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ABSTRACT

The 3D structure and motion of an object is determined from its optical low under
orthographic projection. First, the image domain is divided into planar or almost planar
regions by checking the flow. For each region, parameters of the flow are determined.
Transformation rules under coordinate changes and hydrodynamic analogies are also dis-
cussed. The 3D structure and motion are determined in explicit forms in terms of ir-
reducible parameters deduced from group representation theory. The solution is not
unique, containing an indeterminate scale factor and comprising true and spurious solu-
tions. Their geometrical interpretations are also studied. The spurious solution disap-
pears if two or more regions of the object are observed.
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1. INTRODUCTION

Determination of the 3D structure and motion of an object from its
projected 2D images is one of the most important tasks of computer vision.
This can be done by introducing various heuristic or a priord
"constraints" such as planarity or smoothness of the object and rigidity
of the motion coupled with various other - sources of information 1like
texture, shading, etc. (e.g., [1]). Basically there are two approaches.
One is first to seek "correspondence' of points, i.e., knowledge of which
point moves to which one, between two sequential images, resulting in a
so-called "optical flow," and various techniques have been tried to detect
the optical flow (e.g., see [2 - 6]). The other approach does not use the
point correspondence or the optical flow but directly measures some sorts
of "features" of the image. The 3D motion is detected from these features
and their time changes alone if a particular model is assumed for the
object. For example, the 3D motion of a planar surface can be detected
from statistical properties of its texture [7] or its contour [8, 9].

In this paper, we take the first approach and assume that an optical
flow is already obtained. There have been many studies of schemes
computing from a given optical flow the 3D motion of the object or the
observer seeing a stationary environment ("egomotion" from the "motion
parallax" [10]). Studies of this type have often been associated with the
"computational approach" to human perception [2, 11, 12]. Roughly
speaking, procedures are classified into two groups; 'correspondence-
based" approachs and "flow-based" ones. The correspondence-based approach
picks up several correspondence pairs out of the optical flow, and
subsequent computation is based on their coordinates, assuming no specific

model about the object except the rigidity of the motion. Then, the 3D
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: structure and motion are recovered numerically, e.g., see [13 - 15] for
(5
- orthographic projection and [16 - 23] for central projection. On the
£2 other hand, the flow-based one assumes a certain model about the object or .
\:
u
:q the scene and examines the flow pattern, extracting some features like the
K.
e
[

"focus of expansion' or 'vanishing point,” taking spatial derivatives,
estimating parameters by global model fitting and sometimes employing

hydrodynamic analogies, e.g., see [24 - 34] for central projection.

s

In this paper, we present a flow-based approach under orthographic

-
S

projection, which is the case when the size of the object 1is small

compared with the distance from the viewer. So far, no attempts have been

=

made of the flow-based approach under orthographic projection. Probably,
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it bas been believed that not enough clues are obtained as to the 3D

v .!”‘

structure and motion under orthographic projectiom, since no looming up or
O surinking away is caused by motions. It is true that much information is

lost by orthographic projection. For instance, we cannot tell the

iﬁ absolute distance from the viewer and whether it is approaching or
k; receding. However, it 1is possible to extract information about the
) , relative depth, its translation and 3D rotation. The solution is not
:ﬁ: unique, as was pointed out by Sugihara and Sugie [15]. Yet, we can
::; describe geometrical relationships among those indeterminate solutions.
*' Here, we try to extract here as much knowledge as 1s possible in
5:: "analytical terms” under such "imperfect information." This 1is very
% important in practice, because we often fail to observe the effects of
~

central projection because, say,the object is too small or is located far
away or the focal length of the camera is not small enough. In these

cases, even partial knowledge is useful, for it can be supplemented by

other sources of information.
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We first divide the image domain into regions which can be regarded as
being planar or almost planar. A criterion for it is discussed. Then, we
pick up each region and compute its surface orientation and motion. We
take a Cartesian xy-coordinate system on the image plane and the z-axis
perpendicular to it. However, the choice of the xy-coordinate system 1is
completely arbitrary in principle. Hence, interpretations based on
different xy-coordinate systems must coincide. In other words,
interpretations of 3D structure and motion must be "invariant." In order
to make our scheme invariant, we first study the transformation rules when
one coordinate system is replaced by another. This consideration has a
practical significance, for it is sometimes convenient to take different
coordinate systems for different regions of the same object, taking the
coordinate origin in each region, for instance. Then, quantities
associated with different regions must be compared after appropriate
transformations.

We invoke group representation theory [35 - 38] to extract
"irreducible parameters'" with respect to coordinate changes. We also make

use of "hydrodynamic analogies,"

viewing the optical flow as if it were a
flow of real fluid. Since hydrodynamics is usually described in invariant
forms, it gives a clear understanding of the invariant nature of our
interpretation. Then, we express the surface orientation and the motion
in an ‘"explicit" form, which is made possible by the use of the
irreducible parameters. It turns out that there are two types of
solutions for each planar region. One is the true one and the other is a
"spurious" one, each containing one indeterminate scale parameter. We

describe the geometrical relationship between the true and the spurious

solutions in an invariant manner. We also show that the spurious solution
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disappears if two or more different regions of the same object are

SRR

5 observed.

