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Abstract— VLSI technologists are fast devcloping wafer-scale integration. Rather than par-
titioning a silicon waler into chips as is usually dorz, the idea behind wafer-scalc integration is
to assemble an entire system (or network of chips) an a single wafer, thus avoiding the costs and
performance loss associated with individual packaging of chips. A major problem with assem-
bling a large system of microprocessors on a single waler, however, is that some of the processors,
or cells, on the wafer are likely to be defective. This paper surveys practical procedures for
integrating “around” such faults. The procedures are designed to minimize the length of the
longest wire in the system, thus minimizing the communication time between cells.  Although
the underiving network problems are NP-complete, all the procedures can be proved reliable by
assuming a prohabilistic model of cell failure, 7(_7“ .

i

Key Words: channel width, fault-tolerant ., <tems, matching, probabilistic analysis, spanning
tree, svstolic arrays, traveliing salesman problem, tree of meshes, VLSI, wafer-scale integration,

wire length.
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W 1. Introduction
i‘r VLSI technologists are fast developing wafer-scale integration [25]. Rather than partitioning
-2 a silicon wafer into chips as is usually done, the idea behind wafer-scale integration is to assemble
3] an entire system (or network of chips) on a single wafer, thus avoiding the costs and performance
:!. loss associated with individual packaging of chips. A major problemm with assembling a large
‘ system of microprocessors on a single wafer, however, is that some of the processors, or cells, on
Wl the wafer are likely to be defective, or dead. In this paper, we survey algorithms for constructing
;'J'i systolic arrays from the live cells of a silicon wafer.
o, Laser-programming the interconnect of a wafer is one promising means of achieving wafer-
o scale integration. This technology was pioneered at IBM [21] and pursued in the direction of
. wafer-scale integration at MIT Lincoln Laboratory [25]. Figure 1 shows a scanning electron
! o
D
g
L
2
" «
.
i
2
'I'\
b0
. :
X Figwre 1. A close-up of laser-programmable interconnect.
:: microscope photograph of a portion of a wafer with programmabfe interconnect. Laser welds can
[ 3 be made between two layers of metal, and by using the beam at somewhat higher power, wires
'y can be cut. Defective components can thus be avoided by programming connections between only
the good components.’
~’_*-\’ Figure 2 shows a typical organization of a wafer-scale system with programmable intercon-
?'~:'_f nections. The components are organised as a matrix of cells, and between the cells are channels
i~ through which the interconnect runs. Figure 3 is a close-up of the channel structure. At the
i intersection of a horizontal and vertical channel, laser-programmable connections can make a
: horizontal and a vertical wire electrically equivalent. Between two cells, connections can be made
:::-: from the wires in the channel to the inputs and outputs of the two cells. Given that the inter-
'.',::: conncct is programmable, we shall adopt a usage of the term “wirc” to mean an clectrically
:::' equivalent portion of the programmable interconnect.
Systolic arrays [12, 13, 20] are a desirable architecture for VLSI because all communication
is between nearest neighbors. A realization of a syslolic array as a wafer-scale system may lose
“cﬁ this advantage if all ncarest ncighbors of a processor are dead, however, because a long wire may
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Figure 3. The channel structure of a wafer-scale system.

u
: :; be needed to connect electrically-adjncent processors. In general, the longest interconncction
" belween processors is the communication bottlencck of the system. Of the many possible ways
T in which the live cells on a wafer can be connected to form a systolic array, therefore, the one
- that minimizes the length of the longest wire is most desirable.

:; To illustrate the subtleties inherent in configuring systolic arrays, consider the problem of
A constructing a linear (i.e., one-dimensional) array using all of the live cells in an N-ccll wafer.
. Unfortunately, il we wish to minimize the length of the longest wire, the problem is NP-complete
i [10]. Even more discouraging is that there are some arrangements of live and dead cells for which

" even the optimal lincar array has unacceptably iong wires. Thus optimal solutions-— even if they
::.)x: conld be found quickly- are not always practical.
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By assuming a probabilistic model of cell lailure, however, many positlive results can be proved.

v,
i I'or exarnple, Figure 4 illustrates a possible solution to the problem of connecting the live cells
W] ol a wafer into a linear systolic array. The live celis, which are denoted by small squares, are
i connceted together, one after another, in a snake-like patiern. Dead cells, denoted by X's, are
X :: skipped over. With probability at least 1 — O(1/N), the length of the longest wire is O(lg N),
N where Nois the number of cells in the wafer and where cach cell independently has a 50 percent
& O X OO0 X
& |
'J',
& X X r{hH X
& X
D~
N
\I: X X X X
: X
.
:: Figure 4. A simple means of constructing a linear systolic array from the live cells on a
.J-', wafer,
. chance of failure.*
< This bound comes from the observation that the length of the longest wire that connects two
* cclls in the array is just the length of the longest sequence of dead cells in the snake-like string,.
:: For a given set of k cells, the probability that all are dead is 1/2*, and thus the probability that
- any set of 21g N cells are dead is 1/N2. Since there are less than N sets of 2lg N consecutive
- cells, the chances are thus less than one in N of having to skip more than 2Ig N cells in the
{‘: entire snake-like path of length V. Hence the maximum wire length is O(lg N) with probability
7 at least 1 — O(1/N).
T:: To say that “with probability 1 — O(1/N) the maximum wire length is O(lg N),” is a substan-
o tially stronger statement than saying that the expected maximum wire length is O(lg N). This
P is because no wire can ever have length greater than O(V/N), even in the worst case. Hence the
_’, expected maximum wire length is at most
.
3 — O(1/N))- O(lg N) + O(1/N) - O(VN) = O(lg N)
.l
. ‘ Moreover, the chances that the maximum wire length is much greater than O(lg N) are miniscule.
':: In particular, the probability of having to skip more than klg N dead cells at a fixed point in
:-::‘ the snake-like path is less than one in N*. Hence, every wire has length at most kig N with
i probability at least 1 — 1/N*—1,

