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i ABSTRACT

The 3D shape of a textured surface is recovered from its projected image on the as-
sumption that the texture is homogeneously distributed. First, the homogeneity of a
discrete texture consisting of dots and line segments is defined in terms of the theory of
distributions. Next, distortion of the observed texture density due to perspective projec-
tion is described in terms of the first fundamental form, which is expressed with respect
to the image coordinate system. Based on this result, the basic equations to determine
the surface shape are derived for both planar and curved surfaces, and numerical
schemes are proposed to solve them. Necessary data are obtained in the form of summa-
tion or integration of functions over the texture elements on the image plane. Ambiguity
in the interpretation of curved surfaces is also analyzed. Finally, numerical examples for
synthetic data are presented, and our method is compared with other existing methods.
It is shown that all other methods can be explained in terms of our formulation.

The support of the Defense Advanced Research Projects Agency and the U.S Army Night Vision
and Electro-Optics Laboratory under Contract DAAK70-83-K-0018 is gratefully acknowledged.
*Permanent Address: Department of Computer Science, Gunma University, Kiryu, Gunma 376,

Japan

% f-



1. INTRODUCTION

The recovery of the 3D shape of a surface from its projected image is one of the
most important challenges in computer vision. The computation is based on various
clues such as texture, shading and motion. 3D recovery from texture is possible if we
have some knowledge about the true texture. If the projected texture has different pro-
perties from those of the true texture, the 3D shape is recovered from the difference
between the observed properties and the original properties that we know. For example,
if the true texture is known to be an array of texture elements of a known shape, the
surface shape can be inferred from the observed distortion of the texture elements.

If we do not know the true texture but know its statistical properties, we can draw
an inference from the difference between the observed statistical properties and the true
properties. Assumptions often adopted are homogeneity and isotropy of the true texture.
The assumption of isotropy asserts that the texture consists of line segments with no
preferred orientations. A clue for 3D recovery is obtained if the observed texture seg-
ments have a preferred orientation. This approach was first investigated by Witkin (1],
and the algorithm was improved by Davis, et al. [2]. Kanatani [3] gave a rigorous
mathematical description of the problem and explicit formulae to solve the problem by

Vh means of tensor calculus and the principle of stereology.

The assumption of homogeneity, on the other hand, asserts that the texture is uni-
formly distributed over the surface. When projected, the texture becomes dense on the
image of the surface part away from the observer and sparse on the part near the

*: observer. This clue has been considered long since by people like Gibson [4, 5], Bajcsy
and Lieberman [6] and Stevens [7], but their argument was based on naive intuition. It

.was not until Aloimonos and Swain [8] and Dunn [9] that the problem was treated in
analytical terms based on the geometry of perspective projection. However, their formu-i. lations involve many unnecessary ad hoc approximations and assumptions. In this
paper, we show a mathematically rigorous treatment based on differential geometry and
the theory of distributions, taking the "discreteness" of texture correctly into account.

We first give a precise definition of homogeneity of a texture. If a texture consists
of dots or line segments, the texture density is a singular function taking the value
infinity at the texture dots and line segments and 0 elsewhere. How can we say that the
density is uniform? How can we tell that a given texture is homogeneous? We will give
an exact definition of homogeneity of a discrete texture.

We next give an exact analysis of the distortion of texture due to perspective pro- -C

jection in terms of the first fundamental form expressed with respect to the image coordi- COPY
nate system. Our formulation consists of two stages. First, we present the basic equa- WHOM"tions to determine the surface shape for both planar and curved surfaces in their exact

forms. Although they are difficult to solve directly, we can infer various theoretical
consequences, among which is the ambiguity in the interpretation of curved surfaces.

% We list all possibilities completely.

Then, we propose various numerical schemes to solve these equations, employing
first order approximation, simulation of camera rotation and Newton-Raphson type F
iterations, and give numerical examples for synthetic images. Good results are obtained
even for a very sparso texture, and the estimation approaches the true value as the tex-
ture density increases.

Lastly, our formulation is compared with those of Aloimonos and Swain [8] tnd
Dunn[9]. Our formulation is general enought to explain their methods in our terms.
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Various aspects related to ".-plications and implementations of our method are also dis-
cussed.

2. TEXTURE DENSITY AND HOMOGENEITY

We consider, in this section, how to define the density of a discrete texture. Con-
sider textures composed of dots or line segments. If we are to seek a function JAx,y)
describing the amount of texture divided by the area occupied, we are forced to consider
delta-function-like singularities, the value of J(x,y) being infinity at the texture elements
and 0 elsewhere, since the area of a dot or a line segment is 0. This kind of singularities
make analytical treatment very difficult. One way to avoid singularities is to regard the
texture density as a functional.

DIRAC DELTA FUNCTION
Let us recall the definition of the (Dirac) delta function 6(x). To be precise, it is not

a function; if a function takes the value zero except at one point, its integral must be 0,
since one point is of Lebesgue measure 0. Instead, consider a linear functional T matp-
ping a smooth (say C °) test function r(x) having a finite support (i.e., the domain where
it takes non-zero values) to the value m(O), i.e. Tm(z)]m(O). This functional is a well
defined entity. Now, let us agree to adopt a new notation to express the functional;
write f6(x)( . )dx, instead of T[. ). As a result, the above definition is rewritten as
f b(x)m(x)dz-m(O). Thus, the delta function is nothing but a notation for a special func-
tional. In fact, we do not use the delta function by itself. It is useful in engineering
problems only when it is multiplied by some function and integrated. Hence, it suffices
to define only the rule of integration; we need not worry about its singularity. This is
the view developed in detail by Schwartz in his theory of distributions [10, 11].
TEXTURE DENSITY AS A FUNCTIONAL

We fix a window W on the textured image and define the texture density J(x,y) of a
dot texture over the window W as follows:

Definition 2.1 kDot Density). The texture density J(z,y) of a dot texture over the win-
dow W is a linear functional over a set M, yet to be specified, of test functions m(x,y)

defined formally by

fzxy)rn(zy)dxdyP, E m(ziyi), (2.1)
P'( W

where P(zxi,yi) are thr dot texture elements on the image plane.

Since the texture density is defined as a functional, we need not worry about the
singularities of JAz,y). We can just imagine that Az,y) takes the value infinity at texture
elements and 0 elsewhere. All we need is the rule of integration. The texture density of

... a line segment texture is similarly defined as follows:

Definition 2.2 (Line Segment Density). The texture density A(z,y) of a line segment tex-
ture in the window W is a linear functional over a set M, yet to be specified, of test

S"""'-3-
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functions rn(x,y) defined formally by

fwJx,y)m(x,y)dxdy -- E fLm(x,y)V' , (2.2)L,C W

where Li are the line segments on the image plane, and the right-hand side is the sum of
line integrals along each line segment.

Here again, we can imagine that Ax,y) takes the value infinity along texture line
segments and 0 elsewhere.

HOMOGENEITY

Now, we are in a position to define homogeneity of the texture density. Let .(x,y)

be the texture density defined above. We would like to say that the texture is homo-
geneous if J~x,y), c, but again, due to singularities, this must be interpreted in the weak
sense or in the sense of a distribution. Namely, let us agree that what we mean by this
is as follows:

Definition 2.3 (Homogeneity). A texture density ix,y) is homogeneous if

fWA x,y)m(x,y)dxdy -cfim(x,ydxdy, (2.3)

for test functions m(x,y) of the set M, yet to be specified, where c is a constant indepen-
dent of the test functions m(x,y).

The constant c can be interpreted as the texture density in an intuitive sense, i.e.,
the "number of dots per unit area" or the "length of line segments per unit area". If we
use the definitions of eqns (2.1) and (2.2), our definition is restated as follows.

Lemma 2.1. If the texture density is homogeneous, we have the following approxima-
tion to integration:

I E m(xi,yi) for dot textures
C P,eW

£W m(x xy) dxdvj I .mx)V~d (2.4)
mWm x y) -1dy) for line segment textures

SL,C W

Eqn (2.4) can be viewed as the Monte Carlo simulation of integration of a test func-
tion m(x,y), where 1/c is the "area per dot" or the "area per unit length line segment".
The interpretation is that the texture is so homogeneous that the Monte Carlo simula-
tion of integration with respect to the texture elements yields a good approximation.

Remark 2.1. If we choose as a test function m(x,y) the characteristic function
1 (X,y)fS(25

xsxy) 0 otherwise (2.5)

of a region S, eqn (2.4) states that the number of dots or the length of line segments in
the region S is approximately proportional to the area of the region S and that the

-4-
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cot-ant i is the number or the length of texture elements in the region S divided by its
arr- This is the interpretation which most people informally tl'*nk of as the definition
,)f homogeneity (cf. the method of Aloimonos and Swain [8] recapitulated in Section 9).