Our flow-based approach to reconstruct the 3D structure and motion is a

:ES generalization of the correspondence-based apprecach of Sugihara and Sugie
4;f (15], which can be viewed as a special case of ours. In order to apply
;'* their correspondence-based approach, the velocity measurement must be
§¢£ accurate. In contrast, the flow-based approach extracts global
:e quantities, which are in general less sensitive to noise and possible
e misdetection of correspondence. Thus, our flow~based approach bears a
:é practical significance. Moreover, many important observations such as the
t.J invariance, transformation rules, hydrodynamic analogies, the '"spurious"
»i solution and its geometrical interpretation cannot be easily realize. from
‘Ea a correspondence-based approach like that of Sugihara and Sugie [15].
::E Their reasoning is also insufficient to give the degree of indeterminacy.
’ This is because we solve the problem in analytical terms, while the scheme
é: of Sugihara and Sugie [15] gives solutions only numerically. Another big
tis advantage of the flow-based approach is that the procedure can be applied
“? to the case where no optical flow is available or no correspondence of
‘is points is detected. This is because the formulation rests on the '"flow
‘ES parameters' extracted from the optical flow. Sometimes, these parameters
xiﬁ can be computed directly from the image sequence itself without detecting
;&: point correspondence (Kanatani [7 - 9]).
;:' 2. IDENTIFICATION OF OPTICAL FLOW

Suppose a plane is moving in the scene and we are looking at its image
on the xy-plane orthographically projected along the z-axis. Let z = px +

qy + r be the equation of the plane. The orientation of the plane is

...‘-.'.-ﬂ
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specified by the two parameters p and q, which are often referred to as
the "gradients" because p = 9z/9x and q = 3z/39y. We take (0, 0, r), the
intersection between the plane and the z-axis, as a reference point and
acsume that the reference point is translating with translation velocity
(a, b, ¢) and is rotating with rotation velocity (wl, w2, w3), i.e.,
rotating by sqr((wl)2 + (w2) + (w3)2) rad/sec screwwise around an axis
along (wl, w2, w3) at the reference point (Fig. 1). (Here, sqr(.) stands
for the square root.) Since the absolute depth r and the velocity c¢ in
the z-direction are indiscernible, our goal is to determine the gradients
p and q, the translation velocities a and b and the rotation velocities
wl, w2 and w3 by observing the projected image.

If a plane with gradients p, q is moving with translation velocities a,
b and with rotation velocities wl, w2, w3 at (0, O, r), an elementary
calculation shows that the x- and y-components of the velocity of a point

(x, y, z) on the plane are given by

u(x, y) = a + (pw2)x + (qw2 - wl)y, (2.1)
v(x, ¥y) = b - (pwl - w3)x - (qwl)y, (2.2)
respectively. This is called the "optical flow." As was stated before,

we assume that the optical flow is already available at particular feature

points. We first try to fit the following form to the observed flow:

u(x, y) = a + Ax + By, (2.3)
v(x, y) = b + Cx + Dy. (2.4)
Here, we call parameters a, b, A, B, C, D the "flow parameters." The

simplest way may be to use the least square method to minimize

= ff[(a + Ax + By - u(x, u))2 + (b + Cx + Dy - v(x, y))z]dxdy . (2.5)
From aM/3a = 0, aM/3b = 0, 3M/3A = 0, 3M/5B = 0, aM/aC = 0, aM/AD = 0, we

obtain the flowing set of equations called the 'mormal equations:"

