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ABSTRACT

The 3D shape of a textured surface is recovered from its projected image on the as-
sumption that the texture is homogeneously distributed. First, the homogeneity of a
discrete texture consisting of dots and line segments is defined in terms of the theory of
distributions. Next, distortion of the observed texture density due to perspective projec-
tion is described in terms of the first fundamental form, which is expressed with respect
to the image coordinate system. Based on this resuit, the basic equations to determine
the surface shape are derived for both planar and curved surfaces, and numerical
schemes are proposed to solve them. Necessary data are obtained in the form of summa-
tion or integration of functions over the texture elements on the image plane. Ambiguity
in the interpretation of curved surfaces is also analyzed. Finally, numerical examples for
synthetic data are presented, and our method is compared with other existing methods.
It is shown that all other methods can be explained in terms of our formulation.
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1. INTRODUCTION

The recovery of the 3D shape of a surface from its projected image is one of the
. most important challenges in computer vision. The computation is based on various
A clues such as texture, shading and motion. 3D recovery from texture is possible if we
have some knowledge about the true texture. If the projected texture has different pro-
perties from those of the true texture, the 3D shape is recovered from the difference

el 3" )

¢

&

LI
s

. N between the observed properties and the original properties that we know. For example,
- if the true texture is known to be an array of texture elements of a known shape, the
. ‘ surface shape can be inferred from the observed distortion of the texture elements.
5 If we do not know the true texture but know its statistical properties, we can draw
P an inference from the difference between the observed statistical properties and the true
N properties. Assumptions often adopted are homogeneity and isotropy of the true texture.
K The assumption of isotropy asserts that the texture consists of line segments with no
preferred orientations. A clue for 3D recovery is obtained if the observed texture seg-
L ments have a preferred orientation. This approach was first investigated by Witkin [1],
'{ﬁ and the algorithm was improved by Davis, et al. [2]. Kanatani [3] gave a rigorous
-'.:'_' mathematical description of the problem and explicit formulae to solve the problem by
:-‘ means of tensor calculus and the principle of stereology.
- The assumption of homogeneity, on the other hand, asserts that the texture is uni-
. formly distributed over the surface. When projected, the texture becomes dense on the
‘::» image of the surface part away from the observer and sparse on the part near the
£ observer. This clue has been considered long since by people like Gibson [4, 5|, Bajcsy
4 and Lieberman [6] and Stevens (7], but their argument was based on naive intuition. It
Y was not until Aloimonos and Swain (8] and Dunn [9] that the problem was treated in
analytical terms based on the geometry of perspective projection. However, their formu-
~ lations involve many unnecessary ad hoc approximations and assumptions. In this
o paper, we show a mathematically rigorous treatment based on differential geometry and
:' the theory of distributions, taking the “discreteness’ of texture correctly into account.
- We first give a precise definition of homogeneity of a texture. If a texture consists
: , of dots or line segments, the texture density is a singular function taking the value
e infinity at the texture dots and line segments and O elsewhere. How can we say that the
: density 1s uniform? How can we tell that a given texture is homogeneous? We will give
- an exact definition of homogeneity of a discrete texture.
;.: We next give an exact analysis of the distortion of texture due to perspective pro-
>, jection in terms of the first fundamental form expressed with respect to the image coordi-
s nate system. Our formulation consists of two stages. First, we present the basic equa-
::. tions to determine the surface shape for both planar and curved surfaces in their ezact
K- forms. Although they are difficult to solve directly, we can infer various theoretical
:;-. consequences, among which is the ambiguity in the interpretation of curved surfaces.
N We list all possibilities comnpletely.
Then, we propose various numerical schemes to solve these equations, employing
= first order approximation, simulation of camera rotation and Newton-Raphson type
:::: iterations, and give numerical examples for synthetic images. Good results are obtained
o even for a very sparse texture, and the estimation approaches the true value as the tex- 1
¥ ture density increases. '
. Lastly, our formulation is compared with those of Aloimonos and Swain [8] and 7
_\ Dunn[9]. Our formulation is general enought to explain their methods in our terms. ' 1
Y
~
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: 3 Various aspects related to -.pplications and implementations of our method are also dis-
i cussed.
J‘
fs 2. TEXTURE DENSITY AND HOMOGENEITY
O . . . . . .
eee We consider, in this section, how to define the density of a discrete texture. Con-
2 sider textures composed of dots or line segments. If we are to seek a function f{z,y)
':1 describing the amount of texture divided by the area occupied, we are forced to consider
d'-: delta-function-like singularities, the value of fz,y) being infinity at the texture elements
e and O elsewhere, since the area of a dot or a line segment is 0. This kind of singularities
o make analytical treatment very difficult. One way to avoid singularities is to regard the
texture density as a functional.
e DIRAC DELTA FUNCTION
S,
"\.ﬁ Let us recall the definition of the (Dirac) delta function §(z). To be precise, it is not
w“:g a function; if a function takes the value zero except at one point, its integral must be 0,
P since one point is of Lebesgue measure 0. Instead, consider a linear functional T map-
oY ) . : . . .
) ping a smooth (say C®) test function m(z) having a finite support (i.e., the domain where
v it takes non-zero values) to the value m(0), i.e. T[m(z)]=m(0). This functional is a well
,‘:J_'.f defined entity. Now, let us agree to adopt a new notation to express the functional;
-:f.-'_: write f 8(z)( . )dz, instead of T|.]. As a result, the above definition is rewritten as
N f&(z)m(z)dz=m(0). Thus, the delta function is nothing but a notation for a special func-
W tional. In fact, we do not use the delta function by itself. It is useful in engineering
e problems only when it is multiplied by some function and integrated. Hence, it suffices
[~ to define only the rule of integration, we need not worry about its singularity. This is
-i;:r}j the view developed in detail by Schwartz in his theory of distributions [10, 11].
3 }_.:.'
ke TEXTURE DENSITY AS A FUNCTIONAL
ae We fix a window W on the textured image and define the texture density flz,y) of a
. dot texture over the window W as follows:
)
o
,: i': Definition 2.1 (Dot Density). The texture density fz,y) of a dot texture over the win-
) s dow W is a linear functional over a set M, yet to be specified, of test funciions m(z,y)
K- defined formally by
s J Az 9m(z.y)dzdy= ¥ m(z,y), (2.1)
s Pew
WA
‘\E:: where P{z;y;) are the dot texture elements on the image plane.
- nl
N
L ™ Since the texture density is defined as a functional, we need not worry about the
S singularities of f{z,y). We can just imagine that fz,y) takes the value infinity at texture
" elements and 0 elsewhere. All we need is the rule of integration. The texture density of
-':':’_ a line segment texture is similarly defined as follows:
pexs
A Definition 2.2 (Line Segment Density). The texture density fz,y) of a line segment tex-
e ture in the window W is a linear functional over a set M, yet to be specified, of test
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. functions m(z,y) defined formally by

[z vm(zy)dzdy= T [, m(zy)Vde*+dy, (2.2)
Lcwh

where L; are the line segments on the image plane, and the right-hand side is the sum of
line integrals along each line segment.

Here again, we can imagine that flz,y) takes the value infinity along texture line
segments and O elsewhere.

HOMOGENEITY

Now, we are in a position to define homogeneity of the texture density. Let flz,y)
be the texture density defined above. We would like to say that the texture is homo-
geneous if flz,y)==c, but again, due to singularities, this must be interpreted in the weak
sense or in the sense of a distribution. Namely, let us agree that what we mean by this
is as follows:

Definition 2.3 (Homogeneity). A texture density f{z,y) is homogeneous if
fwf(z y)m(z,y dzdgf*cf m(z,y)dzdy, (2.3)

for test functions m(z,y) of the set M, yet to be specified, where ¢ is a constant indepen-
dent of the test functions m(z,y).

The constant ¢ can be interpreted as the tezture density in an intuitive sense, i.e.,
the “number of dots per unit area’ or the ‘“length of line segments per unit area”. If we
use the definitions of eqns (2.1) and (2.2), our definition is restated as follows.

Lemma 2.1. If the texture density is homogeneous, we have the following approxima-
tion to integration:

- E (z:%) for dot textures
f ¢ PeW (2 4)
m(z,y) dzdy= ] .
w Z f (z,9)V dr?+dy? for line segment textures
<L L

Eqn (2.4) can be viewed as the Monte Carlo simulation of integration of a test func-
tion m(z,y), where 1/c is the ‘‘area per dot’’ or the ‘“‘area per unit length line segment”.
The interpretation is that the texture is so homogeneous that the Monte Carlo simula-
tion of integration with respect to the texture elements yields a good approximation.

Remark 2.1. If we choose as a test function m(z,y) the characteristic function
1 (z,y)eS
= 2.5
Xﬂ("y)'{o otherwise (25)

of a region S, eqn (2.4) states that the number of dots or the length of line segments in
the region S is approximately proportional to the area of the region S and that the
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cors*ant ¢ 1s the number or the length of texture elements in the region S divided by its
are. This 1s the interpretation which most people informally tt'nk of as the definition
»f homogeneity (¢f. the method of Aloimonos and Swain (8] recapitulated in Section 9).