*Here and thronghout the paper, we use Q(f(N}) to denote a function that is bounded above by ¢f(N) for a fixed
constant € and il sufliciently large N. We also use (1 f(N)) to denote a function thal is bounded below by e f(N),
and (f{N}} to denote a function that is bounded above by ¢, f(N) and below hy ¢z f(N} for some fixed consat: mts
¢, ¢y and es, and all ~ul|uwnt|y large N. We also use Ig N o denote log, N, Ig* N to denote (Ig N, and g N
to denote (lelg N Lastly, [z] denotes the largest integer less than or equal to z, and {z] denotes the smallest
integer greater Lhan or equal to z.
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:' This paper presents a survey of algorithms for realizing one- and two-dimensional systolic
Y arrays as wafur-scale systems. Unlike many of the heuristies in the literature, the algorithms
‘ here have all been theoretically analyzed, and bounds on their quality hiave been mathematically
.’ proved. The analyses make the assumption that each cell fails independently with probability
.: p. and for s'mplicity, we assume here that p = % We also assume for ease of explication and
~_‘_ analysis that the width of a cell and the width of a wire are each unity. A more complete
o dizcussion of the assumptions and their generalizations can be found in [17].
_ The algorithms are organized to aid an engineer in picking an algorithm for implementation.
J We try to present enough mathematics to aid his intuition, but we do not, for the most part,
:: include the fetailed combinatorial arguments appearing in the literature that substantiate the
':. effectiveness of the algorithms. Since programming involves many more “real-world” constraints
:,' than ean be considered in an algorithmic analysis, we expect that the engincer might choose a
loss offeetive algorithm, for example, if it is easier Lo code. The algorithins here constitute a menu
o of po--ibilitis to stimulate an intelligent design decision,
b The remainder of the paper is divided into four sections. Scetion 2 contains basic com-
‘J binatorial faets underlying the probabilistic analyses used in the litersture. Section 3 gives two
;‘ aleorithms Trr integrating linear arrays. The first algorithim connects all the live cells on a wafer,
q and the seeond achieves sormewhat shorter maximum wire length by connecting only a large
7 constant frastion of the live cells. Section 4 gives five algorithms for integrating two-dimensional
_: arrays, and includes both worst-case and probabilistic bounds. Section 5 discusses provides a
sureiary o the material covered in the paper and mentions some related work.
+
[}

2. Comnbinatorial facts
I the introduction, we showed tha. with probability at least 1 — O(1/N), a sequence of N
S colls on o wafer contains no more thar O(lg N') dead cells in a row. This kind of high probability

Sy :
o preaiyvais underlies most of the algorithms in this paper. We shall use the term “high probability”
! 1o tmean “uith probability at least 1 — O(1/N),” where N is the number of cells on a wafer. We
now presen’ some basie facts used in high probability analyses.
. The firs . Tact is the standard definition of independence.
- Faet §. Let A and I} be independent rand«m vi.riabics. Then
L Pr{An i - r{A}Pr{B}. @
e
r. I'he second fact bhornds the probability of thie »nion of two random events, even if the events are
R not indener dent.
Veor 2. Let A and B be random varichles. Then
B Pr{AuU B} < Pr{A} +Pr{B}.
-
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Proof. This fact follows from the principle of inclusion and exclusion. We always have
Pr{AUB} =Pr{A}+Pr (B} - Pr{AN B},

and since Pr {AN B} > 0, the result follows. 1

Fact 2 provides a weak bound if the probabilities involved are large. For example, if the
probability of the individual events are each greater than 1/2, the bound on their union is trivial.
When the probabilities are small, however, the bound can be useful.

The next fact bounds a linear function with an exponential. It is most useful when z is near
zero.

Fact 3. For all z tn the range —oo < z < 00, we have

1+z<e*. B

We now turn to combinatorial theorems that deal more directly with the statistics of faults
on wafers. As was meationed in the introduction, we shall typically assume that cach cell on the
waler ails independently with probability 1/2.

Fact 4. With high probability, a given rectangular pattern of live and dead cells of size 21g N
never appears on an N-cell wafer.
Proof. The proof follows the analysis for the snake-like scheme in the introduction, which relies
on Fact 2. The generalization from one- to two-dimensional regions is straight{orward, as is the
genceralization from a pattern consisting solely of dead cells to an arbitrary pattern. |

Of course, Fact 4 does not imply that no pattern will occur, only that the probability that a

given pattern occurs is low. It's like the lotlery: somebody will win, but probably not you.
Remarkably, patterns of slightly less than half the size almost always appear on a wafer.