-7 -

l‘f—‘\.-)J‘-t"w




&
o
‘
l
\ (f[dxdy)a + (f[xdxdy)a + ([fydxdy)B = [fu(x, y)dxdy,
3f (ffaxdy)o + (f[xdxdy)c + (f[ydxdy)D = [[v(x, y)dxdy,
(ffxdxdy)a + (ffxzdxdy)A + (ffxydxdy)B = ffxu(x, y)dxdy,
N 2
o (ffydxdy)a + (ffxydxdy)A + (ffy dxdy)B = ffyu(x, y)dxdy, (2.6)
R
N (f[xdxdy)b + (ffxzdxdy)c + ([[xydxdy)D = [[xv(x, y)dxdy,
\ 2
: (f[ydxdy)b + (f[xydxdy)C + (f[y“dxdy)D = [[yv(x, y)dxdy.
; From these, we can generally determine estimates of the flow parameters a,
b, A, B, C, D. 1In particular, if the domain of observation is symmetric
'’
‘j with respect to both the x- and the y-axes and has area S, the estimates
4
¢ are explicitly given by
Y
s a = [fulx, y)dxdy/s, b = [[v(x, y)dxdy/S
< 2 2
. A = [{xu(x, y)dxdy/{[x"dxdy, B = [[yu(x, y)dxdy/[[y“d=zes, (2.7)
i; 2 2
o C = [[xv(x, y)dxdy/[[x"dxdy, D = [[yv(x, y)dxdy/[[y“dxdy.
5 Of course, we must replace the integrals by appropriate summations, since
X the velocity is observed only at a finite number of points.
& For the estimates a, b, A, B, C, D, the "residual" M of (2.5) becomes
. M = ffuzdxdy - ((ffudxdy)a + (f[xudxdy)A + (f fyudxdy)B)
R‘
N 2
i + [[{vidxdy - ((f[vdxdy)b + (f[xvdxdy)C + (f[yvdxdy)D). (2.8)
~
> An optical flow can be that of a plane motion if and only if M = 0. From
< this, we obtain a "criterion of planarity,” taking account of possible
- errors. Namely, we can view a computed optical flow as that of plane
A motion if M given by (2.8) is less than a certain threshold. (Note that
"\
‘" the optical flow is uniquely determined if velocities are given at at *
)
' least three feature points, cf. Section 8.) This suggests the following
‘
o
‘k procedure. Namely, starting from three or more feature points where the
KX
“
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7N residual is very small, we can add to them other points from around one by
4 X one, each time recomputing the flow parameters and checking the residual M,
~ as long as the residual M does not exceed a prescribed threshold. Then,
¢ ‘.'.
.:: we end up with a region which is almost planar. The procedure is
"
:) repeated for the rest of the regions, and the image is roughly decomposed
c into almost planar small regions. (Exact boundaries of these small
ﬂi- regions are not necessary. They are reconstructed by the procedures of
Wﬁ' Section 7.)
W
In the following, we assume that a given optical flow can be regarded
-
:} as that of plane motion and the flow parameters a, b, A, B, C, D are
~
Y already estimated. Thus, the flow parameters a, b, A, B, C, D are the
only available data. Hence, any information must be expressed in terms of
¥ ot
X
o a, b, A, B, C, D. We also use the matrix form
-
!.\
o u = a + Ar, (2.9)
w
where a = (a, b), r = (x, y) and
i A B
f= A= B (2.10)
>, C D
S
¢ We do not make particular distinction between a column vector and a row
f' vector because we can easily tell which is which.
4 -‘-
jt Note that we need not necessarily know the optical flow or detect
N
. point correspondence, because all we need is the the flow parameters, not
i}: the flow itself. For example, if we use the methods of Kanatani [7 - 9],
‘;: the flow parameters are determined directly without knowing
ho0 correspondence.
;ﬂ ) On the other hand, consider an extreme case where each almost-planar
w
Y
:; patch consists only of three points. This amounts to polyhedral
-
~ approximation of the object., Then, our flow-based approach is equivalent
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to the correspondence-based approach (cf. Example 3 in Section 8). In
other words, our flow-based approach 1is a generalization of the

correspondence-based approach, including it as an extreme case.

3. COORDINATE CHANGE AND INVARIANCE

As was stated in the previous section, all information we get is the
flow parameters a, b, A, B, C, D alone, from which we want to compute the
gradients p, q and the motion parameters a, b, wl, w2, w3. However, all
of these parameters are defined with respect to a given Cartesian xy-
coordinate system on the image plane, and hence, if we use another xy-
coordinate system, we obtain different values. Since we can take an
arbitrary Cartesian coordinate system on the image plane, the
interpretation of the structure and motiou must be '"invariant" with
respect to coordinate systems. To be precise, structure and motion
parameters computed from different values of the flow parameters due to
coordinate change must coincide with those obtained by transforming the
original dinterpretation accordingly. In short, interpretation  must
"commute" with coordinate change (Fig. 2). In the following, we consider
a group-theoretical way to exploit this invariance. Although it may
seem too pompous to invoke a sophisticated mathematics for a very simple
problem like the present one, this consideration provides us with a
transparent viewpoint, an elegant closed formulation and also a strong
guidance to cope with more complicated problems like images under central
projection, etc. Besides, it is sometimes convenient to wuse different
coordinate systems for different regions. Then, we need the
transformation rules for coordinate changes 1in order to combine the
results.

Suppose we take an x'y'-coordinate system bv rotating the original
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xy-coordinate system by angle t counterclockwise and by translating it by

(hl, k2) (Fig. 3). The origin of the x'y'-coordinate system 0' is at (hl,
h2) of the xy-coordinate system. If (x, y) are the coordinates with
respect to the former coordinate system and (x',y') with respect to the
latter, their relationship is given by
r' = R(r - h), (3.1)
where r = (x, y). r' = (x', y'), h = (hl, h2) and
cos t sin t |
R = . (3.2)
- sint cos t |
The coordinate transformations of this type, which we denote by (R, h),
form a group known as the 2D "Euclidean transformation group." Consider

another transformation r" = R'(r' - h'). If we operate (3.1) followed by

this, we obtain r" = R'(R(r - h) -~ h') = R'R(r - (RTh' + h)), which is

transformation (R'R, Rlh' + h), where T designates the transpose. (Note
that R is an orthogonal matrix so that R-l = RT.) In other words, the
group operation is given by

(', h')(R, h) = (R'R, R'h' + h). (3.3)