Remark 2.2 We must mention here that the definition of homogeneity defined above
depends on the choice of the set M of test functions m(z,y). Even if the texture is not
very dense. it can be homogeneous for very smooth test functions m(zy) (i.e., viewed
macroscopically). However, it may not be homogeneous for rapidly varying test func-
tions m{z.y) (i.e., viewed microscopically). Figuratively speaking, we are looking at the
singular texture density fz,y) through filters m(z,y), and the homogeneity is affected by
the “coarseness” of the filter through which we are looking. If, for example, we take
M={expim(kz/ a+ly/b)}, assuming that thc window W is a rectangle of size 2aX2b, and
set a certain threshold for the approximation of eqn (2.3), we can define the degree of
homogeneity by those (k,l) satisfying the approximation. However, we do not go into the
details, since what we have described so far is sufficient for the discussion to follow.

CHANGE OF VARIABLES

Since the integration over the texture is defined as a functional by eqns (2.1) and
(2.2), we must be careful when we change the variables of integration. The rule for the
usual integration does not apply here. Consider two smooth functions u(z,y), »(z,y) such
that the correspondence between (z,y) and (u,v) is one-to-one, and let #{u,v), ¥(u,v) be the
inverse. Suppose we use (u,v) as new coordinates. Let W be the domain on the uv-plane
corresponding to the window W on the zyplane. Define the transformed texture density
f(u,v) also as a functional by

f- f u,v)rh(u,v)dudv=fw‘(x,y)m(z,y)dzdy, (2.6)

where function m(u,v) is defined by m(u,v)=m(z(v,v), u,v)). Now, consider how the new
density flu,v) acts, as a functional, on a given test function m(u,v).

First, consider a dot texture. Let points P{u;v,) on the ur-plane be the images of
points P; on the zy-plane. Then,

fwl(z y m(I y)dzdy— 2 m(:t,,y, 2 (I(ui:vi)ty(uivvi)) 2 m(uvv) (2.7)
Pew PeW

This relation defines the action of density fu,v), as a functional, on the test function
m(u,v).

Next, consider a line segment texture. Let L; be the line segments on the uwr-plane
corresponding to the line segments L; on the zy-plane. Then,

fwl(x,y)m(z,y)dzdy——-LEWIL m(z,y)V dz*+dy*
W !

Z fm(r(u o) W, )V (2,54 4,7 du*+-2( 2z, yu3) dudv+(z,” +y,”) do”

= 5 [ i(uy) v (2u2+?ur)ﬁz+2(zuﬁyuyu)ﬁb+(Iu2+yu?)02 JIEIE (28)
oW b Vitsd

Here, z,=32(u,v)/du, etc., and u=du(t)/dt, v=du(t)/dt, where (u(t),{(¢)) is an arbitrary
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parameterization of individual line segments. Eqn (2.8) defines the action of density
fu,v), as a functional, on the test function m(u,v). Hence, we conclude as follows.

Proposition 2.1 (Density Transformation). The transformed texture density ](u,v) is
formally given by

Aa(u,v),(u,v)) for dot textures
T, Aol e S ot
~ T,y u 2z 2+ uv+(z, 4y, )v
j(u,v) j(z(u’v)'xu’v)) \/( u yu) ( Uiv y.uyu) ( v yu) ’ (29)
u+v
for line segment textures

where its action as a functional is defined by eqns (2.7) and (2.8).

Remark 2.3. For the usual integration of a continuous density, we would have

T, 2,
fuj(z,y)m(z,y)dxdy———fwf(z(u,v),y(u,v))m(::(u,v),y(u,v)) Yo Yo dudv, (2.10)
so that we would obtain
fw,v)=A2(u,v), W u,v)) y: y: : (2.11)

In sum, a continuous density is multiplied by the Jacobian, which is the magnification
ratio of ‘‘area”, whereas a line segment density is multiplied by the elongation ratio of
“length”, which depends on the orientation of individual line segments, and a dot den-
sity is multiplied by the increase ratio of “number”, which is always unity, since the
number of dots is preserved by a continuous mapping.

3. FIRST FUNDAMENTAL FORM

In this section, we describe the 3D shape of a surface in the scene in terms of the
image coordinates obtained through perspective projection.

PERSPECTIVE PROJECTION

Let us fix a Cartesian zyz-coordinate system in the scene. Let the zaxis be the opt-
ical axis of the camera, and (0,0,-f), the point on the zaxis at distance f from the zy
plar, be the focal point. We adopt the camera model that a point in the scene is pro-
jected to the intersection of the zyplane with the ray connecting the point and the focal
point (Fig. 1). Thus, the zy-plane plays the role of the image plane and fis the focal
length. Tt is easily seen from Fig. 1 that the correspondence between the point (X,Y,2)
in the scene and the projected point (z,y) on the image plane is given by

X 1Y

SURFACE DIFFERENTIALS

Consider a smooth surface in the scene whose equation is Z=Z(X,Y). This equation
coupled with eqns (3.1) determines a one-to-one correspondence between the points in
the scene and the points on the image plane in the form of X=X{z,y), Y=Y{z.y). We
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first study how the space coordinates X, Y, Z change on the surface by considering the
relationship among differentials dX, dY, dZ taken along the su-face. Taking the
differentials of both sides of eqns (3.1), we obtain

JdX-zdZ=(f+2)dz, fdi~ydZ=(f+2)dy. (3.2)
Taking the differentials of both sides of Z=2(X,Y), we obtain
dZ=PdX+QdY ( P=02/0X, Q=0942/9Y). (3.3)

Eqns (3.2) and (3.3) can be viewed as a set of simultaneous linear equations in dX,
dY, dZ. The solution is obtained in the form

[z
TPy (f~Qy)dz+Qzdy],

2 Pz
AY = p gy (Pvez+ (P )dy, (3.4)

J~-Pz-Qy
Here, all the quantities on the right-hand sides are viewed as functions of the image
coordinates z, y through

Z=AXz9) Vzy), P=22(Xz) Vo) @=2L(X@y)Yay)  (35)

FIRST FUNDAMENTAL FORM

Consider two points (z,y), (z+dz,y+dy) infinitesimally far apart on the image plane.
Let ds be the 8D distance between the corresponding points on the surface. Since
ds*=dX *+dY *+dZ ?, substitution of eqns (3.4) yields

dX=

[Pdz+ Qdy].

Proposition 3.1 (First Fundamental Form).
2 S
ds’= Y g;dz'dd, (3.7)
ij=1
where z!=2z, =y and

2 e 1+ Z/0° 2\ _or 2. A2 2
9n(z,9) (1{(PrQy)/ 1) (1+ P22 72y/ [+ PP+ @)/ %),

Z/N? . ,
Nl zy)= (1_((;; gz/) e [PQ+(Qz+Py)/f~(P*+ @) zy/ [ )=gu(2.), (38)

)= a+z/0? 2\ op; 2, 2,212
922(7,y) (Pt QU I [(1+Q%)-2Pz/f+(P*+Q")z/f 7).

Eqn (3.7) is called the first fundamental form and g=(g;;) is called the first funda-
mental metric tensor. The first fundamental form of eqn /3.7) indeed plays a fundamen-
tal 1 . in computing 3D quantities in terms of the image coordinates. For example, con-
sider an arbitrary smooth curve L on the image plane. The true arc length of the
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corresponding curve on the surface is given by integration des=fL\/Zw-'=‘g,-jda:'dr’ on
the image plane.

Consider an infinitesimally small square on the image plane defined by four points
(z.y), (z+dzy), (z,y+dy), (z+dz,y+dy). The area of this square on the image plane is
dzdy, but it is easy to show that the true area of the corresponding region of the surface
is given by Vdet(g)dzdy. From eqns (3.8), we obtain

e V14 P Q1+ 2/
= o0 (39)

Hence, the true area of the region of the surface corresponding to a region S of the image
plane is given by integration fs\/det(g)da:dy on the image plane.

The first fundamental form makes it possible to express various other 3D geometri-
cal properties such as angle, Levi-Civita parallelism, geodesics and surface gradient in
terms of the image coordinates (Appendix A).

PLANAR SURFACES

If the surface is a plane given by equation Z=pX+qY+r, where p, ¢, r are con-
stants, eqns (3.1) can be solved for X, Y in the form

o )z y— )y g Aprtay+r) (3.10)
F-prqy Fpz-qy Jpz-qy '
Since 1+2/f=(1+r//)/(1-(pz+qy)//), eqns (3.8) and eqn (3.9) become as follows:

yu(z,y)=¢t—'LjL4[1+p2—24y/f+(p2+q2)f/f 3,
(1~{pz+qy)/N

912z, )=——Qﬂm—2—[.vq+(qx+py)/f—(p2+q2)zy/f =gai(z.y), (3.11)

(1~(pz+qy)//*

1+r//)?

(1~(pz+qw)/N*
VA Vit +@(1+r/)?

“ho)= (1-(pz+qy)//)?

goo(z,9)= (1+¢°-2pz/f+(p*+¢%) /1 7,

(3.12)

4. RECOVERY OF PLANAR SURFACE ORIENTATION FROM TEXTURE

In this section, we consider a principle to compute the surface shape by observing
an inhomogeneous texture density fz,y) on the assumption that the true texture is
homogeneous. We must first study what flz,y) looks like if the true texture is homogene-
ous Since the texture density is defined as a functional, what we need to know is how
the observed density fz,y) acts on a test function m(z,y) as a functional. Then, we
derive the basic equatiors to determine the surface shape in term of observables com-
puted on the image plane.

