




1. INTRODUCTION

The problem we consider in this paper is as follows. Suppose the camera is rotated

by a certain angle around its focus relative to a stationary scene. Then, a different pro-

"S jected image is seen on the image plane. However, since a point on the image plane

corresponds to a ray in the 3D scene, occlusion is not affected by camera rotation. If the

amount of camera rotation is known, the original image can be recovered. (Here, we do

not consider the effect of the image boundary. We assume that the image plane is

sufficiently large and that the object or scene of interest is always included in the field of

view.) This means that the information content of the image is not affected by the 2D

image transformation induced by the camera rotation.

Suppose the viewed image is characterized by a finite number of parameters or

features. If the camera is rotated, the image is also changed so that the features change

their values. If the set of features is invariant in the sense that these new values are

completely determined by the original values and the amount of the camera rotation, we

can predict the values of the features which would be obtained if the camera were

rotated by a given amount. Conversely, if we are given two views of the same object

obtained from different camera orientations, we can reconstruct the amount of camera

rotation R which would transform the values of the features to prescribed values. An

important fact is that in this process we need not know the point-to-point correspon-

dence. All computations are based on the observed features, which are global quantities.

These considerations are very important in many problems of computer vision and

pattern recognition when the camera orientation is controlled by a computer. Even if

the camera is fixed, various types of analysis of the image become easy if we apply to the

image the transformation equivalent to camera rotation. This technique is used for the
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shape-from-texture problem by Kanatani and Chou ]7] and for the interpretation of

lengths and angles by Kanatani [61. A similar analysis is done when the object is moving

and we are observing the optical flow (Kanatani 15]). In this paper, we will discuss, as a

typical example, the center of gravity and principal ax-s of a given region to see how the

invariant properties can be utilized to recognize the shape and to reconstruct the (actual

or hypothetical) camera rotation.

2. CAMERA ROTATION AND INVARIANT FEATURES

Let f be the focal length of the camera. The camera image is thought of as the pro-

jection onto an image plane located at distance f from the focus 0; a point P in the

scene is projected onto the intersection of the image plane with the ray, connecting point

P and the focus 0. Let us choose an XYZ-coordinate system such that the focus 0 is

at the origin and the Z-axis coincides with the camera optical axis. Choose an xy-

coordinate system in such a way that the x- and y-axes are parallel to the X- and Y-

axes with (0,0,f) as the origin. This xy-plane plays the role of the image plane (Fig. 1).

A point (X, YZ) in the scene is projected onto (x,y) on the image plane, where

x =fX/Z, y==fY/Z. (2.1)

Consider a camera rotation around its focus 0 and the induced transformation of

the image (Fig. 2). Suppose the camera is rotated by rotation matrix R, which is an

orthogonal matrix, i.e., RRT=. Then, the point in the scene which was seen at (x,y)

now moves to another point (xI, y') given by the following theorem.

Theorem 1. The image transformation induced by camera rotation R=(rij) is given by
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r11z- -r. 1y+r 31f r1 zr 2 2--r 322x' rl  r  1 ~ 3 f  'f r 1.,x + r ..-y + r  (2.2)

r 13X +r23y+r 33f r 13 x +r23Y +r 33f(

Proof. A rotation of the camera by R is equivalent to the rotation of the scene in the

opposite sense. If the scene is rotated by R-I(=RT), where T denotes transpose, point

(X, Y,Z) moves to point (X', Y',Z') where

X11: [r 1
l r 2 1 r 3 1

= r 12 r)) rj [Y . (2.3)
Lr13 r 2 3 r33 11

This point is projected to (W',y') on the image plane, where x'=fX'/Z' and y'-fY'/Z'.

Combining this with eqns (2.1), we obtain eqn (2.2).

It should be emphasized that the image transformation due to camera rotation does

not require any knowledge about the scene and that the transformation has an inverse,

which is obtained by interchanging R and RT. This means that transformations of the

form of eqn (2.2), which form a subgroup of the 2D projective transformation group, do

not alter the information content of the image as long as the image boundary is ignored.

(In this paper, we always regard the portion of the image near the boundary as unimpor-

tant.) In the following, some basic results from projective geometry are summarized in a

way that is convenient in our consideration of the image plane transformation.

,? .Suppose the image is characterized by a finite number of parameters Ji,

i=1,2, . . . , N, which we call features of the image (Amari [1, 2]). (They are called pro-

perties in Rosenfeld and Kak [91.) If the image is transformed by eqns (2.2) as a result of

camera rotation R, these features take different values J', I=1 ..... N. We say a set

of features Ji, i=1,, N is invariant if the values of J , i=1 ..... N, are deter-

mined by the values of Ji, i=1, .... N and the amount of camera rotation R alone.

%%
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This definition suggests that an invariant set of features is describing some aspects of

the image that are "inherent to the scene itself" and are independent of the camera

orientation (Weyl [151).

Let Ji, i=1, .... , N, be an invariant set of features. We say the set is reducible if

it splits, after an appropriate rearrangemc:nt, into two or more sets of features, each of

which is itself invariant separately. If no further reduction is possible, we say the set of

features is irreducible. This definition suggests that an irreducible invariant set of

features is describing a "single" characteristic inherent to the scene while a reducible set

describes two or more different characteristics at the same time (Weyl [151).

If a quantity c does not change its value under transformation (2.2), i.e.,

c'=c, (2.4)

'4 under camera rotation R, we call it a scalar. Obviously, a scalar is itself an invariant

and is irreducible. Hence, it describes a characteristic inherent to the scene.

If a pair a, b of numbers is transformed as x, y of transformation (2.2), i.e.,

r l l a+r 0 1 b+r 31f b r frla+r 0 2b+r 3 J)

r 1 3 a + r 3b + r 3f' r 13 a +r) 3 b +r 33f ' (2.5)

we call it a point. Note that any pair of numbers can be interpreted as a position on the

image plane. However, it is interpreted as indicating a position in the scene if and only

if it is transformed as a point. A point is also an invariant set of features and is irredu-

cible.

A line on the image plane is expressed in the form

Ax +By+C =0. (2.6)

Here. the ratio A :B:C alone has a geometrical meaning; A, B, C and cA, cB, cC for a
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non-zero scalar c define one and the same line. In order to emphasize this fact, let us

write .4 :B:C to express a line. If transformation (2.2) is applied, line (2.6) is mapped

into

A +''-B'y'+-t-C'=0, (2.7)

as in the following theorem.

