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\4 1. INTRODUCTION
108
he! The problem we consider in this paper is as follows. Suppose the camera is rotated
,-_’* by a certain angle around its focus relative to a stationary scene. Then, a different pro-
ALY )

-
SN . . . . . . .
\:cx. Jected image is seen on the image plane. However, since a point on the image plane
b
Y| : o .

‘ corresponds to a ray in the 3D scene, occlusion is not affected by camera rotation. If the
O .
O amount of camera rotation i1s known, the original image can be recovered. (Here, we do
gt & g
‘ 13

not consider the effect of the image boundary. We assume that the image plane is

b o
5

sufficiently large and that the object or scene of interest is always included in the field of

N
"J::\ view.) This means that the information content of the image is not affected by the 2D
e
"-.ﬂl
N : e .
N image transformation induced by the camera rotation.

®

o Suppose the viewed image is characterized by a finite number of parameters or
..:-.
; "; Jeatures. If the camera is rotated, the image is also changed so that the features change
N
N »

their values. If the set of features is invariant in the sense that these new values are

*::t completely determined by the original values and the amount of the camera rotation, we
N | | o

\Qf can predict the values of the features which would be obtained if the camera were
v
) rotated by a given amount. Conversely, if we are given two views of the same object
N
: : obtained from different camera orientations, we can reconstruct the amount of camera
R
D . . .
: rotation R which would transform the values of the features to prescribed values. An
."l
i important fact is that in this process we need not know the point-to-point correspon-
Vi

o

o : : ..
N dence. All computations are based on the observed features, which are global quantities.

These considerations are very important in many problems of computer vision and

2% pattern recognition when the camera orientation is controlled by a computer. Even if
LORY
. _...\ - . . . .
e the camera is fixed, various types of analysis of the image become easy if we apply to the
T
] image the transformation equivalent to camera rotation. This technique is used for the
Y-
R
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shape-from-texture problem by Kanatani and Chou (7] and for the interpretation of
lengths and angles by Kanatani [6]. A similar analysis is done when the object is moving
and we are observing the optical flow (KKanatani [5]). In this paper, we will discuss, as a
typical example, the center of gravity and principal axes of a given region to see how the
invariant properties can be utilized to recognize the shape and to reconstruct the (actual

or hypothetical) camera rotation.

2. CAMERA ROTATION AND INVARIANT FEATURES

Let f be the focal length of the camera. The camera image is thought of as the pro-
jection onto an image plane located at distance f from the focus O; a point P in the
scene is projected onto the intersection of the image plane with the ray, connecting point
P and the focus O. Let us choose an XYZ-coordinate system such that the focus O is
at the origin and the Z-axis coincides with the camera optical axis. Choose an zy-
coordinate system in such a way that the z- and y-axes are parallel to the X- and Y-
axes with (0,0,f) as the origin. This zy-plane plavs the role of the image plane (Fig. 1).

A point (X, Y,Z) in the scene is projected onto (z,y) on the image plane, where

r=fX/2, y=fY/Z. (2.1)

Consider a camera rotation around its focus O and the induced transformation of
the tmage (Fig. 2). Suppose the camera is rotated by rotation matrix R, which is an
orthogonal matrix, ie., RRT=I Then, the point in the scene which was seen at (z,y)

now moves to another point (z',y’') given by the following theorem.
p ¥)8

Theorem 1. The image transformation induced by camera rotation R=(r,;) is given by
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; ruztray+raf F1aZ +Taall + T30
% 2'=f 11 1 31 L y=f 12 22l 3./. (2.2)
.7,; ri3r+rogy+raaf r13T +Togy+r33f

Proof. A rotation of the camera by R is equivalent to the rotation of the scene in the

,\_.:G opposite sense. If the scene is rotated by R-Y(=RT), where T denotes transpose, point
) ""‘5
ey ' (X,Y,Z) moves to point (X', Y',Z") where
SB at
A
»

‘ ) X! 'a ' ™an X
\ ; },I = To Tao T 2 y’ . 2.3
o [z] e H =

Tia Toz T33

AN NV .
iy This point is projected to (z’,y’) on the image plane, where z/=fX'/Z' and y'=fY'/Z".
N
%! .. . .
W Combining this with eqns (2.1), we obtain eqn (2.2).
LY
W
-':'J . . . .
P It should be emphasized that the image transformation due to camera rotation does
4
-r_:.
3 not require any knowledge about the scene and that the transformation has an inverse,
1 ‘.9
] which is obtained by interchanging R and RT. This means that transformations of the
P
s form of eqn (2.2), which form a subgroup of the 2D projective transformation group, do
'l
S . . . . ..
4% not alter the information content of the image as long as the image boundary is ignored.
:" (In this paper, we always regard the portion of the image near the boundary as unimpor-
"f‘..i tant.) In the following, some basic results from projective geometry are summarized in a
o . L . ‘ . .
W way that is convenient in our consideration of the image plane transformation.
:::: Suppose the image is characterized by a finite number of parameters J;,
J“)
‘. 'D
- . . . .
;t i=1,2, ..., N, which we call features of the image (Amari [1, 2]). (They are called pro-
<R
LT h perties in Rosenfeld and Kak {9].) If the image is transformed by eqns (2.2) as a result of
o . . .
ﬁ; camera rotation R, these features take different values J%, i=1, ..., N. We say a set ;
S |
‘_'f:._',' of features J;, i=1, ..., N is invariant if the values of J} i=1, ..., N, are deter-
.\' mined by the values of J;, ¢=1, ..., /N and the amount of camera rotation R alone.
oS
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e
o
..t“z:.;’
Ay . . . . _
,::-:", This definition suggests that an invariant set of features is describing some aspects of
AR
IR
W
S the image that are ‘‘inherent to the scene itself”’ and are independent of the camera
l"
Wt . .
il orientation (Weyl [15]).
¢
e
- Let J;, i=1, ..., N, be an invariant set of features. We say the set is reducible if
Nt
. it splits, after an appropriate rearrangemcnt, into two or more sets of features, each of
o
I C . : . .
1 which is itself invariant separately. If no further reduction is possible, we say the set of
&2 P Y
R o | y o
1 features is irreducible. This definition suggests that an irreducible invariant set of
R features is describing a ‘“‘single’” characteristic inherent to the scene while a reducible set
P>
"-!"."‘ describes two or more different characteristics at the same time (Weyl [15]).
&
;"fi If a quantity ¢ does not change its value under transformation (2.2), i.e.,
v, ,
».."t- c =C, (24)
Y
. under camera rotation R, we call it a scalar. Obviously, a scalar is itself an invariant
e and is irreducible. Hence, it describes a characteristic inherent to the scene.
&
T If a pair a, b of numbers is transformed as z, y of transformation (2.2), i.e.,
S
J ' frlla+r21b—+—r31f b frwa+r22b+r33/' 25)
‘*‘ a'= ) == ’ .
i‘.\n: ri13a +r-336 +7'33f riza +r23b +7'33f (
N,
‘e
-&5 . . . . .
'O we call it a point. Note that any pair of numbers can be interpreted as a position on the
'—-&-
e image plane. However, it is interpreted as indicating a position in the scene if and only
}:{ if it 1s transformed as a point. A point is also an invariant set of features and is irredu-
Xt
ol cible.
':-:: A line on the image plane is expressed in the form
; \’.ﬂ.
e Az +By+C=0. (2.6)
@ Here. the ratio A:B:C alone has a geometrical meaning; 4, B, C and ¢4, ¢B, cC for a
b
ond
%
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non-zero scalar ¢ define one and the same line. In order to emphasize this fact, let us
write A :B:C to express a line. If transformation (2.2) is applied. line (2.6) is mapped

into

Alr'+B'y'+C'=0,

—_
o
-1

~—

as in the following theorem.

