIg N) since we

need to route across O(VN) channels of width e(Ig N).

As a practical matter, the tree of meshes need not be used directly for routing wires. The

assignment algorithm can be used to establish the correspondence between the two-dimensional

array and the live cells of the wafer, and then the wires can be routed using a standard gate-array

routing program. In the case when VX1 is an exact power of 2, the assignment is particularly

S-' simple. The kth live cell corresponds to the (i,j) position of the array, where i is obtained by

...- concatenating the even bits of the binary representation of k, and j is obtained by concatenating

the odd bits.

4.2. The divide-and-conquer method

The tree-of-meshes algorithm works as well as might be expected in the worst case, and

thus it is natural to wonder how well it works on average. Unfortunately, the algorithm works

poorly in a probabilistic model because the maximum wire length is nearly always large. This

section presents a similar divide-and-conquer algorithm which works poorly in the worst case, but

which can be proved to work extremely well on average. With high probability, the algorithm

connects all the live cells of an N-cell wafer with channels of width O(lglgN) using wires of

length O(Ig N Ig Ig N).

The divide-and-conquer algorithm has two stages. In the first stage, the wafer is recursively

bisected, and the number of live .ells in each half is counted. Based on the count of live cells in

each half of the wafer, the algorithm computes the dimensions of the two subarrays that must be

constructed, and then recursively constructs the subarrays. The two subarrays are then linked

together to form the complete array. The algorithm remains in the first stage as long as the

distribution or cells within the current region of the wafer is good, which (with high probability)

-.'., is until subprolems with (4(lg N) cells are encountered. Below this point, the distribution of cells

:. VI,
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can he arbitrarily bad, and thus the algorithm uses the tree-or-meshes technique to complete the
wiring of a O(Ig N)-cell subarray. The exact, crossover point. between the firsL and second stages
cA be set, at sutbprobleins of size c Ig N, where r is any constant suIliciently large to ensuire Lhat

with high probability, every c Ig N-cell region contains fl(lg N) live cells. That such a c exists is
a consequence of Fact 8.

Figures 10 through 13 illustrate the divide-and-conquer procedure. Figure lOa shows a 64-cell
wafer which contains 36 live cells. In what follows, we step through the algorithm as it constructs
a 6-by-6 array, which is identified as the "overall target" in Figure lOb.

D x 0 1: x X OX x
Q 3 Dx x x 0 0 x

CO0XOO 0X Xx0
O Qx x O x x

'... (:3 x x O XQ3 x o

0 0 0 x X x 1xO XQ X 0X

Figure 10.. A 64-cell wafer that contains 36 live cells.

'
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e__ t[ Mrr Figure 10b. The target: a 6-by-fl systolic array.
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The first step is to bisect the wafer vertically, which gives 19 live cells in the left half and 17
. the right. We wish to construct a 19-cell subarray in the left half wafer and a 17-cell subarray

in the right hair wafer. Since we want the two subarrays to fit together nicely after they have
""* been constructed, we choose the shapes of the two subarrays that are determined by the partition

or the 6-by-3 array shown in Figure It.

4.

. '

left-half target right-half
target.- .. split -

Figure 11. Partitioning the target.

We now invoke the procedure recursively on the two subarrays, but this time we bisect each
of the halves horizontally. For example, when the left half wafer is bisected, the 19 live cells are
divided into 9 cells above and 10 cells below, as displayed in Figure 12. The algorithm continues
in this fashion, alternating between horizontal and vertical divisions, until the wafer and the
target have been partitioned into e(gN)-cell regions, at which point the algorithm proceeds to
the second stage, and the tree-of-meshes technique is applied.

.-p

Upper left
target

split --.w .

lower left
"I . target

Figure 12. Partitoning the left target.
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.In this example the number of cells is small enough that the second stage construction can
be performed by inspection. The inspection strategy can be used effectively in practice. Since
the second stage operates on regions of size O(Ig N), the routings of this size can conceivably be
preconputed. The second stage then consists or a single table lookup.