Remark 2.2 We must mention here that the definition of homogeneity defined above
depends on the choice of the set M of test functions m(x,y). Even if the texture is not
very dense. it can be homogeneous for very smooth test functions m(z,y) (i.e., viewed
macroscopscally). However, it may not be homogeneous for rapidly varying test func-
tions m(z,y) (i.e., viewed microscopically). Figuratively speaking, we are looking at the
singular texture density Ax,y) through filters m(x,y), and the homogeneity is affected by
the "coarseness" of the filter through which we are looking. If, for example, we take
M={expir(kx/a+Iy/b)}, assuming that th2 window W is a rectangle of size 2aX2b, and
set a certain threshold for the approximation of eqn (2.3), we can define the degree of
homogeneity by those (k,l) satisfying the approximation. However, we do not go into the
details, since what we have described so far is sufficient for the discussion to follow.

-, CHANGE OF VARIABLES

Since the integration over the texture is defined as a functional by eqns (2.1) and
(2.2), we must be careful when we change the variables of integration. The rule for the
usual integration does not apply here. Consider two smooth functions u(x,y), v(x,y) such
that the correspondence between (x,y) and (u,v) is one-to-one, and let z(u,v), y(u,v) be the
inverse. Suppose we use (u,v) as new coordinates. Let W be the domain on the uv-plane
corresponding to the window W on the xy-plane. Define the transformed texture density
Au,v) also as a functional by

fW u,v)ih(u,v)dudv---fw(, y) m(x, y) dxdy, (2.6)

where function in-(u,v) is defined by tin(u,v)=m(x(u,v),y(u,v)). Now, consider how the new
density Au,v) acts, as a functional, on a given test function rh(u,v).

First, consider a dot texture. Let points P(ui,vi) on the uv-plane be the images of
points Pi on the xy-plane. Then,

.fwg(zY)m(x,Y)dxdy"-- E m(x, Y)== E m(x(uj,vj),y(uj,v,))= M f'(ui,vi). (2.7)
fWXYmxyddrP,f W P,f W(27

This relation defines the action of density Au,v), as a functional, on the test function
tia(u, v).

Next, consider a line segment texture. Let Li be the line segments on the uv-plane
corresponding to the line segments Li on the xy-plane. Then,

fj( xy)m(xy)dxdy= Z fLm(x,y)V

L,C W

f. m(x( u, v),Y(u, V)) y, u+ z y X2 udv+( ,+yv 2 )

L,c W (2.8

Here, x'=8x(uv)/8u, etc., and ut=du(t)/dt, t*=dv(t)/dt, where (u(t),v(t)) is an arbitrary

:%%
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parameterization of individual line segments. Eqn (2.8) defines the action of density
A u,v), as a functional, on the test function rh(u,v). Hence, we conclude as follows.

Proposition 2.1 (Density Transformation). The transformed texture density Au,v) is
formally given by

A X(u,v),&( u,v)) for dot textures
V/ 2  2) () (Xv 2 + Yv 2 -

+(2.9)

for line segment textures

where its action as a functional is defined by eqns (2.7) and (2.8).

Remark 2.3. For the usual integration of a continuous density, we would have
xzu Yv dd, (.0

fwAX'Y)m(xy)dxdyf -Wx(uv)'( uv))m(z(uv),Y(uv)) dudv, (2.10)

so that we would obtain

In sum, a continuous density is multiplied by the Jacobian, which is the magnification
ratio of "area", whereas a line segment density is multiplied by the elongation ratio of
"length", which depends on the orientation of individual line segments, and a dot den-
sity is multiplied by the increase ratio of "number", which is always unity, since the
number of dots is preserved by a continuous mapping.

3. FIRST FUNDAMENTAL FORM

In this section, we describe the 3D shape of a surface in the scene in terms of the
image coordinates obtained through perspective projection.

PERSPECTIVE PROJECTION

Let us fix a Cartesian xyz-coordinate system in the scene. Let the z-axis be the opt-
ical axis of the camera, and (0,0,-]), the point on the z-axis at distance f from the zy-
plap , be the focal point. We adopt the camera model that a point in the scene is pro-
jected to the intersection of the zy-plane with the ray connecting the point and the focal
point (Fig. 1). Thus, the xy-plane plays the role of the image plane and f is the focal
length. It is easily seen from Fig. 1 that the correspondence between the point (X,Y,Z)
in the scene and the projected point (x,y) on the image plane is given by

fX JY
X- f+' ! f . (3.1)

SURFACE DIFFERENTIALS

Consider a smooth surface in the scene whose equation is Z=Z(X, Y). This equation
coupled with eqns (3.1) determines a one-to-one correspondence between the points in
the scene and the points on the image plane in the form of X-==-x,y), Y=T xy). We

"N-8-



first study how the space coordinates X, Y, Z change on the surface by considering the
relationship among differentials dX, dY, dZ taken along the su-face. Taking the
differentials of both sides of eqns (3.1), we obtain

fdX-xdZ=(f+Z) dx, fd i'-ydZ==(f+ Z) dy. (3.2)

Taking the differentials of both sides of Z=Z(X, Y), we obtain

dZ=PdX+QdY ( Pt:8Z/X, Q-Z/a Y). (3.3)

Eqns (3.2) and (3.3) can be viewed as a set of simultaneous linear equations in dX,

dY, dZ. The solution is obtained in the form

dX=Jf+Z Q (f-Qy)dx+ Qxdy],

dY= f+Z [Pydz+(f-Pz)dy, (3.4)
Af-Px-Qy)

dZ= f+Z [Pdx+Qdyl.
f-Px-Qy

Here, all the quantities on the right-hand sides are viewed as functions of the image
coordinates x, y through

Z---- (x, y), YJ, y)), P=-- (X(, y),Y11 , y)), Q ------ (X , Y))IYX Y)). (3.5)

FIRST FUNDAMENTAL FORM

Consider two points (x,y), (x+dx,y+dy) infinitesimally far apart on the image plane.
Let ds be the 8D distance between the corresponding points on the surface. Since
ds2 -dX 2 +dY 2 +dZ 2 , substitution of eqns (3.4) yields

Proposition 3.1 (First Fundamental Form).
2

ds 2=  gidx'dxi, (3.7)
*-, iJ= I

where x1=2, 2=y and

gll(X')= (1 +Z/j) 2  [(1+p 2)-2Qy/f+(p2+Q2)y2 /f 21,
(I-(Px+QY)/'IV

(1+ Z iA 2 7PQ+(QX+Py)/f-(P2 +Q 2)Xy/f 2 ]=g21 (X,y), (38)g,2( z~~y) ( (Px+ Oy)l/p

-- (1 +Z/A 2 _(1 + Q2)-2px/f+(P 2-- Q2)x 2 /f 21.
(1-(PX+Qy)/f)2

Eqn (3.7) is called the first fundamental form and g=(gi,) is called the first funda-
mental metric tensor. The first fundamental form of eqn (3.7) indeed plays a fundamen-
tal r _- in computing 3D quantities in terms of the image coordinates. For example, con-
sider an arbitrary smooth curve L on the image plane. The true arc length of the

-7-
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corresponding curve on the surface is given by integration f ds=f - g on
the image plane. 

L L ,

Consider an infinitesimally small square on the image plane defined by four points
(x,y), (x+dx,y), (x,y+dy), (x+dx,y+dy). The area of this square on the image plane is
dxdy, but it is easy to show that the true area of the corresponding region of the surface
is given by v'dfet(g)dxdy. From eqns (3.8), we obtain

---- I1-tp 2 Q (1+ Zlf)2 . 39

1-(Px+Qy)/f (39)

Hence, the true area of the region of the surface corresponding to a region S of the image
plane is given by integration fSv/dt(g)dxdyon the image plane.

The first fundamental form makes it possible to express various other 3D geometri-
cal properties such as angle, Levi-Civita parallelism, geodesics and surface gradient in
terms of the image coordinates (Appendix A).

PLANAR SURFACES

If the surface is a plane given by equation Z=pX+qY+r, where p, q, r are con-
stants, eqns (3.1) can be solved for X, Y in the form

X (f+r)x y (f+r)y Z. Apx+qy+r) (3.10)
' f-px-qy ' f-px-qy ' f-px-qy (10

Since 1+Z/f=(1+r/f)/(1-(pz+qy)/J), eqns (3.8) and eqn (3.9) become as follows:

rf(y)= [ip 2-2qy/f(p 2 q2 )Iy2 /f ],

(1-(px+qy) /Y)4

g1 2(xy)' (1 + rf) 2

g"zy - [l/) f+q 2-2px/f+(p2 +q2 )x 2/f 2],(1-(px+qy)/) 4

1 + q(1 +r/2

r.. ( 1-{px+ qy) /j)3

4. RECOVERY OF PLANAR SURFACE ORIENTATION FROM TEXTURE

In this section, we consider a principle to compute the surface shape by observing
an inhomogeneous texture density ftx,y) on the assumption that the true texture is
homogeneous. We must first study what ix,y) looks like if the true texture is homogene-
ous Since the texture density is defined as a functional, what we need to know is how
the observed density Ax,y) acts on a test function m(x,y) as a functional. Then, we

.derive the basic equations to determine the surface shape in term of observables corn-
puted on the image plane.

