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structure and motion are recovered numerically, e.g., see [13 - 15] for

orthographic projection and [16 - 23] for central projection. on the

other hand, the flow-based one assumes a certain model about the object or

the scene and examines the flow pattern, extracting some features like the

"focus of expansion" or "vanishing point," taking spatial derivatives,

estimating parameters by global model fitting and sometimes employing

hydrodynamic analogies, e.g., see [24 - 34] for central projection.

In this paper, we present a flow-based approach under orthographic

projection, which is the case when the size of the object is small

compared with the distance from the viewer. So far, no attempts have been

made of the flow-based approach under orthographic projection. Probably,

it has been believed that not enough clues are obtained as to the 3D

structure and motion under orthographic projection, since no looming up or

sicrinking away is caused by motions. It is true that much information is

lost by orthographic projection. For instance, we cannot tell the

absolute distance from the viewer and whether it is approaching or

receding. However, it is possible to extract information about the

relative depth, its translation and 3D rotation. The solution is not

unique, as was pointed out by Sugihara and Sugie [15]. Yet, we can

describe geometrical relationships among those indeterminate solutions.

Here, we try to extract here as much knowledge as is possible in

"lanalytical terms" under such "imperfect information." This is very

important in practice, because we often fail to observe the effects of

central projection because, say, the object is too small or is located far

away or the focal length of the camera is not small enough. In these

cases, even partial knowledge is useful, for it can be supplemented by

other sources of information.
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We first divide the image domain into regions which can be regarded as

being planar or almost planar. A criterion for it is discussed. Then, we

pick up each region and compute its surface orientation and motion. We

take a Cartesian xy-coordinate system on the image plane and the z-axis

perpendicular to it. However, the choice of the xy-coordinate system is

completely arbitrary in principle. Hence, interpretations based on

different xy-coordinate systems must coincide. In other words,

interpretations of 3D structure and motion must be "invariant." In order

to make our scheme invariant, we first study the transformation rules when

one coordinate system is replaced by another. This consideration has a

practical significance, for it is sometimes convenient to take different

coordinate systems for different regions of the same object, taking the

coordinate origin in each region, for instance. Then, quantities

associated with different regions must be compared after appropriate

transformations.

We invoke group representation theory [35 - 381 to extract

"irreducible parameters" with respect to coordinate changes. We also make

use of "hydrodynamic analogies," viewing the optical flow as if it were a

flow of real fluid. Since hydrodynamics is usually described in invariant

forms, it gives a clear understanding of the invariant nature of our

interpretation. Then, we express the surface orientation and the motion

• *in an "explicit" form, which is made possible by the use of the

irreducible parameters. It turns out that there are two types of

solutions for each planar region. One is the true one and the other is a

"spurious" one, each containing one indeterminate scale parameter. We

describe the geometrical relationship between the true and the spurious

solutions in an invariant manner. We also show that the spurious solution
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disappears if two or more different regions of the same object are

observed.

Our flow-based approach to reconstruct the 3D structure and motion is a

generalization of the correspondence-based approach of Sugihara and Sugie

[15], which can be viewed as a special case of ours. In order to apply

their correspondence-based approach, the velocity measurement must be

accurate. In contrast, the flow-based approach extracts global

quantities, which are in general less sensitive to noise and possible

misdetection of correspondence. Thus, our flow-based approach bears a

practical significance. Moreover, many important observations such as the

*invariance, transformation rules, hydrodynamic analogies, the "spurious"

solution and its geometrical interpretation cannot be easily realize, from

4,. a correspondence-based approach like that of Sugihara and Sugie [15].

Their reasoning is also insufficient to give the degree of indeterminacy.

This is because we solve the problem in analytical terms, while the scheme

of Sugihara and Sugie [15] gives solutions only numerically. Another big
4

p)) advantage of the flow-based approach is thet the procedure can be applied

to the case where no optical flow is available or no correspondence of

points is detected. This is because the formulation rests on the "flow

.4.

parameters" extracted from the optical flow. Sometimes, these parameters

can be computed directly from the image sequence itself without detecting

point correspondence (Kanatani [7 - 9]).

2. IDENTIFICATION OF OPTICAL FLOW

Suppose a plane is moving in the scene and we are looking at its image

on the xy-plane orthographically projected along the z-axis. Let z = px +

qy + r be the equation of the plane. The orientation of the plane is

6
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specified by the two parameters p and q, which are often referred to as

the "gradients" because p = 3z/3x and q = az/ay. We take (0, 0, r), the

intersection between the plane and the z-axis, as a reference point and

assume that the reference point is translating with translation velocity

(a, b, c) and is rotating with rotation velocity (wl, w2, w3), i.e.,

rotating by sqr((wl) 2 + (w2) 2 + (w3) 2 ) rad/sec screwwise around an axis

along (wl, w2, w3) at the reference point (Fig. 1). (Here, sqr(.) stands

for the square root.) Since the absolute depth r and the velocity c in

the z-direction are indiscernible, our goal is to determine the gradients

p and q, the translation velocities a and b and the rotation velocities

wl, w2 and w3 by observing the projected image.