Figure 13 shows the final solution to the problem in Figure 10. For clarity the wires have not
been routed within the channels of the wafer. Notice that each quadrant contains the specified

S, x, x I xx x x 4 5

I x x;
X xJ

x 
x

x x x .x

Figure 13. Completed cell assignment and wiring of the 6-by-8 array.

targets for second level of recursion. The dashed lines represent wires that connect cells in

different quadrants of the wafer.
'With probability 1 - O(1/N) the divide and-conquer method can construct a two-dimensional

array from all the live cells on an N-cell wafer using wires of length O(lg N Ig Ig N) and channels
"- of width O(lg Ig N). It is not too difficult to see that these bounds hold with probability 1 for
(" the regions of size less than c Ig N that are counected by the tree-or-meshes procedure. Plugging

• in c Ig N for N in the tree-of-meshes bound yields wires of length O(Vq/-Nlglg N) and channels
of' width O(Ig Ig N).

The hard part is showing that the wiring in the upper levels of recursion satisfy the bounds.
The analysis, which we briefly sketch, assumes that during the recursion, the channel dividing a
subwafer with m > clg N cells has width Un/lNn. Uniform channel widths of Ig Ig N across

J the entire wafer can later be obtained by distributing the wider channels across neighboring
channels, which does not asymptotically increase the wire lengths in the subsequent analysis.

We begin at the first level of recursion. Consider the wires that link a cell in the left subarray
..- to a cell in the right subarray, as is illustrated by the two examples in Figure 14. For the most

NA ". .
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Figure 14&. A distribution of live cells which might allow a narrow center channel.

array '

'It

Figure 14b. A ditribution of live cells which requires a wide center channel.

* 4I

part, the coninecting wires can be routed iii the channel that separates the left and right h~alves
or the wafer. The length or the longest wire in the channel is proportional to the longest vertical
distance that a single wire muiist traverse, as is the width of the channel itself.

The length or the longest wire in the (-enter channel depends on the distribution or cells in
each quadrant. For example, if we are extremely lucky and the live cells are regularly spaced,
the longest wire mnay have conqtant length, as in Figure l4a. But~ it we are very unlucky, ha~r the

live cells might occur in the upper right quadrant and the other half in the lower left quadrant
(Figure 14b). To connect the two halves in this latter case, some wire must have length II(VrN-).

The length of the longest wire in the center channel can also be influenced by the distribution
of cells withtin a quadrant. For example, ir the upper left quadrant contains Vr'q78 live cells
(about the right number), but they are distributed as in Figure 15, then the center channel still
contains a wire of length I(V/K).

Most often, we are not so unlucky that a wire in the center channel has length fl(v'), but
neither are we lucky enough that all wires are constant length. With) high probability, we are
more lucky than unlucky because the length of the longest wire in the center is O(lg N). The
idea is that the live cells are distributed so evenly that with high probability, the total vertical

m/, t
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Figure 15. Another distribution of live cells which requires a wide center channel.

distortion of the wires in the center channel (over all subproblems of size f(Ig N)) is O(Ig N). For
• channels dividing a subwafer of size m > c Ig N, the vertical distortion is O(ilg m lg N). Thus,

the channel width bounds assumed earlier suffice.

The wire length analysis of the divide-and-conquer algorithm is fairly tight. For example,

the algorithm requires wires of length fQ(Ig N) with high probability. Thus, if the lower bound
of Q( IKN) is to be achieved, a different algorithm must be discovered. It may be possible to
improve the channel width bound, however. For example, any improvement in the worst-case
bound given by the tree-of-meshes technique would lead directly to an improvement in the channel
width bounds for the divide-and-conquer algorithm.