DISTORTION OF HOMOGENEOUS TEXTURE

Consider temporarily a curvilinear coordinate system (u,v) on the surface and
assume a one-to-one correspondence u=u(xy), v-v(z,y) and -=x~u,v), y- u,,). Let 1V0
be the region of the surface corresponding to the window 4' on the image plane, Let
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fo(u,v) be the homogeneous texture density defined on the surface, and let
mo(u,v)mrn(z(u,v),(u,v)). According to the assumption of homogeneity, we have

fwfo( u,v) u, v) dS0 :cfwrnlo( uv) dS0, (4.1)
where dSo is the area element of the surface.

Consider how eqn (4.1) is expressed in terms of the image coordinates x, y. Since
the right-hand side is the usual integration and dSo=v'det(g)dxdy, it becomes

cfWm(x,y)V' e(g)dxdy. (4.2)

The transformation of the left-hand side depends on whether the texture consists of dots
' or line segments.

For a dot texture, the right-hand side is written, according to Proposition 2.1, as
G.E rn( z, yj)(= f,,Xx,y)m(x, y)dxdy), (4.3)

P't W

which can be computed readily on the image plane.

For a line segment texture, the right-hand side is written, in view of Proposition 2.1
and ds"=- -V/y,7j-- gjidx dJ, as

E Lm(x,y)r(x,y)N d, (4.4)

L,C W (
where

t,/ Vg 1 1x2 +2g 12 y-+g 22y1 (4.5)

is the elongation ratio of the line segment at (z,y), which depends on the orientation of
the line segment.

The difficulty is that we cannot compute this integral on the image plane unless we
know the first fundamental form, which is dependent of the surface shape. Here, we
adopt the approximation

' r(x, / .y) (4.6)

The interpretation is that the line segments are distributed nearly isotropically, so
" that if the area is enlarged /det(g) times, the individual line segments become roughly

( v'et))/ 2 times as long. Then, regarding m(x,y)F(x,y) as a new test function m(x,y),
we can treat both dot textures and line segment textures in the same way. Namely, if
we compute, as an observable, integration

J=f Ax,y)m(zy)dzdy (4.7)

of a test function m(x.y) over the window W, we obtain the relation
.pz c f w m( , y) (\/ e t)) dxcdy, (4.8)

where c 1 for a dot texture and tc=1/2 for a line segment texture.

Remark 4.1. Eqn (4 8) is interpreted intuitively as follows. Consider a small region S
on the image plane, and let So be the corresponding region on the surface. For a dot

h'" -



texture, the number of dots in S is equal to the number of dots in So , while the area of S
- is 1/dv'de'(g) times that of S0 . Hence, the texture density in S is ,/det(g) times that in

So. For a line segment texture, if the true texture is nearly isotropic, the total length of
the line segments in S is approximately 1/(v/dt(g))1/2 times that of S0 . Since the area of
S is 1/v/dt(g) times that of So, the texture density in S is (V'et))12 times that in So.

GENERAL PRINCIPLE OF SURFACE RECOVERY

Our principle of surface recovery is as follows. Let the object surface be parameter-
ized so that the procedure reduces to parameter estimation. Then, the right-hand side
of eqn (4.8) is a known form in unknown parameters. If we appropriately provide test

. functions mo(z,y), ml(x,y), mo(x,y) ... , we can compute the corresponding observables J0 ,

J1, J,, ... by summation or integration on the image plane. As a result, the necessary
number of equations are obtained in the form of eqn (4.8) to determine the parameter
values.

BASIC EQUATIONS FOR PLANAR SURFACES

The simplest case is when the surface is a plane. If we replace the approximate
* equality in eqn (4.8) by equality, assuming that the true texture is sufficiently homogene-

ous, we obtain from eqn (3.12)

1 +r) 2vf, m(x,y)dzdy (4.9).:. ',J--c~xl~p-°+ ) (l )'f(l_(pxr+qy)/J)3,

*," Now, provide three test functions mo(x,y), m1 (x,y), m.(x,y), and let Ji, i-0,1,2, be the
corresponding observables. If we consider ratios J1Jo, L/Joi, dropping off the common

factor c(V1-p'+q2 )'(1--r, /,j)2,, we obtain the following equations.

Proposition 4.1 (Basic Equations). The surface gradient (p,q) is determined by solving

fly m'X , y)-(Ji,/ JO) m° (z, y) dzd=0O, i=1,2. (4.10)
(1(px- qy)/j 3 -

Remark 4.2. Eqns (4.10) are the basic equations to determine (p,q) and can be solved
in principle, say by iterative search in the pq-space. Evidently, three test functions are
enough to determine the surface gradient. However, we can also employ many more test
functions and determine (p,q) by some fitting scheme (cf. the method of Dunn !91 recast
in Section 9).

SMALL GRADIENT APPROXIMATION

Suppose the surface gradient (p,q) is close to zero compared with the focal length f
of the camera, so that pxqy<<f in the window I. Since pxIqy=f is the vanishing line
or "horizon" of the surface (V hI(g) of eqn (3.12) becomes 00 there), our assumption is
that the image in the window W is not near the vanishing line. (If the vanishing line

. h. ppens to be observed on the image plane, its equation p'4qy- f immediately tells us
the gradient (p,q).) If px-qy<<f, the Taylor expansion around the origin yields

.10*1 -10o-
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.'-'., (1(px~ Y)/J 3  ----f- (px+ qy)+ ( ,1

(l-(px+qy)j)SK, f
If we put

f L =f Wm(z,y)dxdy, MiA fwvx{ ,y)dxdy, N=fymj(zy)dxdy (4 12)

for i0,1,2 and neglect higher order terms, the basic equations (4.10) reduce to the fol-
loin linear equations in p, q:

[Ml-(Ji/Jo)Mo N-( Ji/Jo)No - f [L-(J/Jo)L 0]

L 2 _-(J,/Jo)1 fo N 2 .J 2 / J) No] L2  (J 2IJo)Loj . (413)

A simple choice of the test functions m,{x,y), i=0,1,2 is

m 0(z,y)=1, m 1(z,y)=x, m(x,y)=y. (4.14)

Then, J1iJo, JI/Jo are nothing but the coordinates of the center of gravity of the texture
inside the window W. If the window W is a rectangle defined by -a<x<a, -b<y<b,
the solution of eqns (4.13) is written as

.p x i tc a 2 ,  q 'y c b2 ,  (4 .15 )

where (y) is the center of gravity of the texture in the window I. If (p~q)=(O,O), i.e., if
the surface is viewed orthogonally, the center of gravity of the texture coincides with the
origin. Otherwise, the orientation and the magnitude of the "shift" of the center of

- gravity of the texture gives the surface gradient (p,q).

Remark 4.3 The accuracy of the result depends on both the number or length of the
texture elements observed in the window Wand the distribution pattern of those texture
elements. Let N be the number or the length of the texture elements in the window W.
The rule of thumb is that the error is approximately proportional to 1/ V/ when the tex-
ture is completely random and is approximately proportional to 1/N when the texture is
very regular and periodic (cf. Appendix A). Textures we often encounter in natural
scenes and man-made objects are usually regular and periodic "tessellations", for which
high accuracy is expected.

5. SCHEME OF ITERATIVE CORRECTION FOR PLANAR SURFACES

The method in the previous section is based on the assumption that the gradient
(p.q) is close to zero. There exist methods which can be applied when the gradient is not
small. The first method is based on the following observation.

GENERAL PRINCIPLE

Suppose the camera is rotated by a certain angle around its focus relative to a sta-

tionary scene. As a result, a different image is seen on the image plane However, since
a point on the image plane actually corresponds to a "ray" in the 3D scene, occlusion is
not affected by camera rotation. If the angle of camera rotation is known, the original
image can be recovered as long as the effect of the image boundary is not involved. An

* .'. important fact is that the image transformation due to camera rotation does not requre
any knowledge of the 3D scene.

I -



Suppose the camera is rotated by an orthogonal matrix R=(r1 ). The rotation of
the camera by R is equivalent to the rotation of the scene by R-i(=RT). By rotation
RT, a point (X, YZ) moves to a point (XY,,), where

r21 r T3 rL h
X 12 r22 r32 l+X (5.1)

-fik_ r13 r23 r 33

This point is projected onto (i, ) on the image plane, where i-=fX/(f+2), --.fY/(f+2).
Combining this with eqns (3.1), we obtain the transformation rule

r 1 1 x+r 2 1 y+r 31 f r 1 2 z+r22Y+r 3[t- ~_ V-Jfrl r2Y r3 "  (5.2)

rl3Xr23y+ra3f' rl3x+r23Y+r33f(5

Suppose the surface gradient is not small. We first apply the method in the previ-
ous section. Let (Tq) be the computed gradient. This estimation may not be accurate.
Now, suppose the camera is rotated in such a way that the estimated surface becomes
parallel to the image plane. As a result, the gradient of the true surface becomes small,
so that the method in the previous section can be applied again. Let (fi,4) be the com-
puted gradient. If this newly estimated surface is rotated back into the original camera
orientation, the obtained gradient (p ',q I) must be a better estimate. This process can
be applied repeatedly until no further improvement is obtained. This is the basic con-
cept of the iterative correction scheme by camera rotation.