Theorem 2. A line A:B:C on the image plane is transformed by camer. rotation R

into the line
A ,ZB’ZC'-_—TH.‘{ +rng —rr3lC /f:rlg."‘ +Tr_>gB +r320/f:f(r 13A +r23B)+r330. (28)

Proof. In view of eqns (2.1), eqn (2.6) is written as A(fX/Z)+B(fY /Z)+C =0, or

X
A B C/f) [Y =0. (2.9)
Z

From eqn (2.3), we find that A, B, C/f are transformed as a vector, i.e.

Al A
E)l3)
cl/f c/f

'

from which eqn (2.8) is obtained.

If the ratio of three given quantities A, B, C is transformed by eqn (2.8) under
camera rotation, we call it a line and write it as A:B:C. It is an Invariant set of
features and is evidently irreducible. As in the case of a point, any triplet of numbers
can be interpreted as a line on the image plane, but it is interpreted as a line in the

scen2 if and only if it is transformed as a line.

All the invariant properties considered in this paper are invariant with respect to

the ‘“‘projective transformations™ of the form of eqns (2.2). In traditional “‘projective
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O
,5‘\.)'
{\ geometry”’, all equations are written in terms of “‘homogeneous coordinates’ defined in a
e
- “projective space’” (cf. Naeve and Eklundh [8]). If we regard the zy-image plane (with
{24. the ““line at infinity’”" added) as a two-dimensional projective space and introduce homo-
! . . . . |
:..:: geneous coordinates, eqns (2.2} are rewritten as a liner transformation. The *‘point’” and
|
" “line” defined here are mutually “dual” and expressed exactly dually in homogeneous
bl coordinates.
“~
e
:. % However, the purpose of this paper is to deal with applications of the ideas of pro-
35 jective geometry, and in dealing with real images the zy-Cartesian coordinate system is
Pl
=
.{: most convenient. Therefore, in the following, we express all the invariant properties in
N 4,
&
1,
e terms of the zy-‘inhomogeneous’ coordinates of the image plane. The aim of this paper
".‘.:- 1s to translate the results known in projective geometry into ‘“‘manageable” forms and to
A
AN demonstrate the practical use of this type of knowledge.
-'-f.
SN
L 3. IRREDUCIBLE REDUCTION OF 3D VECTORS AND TENSORS
2 | . | |
oy Consider three quantities a, &, ¢ which are transformed as a 3D vector, ie.,
-/

N (ll a
o o'l =RT | 5], (3.1)
o) '
:.l A [ c

)
e : : : .
W for camera rotation R. (Note that the rotation matrix R is tr nsposed because we
- adopted the convention that R is the amount of ‘“‘camera rotation”.) This is an invari-
J_ ant set of features but is not irreducible because
P
s
%
xF
N Lemma 1. If a, b, ¢ are transformed as a 3D vector, then the length
v
-"'.I
o scalar.
P




[
AS There are two ways, mutually dual, to interpret a 3D vector a,b,c as irreducible
". sets of features. One way is to regard fa/c, fb ‘¢ as a point and the length Va*+~p>+c*
\ as its /ntensity, which is a scalar. We can easily check from Theorem 1 that
\ Lemma 2. If a, b, ¢ are transformed as a 3D vector, then fa/c, fb/c are transformed
o5 as a point.
\‘:
\.
o
-t
AN Hence a pair fa/c, fb/c has an interpretation as a point invariant on the image plane in
AR the sense described above. Here, we allow the case ¢ =0, regarding it as a point located
N
- at infinity. We also make the convention that the intensity is negative if ¢ <0. If we
N imagine that the 3D vector (a,b,¢) is emanating from the origin O (or the camera focus)
n of the XYZ-coordinate system, the point (fa/c,fb/c) is the intersection of the image
7
o plane with the ray defined by the 3D vector (a,b,c).
\"_
Another way to represent a 3D vector on the image plane is to regard a:b:fc as a
v,
-:: line and the length Va*+b>+c? as its intensity. We can easily check from Theorem 2
.:;
e that
-t
.
&5 Lemma 3. If a, b, ¢ are transformed as a 3D vector, then a:b:fc is transformed as a
D :' .
', line.
[}
e : . : N :
" Hence, equation ar—by—fc=0 has an interpretation as a line invariant on the image
N
- plane in the sense described above. If we imagine that the 3D vector (a.b,c) is emanat-
A
) ing from the origin O (or the camera focus) of the NYZ-coordinate system, the line
:f ar ~ by~ fe - 0 s the intersection of the image plane with the plane passing at the origin
G
- O and perpendicular to (a.b.c). As before, we allow the case of a =b--0, regarding the
[
et line as located at anfimity. and make the convention that the intensity is negative if
~
o ..
&
R w2
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The above results are summarized as follows:
(AN}
My
<
::_ Theorem 3. A 3D vector is an invariant feature set. It can be irreducibly reduced into
1
¥ . . . .
a point and a scalar or into a line and a scalar on the image plane.
.
.
‘ :j Next, consider nine elements A 1,J=1,2,3, which are transformed by camera rota-
b
. o
tion R as a 3D tensor, ie.,
'-
o 1y Al A 1 Ap A
= Al A Al An A Agg
::: .“{)l ‘130 ‘4(33 :RT .421 4‘{22 1‘123 R. (32)
-
™ ! ! ! /
e Ay Az Al Az Az Ag
e,
> By definition. this is an invariant set of features. However, it is reducible. First, it can
N
» . . . .
TN be decomposed into a symmetric part and an antisymmetric part (or skew part):
¥
3 A A A An (AratAn)/2 (A5+A45)/2
o Ay Aa Ag | = | (A p+Ay)/2 Aga (A ozt 3)/2
oy .
.-.: “‘31 “132 “133 (.‘1314—:1 13)1/2 (.'“‘23+;“13-2)/'/2 ‘433
4 —
- 0 (A1e-A21)/2 (43-A5)/2
N
- + 1 (A a-Ay)/2 0 (A2z-Asz0)/2 | (3.3)
s La1-A13)/2 ~(Aag-Ag)/2 0
< (Aa1-A13)/2 ~(Aas-A32)/2
o -
- and each part is transformed as a 3D tensor by eqn (3.2) separately. Moreover, it can be
L
e verified that the three independent elements (Aag—A32)/2, (A=A 13)/2 (Ao-Aay) 2 of
‘{"§
b the antisymmetric part are transformed as a 3D vector. Hence, they are, from Theorem
. -
- 3. irreducibly reduced into a point and a scalar or into a line and a scalar.
Suppose A =(.1,;) is already a symmetric 3D tensor. As is well known. such a ten-
[\ 4 M
4. sor is represented by three mutually perpendicular unit vectors e, e, €3 indicating the
':-
:i: principal axes and the corresponding principal values o). g5, 75 in the form
)
-8-
L]
»

o
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e,

. v N

-

.:::‘:' A=016181T‘*‘0'-3€~_7'€2Tf0'363837‘. (;4)
o

Voo . . . .