DISTORTION OF HOMOGENEOUS TEXTURE

Consider temporarily a curvilinear coordinate system (u,v) on the surface and
assume a one-to-one correspondence u=u(z.y), v=v{r.y) and z=xu,v), y=yu,v). Let W,
be the region of the surface corresponding to the window W on the image plane. Let




St
E folu,v) be the homogeneous texture density defined on the surface, and let
N mo( 4, v)=m(x(u,v), u,v)). According to the assumption of homogeneity, we have
)
.'.V 7 fwojb(uvv)m()(ur 'U) dS()%waoﬂlo(u,U)dSo, (41)
o where dS; is the area element of the surface.
. Consider how eqn (4.1) is expressed in terms of the image coordinates z, y. Since
) the right-hand side is the usual integration and dS;=vdet(g)dzdy, it becomes
)
A
f m(z,y)Vdet(g)dzdy. (4.2)
&
’- The transformation of the left-hand side depends on whether the texture consists of dots
=~ or line segments.
" For a dot texture, the right-hand side is written, according to Proposition 2.1, as
i m(z, yi)(= [ Az.y)m(z,y)dzdy), (4.3)
" P,e
‘ which can be computed readily on the image plane.
::: For a line segment texture, the right-hand side is written, in view of Proposition 2.1
-2 and ds=+/}; 2 9;dz'd?, as
' yS fL (z,9)0(z,9)V dz°+dyf (4.4)
L Lcw
.:;'_ where
X V InZ +291239+ gaay”
o [(z,y)= — (4.5)
r+y
::,' 1s the elongation ratio of the line segment at (z,y), which depends on the orientation of
N the line segment.
[ N The difficulty is that we cannot compute this integral on the image plane unless we
know the first fundamental form, which is dependent of the surface shape. Here, we
adopt the approximation
= [(z,y)~=(vdet(q))"/* (46)
"-:'. The interpretation is that the line segments are distributed nearly isotropically, so
= that if the area is enlarged Vdet(g) times, the individual line segments become roughly
2 (Vdet(g))!/? times as long. Then, regarding m(z,y)[(z,y) as a new test function m(z,y),
S we can treat both dot textures and line segment textures in the same way. Namely, if
- we compute, as an observable, integration
-~
~° r -
::, J= fw/(xy m(z,y)dzdy (4.7)
~ of a test function m(z.y) over the window W, we obtain the relation
9
< f y)(Vdet(g))*dzdy, (4.8)
N
e where k=1 for a dot texture and x=1/2 for a line segment texture.
2 Remark 4.1. Eqn (4.8) is interpreted intuitively as follows. Consider a small region S
on the image plane, and let Sy be the corresponding region on the surface. For a dot
.-
WSS
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texture, the number of dots in S is equal to the number of dots in Sy, while the area of S
is 1/Vdet(g) times that of S;. Hence, the texture density in S is Vdet(g) times that in
S;- For a line segment texture, if the true texture is nearly isotropic, the total length of
the line segments in S is approximately 1/(v/det(g))!/* times that of S,. Since the area of
S'is 1/V/det(g) times that of Sp, the texture density in S is (V/det(g))"/* times that in .

GENERAL PRINCIPLE OF SURFACE RECOVERY

Our principle of surface recovery is as follows. Let the object surface be parameter-
ized so that the procedure reduces to parameter estimation. Then, the right-hand side
of eqn (4.8} is a known form in unknown parameters. If we appropriately provide test
functions my(z,y), my(z,y), ms(z,y), ..., we can compute the corresponding observables Jj,
Ji, Jo, ... by summation or integration on the image plane. As a result. the necessary

number of equations are obtained in the form of eqn (4.8) to determine the parameter
values.

BASIC EQUATIONS FOR PLANAR SURFACES

The simplest case is when the surface is a plane. If we replace the approximate

equality in eqn (4.8) by equality, assuming that the true texture 1s sufficiently homogene-
ous, we obtain from eqn (3.12)

5. 2 dzdy
J=d VI Py 1+ Dy [ —mizy)dzdy 4.9)
J fw(l-(p:t+qy)/ﬁ“ (
Now, provide three test functions mgy(z,y), m(z,y), mo(z,y), and let J;, 1=0,1,2, be the
corresponding observables. If we consider ratios J,/Jy, Jo/Jy dropping off the common
1+p2+q2

factor ¢f Y*(1+r/f)**, we obtain the following equations.

Proposition 4.1 (Basic Equations). The surface gradient (p.q) is determined by solving
f m{z,y)-(J;/ Jo)mo(z,y)
W (1-(pz+ay)/ >

dzdy==0, =12 (4.10)

Remark 4.2. Eqns (4.10) are the basic equations to determine (p,q) and can be solved
in principle, say by iterative search in the pg-space. Evidently, three test functions are
enough to determine the surface gradient. However, we can also employ many more test
functions and determine (p,q) by some fitting scheme (cf. the method of Dunn [9] recast
in Section 9).

SMALL GRADIENT APPROXIMATION

Suppose the surface gradient (p,q) is close to zero compared with the focal length f
of the camera, so that pzr+g¢y<<fin the window W. Since pz+qy="/is the vanishing line
or “‘horizon” of the surface (Vdet(g) of eqn (3.12) becomes oo there), our assumption is
that the image in the window W is not near the vanishing line. (If the vanishing line
hoppens to be observed on the image plane, its equation pz+qy=/ immediately tells us
the gradient (p,q).}) If pz+qy<</f the Taylor expansion around the origin yields
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b
" ~
: .'-f.
N 1 3k
A0\ =1+—(pz+qy)+ - - - (4.11)
b (1~(pz+qy)/ ™ /
"'.' If we put
.:‘_:: L= f m{ z,y)dzdy, Mi———fw:rm,(z, y)dzdy, x\/izflvymi(z,y)dzdy (412)
-:::3' for +==0,1,2 and neglect higher order terms, the basic equations (4.10) reduce to the fol-
N lowing linear equations in p, ¢
_:‘:)

& A/ Jo)My - Ni=(J1/ ) Ng (7] =L [Lrth ko] (413)
- - L\/[Q—( Jg/ Jo)i\/fo NQ—( JQ/ JO)NO L) (J)/ Jo)L ’
.'{:: A simple choice of the test functions mfz,y), =0,1,2 is

b mzy)=1,  m(zy)=z,  myzy)=y. (4.14)
il Then, J)/ 4y, Jo/Jy are nothing but the coordinates of the center of gravity of the texture
O inside the window W. If the window W is a rectangle defined by ~a<z<gq, -6<y<b,
- the solution of eqns (4.13) is written as

e p=/%/xd", =7/ k", (4.15)
o where (7.7) is the center of gravity of the texture in the window W. If (p,q)=(0.0), i.e., if

1 the surface i1s viewed orthogonally, the center of gravity of the texture coincides with the

A origin. Otherwise, the orientation and the magnitude of the “shift”” of the center of
'_::-:: gravity of the texture gives the surface gradient (p,q).
::'f.j Remark 4.3 The accuracy of the result depends on both the number or length of the
e texture elements observed in the window W and the distribution pattern of those texture
- elements. Let .V be the number or the length of the texture elements in the window W.
The rule of thumb is that the error is approximately proportional to 1/vN when the tex-
_'::-:. ture is completely random and is approximately proportional to 1//N when the texture is
::-:'; very regular and periodic (c¢f. Appendix A). Textures we often encounter in natural
G scenes and man-made objects are usually regular and periodic ‘“‘tessellations”, for which
J high accuracy is expected.
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- 5. SCHEME OF ITERATIVE CORRECTION FOR PLANAR SURFACES
v The method in the previous section is based on the assumption that the gradient
chel (p.q) 1s close to zero. There exist methods which can be applied when the gradient is not
S:.’-: small. The first method is based on the [ollowing observation.
_;'- - GENERAL PRINCIPLE
0y Suppose the camera 1s rotated by a certain angle around its focus relative to a sta-
i'.'_; tionary scene. As a result. a different image 1s seen on the image plane. However, since
. a point on the image plane actually corresponds to a “‘ray” in the 3D scene, occlusion is
;_':.. not affected by camera rotation. If the angle of camera rotation is known, the original
‘T image can be recovered as long as the effect of the image boundary is not involved. An
v important fact is that the image transformation due to camera rotation does not require
‘j-:.' any knowledge of the 3D scene.
v,
.'_‘./'
A
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Suppose the camera is rotated by an orthogonal matrix R=(r;). The rotation of
the camera by R is equivalent to the rotation of the scene by RY(=RT). By rotation
RT, a point (X, Y,2) moves to a point (X, Y,Z), where

X M 21 T3 X

f—?—fz =1 g f r [H}-,Z:\ - (5.1)
T3 Te3 Ta3

This point is projected onto (%) on the image plane, where #=/X/(f+2), 7=/Y/(f+2).
Combining this with eqns (3.1), we obtain the transformation rule

P rut+roy+ra/ _ MipZtrooytryy/

, - . 5.2
ria¥+rosy+rasf r132+roay+raaf (52)

Suppose the surface gradient is not small. We first apply the method in the previ-
ous section. Let (7,7) be the computed gradient. This estimation may not be accurate.
Now, suppose the camera is rotated in such a way that the estimated surface becomes
parallel to the image plane. As a result, the gradient of the true surface becomes small,
so that the method in the previous section can be applied again. Let (p,q) be the com-
puted gradient. If this newly estimated surface is rotated back into the original camera
orientation, the obtained gradient (p’,q') must be a better estimate. This process can
be applied repeatedly until no further improvement is obtained. This is the basic con-
cept of the iterative correction scheme by camera rotation.