Theorem 2. A line .4 :B:C on the image plane is transformed by camer. rotation R

into the line

A ':B':C'=rl.A +r.2MB-t-r 3IC/f:rl2A +r 2.B+r 3 .2C/f:f(r13A -- r.-3B)+r33C. (2.8)

Proof. In view of eqns (2.1), ecln (2.6) is written as A (f.Y/Z)+B(fY/Z)+C=o, or

[A B C/f][Y 0=O. (2.9)

From eqn (2.3), we find that A, B, C/f are transformed as a vector, i.e.,

Bc''J =R B (2.10)

from which eqn (2.8) is obtained.

,4-:

If the ratio of three given quantities A, B, C is transformed by eqn (2.8) under

camera rotation, we call it a line and write it as A :B:C. It is an invariant set of

features and is evidently irreducible. As in the case of a point, any' triplet of numbers

can be interpreted as a line on the image plane, but it, is interpreted as a line in the

scene if and only if it is transformed as a line.

All the invariant properties considered in this paper are invariant with respect to

the "projective transformations" of the form of eqns (2.2). In traditional "projective
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geometry", all equations are written in terms of "homogeneous coordinates" defined in a

-projective space" (cf. Naeve and Eklundh [8]). If we regard the xy-image plane (with

the "line at infinity" added) as a two-dimensional projective spacc and introduce homo-

geneous coordinates, eqns (2.2) are rewritten as a liner transformation. The "point" and

"line" defined here are mutually "dual" and expressed exactly dually in homogeneous

coordinates.

However, the purpose of this paper is to deal with applications of the ideas of pro-

jective geometry, and in dealing with real images the xy-Cartesian coordinate system is

N most convenient. Therefore, in the following, we express all the invariant properties in

terms of the xy-"inhomogeneous" coordinates of the image plane. The aim of this paper

- is to translate the results known in projective geometry into "manageable" forms and to

- -, demonstrate the practical use of this type of knowledge.

3. IRREDUCIBLE REDUCTION OF 3D VECTORS AND TENSORS

, .Consider three quantities a, b , c which are transformed as a 3D vector, i.e.,

H l [b] (3.1)

for camera rotation R. (Note that the rotation matrix R is tr nsposed because we

adopted the convention that R is the amount of "camera rotation".) This is an invari-

ant set of features but is not irreducible because

Lemma 1. If a, b, c are transformed as a 3D vector, then the length v/a'+b-c C is a

scalar.
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There are two ways. mutually dual, to interpret a 3D vector a,b,c as irreducible

sets of features. One way is to regard fa ic, fb c as a point and the length VrT-b"2c "

as its intensity, which is a scalar. \Ve can easily check from Theorem I that

Lemma 2. If a, b, c are transformed as a 3D vector, then fa /c, fb 11c are transformed

as a point.

Hence a pair fa 1/c, fbl /c has an interpretation as a point invariant on the image plane in

the sense described above. Here, we allow the case c =0, regarding it as a point located

at infinity. We also make the convention that the intensity is negative if c <0. If we

imagine that the 3D vector (ab,c) is emanating from the origin 0 (or the camera focus)

of the XYZ-coordinate system, the point (fa1c,fb/c) is the intersection of the image

plane with the ray defined by the 3D vector (a,b,c).

Another way to represent a 3D vector on the image plane is to regard a:b:fc as a

line and the length V' +b +c2 as its intensity. We can easily check from Theorem 2

that

Lemma 3. If a, b, c are transformed as a 3D vector, then a:b:fc is transformed as a
L line.

lence, equation a r-by-fc 0 has an interpretation as a line invariant on the image

plane in the sense described above. If we imagine that the 3D vector (a,b,c) is enanat-

ing trnm the origin 0 (or the camera focus) of the XYZ-coordinate svsten, the line

ax - by- f 0 is the intersection of the image plane with11 the plane passing at the origin

0 and perped ctii :r to (a,b,c ). ..-s bel'ore, we allow the case of a -- b -- 0, regarding the

line as located ait infIinitv, mnd niake the ,,,nvention that the intensity is negative if
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6: c < 0

The above results are summarized as follows:

Theorem 3. A 3D vector is an invariant feature set. It can be irreducibly reduced into

a point and a scalar or into a line and a scalar on the image plane.

Next, consider nine elements .4ij, i,j=--1,2,3, which are transformed by camera rota-

tion R as a 3D tensor, i.e.,

-'uA I A ' 3 A A 13 A 12 413
:$'-. .4' 121 A ... t T. (3.2)13 A 1,

_32 A3 431 A32 3

By definition, this is an invariant set of features. However, it is reducible. First, it can

be decomposed into a symmetric part and an antisymmetric part (or skew part):

A A12 A, 3 All (12+.4 2 1)/'2 (A 3 1 +AI3)/ 2

4 1i A 23 12+A 4,4 (' 03+A 32)/

[-0 (A 12-A 21),/2 -4 31-A 13)/-°

+ -(A 12-A 2i)/2 0 (A 2 3 A 32)/2 (3.3)

0( 31-A 13)/2 -(A 23-A 32)/2 1
and each part is transformed as a 3D tensor by eqn (3.2) separately. 'Moreover, it can be

verilied that the three independent elements (A_1 23-.1 32) 2, (.4 3 1-'A 13) 2, (A I2-A 21), 2 of

the antisymmetric part are transformed as a 3D vector. Hence, they are, from Theorem

3, irreducibly reduced into a point and a scalar or into a line and a scalar.

Suppose A (Aij) is already a symmetric 3D tensor. As is well known, such a ten-

sor is represented by three mutually perpendicular unit vectors el, e 2, e 3 indicating the

principal axes and the corresponding principal values (I, q'2. ( 3 in the form
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TTTA~o 1 ejej 1 e - e -a 3e 3 e 3 .(:3.4)

Here, this representation does not change if e1 (or e or e3 ) is replaced by -eI (or -e., or

-e 3 ). (If two of al, ,, Cr3 are identical, the corresponding principal axes are not unique

and can be arbitrarily rotated rigidly around the remaining one. If all of o' 2, 2 "3 are

identical, the orientations of e , e., e3 are completely arbitrary as long as they are

mutually orthogonal.)