4.3. The patching method

Not surprisingly, we can improve the wire length bounds if we need only construct a two-

,'I dimensional array from most of the live cells on a wafer. In particular, we can use a scheme similar
to the patching scheme from Section 3.1 to construct a two-dimensional array from any constant

fraction (less than 1) of the live cells on an N-cell wafer using wires of length O(/l/-N lglgN)
and channels of width O(lglg N). These bounds are also achieved with high probability.

The key idea is to partition the wafer into N/clgN square regions, each containing m
clg N cells. According to Fact 8, we can choose c sufficiently large such that with probability

"' 1 - (1/N), each of the regions contains at least m' -= 1clgN - Vclg N live cells. Using the
-rer-of-meshes technique, we can therefore (,nstruct an m'-cell two-dirmensional array in each

rvgion usinm wires of length O(Vm lgm) = O(V/f- lglgN) and channels of width O(Igm) =
()(l Ig N). The N/cl Ig N two-dimensional arrays are then connected together into one large
trra" witrl ' N(I -- 2/Nf) live cells. The added wires also have length at most 0(/N A' Ig Ig N),

:i can vasily fit into the O(Ig Ig N)-.,idth channels.
The ptchinvg method cat be thought of as a refinement of the divide-and-conquer method

th:t! throws away a fraction of the cells at ea<h level of the recursion. The actual decisions as to

wiihh cr.lls at a given level are thrown away v'an be postponed until lower in the recursion, but

il i, iintrtant that at each level, every region of the wafer have exactly the samne number of live
4c I ls.

4.4. Greene's method

-I' nl \t lnetihod, lue to Greene 171, also ,ont-i.cLs any consttit fraction of the live cells on

V4. -1I wafer into a two-diiiienimil array. With high probabilily, it uses wires of length
4,

vf-
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.(V/l-7V) and channels of constant width, thus achieving the lower bound for integration of two-
dimensional arrays. It is similar to the algorithm presented at the beginning of this section in that
it creates rows of the array, but it is considerably more clever. The algorithm that determines
the rows and columns of the array is based on network flow techniques, but we present it in a
manner that does not require a knowledge of combinatorial optimization.

Greene's algorithm can construct a (1 - c)VN_-by- (1 - t)vN array, for any constant f > 0.
For any such f, we require the N-cell wafer to have channels of width w, where w is a sufficiently
large constant that dlepends on (. The higher the percentage of cells we wish to integrate into an

%,r array, the wider we must make the channels.
Partition the wafer as shown in Figure 16 into blocks of size 1-by-cjv/i- W such that there

are oW rows of blocks and V/N/cjV columns of blocks, where cl is a constant depending

-M BLOCKS

BLOCKS F-

2 BUNDLES OF
W/2 TRACKSEACH W/2 TRACKS

ii,, C1 11"N- ELEMENTS

Figure 16. Forming the tentative rows in Greene's method. Blocks containing fewer than t
live cells are marked with solid X's. Blocks marked as bad during the scan arc marked with
dashed X's.
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on f. Mark a block as bad if it contains fewer than t live cells, and good otherwise, where t is also

a constant depending on t. For the exact values of constants, we refer the reader to [7].

The first part of the algorithm determines tentative rows for the array. We divide the w

vertical tracks between blocks on the wafer into two bundles, each consisting of w/2 tracks. For

... this part of the algorithm, we will treat the two bundles as two routing tracks. Later, we will

need to reexpand the capacity of the two tracks by w/2 each.

The algorithm first determines (I - ()vN horizontally running chains from the left edge of

the wafer to the right edge through the good blocks. The chains must satisfy the constraint that

no wire is longer than c2 /-i/W, for some constant c2 depending on c. The algorithm determines

the chains in the followiag manner. Scan the columns of blocks left to right. For each column,

proceed through the blocks from top to bottom. At each point, if the current block is good, we

attempt to connect it to a good block on the left. This connection is made to the uppermost

good block within distance c2 v'i-gN, up or down, from the current block that has not yet been

connected to a block in the current column. It must also satisfy the constraint that the routing

does not exceed the channel capacity of 2. If such a connection cannot be made, we mark the

current block as bad. Block (5,2) in Figure 16 is marked bad for this reason. Some chains are

terminated by this procedure-for example, the chain ending in block (3,2) of the figure. With

high probability, however, this procedure establishes (1 - c)v/N horizontal chains, each with

V/?N/c,_mVFgN blocks.