We should note first that the camera need not actually be rotated. Since the image
transformation due to camera rotation is given by eqns (5.2), the transformed image
jAi, ) can be obtained by computation. However, we should also note that the
transformed image need not actually be computed. This is because all we need to do is
apply appropriate test functions m(i,j) and integrate them over the image. Since the
transformation is explicitly given by eqns (5.2), the variables of integration can be
changed so that the integration can be done over the original image. In other words,
instead of integrating the test functions m(i,j) over the transformed image Ai-, ), we can
equivalently integrate the transformed test functions Mi(z,y) over the original image

A x,y). Consequently, our iterative correction scheme is performed by iteratively modify-
ing the test functions, not the image.

CAMERA ROTATION SIMULATION

Let (',-q) be the initial estimate of the gradient. In terms of the surface unit normal
vector n=(nl,n2 ,n3), this means

. 2 n.2- 2 3 (5.3)

This vector makes angle

Z=cos-l n3 (5.4)
with the unit vector k =(0,0,1) along the z-axis. The unit vector normal to both n and k
is given by

kX n - (5.)

- 12 -
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If the camera is rotated around the vector I by angle Q screwwise, the estimated
surface becomes parallel to the image plane. The corresponding rotation matrix is given
by

r1l r 12 nl
R= r 12 r 22  , (5.6)

Ln1 -n

where
- 2 -2 -n 3 -1) _T_2 2

- _2 n3 j_ (5.7)

Hence, the image transformation is given by

. rUx+ rl2y-nf rl2 z+r22y-nof
rnx -nl'f' nlx+n2 y+nJa (5.8)

and its Jacobian is

i. iY n1 (~)n~x,y)-n.J"Q"" A " z= nl-;(x'y)+n,[()-X f (.5.9)

.z Y (nlx.n 2 y+n~J2

% The transformation of eqns (5.8) maps the origin (0,0) into point (jpfj. If the ori-
%ginal image is restricted to a window W around the origin, the transformed image is also

restricted to the corresponding domain W around point (fp,fq). Let (M) be the true gra-
dient of the transformed surface. The Taylor expansion around point (f',fJ) yields

(1_(pi+ -))3 (lj70_ _) 3g (1+A(i-f)+B(u-fj ))+ ), (5.10)

where

A- 3,f B= . (5.11)

If eqns (5.10) are substituted, the basic equations (4.10) become.. I...... I-l  [ ]_ .,
,M~( J./Jo)Mo NJ.-(J./o)NoJ[$~[LI /b (5.12)

1Vf2-( J2 / J)M0 N2 .( J21J) L2)-( J2 /1J)L 0

where

jj= fw m, z-, {.-, -) dXd , (5.13)

L, =fi M'1 i, 4) didy, Xfj~=f ,( -fpl m,( x, y) dxidy4, 'N1 =f. ,-fqj rrz{ ., Y-) di-d Y, (5 14)

and ]iy) is the transformed texture density.

Once A, B are determined by solving eqn (5.12), the gradient (P,4) are determined
by solving eqns (5,11), which are rewritten as

-13-



[ A~3ic/ A~ [~1 [Al(5.15)
Bp- .Bq+3tc/fJH 1BJ

If the computed gradient (pt,l) is sufficiently close to zero, the initial estimate is
correct. Otherwise, the camera is rotated back into the original orientation, and the sur-
face gradient is transformed into

r1 1p+r 12q-n7 t r12P+r2 2 q-n 2  (5.16)

= q (516nl + n2+%n nj + ri+ n3'

These values are better approximations to the surface gradient. This process can be
iterated by setting '--p ', ;'-q ' and repeating the previous procedure until convergence.

COMPUTATION ON THE ORIGINAL IMAGE

Consider how to compute eqns (5.13) and (5.14) without actually transforming the
image. For a dot texture, we see, from Proposition 2.1, that if we put

,nX x, y)--_ m, i(x, y), X(x, y)), i--0,1,2, (5.17)

we obtain

h= E riz,{x,y). (5.18)
Pf W

Thus, computation can be done on the original image.

For a line segment texture, we also see, from Proposition 2.1, that

ii=. . f Lmjx,y) "/E(x,y)dx2 +2F(z,y)dxdy+G(x,y)d:', (5.19)
LC W

where

E, )i 2 +- 2 =f 2 1 +j n 1 (i(X'Y) 2-+~XX, y)2 -1 )-2ni(r1 1 iz, y)± r12X(z, ))(nlx+ n 2Y+ r J)2

"-f 2 njl n 42 ( X ' y ) 2 + X
X

' y ) 2
_

- 1 ) - n l ( r 1 2' ( X ' y ) + r 22 X ' y ) ) - n 2( r 1 1  ( x ' y )+ r 12 XX Y ) )  (520)

(nlx+n 2y+n) 2

G( Xy)_iY2 + v2 =f 2 1 + n2
2(i(x,y) 2+ x, y)2 -1)-2n(r 12x(x,y)+r 22(X,Y))

(nlx+n2y+ n3J)2

Thus, computation can be done on the original image.

Eqns (5.14) are, on the other hand, integrations of continuous functions. Hence, we
immediately obtain

Lj=f~rtz1 {z,y) Ax, y)dxdy,

Mi=fw ( x,y)--p)h ( z,y)J( x,y)dxdy, (5.21)

- 14-
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These are computed by a numerical integration scheme.

Remark 5.1. Eqn (5.19) is a rigorous relation. A simple approximation is given,
corresponding to eqn (4.6), by

J,-L, . nxCWLJ_(yVd+y (5.22)

ALTERNATIVE METHOD BY TAYLOR EXPANSION

The method described above is somewhat complicated. There exists an alternative
scheme whose formulation is simpler. Suppose (p,-q) is an initial estimate. We replace
eqn (4.11) with the Taylor expansion with respect to (p,q) at (n7,q):

1 =L(x,y)+Mx,y)6p+NAx,y)6q+ " (5.23)~~~( l_(px+ qy) /)p €

Here, 6p~p-'7, 6q=q-and

i(x,y) A 3(5.24)j7( X+ y)/j) 3 ,, + 1

Uiy,',4 N a:,y) -- j_(p.X+T y)/13,c+ l

, Then, the basic equations (4.10) become

* [M1-( J/ Jo)M 0 gN1 J,/J)g0 _-(JJ)N0 /J0)L
LM(,J/ Jo)M ° N2-( J2 o )N6J d LL2-(J2 JO)l

where

L--fwm,(z,y)L(x,y)dxdy, M=fwm,(x,y)Mx,y)dxdy, Ni=fwm, x,y)PAx,y)dxdy, (5.26)

for i=0,1,2. If 6p, 6q are sufficiently close to zero, the initial estimate is sufficiently accu-
rate. Otherwise, p '=+6p, q '=T+bq are better approximations. This process can be
iterated by setting p.-p ', q---q ' and repeating this procedure until convergence.

Remark 5.2. This method is essentially the Newton-Raphson iteration of the basic
equations. Although this method seems simpler, the geometrical meaning of functions
M(x,y), PMx,y) is not clear, while the method of camera rotation has a clear geometrical
meaning. In addition, the method of Taylor expansion still involves the approximation
(4.6), while the method of camera rotation is not so much affected by that approxima-
tion; the texture image is exactly transformed (cf. eqns (5.18), (5.19)) repeatedly so that
the true surface becomes more and more parallel to the image plane, and in the limit of
p-.0, q-*0, the approximation (4.6) reduces to a trivial identity.

15-4"
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6. PRINCIPLE OF CURVED SURFACE RECOVERY FROM TEXTURE

Eqn (4.13) can be applied even if the surface is not planar if we choose windows of
an appropriate size so that the surface is approximately planar in each window. Then,
eqn (4.13) gives the gradient (p,q) for each window. Thus, the global 3D shape of an
arbitrary smooth surface can be recovered in principle. Another approach to curved sur-
faces is to use a surface model. Assume, for example, that the equation of the surface is
given by

Zzr+pX+qY+aX 2+2$XY+"yY 2. (6.1)

BASIC EQUATIONS FOR CURVED SURFACES

If the surface is planar, the observed texture inhomogeneity is solely due to the per-
spective distortion, whereas if the surface is curved, the inhomogeneity is due to two
separate sources - the perspective distortion and the varying gradient. In other words,
inhomogeneity is not observed for planar surfaces if the projection is orthographic, i.e.,
f-oo, while for curved surfaces inhomogeneity results even if the projection is ortho-
graphic. Here, let us consider orthographic projection. Letting f'-.oo, we obtain --X.
y- =Y and

\, g= +p2+ 1q2\/1+Alx+A2y+Ax2-_42A 4xy+Asy2, (6.2)

where
4(ap Oq) 4(/3p+-yq)

Al 1 4±p2+q 2  A 2= (6.3)

A -4(0e+i32) A 4 0/(a+-1) 4A 3+_2 (63

"+p2 1q2  2 +p2± 1p + 2

Since v/l+p +q 2 drops off when the unknown true texture density c is eliminated,
all that can be determined are parameters A,, i---- .. ,5, which we call texture density
parameters. Consequently, we cannot distinguish surfaces which have the same values
for the texture density parameters A,, i=1,...,5.