The three principal values are scalars, each of which is an invariant irreducible

feature. On the other hand. if we determine the orientations of two of the three princi-

pal axis orientations, say el and e0, the orientation of the remaining one is uniquely

determined. (C3 and -e 3 indicate the same orientation.) As is shown in Theorem 3, the

orientations of el and e., are represented by two points on the image plane. (If we

replace el (or e.) by -e (or -e.), the corresponding points are unchanged as desired.)

lowever, since e, an( e. are perpendicular, one of the two points and the line connect-

ing the two points are sufficient: if one point on the image plane and a line through it,

are given, the three orientations are determined (Appendix A). Thus, we obtain

Theorem 4. A 3D tensor is invariantly reduced to its symmetric part and its antisym-

metric part. The antisymmetric part is irreducibly reduced into a point and a scalar or

a line and a scalar. The symmetric part is irreducibly reduced to three scalars, a point

and a line through it.

4. INFINITESIMAL GENERATORS OF THE IMAGE TRANSFORMATION

Let F(..y) represent an observed image. This many" be the intensity of the gray-

level or a vector-valued function corresponding to R. B and G. lere. the value of F(.y)

Z-U2
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is assumed to be inherent to the scene and independent of' the viewing orientation

Color. for example, has this property. Furthermore. F(x.y) is assumed to be of finite

support, i.e., F(x.y) is zero at a sufficiently large distance from the origin of the image

plane.

Let, us write the transformation of ecjn (2.2), which is determined by the rotation

matrix R. svmbolically as

(x', y ')= Af R't (x. y). (4.1)

Then, we can see the (transposed) homomorphisni in the sense that

"M{,R.2IoMIR f - iR..j. (4.2)

Now, define the rotation operator TR acting on image F(x,y) by

TRF(x,y) F(M[RT j(X,y)). (4.3)

In view of our assumptions of image value constancy and finite support, the function

TRF(x,y) describes the image we observe if the image plane undergoes the transforma-

tion (2.2). Operator T,? induces a representation of the 3D rotation group SO(3) in the

sense that
.4 .(44

TR.,R , T RT (4.4)

As is well known, this representation is completely determined once its behavior for

infinitesimal rotations (i.e., its Lie algebra) is known, since .O (3) is a compact Lie group.

.A 3D rotation is specified by the rotation axis ( ,.v nn), vich is taken to be a

unit vector, and the rotation anle Q (rad) screww ise around it As is well known. the

corresponding rotation mat rix is given bv
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i ' VcosfQ+(l-cosQ2)nj (l-cosQ2)njn2,-sinf'n3 (I-cosf2)njn3-4-sinQn.)

,.

R= (1-cos)n2,nj+sinf2n 3  cosQ+(1-cosf2)n22  (1-cosQ)n.,n 3 -sinf1n1 (4.5)

L(1-cosQ)n 3 a -sinf2n 2  (1-CosQ)n3 ,-.,+sinf2nj cosQ+(1-cosQ)n 3 2

If the rotation is infinitesimally small, i.e., Q is infinitesimally small, the rotation matrix

takes the form R Il6R+o(fQ), where is the unit matrix, 6R is the matrix given by

6R= Q3 0 4- (4.6)

--Q l

and o(Ql) denotes higher order terms of 2. (We let the context indicate whether these

terms are scalars, vectors or tensors.) Here, we put Q1 =fn, Q?,=fQnr and Q =f2n 3.

If the rotation is infinitesimal, the transformation of eqns (2.2) becomes

X'=x+6x+o(2) and y'=y±6y+o(fQ), where

6x =-ff 2+fl 3y+ 1f(-f2x +Qly )X, 6y =ffQ1 -Q 3 X +I(-fQ.x +QI Y hY. (4.7)
f f

Then, the image F(x,y) also undergoes an infinitesimal change and becomes

F(x-6x,y-6y)=F(x,y)+6F(x,y)±o(2), (4.8)

and 6F(x,y) is given by

6" F(x,,y)=- (9F bx- °a 6y*OF OF

(9X ay

.i:f22 Q . J 2" . f~ Y)X - - Q3X :+ (-f2-x+01Y) Y--!

=-(f21 D I +f2. 2D.+Q3 D 3)F (x, y), (4.9)

where the infinitesimal generators are defined by

'I _ °fj) 40 0
D + D,(r+\D xy0 D3=y--.x (4.10)f Ox f C y' fDX J~y' ax Dy-'I.a(fY)0 Do=(~ ) xfO

4..-44
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Hence, operator TR becomes, for infinitesimal rotations,

TR=I-(fiD ,D +FQ3 D 3 )+ o (A2), (4.11)

where I is the identity operator.

It can be checked easily that these infinitesimal generators satisfy the commutator

relations

fDj,D3j=D 3 , 3D,D3>=D1, 1Da,D 1!=D., (4.12)

where the commutator is defined by A ,B]=AB-BA. Hence, a set of functions can be

found which induces a representation of the 3D rotation group SO (3) r3, 4].

As is well known, a set of functions which induces an irreducible representation is

obtained as eigenfunctions of the Casimir operator

Hl--( D 12+D O,2 -,D 32). (4.13)

.°-, The eigenvalue is 1(1+1) and the eigenspace is 21+1 dimensional, where I is an integer

.. or half-integer called the weight of the irreducible representation (cf. Gel'fand, et al. .3j,

Hammermesh 41). In other words, the differential equation

IIF=l(+1)F, or (D 12+D. 22+D 3 )F+(l+1)F=O, (4.14

has 21+1 independent solutions, which become the basis of the irreducible representation

D, of weight I (Appendix B).

5. ADJOINT ROTATION AND FEATURE TRANSFORMATION

Let J be a feature of the image. To be precise, a feature is a functional mapping

the image function F(z,y) into a real number JF(z,y)]. Consider a linear feature

obtained by weighted averaging or filtering:
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J[F(x,y)]=f m(x.y)F(x,y)dxdy. (.5.1)

Here, m(x,y) is the filter weight function and integration is performed over the entire

image plane. (Recall our assumption of finite support of F(x,y).) If the camera is

rotated by R, the image becomes TRF(x,y) by eqn (4.2) and hence the corresponding

feature becomes

Jr TRF(xy)] =f i (xy) TRF(zy)dxdy. (5.2)

We define the adjoint rotation operator T* by

J[TRF(,y)]=f T~m(x,y)F(x,y)dxdy. (5.3)

From this definition, we can see that operator T* induces an adjoint representation of

the 3D rotation group in the sense that

T o T 2 . (5.4)

Once we know how this adjoint rotation operator T* acts, the transformation of such

features is immediately computed for any given image. This is done by just considering

infinitesimal transformations.