We should note first that the camera need not actually be rotated. Since the image
transformation due to camera rotation is given by eqns (5.2), the transformed image
f(z,y) can be obtained by computation. However, we should also note that the
transformed image need not actually be computed. This is because all we need to do is
apply appropriate test functions m(z§) and integrate them over the image. Since the
transformation is explicitly given by eqns (5.2), the variables of integration can be
changed so that the integration can be done over the original image. In other words,
instead of integrating the test functions m(z,y) over the transformed image fz,§), we can
equivalently integrate the transformed test functions m(z,y) over the original image
fiz,y). Consequently, our iterative correction scheme is performed by iteratively modify-
ing the test functions, not the image.

CAMERA ROTATION SIMULATION

Let (P,7) be the initial estimate of the gradient. In terms of the surface unit normal
vector n=(n,,ny,n,), this means

ny=- n

2 q 1
hay——————————— Q=" =1 n3 . D (53)
V1452472 V1472452 V145 2472

This vector makes angle
Q=cos!n, (5.4)

with the unit vector k=(0,0,1) along the z-axis. The unit vector normal to both n and &
is given by

= kxn___ (3-P0) (5.5)
lnxHl 75272
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!‘bt' L
‘
o
.-‘,'g If the camera is rotated around the vector { by angle Q screwwise, the estimated
K surface becomes parallel to the image plane. The corresponding rotation matrix is given
- by .
058 ™ Tz M
'\.\—:
\‘}3 R=1} ryy re m}, (5.6)
o Ty g
K ol
where
E 2,7 2 =2 =2
P “na+7 Pq(n3-1) g ny+p
< . m=——— ne=—5——5 rog=——ms—3 (5.7)
3 P +7 p+7 P47
L ' Hence, the image transformation is given by
N ruz+rigy-mf - riaZ+ roay-nof
z’ = ___-—’ IY - ————’ 5~8
A A=y) f"ﬂ‘*‘"z!/‘*‘":sf uz.y) f"11+"2y+"af (58)
‘-.‘
-‘:.\ and its Jacobian is
S
: N zZ; I ny Az, y)+noy(z, y)~
Vet Tzy=. _|=f 1357, y)+noy( y)q"af' (5.9)
; Yz Yy (nyz+noy+mf)°
¥
)-\-.‘
o The transformation of eqns (5.8) maps the origin (0,0) into point (fp.f). If the ori-
XS ginal image 1s restricted to a window W around the origin, the transformed image is also
z:.:- restricted to the corresponding domain W around point (/5,f7). Let (p,g) be the true gra-
dient of the transformed surface. The Taylor expansion around point (f5,/g) ylelds
w4 1 1 ( ~ ~
e = 1+A(z-p)+By-fo)+ - - - ), (5.10)
S pope—— = e\ :
e (-(p+ai)/ N (1-pp-T9)*
2]
ey where
e 3xp 3K§
o . 3xp B ___3k§ (
= _—— 5.11)
- f1-7p-79) A1-pp-79)
"W
A If eqns (5.10) are substituted, the basic equations (4.10) become
e oL
= el SO g TR o
X My~(Jo/ Jo) My No=(Jo/ Jo)No | LB. Lo~(Jo/ Jo)Lo|’
- where
J= [, m{. 9N, §)dzdy, (5.13)
Y
- L=[,mi{z.dedy, M=[(:-fp)mzg)dzdy. N=[ (3-)m(z,jdzdy,  (514)
. and f{z.7) is the transformed texture density.

Once A, B are determined by solving eqn (5.12), the gradient (p,q) are determined
by solving eqns (5.11), which are rewritten as

o
A"

4 :"J
A

= 1}
<\ ﬁ—\""-._n .
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Ap+3k AT <
ot A1 a4 (5.15)
By Bg+3s/f| | §| LB

If the computed gradient (pt,g) is sufficiently close to zero, the initial estimate is
correct. Otherwise, the camera is rotated back into the original orientation, and the sur-

face gradient is transformed into
TP triegm = r1oP+7200-"o
nyp+ngd+ng nyp+nygtng
These values are better approximations to the surface gradient. This process can be
iterated by setting f+p ', §+—q ' and repeating the previous procedure until convergence.

COMPUTATION ON THE ORIGINAL IMAGE

Consider how to compute eqns (5.13) and (5.14) without actually transforming the
image. For a dot texture, we see, from Proposition 2.1, that if we put

(5.16)

rh,(:r,y)Em,(i(z,y),g(z,y)), l'=0,l,‘2, (5.17)
we obtaln
J= m{z; yi)'
' p?w (5.18)

Thus, computation can be done on the original image.

For a line segment texture, we also see, from Proposition 2.1, that

j,.=L§w fL'r;,,(z,y)\/ E(z,y)dz*+2F(z,y)dzdy+G(z,y)dy’, (5.19)

where
1+ m%(Hz,4)*+§(z,49)%-1)-2ny(r, /2, y)+ r12( 2,9))
(myz+ngy+ngf)?

E( I, y)—=_‘522+?}z2=f 2

?

Rz,y)=%,2,+7.y,

nyng( #{2,9)*+ ¢ 7, y)2-1)-ny( ro3(Z,Y)+roo ¥ 2, y))-no( 111 H 2,y)+ 1122, ))

=f2 , (5.20
("1I+n2y+n3/)2 ( )
1+ LE z, 2+~ I, 2—'1 -2115( 710 T \y)+r Y y
Glz,y)=32 47,0 =f P (Hz,y)*+(z,y)*~1)-2ny( l;x(z Y +rai(zy)
(n1I+n2y+1b&f)"

Thus, computation can be done on the original image.

Eqns (5.14) are, on the other hand, integrations of continuous functions. Hence, we
immediately obtain

Ei=fw7;li<xry)‘,(17y)dxdyv

1\;[,-=fw(i(x,y)—fﬁ)rﬁ,(z,y).l(x,y)dzdy, (521)




% :'E N,‘—‘fw(g}(z, y)-fO)m{z,y) A z,y)dzdy.

These are computed by a numerical integration scheme.

;" Remark 5.1. Eqn (5.19) is a rigorous relation. A simple approximation is given,

. :\ corresponding to eqn (4.6), by

A I B [, ifz)VAz gV do+dyf. (5.22)
. LCw ™

w

! \3 ALTERNATIVE METHOD BY TAYLOR EXPANSION

“a¥ ta

The method described above is somewhat complicated. There exists an alternative
scheme whose formulation is simpler. Suppose (7,§) is an initial estimate. We replace

53 . eqn (4.11) with the Taylor expansion with respect to (p,g) at (7,7):
{ »
i 1
o =L(z,9)+Mz,y)6p+ Mz y)bg+ - - - . (5.23)
' tl 1 ! .
9 (1-(pz+qy) /)
‘ — —
’ Here, ép=p-7, 6¢g=¢-7 and 1
<, L(z,y)= ,
2 (1~(pr+q9)/
oo
L
o Mz, 5)— 3Kz 5 94
‘o Y= — ) .24)
: AT/ (
130N 3Ky
.‘\ N(Iry)——— — — .
o f1-(pz+qy)/ >
i :_‘: Then, the basic equations (4.10) become
L
My-(J/ J)My Ni(h/ o) 9 (1)t 525
e My—(Jo/ Jo)Mo  Na=(Jo/ Jo)No| L6 Lo—~(J2/ Jo) Lo’
t’::( where
P Li= [ miz.9)l(z y)dzdy, M=[ m(z,9)Mzy)dzdy, N=[ m{zy)Mzy)dzdy,  (5.26)
;: ) for ==0,1,2. If 6p, 6q are sufliciently close to zero, the initial estimate is sufficiently accu-
- rate. Otherwise, p'=p+6p, q¢'=q+8q are better approximations. This process can be
Py iterated by setting p+—p/, F—q ' and repeating this procedure until convergence.
-::::', Remark 5.2. This method is essentially the Newton-Raphson iteration of the basic
B equations. Although this method seems simpler, the geometrical meaning of functions
3 Mz,y), Mz,y) is not clear, while the method of camera rotation has a clear geometrical
A meaning. In addition, the method of Taylor expansion still involves the approximation
:-'_'}_ (4.6), while the method of camera rotation is not so much affected by that approxima-
: tion; the texture image is ezactly transformed (cf. eqns (5.18), (5.19)) repeatedly so that
N the true surface becomes more and more parallel to the image plane, and in the limit of
3 p—0, y—0, the approximation (4.6) reduces to a trivial identity.
N
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2 8. PRINCIPLE OF CURVED SURFACE RECOVERY FROM TEXTURE
Y Eqn (4.13) can be applied even if the surface is not planar if we choose windows of
A an appropriate size so that the surface is approximately planar in each window. Then,
o) eqn (4.13) gives the gradient (p,q) for each window. Thus, the global 3D shape of an