If a plane with gradients p, q is moving with translation velocities a,

b and with rotation velocities wl, w2, w3 at (0, 0, r), an elementary

calculation shows that the x- and y-components of the velocity of a point

(x, y, z) on the plane are given by

u(x, y) = a + (pw2)x + (qw2 - w3)y, (2.1)

v(x, y) = b - (pwl - w3)x - (qwl)y, (2.2)

respectively. This is called the "optical flow." As was stated before,

we assume that the optical flow is already available at particular feature

points. We first try to fit the following form to the observed flow:

u(x, y) = a + Ax + By, (2.3)

v(x, y) = b + Cx + Dy. (2.4)

Here, we call parameters a, b, A, B. C, D the "flow parameters." The

simplest way may be to use the least square method to minimize

M = ff[(a + Ax + By - u(x, u)) 2 + (b + Cx + Dy - v(x, y)) 2dxdy . (2.5)

From ;M/ a = 0, aM/b = 0, 3M/3A = 0, aM/aB = 0, M/C = 0, ;M/ D = 0, we

obtain the flowing set of equations called the "normal equations:"

-7-
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W (ffdxdy)a + (ffxdxdy)A + (ffydxdy)B = ffu(x, y)dxdy,

(ffdxdy)a, + (ffxdxdy)C + (ffydxdy)D = ffv(x, y)dxdy,

(ffdxdy)a + (ffxdxdy) + (ffydxdy)B = ff(x, y)dxdy,

(ffxdxdy)a + (ffx dxdy)A + (ffxydxdy)B = ffxu(x, y)dxdy,

(ffydxdy)a + (ffxydxdy)A + (ffY2 dxdy)B = ffyu(x, y)dxdy, (2.6)

(fxdxdy)b + (ffx2 dxdy) + (ffxydxdy)D = ffxv(x, y)dxdy,

(ffydxdy)b + (ffxydxdy)C + (ffy2dxdy)D = ffyv(x, y)dxdy.

From these, we can generally determine estimates of the flow parameters a,

b, A, B, C, D. In particular, if the domain of observation is symmetric

with respect to both the x- and the y-axes and has area S, the estimates

are explicitly given by

a = ffu(x, y)dxdy/S, b = ffv(x, y)dxdy/S

A = ffxu(x, y)dxdy/ffx dxdy, B = ffyu(x, y)dxdy/ffy dxL./, (2.7)

C = ffxv(x, y)dxdy/ffx 2dxdy, D = ffyv(x, y)dxdy/ffy 2dxdy.

Of course, we must replace the integrals by appropriate summations, since

the velocity is observed only at a finite number of points.

For the estimates a, b, A, B, C, D, the "residual" M of (2.5) becomes

M = ffu 2 dxdy - ((ffudxdy)a + (ffxudxdy)A + (ffyudxdy)B)

+ ffv 2dxdy - ((ffvdxdy)b + (ffxvdxdy)C + (ffyvdxdy)D). (2.8)

An optical flow can be that of a plane motion if and only If M = 0. From

this, we obtain a "criterion of planarity," taking account of possible

errors. Namely, we can view a computed optical flow as that of plane

motion if M given by (2.8) is less than a certain threshold. (Note that

the opti,-al flow is uniquely determined if velocities are given at at

least three feature points, cf. Section 8.) This suggests the following

procedure. Namely, starting from three or more feature points where the
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residual is very small, we can add to them other points from around one by

* one, each time recomputing the flow parameters and checking the residual M,

as long as the residual M does not exceed a prescribed threshold. Then,

we end up u.ith a region which is almost planar. The procedure is

repeated for the rest of the regions, and the image is roughly decomposed

into almost planar small regions. (Exact boundaries of these small

* regions are not necessary. They are reconstructed by the procedures of

Section 7.)

In the following, we assume that a given optical flow can be regarded

as that of plane motion and the flow parameters a, b, A, B, C, D are

already estimated. Thus, the flow parameters a, b, A, B, C, D are the

only available data. Hence, any information must be expressed in terms of

a, b, A, B, C, D. We also use the matrix form

u =a + Ar, (2.9)

where a = (a, b), r = (x, y) and

A A= [ . (2.10)
* c Dj

We do not make particular distinction between a column vector and a row

vector because we can easily tell which is which.

Note that we need not necessarily know the optical flow or detect

point correspondence, because all we need is the the flow parameters, not

the flow itself. For example, if we use the methods of Kanatani [7 - 9],

the flow parameters are determined directly without knowing

correspondence.

On the other hand, consider an extreme case where each almost-planar
%d

patch consists only of three points. This amounts to polyhedral

approximation of the object. Then, our flow-based approach is equivalentj9



to the correspondence-based approach (cf. Example 3 in Section 8). In

other words, our flow-based approach is a generalization of the

correspondence-based approach, including it as an extreme case.