If u, v are the velocities with respect to the original coordinate

system and u', v' with respect to the new one, it is easy to see

u' = Ru, (3.4)

where u = (u, v) and u' = (u', v'"). In other words, u and v are

¥

transformed 'as a vector.”" Next, consider the gradients p, q. Since p =

3z/3x and q = 32/3y, they must be transformed as a vector, i.e.,

p' = Rp. (3.5)

where p = (p, q) and p' = (p'. q'). Consider the rotation velocities wl,

w2, w}. Obviously, w3 is an iInvariant under coordinate changes or a

'and wl, w2 are transformed as a vector, i.e.,

"scalar,'
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w' = Rw, (3.6)
where w = (wl, w2) and w' = (wl', w2'), because they are projections of a
3D vector. The fact that (p, q) and (wl, w2) are transformed as vectors
implies that they have invariant meanings. In fact, (p, q) indicates the

direction of "maximum gradient" or the '"steepest ascent." The magnitude of
(p» q) is the incline along that direction. On the other hand, (wl, w2)
indicates the "axis of rotation' in the xy-plane. In other words, if
rotation w3 around the z-axis is not considered, the rotation is realized

by rotating the plane around that axis by sqr(wl2 + wzz) (rad/sec)

screwwise,

On the other hand, a, b are "not" transformed as a vector. In fact,
the rotation velocities wl, w2, w3 are defined at the reference point (O,
0, r), and this rotation induces translation velocity (wl, w2, w3) x (x,
v, z - r) at point (x, y, z). Since the new reference point goes to (hl,

h2, r + phl + gh2), the translational velocity induced there is

wl hl pw2 qwe - w3
hl
w2 x h2 = - pwl + w3 - qwl . (3.7)
h2
L w3 [ phl + gh2 w2 - wl

Comparing this with equns (2.1) and (2.2), we obtain the transformation
rule
a' = R(a + Ah), (3.8)
where a' = (a', b').
Finally, note that if parameters sl, s2 are transformed as a vector,
the complex number sl + is2 is transformed with "weight" - 1, i.e., bhv
multiplication of e(- t). (Here, i is the 1imaginarv wunit, and we use

abbreviation e(.) for exp(i.).) Hence, if we put

P = p + iq, W = wl - w2, (3.9)

we have

e
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P' = e(~ t)P, W' = e(- t)W. (3.10)
The significance of this consideration will become clear 1in subsequent

sections. In the following, we regard the complex numbers P and W as also

2D vectors.

4. IRREDUCIBLE PARAMETERS AND THEIR INVARIANCE

As was stated earlier, the optical flow is first expressed by eqn
(2.9). After the coordinate change (3.1), it becomes u' = Ru = R(a + Ar)
= R(a + ARTr' + h)) = (Ra + RAh) + RARTT'. Comparing this with eqn
(2.9), we find that the new flow parameters a', b', A', B', C', D' are

given by

a' = Ra + RAh, A' = RAR , (4.1)

where a = (a', b') and A' is the matrix of A', B', C', D' like eqn
(2.10). Here, we again obtain eqn (3.8), the transformation of a, b.
We can also see that A is transformed "as a tensor."

Apparently, the transformation of the flow parameters froma, b, A, B,
C, Dtoa', b', A", B', C', D' is a linear transformation, which we denote
by rep[{(R, h)]. This gives a six dimensional ''representation' of the 2D
Euclidean group. Indeed, if we transform a', b', A', B', C', D' into a",
b", A", B", C", D" by transformation (R', h') we get a" = R'a' + R'A'h' =
R'(Ra + RAh) + R'(RART)h' = (R'R)a + (R'R)A(R'h' + h) and A" = R'A'R'T =
R'RARTR'T = (R'R)A(R'R)T. In view of eqns (4.1), this composite
transformation is rep[(R'R, RTh' + h)l, which is equal to rep((R', h')(R,
h)] by eqn (3.3). Hence,

rep[(R', h')]rep[(R, h)] = rep[(R', h")(R, B)], (4.2)

and rep[(R, h)] 1is really a representation.

From eqns (4.1), we find that this representation is '"reducible'" into a

and A because parameters A are transformed among themselves. (However,

- 13 -
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this representation is not ''completely reducible,"” since the remaining
parameters a are not tranformed among themselves.) In other words, A
induces a four dimensional representation of the 2D rotation group. This
representation is completely reducitle because the rotation group is
topologically a '"compact" group. It is also seen that it 1is decomposed
into "irreducible representations," all of which are one-dimensional,
i.e., multiplication of e(nt) with integer n ("weight"). This is a
consequence of Schur's lemma and the fact that the 2D rotation group is a
"commutative" group (cf. [35, 36]).

As is well known, the decomposed irreducible representations are given
by calculating the "character" of the representation. Let us compute the

T

"trace" of the transformation A' = RAR". If A=1, B=C =D =0, then A'

= coszt, which is the first diagonal element. Likewise, we can see that
all the diagonal elements are coszt. Hence, the character is 4c052t =2 +
2cos2t = 2 + e(2t) + e(- 2t). Thus, there are two "absolute invariants'
(weight 0) and two "relative invariants" of weight 2 and - 2. The last
two are mutual complex conjugate because the representation space is real.
The process of decomposition is given by Weyl's principle of exploiting
the symmetry of tensor A (cf. (37, 38}). It is decompo%ed into
symmetric and antisymmetric parts as
A B A (B+C)/2 0 - (C-B)/2
- + . (4.3)
C D (B+C)/2 D (C-B)/2 0
This decomposition is "invariant," i.e., 1independent of the coordinate
change. Hence, A, B+ C, D are transformed among themselves, and R = C -