Fact 5. With high probability, a given rectangular pattern of live and dead cells of size
lg N - 2\glg N appecrs somewhere on an N-cell wafer.

Proof. Partition the wafer into N/(lg N — 21glg N) rectangular regions of size lgN — 2Iglg N.
The probability that a given one of the regions realizes the pattern is

lg2 N

2—I¢N+2lglgN =1—
N

The probability that every region avoids the pattern is therefore

- N
. 2 TsN—2lglg N 182 N
x lg” N\'eN-2lele -5 (er=tnnw)
N 1- <e
A N -
(‘-p »
0 SR LY A
\:." =€ sN—digls
S <e 8N
LA B 1
SN < —
W - N '
e
-
t,'._: using Facts 1 and 3. @
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{n a region of mm cells on a wafer, the expected number of live cells is jm. The actual number
will vary, however. The next lact gives tight bounds on the expected deviation.

I'act 6. Let X be the random variable indicating the number of live cells in a region with m
cellsa. Then the expectation of the deviation ts

E(IX - %m )= 6(v/m). 1

Faet notedls s that the expected deviation from the mean is ©(y/m). We shall occastonally
foecd to hound the actual probability of some given deviation. The next fact provides such a
EH. ‘f

Facr 7. Let N be the randorn variable indicating the number of live cells in a region with n
;o Lo T Gurr 0. the probability that the deviation erceeds ri/m is

l’r{

We can use Fact 7 to prove a lower bound on the number of live cells in each of a collection of
<1'ficiently large regions. The next fact shows that if each region contains clg /V cells, for some
~ateieretly large constant ¢, then with high probability, there are a substantial number of live

—_ ;o 2
> m}:O[c . »

1
X~ im

cells in the cach of the regions.

Fact 8. For any ¢ > 4, and for any particular collection of N regions on an N-cell wafer,

carh with at least clg N cells, the probability is at least 1 — O(1/N) that every region contains
Lelg N = /clg N live cells.
P’ronf. The probability that a given region does not contain at least lelg N—/clg N live cells is
Ofe 2Ny == O(1/N?) by Fact 7. By Fact 2, the probability that all the /V regions on the wafer,
ovetlapping or not, fail to contain at least Jela N -~ (/clg N cells is at most N - O(1/N?) =
O(1/N). 8

3. Integrating one-dimensional arrays

With hieh probubility, the snake-like scbeuwe deseribed in the introduction connects all the
live coll: on an N-cell waler into a linear a7 ay with wires of length at most O(lg N). This section
vive o twe procedures that substantially Loprove and generalize this bound. The first connects all
e i colls on a wafer with wires of length /1y N ), and the second connects most of the live
ceilv with wires of constant length.

Before presenting the algorithms, we first observe that with high probability, wires of length
Vil V) are reguired to connect all the live cells on a wafer. The idea is that somewhere on

Cyeowedh o) there is a live cell in the center of a square region of Q{lg N} dead cells, an observation
th- follows directly from Fact 5. (An example of such a region is shown in Figure 5.) Therefore,
a wire of length {2(y/Tg N') is required to link the isolated live cell to any other live cell.
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Figure 5. An example of an isolated cell.

3.1. The patching method

The first algorithm for integrating a linear systolic array achieves the lower bound of (/g N')
by partitioning the wafer into squares, forming linear arrays within each square, and then
patching together the ends of the small linear arrays to yield a single linear array consisting
of all the live cells on the wafer.

More precisely, the method is as follows. Partition the wafer into square regions containing
21lg N cells each, as is shown by the dashed lines in Figure 6. The probability that each of the
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Figure 8. A scheme for constructing linear arrays from all live cells on a wafer with wires
of length O(\/Tg N') and constant channel widths.
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2 NV oeells are dead in one or more of the suniares is dess than /N by Fact 40 Thus, with high
probatility, cnch of the squares contains at feast one live cetl,

Construct a linear array out of the live cells in each square vsing a snake-tike selieme on the
columns o tae square, exeept that when an cmipty column is encountered, skip over it Figure 6
shows thcae connections with =olid lines. Since nny pair of cells in the siane square car be linkad
with oowire of fength at most 24210 .V, the wires in each arcay have longth Opl: V) Nex,
add wires, saown by dotted fines in the figure, to connect the small arravs into one large srray.
Becouse each region contains at Jeast one live cell, these connections can be made with w3 of
et at st 3y/21g N. Thus, every wire i the completed linear array has length I,z 7V)
wath binh piobability.