If the image is infinitesimally changed as in eqn (4.8), feature J also undergoes an

infinitesimally small change J--J+6J+o(Q2). Substitution of eqn (4.9) and integration

by parts yield

6J=f(QlD +Q.,D*+E 3D*)m(x,y)F(,y)dxdy, (5.5)

where D', D* and D' are the adjoint infinitesimal generators defined by

" YJ ,._3x_.fx'. _ xyaa-D.- -9f+-
f f a9x f ay' 2 7 ff ax j ay'

-13-
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D~* XD L 3 J (5.8)

In eqn (5.5), no boundary terms appear due to our assumption of finite support for

F(x,y). Hence, operator T* becomes, for infinitesimal rotations,

T* =I+QD'+f2.D*+f23D*+o (a). (5.7)

It can be checked easily that these adjoint infinitesimal generators satisfy the corn-

mutator relations

D *]=0 3  ID ,D ]=D" [D *D * D (5.8)

Hence, we can find a set of functions which induces a representation of the 3D rotation

group SO(3). Then, operator T* acts as a linear transformation on them (cf. Gel'fand,

et al. [3]). As before, a basis of the irreducible representation D, of weight I is obtained

as 21+1 eigenfunctions of the (adjoint) Casimir operator

II*=-(D "+D 2+D 3 ") ,  (5.9)

i.e., as 21+1 independent solutions of the differential equation

II*m=1(1+1)m, or (D . 2+D* 2+D 2)m1+l(l+1)mI= O. (5.10)

,I From Appendix C, we find that

j=f _(x,y)dxdy (5.11)

is an invariant (i.e., it is transformed as a scalar). This implies that

P( XY =(.5 .12 )
,.%., ,.. p~x~y ) - V X2 + y2+ f )3 .,( 1 )

is an invariant measure (Appendix D).
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We also see from Appendix C that

zJf xF(x,y)dzdy, j.,=f yF(x,y)dxdy f F(x,y)dxdy
(x 2+ y2 .+ f 2)2  ., (x 2 ±y 2-. f ) ., (5 .13 )

are transformed as a 3D vector. Hence, they are irreducibly reduced to a scalar4-

/(J- ( J 3 ) and a point fJ!/J 3 , fJ/J 3 (or a line Jl:J2:fJ3 ) on the image plane.

This scalar and point (or line) are invariant in the sense that they describe characteris-

tics inherent to the scene.

Also from Appendix C, we find that

X2F(x~y)dxdI ~ f _xyF (x. y) dxdy , f fxF(x~y)dxdy
V/(7"+ y 2+f f)1 V/(7+ y2 +f2)5 a.V(x+- 2 Ff2)5

xyF(x,y)dxdy Y2F( xy)dxdy J f fyF(x,y)dxdy

. (z2+y,+f.), Jf/(+y.,+f2)s, v/(±y.f,)5 (

'2.'. fxF(x.y)dxdy f yF(x,y)dxdy f'f 2F(x,y)dxdy31'=f J33 =f3
V(x+y 2+f 2 )5  (+ y"-+f2)

are transformed as a 3D (symmetric) tensor. Hence, they are irreducibly reduced to

three scalars, a point and a line through it on the image plane. They are invariant and

describe characteristics inherent to the scene.

S. INVARIANT CHARACTERIZATION OF A SHAPE

As an application of the results in the previous sections, let us consider the charac-

terization of a shape on the image plane. Consider a region S on the image plane. Its

characteristic function

fl{1 if(x,y)ES
F (xY) 0  ot herw ise

is taken as the image function F(x,y).
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The simplest characteristic of the region S may be its area

" = dxdy( =f F(x,y)dxdy). (6.2)

However, this area is not invariant with respect to camera rotation. Suppose the region

S is located far away from the image origin. If we move it so that it comes to the center

of the image plane by appropriately controlling the camera orientation, the area of eqn

(6.2) changes. Consequently, eqn (6.2) is not considered to be a characteristic inherent

to the scene itself. In short, eqn (6.2) is not a scalar.

On the other hand, if eqn (6.2) is rep'-iced by

C=f~ dxdy

this is a scalar as was shown in the previous section. If S is a small region located

around the image origin, i.e., x O, yzO in S, then C is approximately equal to its area.

We call C the invariant area of region S. It is interpreted as the area the region would

have if the region were moved to the center of the image plane by changing the camera

orientation. Geometrically speaking, this quantity is nothing but an expression of the

solid angle the object makes with respect to the viewer.

Another simple but important characteristic is the center of gravity of the region

F ~fsxdxdY/ 'fs dxdy, fsydxdyr f9d dy. (6.4)

Again those quantities do not have invariant meanings. Namely, if region S is moved to

another region by camera rotation and ( ',7') is its center of gravity, (',7) is not

mapped into (Y-,y') by the same camera rotation. In short, Y, f is not a point.

~- 18 -



On the other hand, we know from the previous section that

-__ a.,==f a3=Jf dxdy
a +jy"+.") '_ z-d-y+:-y (z-+y--f) .5)

are transformed as a 3D vector. Hence, falia3, fa 2/a 3 are transformed as a point. If

the region S is a small region located around the image origin and xzO, y-O in S, then

'N' (fal.a 3,fa2ia 3) is approximately the center of gravity of the region. We call

(faI a3 ,fa-, a 3) the invariant center of gravity of region S. It is interpreted as the point

which would be mapped into the center of gravity if the region were moved to the center

of the image plane by changing the camera orientation. Geometrically, this point

corresponds to the center of the solid angle the object makes with respect to the viewer.

Another useful characteristic is the moment tensor (Mij), i,j=l,2, defined by

AJ M,,=f5 (X-F )2 dxdy, A1.=1'..,----fs (x -')(y-Y)dxdy, M1,,=f( y-) 2 dxdy. (6.6)

Its principal values indicate the amount of elongation of the region S along the

corresponding principal axes. However, as described above, this tensor does not have

invariant properties. Namely, the principal values of (Aij) are not scalars, and its prin-

cipal axes are not lines on the image plane.