B is an absolute invariant. The symmetric part is further decomposed into

the "scalar" and 'deviator" parts as

- 14 -
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A (B+C)/2 1 0 (A-D)/2 (B+C) /2

(B+C) /2 D 2 lo 1. (B+C)/2 - (A-D)/2 )

(4.4)

which is also invariant, and T = A + D is an absolute invariant. The set
of A-D, B+ C is transformed by
A' - D' cos2t sin2t A-D
= , . (4.5)
B' +C'_ - sin2t cos2t B+ C
The decomposition so far corresponds to the expression 2 + 2cos2t of the
character. If we consider complex parameter S = (A - D) + i(B + C), it is
transformed with weight - 2, i.e., S' = e(~- 2t)S. We call the three
invariant parameters
T=A+0D, R=C - B, S=(A-D)+i(B+C), (4.6)
the "irreducible parameters" of the optical flow.
Lastly, let us consider "hydrodynamic analogies.”" If the optical flow
(4.1) is regarded as the flow of real fluid, each of the above invariants
has a physical meaning. For example, T = 3u/3x + 3v/3y 1is the

"divergence,"

and the first term of the right-hand side of eqn (4.4)
describes a flow like Fig. 4. Similarly, R = 3v/3x - 3u/dy 1is the
"rotation" or '"vorticity" of the flow, and the second term of the
riéht—hand side of eqn (4.3) describes the flow of Fig. 5 (ef. [7, 25,
26]). The second term of the right-hand side of eqn (4.4) describes a
"pure shear flow" 1like Fig. 6. Consider the polar representation
abs(S)e(arg(S)) of S. Since S rotates by 2t clockwise around the origin

on the complex plane when the xy-coordinate system 1is rotated by ¢t

counterclockwise, Q1 = e(arg(S8)/2) and Q2 = 1iQl both rotate by t

clockwise. This means that they are transformed "as vectors" with weight i
- 1, and hence their orientations have invariant meanings. As a matter of
fact, Ql and Q2 represent the directions of '"maximum extension' and

"

"maximum compression,' respectively, in hydrodynamics. This becomes clear
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X if we rotate the coordinate system by arg(S)/2 counterclockwise so that Ql

and Q2 coincide with the x- and the y-axis, respectively. Then, the last

-« term on the right-hand side of eqn (4.4), which describes the "pure shear
\. .'
{7 e s .
W, flow," is diagonalized as
'\:\\
N 10
‘ abs(S) /2, (4.7)
(X 0 -1
,'f' which is the "canonical form" of the pure shear flow (Fig. 7). The
"
; I orientations of Ql and Q2 are called the "principal axes” of the flow.
¥
- The magnitude abs(S) = sqr((A - D)2 + (B + C)2) is an absolute invariant
':}: and is called the '"shear strength" in hydrodynamics.
-Jl
il
(o
2 NOTE. An easiest way to see that quantities of equns (4.6) are really
', o
AL
o invariants is to consider the "infinitesimal transformations." Let d
ffj denote differentiation with respect to t at t = 0. From A' = RART. we
£
immediately obtain dA = (dR)A - A(dR), where
:f_';:: 0 1
RN dr = . (4.8)
-1 0
5L
‘) Hence, we obtain
o dA=B+C, dB=-A+D, dC=-A+D, dD=-EB~-C, (4.9)
“
tft
YY) from which results
NN
2’ dT = 0, dR = 0, ds = - 2ids. (4.10)
;}:}: Thus, we can confirm that T and R are really absolute invariants while S
N
> t is a relative invariant of weight - 2.
N
i
,-::;.:-, 5. DETERMINATION OF THE ROTATION AROUND THE z-AXIS
WX
; :}\, Now that we have prepared necessary mathematical vpreliminaries, we
[ \.':‘\:'
[ proceed to determining the surface and motion parameters. Since a, b are
TS directly obtained, we only have to compute p, q, wl, w2, w3 from A, B, C,
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D. Comparing eqns (2.1) and (2.2) with eqn (i.9), we have a set of
equations to solve as follows:
A = pw2, B = qw2 - w3, C = - pwl + w3, D = - qwl. (5.1)
In terms of the irreducible parameters, eqns (5.1) become
T = pw2 - qwl, R = 2w3 - pwl - qw2, (5.2)
S = pw2 + qwl + 1(qw2 - pwl). (5.3)
Eqns (5.2) are combined together if we consider a complex number R + iT,
which is also an absolute invariant. We get
R + iT = 2w3 - pwl - qw2 + i(pw2 - qwl). (5.4)
Hence, the given equations (5.1) are equivalent to eqns (5.4) and (5.3).
If we use the complex forms of eqns (3.9) for p, q. wl, w2, the right hand
sides of eqns (5.4) and (5.3) become 2w3 - PW* and - iPW, respectively,
where * designates the complex conjugate. Hence, solving eqns (5.1) is
equivalent to solving
PW* = 2w3 - (R + iT), (5.5)

PW = i8S, (5.6)

with P, W and w3 as unknowns. Note that P is of weight ~ 1 and W* 1is of

weight 1, so that PW* is of weight O or an absolute invariant. Hence,

both sides of eqn (5.5) are an absolute invariant (weight O0). Likewise,
both sides of eqn (5.6) are of weight 2.