3.2 Phe tree method

P the colls are incorporated in a linear aieay using the patehing metbod, then the maximurm
wih s ©(VIg NY with high probability. But the prool of the Jower bound suggests that
ivolnted cells induce the long wires. Instend of insisting that all live eells be incorporated in the

lineor aray, suppose we only require that wnat ot the live eells be included. This section deseribes

o ocetare that ean construct a linear array from alinost all of the live cells with constant-length

The o o<‘uro relies on the fact that most live cells on the waler are near each otaer. More
-paciienily, it has been proved [17] that there exists a positive constant ¢ such that for any d,
wWith protoab .l ly 1 — O(1/N), at least 1 — O(27°4) of the live colls on an N- Il wafer can be
cor coved iy oa tree using wires of lengih at most d. Up to constuni factors, this is the best

v ible Lovad,

" sicrithm consists of two parts. First, a tree T of live cells is constructed with wires of
for 5 . ooat o and then the tree is transformed into a linear array with wires of length at
qoocad Uihe constant 6 is due in part 1o our assmaption that the width of a »vire cquals the
Wi ol 1 wire widths are substantiatly smaller, the constant shrinks cleser to 3.)

e o Mean he construeted by any of the algorithms that compute the minimurn spanning

Crocta reph Inoparticular, Prin’s method 1.5, 24) can be modified to compute the spanning
froc i e r time,

Cov traetion of the linear array from the = - depends on a result by Sckanina [29] which

- - <y eube of a nontrivial connee 7+ un always has a Hioniltonian cireuil. Specifically,

oo oo har, without regard for wiee cidtls the linecar array enn be construceled using wires

Co L tracing over wires in the cove T ono more than twice each. Since every wire is

-t roast Lwden, the channe! widths - ouid (at worst) double in the resulling wiring,

o Covo o the maximum wise ore 0 from 34 Lo 6d when wire widths are accounted for.

4o pto be the raot of 7 oo let 1. To, ..., Ty, be the subtrees of v as is shown

Atee e rate cases ot like Biense T oare easily handled, but we do not include the

Decursively construet lines v caravs on the nodes of Ty, Ty, ..., Ty such that no

w0 coattowreater than 30, and o that the end points of the array in 77 are v, and uygy

v Then join the arravs in the sabtrees by adding the Tollowing wires: (v,11),

Ci oty ) (These wires e shown as dashed lines o Figure 7.) Tuach of

S e e heneth ar most 30, and the resnlting network s o linear array on the nodes of

S0 omte e and . For completencss. we remark that the boundary conditions of the
e vooeasily handled.
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::? 4. Integrating two-dimensional arrays -
:', The problem of linking the live cells on a waler to form a square two-dimensional systolic
s array is substantially more difficult than the corresponding problem for lincar arrays. The main
:::: difficulty with constructing two-dimensional arrays is that constant length wires no longer sulffice
::::\- even if we throw away some of the live cells [8]. In fact, it has been shown [17] that with high
Ha\s probability, every realization of an M-cell two-dimensional array on an N-cell waler has a wire
of length Q(yIg M), for all M = )(Ig® N). This result, means, for example, that wires of length
' : Q(v/1g N ) are required to connect just one percent of the live cells.
: ?’«‘{ In order for an algorithm to be effective in realizing a two-dimensional array, it must respect
X S:-t' the two-dimensional constraints inherent in the problem. For example, consider the following
: naive algorithin for realizing an M-cell square two-dimensional array from all the live cells of an
o N-cell wafer. We assume for convenience that M == N /2 is a perfect square.
' Take the top VM live cells on the wafer, breaking ties randomly. These cells, in order left
p :::' to right, make the first row of the array. Take the top VM cells of the remainder as the second
%ﬁ:, row, in order left to right, and continue similarly to make each row of the array. With high
". N probability no row of the array coitains cells from more than three rows of the wafer because
s Fact 8 guarantees that every row contains nearly %\/—— ~ 0.7V M live cells.
(20 At first, this method does not seem so bad because (Fact 5) the horizontal connections among
3 E::::f_; the cells of the array have length ©(lg N). The vertical connections are much worse, however.
A Consider a vertical line which divides the wafer into left and right halves. Fact 6 says that we
-::; can expect that the number of cells in a given row on one side of the dividing line is at least
v (V' VM) = Q(N'/%) larger than the number on the other side. Thus, with constant probability,
t:‘ the midpoint of the row is at least Q(N'/4) cells away from the dividing line. Two consecutive
:’;;‘ rows have their midpoints on opposite sides of the dividing line half the time, and thus, with
'.)’\:_'. constant probability, a wire connccting the two midpoints has length Q(N'/4). Since there are
N VM rows, there is a wire of length 2(N!/4) between two of them with high probability. A bound
¢ of O(N'/4/Ig ) for the maximum wire length in the resulting array can be shown with more
;" “ detailed analysis.
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4.1. The tree-of-meshes method

This section presents an algorithm which can constuct a two-dimensional array from all the
live cclls of an N-cell wafer if the channels have width Q(lg N). All possible configurations of live
and decad cells, however unlikely, can be handled by thisAtechnique, but the wire length bounds
are not good. This result will be used as a subroutine in the divide-and-conquer and patching
methods to achieve better bounds for wire length on average-case wafers.

We first show how an N-ccll waler with channcls of width ©(Ig N) can be viewed as an N-leaf
tree of meshes [2, 14, 15, 16]. The tree of meshes is constructed from a complete binary tree by
replacing nodes of the tree with meshes and single cdges of the tree with bundles of edges linking
the meshes. Figure 8 shows a 16-leaf tree of meshes. The root of an N-leaf tree of meshes is a
V' N-by-v/N mesh. (We assume for simplicity that V'N is a power of 2.) The nodes at the second
level are VN /2-by-v/N meshes, those at the third level are VN /2-by-v/N /2 meshes, and so on
until the leaves are replaced by 1-by-1 meshes.