If we provide six test functions m0(x,y), ..., ms(x,y) and compute as observables

Ji---fwx,y)m,{x,y)dxdy, i--,1,...,5, (6.4)

the basic equations are, instead of eqns (4.10), given by

Proposition 6.1 (Basic Equations). The texture density parameters are determined by
solving

Ji
fw(m,(xy)-(..o)mo(x,y))( yl+Alx+A.2y+A32+2AXy+Asy- ) dxdy--O, i=1,..,5. (6.5)

Thus, six test functions are enough to determine the texture density parameters .,4,
i=1,...,5. Of course, we can use many more functions and determine the surface param-
eters by some fitting scheme.

*: - 18-
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INTERPRETATION OF CURVED SURFACES

Once the texture density parameters A,, i=l,...,5 are obtained, the surface parame-
ters p, q, a, /, -y are determined by solving eqns (6.3). The solution is given as follows
(see Appendix B for proof).

Proposition 6.2. The surface parameters p, q, a, 3, -y are given by

p=kO, q-=k, a=ka, 3=k,3, y =k. (6.6)

Here, 6t, y3, are given by
- A 3-As - A4  A 3-A 5-~r 18--7- =- 'y =r- (6.7)

16-r ' Sr 16r

where

Isml r -+l/z3+z5+2v/Z3Zs5-a_4.  (6.8)

.4V Then, p-, q- are given by

A- -3A, -fA 1+&A "  (6.9)

4( &-324) _2

and k is given by

k 1- (6.10)

AMBIGUITY OF INTERPRETATION
eFrom eqn (6.8), we see that there exist at most four solutions. This is an essential

characteristic of orthographic projection. Firstly, the projected image is not affected if
we take the mirror image of the surface with respect to a mirror perpendicular to the z-
axis. The four solutions consist of two pairs of mirror images. Another ambiguity
occurs because the texture density only tells about the amount of surface inclination (or
the slant) but not the orientation of the inclination (or the tilt).

Suppose the surface is not a plane, i.e., parameters c, 3, ' are not zero at the same
time. Still, there exist two exceptional cases (cf. Appendix C):

Case 1. If the surface has two principal curvatures of equal magnitude, parameters &, 3,
y are indeterminate (i.e., parameter r of eqn (6.8) becomes 0). In this case, we cannot
tell whether the surface is elliptic (i.e., the Gaussian curvature is positive) or hyperbolic
(i.e., the Gaussian curvature is negative).

Case 2. The four solutions for parameters &, /3, -t (two mirror image pairs) degenerate
to two solutions (one mirror image pair) if and only if the surface is parabolic, i.e., the
Hessian a-y-,32 is zero (and hence the Gaussian curvature is also zero). In this case, the
inner square root of eqn (6.8) becomes 0.

Remark 6.1. Parameters p, q describe the gradient of the plane tangent to the surface
at (0,0,r). They are indeterminate only in the above two cases. In Case 1, parameters

- .-17-
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S&, , " are indeterminate, so that p, q are also indeterminate. In Case 2, parameters &,
/-, 2y are uniquely determined except for sign. However, the term &yY- 2 in the denomina-
tors of eqns (6.9) become 0. Still, we can determine the ratio p:q, which indicates the
asymptotic direction or the "ridge" of the surface. The fact that the gradient along the

-, asymptotic direction is indeterminate is easily understood from the orthographic nature
of the projection; the texture density is always constant along this orientation all over

, -the image plane.

*7. ALGORITHM OF CURVED SURFACE RECOVERY FROM TEXTURE

Now, we consider how to solve the basic equations (6.5) numerically.

FIRST ORDER APPROXIMATION

If the window W is small and is located at the center of the image, the Taylor
expansion in x, y yields

4 (i, AVI z+Ay+A3x2+2A 4xy+A 5y2)-I+Ax+By+Cx 2+Dxy+Ey2+..., (7.1)

where

A=2PCA,, B-=-A2,

2 2'-
(7.2)

,t° C xtA+x-2 A2, D.=t(A4+ -2AIA ) E-2_A A2).
C=-D('c(Al 4+-A 2A), E=-(A,+-A0)

2 4 4 2 4
If we put

Li=fwm,( x, y) dxdy, M=fwzm,(x, y)dxdy, Ni=fwym,( x,y)dxdy,~(7.3)

Ri=fw 2 m,{x,y)dxdy, Si=fwXymf{x, y) dxdy, Ti=fWy2 m,( z, y) dxdy

for i=0,1,...,5 and neglect higher order terms, the basic equations (6.5) become
JM1-(J1/Jo)M o N1-(J1/Jo)N o R1-(J1/Jo)Ro S1-(J1/Jo)So TI-(Jl/Jo) To

M0-( J2/ J°)M° N 2-( J2/ J°)N° R2-( J2/ J0 )R0 S2-( J2/ °)S° T2-( J2/ J°) To I

M3 -(J 3 /J 0 )M0 N 3-(J 3/Jo)No R3-(J 3/J 0 )R0 S3-(J 3/Jo)So T3-(J 3/ Jo) To C

M4-(J 4 /J0 )M N 4-(J 4/Jo)No R 4-(J 4/J 0 )R0 S4-(J 4/Jo)So T4 -(DJ4/J) To

M5-( / J0 )oW0 N 5-( J/ Jo)No R5-( 1/ J0 )R0 S5-( J5/ Jo)So T5-( J5/ S T0

L-( JI/J0)L 0
5.,, L 2-( J2/ J°)L0

-- L3-(J 3 /J o )Lo (7.4)
L4-( j4/ Jo)L0

V L5-( J5/ J)L I

V Once A, B, C, D, E are obtained by solving eqns (7.4), the texture density parame-
* ters Ai, i=1,2,..,5 are determined from eqns (7.2) by

- 18-
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2 2

(7.5)Az=-2C- 2 A , 'D AB, A 2 E_-'
K K 2-K c .K 2

ITERATIVE CORRECTION BY TAYLOR EXPANSION

The iterative correction scheme by Taylor expansion described in the last part of
Section 5 can be applied to curved surfaces as well. Let A', i-1,...,5, be the initial esti-
mates for the texture density parameters. The Taylor expansion at these values yields

.4 5

(y/I+Alx± zA 2y+A3 "+2A4xy+A5 sy2 )C=mo(x,y)+ m,(z,y)6 A+ . (7.6)
i.=l

where MA8 A-AXA, i--1,...,5, and

m(x,y)=( ,'1+ix±X2y++3x2 +2A 4xy+sy7)c,

2 (1+Tlx+X2 y+X3z+2X4 xy+Xsy5)I-/ 2

M(,Y K _ _ _ _ _ _ _ _ _22xY: (1l ._Xl x..T y+k_3r'24 xy+,_ sy2)lx

K X2 (7.7)
m3( 2 (1+X l x4X2 yT 3x2 2T 4xy+T 5 y2)l- 2  77'

2xy;..m4(X,Y)= " )-/2
2 (1 +iT zX 2 ±Xx2T xy+7 5y)K 2

2 (1 +X, x+gy+,X'+2+4 xy± 5 y2 )'-

If we use as the test functions these m,(x,y) themselves and put

J=fwAx,y)m,{z,y)dxdy, i=0, 1,.. .5, (7.8)

Mi=fwm,0,y)mj{z,y)dzdy, i,j=0,1,...,5, (7.9)

the basic equation (6.5) becomes
:',, A,; ][6Ajj= -[bil, (7.10)

where

Aj--Mjj-(J/J 0 )Mj, bj=M 0 -(Ji/J)yVf0 o. (7.11)

If all 6A1 , i=1,...,5, are sufficiently close to zero, the initial estimates are sufficiently
• e. accurate. Otherwise, A/!=Xi+6A i are better approximations. As before, this process can

be iterated by setting A,4-Ai' and repeating this procedure until convergence.

.1,
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8. EXAMPLES OF COMPUTATION FOR SYNTHETIC IMAGES

Figs. 2 - 5 show texture images on a planar surface. We take the focal length f to
be the unit of length. The window size is a=b=ftanl0°=0.176f. (The window is a rec-
tangle of size 2aX2b.) The camera axis is assumed to pass through the center of the
square window. The true gradient is (p,q)=(1.500,0.866) for all the figures.