First, consider w3. It is determined from the fact that the left hand
sides of eqns (5.5) and (5.6) have the same magnitude. Hence., we get (2w3
- (R + iT))(2w3 - (R - iT)) = SS*, so that w3 is given as a root of the
quadratic equation

x% - RX + (T2 + R% - $5%)/4 = O. (5.7)

Since this is of an absolutely invariant form (note SS* is an absolute
invariant), the solution w3 is a scalar as is expected. Eqn (5.7) has two

roots

-17 -




Iy
7

r
» )"
x

z

x
&

N

Tt
k.

7

L]
2w

v
e 2 N NI

v
»

-

X = (R+ sqr(ss* - T2))/2. (5.8)

In order that the solutions be real, the discriminant must be non-
negative. Namely,

abs(T) < abs(S). (5.9

In terms of hydrodynamic analogies:

LEMMA 1. The magnitude of divergence should not be greater than the shear

strength.

Here, we have obtained a "criterion of rigidity." Namely, if the observed
values of A, B, C, D do not satisfy inequality (5.9). the flow cannot be
interpreted as that of rigid plane motion.
If inequality (5.9) is satisfied, eqn (5.8) gives two real roots. The
two solutions are
X = w3 and w3 - (pwl + gqw2). (5.10)
This can be checked by substituting eqns (5.1) in eqn (5.7). We get x2 -
(2w3 - pwl - qw2)X + w3(w3 - (pwl + qw2)) =0, or (X - w3)(X - w3 + pwl +
Gw2) = 0. Thus, one of the two roots gives the true solution while the
other gives a '"spurious solution,” and we cannot tell one from the other
for a given optical flow. Then, as we show in the next section, p, q., wl,
w2 are determined for each of these solutions, resulting in two types of
solutions, the "true" and the "spurious" one. However, the spurious
solution disappears if two plane faces of the same object are observed.
This will be discussed later. Note that pwl + qw2 is a scalar because it
is the inner product of two "vectors" P = p + iq and W = wl + iw2. Also
note that we do not have the spurious solution only when the equality of

(5.10) holds, in which case pwl + qw2 = 0, or P = p + iq and W = wl + iw2

are mutually "orthogonal."

TUW W W W W W —"
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6. _DETERMINATION OF SURFACE ORIENTATION AND ROTATION

All the equations to be solved for P = p + iq and W = wl + iw2 are egns
(5.5) and (5.6). It is immediately observed that the magnitude of W
cannot be determined uniquely, since W multiplied by a scale factor
together with P divided by that factor also satisfies the original
equation. Hence, we can take the magnitude k = abs(W) as an indeterminate
scale factor. Of course, we could take wl as an indeterminate scale
factor and express the rest in terms of wl, or we could take w2, or (wl +
w2)/2, etc. However, these quantities are not invariants and hence the
interpretations in terms of them do not have invariant meanings, while k
is an invariant and hence leads to invariant geometrical interpretations.

Now, take the ratio of eqn (5.6) to eqn (5.5). We get

W/Wx = iS/(2w3 - (R + iT)). (6.1)

Similarly, if we take the ratio of eqn (5.6) to the complex conjugate of
eqn (5.5), we get

P/P* = iS/(2w3 - (R - iT)). (6.2)

PO R R

The left hand sides of eqns (6.1) and (6.2) are e(2arg(W)) and e(2arg(P)),

respectively. From eqn (6.1), we conclude that 2arg(W) = n/2 + arg(S) -
V. arg(2w3 - (R + iT)). There exist two values for arg(W) mutually opposite

. with respect to the origin. However, we can pick up one of them

arbitrarily, say

: arg(W) = =/4 + arg(S)/2 - arg(2wd - (R + iT))/2, (6.3)
;: if we allow the scale factor k to be negative. This does not lose the
f. uniqueness of the expression W = ke(arg(W)). Thus, we have completely
: determined wl and w2, since the scale factor k 1is an essential
:' indeterminate. Namely,

: W = ke(n/4 + arg(S)/2 - arg(2w3 - (R + iT)}/2). (6.4)

Now that we have obtained W, the remaining P is determined from eqn

) - 19 -
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(5.6) by

la)
"

iS/W

Se(n/4 - arg(5)/2 + arg(2w3 - (R + iT))/2)/k. (6.5)
Note that S is of weight - 2, while W is of weight - 1. Hence, P 1is of

weight - 1, i.e., transformed as a vector, as expected. Thus, we obtain

THEOREM 1.
W= R+ sqr(ss* - 19))/2, (5.8)
W= ke(n/4 + arg(S)/2 - arg(2w3 - (R + iT))/2), (6.4)
P = Se(n/4 - arg(S)/2 + arg(2w3 - (R + iT))/2)/k, (6.5)

where k is an arbitrary real number.

On the other hand, we find, from eqn (6.5), that
arg(P) = arg(S) -~ arg(W) + /2, (6.6)
where the double sign corresponds to the sign of the scale factor k.