&=

1 M r 1 ]

Figure 8. The 16-leaf tree of meshes.

The correspondence between the N-cell wafer and the N-leal tree of meshes is cutablished as
follows. The first step is to construct a Ig N-layer three-dimensional layout (18, 26] of the tree of
meshes. Fold the conneetions between the root of the tree of meshes and cach of its two children
so that the children fit naturally on a second iayer over the rool. Fold the connections to each of
the grandehildren so that they fit naturally over the children on a third layer, and so forth. This
procedure generates a Ig N-layer thrce-dimensional layout where each layer has area N. Next,
project the three-dimensional layout onto a single layer in the manner of [31, pp. 36-38]. Locate
cells of the wafer at the leaves of the tree of meshes. The crosspoints of the meshes become
programmable switches, and the wires of the meshes become the wires in Ig N-width channels.

We now wish to make a two-dimensional array from the M =~ N/2 live lcaves of the tree of
meshes. (In general, an exact square array is not possible, and thus we shall assume the array to
be formed is missing some border cells, as is shown in Figure 9.) We first use divide-and-conquer
to assign each cell a number from 1 to M. We chop the M-cell array in half vertically into two
subarrays with | M /2] and [M /2] cells. We recursively assign numbers from [ to [ M /2] to the
first subarray and numbers from [M /2] to M to the second subarray, alternating the oricntation
of the cut between horizontal and vertical at each recursive step.
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cut-wires

SN Figure 9. A 6-by8 array that is missing some border cells.

The assignment is now simple. The ith cell of the array is mapped to the ith live leaf of
the tree of meshes counting from left to right. After swelling the channel capacities by a small
{} constant factor to accommodate the wires, adjacent cells can be connected by routing wires
. through the unique path in the underlying complete binary tree. Routing through the meshes
can be done by treating them as crosspoint switches. The wire lengths are O(\/J_V_lg N) since we
Ry nced to route across O(V/N) channels of width 6(lg N).
ot As a practical matter, the tree of meshes need not be used directly for routing wires. The
assignment algorithm can be used to establish the correspondence between the two-dimensional
array and the live cells of the wafer, and then the wires can be routed using a standard gate-array
routing program. In the case when VM is an exact power of 2, the assignment is particularly
simple. The kth live cell corresponds to the (%, ) position of the array, where ¢ is obtained by
.- concatenating the even bits of the binary representation of k, and j is obtained by concatenating
the odd bits.

3

\
Q E?_ 4.2. The divide-and-conquer method
Y.
! ".*:f The trce-of-meshes algorithm works as well as might be expected in the worst case, and
N thus it is natural to wonder how well it works on average. Unfortunately, the algorithm works
. poorly in a probabilistic model because the maximum wire length is nearly always large. This
&: section presents a similar divide-and-conquer algorithm which works poorly in the worst case, but
':.7\-: which can be proved to work extremely well on average. With high probability, the algorithm
‘ :.':. connects all the live cells of an N-cell wafer with channels of width O(lglg N) using wires of
P length O(lg N iglg N).
Ty The divide-and-conquer algorithm has two stages. In the first stage, the wafer is recursively
:"" bisected, and the number of live cells in each hall is counted. Based on the count of live cells in
::'?r,‘ cach half of the wafer, the algorithm computes the dimensions of the two subarrays that must be
:s::\ constructed, and then recursively constructs the subarrays. The two subarrays are then linked
\:Q:Q: together to form the complete array. The algorithm remains in the first stage as long as the
I distribution of cells within the current region of the waler is good, which (with high probability)
-I_':j;" is until subproblems with O(lg N) cells are encountered. Below this point, the distribution of cells
o
20
\ “
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can be arbitrarily bad, and thus the algorithm uses the tree-of-meshes technique to complete the
wiring of a @(lg N)-cell subarray. The exacl crossover point between the first and sccond stages
can be set at subproblems of size ¢lg N, where ¢ is any constant sufliciently large to ensure that
with high probability, every clg N-ccll region contains Q(lg N) live cells. That such a ¢ exists is

a conscquence of Fact 8.
Figures 10 through 13 illustrate the divide-and-conquer procedure. Figure 10a shows a 64-cell

wafer which contains 36 live cells. In what follows, we step through the algorithm as it constructs
a 6-by-6 array, which is identified as the “overall target” in Figure 10b.

O X Do x x g x
00 x x x oo x
X 0O X x g x g )
00 X 00 x x x
000 x x 0o x
O X X 0 x g x g
O 00D x x oo o
Xx 00 x O x o 0

Figure 10a. A 84-cell wafer that contains 36 live cells.

Figure 10b. The target: a 8-by-8 systolic array.
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The first step is to bisect the wafer vertically, which gives 19 live cells in the left half and 17
in the right. We wish to construct a 19-cell subarray in the left half wafer and a 17-ccll subarray
in the right half wafer. Since we want the two subarrays to fit together nicely after they have
been constructed, we choose the shapes of the two subarrays that are determined by the partition
of the 8-by-& array shcwn in Figure 11.

left -half target
split

right =half
target

Figure 11. Part:itioning the_target.