\ arbitrary smooth surface can be recovered in principle. Another approach to curved sur-
Y . . .
N faces is to use a surface model. Assume, for example, that the equation of the surface is
,_‘ : given by
- Z=r+pX+qY+aX *4+28XY+~Y 2. (6.1)
Q BASIC EQUATIONS FOR CURVED SURFACES
- If the surface is planar, the observed texture inhomogeneity is solely due to the per-
‘A: spective distortion, whereas if the surface is curved, the inhomogeneity is due to two
- separate sources — the perspective distortion and the varying gradient. In other words,
] inhomogeneity is not observed for planar surfaces if the projection is orthographic, i.e.,
), f—oo, while for curved surfaces inhomogeneity results even if the projection is ortho-
.-: graphic. Here, let us consider orthographic projection. Letting f—oo, we obtain z=X,
X y=Y and

o
W det(g)=V1+°+ /14 A 2+ Aoy+ A3 7+ 2 A zy+ Ay, (6.2)
] where
R —deptBy et
2 1+p2+¢? 1+p%+¢
™~ (6.3)
&Y _4Ha +62! 4B(a+7) A !/?2+'7 t

T+ T 1t T 14+

Since V'1+p°+¢® drops off when the unknown true texture density c is eliminated,
all that can be determined are parameters A;, i=1,...,5, which we call tezture density

i parameters. Consequently, we cannot distinguish surfaces which have the same values
for the texture density parameters A; =1,...,5.

o If we provide six test functions my(z,y), ..., mg(z,y) and compute as observables

n.\

> J;=-fwf(z,y)m,(z,y)d:rdy, =0,1,...,5, (6.4)
> the basic equations are, instead of eqns (4.10), given by

” Proposition 6.1 (Basic Equations). The texture density parameters are determined by
.r: solving

2

- .

$. fw(m,(zy mozy NV 1+A T+ Agy+ Az +24 2yt Ay )T dady=0, i=1,..,5. (6.5)
LA

5 Thus, six test functions are enough to determine the texture density parameters 4,
:{ i=1,...,5. Of course, we can use many more functions and determine the surface param-
> eters by some fitting scheme.
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INTERPRETATION OF CURVED SURFACES

Once the texture density parameters A;, +=1,...,5 are obtained, the surface parame-

ters p, ¢, &, B, v are determined by solving eqns (6.3). The solution is given as follows
(see Appendix B for proof).

Proposition 8.2. The surface parameters p, ¢, a, 3, v are given by
p=kp, q=kj, a=ka, P=kB, ~v=kv. (6.6)
Here, &, 3, v are given by

Az;-A . A - Ag-A
&=T+ 3 > y =—i') V=7 3 2 ’ (67)
167 87 167
where
TEi-i—\/A:;-FAs:t?\/AgAS—A.‘z (6.8)
Then, p. ¢ are given by
. AABAy . -BAGA, (6.9)

T oy = -~ —o
4(a'7—32) 4(av-£7)
and k is given by
1

ﬁ; (6.10)

k=—

AMBIGUITY OF INTERPRETATION

From eqn (6.8), we see that there exist at most four solutions. This is an essential
characteristic of orthographic projection. Firstly, the projected image is not affected if
we take the mirror image of the surface with respect to a mirror perpendicular to the z
axis. The four solutions consist of two pairs of mirror images. Another ambiguity
occurs because the texture density only tells about the amount of surface inclination (or
the slant) but not the orientation of the inclination (or the tilt).

Suppose the surface is not a plane, i.e., parameters a, 3, v are not zero at the same
time. Still, there exist two exceptional cases (cf. Appendix C):

Case 1. If the surface has two principal curvatures of equal magnitude, parameters a, 3,
~ are indeterminate (i.e., parameter 7 of eqn (6.8) becomes 0). In this case, we cannot
tell whether the surface is elliptic (i.e., the Gaussian curvature is positive) or hyperbolic

(i.e., the Gaussian curvature is negative).

Case 2. The four solutions for parameters &, 3, v (two mirror image pairs) degenerate
to two solutions (one mirror image pair) if and only if the surface is parabolic, i.e., the
Hessian a’7~ﬂ2 is zero (and hence the Gaussian curvature is also zero). In this case, the
inner square root of eqn (6.8) becomes 0.

Remark 6.1. Parameters p, q describe the gradient of the plane tangent to the surface
at (0,0,r). They are indeterminate only in the above two cases. In Case 1, parameters
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. a, 6 ~ are indeterminate, so that p, q are also indeterminate. In Case 2, parameters &,
B, ~ are uniquely determined except for sign. However, the term &y-3° in the denomma—
tors of eqns (6.9) become 0. Still, we can determine the ratio p:¢q, which indicates the
asymptotic direction or the ‘‘ridge” of the surface. The fact that the gradient along the
asymptotic direction is indeterminate is easily understood from the orthographic nature

of the projection; the texture density is always constant along this orientation all over
the image plane.

7. ALGORITHM OF CURVED SURFACE RECOVERY FROM TEXTURE
Now, we consider how to solve the basic equations (6.5) numerically.
FIRST ORDER APPROXIMATION

If the window W is small and is located at the center of the image, the Taylor
expansion in z, y yields

1+ A 2+ Aoy + Az +2A 2y+As ) "=1+Az+By+ Cr*+ Day+ Ey*+.., 7.1)
1 2 4
where
K K
A—_—?Al, B"—_—-‘?Ag,
(7.2)
k-2 -2 -2
C=%(A3+_4 AP,  D=x( 'c4 142), E=§(A5+ £ = Ag?).
If we put

L=, m{zy)dzdy, M=[ zm(z,y)dzdy, N=[ ym(zy)dzdy,

R= f Wzgm,(z,y)dxdy, S;i= f wzym,(a:,y)d:zdy, T= f wfm,(z,y)dzdy
for +=0,1,...,5 and neglect higher order terms, the basic equations (6.5) become
[ Mi~(1/ Jo)My Ni~(y/ Jo)No Ry~ D/ Jo)Ro Si-(41/ %) Sy T
Ma~(Jo/ Jo)Mo No~(Jo/ Jo)No  Ro~(Jo/ Jo)Ro Sp=(Jo/ Jo)So  To~(Ja/ Jo) To
My~(J3/ Jo)My  Ng~(Js/ Jo)No  Ry~(J3/ Jo)Ro S3~(Js/ Jo)So Ts~(Ja/ %) To
M—(Jy/ )Mo Ne~{(Jo/ Jo)No Ry=(Jo/ )Ry Sy—(Js/ o)y Ty~{Jy/ Jo)
(Ms=(Js/ )My Ns~(Js/ Jo)No  Rs~(Js/ Jo)Ro Ss~(Js/ Jo)So  Ts~(J5/ Jo) To|

IO QW

Ly~(Jy/ Jo)Lo
Lo—(Jo/ Jo)Lyg
=—|Ly~(J3/ Jo)Lo| - (7.4)
L~(J4/ Jo)Lo
Ls—(Js/ Jo)LoJ

Once A, B, C, D, E are obtained by solving eqns (7.4), the texture density parame-
ters A;, i=1,2,..,5 are determined from eqns (7.2) by
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4
e a=24  a=2p
l—';‘ ’ 2__I€_ '
(7.5)
v - - 9 )
R Ag=205242 a=Lp F24p A=~2p 2p
::‘ K K* K K K K
:l ITERATIVE CORRECTION BY TAYLOR EXPANSION
g The iterative correction scheme by Taylor expansion described in the last part of
Section 5 can be applied to curved surfaces as well. Let A, i=1,...,5, be the initial esti-
- mates for the texture density parameters. The Taylor expansion at these values yields
...,7 = 5
\.’ (V1+A 2+ Agyt+ AT +2A g+ As ) =mg(z,y)+ 3 mfz,9)6A+ - - . (7.6)
i=1
’ where 64, =A-A4, i=1,...,5, and
" mo(z,y)=(\/1+le+/_l—2y+/T3zz+2X4zy+/_{-5y2)”
y
h K z
s my(z,y)=— —_—— = = )
Y (=)= 2 (14 A 2+ Apy+ A3+ 24, zy+ Agf) /2
. K y
3 A m2 ,Y)—= — — — — — > !
nﬂ ( ) 2 (1+A1$+A2y‘i'A312+2A4$y‘+‘A5y2)l-x/'
- (7.7)
¢ my(z,y)=— z
b S (14 A 2t Ayt AP+ 2 zyt Ay ) /2
% my(z,y)=— 22y
& Y (14 A 2+ Ayt AP+ 2 Aoy Agy?)
-; M5(I,y)=£ - - - f b T \1-x/2
2 (1+A 2+ AQy+ Az +24 gy+Ag )/ -
"{ If we use as the test functions these m(z,y) themselves and put
: J,-=fwl(z,y)m,(z,y)dzdy, =0,1,...,5, (7.8)
A ..
o f m{z,y)m(z,y)dzdy, ij=0,1,...,5, (7.9)
the basic equation (6.5) becomes
[ Ay |[6A]=-[bi], (7.10)
where
\ Ag=M;~(J;/ o) Mp;, b=M~{J;/ Jo) Moo (7.11)
b
:‘_. If all 64,, i=1,...,5, are sufficiently close to zero, the initial estimates are sufficiently
. accurate. Otherwise, A/=A+46A; are better approximations. As before, this process can
,';; be iterated by setting A+—A/ and repeating this procedure until convergence.
&
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8. EXAMPLES OF COMPUTATION FOR SYNTHETIC IMAGES

Figs. 2 - 5 show texture images on a planar surface. We take the focal length fto
be the unit of length. The window size is a=b=ftan10°=0.176f. (The window is a rec-
tangle of size 2aX2b.) The camera axis is assumed to pass through the center of the
square window. The true gradient is (p,q)=(1.500,0.866) for all the figures.