On the other hand, we know from the previous section that

B1i=f X2 dxdy xydxdy , B 3=ffs xdxdy.= t---fsX(;.+y _2f .5,2+ V( .+y2+f,,)

xydxdy y f s  y dxdy ydxdy

B 3 =ffs v +y s B3 =ff 5  ydxdy -, B 3=f 2f dxdy

are transformed as a 3D (symmetric) tensor. Since this tensor is positive definite as long

as region S is not empty, it has three positive principal values ori, o.., dr3. Let ("3 be the
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maximum principal value. Let el, e., e3 be the corresponding unit eigenvectors (deter-

mined except for sign). Let (g 1 ,g2) be the point corresponding to vector e 3. Let l1 be

the line through (g 1 ,g2) and the point corresponding to vector e 1 (or the line represent-

ing vector e2). Similarly, let 12 be the line through (g 1 ,g2) and the point corresponding

to vector e, (or the line representing vector e). By our method of construction, scalars

ol, a, point (g1,g2) and lines 11, l., are all invariant quantities. It can be checked that

lines I1, l, are approximitely the principal axes, and or,, a'o are approximately the

corresponding principal values if S is a sufficiently small region around the origin.

Hence, scalars a, and o2 are the principal values the region would have if it were mcved

to the center of the image plane by camera rotation, and 11, l2 are lines which would be

mapped onto the principal axes. We call point (gl,g2) the invariant center of i:ertia,

lines 11, 1, the invariant principal axes, and o,,, a,2 the corresponding invariant principal

values.

7. INVARIANTS AND CAMERA ROTATION RECONSTRUCTION

In the previous section, scalar C defined by eqn (6.3), 3D vector a=(ai) defined by

eqns (6.5) and 3D tensor B=(Bij) defined by eqns (6.7) are interpreted as a set of two

dimensional invariant quantities on the image plane. Here, let us consider their three

dimensional aspects.

First, since C, a and B are transformed as a scalar, a vector and a tensor, respec-

tively, by camera rotation, we can extract invariants that do not change their values

when the camera is rotated. Obviously, scalar C itself is an invariant.

Second, since a is a 3D vector, it has, as was discussed in Section 3, only one

invariant, namely its length I1all, or equivalently a Ta.

?
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On the other hand. B is a 3D symmetric tensor, and hence it has, as was described

in Section 3, three invariants, namely the three principal values or, a2, (7,3, or

eauivalently any three independent algebraic expressions formed from them such as the

,o fundamental symmetric forms ora-or 2 -73, (7r.2 r3 -,a-aq,, aaa.,C3. In terms of the com-

ponents of the original tensor B, they are respectively

" '2":BI, B12 --B,2. B.231 IB33a B:j

:B1 1iB2"2-B 33(=Tr(B)). B21 B2o B 32 B 33  B1 3 BI:

B 11 B 12 B 1 3

Bo1 B., B 23 (=detB). (7.1)

B31 B 32 B 33

Alternatively, we can use or+ao+a3 , ora+,'+ " and a 0r33 This set is equal to

'- Tr(B), Tr(B2 ), Tr(B3 ). (7.2)

Finally, there are invariants describing the relationship between 3D vector a and

3D tensor B. As was discussed in Section 3, a 3D vector is geometrically thought of as a

directed axis to which its length is attached and a 3D symmetric tensor as three mutu-

ally perpendicular (undirected) axes to which their respective principal values are

attached. Now that the length and the principal values have been counted, the remain-

ing invariants are those specifying the orientation of the vector relative to the three

mutually perpendicular axes. Hence, two invariants exist. We can choose, say, aT Ba

and a TB 2a (Smith [10i, Spencer [11, \Vang [12 - 1-11.) Of course, the choice is not

unique as stated above, and other choices are also possible.

, We say that two regions S and .5' on the image plane are equivalent if one region

can be transformed into the other by camera rotation, i.e., by changing the camera

orientation. If the two regions are equivalent, the above invariants must have identical
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values. If they ha'e different value-, the two regions cannot be equivalent. On the

other hand. if the two regions are known to be equivalent, the camera rotation which

would take one region into the other can be reconstructed by observing the invariant

center of gravity and the invariant moment tensor alone. This is done as follows.

Suppose we observe a and B for region S and a' and B' for region S'. Assume

that B (hence B' as well) has three distinct eigenvalues and a 40. Let el, e., and e3 be

the associated eigenvectors of B. Since the eigenvectors are determined except for sign

and magnitude, choose one set such that el, e.2, e3 are mutually perpendicular unit vec-

tors forming a right-hand system in that order. Construct a matrix R, having el, e2, e3

as its columns in that order. Let e't, e', e' be the corresponding unit eigenvectors )f B'

forming a right-hand system. Since the signs of the eigenvectors are arbitrary, there are

four possibilities to make a right-hand system. For each case, construct the correspond-

ing matrix ?.,. Then, the rotation matrix which transforms B to B' is given by

- R R1 R 2T. (7.3)

(Matrix B is first transformed by Rth(=R T) into a diagonal matrix, which in turn is

transformed to B' by R,.) Finally, choose one our of those eight possible Rs that

transforms a to a'.

If B (hence B' as well) has only two distinct eigenvalues (a single root and a pair of

multiple roots), let e be the eigenvector associated with the single root. Suppose a is

neither parallel nor perpendicular to e. Since the sign of e1 is arbitrary, choose it so

that a and el make an acute angle. Then, we can construct three mutually orthogonal

vectors forming a right-hand system el, e.,.=elXa/11e xajl, e 3 e 1 X .2. \Ve can form

R, and R., as described above, and the desired rotation is given by eqn (7.3). If a is per-

pendicular to e, there exist two solutions. If a is parallel to el, or if B (hence B' as
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'a well) has one eigenvalue (i.e., B(=B') is a multiple of '), R is any rotation that maps a

to a' and we can add an" rotation around a'. The case where a=a'=O is treated simi-

larly. These observations can be summarized as follows:

vTheorem 5.

C, a T a Tr(B), Tr(B 2), Tr(B 3), aTJBa, aTB 2a (7.4)

exhaust all the invariants constructed from C, a and B. If two regions are equivalent,

the amount of camera rotation which take one region into the other can be recon-

structed from a and B alone.

An important fact is that both the equivalence test and the camera rotation recon-

struction do not require knowledge of point-to-point correspondence, since the computa-

tion is solely based on the features (6.3), (6.5), (6.6), which are obtained by integration

over -he regions under consideration.