We now invoke the procedure recursively on the two subarrays, but this time we bisect each
of the halves horizontally. For example, when the left half wafer is bisccted, the 19 live cells are
divided into 9 cells above and 10 cells below, as displayed in Figure 12. The algorithm continues
in this fashion, alternating between horizontal and vertical divisions, until the wafer and the
target have been partitioned into ©(lg NV)-cell regions, at which point the algorithm proceeds to
the second stage, and the tree-of-meshes technique is applied.

voper feft
target

split —» zzz{mzzzfmzzzzz

lower left
target

Figure 12. Partitoning the left target.
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In this example the number of cells is small enough that the second stage construction can
be performed by inspection. The inspection strategy can be uscd effectively in practice. Since
the second stage operates on regions of size O(lg V), the routings of this size can conceivably be
precomputed. The second stage then consists of a single table lookup.

Figure 13 shows the final solution to the problem in Figure 10. For clarity the wires have not
been routed within the channels of the wafer. Notice that each quadrant contains the specified

o~

Figure 13. Completed cell assignment and wiring of the 8-by-6 array.

targets for second level of recursion. The dashed lines represent wires that connect cells in
different quadrants of the wafer.

With probability 1—0O(1/N) the dividc-and-conquer method can construct a two-dimensional
array from all the live cells on an N-cell wafer using wires of length O(lg IV Iglg V) and channels
of width O(lglg N). It is not too difficult to sce that these bounds hold with probability 1 for
the regions of size less than elg V that are counceted by the trec-of-meshes procedure. Plugging
in clg N for N in the tree-of-meshes bound yields wires of length O(y/Tg N lglg N) and channels
of width O(lglg N).

The hard part is showing that the wiring in the upper levels of recursion satisfy the bounds.
The analysis, which we briefly sketch, assumes that during the recursion, the channel dividing a
subwafer with m > clg IV cells has width ©y/Ig N1z . Uniform channel widths of lglg N across
the entire wafer can later be obtained by distribuling the wider channels across neighboring
channels, which does not asymptotically increase the wire lengths in the subsequent analysis.

We begin al the first level of recursion. Consider the wires that link a cell in the left subarray
to a cell in the right subarray, as is illustrated by the two examples in Figure 14. For the most
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Figure 14a. A distribution of live cells which might allow a narrow center channel.
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Figure 14b. A distridution of live cells which rcquires a wide center channel.

parl, the connccting wires can be routed in the channel that scparates the left and right halves
of the waler. The length of the longest wire in the channel is proportional to the longest vertical
distance that a single wire must traverse, as is the width of the channel itsclf.

The length of the longest wire in the center channel depends on the distribution of cells in
each quadrant. For cxample, if we are extremely lucky and the five cells are regularly spaced,
the longest wire may have constant length, as in Figure t4a. Bul if we are very unlucky, half the

live cells might occur in the upper right quadrant and the other half in the lower left quadrant
(Figurc 14b). To connect the two halves in this latter case, some wire must have length Q(v/N).

The length of the longest wire in the center channel can also be influenced by the distribution
of cells within a quadrant. For example, if the upper left quadrant contains \/N/8 live cells
(about the right number), but they are distributed as in Figure 15, then the center channel still
contains a wire of length Q(V'N).

Most often, we are not so unlucky that a wire in the center channel has length 2(V'N), but
necither are we lucky enough that all wires arc constant length. With high probability, we are
more lucky than unlucky because the length of the longest wire in the center is O(lg N). The
idea is that the live cells are distributed so evenly that with high probability, the total vertical
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» Figure 15. Another distribution of live cells which requires a wide center channel.

distortion of the wires in the center channel (over all subproblems of size Q(lg N)) is O(lg N). For

e channels dividing a subwafer of size m > clg N, the vertical distortion is O(y/IgmIg N). Thus,
) the channel width bounds assumed earlier suffice.

S The wire length analysis of the divide-and-conquer algorithm is fairly tight. For cxample,
e the algorithm requires wires of length Q(lg N} with high probability. Thus, il the lower bound

of N(/1g N ) is to be achieved, a different algorithm must be discovered. It may be possible to

;'.' improve the channel width bound, however. For example, any improvement in the worst-case
" bound given by the tree-of-meshes technique would lead directly to an improvement in the channel
Y width bounds for the divide-and-conquer algorithm.

*

4.3. The patching method

A Not surprisingly, we can improve the wire length bounds if we need only construct a two-

3 dimensional array from most of the live cells on a wafer. In particular, we can use a scheme similar

to the palching scheme from Section 3.1 to construct a iwo-dimensional array from any constant

3 fraction (less than 1) of the live cells on an N-cell wafer using wires of length O(\/Ig N Iglg N)
and channels of width O(lglg N). These bounds are also achieved with high probability.

.-j The key idea is to partition the wafer into N /clg N square regions, each containing m ==
ﬁ: clg N cells. According to Fact 8, we can choose ¢ sufficiently large such that with probability
y I — O(1/N), each of the regions contains at least m’ = lelg N — \/clg N live cclls. Using the
-~ tree-of-meshes technique, we can therefore construct an m'-cell two-dimensional array in each

region using wires of length O(v/m lgm) = O(Vg N Iglg N) and channels of width O(lgm) =

.