The horizontally running chains can be viewed conceptually as shown in Figure 17. We now

expand the blocks in the chains to see their internal structure, as shown in Figure 18. The

H- VN BLOCKS -A

T(I - - -/-

BLOCKS

BUNDLE -

OF W/2 W/2 TRACKS( TRACKS,.w~tRACKS

Cg I /N ELEMENTS

Figure 17. Normalized view of the rows of blocks.
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-/_N ELEMENTS

I~ ~ 1III
0-E) -[
ELEMENT" L I - W/2 TRACKS

N, I I

Figure 18 Forming the columns in Greene's method. Dead cells are marked with solid X's.
Cells marked as bad during the scan are marked with dashed X's.

horizontal tracks in Figure 18 actually correspond to sections of both horizontal and vertical
tracks in Figure 16 because the chains run both horizontally and vertically. The horizontal
channels in Figure IS have w/2 tracks, and thus the two vertical tracks between blocks in Figure

"- 16 must each be expanded by w/2 to accommodate the wires we shall now route to make the
vertical connections.

We establish the vertically running chains by essentially the same procedure as before, ex-
cept we scan lop to bottom and route through horizontal channels of width w/2. With high
probabilikv the alh orithm constructs !(I - ()N vertical chains. The horizont:rl chains are flow
modilied to include only those cells used in the vertical chains, which completes construction of
the (I - OjVWN-by- !(I - -)V/ array. All channels are constant width w, and it turns out to be
the case, that all wire lengths are O(vg-N ).

Greene's method generates a rectangular array with aspect (length to width) ratio 2, but
we may wish to realize a square array without throwing away half the cells. By embedding a
(I - ,/)V/2-by-(1 - ()VN2 square array into a (1 - )v/N-by-1(l - )VN rectangular array
so that adjacent cells of the square array are constant distance away in the rectangular array,
we can use Greene's method directly. The first row of the square is embedded in the first two
rows of the rectangle such that all the first row of' the rectangle is used and an evenly spaced
portion of the second row is used. We connect the cells of the first row of' the square linearly
left to right in the rectangle. The second row of the square is embedded linearly in the second
and third rows of the rectangle using all the remaining cells in the second row and a uniformly
spaced portion of cells in the third row. The third row of the square uses all the remaining cells

in the third row of the rectangle, all the cells in the fourth row, and a uniformly spaced portion
of cells from the fifth row. We continue in this fashion until the embedding is completed. Every
adjacent pair of cells in the square array are within horizontal and vertical distances of four cells
it the rectangular array. This procedure can be generalized to construct any rectangular array
of any aspect ratio.

4.5. The matching method

We conclude with a method whose proven bounds are not as good as those presented thus
far, but which is nevertheless interesting. In the case of widthless wires, this method, which is



baLsed( oil bipartite miatching in a graph, can integrate all the cells on an N-cell wafer with wires

of' leoj il Oklg 31 4 N). When we consider thiv normal case of unit width wires, however, we couild
CWricO;Nably need channels or width E)(lg 34N), and because the wires would needl to cross these

chalu is, wires of' length Oftg3 1 2 N). This algorithm is certainly worth considering when wirc

%idtths are ,;mall because the O(1g 31" N) wire-length bound is better than the bound or O(lg N)
wihthe divide-and-conquer method yields for widthless wires. Moreover, the true performiance

of the matching method might be better than that. suggested by the upper bound for unit.-width
wires. In comparison, the divide-and-conquer inethod has a hard lower bound of e(lg N) even

wo idi hiess wires. In addition, the algorithm is easily tailored to handle the situation when wc