REGULARLY ALIGNED DOT TEXTURE
Figs. 2a - 2c show projected images of regularly aligned dot textures on a planar
surface. If we use my(z,y)=1, my(z,y)=2, mo(z,y)=y as the test functions, i.e., if we
compute the center of gravity of the texture, and iteratively correct these values by the
method of camera rotation with my(z,y)=1, m(z,y)=2—/F, mo(z,y)=1y-/q, we successively
obtain (p,q) as follows.
Fig. 2a Fig. 2b Fig. 2¢
1 (1.459, 1.088) (1.610, 0.965) (1.548, 0.958)
2 (1.402, 0.939) (1.552, 0.875) (1.499, 0.871)
3 (1.397, 0.937) (1.548, 0.871) (1.496, 0.867)
4 (1.397,0.937) (1.548, 0.871) (1.496, 0.867)
If we apply the method of Taylor expansion to the same initial estimates with
mo(2,y)=L(z,y), m\(z,y)=Mz,y), mo(2,y)=Maz,y), we obtain

Fig. 2a Fig. 2b Fig. 2¢c
1 (1.459, 1.088) (1.610, 0.965) (1.548, 0.958)
2 (1.549, 0.767) (1.549, 0.897) (1.499, 0.869)
3 (1.527, 0.816) (1.542, 0.887) (1.496, 0.864)
4 (1.529, 0.807) (1.541, 0.887) (1.496, 0.864)

RANDOM DOT TEXTURE

Figs. 3a - 3c show random dot textures on a planar surface. If we compute the
center of gravity and use the method of camera rotation, the successive estimates of the
gradient (p,q) become

Fig. 3a Fig. 3b Fig. 3¢
1 (1.558, 0.798) (1.662, 0.945) (1.535, 0.974)
2 (1.505, 0.695) (1.617, 0.843) (1.493, 0.891)
3 (1.504, 0.694) (1.613, 0.840) (1.491, 0.888)
4 (1.504, 0.694) (1.613, 0.840) (1.491, 0.888)

while the method of Taylor expansion yields

Fig. 3a Fig. 3b Fig. 3¢
1 (1.558,0.798) (1.662, 0.945) (1.535, 0.974)
2 (1.422, 0.560) (1.674, 0.832) (1.527, 0.899)
3 (1.434, 0.583) (1.667, 0.834) (1.525, 0.897)
4 (1.430,0.578) (1.667, 0.834) (1.525, 0.897)
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REGULARLY ALIGNED LINE SEGMENT TEXTURE

Figs. 4a - 4c show regularly aligned line segment textures on a planar surface. If we
compute the center of gravity and use the method of camera rotation, the successive
estimates of the gradient (p,q) become

Fig. 4a Fig. 4b Fig. 4c
1 (1.603,0.994) (1.762, 1.048) (1.751, 1.045)
2 (1.379, 0.747) (1.534, 0.899) (1.527, 0.893)
3 (1.352, 0.756) (1.505, 0.875) (1.500, 0.869)
4 (1.351,0.758) (1.504, 0.874) (1.499, 0.869)

while the method of Taylor expansion yields
Fig. 4a Fig. 4b Fig. 4c
1 (1.603,0.994) (1.762, 1.048) (1.751, 1.045)
2 (1.569, 0.893) (1.672, 0.960) (1.666, 0.958)
3 (1.568, 0.893) (1.669, 0.956) (1.663, 0.954)
4 (1.568, 0.893) (1.669, 0.956) (1.663, 0.954)

RANDOM LINE SEGMENT TEXTURE

Figs. 5a - 5¢ show random line segment textures on a planar surface. If we com-
pute the center of gravity and use the method of camera rotation. the successive esti-
mates of the gradient (p,g) become

Fig. 5a Fig. 5b Fig. 5¢
(2.821, 0.602) (2.196, 0.768) (2.006, 0.910)
(2.275, 0.372) (1.906, 0.590) (1.710, 0.722)
(2.088, 0.271) (1.856, 0.559) (1.660, 0.684)
(2.111, 0.275) (1.856, 0.559) (1.661, 0.684)

N

while the method of Taylor expansion yields

Fig. 5a Fig. 5b Fig. 5¢
1 (2821,0.602) (2196, 0768) (2.006, 0.910)
2 (2.477,0.238) (2.033, 0.561) (1.825, 0.787)
3 (2447, 0.257) (2.022, 0.567) (1820, 0.781)
4 (2.445,0.258) (2.022, 0.567) (1.820. 0.781)

TEXTURE ON A CURVED SURFACE

Fig. 6 is an orthographic view of a regularly aligned dot texture on a quadric sur-
face. Here, we take the window size a(==b) to be the unit of length. The true parame-
ters are (aa,Ja,va)=(2,0,0). (Note that parameters a, 3, v have dimensions of 1/length.)
In this case, as discussed in Section 6, parameters p, ¢ are indeterminate, but parameters
a, 3,5 are uniquely determined except for sign. If we use the method of Section 7 with
1, z. y, ¥, zy, ¥ as the test functions for computation of the initial estimate and apply
the method of Taylor expansion, the successive estimates of (aa,3b,va) become
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OBSERVATIONS

We see that our methods can produce fairly good results. In particular, our method

can be applied to very sparsely distributed textures. For very sparse textures, the

~ method of Taylor expansion gives more accurate results than the method of camera rota-

tion. Otherwise, both of them yield almost the same results for dot textures, but for line

segment textures the method of camera rotation predicts more accurate results than the

method of Taylor expansion, as is expected (cf. Remark 5.2). The convergence is very

rapid for both methods. Only two or three iterations are necessary to determine the gra-
dient up to two decimal places, and three or four iterations up to three decimal places.

On the whole, the results are better for dot textures than for line segment textures.
This is easily understood because a line segment is a coalescence of constituent points in
a restricted way, so that the degree of homogeneity is lower for line segment textures

L than for dot textures in general. On the other hand, the results are far better for regular
_. textures than random ones, as is also expected. This is not a drawback; natural or
- man-made textures we often encounter are usually “tessellated” to a high degree of regu-

larity. The random texture shown here can be regarded, in a sense, as the “worst” case
(¢" Remark 4.3).

7 9. COMPARISON WITH OTHER METHODS

: Let us compare our method with those of Aloimonos and Swain (8] and Dunn [9].
Both proposed schemes of surface shape recovery from texture based on the geometry of

| perspective projection and the assumption of texture homogeneity. However, direct

- comparison is difficult because their derivations are based on different concepts and

5 different assumptions. Therefore, we now newly derive, in our setting, those schemes

- which are essentially equivalent to (or actually better than) theirs.

METHOD OF ALOIMONOS AND SWAIN

Consider three circular regions Sy, S), S; on the image plane with centers (zg,Y),
'_' (z1,41), (Zo,y), respectively. Assume that they are sufficiently small compared with the
size of the window W, yet the texture is sufficiently dense, so that each region contains a
sufficiently large number of texture elements. Consider, as observables, the integrals

I,~=fslj(a:,y)dxdy, =0,1,2. 1)
. : Since each region S; contains a large number of texture elements, these integrals can be
- approximated, according to eqn (4.8), by
\ Imc[(Vdet(g))dzdy.  i=0,1,2. (9.2)
% '
. This is equivalent to choosing as the test functions m{z,y) the characteristic functions
-

3
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Xs(z.y) of regions S; (cf. Remark 2.1). On the other hand, each region S; is sufficiently

small, so that the integral of eqn (9.2) can be replaced by the area S; times the value at
the center (2z;y;), i.e

fs'(\/det(g))”dzdlf“&(\/det(9))"|:=z‘,,,=y,- (9.3)

Thus, for a planar surface, the observables I; are approximated by

s \/m )(tr/H

(1-(pzst+qus) /N

As a result, the basic equations (4.10) reduce to

1
L,Se) 3%

%S

=012 (9.4)

( 1150 3K:

7~ %o p+(l yryo)q:f([

LSy 3% LS,\ 3%
S:)

L,Sy) 3=
]052) Yo%) 3= [052) -1),

from which the gradient (p,q) is determined. This is essentially the method of Aloimonos

and Swain (8]. They also tried recovery of curved surfaces, using a numerical relaxation
scheme.

Thus, their method requires that the texture be locally homogeneous in the sense
that the texture is sufficiently dense and the homogeneity condition is satisfied in arvy
small region S (of an appropriate size). Furthermore, a very crude approximation like
eqn. (9.3) is used. In our formulation, however, the texture need not be locally homo-
geneous. Some of the textures shown in the previous section are not locally homogene-
ous, so that application of the method of Aloimonos and Swain (8] is difficult. For our
method, the homogeneity condition is required only over the entire window W, and the
integration is exactly performed over all the texture elements in the window W.