& O(elg N). The N/clg N two-dimensional arrays are then connceted together into one large

! array wita JAN(1 - 2/4/¢) live cells. The added wires also have length at most O(VIg N 1glg N),

1 S e .

,,'(. and can easily fit into the &(lglg N)-vidth channels.

- The patehing method can be thought of as a refinement of the divide-and-conquer method

‘ that throws awny a fraction of the cells at cach level of the recursion. The actual decisions as to

. which eclls at a given level are thrown awav ean be postponed until lower in the recursion, but

o it is important that at cach level, every region of the wafer have exactly the same number of live

o cells,

"

; 4.14. Greene’s method

S The neat method, due to Greeene [7], also connects any constant fraction of the live cells on
an N-coll waler into a two-dimensional arcay. With high probability, it uses wires of length
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©(V1g N) and channels of constant width, thus achicving the lower bound for integration of two-
dimensional arrays. It is similar to the algorithm presented at the beginning of this section in that
it crcates rows of the array, but it is considerably more clever. The algorithin that determines
the rows and columns of the array is based on network flow techniques, but we present it in a
manner that does not require a knowledge of combinatorial optimization.

Greene’s algorithm can construct a (1 — c)\/_}\_’-by-%(l — VN array, for any constant € > 0.
For any such ¢, we require the N-cell wafer to have channels of width w, where w is a sufficiently
large constant that depends on ¢. The higher the percentage of cells we wish to integrate into an
array, the wider we must make the channels.

Partition the wafer as shown in Figure 16 into blocks of size 1-by-¢;y/lg N such that there
are VN rows of blocks and VN /c;/IgN columns of blocks, where ¢; is a constant depending

JN
C|\/|9—N

: SSin

BLOCKS >

YN - (end)
BLOCKS _
4 e -

2 BUNDLES OF

W72 TRACKS EACH W/2 TRACKS

N -

T
L il J

C, vVigN ELEMENTS

Figure 18. Forming the tentative rows in Greene's method. Blocks containing fewer than ¢
live cells are marked with solid X's. Blocks marked as bad during the scan are marked with
dashed X's.
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on ¢. Mark a block as bad if it contains fewer than ¢ live cells, and good otherwise, where ¢ is also
a constant depending on ¢. For the exact values of constants, we refer the reader to (7).

The first part of the algorithm determines tentative rows for the array. We divide the w
vertical tracks between blocks on the wafer into two bundles, each consisting of w/2 tracks. For
this part of the algorithm, we will treat the two bundles as two routing tracks. Later, we will
need to reexpand the capacity of the two tracks by w/2 each.

The algorithm first determines (1 — c)\/TV— horizontally running chains from the left edge of
the wafer to the right edge through the good biocks. The chains must satisfy the constraint that
no wire is longer than cgy/Ig V, for some constant ¢z depending on ¢. The algorithm determines
the chains in the following manner. Scan the columns of blocks left to right. For each column,
procced through the blocks from top to bottom. At each point, if the current block is good, we
attempt to connect it to a good block on the left. This connection is made to the uppermost
good block within distance ¢z/Ig N, up or down, from the current block that has not yet been
connected to a block in the current column. It must also satisfy the constraint that the routing
does not exceed the channel capacity of 2. If such a connection cannot be made, we mark the
current block as bad. Block (5,2) in Figure 16 is marked bad for this reason. Some chains are
terminated by this procedure—for example, the chain ending in block (3,2) of the figure. With
high probability, however, this procedure establishes (1 — ¢)V/N horizontal chains, each with
VN /ei/lg N blocks.

The horizontally running chains can be viewed conceptually as shown in Figure 17. We now
expand the blocks in the chains to see their internal structure, as shown in Figure 18 The
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Figure 17. Normalized view of the rows of blocks.

N ' T e L T T N T A AT
B R S R S R A B SR B (% GRS, 08




|.____ /N ELEMENTS ————1
(

T
(1-€) VN b ] PR ll_—wa TRACKS
ELEMENTS %
PITITLY i,
> »

BAANLAC R Sk ind Sull Sk Sol bk el bh e o ad i g bor o 2 ,—v:vv-_r-rv‘;v;vv.--r-vT

Figure 18 Forming the columns in Greene’s method. Dead cells are marked with solid X's.

Cells marked as bad during the scan are marked with dashed X's.

horizontal tracks in Figure 18 actually correspond to sections of both horizontal and vertical
tracks in Figure 16 because the chains run both horizontally and vertically. The horizontal
channels in Figure 18 have w/2 tracks, and thus the two vertical tracks between blocks in Figure
16 must each be expanded by w/2 to accoinmodate the wires we shall now route to make the
vertical connections.

We establish the vertically runuing chains by cssentially the same procedure as before, cx-
cept we scan top to bottom and route through horizontal channels of width w/2. With high
probability, the algorithm constructs (1 — ()V/N vertieal chains. The horizontal chains are now
modilied to include only those cells used in the vertical chains, which completes construction of
the (I = V/N-by-3(1 — ¢)V/N array. All channels are constant width w, and it turns out to be
the case that all wire lengths are O(VIg N ).