3. COORDINATE CHANGE AND INVARIANCE

As was stated in the previous section, all information we get is the

flow parameters a, b, A, B, C, D alone, from which we want to compute the

gradients p, q and the motion parameters a, b, wl, w2, w3. However, all

of these parameters are defined with respect to a given Cartesian xy-

* .coordinate system on the image plane, and hence, if we use another xy-

coordinate system, we obtain different values. Since we can take an

arbitrary Cartesian coordinate system on the image plane, the

interpretation of the structure and motioui must be "invariant" with

respect to coordinate systems. To be precise, structure and motion

parameters computed from different values of the flow parameters due to

coordinate change must coincide with those obtained by transforming the

original interpretation accordingly. In short, interpretation must

"1commute" with coordinate change (Fig. 2). In the following, we consider

a group-theoretical way to exploit this invariance. Although it may

seem too pompous to invoke a sophisticated mathematics for a very simple

problem like the present one, this consideration provides us with a

transparent viewpoint, an elegant closed formulation and also a strong

guidance to cope with more complicated problems like images under central

projection, etc. Besides, it is sometimes convenient to use different

coordinate systems for different regions. Then, we need the

transformation rules for coordinate changes in order to combine the

results.

r ~ Suppose we take an x 'y' -coordinate system by rotating the original
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xy-coordinate system by angle t counterclockwise and by translating it by

(hl, h2) (Fig. 3). The origin of the x'y'-coordinate system 0' is at (hl,

h2) of the xy-coordinate system. If (x, y) are the coordinates with

respect to the former coordinate system and (x',y') with respect to the

latter, their relationship is given by

r' = R(r - h), (3.1)

K where r = (x, y), r' = (x', y'), h = (hi, h2) and

cos t sin t
L R=F (3.2)

-sin t cos t

The coordinate transformations of this type, which we denote by (R, h),

form a group known as the 2D "Euclidean transformation group." Consider

-another transformation r" = R'(r' - h'). If we operate (3.1) followed by

this, we obtain r" = R'(R(r - h) - h') = R'R(r - (RTh ' + h)), which is

transformation (R'R, RTh ' + h), where T designates the transpose. (Note

-1 T
that R is an orthogonal matrix so that R = RT.) In other words, the

group operation is given by

(R', h')(R, h) = (R'R, RTh
' + h). (3.3)

If u, v are the velocities with respect to the original coordinate

system and u', v' with respect to the new one, it is easy to see

u' - Ru, (3.4)
D.

where u = (u, v) and u' = (u', v'). In other words, u and v are

transformed "as a vector." Next, consider the gradients p, q. Since p =

Az/Sx and q = 3z/3y, they must be transformed as a vector, i.e.,

p' = Rp, (3.5)

where p = (p, q) and p' = (p', q'). Consider the rotation velocities wl,

w2, w3. Obviously, w3 is an invariant tinder coordinate changes or a

"scalar," and wl, w2 are transformed as a vector, i.e.,

c. - ll -
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w'= Rw, (3.6)

where w (wl, w2) and w' = (wl', w2'), because they are projections of a

3D vector. The fact that (p, q) and (wl, w2) are transformed as vectors

implies that they have invariant meanings. In fact, (p, q) indicates the

direction of "maximum gradient" or the "steepest ascent." The magnitude of

(p, q) is the incline along that direction. On the other hand, (wl, w2)

indicates the "axis of rotation" in the xy-plane. In other words, if

rotation w3 around the z-axis is not considered, the rotation is realized

2 2by rotating the plane around that axis by sqr(wl + w2 ) (rad/sec)

screwwise.

On the other hand, a, b are "not" transformed as a vector. In fact,

the rotation velocities wl, w2, w3 are defined at the reference point (0,

0, r), and this rotation induces translation velocity (wE, w2, w3) x (x,

y, z - r) at point (x, y, z). Since the new reference point goes to (hl,

h2, r + phl + qh2), the translational velocity induced there is

W1 hl 1 pw2 qw2 - w3- h

w2 h2 - pwl + w3 - qwl . (3.7)
h2

3 phl + qh2 w2 - wl

Comparing this with eqns (2.1) and (2.2), we obtain the transformation

rule

a' =R(a + Ah), (3.8)

where a' (a', b').

Finally, note that if parameters sl, s2 are transformed as a vector,

the complex number sl + is2 is transformed with "weight" - 1, i.e., bv

multiplication of e(- t). (Here, i is the imaginary unit, and we use

abbreviation e(.) for exp(i.).) Hence, if we put

P = p + iq, W w - w2, (3.9)

we have

- 12 -
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P' = e(- t)P• W' = e(- t)W. (3.10)

The significance of this consideration will become clear in subsequent

sections. In the following, we regard the complex numbers P and W as also

2D vectors.

4. IRREDUCIBLE PARAMETERS AND THEIR INVARIANCE

As was stated earlier, the optical flow is first expressed by eqn

(2.9). After the coordinate change (3.1), it becomes u' = Ru = R(a + Ar)

= R(a + A(RTr ' + h)) = (Ra + RAh) + RARTr '. Comparing this with eqn

(2.9), we find that the new flow parameters a', b', A', B', C', D' are

given by

.1

a' = Ra + RAh, A' = RART, (4.1)

where a' = (a', b') and A' is the matrix of A', B', C', D' like eqn

(2.10). Here, we again obtain eqn (3.8), the transformation of a, b.

We can also see that A is transformed "as a tensor."

Apparently, the transformation of the flow parameters from a, b, A, B,

C, D to a', b', A', B', C', D' is a linear transformation, which we denote

by rep[(R, h)]. This gives a six dimensional "representation" of the 2D

Euclidean group. Indeed, if we transform a', b', A', B', C', D' into a",

b", A, B", C", D" by transformation (R', h') we get a" = R'a' + R'A'h' =

R'(Ra + RAh) + R'(RART)h ' = (R'R)a + (R'R)A(RTh ' + h) and A" = R'A'R ' T =

R'RARTR 'T = (R'R)A(R'R)T. In view of eqns (4.1), this composite

transformation is rep[(R'R, RTh ' + h)], which is equal to rep[(R', h')(R,

h)] by eqn (3.3). Hence,

rep[(R', h')]rep[(R, h)] = rep[(R', h')(R, h)], (4.2)

and rep[(R, h)] is really a representation.