REGULARLY ALIGNED DOT TEXTURE

Figs. 2a - 2c show projected images of regularly aligned dot textures on a planar
surface. If we use m0(z,y)=1, mj(z,y)=z, m2(,y)=y as the test functions, i.e., if we
compute the center of gravity of the texture, and iteratively correct these values by the
method of camera rotation with m0(,y)=1, mj(x,y)=z-fp", m2(x,y)=y--j- , we successively
obtain (p,q) as follows.

Fig. 2a Fig. 2b Fig. 2c

1 (1.459, 1.088) (1.610, 0.965) (1.548, 0.958)
2 (1.402, 0.939) (1.552, 0.875) (1.499, 0.871)
3 (1.397, 0.937) (1.548, 0.871) (1.496, 0.867)
4 (1.397, 0.937) (1.548, 0.871) (1.496, 0.867)

If we apply the method of Taylor expansion to the same initial estimates with
m0(x,y)=L(x,y), ml(x,y)-M( x,y), m2(x,y)=N(x,y), we obtain

' Fig. 2a Fig. 2b Fig. 2c

1 (1.459, 1.088) (1.610, 0.965) (1.548, 0.958)
2 (1.549, 0.767) (1.549, 0.897) (1.499, 0.869)
3 (1.527, 0.816) (1.542, 0.887) (1.496, 0.864)
4 (1.529, 0.807) (1.541, 0.887) (1.496, 0.864)

RANDOM DOT TEXTURE

Figs. 3a - 3c show random dot textures on a planar surface. If we compute the
center of gravity and use the method of camera rotation, the successive estimates of the
gradient (p,q) become

1Fig. 3a Fig. 3b Fig. 3c

1 (1.558, 0.798) (1.662, 0.945) (1.535, 0.974)

2 (1.505, 0.695) (1.617, 0.843) (1.493, 0.891)
3 (1.504, 0.694) (1.613, 0.840) (1.491, 0.888)
4 (1.504, 0.694) (1.613, 0.840) (1.491, 0.888)

while the method of Taylor expansion yields

Fig. 3a Fig. 3b Fig. 3c

1 (1.558, 0.798) (1.662, 0.945) (1.535, 0.974)
2 (1.422, 0.560) (1.674, 0.832) (1.527, 0.899)

3 (1.434, 0.583) (1.667, 0.834) (1.525, 0.897)
4 (1.430, 0.578) (1.667, 0.834) (1.525, 0.897)

-20-
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REGULARLY ALIGNED LINE SEGMENT TEXTURE

Figs. 4a - 4c show regularly aligned line segment textures on a planar surface. If we
compute the center of gravity and use the method of camera rotation, the successive
estimates of the gradient (p,q) become

Fig. 4a Fig. 4b Fig. 4c
1 (1.603, 0.994) (1.762, 1.048) (1.751, 1.045)
2 (1.379, 0.747) (1.534, 0.899) (1.527, 0.893)
3 (1.352, 0.756) (1.505, 0.875) (1.500, 0.869)

4 (1.351, 0.758) (1.504, 0.874) (1.499, 0.869)

while the method of Taylor expansion yields

Fig. 4a Fig. 4b Fig. 4c
1 (1.603, 0.994) (1.762, 1.048) (1.751, 1.045)
2 (1.569, 0.893) (1.672, 0.960) (1.666, 0.958)
3 (1.568, 0.893) (1.669, 0.956) (1.663, 0.954)

4 (1.568, 0.893) (1.669, 0.956) (1.663, 0.954)

RANDOM LINE SEGMENT TEXTURE

Figs. 5a - 5c show random line segment textures on a planar surface. If we com-
pute the center of gravity and use the method of camera rotation, the successive esti-
mates of the gradient (p,q) become

Fig. 5a Fig. 5b Fig. 5c
1 (2.821, 0.602) (2.196, 0.768) (2.006, 0.910)

2 (2.275, 0.372) (1.906, 0.590) (1.710, 0.722)

3 (2.088, 0.271) (1.856, 0.559) (1.660, 0.684)
4 (2111, 0.275) (1.856, 0.559) (1.661, 0.684)

while the method of Taylor expansion yields

Fig. 5a Fig. 5b Fig. 5c
1 (2 821, 0.602) (2196, 0768) (2.006, 0.910)
2 (2.477, 0.238) (2.033, 0.561) (1.825, 0.787)

3 (2.447, 0.257) (2.022, 0.567) (1820, 0.781)

4 (2.445, 0.258) (2.022, 0.567) (1,820, 0.781)

TEXTURE ON A CURVED SURFACE

Fig. 6 is an orthographic view of a regularly aligned dot texture on a quadric sur-
face Here, we take the window size a(=b) to be the unit of length. The true parame-
ters are (cea,/3a,-fa)=(2,0,O). (Note that parameters a, 3, -1 have dimensions of 1/length.)
In this case, as discussed in Section 6, parameters p, q are indeterminate, but parameters
or, 3, -1 are uniquely determined except for sign. If we use the method of Section 7 with
1, x, y, r-, zy, y2 as the test functions for computation of the initial estimate and apply
the method of Taylor expansion, the successive estimates of (aa,9b,'ya) become
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Fig. 6
1 (0.494, 0.000, -0.007)
2 (1.066, -0.000, -0.009)
3 (1.632, -0.001, -0.008)
4 (1.929, -0.001, -0.006)
5 (1,991, -0.001, -0.006)

OBSERVATIONS
We see that our methods can produce fairly good results. In particular, our method

can be applied to very sparsely distributed textures. For very sparse textures, the
method of Taylor expansion gives more accurate results than the method of camera rota-
tion. Otherwise, both of them yield almost the same results for dot textures, but for line
segment textures the method of camera rotation predicts more accurate results than the
method of Taylor expansion, as is expected (cf. Remark 5.2). The convergence is very
rapid for both methods. Only two or three iterations are necessary to determine the gra-
dient up to two decimal places, and three or four iterations up to three decimal places.

On the whole, the results are better for dot textures than for line segment textures.
This is easily understood because a line segment is a coalescence of constituent points in
a restricted way, so that the degree of homogeneity is lower for line segment textures
than for dot textures in general. On the other hand, the results are far better for regular
textures than random ones, as is also expected. This is not a drawback; natural or
man-made textures we often encounter are usually "tessellated" to a high degree of regu-
larity. The random texture shown here can be regarded, in a sense, as the "worst" case
(c' Remark 4.3).

9. COMPARISON WITH OTHER METHODS
Let us compare our method with those of Aloimonos and Swain [8] and Dunn [9].

Both proposed schemes of surface shape recovery from texture based on the geometry of
perspective projection and the assumption of texture homogeneity. However, direct
comparison is difficult because their derivations are based on different concepts and
different assumptions. Therefore, we now newly derive, in our setting, those schemes
which are essentially equivalent to (or actually better than) theirs.

METHOD OF ALOIMONOS AND SWAIN

Consider three circular regions So, S1, S2 on the image plane with centers (x0,Y0),
(xl,yi), (zx2,y2), respectively. Assume that they are sufficiently small compared with the
size of the window W, yet the texture is sufficiently dense, so that each region contains a
sufficiently large number of texture elements. Consider, as observables, the integrals

i~~ l, ~, y) dxdy, i----, 1,2. .1

*Since each region Si contains a large number of texture elements, these integrals can be
approximated, according to eqn (4.8), by

I, cf,(det(g) dxdy. i=0,1,2. (9.2)

This is equivalent to choosing as the test functions m,{z,y) the characteristic functions

- 22 -



,(s,(x,y) of regions Si (cf. Remark 2.1). On the other hand, each region Si is sufficiently
small, so that the integral of eqn (9.2) can be replaced by the area Si times the value at
the center (zi,yi), i.e.,

Tfsu s-, frpg))an dxdy S,( Vd e(g)) lX,, ,. (9.3)

Thus, for a planar surface, the observables I are approximated by
I, cS,(Vl+P )(l+r/!' i=0,1,2. (9.4)

'(l-(PX,+qYN)

*As a result, the basic equations (4.10) reduce to

1 s 3 c1 s 1 3 c1 l K

(9.5)
*' '11 1

n n ISo 3c 12So 1 31c 12 0 -2" y2 -1),

from which the gradient (p,q) is determined. This is essentially the method of Aloimonos
and Swain (8]. They also tried recovery of curved surfaces, using a numerical relaxation
scheme.

Thus, their method requires that the texture be locally homogeneous in the sense
.' that the texture is sufficiently dense and the homogeneity condition is satisfied in arv

small region S (of an appropriate size). Furthermore, a very crude approximation like
eqn. (9.3) is used. In our formulation, however, the texture need not be locally homo-
geneous. Some of the textures shown in the previous section are not locally homogene-
ous, so that application of the method of Aloimonos and Swain [81 is difficult. For our
method, the homogeneity condition is required only over the entire window W, and the
integration is exactly performed over all the texture elements in the window W.