Theoretically, the camera rotation is exactly reconstructed as described above. In

practice, however, the invariant center of gravity (faj/a3 ,fa 2/a 3) and the invariant

center of inertia (gl,g2) are usually located very near, and vector a and vector e3 are

very close to each other. Therefore, the last step of choosing one out of four possible Rs

by checking Ra may become difficult if much noise is involved. In this case, the final

choice is done by applying the transformation (2.2) to region S in four ways and choos-

4ing the one which make region S sufficiently overlapping S t. (Since we are focusing on

*the principal axes, the four possibilities correspond to the four possible (skewed) "mi" )r

image" (including identity) with respect to the principal axes.)

-21-
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Example. Consider the three regions So, S1. S. on the image plane (Fig. 2(a)). \Ve use

a scaling such that the focal length f is unity. Computing the integrations of eqns (6.5)

and (6.7), we find their invariant centers of gravity (Fig. 2(b)) and principal axes (Fig.

? 2(c)) as follows:

So Si S2

(-0.081,-0.202) (0..16-1.0.076) (-0.470,0.346)
y =- 2.814x-0.4 31 y = 1.67x-0.697 y =-0.079x -0.310

y =0.382x -0.17 y=--0.-176x-0.297 y=-16.522x-7.42-t

The invariants o (7.-t) become as follows:
'I

! "'so sl I S-1

C' 0.1-140 0.1440 0.1121

a Ta 0.0202 0.0202 0.0123

Tr(B) 0.1440 0.1.140 0.1121

Tr(B2 ) 0.0197 0.0197 0.0121

Tr(B 3) 0.0028 0.0028 0.0013

aTBa 0.0028 0.0028 0.0014

aTB 2 a 0.000-t 0.0004 0.0001

From this result, we can conclude that regions S0 and S1 are equivalent but region S., is

not equivalent to either. (Here, the data are exact up to rounding. If the data are

affected by a large amount of error, a statistical method such as hypothesis testing

becomes necessary.) By the procedure described in the previous section, the camera

rotation which maps region S0 onto region S, is reconstructed to be

[..573 -0,761 -0.2961

L0,591 0.136 0.795]

This is t he rotation airound the axis of orientatlion (03;SI, 0.512,0.768) by angle 60"

s(. rew x% bN
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8. CONCLUDING REMARKS

In this paper, we have presented invariant properties of an image with respect to

camera rotation, introducing the notions of "invariance'" and "'irreducibilitv' and

translating results from projective geometry in terms of the (inhomogeneous) image coor-

dinate system. \We also gave an example, computing the invariant center of gravity and

the invariant principal axes and reconstructing the camera rotation. The procedure does

not require the knowledge of point-to-point correspondence on the image plane. Many

other applications are also possible.

Consider the problem of shape recognition. Suppose we have a reference image

obtained from a certain camera orientation. If a test image is obtained from a different,

camera orientation, the two images cannot be compared directly clue to projective distor-

tion. However, Theorem .5 provides an easy test for their equivalence. Namely, as is

also shown in the previous example, if the invariants of (7.4 have different values, the

two region cannot be equivalent and the test shape is rejected.

If C. a and B alone are sufficient to characterize the set of test shapes in question

completely, the equivalence is already determined at this stage. Otherwise. we can move

the test shape into the position of the reference shape in such a way that both have the

same a and B. Then, the rest of the shape characteristics are compared to test for the

equivalence. The necessary camera rotation is reconstructed as described in the previous

section. and the corresponding image transformation is performed eit her b act 1iall"

moving the camera or by numerically computing the image transformation (2.2).

We say that a region on the image plane is in the standard po.siton, if lhe invariant

center of inertia center ( 1 ,g2) coincides with the origin of the image plane and the

invariant principal axes coincide with the r- and y-axes .\nv region on tli( image pl:ne
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can be moved into the standard position by camera rotation R such that (i) B is diago-

nalized in the form

0,0 01
RTBR= 0 a., 0

Lo 0
where (73 is the largest principal value and (ii) if

RTa= a

then a' >0.

Evidently, shape recognition becomes easier if the test shapes are always moved

' into the standard position (either by actually rotating the camera or by computation).

However, this technique is not, restricted to shape recognition. If a camera is tracking a

moving object while the camera position is fixed, or if a camera attached to a robot or

an autonomous vehicle is aiming atr a fixed object in the stationary scene, the technique

described above can be used so that the object in question is always seen in the standard

position.

% On the other hand, testing the equivalence is also viewed as detecting acti'e

Int/on. \\hen an object image moves on the image plane, we call the motion passit'e

athat motion is induced by camera rotation alone and acti'e otherwise \Vhen the camera

orientat ion is changed, object images move on the image plane, but those objects may

also ave noved in the scene independently of the camera. According to the procedure

*" " described above, we can detect active motion even if the angle and orient ation of camera

rot ation is not known If the corresponding two object images :are not equivlent. tihe

,,)J('t must hia0ve n iov cti vl If they are equivalent, the object ha s nor t moved in

-24-
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the scene, although motion is obse,-,'ed on the image plane. In the previous example, if

three regions So, S1, S., are images of the same object, we can conclude that an active

motion took place between So (or S1 ) and S2 while no such motion took place between

So and S1.

Another possible application is camera orientation registration. Even if the camera

is rotated by an unknown angle around an unknown axis, the camera orientation can be

determined as long as one particular region corresponding to a stationary object is

identified on the image plane before and after the camera rotation. Thus, the principle

we have described has a wide range of applications to many problems.
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APPENDIX A RECIPROCITY AND CONJUGACY

Consider a line I on the image plane which does not pass through the origin. Let

x cosO+ysinO=d (A.1)

(d >0) be its equation. We say that point

f d

is reciprocal to line I with respect to the origin. Conversely, line I is said to he recipro-

ii
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%. cal to point P with respect to the origin. In other words, if we draw a line through the

origin and perpendicular to line 1, and if d is the distance between the origin and line 1,

the reciprocal point P is located on the other side of the perpendicular line and at dis-

tance f2 /d from the origin (Fig Al). If d=O, point P is interpreted as located at

infinity (at (cosO,sinO,O) in homogeneous coordinates), and similarly the line at infinity is

regarded as the reciprocal line of the origin 0.

Consider a line I and a point P on it on the image plane. Let H be the foot of the

perpendicular line drawn from the origin to line 1, and let d be the distance between

point P and point H. Consider a point Q on the other side of line 1 at distance f 2 j//d

from point H (Fig. A2). We say that point Q is conjugate to point P on line I and con-

:. versely point P is conjugate to point Q on line I. If d=0, Q is regarded as located at

-.4, infinity.

As stated in Theorem 3, a 3D vector is represented as a point, or as a line on the

image plane. By definition, the point and the line are easily shown to be mutually

reciprocal. Hence, if one is known, the other is obtained immediately.