From eqns (4.1), we find that this representation is "reducible" into a

and A because parameters A are transformed among themselves. (However,

-13-



this representation is not "completely reducible," since the remaining

parameters a are not tranformed among themselves.) In other words, A

induces a four dimensional representation of the 2D rotation group. This

representation is completely reducible because the rotation group is

topologically a "compact" group. It is also seen that it is decomposed

into "irreducible representations," all of which are one-dimensional,

i.e., multiplication of e(nt) with integer n ("weight"). This is a

consequence of Schur's lemma and the fact that the 2D rotation group is a

"commutative" group (cf. [35, 36]).

As is well known, the decomposed irreducible representations are given

by calculating the "character" of the representation. Let us compute the

"trace" of the transformation A' = RART. If A = 1, B = C = D = 0, then A'

= cos2 t, which is the first diagonal element. Likewise, we can see that

all the diagonal elements are cos2 t. Hence, the character is 4cos 2t = 2 +

2cos2t = 2 + e(2t) + e(- 2t). Thus, there are two "absolute invariants"

(weight 0) and two "relative invariants" of weight 2 and - 2. The last

two are mutual complex conjugate because the representation space is real.

The process of decomposition is given by Weyl's principle of exploiting

the symmetry of tensor A (cf. [37, 381). It is decomposed into

symmetric and antisymmetric parts as

T B - [ A (B+C)/2 I + L - (C-B)12 (4.3)
,.C D (B+C) /2 D (C-B) /2 0 1

This decomposition is "invariant," i.e., independent of the coordinate

change. Hence, A, B + C, D are transformed among themselves, and R = C -

B is an absolute invariant. The symmetric part is further decomposed into

the "scalar" and "deviator" parts af7

14 -
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A (B+C)/2] A + D [ 1 0] [(A-D)/2 (B+C)/2 1
= I + , (4.4)

(B+C)/2 D 2 0 1 (B+C)/2 - (A-D)/2 I

which is also invariant, and T = A + D is an absolute invariant. The set

of A - D, B + C is transformed by

A ' - i D ' c o s 2 t s i n 2 t A - D 4 5=~ .BC (4.5)

B' + C' - sin2t cos2t B +

The decomposition so far corresponds to the expression 2 + 2cos2t of the

character. If we consider complex parameter S = (A - D) + i(B + C), it is

transformed with weight - 2, i.e., S' = e(- 2t)S. We call the three

invariant parameters

T = A + D, R = C - B, S = (A - D) + i(B + C), (4.6)

the "irreducible parameters" of the optical flow.

Lastly, let us consider "hydrodynamic analogies." If the optical flow

(4.1) is regarded as the flow of real fluid, each of the above invariants

has a physical meaning. For example, T = au/ax + v/ y is the

divergence," and the first term of the right-hand side of eqn (4.4)

describes a flow like Fig. 4. Similarly, R = av/3x - 3u/ay is the

"rotation" or "vorticity" of the flow, and the second term of the

right-hand side of eqn (4.3) describes the flow of Fig. 5 (cf. [7, 25,

26]). The second term of the right-hand side of eqn (4.4) describes a

"pure shear flow" like Fig. 6. Consider the polar representation

abs(S)e(arg(S)) of S. Since S rotates by 2t clockwise around the origin

on the complex plane when the xy-coordinate system is rotated by t

counterclockwise, Ql = e(arg(S)/2) and Q2 = iQl both rotate by t

clockwise. This means that they are transformed "as vectors" with weight

- 1, and hence their orientations have invariant meanings. As a matter of

fact, Ql and Q2 represent the directions of "maximum extension" and

"maximum compression," respectively, in hydrodynamics. This becomes clear

- 15 -
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if we rotate the coordinate system by arg(S)/2 counterclockwise so that Qi

and Q2 coincide with the x- and the y-axis, respectively. Then, the last

term on the right-hand side of eqn (4.4), which describes the "pure shear

flow," is diagonalized as

abs(S) /2, (4.7)
10 1

which is the "canonical form" of the pure shear flow (Fig. 7). The

orientations of Ql and Q2 are called the "principal axes" of the flow.

The magnitude abs(S) = sqr((A - D) 2 + (B + C)2) is an absolute invariant

and is called the "shear strength" in hydrodynamics.

NOTE. An easiest way to see that quantities of eqns (4.6) are really

e. invariants is to consider the "infinitesimal transformations." Let d

Tdenote differentiation with respect to t at t = 0. From A' = RART . we

immediately obtain dA = (dR)A - A(dR), where

dR= . (4.8)"_-:-:. - 1 0

Hence, we obtain

. dA = B + C, dB=- A + D, dC=- A + D, dD=- B -C, (4.9)

from which results

dT = 0, dR = 0, dS = - 2idS. (4.10)

Thus, we can confirm that T and R are really absolute invariants while S

is a relative invariant of weight - 2.