METHOD OF DUNN

Dunn 19I, on the other hand, considered a narrow strip S of width 6 and length I
along line x cosO--y sinO=p. In our formulation, this process is regarded as integration of
the texture density over the strip, i.e., integration of the characteristic function s(x,y)
of the strip S as the test function m(x,y). Take a new x 'y '-coordinate system by rotat-

ing the xy-coordinate system counterclockwise by 0 (Fig 7). Line x cos9-4-y sin9=p now
becomes x '=p in the new coordinate svstem. Consider, as an observable, integration of
the texture density over the strip S (i.e., integration of the characteristic function ,(Sixy)
of the strip S as the test function m(x,y)):

1/2 P-612

K(p.OV= f f A, y) dx 'dy. (9.6)
1/2 P_6/1

If there exist a sufficiently large number of texture elements in the strip S. tie observ-
able IX'j),O) is approximated, according to eqn (4.8). by

hp );rr fp dJ'd tlg))dx 'dy'1 (97)
1 2 p-, 2

If th, -tpproxinat in 1 l is used for a planar surface, this becomes
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K(p,0),---c61(,/Tp'+-q7 ) (1+-rj) "K(+3K(p cosO-r-q sin0)p j.(

As before, if Ki=K(pi,j), i=0,1,2, are computed for three pairs of (p.0) (i.e., for the
characteristic functions <s,(x,y) of the strips Si as the test functions m,{zy)), the basic

equations (4.10) reduce to
( 9  Kol 0 \oK 0  Kl. 0 _ . K1l

.(PteOt------pocosOo)p+(ptsinOl- -posinOo)q---(1--,

" (9.9)K . Ko 3c K

K K C.-,(pcoO-o co0 p(psnOo---- PoSln0o)q=-.- (1- . o )

from which p. q are obtained.

Dunn 91, however, took another approach. He searched for 0 such that K(p,O) does
not depend on p. If 01 is the one, we see from eqn (9.7) that 01 must satisfy

p cos0l+q sin0j-0, (9.10)

and hence

K(p,0l)--c6( V1/-ph = )( 1-+ r,.D2 (--K) (9.11)
is a constant. Next, search for 0 such that K(p,O) has the steepest ascent with respect to
p If 0o is the one, we see from eqn (9.7) that 02=0 1±rr/2 and that

p cos0o+q sin02 =,'+q, (9.12)

and hence

K(p1&);K(1+3 Vp / q2P/A (9.13)

The orientation of the gradient (p,q) is given by eqn (9.9), and its magnitude is obtained
by computing the (average) gradient of K(p,Oo)/K 1 .

The latter method can be more robust to noise than the former one, for the former
method depends only on three particular values of K(p,O) (i.e., three test functions),
while in the latter method a large number of strips (i.e., many different test functions, cf.

Remark 4.2) are used. Consequently, some sort of smoothing, say fitting to a parametric
form. of K(p,O) can be used to cancel local errors in the process of searching for 01 and
estimating the average gradient of K(p,O0)/K1 . Dunn [91 also tried recovery of curved
surfaces using a similar technique.

In any case. tne underlying approximation is essentially the small gradient approxi-
rnation Although the integration is performed exactly up to linear approximation (i.e ,
eqn 9 8)). this method also requires that the texture be locally homogeneous (though
mildly as compared with the method of Aloimonos and Swain 8), so that the homo-
geneity condition must be satisfied in each strip.

10. CONCLUDING REMARKS

The methods proposed here have the following salient, features.
TEXTURE DENSITY AS A FUNCTIONAL
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First, our formulation makes use of the exact texture density Py) having singulari-
ties, and no smoothing is necessary. This is because we do not use particular values of
the texture density itself; all we need is the rule of integration. Hence, the texture den-
sity is defined as a functional, or a distribution in the sense of Schwartz. This is one of

S.i the most important differences from all existing approaches All early methods assume
existence of a smooth texture density obtained by some kind of local averaging and
directly use its values. Some approaches even require the values of the gradient of the
texture density obtained by differentiation. The use of the values or derivatives of' the
texture density does not seem feasible in view of the discrete nature of the texture.

DIFFERENTIAL GEOMETRY IN TERMS OF IMAGE COORDINATES

We derived the exact relationship between the surface texture density and the
observed texture density according to the principles of differential geometry. The exist-
ing methods seem to have failed to obtain this exact relationship. One reason, among
others, seems to be that most authors employed a certain intrinsic "surface coordinate
system" placed on the surface as well as an image coordinate system, trying to obtain
the rule of transformation from the surface coordinates to the image coordinates. This
usually results in tedious equations. The key to success here is the fact that we do away
with the surface coordinates; all surface characteristics are described in terms of the
image coordinates alone, the first fundamental form playing a fundamental role.

COMPUTATIONAL EFFICIENCY

Our method has also an advantage from the viewpoint of computational efficiency.
The necessary data, or observables, are obtained by integration of functions over the
image, and this is essentially summation of the function values over the texture ele-
ments. Thus, the time complexity is simply O(N), where N is he number of texture ele-

- :' ments. The access to each texture element is an independent process. This fact suggests
high speed performance by "parallel architecture"; the image can be divided in any way
and the computation can be performed independently and simultaneously Although
iterations are used in our method, the convergence is very rapid, as was demonstrated,
two or three iterations seem sufficient.

PREPROCESSING

We should not forget the fact that appropriate preprocessing is necessary, as is also
the case for any other high-level image processing. We regard texture as composed of'
dots without area and line segments without width. If the dots have area, their centroids
can be used as their positions, or their boundaries can be regarded as texture elements.
If the line segments have width, their center lines ("skeletons") or boundaries can be
rearded as texture elements. This is because our method is essentially (weighted)

,. nurmber counting of (lots and (weighted) length measuring of line segments. For
natural' texture images containing gray-levels, a simple way to (1o this preprocessing is

to just apply edge detection. Then. the detected "edges" serve as line segment texture
elements.

INTEGRATIONS AS OBSERVABLES

Another advantage resulting from the use of integrations as observables is that the
method works for very sparse textures. All existing methods including those of
Aloimonos and Swain S and Dunn 91 have paid attention to "local" clues such ,as the
number or length of texture elements in small regions of the image. Ilence. the texture
must be l.;,ally homogeneous: the texture density must be (lense enough everywhere so
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that the homogeneity condition is satisfied in each of the observed regions. In our for-
mulation, in contrast, the texture in its entirety is observed directly through integration
over all the texture elements. Hence, the texture need not be dense everywhere, as was
demonstrated in the previous examples, and the homogeneity condition need be satisfied
only for the entire texture. (The idea of integrations as observables is also used by
Kanatani [121 for "shape from motion without correspondence".) On the other hand, if
we gradually increase the texture density, our estimation approaches the numerically
exact value. No methods so far known seems to have this property. Those of Aloimonos
and Swain [8] and Dunn [9] do not have this property, either, because various ad hoc
approximations are involved.

DIMENSIONALITY OF TEXTURE ELEMENT
One of the important findings resulting from our analysis is the fact that dot tex-

tures and line segment textures cannot be treated in the same manner. Pixels constitut-
ing line segments on the image plane cannot be identified with pixels of a dot texture.
The necessity of this distinction does not seem to have been widely recognized. All exist-
ing methods including those of Aloimonos and Swain [8] and Dunn [9] do not seem to
take this effect correctly into account. It seems that the texture density, whether of dots
or of line segments, has been treated in analogy with a continuous density. In this
paper, we have established a rigorous treatment of discrete dtisities, making a clear dis-
tinction between dot textures and line segment textures. In fact, the recapitulation in
Section 9 is actually a modification so that dimensionality of the texture elements is
correctly incorporated.

GENERALITY OF THE PRINCIPLE
The main emphasis in this paper is the generality of our formulation, from which

various modifications and applications become possible, including the choice of good test
functions. The methods of Aloimonos and Swain [8] and Dunn [9], for example, can be
regarded as special variants of our general principle. An important fact is that our for-
mulation can also explain their methods and make explicit the underlying assumptions
and approximations, while theirs can explain no other methods, only their own. This
wide range of flexibility stems from a mathematically correct understanding of the
geometry of perspective projection. Particular heuristics or ad hoc assumptions and
approximations may result in particular algorithms which may be useful sometimes.
Lacking generality, however, they usually do not reveal the underlying essential nature

,N of the problem and are incapable of extension to other problems.
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APPENDIX A. 3D GEOMETRY IN TERMS OF IMAGE COORDINATES

Here are some results from differential geometry which are relevant in the descrip-
tion of "shape from image", describing 3D properties in terms of the image coordinates.