METHOD OF DUNN

Dunn (9], on the other hand, considered a narrow strip S of width 6 and length !
along line z cosf+y sinf=p. In our formulation, this process is regarded as integration of
the texture density over the strip, i.e., integration of the characteristic function y (z.y)
of the strip S as the test function m(z,y). Take a new z'y'-coordinate system by rotat-
ing the ry-coordinate system counterclockwise by 8 (Fig 7). Line z cosf~+y sinf=p now
becomes z’'=p in the new coordinate system. Consider, as an observable, integration of
the texture density over the strip S (i.e., integration of the characteristic function \ ( z.y)
of the strip S as the test function m{z.y)):

p+8/0

12
K’(p,6)=f.‘/2fp . fiz.y)dz'dy’ (9.6)

If there exast a sufficiently large number of texture elements in the strip S. the ohserv-
able Alp.8) s approximated, according to eqn (4.8). by

L2 pedi2
l\'(p,())—\\:rf f - (\/det(g *dr'd (9.7)
L2 -
If the approximation (4 11)1s used for a planar surface, this becomes
-23-
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K(p,0)==col(V 1+p*+¢3)*(1+r/f}**(1+3k(p cosf+q sinb)p, f). (9.8)

As before, if K;=K{p;,0;), i=0.1,2, are computed for three pairs of (p.0) (i.e., for the
characteristic functions xg(z,y) of the strips S; as the test functions m{z.y)), the basic
equations (4.10) reduce to

Kl . Kl . i Kl
(P1005‘91—70P0C0590)P+(Plsmf)r?o'ﬂosmeo)q=—%( 1——,—0),

K K K. (991
(P2C0592—T(;—0000590)P+(PzSinoz‘ K; PoSinoo)q=—§£‘(1‘?;'):

from which p. g are obtained.

Dunn (9], however, took another approach. He searched for § such that K{p,6) does
not depend on p. If ; is the one, we see {rom eqn (9.7) that 6, must satisfy

p cos#,+q sin¢,=0, (9.10)
and hence
K(p.0)=~co{V1+p*+ ) (1+r/)*(=K,) (9.11)

1s a constant. Next, search for & such that K{p,0) has the steepest ascent with respect to
p. If 85 is the one, we see from eqn (9.7) that §s=0,+7/2 and that

p cosfy+q sinfy=V p*+¢°, (9.12)
and hence
K(p8.)~K,(1+36V p*+¢p/f). (9.13)

The orientation of the gradient (p,q) is given by eqn (9.9), and its magnitude is obtained
by computing the (average) gradient of K{p,8,)/ K.

The latter method can be more robust to noise than the former one, for the former
method depends only on three particular values of K{p,0) (i.e., three test functions),
while in the latter method a large number of strips (i.e., many different test functions, cf.
Remark 4.2) are used. Consequently, some sort of smoothing, say fitting to a parametric
form. of A{p.f) can be used to cancel local errors in the process of searching for 4, and
estimating the average gradient of K(p.6,)/K,. Dunn [9] also tried recovery of curved
surfaces using a similar technique.

[n any case. tne underlying approximation is essentially the small gradient approxi-
mation  Although the integration is performed exactly up to linear approximation (1.e.,
eqn {9 8)), this method also requires that the texture be locally homogeneous (though
mildly as compared with the method of Aloimonos and Swain 8), so that the homo-
genetty condition must be satisfied in each strip.

10. CONCLUDING REMARKS
The methods proposed here have the following salient features.
TEXTURE DENSITY AS A FUNCTIONAL
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First, our formulation makes use of the ezact texture density f{zr,y) having singulari-
ties, and no smoothing is necessarv. This is because we do not use particular values of
the texture density itself; all we need is the rule of integration. Hence, the texture den-
sity is defined as a functional. or a distribution in the sense of Schwartz. This is one of
the most important differences from all existing approaches All early methods assume
existence of a smooth texture density obtained by some kind of local averaging and
directly use its values. Some approaches even require the values of the gradient of the
texture density obtained by differentiation. The use of the values or derivatives of the
texture density does not seem feasible in view of the discrete nature of the texture.

DIFFERENTIAL GEOMETRY IN TERMS OF IMAGE COORDINATES

We derived the exact relationship between the surface texture density and the
observed texture density according to the principles of differential geometry. The exist-
ing methods seem to have failed to obtain this exact relationship. One reason, among
others, seems to be that most authors employed a certain intrinsic “surface coordinate
system’’ placed on the surface as well as an image coordinate system, trying to obtain
the rule of transformation from the surface coordinates to the image coordinates. This
usually results in tedious equations. The key to success here is the fact that we do away
with the surface coordinates; all surface characteristics are described in terms of the
image coordinates alone, the first fundamental form playing a fundamental role.

COMPUTATIONAL EFFICIENCY

Our method has also an advantage from the viewpoint of computational efficiency.
The necessary data, or observables, are obtained by integration of functions over the
image, and this is essentially summation of the function values over the texture ele-
ments. Thus, the time complexity is simply (X/V), where N is the number of texture ele-
ments. The access to each texture element is an independent process. This fact suggests
high speed performance by ‘“parallel architecture’; the image can be divided in any way
and the computation can be performed independently and simultaneously. Although
iterations are used in our method, the convergence is very rapid, as was demonstrated;
two or three iterations seem sufficient.

PREPROCESSING

We should not forget the fact that appropriate preprocessing is necessary, as is also
the case for any other high-level image processing. We regard texture as composed of
dots without area and line segments without width. If the dots have area, their centroids
can be used as their positions, or their boundaries can be regarded as texture elements.
If the line segments have width, their center lines (“skeletons’) or boundaries can be
regarded as texture elements. This is because our method is essentially (weighted)
number counting of dots and (weighted) length measuring of line segments. For
‘natural” texture images containing gray-levels, a simple way to do this preprocessing 1s
to just apply edge detection. Then. the detected “‘edges’ serve as line segment texture
elements.

INTEGRATIONS AsS OBSERVABLES

Another advantage resulting from the use of integrations as observables 1s that the
method works for very sparse textures. All existing methods including those of
Aloimonos and Swain 8 and Dunn ‘9’ have paid attention to “‘local” clues such as the
number or length of texture elements in small regions of the image. lHence. the texture
must be l:cally homogeneous; the texture density must he dense enough everywhere so
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that the homogeneity condition is satisfied in each of the observed regions. In our for-
mulation, in contrast, the texture in its entirety is observed directly through integration
over all the texture elements. Hence, the texture need not be dense everywhere, as was
demonstrated in the previous examples, and the homogeneity condition need be satisfied
only for the entire texture. (The idea of integrations as observables is also used by
Kanatani {12] for “shape from motion without correspondence’”.) On the other hand, if
we gradually increase the texture density, our estimation approaches the numerically
ezact value. No methods so far known seems to have this property. Those of Aloimonos

and Swain (8] and Dunn [9] do not have this property, either, because various ad hoc
approximations are involved.

DIMENSIONALITY OF TEXTURE ELEMENT

One of the important findings resulting from our analysis is the fact that dot tex-
tures and line segment textures cannot be treated in the same manner. Pixels constitut-
ing line segments on the image plane cannot be identified with pixels of a dot texture.
The necessity of this distinction does not seem to have been widely recognized. All exist-
ing methods including those of Aloimonos and Swain (8] and Dunn [9] do not seem to
take this effect correctly into account. It seems that the texture density, whether of dots
or of line segments, has been treated in analogy with a continuous density. In this
paper, we have established a rigorous treatment of discrete densities, making a clear dis-
tinction between dot textures and line segment textures. In fact, the recapitulation in
Section 9 is actually a modification so that dimensionality of the texture elements is
correctly incorporated.

GENERALITY OF THE PRINCIPLE

The main emphasis in this paper is the generality of our formulation, from which
various modifications and applications become possible, including the choice of good test
functions. The methods of Aloimonos and Swain (8] and Dunn (9], for example, can be
regarded as special variants of our general principle. An important fact is that our for-
mulation can also explain their methods and make explicit the underlying assumptions
and approximations, while theirs can explain no other methods, only their own. This
wide range of flexibility stems from a mathematically correct understanding of the
geometry of perspective projection. Particular heuristics or ad hoc assumptions and
approximations may result in particular algorithms which may be useful sometimes.
Lacking gererality, however, they usually do not reveal the underlying essential nature
of the problem and are incapable of extension to other problems.
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APPENDIX A. 3D GEOMETRY IN TERMS OF IMAGE COORDINATES

Here are some results from differential geometry which are relevant in the descrip-

[ }

“~
b~ tion of ‘‘shape from image’’, describing 3D properties in terms of the image coordinates.
K- INNER PRODUCT, NORM, ANGLE
Consider two vectors U=(Uy,U,, Us), V=(V}, Vs, V3) tangent to the surface, making
::* angle 8. Suppose they are “small” in the sense that the first fundamental metric tensor
j g;; is almost constant along them. Let (u!,4?), (v!,v") be the projections of these vectors
- onto the image plane; they no longer make angle 8. The inner product of U and V and
f:. their norms are computed from the projections onto the image plane as follows:
2 .