-, 5. DETERMINATION OF THE ROTATION AROUND THE z-AXIS

Now that we have prepared necessary mathematical preliminaries, we

proceed to determining the surface and motion parameters. Since a, b are

directly obtained, we only have to compute p, q, wl. w2, w3 from A, B, C,

- 16 -



D. Comparing eqns (2.1) and (2.2) with eqn (2.9), we have a set of

equations to solve as follows:

A = pw2, B = qw2 - w3, C - pwl + w3, D -qwl. (5.1)

In terms of the irreducible parameters, eqns (5.1) become

T = pw2 - qwl, R 2w3 - pwl - qw2, (5.2)

S = pw2 + qwl + i(qw2 - pwl). (5.3)

Eqns (5.2) are combined together if we consider a complex number R + iT,

which is also an absolute invariant. We get

R + iT = 2w3 - pwl - qw2 + i(pw2 - qwl). (5.4)

Hence, the given equations (5.1) are equivalent to eqns (5.4) and (5.3).

If we use the complex forms of eqns (3.9) for p, q, wl, w2, the right hand

sides of eqns (5.4) and (5.3) become 2w3 - PW* and - iPW, respectively,

where * designates the complex conjugate. Hence, solving eqns (5.1) is

equivalent to solving

PW* = 2w3 - (R + iT), (5.5)

PW is, (5.6)

with P, W and w3 as unknowns. Note that P is of weight - 1 and W* is of

weight 1, so that PW* is of weight 0 or an absolute invariant. Hence,

both sides of eqn (5.5) are an absolute invariant (weight 0). Likewise,

both sides of eqn (5.6) are of weight 2.

First, consider w3. It is determined from the fact that the left hand

sides of eqns (5.5) and (5.6) have the same magnitude. Hence, we get (2w3

- (R + iT))(2w3 - (R - iT)) = SS*, so that w3 is given as a root of the

quadratic equation

X- RX + (T2 + R2
- SS*)/4 = 0. (5.7)

e'. Since this is of an absolutely invariant form (note SS* is an absolute
54'.

., invariant), the solution w3 is a scalar as is expected. Eqn (5.7) has two

roots

-17-
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X = (R± sqr(SS* - T2))/2. (5.8)

In order that the solutions be real, the discriminant must be non-

negative. Namely,

abs(T) ! abs(S). (5.9)

In terms of hydrodynamic analogies:

LEMMA 1. The magnitude of divergence should not be greater than the shear

strength.

Here, we have obtained a "criterion of rigidity." Namely, if the observed

values of A, B, C, D do not satisfy inequality (5.9). the flow cannot be

interpreted as that of rigid plane motion.

If inequality (5.9) is satisfied, eqn (5.8) gives two real roots. The

two solutions are

X = w3 and w3 - (pwl + qw2). (5.10)

This can be checked by substituting eqns (5.1) in eqn (5.7). We get X2  -

(2w3 - pwl - qw2)X + w3(w3 - (pwl + qw2)) = 0, or (X - w3)(X - w3 + pwl +

qw2) 0. Thus, one of the two roots gives the true solution while the

* other gives a "spurious solution," and we cannot tell one from the other

for a given optical flow. Then, as we show in the next section, p, q, wi,

w2 are determined for each of these solutions, resulting in two types of

solutions, the "true" and the "spurious" one. However, the spurious

solution disappears if two plane faces of the same object are observed.

This will be discussed later. Note that pwl + qw2 is a scalar because it

is the inner product of two "vectors" P = p + iq and W = wl + iw2. Also

note that we do not have the spurious solution only when the equality of

" (5.10) holds, in which case pwl + qw2 = 0, or P = p + iq and W - wl + iw2

are mutually "orthogonal."

%- 18-
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6. DETERMINATION OF SURFACE ORIENTATION AND ROTATION

-. All the equations to be solved for P = p + iq and W = wl + iw2 are eqns

(5.5) and (5.6). It is immediately observed that the magnitude of W

cannot be determined uniquely, since W multiplied by a scale factor

together with P divided by that factor also satisfies the original

equation. Hence, we can take the magnitude k = abs(W) as an indeterminate

scale factor. Of course, we could take wl as an indeterminate scale

factor and express the rest in terms of wl, or we could take w2, or (wl +

w2)/2, etc. However, these quantities are not invariants and hence the

interpretations in terms of them do not have invariant meanings, while k

is an invariant and hence leads to invariant geometrical interpretations.

Now, take the ratio of eqn (5.6) to eqn (5.5). We get

W/W* = iS/(2w3 - (R + iT)). (6.1)

Similarly, if we take the ratio of eqn (5.6) to the complex conjugate of

eqn (5.5), we get

P/P* = iS/(2w3 - (R - iT)). (6.2)

The left hand sides of eqns (6.1) and (6.2) are e(2arg(W)) and e(2arg(P)),

respectively. From eqn (6.1), we conclude that 2arg(W) = 7/2 + arg(S) -

arg(2w3 - (R + iT)). There exist two values for arg(W) mutually opposite

with respect to the origin. However, we can pick up one of them

arbitrarily, say

arg(W) = 7/4 + arg(S)/2 - arg(2w3 - (R + iT))/2, (6.3)

if we allow the scale factor k to be negative. This does not lose the

uniqueness of the expression W = ke(arg(W)). Thus, we have completely

determined wl and w2, since the scale factor k is an essential

indeterminate. Namely,

W = ke(n/4 + arg(S)/2 - arg(2w3 - (R + iT))/2). (6.4)

Now that we have obtained W. the remaining P is determined from eqn

- 19 -
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"4 (5.6) by

iP = iS/W

= Se(r/ 4 - arg(S)/2 + arg(2w3 - (R + iT))/2)/k. (6.5)

Note that S is of weight - 2, while W is of weight -l. Hence, P is of

weight - 1, i.e., transformed as a vector, as expected. Thus, we obtain

THEOREM 1.

w3 = (R t sqr(SS* - T2))/2, (5.8)

W = ke(r/4 + arg(S)/2 - arg(2w3 - (R + iT))/2), (6.4)

P = Se(f/4 - arg(S)/2 + arg(2w3 - (R + iT))/2)/k, (6.5)

.? where k is an arbitrary real number.