INNER PRODUCT, NORM, ANGLE
Consider two vectors U=(U, U2, U3), V=(VV 2, V 3) t t the surface, making

. )tangenttohsufcmk

angle 0. Suppose they are "small" in the sense that the first fundamental metric tensor
gij is almost constant along them. Let (u',u 2), (v',v2 ) be the projections of these vectors
onto the image plane; they no longer make angle 0. The inner product of U and V and
their norms are computed from the projections onto the image plane as follows:

2

V(U, V)= U1 V1+ U2 V2+ U3 V3= g 9,,u' v' (A.1)
S-10i,j= 1

Hence, the angle 0 is computed from the projections of these vectors as

coso0=(UV)/IlUl II V1. (A.3)

LEVI-CIVITA PARALLELISM

Consider on the surface two nearby points whose projections onto the image plane
are (x,y), (x+dx,y-t-dy). Again, consider two vectors of the same length, "small" in the
sense described above, tangent to the surface at these points. Let us hypothetically cut
away from the surface a small patch which contains these two tangent vectors and the
segment connecting them (to be precise, the developable defined as the envelope of the
tangent planes along the segment). Then, develop that patch, i.e., " roll it out" on a
plane (Fig. A). The two tangent vectors, having the same length, are now coplanar. If
they are parallel, we say that one of the two tangent vectors is transported to the other
along the segment parallelly in the sense of Levi-Civita. Let (u',u2), (u'+6u,u2-6u2) be
the projections of these two tangent vectors. The condition that the corresponding
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vectors undergo the parallel transport in the sense of Levi-Civita is given by

uk=-dii, i k(A.4)

where t is the Christoffel symbol defined by

14 ,,.1, , I ii a 2 aX , (A .5)2- 1- 1 a
and g-=(g0') is the inverse matrix of g=(gi,). Assigning Levi-Civita parallelism by the
Christoffel symbol as above is also said to define a Riemann connection on the image
plane. This enables one to compute the curvature of the surface and the curvature of a
curve on it in terms of the image coordinates (the Gauss-Codazzi equations and
Beltrami's formula), but we do not go into details. (Refer to books on differential

-- geometry.)

GEODESICS

Consider a smooth curve on the surface, and let (x(s),&(s)) be its projection onto the
image plane, where the parameter s is taken to be the true arc length, defined by eqn
(3.7), of the curve on the surface. Then, (i(s),X(s)) is the projection of the unit length
tangent vector to the curve. The curve is called a geodesic if its tangent vectors are
always transported along the curve parallelly in the sense of Levi-Civita. Hence, it fol-
lows from eqn (A.4) that the projection of a geodesic is given by the following differential
equation:

S 2 .

J.j.: iiCs)+ (s= 0 (A.6)

It is known that a geodesic is the shortest path connecting the endpoints along the sur-
face.

GRADIENT

The orientation on the surface Z=Z(X, Y) along which the value of Z increases most
rapidly on the surface is indicated by vector (P,Q,P2+Q2)/(I+p 2+Q2). The projection
(u1,u 2 ) of this vector onto the image plane is given by

azu'= E g"---. (A 7)

i j 1

This vector indicates the orientation along which the surface "goes away" from the
image plane.

APPENDIX B. ERROR DUE TO RANDOMNESS OF THE TEXTURE
Consider a dot texture for simplicity. Let (x1 ,Yl), ... , (XN,yN) be the coordinates of

the texture points in the window -a<z<a, -b<y<b. The center of gravity r7,7Y is
giv. by

E.
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_ 
N  1 

NExi, Yi. (B-1)
N._1

First, consider the case where the distribution is completely random. Suppose xi,
i:I,...,N are random variables chosen from the uniform distribution over -a<z<a

independently from each other. Likewise, regard yi, i=1,...,N as random variables distri-
buted uniformly and independently over -b<y<b. Then, their expectation values and
variances are given by

,'"Ejxi]=0, V[xj]= aa ,  i 1,. .. , N,

(B.2)

ElyI=o, V[yi=-b , i=-l,...,N.
-',3

It follows from elementary probability theory that the expectation values and the vari-
ances of , Y are given by

E[10, V[ =-La,
i i~xjO,3N

(B.3)

Ety1=0, V[=- b.
3N

Hence, the center of gravity is at the origin on the average. The magnitude of error is
estimated by the standard deviation, so that we expect errors of about a/v'\f'N, b/v'3N
for , , respectively.

On the other hand, consider another extreme case where xi, i=1,...,N are distri-
buted with equal interval of distance 2a/N and yi, i=I,...,N with equal interval of dis-
tance 2b/N. Then, the center of gravity must be located within the range of

a _< a b <Y< b
N --W-- 'N (.4)

From eqns (B.3) and (B.4), we can roughly say that the errors 6, 6yof Y f, respec-
tively, are

67--0(-L, b- 0(L),(B.5)

where 1/2<E<1. The parameter E approaches 1/2 as the distribution becomes more
and more random, and it approaches 1 as the distribution becomes more and more regu-
lar.

*-. . APPENDIX C. INTERPRETATION OF CURVED SURFACES

Define k, i, , &,/1, "y as follows:
: .:.k- V T/ + + q -,

, ::(C .1)p=plk, i=qlk, ct/k, /3=3/k, -t="t/k.

Eqns (6.3) are now rewritten as follows:
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P 4 4
(C.2)

&2 2 A 3  A4 + 2-- A s

4 4

Let us define new variables

o-/ 0 , = C +i- , (C.3)
. 2 '2

where i is the imaginary unit, so that a is a complex number. Next, put

A3+A 5  A 3-A 5  A4T= , 5
T= 8 S= 8 4' (C.-4)

so that S is also a complex number. Then, the last three equations of (C.2) are
equivalent to

T=r,+O" ,  S=2ra, (C5)

where * denotes the complex conjugate. From the second equation, we obtain a=Si2r.
Substituting this in the first equation, we find that r is the solution of

r4_ Tr2+!ISSS=O. (C 6)
4

and consequently

", 2 -L(T+ 7LSS, (C -7)
-2"

or in terms of A1, i=1,...,5,

r2=--(A3+As±2 V/ AAsA (C.8)

16 35A')

Hence, eqn (6.8) is obtained, and a is given by a=S/2r. From eqns (C.3), &, 3, 7 are
given by

&=r+Re/al, 3=Im[al , -y=r-Re~aI, (C.9)

from which eqns (6.7) are obtained.

Once &, /, -y are obtained, p-, 4 are determined from the first two equations of (C.2)
in the form of eqns (6.9). Finally, noting

-2_42=1 p2 q

-I_2 +__ q- 1 1* l.p - l~p2+q2 l+p'+q l±p'-±+q k (C10

we obtain eqn (6.10). Thus, p, q, oe, /, -1 are given by eqns (6.6).

APPENDIX D. AMBIGUITY OF CURVED SURFACE RECOVERY

Consider the pathological cases ignored in Appendix C. First, r was assumed not to
be zero, since otherwise a-S/2r is indeterminate. From eqn (C.7), r becomes zero if and
only if S=O or

A3 =A 5 , A4=0. (D.I)
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In this case, eqns (C.2) reduce to

&2+ 3=--2+'--T, _'(+'-)=O. (D.2)

If T-O, then &= =p=Y O and hence the surface is planar. Suppose TO. If j=O, then
&=±VT and - ±VT. If , then a-+--=o and &-+. T These two cases
correspond to surfaces whose two principal curvatures have the same magnitude In
other words, ambiguity of &, 13, -y occurs for a non-planar surface if and only if the sur-
face has principal curvatures of the same magnitude, in which case we cannot tell
whether the surface is elliptic (i.e., the Gaussian curvature is positive) or hyperbolic (i.e.,
the Gaussian curvature is negative).

Next, suppose we have determined &, 1, 7. When solving the first two equations of
(C.2) for p, q, we assumed &-1-0O. The condition that 7---0, or equivalently
&aqf-2 =O means that the Hessian of the surface is zero (and hence the Gaussian curva-
ture is also zero). This occurs for a non-planar surface if and only if one of the principal
curvatures is zero and hence the surface is parabolic. For the parabolic case, only the
ratio p:q is determined, indicating the asymptotic direction of the surface. In this case,
the proportionality constant k is indeterminate, so that a, 3, -r are also indeterminate.
(However, if p and q are known to be small, we may use the approximation of kz and
hence a;&, 3 3, yZt)

Eqn (6.8) indicates existence of four solutions They consist of two pairs of mutual
mirror images with respect to a plane perpendicular to the z-axis. The remaining ambi-
guity is due to the fact that the texture density only tells about the absolute value of
the slant and that no information is obtained about the tilt. From eqn (C.7), this ambi-
guity does not occur if and only if T 2 =SS. In view of eqns_(C 5), this is equivalent to
r'=aog From eqns (C.3), this is equivalent in turn to I'-F 3 0 in other words, the
ambiguity does not occur for a non-planar surface, except for the mirror image, if and

-- only if the surface is parabolic.
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Fig. i Point (XYZ) on the surface Z= Z(XY) is projected onto point (z,y) on the .ry-plane
by perspective projection, point (0,0,-p~ being the viewpoint.
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Fig. 4 Regularly aligned line textures on a planar surface.
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Fig. ,5 Random line segment textures on a planar surface.
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Fig. 6 An orthographic view of a regularly aifeldttxueo uvdsrae

/

Fig 7 A strip S of wi ith 6 and length 1 around x cosO~y sinO=p.
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