B Here, this representation does not change if e, (or e, or ej) is replaced by -e, (or -e, or
N -e3). (If two of o, 02, 05 are identical, the corresponding principal axes are not unique
bl . - .

et and can be arbitrarily rotated rigidly aronnd the remaining one. If all of o, 05, o3 are

F=

a

- identical. the orientations of e,, e, ez are completely arbitrary as long as they are

T

":3_; mutually orthogonal.)

‘oS

B Cn

. ‘-\\;

e The three principal values are scalars, each of which is an invariant irreducible

. Ll

e feature. On the other hand. if we determine the orientations of two of the three princi-

P

o pal axis orientations. say e; and e, the orientation of the remaining one is uniquely
4--

.:-:"-

determined. (e; and —e; indicate the same orientation.) As is shown in Theorem 3, the
ortentations of e, and e, are represented by two points on the image plane. (If we
. replace e, (or es) by —e, (or —e,), the corresponding points are unchanged as desired.)
However. since e, and e, are perpendicular, one of the two points and the line connect-
ing the two points are suflicient: if one point on the image plane and a line through it

are given, the three orientations are determined (Appendix A). Thus, we obtain

) . N . . . . .
-:'Cf-.j Theorem 4. A 3D tensor is invariantly reduced to its symmetric part and its antisym-
3 ‘.:\-".
L e . . . .o . . .
S0 metric part. The antisvmmetric part is irreducibly reduced into a point and a scalar or
\J'. A 2

A A

a line and a scalar. The symmetric part is irreducibly reduced to three scalars, a point

and a hine through it.

4. INFINITESIMAL GENERATORS OF THE IMAGE TRANSFORMATION

Let F(r.y) represent an observed image. This many be the intensity of the gray-

level or a vector-valued function corresponding to R. B and G. Here. the value of F(r.y)




is assumed to be inherent to the scene and independent of the viewing orientation.

Color. for example, has this property. Furthermore. F{xr.y) is assumed to be of finite

o support, i.e., F(x.y)is zero at a sufficiently large distance from the origin of the image
N plane.

[ . . . . . .
el Let us write the transformation of eqn (2.2). which is determined by the rotation
v matrix 2. symbolically as

O

- (2! g} =M R(z.y). (4.1)

Then. we can see the (transposed) homomorphism in the sense that
MRyJoM[R\|=M[R\Ry;. (+.2)
Now, define the rotation operator T p acting on image F(z,y) by

TgF(zy)=F(MRT|(z.y)). (4.3)

-;«‘ In view of our assumptions of image value constancy and finite support, the function
o

'5.\:' T pF (z,y) describes the image we observe if the image plane undergoes the transforma-
o

e

L : . . . - .

b tion (2.2). Operator Ty induces a representation of the 3D rotation group SO(3) in the
l,_ b«.

. sense that

V.-n_:“'

L ﬁ‘ 4

o

o —

e Tprpr=TroTg, (4.1)

B

- As is well known. this representation s completely determined once its behavior for
e

infinitesimal rotations (ie., its Lie algebra) is known, since SO(3)} is a compact Lie group.

A 3D rotation is specified by the rotation aris (ny;.nang). which is taken to be a
unit vector. and the rotation angle @ (rad) screwwise around it As is well known. the

corresponding rotation matrix is given by

- 10 -

o T e e
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.....

Ll
. ~
"% cosQ+(1-cosQ)n,®  (1-cosQ)n na-sinQny (1-cosQ)n nz+sinQn,
.-‘} . 0 .
¢ 3 R=} (l-cosQ)nyn +sinlng  cosQl+(1-cosQ)ny”  (1-cosQ)nasnaz-sinQn,; | .(4.5)
- (1-cosQ)nzn;-sinQn, (1-cosQ)nzna+sinQin,  cosQ+(1-cosQ)n,*
R
-\‘; . If the rotation is infinitesimally small, i.e., Q is infinitesimally small, the rotation matrix
1
9 . : . : .
\ takes the form R=I+6R+0(Q2), where I is the unit matrix, 6R is the matrix given by
&
‘::" 0 —Q3 Qg
>
{: bR= Q; 0 -1, (4.6)
N - Q, 0
::« and o(Q2) denotes higher order terms of . (We let the context indicate whether these
e
:{3 terms are scalars, vectors or tensors.) Here, we put Q,=Qn,, Qo=0n, and Q3=0n,.
1 2 3 3

-
IR

g

If the rotation is infinitesimal, the transformation of eqns (2.2) becomes

t'=z+62+0(Q) and y'=y+6y+o0(Q), where

3
!y ) .
e 6I=—IQ2+Q31]+7(—Q21 +Qy)z,  by=[0,-Qsz +7(—Q.3_1: +Qy)y. (4.7)
3
:E::t Then, the image F(z,y) also undergoes an infinitesimal change and becomes
e F(z-62,y-6y)=F (z,y)+6F (z,y)+0(Q), (4.8)
)
‘:)
[~ and 6F (z,y) is given by
~ -l'::"
- 6F (z.y)—-2E5:-2L 5,
dy
' Qe gy L (240, )2 1 20 -0+ Lz 0 )y 1 25
‘ J dz S dy
=~(Q;D+Q:0 2+ Q3D 3)F (1,y), (4.9)
: where the infinitesimal generators are defined by
o
K- 5
Y . 2 : d J
‘i' =_Ili‘ _"/__ .2_ D,,:— .E— i_ﬂ_ D = | —— I — .110
! Di=TFar Uty DUt plgTgy Pevgrig, (110
1
8
[ -’
)
2 -1
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Ny
A
‘li‘
i —
‘::. Hence, operator T g becomes, for infinitesimal rotations,
1
W
T op=1-(0,D +Q.D ++Q3D3)+0(Q), (4.11)
Y where I'is the identity operator.
s It can be checked easily that these infinitesimal generators satisfy the commutator
;‘ relations
3
'-, {D.Dsj=Dj, D3.D3j=D,, (D3, D\|=D>, (1.12)
R where the commutator is defined by [A B|=AB-BA. Hence, a set of functions can be
o
o found which induces a representation of the 3D rotation group SO (3) 3, 4].
i
i’ As is well known, a set of functions which induces an irreducible representation is
NN obtained as eigenfunctions of the Casimir operator
: : H=-(D*+D.*+Dj". (4.13)
a0 The eigenvalue is [(/+1) and the eigenspace is 2/+1 dimensional, where ! is an integer
-‘:' or half-integer called the weight of the irreducible representation (cf. Gel'fand, et al. [3],
b°. -
.Q\ . . .
' Hammermesh [4]). In other words, the differential equation
o0
) HF=I(I+1)F, or (D *+D,+D3*)F+I(l+1)F=0, (4.14)
>
A has 2/+1 independent solutions, which become the basis of the irreducible representation
: D, of weight 1 (Appendix B).
R
A
i 5. ADJOINT ROTATION AND FEATURE TRANSFORMATION
'\ . . .
Let J be a feature of the image. To be precise, a feature is a functional mapping
>
N the image function F(z,y) into a real number J[F(z,y)]. Consider a linear feature
.. obtained by weighted averaging or filtering:
N
V"o
Wy
AN
4 \:
TH
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J[F(z,y)]zfm(x.y)F(I,y)d.rdy. (5.1)

Here, m(z,y) is the filter weight function and integration is performed over the entire
image plane. (Recall our assumption of finite support of F(r,y).) If the camera is
rotated by R, the image becomes T gF'(z,y) by eqn (4.2) and hence the corresponding

feature becomes
JITgF(z,y) fm 2,y)T pF (2,y)dzdy. (5.2)
We define the adjoint rotation operator T g by
J[TRF(J:,y)]=f T gm(z,y)F (z,y)dzdy. (5.3)

From this definition, we can see that operator Tp induces an adjoint representation of

the 3D rotation group in the sense that
T;igkl :_T;?l OT;gQ. (54)

Once we know how this adjoint rotation operator Tp acts, the transformation of such

features is immediately computed for any given image. This is done by just considering

infinitesimal transformations.