'Aish to integrate any constant fraction of the live cells, in which case the widthic - wire bound

Kilririks to A g N), which is optimal.
''Te first step of the matching method is to determine the numbt-r N1! of live cells on an

N-ell wafer. Then we pick a target wire length d that we hope to achieve. The algorithmi no"

(let i'rriines the locations of points in a uniforml V.ib-lM grid superimposed onl the wafer. It

I lwn constructs a bipartite graph between the grid points and the live cells of the wafer with an

IJ, I)WV1 hL eei grid( point, anid a live cell if th~e distance between themn is at miost, d. Then, using

i irt ite miatc hinrg al gorithliim [5], the proceduinre determineis whether every grid point call be

;.1?ched one- to-onec with a live cellI. If a perfect niatchinrg exists, then we know a rou ti ng of the

f(orr(sjponding assignmenit With widtlnless wires has miaximum edge length d.
It is possibh i show 19, 3io1 thati -(l'

1 Nte ienmacmmgsced 'thhg

;'mahiity Asa jractical moatter, it is better to search f'or the snmallest, d th:t wvorks for a givcii

'A-r itsi' epr -if search. Try d =1, 2, 1,8,. ... until1 a vailue of d is f'oiumd that resilits ill

pirte't inatelming, and~ then binary swarch to find thle exact value.

''e( samrre techniqme can be applied to conit.rnrct a i wo-dimmessional array from any ni uber

rn < Al of the M live cells by using a V'/r-by-Vm- grid. For the case when m = (I - oM, it

cain be shown that wires have length O(V[g-Al) with high probability.

* 5. Summrary and conclusions

Tlhe content of this paper is taken primarily from [17] and somewhat froml [7] and [8]. The

ulgorit urns presented arc summifarizedI in Tables I and 11. The literature contains many more

'V iin(pws for integrating systolic arrays. Mannirng [22, 23], H edlund and Snyder [9], Koren
1! I Ki~f I lissel I and Varman [6i] look at the Uasi'- problem of construc tinrg arrays from wafers

t:i nirgFaul t y cells. Rosenberg [27, 28], 1iun g, Leighton, arid Roseniberg [3, 4], and lBhatt

Itl I "igiton [21 have also investigated fault tolerance.
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Table I
Bounds for One-Dimensional Arrays

Method Portion of Maximum Maximum
cells used wire length channel width

patching all 0 (VT- 1gN) E(1)
optimal all 0(VTN) e(i)
tree 99% 0(1) 0(1)

Table Ha
Bounds for Two-Dimensional Arrays
(worst-case wafer, using all live cells)

Maximum
Method wire length Maximum Maximum wire

for widthless channel width length for unit
wires width wires

tree of meshes 0(vW) O(log N) O(VN log N)

optimal 0(vI) (1)(vN)

Table IIb
Bounds for Two-Dimensional Arrays

(average-case wafer, using all live cells)

" Maximum wire Maximum wire
Method length for Maximum length for unit

- widthless wires channel width width wires

divide & conquer 8(log N) O(Iog log N) O(log N log log N)

matching O(Iog /'/ N) O(log 3/ ' N) O(1og3 /2 N)

optimal n(1) (V Wn0W)
a.

°

Table lIc
Bounds for Two-Dimensional Arrays

(average-case wafer, using 99% of the live cells)

Maximum wire Maximum wire
Method length for Maximum length for unit

widthless wires channel width width wires

patching 0 (%/T N) 0 (log lg N) 0( ,I-g N log log N)
Greene 0(vl4o) 0(I) 0(6(1)N)

matching 0(v'oN) O(\Ao-N) O(Iog N)
optimal 8(vliN) 0(I) 0( TgoosN)
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