Therefore, we see that

(arg(P) + arg(W))/2 = arg(S)/2 + n/4. (6.7)
This implies a simple interpretation in hydrodynamic analogies. Recall
that arg(S)/2 1is the direction of maximum extension. Hence, the

orientations designated by eqn (6.7) bisect the angle made by the
directions of wmaximum extension and maximum compression. These
orientations are known as the directions of 'maximum shearing," because

the viscosity becomes maximum along these directions. Thus, we conclude:

COROLLARY 1. The orientations of P = p + 1iq and W = wl + iw2 are

symmetric with respect to the direction of maximum shearing.

This statement, of course, has an invariant meaning irrespective of the

- 20 -
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choice of the coordinate system.
So far, we have assumed that w3 is the true rotation velocity. Suppose
it is the spurious one w3 - (pwl + qw2). If we replace w3 in eqn (6.1)
by w3 - (pwl + qw2), eqn (6.1) becomes .
Wx/W = - iS/(2w3 - (R - iT)). ) (6.8)
Comparing this with eqn (6.2), we see that spurious 2arg(W) is opposite to
true 2arg(P). 1In other words, the orientation of spurious w is orthogonal
to that of true p and we cannot say any more about its orientation because
the magnitude k of w is indeterminate including the signature. If we
obtain spurious W by eqn (6.4), spurious P is again determined by egqn
(6.5). 1t can be immediately seen that the orientation of spurious p is
orthogonal to that of true w, and the above observation is still valid for

spurious p and w. At the same time, we obeserve the following with

respect to the true and spurious solutions.
COROLLARY 2. The orientations of true and spurious W are symmetric with
respect to the principal axes of the flow, and so are the orientations of

true and spurious P.

This statement also has an invariant meaning.

EXAMPLE 1. Consider the flow of Fig. 8. The flow parameters are
a=20.1, b=0.1, A=0.0873, B =- 0.2269, C = 0.0873. D = 0.0524,
and hence

T = 0.1397, R = 0.3142, S = 0.0349 - 0.13961i.
Since abs(S) = 0.1439, we see abs(T) < abs(S) and hence the flow can be
regarded as that of rigid motion. First, from eqn (5.5), we obtain w3 =

10, 8 (deg/sec). The remaining components of rotation and the gradients

- 21 -

e T S : "-"..- " ) ."." ." ." ," “' 2 ..‘ ..‘ S e ~..'.'~- --" e e ST e e !
" \. .. -~ ‘-.’._“« R ._."..\,\ _\__._.‘.



o,

2,
o
ba> are

R

&

Lo Wl = (0.7061 + 0.7081i)k (rad/sec), Pl = (0.1233 - 0.1484i)/k,

e W2 = (0.5157 + 0.8568i)k (rad/sec), P2 = (0.1019 - 0.1016i)/k,

(A
j:_: where k is the indeterminate scale factor. One set of these is the true
e

o
o solution and the other is the spurious one. Fig. 9 illustrates these when
L3 X

7 k = 0.5. There, the principal axes and the directions of maximum shearing

’

X

2s are also indicated.
[0

oy}
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7. ADJACENT TWO OPTICAL FLOWS

T
‘ ;: Now, we consider two regions of an image which have different optical
i - .rﬂ
j:}: flows, i.e,, different flow parameters a, b, A, B, €, D. Obviously, this
BN
L2 arises if the object is a polyhedron. However, the object can have a
l{ﬁ; smoothly varying surface, in which case we divide the surface 1image into
VA
u::- small regions each of which can be regarded as almost planar, say

according to the criterion of planarity discussed in Section 2.

Let a, b, A, B, C, D be the parameters of one region and a'. b', A',
B', C', D' those of the other, and assume that these two sers are not
identical. 1If the two regions are planar and adjacent to each other,
their intersection must be a straight 1line, on which u, v must be
continuous, i.e.,

[a] + [A)x + [B]y = O, [b] + [C]Jx + [D]y = 0, (7.1)
where [ ] designates the difference. e.g., [a] = a' - a. The necessary

and sufficient condition that eqns (7.1) define one and the same line is

h ]

[a] : [b] = [A} : [C] = [B] : [D]. (7.2)
E,t, Eqn (7.2) gives a '"criterion of adjacency." 1In cther words, if eqn (7.2)
%féi is not satisfied (within a certain error), the two regions cannot be
u:f-.__
N
Al

regarded as being adjacent to each other. If egqn (7.2) |is satisfied,

.
.

A eqns (7.1) define the "intersection line." If the two regions are two
:xfn
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N
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}{& adjacent faces of a polyhedron, the intersection line may be directly
N observed. However, even when intersection lines are missing due to noise
or some technical difficulties, we can still recover them once we can
successfully estimate the fiow parameters on each region, say by eqns
(2.6). Moreover, even when the two regions are neighboring "almost
planar" patches of a smoothly wvarying surface, the '"hypothetical
intersection line" is strill defined.

Next, we must check if the two adjacent planar regions are '"rigidly"
connected. Obviously, a 'criterion of rigid adjacency" is given by
testing if we can determine common motion parameters a, b, wli, w2, w3.
(If the computation is done with respect to different coordinate systems
for the two regions, we must compare them after appropriately transforming
them as is discussed in Section 3.)