If the image is infinitesimally changed as in eqn (4.8), feature J also undergoes an
infinitesimally small change J—J+6J+0(). Substitution of eqn (4.9) and integration

by parts yield
6J=f(QlD{'+Q.2D.3'+Q3D§)m(z,y)F(z,y)dzdy, (5.5)
where Dy, D3 and D3 are the adjoint infinitesimal generators defined by

pi=3 WD (pydy B pp 32y D

2y 9
[ oy’ J f'ar f 3y’
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S8
o
Lt \:
“»
-~ * d d
oy D;=y—zr—. 5.8
:: 3 yaz dy (5.8)
ac
ok In eqn (5.5), no boundary terms appear due to our assumption of finite support for
[\«
-' F(z,y). Hence, operator Tp becomes, for infinitesimal rotations,
2
i Tr=14+QD{+Q:D3+Q3D3 +0(0Q). (5.7)
oy
N It can be checked easily that these adjoint infinitesimal generators satisfy the com-
13 g
9%
R mutator relations
i Di.D8}=Dj,  D§.D{|=D{,  [D;.D}|=D} (55)
Y
.'" Hence, we can find a set of functions which induces a representation of the 3D rotation
i)
\ group SO(3). Then, operator Tk acts as a linear transformation on them (cf. Gel'fand,
!
-:- et al. {3]). As before, a basis of the irreducible representation D; of weight ! is obtained
‘Y
Wy as 2/+1 eigenfunctions of the (adjoint) Casimir operator
2, H*=~(D{*+D}*+D3?, (5.9)
o
K Le., as 2/+1 independent solutions of the differential equation
g H'm=Il(l+1)m, or (D{*+D3*+D3%m+I(l+1)m=0. (5.10)
A
w
! ,
\J From Appendix C, we find that
\
X
. sz F(z,y)dzdy (5.11)
:,-.: ‘/(12*‘!/2'{"/2)3
e
SN
o is an invariant (i.e., it is transformed as a scalar). This implies that
{
f»;: p(zy)=—= 10 = (5.12)
.. V(z3+y+2°
:
g 1s an tnvariant measure (Appendix D).
1
o
2
s =
.::‘.
>
oo - 14 -
_
e
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o We also see from Appendix C that

-“3

o~

e (2.)dzdy ( )d
A f:rF r.y)dr fJF Ij)dl‘d —f (z,y)dxdy (5.13)

22+ y 2 (2%+y%+/%)? (2 +y*+f7)°

4

-fﬁ:# are transformed as a 3D vector. Hence, they are irreducibly reduced to a scalar
“-_‘
WY V(I (J2)"+(J3)" and a point fJ,/J3, fJs/J3 (or a line Jy:J:fJ3) on the image plane.
-' This scalar and point (or line) are invariant in the sense that they describe characteris-
i
‘\- tics inherent to the scene.
e

Also from Appendix C, we find that

JH_IM o= [ 2y zy)drdy g o (xy)drdy

7. =f IJF(I J)dxd_/ Jon f y F(z y)dxdj Jone JyF (z,y)dzdy

7 - £

1 JzF(z.y)dzdy . IF!.’L'J dxdy *F(z.y)dzd
> J‘”_f\/—-g—eﬁ' o= \f/J—LJ‘s J33=f\f/-§—"/;2—zjs.
"ol (z7+y"+f7) (z7+y"+f7) (z5+y™+f7)

{2 are transformed as a 3D (symmetric) tensor. Hence, they are irreducibly reduced to
AN three scalars, a point and a line through it on the image plane. They are invariant and

describe characteristics inherent to the scene.

o
oy
nf‘_;
:"r 6. INVARIANT CHARACTERIZATION OF A SHAPE
O
e
i As an application of the results in the previous sections, let us consider the charac-
..\l.
A o . . . - :
'.:4 terization of a shape on the image plane. Consider a region 5 on the image plane. Its
o
Fo>y
1 characteristic function

o {

1 if(z,y)eS
lo otherwise

Flay)=

' is taken as the image function F(r,y).
4
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The simplest characteristic of the region § may be its area

- Voo

Al
® §= [ dedy(=[F(z.y)dzdy). (6.2)
2
i However, this area is not invariant with respect to camera rotation. Suppose the region
h
Lo S is located far away from the image origin. If we move it so that it comes to the center
LA . . . . .
\) of the image plane by appropriately controlling the camera orientation, the area of eqn
\0
\ (6.2) changes. Consequently, eqn (6.2) is not considered to be a characteristic inherent
<
) to the scene itself. In short, eqn (6.2) is not a scalar.
3 : :
R On the other hand, if eqn (6.2) is rep'~ced by
T
.".’
o dzdy
s —f3 Iay
- o=rJ; Nk (6.3)
“_f (z°+y"+f%)
'.'::
s this is a scalar as was shown in the previous section. If S is a small region located
o
RS
¢ around the image origin, i.e., 10, y==0in S, then C is approximately equal to its area.
o We call (' the invariant area of region S. It is interpreted as the area the region would
'..'v
-‘:::- have if the region were moved to the center of the image plane by changing the camera
Ry orientation. Geometrically speaking, this quantity is nothing but an expression of the
o
K solid angle the object makes with respect to the viewer.
K
)
::o. Another simple but important characteristic is the center of gravity of the region
'
l.t.l
- S
)
o
h :E 5:"=fs xdzdy /’fs dxdy, 'y':fs ydzdy fg drdy. (6.4)
E
i Again these quantities do not have invariant meanings. Namely, if region S is moved to
3_: another region by camera rotation and (7'7’) is its center of gravity, (F,7) is not
"‘ . . -— .- .
; mapped into (F',7’) by the same camera rotation. In short, ¥, 7 is not a point.
i
I. "
i
W
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q.!;; On the other hand. we know from the previous section that

't:.-:
bl

b Id.l'd ydxd dzdy _
" al—f T _J 5 ang —_‘ _y ) —ff —'—_‘ J > (6.-‘))
" P S (L) IR

A

o , .

are transformed as a 3D vector. Hence, fa,/as;, fa./a; are transformed as a point. If
h

e the region S is a small region located around the image origin and z=0, y=0 in S, then
'f;\,: (fa, as.fas/as) is approximately the center of gravity of the region. We call
ty
&,. (fay aj.fay/ aj) the invariant center of gravity of region S. It is interpreted as the point
L0

Lh 2

which would be mapped into the center of gravity if the region were moved to the center

‘-::'-j of the image plane by changing the camera orientation. Geometrically, this point
o
B

N . . .

e corresponds to the center of the solid angle the object makes with respect to the viewer.