As stated in Theorem 4, a 3D symmetric tensor is represented by three scalars, a

point and a line through it. Let e l , e.', e 3 be the unit vectors of the principal axes

V ' (determined up to sign). Let P 1, P2, P 3 be the points corresponding to them, and let 1

be the line connecting points P., and P 3, 1., the line connecting points P3 and P1 . and 13

the line connecting points P1 and P., (Fig. A3). Then, it is easy to see that point P 1 and

line 11 are mutually reciprocal, and so are point P', and line 1., and point P 3 and line 13.

It is also seen that points P,, and P 3 , points P 3 , P 1 , and points P, and P., are conjugate

on lines 11, 1., and 13, respectively. Hence, if point P 3 and line 11 are given, line 13 and

%r point P1 are obtained as their reciprocals. Point P., is given as the intersection between

46 -26 -
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lines 11 and 13, and line 1. is given as the line connecting points P 3 and P1 . Thus, a

point and a line passing through it are sufficient to represent on the image plane the

orientations of the three principal axes of a 3D symmetric tensor.

APPENDIX B FUNCTION BASIS OF IRREDUCIBLE REPRESENTATIONS

From eqns (4.10), the Casimir operator becomes

,4 _._(_ x2+y 2  x2 a2 2xy r2  .

S+)[(f )- f -  (f  )
f ~ f axay f 2

+.- (f + Y 2)) a--(f ++ y(x 2 y2) a
P / ) , (B.1)

so that eqn (4.14) becomes

(f +'( ")F +-F -F +F,(f+ L-)F ]
f f f f ~&

+(f +x - 2x(x2 +y 2) )F,+(f +x + 2y(x 2 +y 3 ) )FY+I(I +I)F---. (B.2)

Since representations of half-integer weights are not interesting because the same

image must be obtained after a rotation of 27r (the sign is reversed after a rotation of 27r

if the weight is a half-integer), we consider only irreducible representations of integer

k weights.

For 1=0 (1(1-4-1)=0), one solution (2-4-1=1) is easily found:

Fo'(x,U )= 1. (B.3)

Obviously, this is invariant with respect to rotation:

D 1F0
1=0 D.,F0

1=0, D3Fo 0 O, (B.4)

and hence
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TRF o'Fol. (B.5)

For 1=1 (1(/+1)-2), the following three solutions (21+1=3) are found:

Flxy= x IF, 2(X,Y) =  Y IFl3(--,Y) -  f (B. 6)

x)= "+y"+f+xY+f

Application of the infinitesimal generators D I, D2, D 3 yields

Fil F11 F11l F1l
D, [F, [ =-Al IF,12 D., F,"2 =-A.,F1

F , 3 -F, 3 F F , 3- 1
D 3 iF21 -A 3 F 1 (B.7)

where

1F -1jhere A,1A 1] , A = A 3 [ I (B.8)

and the commutator relations are satisfied:

[A ,,A2 =A. 3, [A ,,A 3]=A ,, [A 3,A 1]=A 2  (B.9)

Consequently, for infinitesimal rotations, we have

k TR [,] =I+(QA,+42 2 A 2-Q 3A 3) LFi] +o(f2). (B 10)

This implies that F11, F1
2 are tr,i-formed as

[F] =R [F3j (B 11)
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For 1=2 (1(1-1)=6), the following five solutions (21 -1=5) are found:

iF .,,( .ry )- .2- 24 F .,"X. y ) - 2 . f

" ~ ~~ ~~3( x ' - - -f )  " 3 (2- " f )

(B 12)

Fo 3(x,y)= x2 +Y2 F.'(x,y)= 2 'Y F.(xy)= x

Application of the infinitesimal generators DI, D2 , D 3 yields

".1"F 'I '2 "F,2 " F21' F.) "

F 22 F22  F 2  F2 2  F2  F.2

D, F.,3 =-A, F 3  D 2 F",3 =-A. F.,3  D 3 F, 3 =-A 3 F .3  (B.13)
F 2

4  F2
4  F2 

4  F2 ' F2
4  F 4

F0. F55  F)5  F 5  F 5

where

2-2
-2 2

A,= -1 A 0 = 1 , A 3  1 -1 , (B.14)
1 -2 -1 -1

12 -1 1

and the commutator relations are satisfied:

[A1,A 2 1=A 3 , [A 2,A 3 ]=A1, [A 3,A1]=A2 . (B.15)

Consequently, for infinitesimal rotations, we have

• F2' F 2'
F 2  F. 2

TR F,,3 =I-(QAl-f2.,A.2-+ 3A3 ) F.,3 +o(Q). (B.16)

. F. 4  F . 4

F ' F.,5

This implies that if we put
.7. .p

FI=F 2
1 , F,=F.F 2 ", F33=-F.2 -F 2",

(B.17)
F12=F 2 1 =F 3 , F2 3=F 32=F2

4 , F3 1=FI3 =F2 ),(

-29-

V~ \ *---c:. N



functions F.,', F.2", F- 3 F.,4, F.2 are transformed as

F11 F 12 F 1  F11 F12 Fl1F.-)TR F22, F R F-i F.1  F. RT (B.18)

F1F32 F33 F31 F32 F3

Solutions for 1=3,4, are constructed similarly. In fact, functions F1
1. F, 2

Fl*" are just the l-th spherical harmonics projected onto the image xy-plane.

"

APPENDIX C FEATURE BASIS OF IRREDUCIBLE REPRESENTATIONS
'I.

From eqns (5.6), the Casimir operator becomes

Hx2+y x2  a2  2XY a2 f 2 a (
1 H = -(_+ )a(-+-()- 4 )-.+ :- (C-)

f ~ f a~~f (9 x a
,.o

-6 1 2(X+y-) (C)

so that eqn (5.10) becomes

Y,+/---Y )[(f I... + f. i, +4-(f+ L +Sxn , ±xm, +8ym u I
f f fX

+[t(1+1)+ + -12(X 2+y 2) in =0. (C.2)
f 
'',

For 1=0 (1(1--1)=0), the following solution (21+1=1) is found:

'II

OM0,(x,y)= 1 . (C.3)

Application of the infinitesimal generators Dl, D*, D3 yields

D'nm0
1=o, D*m 0

1=0, Dmo -O1 =0, (C.4)
. I.

and consequently m 0 is invariant for T1t'
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Tt 1,2] I1-(Q 1A*± 0A*+ f3A*) [njj +of.