Greenc’s method generates a rectangular array with aspect (length to width) ratio 2, but
we may wish to rcalize a square array without throwing away half the cells. By embedding a
(1 — )/ N/2-by-(1 — )\/N/2 square array into a (1- ()\/N—by-%(l ~ ¢)V'N rectangular array
so that adjacent cclls of the square array are constant distance away in the reclangular array,
we can use Greene’s method directly. The first row of the square is embedded in the first two
rows of the rectangle such that all the first row of the rectangle is used and an evenly spaced
portion of the sccond row is used. We connect the cells of the first row of the square linearly
left Lo right in the rectangle. The second row of the square is embedded linearly in the second
and third rows of the rectangle using all the remaining cells in the second row and a uniformly
spaced portion of cells in the third row. The third row of the square uses all the remaining cells
in the third row of the rectangle, all the cells in the fourth row, and a uniformly spaced portion
of cells from the fifth row. We continue in this fashion until the embedding is completed. Every
adjacent pair of cells in the square array are within horizontal and vertical distances of four cells
in the rectangular array. This procedure can be generalized to construet any rectangular array
of any aspect ratio.

4.5. The matching method

We conclude with a method whose proven bounds are not as good as those presented thus
far, but which is nevertheless interesting. In the case of widthless wires, this method, which is
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' < based on hipartitc matching in a graph, can integrate all the cells on an N-cell wafer with wires
Ve of lensth O{lg** N'). When we consider the normal case of unit width wires, however, we could
5““’ conceivably need channels of width (")(lgs/4 N), and because the wires would need to cross these
channels, wires of length ()(lga/'“’ N). This algorithm is certainly worth considering when wirc
widths are small because the O(Ig%/* N) wire-length bound is better than the bound of O(lg N)
')}" which the divide-and-conquer method yields for widthless wires. Moreover, the true performance
/ f, of the matcehing method might be better than that suggested by the upper bound for unit-width
{ wires. In comparison, the divide-and-conquer mnethod has a hard lower bound of ©(lg N) even
for widthless wires. In addition, the algorithin is casily tailored to handle the situation when we
:': wish to integrate any constant fraction of the live cells, in which case the widthle s wire bound
_:::. <hrinks to ©(y/Ig N'), which is optimal.
] f:; The first step of the matching method is to determine the number M of live cells on an
o N-coll wafer. Then we pick a target wire length d that we hope to achieve. The algorithin now
. determines the locations of points in a uniform VM-by-v/M grid superimposcd on the wafer. It
e then constructs a bipartite graph between the grid points and the live cells of the wafer with an
::-: edpe between a grid point and a live cell if the distance between them is at most d. Then, using
“ .'::f a bipartite matehing algorithm [5], the procedure determines whether every grid point can be
X :‘: aatehed one-to-one with a live cell. If a perfeet matcehing exists, then we know a routing of the
corresponding assignment with widthless wires has maximum edge length d.
_-::: It is possible to show [19, 30] that if d = (")(lgx//| N}, then the matehing succecds with high
:-:..' probability. As a practical matter, it is better fo search for the smallest d that works for a given
_:':' wafer using exponential search, Try d = 1,2,1,8, ... until a value of d is found that results in a
'}_ perfeet matehing, and then binary search to lind the exact value.
The same technique can be applied to construcet a two-dimensional array from any number
e m < M of the M live cells by using a /m-by-/m grid. For the case when m = (1 — ¢)M, it
'1:;; can be shown that wires have length O(y/Ig N') with high probability.
T
W 5. Summary and conclusions
J The conlent of this paper is taken primarily from [17] and somewhat from (7] and [8]. The
':: algorithms presented are summarized in Tables T and [I. The literature contains many more
:': techpiques for integrating systolie arrays. Manning [22, 23], Hedlund and Snyder [9], Koren
:: B and Fussell and Varman [8] look at the basie problem of constructing arrays from wafers
*' containing faulty cells. Rosenberg [27, 28], <‘hung, Leighton, and Rosenberg (3, 4], and Bhatt
- and Leighton {2] have also investigated fault tolerance.
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Table 1
Bounds for One-Dimensional Arrays

Portion of Maximum
cells used wire length
all 6(/Tog N)
all 8(+/Tog N)
99% (1)

Table Ila

Bounds for Two-Dimensional Arrays
(worst-case wafer, using all live cells)

Maximum
wire length
for widthless
wires

Maximum
channel width

Oo(vN) O(log N)
8(V'N) aQ1)
Table IIb

Bounds for Two-Dimensional Arrays
(average-case wafer, using all live cells)

Maximum wire
length for
widthless wires

Maximum
channel width

B(log N) O(log log N)

O(log®* N) Oflog** N)

(Vg N) a(1)
Table Ilc

Bounds for Two-Dimensional Arrays
(average-case wafer, using 99% of the live cells)

Maximum wire
length for
widthless wires

6(1og N)
6(vIog N)
8(yTog N)
o(viog N)

LY,
»

Maximum
channel width

Of(loglog N)
o(1)
O(vleg N)
(1)

D R A O T Y 4 L I U I A O R
< S N T A s
-~ ! L) L)

Maximum
channel width

(1)
e(1)
e(1)

Maximum wire
length for unit
width wires

O(v'Niog N)
a(vN)

Maximum wire
length for unit
width wires

O(log N log log N}
O(log*/? N)
0(Iog N)

Maximum wire
length for unit
width wires

O(Tog Nloglog N)
6(yTog N)

O(log N)

6{yTog N)
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