On the other hand, we find, from eqn (6.5), that

arg(P) = arg(S) - arg(W) _± /2 , (6.6)

where the double sign corresponds to the sign of the scale factor k.

Therefore, we see that

(arg(P) + arg(W))/2 = arg(S)/2 ± T/4. (6.7)

This implies a simple interpretation in hydrodynamic analogies. Recall

that arg(S)/2 is the direction of maximum extension. Hence, the

'N orientations designated by eqn (6.7) bisect the angle made by the

directions of maximum extension and maximum compression. These

'tN orientations are known as the directions of "maximum shearing," because

the viscosity becomes maximum along these directions. Thus, we conclude:

COROLLARY 1. The orientations of P = p + iq and W = wl + iw2 are

symmetric with respect to the direction of maximum shearing.

This statement, of course, has an invariant meaning irrespective of the

-20-
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choice of the coordinate system.

So far, we have assumed that w3 is the true rotation velocity. Suppose

by w3 - (pwl + qw2), eqn (6.1) becomes

W*/W iS/(2w3 - (R - iT)). (6.8)

Comparing this with eqn (6.2), we see that spurious 2arg(W) is opposite to

true 2arg(P). In other words, the orientation of spurious w is orthogonal

to that of true p and we cannot say any more about its orientation because

the magnitude k of w is indeterminate including the signature. If we

obtain spurious W by eqn (6.4), spurious P is again determined by eqn

(6.5). It can be immediately seen that the orientation of spurious p is

orthogonal to that of true w, and the above observation is still valid for

spurious p and w. At the same time, we obeserve the following with

respect to the true and spurious solutions.

COROLLARY 2, The orientations of true and spurious W are symmetric with

respect to the principal axes of the flow, and so are the orientations of

true and spurious P.

This statement also has an invariant meaning.

EXAMPLE 1. Consider the flow of Fig. 8. The flow parameters are

a = 0.1, b = 0.1, A = 0.0873, B = - 0.2269, C = 0.0873. D = 0.0524,

and hence

T = 0.1397, R = 0.3142, S = 0.0349 - 0.1396i.

Since abs(S) = 0.1439. we see abs(T) < abs(S) and hence the flow can be

regarded as that of rigid motion. First, from eqn (5.5), we obtain w3 =

10, 8 (deg/sec). The remaining components of rotation and the gradients
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are

WI = (0.7061 + 0.7081i)k (rad/sec), P1 = (0.1233 - 0.1484i)/k,

W2 = (0.5157 + 0.8568i)k (rad/sec), P2 = (0.1019 - 0.1016i)/k,

where k is the indeterminate scale factor. One set of these is the true

solution and the other is the spurious one. Fig. 9 illustrates these when

k = 0.5. There, the principal axes and the directions of maximum shearing

are also indicated.

7. ADJACENT TWO OPTICAL FLOWS

Now, we consider two regions of an image which have different optical

flows, i.e., different flow parameters a, b, A, B, C, D. Obviously, this
N

arises if the object is a polyhedron. However, the object can have a

smoothly varying surface, in which case we divide the surface image into

small regions each of which can be regarded as almost planar, say

according to the criterion of planarity discussed in Section 2.

Let a, b, A, B, C, D be the parameters of one region and a'. b', A',

B', C', D' those of the other, and assume that these two sets are not

identical. If the two regions are planar and adjacent to each other,

their intersection must be a straight line, on which u, v must be

continuous, i.e.,

[a] + [A]x + [Bly = 0, [b] + [C]x + [D]y = 0, (7.1)

where [ ] designates the difference. e.g., [a] a' a. The necessary

and sufficient condition that eqns (7.1) define one and the same line is

[a] : [b] = [A) [C] = [B] : [D). (7.2)

Eqn (7.2) gives a "criterion of adjacency." In other words, if eqn (7.2)

is not satisfied (within a certain error), the two regions cannot be
%.

regarded as being adjacent to each other. If eqn (7.2) is satisfied,

eqns (7.1) define the "intersection line." If the two regions are two

-22-
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ftadjacent faces of a polyhedron, the intersection line may be directly

observed. However, even when intersection lines are missing due to noise

or some technical difficulties, we can still recover them once we can

successfully estimate the flow parameters on each region, say by eqns

ht (2.6). Moreover, even when the two regions are neighboring "almost

planar" patches of a smoothly varying surface, the "hypothetical

intersection line" is still defined.

Next, we must check if the two adjacent planar regions are "rigidly"

connected. Obviously, a "criterion of rigid adjacency" is given by

testing if we can determine common motion parameters a, b, wl, w2, w3.