”

o

A Another useful characteristic is the moment tensor (Af;), 1,7 =1,2, defined by
e
W p——— — — RN 1
heh 1\[”=f5(.r—1)"d.r.dy, 1\11321\[2,——:_"5(1—9:)(y—y)dzdy, 1\[22=f5(y—y)'d.rdy. (6.6)
‘DM
. [ts principal values indicate the amount of elongation of the region S along the
ol
', t:'_ corresponding principal axes. However, as described above, this tensor does not have
N
S%
SeNy : . : . . : .
\*" g invariant properties. Namely, the principal values of (Af;;) are not scalars, and its prin-
J
wei cipal axes are not lines on the image plane.
N
.. On the other hand, we know from the previous section that
!
Y
, 2 dzdy rydzdy rdrdy

v f Bl“=f5\/.,—s——.,—5' B :ffs m

2o V(z3+y*+f2)» (z=+y=+/9) (z°+y“+f)

":\'\‘
LW 2
i Bufy . Bumfi et Baf s

o N (z°+y"+/f7) (z2+y*+f%)°
:. v B, ffs zdzdy . Ba—f . ;sz(iy -, By, fs drdy
P V(z3+yi+rh® V(z*+y*+s3) Viz+y+ 3

.;
: are transformed as a 3D (symmetric) tensor. Since this tensor is positive definite as long
{—— « - «
Es as region S is not empty, it has three positive principal values 0y, 04, 3. Let o3 be the
.\b".’
4oy
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maximum principal value. Let e,, e, e3 be the corresponding unit eigenvectors (deter-
mined except for sign). Let (g,,9.) be the point corresponding to vector e;. Let [, be
the line through (g,,9.) and the point corresponding to vector e, (or the line represent-
ing vector es). Similarly, let /s be the line through (g,,92) and the point corresponding
to vector e. (or the line representing vector €,;). By our method of construction, scalars
o), 02, point (g,,9-) and lines /|, I, are all invariant quantities. It can be checked that
lines !,, l, are approximntely the principal axes, and o,, 0, are approximately the
corresponding principal values if S is a sufficiently small region around the origin.
Hence, scalars o, and o, are the principal values the region would have if it were moved
to the center of the image plane by camera rotation, and [, [, are lines which would be
mapped onto the principal axes. We call point (g,,92) the invariant center of i ertia,
lines {,, l5 the tnvariant principal azes, and o), o, the corresponding invariant principal

values.

7. INVARIANTS AND CAMERA ROTATION RECONSTRUCTION

In the previous section, scalar C defined by eqn (6.3), 3D vector a =(aq;) defined by
eqns (6.5) and 3D tensor B==(B;;) defined by eqns (6.7) are interpreted as a set of two
dimensional invariant quantities on the image plane. Here, let us consider their three

dimensional aspects.

First, since C', @ and B are transformed as a scalar, a vector and a tensor, respec-
tively, by camera rotation, we can extract invariants that do not change their values

when the camera is rotated. Obviously, scalar C itself is an invariant.

Second, since a is a 3D vector, it has, as was discussed in Section 3, only one

invariant, namely its length ||a]], or equivalently aTa.

- 18 -
R T LI N ".(*. SRS NESY A NN, K .*( "ﬂ-'( e "\’-"\“."\’ : OO "‘p \.{’--\‘ \ -‘\-(\, '-\-\v‘-'v"". '-\:\.\»
b A% ‘. (2 ‘. o .'( "" " .'. i 0'. 2 g ‘l- ." N -. T 3 ,4‘, 1. & Sy {4




e . P - vy ke Lalt- st “aid A st AR e h JW"-"'-’"?T‘WW.'Y?‘L‘!","UV_‘W'.."‘L‘

RS
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N
,‘\'
'j\ On the other hand. B is a 3D symmetric tensor, and hence it has, as was described
)
b in Section 3, three invariants, namely the three principal values oy, 0., a0, or
o eauivalently any three independent algebraic expressions formed from them such as the
W, »
h".
RS
"::f.' Jundamental symmetric forms o\~0y+03, 0,02+0203+0303, 0,0:05. In terms of the com-
i
‘ onents of the original tensor B, they are respectively
P g A % A
e By By:| |Ba By Bz By
LY + 3. =Tr -+
- Buir By By =Tr(B)) By Bay|" |Bsy Ba| |Byz By
s
By By By
;. ;' B?l B-_)Q B-_]g (=detB) (71)
RN
N B3 B3 B
N
* Alternatively, we can use o,+0a+0s3, 012+023+031 and 0,%+05*+0,>. This set is equal to
o
' 4 .
L Tr(B), Tr(B?), Tr(B?) (7.2)
H.‘.-
-:‘:'_-
- Finally, there are invariants describing the relationship between 3D vector a and
L 3D tensor B. As was discussed in Section 3, a 3D vector is geometrically thought of as a
i
LA . . . . . .
;::, directed axis to which its length is attached and a 3D symmetric tensor as three mutu-
]
)
_J ally perpendicular (undirected) axes to which their respective principal values are
.
3 'x attached. Now that the length and the principal values have been counted, the remain-
2
) ing invariants are those specifying the orientation of the vector relative to the three
L =
4
“" mutually perpendicular axes. Hence, two invariants exist. We can choose, say, a” Ba
-';t
-
A and a” B*a (Smith (10], Spencer [11), Wang [12 - 14].) Of course. the choice is not
=
B unique as stated ahove, and other choices are also possible.
I We say that two regions S and S’ on the image plane are equivalent if one region
N | . | |
Pt can be transformed into the other by camera rotation, i.e., by changing the camera
o
orientation. If the two regions are equivalent, the above invariants must have identical
P Y
b,
L,
‘. -19 -
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L
u
o)
:S; values. If they have different value:. the two regions cannot be equivalent. On the
R : : ,
o other hand. if the two regions are known to be equivalent, the camera rotation which
:: would take one region into the other can be reconstructed by observing the invariant
e
3: center of gravity and the invariant moment tensor alone. This is done as follows.
Suppose we observe a and B for region S and a’ and B’ for region S’. Assume
:: that B (hence B' as well) has three distinct eigenvalues and a5%0. Let e, e, and €3 be
~
N . . . ~- . . .
W the associated eigenvectors of B. Since the eigenvectors are determined except for sign
N and magnitude, choose one set such that e, e,, e3 are mutually perpendicular unit vec-
o
\':J . .
o tors forming a right-hand system in that order. Construct a matrix R, having e, €., €3
B
' as its columns in that order. Let e, eh, e% be the corresponding unit eigenvectors of B’
8 . . . . . .
N forming a right-hand system. Since the signs of the eigenvectors are arbitrary, there are
,\‘
- four possibilities to make a right-hand system. For each case, construct the correspond-
Y
ing matrix /5. Then, the rotation matrix which transforms B to B'is given by
"
28 R=R,R,T. (7.3)
e
‘."
(Matrix B is first transformed by R, (=R,T) into a diagonal matrix, which in turn is
o . : .
\:: transformed to B’ by R,.) Finally, choose one our of those eight possible Rs that
2
:" transforms a to a’.
\‘. If B (hence B' as well) has only two distinct eigenvalues (a single root and a pair of
e
'_\{ multiple roots), let e; be the eigenvector associated with the single root. Suppose a 1s
S5
{-: neither parallel nor perpendicular to e;. Since the sign of e, is arbitrary. choose it so
&0 that @ and e; make an acute angle. Then, we can construct three mutually orthogonal
L]
103
N vectors forming a right-hand system e, e,=e X a/||e; X a||, e;==€;Xeas We can form
a
X R, and R, as described above, and the desired rotation is given by eqn (7.3). If a is per-
M . . . .
:' : pendicular to e, there exist two solutions. If @ is parallel to ey, or if 3 (hence B' as
)
)
telg!
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well) has one eigenvalue (i.e.. B(=B') is a multiple of I). R is any rotation that maps a

to a’ and we can add any rotation around a’. The case where a=a’'=0 is treated simi-

larly. These observations can be summarized as follows:

Theorem 5.
¢. aTa. TiB) TiB*. TiB®, aTBa. aTB%a (7.4)

exhaust all the invariants constructed from C'. @ and B. If two regions are equivalent,
the amount of camera rotation which take one region into the other can be recon-

structed from a and B alone.

An important fact is that both the equivalence test and the camera rotation recon-
struction do not require knowledge of point-to-point correspondence, since the computa-
tion is solely based on the features (6.3), (6.5), (6.6), which are obtained by integration

over "he regions under consideration.

Theoretically, the camera rotation is exactly reconstructed as described above. In
practice, however, the invariant center of gravity (fe,/asfas/a;) and the invariant
center of inertia (g;,92) are usually located very near, and vector a and vector ez are
very close to each other. Therefore, the last step of choosing one out of four possible Rs
by checking Ra may become difficult if much noise is involved. In this case, the final
choice is done by applying the transformation (2.2) to region S in four ways and choos-
ing the one which make region S sufficiently overlapping S'. (Since we are focusing on
the principal axes, the four possibilities correspond to the four possible (skewed) “mi or

image"’ (including identity) with respect to the principal axes.)
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Example. Consider the three regions 5y, 5,. S, on the image plane {Fig. 2(a)). We use
a scaling such that the focal length f is unity. Computing the integrations of eqns (6.5)
and (6.7). we find their invariant centers of gravity (Fig. 2(h)) and principal axes (Iig.
2(c)) as follows:
So Sy So
(-0.081,-0.202) {0.-16-4.0.076) (-0.470,0.346)

-2814r-0.431 y=16C7r-0.697 y=-0.079r~0.310
=0.382r-0.171 y=-0.476r-0297 y=-106.522z-7 421

ll

Y

The invariants of (7.4) become as follows:

So S, S,

¢ 0.1440 0.1440 0.1121
aTa 00202 0.0202 00123
Tr(B) 0.1440 0.1440 0.1121
Tr(B® 0.0197 0.0197 0.0121
Tr(B% 0.0028 0.0028 0.0013
aT”Ba 00028 0.0028 0.0014
aTB*a 0.0004 0.0004 0.0001

From this result, we can conclude that regions Sy and S, are equivalent but region S, is
not equivalent to either. (Here, the data are exact up to rounding. If the data are
affected by a large amount of error, a statistical method such as hypothesis testing
becomes necessary.) By the procedure described in the previous section. the camera

rotation which maps region 5, onto region 5 is reconstructed to be

0.573 -0.761 -0.296
R=} 0567 0.631 -0.530
0591 0.136 0.795

This 15 the rotation around the axis of orientation (0381 0.512,0.768) by angle 60°

SCTOW W [se
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8. CONCLUDING REMARKS

In this paper. we have presented invariant properties of an image with respect to
camera rotation, introducing the notions of “invariance”™ and ‘“‘irreducibility’” and
translating results from projective geometry in terms of the (inhomogeneous) image coor-
dinate system. We also gave an example. computing the invariant center of gravity and
the invariant principal axes and reconstructing the camera rotation. The procedure does

not require the knowledge of point-to-point correspondence on the image plane. M\any

other applications are also possible.

b

n'..'

~- .

X . . . .

N Consider the problem of shape recognition. Suppose we have a reference image
P

e : . . : . . : . .

‘ obtained from a certain camera orientation. If a test image is obtained from a different
B camera orientation, the two images cannot be compared directly due to projective distor-
¢ : , . : . . .

tion. However. Theorem 5 provides an easy test for their equivalence. Namely. as is
E .
also shown in the previous example, if the invariants of (7.4) have different values. the
o~ two region cannot be equivalent and the test shape is rejected.
AL If ¢". a and B alone are sufficient to characterize the set of test shapes in question
completely. the equivalence is already determined at this stage. Otherwise. we can move
- the test shape into the position of the reference shape in such a way that both have the
" same a and B. Then. the rest of the shape characteristics are compared to test for the
. equivalence. The necessary camera rotation is reconstructed as described in the previous
L. section. and the corresponding image transformation is performed ecither by actually
g . . . . .
moving the camera or by numerically computing the image transformation (2.2).
.‘-y . . . . . PN . . .
o~ We say that a region on the image plane is in the standard position. if the invariant
=
o
;‘: center of inertia center (g,.9,) coincides with the ongin of the 1mage plane and the
ki invariant principal axes coincide with the r- and y-axes. Any region on the image plane
[~
~
-l
L)
ot -23-
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can be moved into the standard position by camera rotation R such that (i) B is diago-

- nalized in the form

‘
2,
e,
| S

0'1 0 0
RTBR=1|0 o, 0} .
0 0 03

B
1, 0y
. o
PR

’

k)

b
P

2

g

Y Sk

4

where o3 is the largest principal value and (i) if

h3
= x K.

o
ll:_:‘

4
(3 3

"w
Y then a4>0.
LY

ol Evidently. shape recognition becomes easier if the test shapes are always moved

into the standard position (either by actually rotating the camera or by computation).

- However, this technique is not restricted to shape recognition. [f a camera is tracking a
- moving object while the camera position is fixed, or if a camera attached to a robot or
e an autonomous vehicle is aiming at a fixed object in the stationary scene, the technique
) '.n.
-_‘- . . . . . .
J' described above can be used so that the object in question i1s always seen in the standard
'i\ o
AN position,
Al
Y
'.",:\
[ .~ . . . . . .
I On the other hand. testing the equivalence is also viewed as detecting active
AN

motion. When an object image moves on the image plane, we call the motion passive if
that motion is induced by camera rotation alone and active otherwise When the camera

ortentation i1s changed, object immages move on the image plane, but those objects may

also huve moved 1o the scene independently of the camera. According to the procedure

- deseribed abave, we can detect active motion even if the angle and orientation of camera

rotation is not known. If the corresponding two object images are not equivalent. the

3
-"{

object must have moved actively. If they are equivalent, the object has not moved in

21
N
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the scene, although motion is obseied on the image plane. In the previous example, if
three regions Sy, S|, S, are images of the same object, we can conclude that an active
motion took place between Sy (or S;) and S, while no such motion took place between

Sgand S,

Another possible application is camera orientation registration. Even if the camera
is rotated by an unknown angle around an unknown axis, the camera orientation can be
determined as long as one particular region corresponding to a stationary object is
identified on the image plane before and after the camera rotation. Thus, the principle

we have described has a wide range of applications to many problems.
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APPENDIX A RECIPROCITY AND CONJUGACY
Consider a line [ on the image plane which does not pass through the origin. Let
rcosf+ysinf=d (A1)

(d >0) be its equation. We say that point
P(- f; cosO,—%sinO) (A.2)

[¢

is reciprocal to line [ with respect to the origin. Conversely, line [ is said to be recipro-
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cal to point P with respect to the origin. In other words, if we draw a line through the
origin and perpendicular to line /, and if d is the distance between the origin and line /,
the reciprocal point P is located on the other side of the perpendicular line and at dis-
tance f>/d from the origin (Fig Al). If d=0, point P is interpreted as located at
infinity (at (cosf,sinf,0) in homogeneous coordinates), and similarly the line at infinity is

regarded as the reciprocal line of the origin O.