>, (U V)=U,Vi+ U Vot U V3= 3 gu'v” (A.1)
' ij=1
& 0=v(T.0), IN=V(V.¥). (A.2)
L Hence, the angle 8 is computed from the projections of these vectors as
"
2 cost=(U, V)/|| U]l V1] (43)
N LEVI-CIVITA PARALLELISM

o Consider on the surface two nearby points whose projections onto the image plane
N are (z,y), (z+dzr,y+dy). Again, consider two vectors of the same length, ‘‘small’” in the
b sense described above, tangent to the surface at these points. Let us hypothetically cut
i away from the surface a small patch which contains these two tangent vectors and the
:: segment connecting them (to be precise, the developable defined as the envelope of the
e’ tangent planes along the segment). Then, develop that patch, ie., * roll it out” on a
) plane (Fig. A). The two tangent vectors, having the same length, are now coplanar. If

Y they are parallel, we say that one of the two tangent vectors is transported to the other
. along the segment parallelly in the sense of Levi-Civita. Let (u',u®), (u'+6u' > +6u?) be
. the projections of these two tangent vectors. The condition that the corresponding
Ry
' - 27 -
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:: vectors undergo the parallel trarsport in the sense of Levi-Civita is given by
¥ 9 N
) - Sui=- Y, { '1I¢} utdr, (A.4)
Wy ji=1
3 N
:‘ . where KB the Christoffel symbol defined by
o
3 1 ity 995 et OG5k
- S I=—=—239 +— , A5
s {J“} 2,§1 (82:" o7 az‘) (A3)
::: and g~'=(g¥) is the inverse matrix of 9=(g;;). Assigning Levi-Civita parallelism by the
N Christoffel symbol as above is also said to define a Riemann connection on the image
" plane. This enables one to compute the curvature of the surface and the curvature of a
curve on it in terms of the image coordinates (the Gauss-Codazzi equations and
\,{ Beltrami’s formula), but we do not go into details. (Refer to books on differential
o geometry.)
k. GEODESICS
“_ N Consider a smooth curve on the surface, and let (1{s),y(s)) be its projection onto the
image plane, where the parameter s is taken to be the true arc length, defined by eqn
5 (3.7), of the curve on the surface. Then, (2(s),i(s)) is the projection of the unit length
...:t tangent vector to the curve. The curve is called a geodesic if its tangent vectors are
"-:v always transported along the curve parallelly in the sense of Levi-Civita. Hence, it fol-
oL lows from eqn (A.4) that the projection of a geodesic is given by the following differential
R equation:
(s)+ Y, { ',k} 2(s)z¥(s)=0. (A.6)
o =t
:::: It is known that a geodesic is the shortest path connecting the endpoints along the sur-
b face.
< GRADIENT
.f_: The orientation on the surface Z=2(X,Y) along which the value of Z increases most
" rapidly on the surface is indicated by vector (P,Q,P*+Q")/(1+P?+Q%. The projection
- (u!,u?) of this vector onto the image plane is given by
A 2
u= v 22 AT
3 Elg or (A7)
. . . .
.'rf\' This vector indicates the orientation along which the surface ‘“goes away’ from the
vy image plane.
-_,-_ APPENDIX B. ERROR DUE TO RANDOMNESS OF THE TEXTURE
-::j Consider a dot texture for simplicity. Let (zy,4,), ..., (znyn) be the coordinates of
-:: the texture points in the window -a<z<a, -b<y<b. The center of gravity (3,7) is
%) givea by
! :-’ - 28 -
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S = 1 = 1
=_%z, =Yy B.1
.‘. Ni=z=:l 3 y_—~N‘§1y! ( )
R First, consider the case where the distribution is completely random. Suppose z;,
j +=1,...,N are random variables chosen from the uniform distribution over -a<z<a
.t: independently from each other. Likewise, regard y; 1=1,...,/V as random variables distri-
h"',; buted uniformly and independently over ~b<y<b. Then, their expectation values and
i variances are given by
o Elaj=0, Visj=gd®  i=L..N,
B.2
'\.f_‘\:' 1,0 . ( )
sy E]y]=0, V|y]=="b" =1,...,N.
O 3
It follows from elementary probability theory that the expectation values and the vari-
'\-4, ances of Z, 7 are given by
L Elf=0,  ViA=7gd’
A z|=0, I=—=0a",
W\ 3N
P o . (B.3)
LTS
“J': Hence, the center of gravity is at the origin on the average. The magnitude of error is
* 3 estimated by the standard deviation, so that we expect errors of about a/V3N, b/V3IN
i for Z, 7, respectively.
! On the other hand, consider another extreme case where z; i=1,...,N are distri
IS buted with equal interval of distance 2a/N and y; +=1,...,N with equal interval of dis-
e, tance 26/N. Then, the center of gravity must be located within the range of
o
ey Y L
< From eqns (B.3) and (B.4), we can roughly say that the errors 6%, 67 of T, ¥, respec-
oy tively, are
ﬁ
— 1 - 1
o =0l ol (B5)
" N* N*
:':!" where 1/2<<e<1. The parameter ¢ approaches 1/2 as the distribution becomes more
o and more random, and it 2pproaches 1 as the distribution becomes more and more regu-
S lar.
=
L
-
1Y APPENDIX C. INTERPRETATION OF CURVED SURFACES
B.7» ) ~ -
Define &, p, q, a, 8, v as follows:
2% =Vt 7, -
508 . X i . . :
;;5;-: p=p/k, q=q/k, a=a/k, p=B/k, ~=n/k.
o Eqns (6.3) are now rewritten as follows:
1
o9
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§" A A
A - 3 1 e T~ 2
. ap+hg=——, Bptyg=—r,
. A (C.2)
% o -o A Y. | -y -9 A
3 +pr=2, Bla+)=—, BFiv==1,
e 4 4 4
‘}’ . Let us define new variables
'5 - ~ ~ = -
=°’T+7, a=¥+iﬂ, (C.3)
Iy 2
\ where i is the imaginary unit, so that ¢ is a complex number. Next, put
14 -~
125 Az+Ag Az-As Ay
40N T= , S= +1—, C.4
b 8 8 1 (C4)
so that S is also a complex number. Then, the last three equations of (C.2) are
K equivalent to
!
N T=r+o0’,  S=270, (C.5)
W
: where * denotes the complex conjugate. From the second equation, we obtain o=S/2r.
i‘,- Substituting this in the first equation, we find that 7 is the solution of
4 l cor_
- T -T1'2+TSS =0. (C.6)
::i: and consequently

v f r°=-‘l7( T+V T*-55%, (C.7)

or in terms of A, =1,...,5,

=

>

X o :
3 r‘=%(A3+A5:t2\/As—A5——T4')~ (C.8)
) -
5 Hence, eqn (6.8) is obtained, and o is given by 0=S/27. From eqns (C.3), &, 3. v are
Y given by
%J a=r+Relo], B=Imo], ~y=r-Reo], (C.9)
Ej from which eqns (6.7) are obtained.
-\.j Once &, (3, v are obtained, p, ¢ are determined from the first two equations of (C 2)
‘:' in the form of eqns (6.9). Finally, noting
'_.:' o . 2 2 1 1

(O 1—'P"— 2=1_ pq 5 qo 5 5 3 ot C.10
b~ 1+p°+q¢~ 14+p™+q¢ 1+p°+¢ &k ( )
'\ we obtain eqn (6.10). Thus, p, ¢, a, 3, v are given by eqns (6.6).
w:;
; \ APPENDIX D. AMBIGUITY OF CURVED SURFACE RECOVERY
.“\' Consider the pathological cases ignored in Appendix C. First, 7 was assumed not to
15 be zero, since otherwise o=5/27 is indeterminate. From eqn (C.7), r becomes zero if and
' :\‘ only if S=0 or
L,
. Az=As, A4=0. (D.1)
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R
20y
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\_.‘:
! '.:Q- In this case, eqns (C.2) reduce to
X o se =6 <o - -
: &P+ F=F++=T,  Ba+~)=0. (D.2)
‘t" If T=0, then aTﬂ—w—O and hence the surface is planar. Suppose T5£0. If 3=0, then
- ¢=+VT and y=+VT. If ﬂ;éO then a+~4=0 and a“+3*=T These {(wo cases
X f.:: correspond to surfaces whose two principal curvatures have the same magnitude In
oy other words, ambiguity of a, 3, v occurs for a non-planar surface if and only if the sur-
! ) . . . . .
g face has principal curvatures of the same magnitude, in which case we cannot tell
‘ whether the surface is elliptic (i.e., the Gaussian curvature is positive) or hyperbolic (i.e.,
; the Gaussian curvature is negative).
‘:} Next, suppose we have determmed & B3, 7. When solvmg the ﬁrst, two equations of
x'-,-: (C2) for p, g, we assumed &~-3° 7£0. The condition that av-3°=0, or equivalently
o avy-3*=0, means that the Hessian of the surface is zero {and hence the Gaussian curva-
. ture is also zero). This occurs for a non-planar surface if and only if one of the principal
LY curvatures is zero and hence the surface is parabolic. For the parabolic case, only the
o ratio p:q is determined, indicating the asymptotic direction of the surface. In this case,
o pq g y
-:{:, the proportionality constant k is indeterminate, so that a, 3, v are also indeterminate.
TN (However, if p and ¢ are known to be small, we may use the approximation of k=1 and
3 hence a=~a, =0, v~=~.)
v Eqn (6.8) indicates existence of four solutions. They consist of two pairs of mutual
o mirror images with respect to a plane perpendicular to the »axis. The remaining ambi-
‘:}«: guity is due to the fact that the texture density only tells about the absolute value of
i‘:} the slant and that no information is obtained about the tilt. From eqn (C.7), this ambi-
A gulty does not occur if and only if T =SS’ In view of eqns C5), this is equivalent to
*=gc°’ From eqns (C.3), this is equivalent in turn to &v-3*=0. In other words, the
M ambiguity does not occur for a non-planar surface, except for the mirror image, if and
;_-:-', only if the surface is parabolic.
~.
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Random dot textures on a planar surface.
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