(If the computation is done with respect to different coordinate systems

for the two regions, we must compare them after appropriately transforming

them as is discussed in Section 3.)

*'" Suppose two regions are images of two planes z = px + qy + r and z =

p'x + q'y + r'. Since z = px + qy + r = p'x + q'y + r' on the

intersection line, its equation on the image plane becomes

[p]x + [qjy + [r] = 0. (7.3)

Hence, we see that

LEMMA 2. Vector [P] is perpendicular to the intersection line.

According to Section 5, we can first compute w3 for the two regions

separately, ending up with two solutions for each region, the true and the

spurious one. If the two regions are rigidly connected, the true one must

be common to them, and we can pick up the common one as the true w3. If

both the true and spurious solutions are common, we have pwl + qw2 = p'wl

+ q'w2 according to eqn (5.10). This means [piwl + [q~w2 = 0 and hence

JP] is perpendicular to W = wl + iw2. Since the intersection line is

-23-
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always perpendicular to [P], W must be parallel to the intersection line.

As was pointed in the previous section, we can only determine W's

orientation as an undirected axis, and hence we can say that W is

determined. Then, we can pick up the correct value of w3 so that eqn

(6.1) or (6.2) is satisfied. Once we have determined w3 uniquely, we can

compute W for each of the regions. If the two orientations of W do not

coincide (within a certain error), the two regions cannot be regarded as

V being rigidly connected. If they coincide, the scale factor k can be

taken to be common to both.

Now, if y = mx + n is the computed intersection line, we must have, in

comparison with eqn (7.3), that [p] : [q] : [r] = m - : n. Hence,

LEMMA 3. If the intersection line is y = mx + n, the equations of the

planes are

z = px + qy + r, z = p'x + q'y + (r - [qln). (7.4)

This can be also extend to other regions. Hence, we have established the

following fact.

THEOREM 2. The structure and motion of an object are determined from its

optical flow under orthographic projection only up to an unknown absolute

depth r and an indeterminate scale factor k aside from the translation in

~the z-direction.

We have also given explicit formulae of computation.

EXAMPLE 2. Consider the flow of Fig. 10. According to the discussion in

Section 2, we cannot conclude that this is a flow induced by a motion of a
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single plane but that this consists of two different flows with flow

parameters

a = - 0.1, b = 0.2, a' = - 0.1489, b' = 0.2244,

A = 0.2094, B - 0.1047, C = 0.0698, D = - 0.0349

A'.= - 0.1396, B'= - 0.3490, C' = 0.2443, D'= 0.0873.

Eqn (7.2) is satisfied within rounding error, and the intersection of the

plane surfaces must be y = - 1. 4286x - 0.2 which is indicated in the

figure. From the former flow (upper right) we obtain w3 = 10, 0 (deg/sec)

and from the latter (lower left) w3 = 24, 10 (deg/sec). Hence, we

conclude that w3 = 10 (deg/sec), and the remaining rotation components

become

4W = (0.4472 + 0.8944i)k (rad/sec),

*. where k is the indeterminate scale factor. The gradients are given by

P = (0.2341 + 0.0780i)/k, P' = (- 0.1561 - 0.1951i)/k,

respectively. They are indicated in Fig. 11 when k = 0.5. Note that [P]

is always perpendicular to the intersection line. The equations of the

two planes are

z = ( 0.23 4 1x + 0.0780y)/k +

z = (- 0.1561x - 0.1951y)/k + (r - 0.0546/k).

8. CONCLUDING REMARKS

In this paper, we have exhausted all that can be known given an optical

flow under orthographic projection of a rigid object moving in 3D

space. First, the image is divided into small regions which are either

planar faces or almost-planar patches of a smoothly varying surface. A

criterion for it was also discussed. Analyzing each of these regions, we

have reached a conclusion that the motion can be recovered up to a common

absolute depth and a common scale factor. We also presented explicit
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formulae of computation. This conclusion was partly pointed out by

Sugihara and Sugie [151, who took a correspondence-based approach and

considered a finite number of rigidly moving points. They proved that cne

scale factor must be involved in addition to the indeterminate scale

factor, but they failed to show that the solution is unique once the

scale factor and the absolute depth are given. Moreover, their algorithm

is not perfect and it may produce physically impossible solutions.

On the other hand the correspondence-based approach can be incorporated

in our flow-based approach. Consider the case where each almost-planar

patch consists of only three points, which amounts to polyhedral

approximation of the object. Then, observing the velocities of three

..J points is equivalent to observing the optical flow of the plane spanned by

these three points. For example, suppose we measured velocities (u, v),

u, v') and (u", v") at three points (x, y), (x', y') and (x", y"),

respectively. Then, the flow parameters a, b, A, B, C, D are determined

by solving simultaneous equations

1"x y l u
1 x' y' A u' , (8.1)

i,,
L x y" 9 L B - i

1 x y fh Fy
S x1 y' C v (82)

V DL

These give a unique solution for a, b, A, B, C, D unless the determinant

I x I y I

.1 x y' (8.3)
I.";" 1 x" y

vanishes, i.e., which is a condition for collinearity of the three points.

Hence, if velocitie -,t three non-collinear points are observed, the flow
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parameters are determined.