This implies that in in , are transformed as

i1 =R 1T  2

TR I (C.12)

Features Ji, i=1,2,3, of eqns (5.13) are obtained by

J-=fn j(x,y)F(xT,y)dxdy (C.13)

From eqn (C.12), they are transformed as a 3D vector.

For 1=2 (1(1+1)=6), we can find the following five solutions (21+1=5):

2x 2_Y2-f 2 _x 2 +2y 2-f 2in 9(x,y) ) v- -. ,'-y'f2) ,no(x,y )-- = ( 2 y2+'

S 3V(77,.+J'2)r -\ + +~

,e 3 (xy xy m 2
4 (x,y)- fy

",T4 - 2+2)5 V/(x 2 +y 2 -f 2)5  (C.14)

I m 25 x, y)-- - fx.

Appictin f te nfniesialgeertor D, 0,D 3yields
eApplication of the infinitesimal generators D 1, D , D 3 yields

ti M in 2  tn.)- inZ. in
ml. I m 2 m 2m2 In,' 2 i

.n =-A 11. 3  D .M3 =-A. , 3 -A 1 (C.15)
4in I . 4) In

"  4 1 i

i fl 2 it in 51 5 M , 52I

,n.5 in m IZ liii

where
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T mr o= m0
1  (C.5)

Feature J of eqn (5.11) is obtained by

J=f m 1(x,y)F(x,y)dxdy. (C.6)

From eqn (C.5), this is a scalar.

For 1=1 (1(1+1)=2), the following three solutions (21+1=3) are found:

x , ,ml (x -( 2 +y2+f2)-, m 'xy -(X" 2 Y" 2+f )"

m 13(x,y) =  f" (C.7)
( x2 + Y(2+f2)2

Application of the infinitesimal generators D*, Do*, D* yields

1 where

M M I M] I I

1 = - A.= ,] AM= [ =-A (c.9)

1 1- 21

and the commutator relations are satisfied:

~Consequently. for infinitesimal rotaitions, w have
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A -1 , A.,*= 1 A*= 1 -1 , (0.1)
1 -2 -1 -1

1 2 -1

and the commutator relations are satisfied:

[AA,A'A=A*, JA"A , A ] A . (C.17)

Consequently, for infinitesimal rotations, we have

[rn211 "m1

in.' in.
Tl3 =--I-( 1 . +QA*+f23 A) In 3 +o(n). (C.18)

in,4 in.)4

This implies that if we put

24 1 2

In1 2I , in 22-)= , m 33=-m '2 -m-,

r 3 m1 m. 5 (C.19)171* 12= Mn -1 = "1) i 23  m -- 320= M ,4 ,  m al= m 3= m '-
5 ,

0
"

l 2 3 .4 o5

functions in., In. I in. In,) are transformed as

M1 1  M 12 Mn13  M1 1  1 2-- 13

T- in 1 ,o in 3 rRT M21 M,, 2 M23  R. (C.20)

L"131 M 32 1n 3  M 3 1 m 3 2 M
3 3

Features Jj. i.j=1.23, of eqns (6.7) are obtained by

ii, =f (,,j(x,,y)+ Imo1(x,y)6jj)F(x,y)dxdy, (C.21)

where 6 ij is the Kronecker delta. From eqns (C.5) and (C.20), they are transformed as a

3D tensor.

4
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Solutions for 1=3,4, are constructed similarly. In fact. we can check, by sub-

stitution, that the solution is given by

"11; " ."XY) Fli(x'y) i---1,2, 21 - l (C.22)

APPENDIX D INVARIANT MEASURE

We say that p(xy)dxdy is an invariant measure if for any image F(x,y)

f TRF(x,y)p(x,y)dxdy=fF(x,y)p(x,y)dxdy. (D.1)

In view of ecns (5.1) and (5.3), this is equivalent to

T* p(x,y)=p(x,y). (D.2)

Hence, p is given by the solution of eqn (5.10) with 1=0. From eqn (C.3) of Appendix
a-.

C, we obtain

p(X1y)= x/(x2+ I'2+f2)3 (D.3)

This result can be interpreted intuitively in terms of fluid dynamics. Suppose the

camera is rotating with rotation velocity (W1,W2 ,W3), namely rotating around an axis of

orientation ( ',, 2 ,w3 ) with angular velocity V'j2+w2lw+ 7 32 (rad/sec) screwwise. (Here,

-:, W3 are also interpreted as instantaneous angular velocities around the x-, the y-,

the z-axis, respectively.) The optical flow induced on the image plane is obtained by

dividing both sides of eqns (4.7) by 6t:

U = -fk: 2,- 3 y -( .2X 'AIY )x, V -fW 1 -C3 X t -(-W.2x - 'ty)y. (D.4)

If this flow is regarded as a fluid flow with density p(x,y), the necessary and sufficient

condition that the fluid is neither created or annihilated in the course of flowing is, as is
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well known, given by the equation of continuity

-(P it) ) (D.5)

4 , If eqns (DA) are substituted. eqn (D.5) becomes

(wjD '--rw.,D * +Wv3O ) p=--. (D. 6)

This equation must be satisfied for arbitrary i, A)2, ";3 . Hence, the invariant measure

p(x,y) is given as a solution of the differential equations

* ,..,  D*p--=O, D p=O, D'p=O. (D.7)
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FIGURES

Fig. I The XYZ-coordinate system is fixed to the camera, the origin 0 being the

camera focus. The image plane is taken to be Z-f. where f is the camera

focal length. A point (K Y-Z) in the scene is projected onto point (if) on

the image plane.

Fig. 2 (a) Three regions S o. S1 . S., to be tested for equivalence. (b) Computed

invariant centers of gravity Go, G1 , G,, of regions So, S1, 5., (c) Computed

invariant principal axes of regions So, S1, S.,.

Fig. Al Line 1: xcosO--ysinO=d and point P(-(f2,'d)cosO.-(f 2 d)sinO) are mutually

reciprocal with respect, to the origin 0.

Fig. A2 Points P, Q on line 1 are mutually conjugate with respect to the foot H of

the perpendicular line drawn from the origin 0 to line 1.

Fig. A1 Point P, and line 11, point P2 and line 1., point P3 and line 13 are mutually

reciprocal, and points P., and P3 on line 11, points P3 an( P1 on line 11.

points P, and P', on line 11 are mutually conjugate.
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