Consider a line ! and a point P on it on the image plane. Let H be the foot of the
perpendicular line drawn from the origin to line {, and let d be the distance between
point P and point H. Consider a point @ on the other side of line [ at distance f*/d
from point H (Fig. A2). We say that point @ is conjugate to point P on line / and con-
versely point P is conjugate to point @ on line /. If d=0, @ is regarded as located at
infinity.

As stated in Theorem 3, a 3D vector is represented as a point or as a line on the
image plane. By definition. the point and the line are easily shown to be mutually

reciprocal. Hence, if one is known, the other is obtained immediately.

As stated in Theorem 4, a 3D symmetric tensor is represented by three scalars, a
point and a line through it. Let e, €, e3; be the unit vectors of the principal axes
(determined up to sign). Let P,, P, P3 be the points corresponding to them, and let /,
be the line connecting points P, and Pj, [, the line connecting points P3 and Py, and [,
the line connecting points P, and P, (Fig. A3). Then, it is easy to see that point P, and
line {, are mutually reciprocal, and so are point P, and line /,, and point P and line {3
It is also seen that points P, and Pj, points P, P,, and points P, and P, are conjugate
on lines {;, I, and /3, respectively. Hence, if point P3 and line I, are given. line {3 and

point P, are obtained as their reciprocals. Point P, is given as the intersection between
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Fo-. lines /; and /3, and line /5 is given as the line connecting points P3 and P,. Thus, a
MY point and a line passing through it are sufficient to represent on the image plane the

o) orientations of the three principal axes of a 3D symmetric tensor.

* APPENDIX B FUNCTION BASIS OF IRREDUCIBLE REPRESENTATIONS

»
T T}

From eqns (4.10), the Casimir operator becomes

1
l',‘."A‘ }. ,

(2 g 2 2 20

G so that eqn (4.14) becomes

2+1 2 2 971 2
2 U+ +’7)F,,+%ny+(f +”7)Fyy]

B +(f+x+M127+y—2)-)1~“,+(f+x+M)Fy+l(l+1)F=0. (B.2)

b Since representations of half-integer weights are not interesting because the same
image must be obtained after a rotation of 2x (the sign is reversed after a rotation of 27

- if the weight is a half-integer), we consider only irreducible representations of integer

) reights.
3 weights
b S For [ =0 (/(/+1)=0), one solution (2/+1=1) is easily found:

< Fol(z,y)=1. (B.3)

-

Obviously, this is invariant with respect to rotation:

AR

D IFOIIO, D-_:FOIZO‘ D3Fnl:0, (84)

IXAAPIE

A

and hence

Xl ‘

S AL LSS

W
s &

AP
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. For =1 ({(/+1)=2), the following three solutions (2! +1=3) are found:
2% ;

*-3 F oy ) Ee Py e F ¥y m el
Y 1 Y ) D D 1y R} D 5’ 1 (T'y) ) Bl 5
E)i oy +f* ViIs+y=+f° Vi +y+f°

Application of the infinitesimal generators D,, D,, D3 yields

o) I R
10 ' F.l: Fl: Fl: Fli
N Dy{F|=-A | Fr |, D.{ Fr A | Fio
. F13 F'l3 F13 F13
e g
A F [ F)!

) D, Fl2 =-A3 F12

N where

Y

o

Y 1 -1
N A 1= -1 , A2: , A3—- 1 y
Y 1 -1

S

A

-f‘.g . .

N and the commutator relations are satisfied:

o
P ApAgj=A;  [AsAg=A, [A3A]=A,
: 2 Consequently, for infinitesimal rotations, we have

A
"
.. ! Fll Fll

:E::: TR Fl?' =1+(01A 1+Q2A 2+Q3A 3) Flll *O(Q)
:‘:.' F13 F13

=
i ] This implies that F !, F,® are transformed as

.
,: 5 Fll Fll

() F|3 F13
3y

o

: - 28 -
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(B.9)

(B.10)

(B.11)




EhAS For { =2 (I(l~1)=56). the following five solutions (2/ ~1=5) are found:
F-zl(Iv!/)=Mv Fz':(l’- )=Lly,l_£—
. 3(r7=y "+ f7) Hrwy=~f7)

. . I .
SN an(zvy)=.,—{/,ny F-f(l’-y):q—IQﬁv F-zs(l’-y):—.,—fi—.,-
S ToHyT+HfT Ty +fT oy +f-

. Application of the infinitesimal generators D, D, D yields

22 el [e1l [e1l (o1l [e1l e

F.

[

0w
[T 2]
[
oty
-
o o
S e
[

S /)

>
ool el 3G

e W

I

P
ij‘?‘:jht’ﬁ

L e W

2
s e

D e W

o

w
IR

[V I

m M

t
M4 where

»
o > |
1o

1 2 -1 1
L] and the commutator relations are satisfied:
Q'L [AI,A 2]=A 3 [A Q,A 3]=Al' [A 3,A l]=A 2.

NN Consequently, for infinitesimal rotations, we have

‘_.' TR Fns =1¢(01A1+Q:A2+Q3A3) 17-)3 +0(Q)

.
S
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(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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functions F,!, F.°, F,® F,', F,° are transformed as

" Fy Fra Fug Fio Fra Fig
'\ Tp| Foy Fao Fog| =R | Fy Fan Fyy | RT (B.18)
5' Fg Fgy Fa F3 Fg Fg
'l
Solutions for {=3,4, - - - are constructed similarly. In fact, functions F,l‘ F,Q ,,,,,
Vg
K- 0 : .
5 F,"*l are just the /-th spherical harmonics projected onto the image zy-plane.
e
N APPENDIX C FEATURE BASIS OF IRREDUCIBLE REPRESENTATIONS
o
..-.-: From eqns (5.6), the Casimir operator becomes
e
L H — f+12+y2)(f+3:2)62_1_2xy d? y*, &° 3 5}
=- Radi — +(f++=)—=—=5+8r—+By—] (C.1
R U= P ™7 aeay V5 e ey (O
259
“{‘:' —6— 12(I~+y~) (C 1)
N /A '
- so that eqn (5.10) becomes
-: 2 2 2 ) a
! e (f+x—;y—){(f+17)7nn —+—l;:lmzy +(f+y7)mw +8rm, +8ym, |

-,
Y

’ +{1(1+1)+6+ﬁ1f"f_j_1")]m —o. (C.2)

PR e
“5%%

)
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For {=0 ([({+1)=0), the following solution (2/+1=1) is found:

mo'(z.y)=

s

(I‘.I_+_y2+f‘.3)3

A &
T

Application of the infinitesimal generators D{, D3, D3 yields

o+
\'l\'4 9

e D{m,'=o0, D 3my'=o0, D;my'=0, (C4)