EXAMPLE 3. Suppose we measured velocities at

r = (0.6, 0.2), r' = (- 0.2, - 0.4), r" C- 0.4, 0.8),

and observed

u = (- 0.0416, 0.1052), u' (- 0.0975, 0.1767), u" = (0.077, 0.1593),

respectively (Fig. 12). From eqns (8.1) and (8.3),

a = - 0.0486, b = 0.1523.

A = - 0.0349, B = 0.1396, C = - 0.0698, D = - 0.0262,

T = - 0.0611, R = - 0.2094, S = - 0.0087 + 0.0698i.

The corresponding flow is shown in Fig. 13. By the procedure we showed

before, we see that the two solutions are

w3 = - 5 (deg/sec), W = (0.4477 + 0.8942i)k (rad/sec),

P = (- 0.0390 + 0.0585i)/k,

w3 = - 5 (deg/sec), W = (0.8319 + 0.5549i)k (rad/sec),

P = (- 0.0629 + 0.0315i)/k.

Hence, the equation of the plane is

z = - 0.0390x/k + 0.0585y/k + r or z = - 0.0629x/k + 0.0315y/k + r.

Therefore, the z-coordinates of the three points are

z = - 0.0117/k + r, z' = - 0.0156/k + r, z" = 0.0624/k + r

or z = - 0.0314/k + r, z? = r, z" = 0.0504/k + r,

where k is the common scale factor and r is the common absolute depth.

Thus, our flow-based approach is a generalization of the correspondence-

based approach, including it as a special case. In practice, however,

observed velocities of a small number of points are unreliable due to

noise and misdetection of point correspondence, as was pointed out

earlier. Hence, it seems a wise policy to base the whole computation on
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4 the flow parameters a, b, A, B, C, D obtained by the process of taking

sums or averages of a number of data, which is less sensitive to local

errors in general. Therefore, our present formulation seems preferable

for actual processing. Moreover, since our flow-based approach starts

with the flow parameters, we do not necessarily have the optical flow or

detect point correspondence. For example, if we use the methods of

AKanatani [7 - 9], the flow parameters are determined directly without

knowing correspondence. As we have seen, indeterminacy is involved in one

optical flow. However, the indeterminacy is reduced if a sequence of

successive optical flows of the same object, because p, q, r, a, b, c (the

velocity along the z-axis if not zero), wl, w2 and w3 cannot evolve

arbitrarily. Namely, we have the following "compatibility conditions"

dp/dt = pqwl - (p2 + l)w2 - qw3, (8.4)

dq/dt = (q2 + l)wl - pqw2 + pw3. (8.5)

dr/ft = c - pa - qb. (8.6)

e Taking a flow-based approach rather than the correspondence-based

approach of Sugihara and Sugie [15] has also led to various other useful

concepts and interpretations. Our flow-based analysis enabled us to study

the transformation properties under coordinate changes and to express the

quantities, formulations and interpretations in frame indifferent manners.

The concept of invariance is important not only for consistent and elegant

descriptions but also for practical applications, because it allows us to

choose a specific coordinate system suitable to each different region.

Furthermore, the concept of invariance has naturally lead to hydrodynamic

analogies which make clear the intuitive meanings of our interpretations.

Taking full advantage of our invariant approach, we expressed the solution

in explicit forms, while Sugihara and Sugie f151 gave a scheme only to

-28-
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compute numerically. In the course of our analysis, we showed the

existence of the spurious suKrion and gave its geometrical interpretaion.

We also showed that it disappears if flows of two different regions of the

same object are observed.

SI
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FIGURE CAPTIONS

Fig. I A plane of equation z = px + qy + r is moving with translation

gvelocity (a, b, 0) at (0, 0, r) and rotation velocity (wl, w2,

w3) around it. An optical flow is induced on the xy-plane by

orhtographic projection along the z-axis with (0, 0, - f) as the

viewpoint.

Fig. 2 Interpretation must be "invariant" with respect to coordinate

changes, i.e., it must "commute" with coordinate changes.

Fig. 3 A new x'y'-coordinate system is taken by rotating the xy-

V. coordinate system by t cunterclockwise and translating it bv (hl,

% % h2). The new origin 0' is at (hl, h2) and the new x'-axis makes

angle t with the old x-axis.
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Fig. 4 Divergent flow.

Fig. 5 Rotational flow.

Fig. 6 Pure shear flow with two principal axes Ql (maximtu extension)

and Q2 (maximum compression).

Fig. 7 The canonical form of pure shear flow. The principal axes

coincide with the coordinate axes.

Fig. 8 An example of optical flow. The flow parameters are a = 0.1, b =

*. 0.1, A = 0.0873, B - - 0.2269, C - 0.0873. D - 0.0524.

Fig. 9 The result of our analysis of the flow of Fig. 8. Two solutions

are possible, the true one and the spurious one. The principal

axes and the direction of maximum shearing are also indicated.

Fig. 10 Another example of optical flow. This flow cannot be regarded as

that of a single plane. It consists of two planar regions. The

dashed line is the intersection line computed from the flow.

Fig. 11 The result of our analysis of the flow of Fig. 10. The spurious

solution does not appear.

Fig. 12 Observation of three moving points on the image plane. The

optical flow of the plane spanned by these three points are

uniquely determined unless the three points are colinear.

Fig. 13 The computed hypothetical optical flow associated with the motion

of Fig. 12.
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