N and consequently mg' is invariant for Tj:
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1 1

m, my
T | m? | =HQA{+Q:A45+Q343) | m 2 | +0(Q).
3 3
m, my

This implies that m,!, m,* are transformed as

mll mll

2 o

Tl m?| =RT | m}?
my3 m,3

Features J;, i=1,2,3, of eqns (5.13) are obtained by

Ji _—_.f m li(x»y)F(Ivy)dxdy
From eqn (C.12), they are transformed as a 3D vector.
For [=2 (I(1+1)=6), we can find the following five solutions (2/+1=5):

‘22:2—3/2—]' 2 _12+2y2—f 2

mol(z,y)= ——, 7"22(%3/):_7_.,'7'
V(e Ty + ) V(2 +y*+ %P
m oz, )= s, "’24(“’1/):—\/.,—&/0——75'
V(zi+yi+3) (z7+y"+f7)
m‘ls(xry):: fx

Application of the infinitesimal generators D, Do, D4 yields

mgl m21 m-zl nlgl 77121 "lgl
2 2 2 2 2 2
mao mao m 2- no ma m-z-
Dilm2|=-A|ml|, DI mS>|l=-A3m>|, Dim3|=-Am.2]|,
1 1 2 2 2 2 3 2 3 2
m 24 m 24 m 24 m 24 m 24 m 24
my’ |mo’ my ms’ my’ mad
- - - L o L P - P L o
where
.32.
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(l

0”

l' 0‘. .q‘ I‘| l'g l.hl‘| 'I‘ N

Tipmol=mg!. (C.5)
Feature J of eqn (5.11) is obtained by
J=fmol(z,y)17(x,y)d:rdy. (C.6)
From eqn (C.5), this is a scalar.
For =1 ({({+1)=2), the following three solutions (2{+1=3) are found:
1 _. z 2 y
mi(2y)=———ms My )=
(z7+y"+f7) (z7+y™+/7)
3 f
mA(z,y)=———s (C.7)
(z5+y"+f7)
Application of the infinitesimal generators D, D3, D3 yields
- - - -
my' my! my! my!
Dy 7"12 =-Aj ’"12 , D3y m®l =-A] ’"1"3 )
m m,3 m 3 m >
. —d h— =
my! my!
D; m 12 =—A§ m12 (C8)
m13 ”‘13
where
1 -1
Al= -1, A= , Az=1]1 , (C.9)
1 -1
and the commutator relations are satisfied
ATASI=AL. ALAGI=AL (A{A[l=AL (C.10)

Consequently, for infinitesimal rotations, we have

-31-

Sl """"" e -»."' oo -C"'!'«- '-"' '-f “"- L """-J- " -:0\‘,';"-""-"-:“: :-‘ !

, By

-."' L) *‘.:'Il"nhl " , .t !:.'\. I‘B'l bl‘



to

L)

e A= -1 |, A= 1], Ai=|[1 -1 . (C.18)
. 1 -2 -1 -1

1 2 -1 1

W and the commutator relations are satisfied:
Lo [A],AJ]=A3, [A3,A;]=A{, [A; A{]=A] (C.17)

Consequently, for infinitesimal rotations, we have

Tr|mB =LA +QA3 +Q3A5) [ mo
.y|0‘| ma mo

t} mo mo

+0(Q). (C.18)

~y
-
-
[Z
o W

5% This implies that if we put

o 1 2 1, 2
It ] my=ms,-, Maa=my~, Maz=——My —My~

y

(C.19)

- mg=moy=m,’, M gg=mga=my’, Mg =mg=m,’,

A . . 1 2 3 4 5

et functions m, . my", my°, my", ms” are transformed as

& myp My M3 myp Mya M3

o Ti| ma ma mog| =RT | may may moy | R (C.20)
Lo, M3 Mgy Mgz M3y M3y M3z

Features J;;, i.j=12.3, of eqns (6.7) are obtained by

Jy = (my(2.0)+ 5 mo!(2.4)65)F (2,9 )dzdy, (C.21)

where §;; is the Kronecker delta. From eqns (C.5) and (C.20), they are transformed as a

3D tensor.

;.;.,w RREAF . )
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LA A
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Solutions for {=3,4, - - - are constructed similarly. In fact, we can check, by sub-

stitution, that the solution is given by

F[i(I,y)

mli(I»y)=m,

i=12, . ... 20+l (C.22)

APPENDIX D INVARIANT MEASURE
We say that p(z,y)dzdy is an invariant measure if for any image F(z.y)
J TrF(z.y)o(z,y)dedy= [ F(z,y)p(z.y)dzdy. (D.1)
In view of eqns (5.1) and (5.3), this is equivalent to
Tro(z,y)=p(zy). (D.2)

Hence, p is given by the solution of eqn (5.10) with {=0. From eqn (C.3) of Appendix

C, we obtain

1

A= ey (D3

This result can be interpreted intuitively in terms of fluid dynamics. Suppose the
camera is rotating with rotation velocity (w;,ws,ws3), namely rotating around an axis of
orientation (w;,wo,ws) with angular velocity \/w,"+ws"+w;~ (rad/sec) screwwise. (Here,
«|, wa, wy are also interpreted as instantaneous angular velocities around the z-, the y-,
the z-axis, respectively.) The optical flow induced on the image plane is obtained by

dividing both sides of eqns (4.7) by é¢:
1 1 o
u=—fu.'2+w3y-.~7(—w21 +uwy)r,  v=fwj-wsr +7(—w.31f +wiy )y (D.4)

If this flow is regarded as a fluid flow with density p(r.,y), the necessary and sufficient

condition that the fluid is neither created or annihilated in the course of flowing is, as is
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well known, given by the equation of continuity

Apu) _dlpv) -
——t =0.
57 By (D.5)
If eqns (D.4) are substituted, eqn (D.3) becomes

(WD {+wsD 5 +w3D 3)p=0. (D.6)

This equation must be satisfied for arbitrary w,, wa, ws. Hence, the invariant measure

p(z,y) is given as a solution of the differential equations

D{ p=0, D3 p=0, D3 p=0. (D.7)
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FIGURES

Fig.

Fig.

1

A2

A3

The XYZ-coordinate system is fixed to the camera, the origin O being the
camera focus. The image plane is taken to be Z=f. where [ is the camera
focal length. A point (X Y,Z) in the scene is projected onto point (r.y) on

the image plane.

(a) Three regions S, S,. S, to be tested for equivalence. (b) Computed
invariant centers of gravity Gy, G, G, of regions S, 5, Sa. (c¢) Computed
invariant principal axes of regions Sy, S, Sa.

Line I: rcosf~—ysinf=d and point P(-(f*/d)cosf.~(f* d)sinf) are mutually
reciprocal with respect to the origin O.

Points P, @ on line [ are mutually conjugate with respect to the foot H of

the perpendicular line drawn from the origin O to line /.

Point P and line /|, point P, and line /5, point P and line {3 are mutually
reciprocal, and points P, and P; on line [, points P3; and P on line [,

points I’y and P, on line {; are mutually conjugate.
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invariants and camera rotation reconstruction are also discussed. The resulf
is applied to the shape recognition problem when camera rotation is involve(
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