Suppose two regions are images of two planes z = px + qy + r and z =
p'x +q'y +r'. Sincez=px + qv + r = p'x + q'y + r' on the
intersection line, its equation on the image plane becomes

[plx + [qly + [r] = O. (7.3)

Hence, we see that

LEMMA 2, Vector [P] is perpendicular to the intersection line.

According to Section 5, we can first compute w3 for the two regiouns
separately, ending up with two solutions for each region, the true and the
spurious one., 1If the two regions are rigidly connected, the true one must
be common to them, and we can pick up the common one as the true w3. If
both the true and spurious solutions are common, we have pwl + qw2 = p'wl
+ q'w2 according to eqn (5.10). This means [p]wl + [q]w2 = 0 and hence

[P) is perpendicular to W = wl + iw2. Since the intersection line is




always perpendicular to [P], W must be parallel to the intersection line.
As was pointed in the previous section, we can only determine W's
orientation as an undirected axis, and hence we can say that W is
determined. Then, we can pick up the correct value of w3 so that eqn
(6.1) or (6.2) is satisfied. Once we have determined w3 uniquely, we can
compute W for each of the regions. If the two orientations of W do not
coincide (within a certain error), the two regions cannot be regarded as
being rigidly connected. 1f they coincide, the scale factor k can be
taken to be common to both.

Now, if y = mx + n is the computed intersection line, we must have, in

comparison with eqn (7.3), that [p] ¢ [q] : [r] =m: -1 : n. Hence,

LEMMA 3. If the intersection line is y = mx + n, the equations of the
planes are

z=px +qy +r, z=p'x+q'y + (r - [gln). (7.4)

This can be also extend to other regions. Hence, we have established the

following fact.

THEOREM 2, The structure and motion of an object are determined from its

optical flow under orthographic projection only up to an unknown absolute

depth r and an indeterminate scale factor k aside from the tramnslation in

the z-direction.

We have also given explicit formulae of computation.

EXAMPLE 2. Consider the flow of Fig. 10. According to the discussion in

Section 2, we cannot conclude that this is a flow induced bv a motion of a
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single plane but that this consists of two different flows with flow

parameters
a=-20.1, b =0.2, a' = - 0.1489, b' = 0.2244,
A = 0.2094, B = - 0.1047, C = 0.0698, D = - 0.0349
A' = - 0.1396, B' = - 0.3490, C' = 0.2443, D' = 0.0873.

Eqn (7.2) is satisfied within rounding error, and the intersection of the
plane surfaces must be y = - 1.4286x - 0.2 which is indicated in the
figure. From the former flow (upper right) we obtain w3 = 10, 0 (deg/sec)
and from the latter (lower left) w3 = 24, 10 (deg/sec). Hence, we
conclude that w3 = 10 (deg/sec), and the remaining rotation components
become
W = (0.4472 + 0.89441i)k (rad/sec),
where k is the indeterminate scale factor. The gradients are given by
P = (0.2341 + 0.07801i)/k, P' = (- 0.1561 - 0.19511)/k,

respectively. They are indicated in Fig. 11 when k = 0.5. Note that [P]
is always perpendicular to the intersection line. The equations of the

two planes are

N
[}

( 0.2341x + 0.0780y)/k + r,

N
"

(- 0.1561x - 0.1951y)/k + (r - 0.0546/k).

8. CONCLUDING REMARKS

In this paper, we have exhausted all that can be known given an optical
flow under orthographic projecticn of a rigid object moving in 3D
space. First, the image is divided into small regions which are either
planar faces or almost-planar patches of a smoothly wvarving surface. A
criterion for it was also discussed. Analvzing each of these regicns, we

have reached a conclusion that the motion can be recovered up to a common

absolute depth and a common scale factor. We also presented explicit
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formulae of computation. This conclusion was partly pointed out by
Sugihara and Sugie [15], who took a correspondence-based approach and
considered a finite number of rigidly moving points. They proved that cne
scale factor must be involved in addition to the indeterminate scale
factor, but they failed to show that the solution is unique once the
scale factor and the absolute depth are given. Moreover, their algorithm
is not perfect and it may produce physically impossible solutions.

On the other hand the correspondence-based approach can be incorporated
in our flow-based approach. Consider the case where each almost-planar
patch consists of only three points, which amounts to polyhedral
approximation of the object. Then, observing the velocities of three
points is equivalent to observing the optical flow of the plane spanned by
these three points. For example, suppose we measured velocities (u, v),
(u', v') and (u", v") at three points (x, y)., (', y') and (x", y"),
respectively. Then, the flow parameters a, b, A, B, C, D are determined

by solving simultaneous equations

! X vy 1T aw w7

1 x' oy Al =1 u |, (8.1)
R x" y" | | B ] L u" |
r1 X y 1 b7 M v ]
Pl x' y! C =1 v' |, (8.2)
L 1 "yt LD L v'" ]

These give a unique solution for a, b, A, B, C, D unless the determinant

} 1 X v
i 1 %' y' (8.3)
l Y" yl'

vanishes, i.e., which is a condition for collinearitv of the three points.

Hence, if velocitie~ st three non-collinear points are observed, the flow
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parameters are determined.

EXAMPLE 3. Suppose we measured velocities at
= (0.6, 0.2), r' = (- 0.2, - 0.4), " = (- 0.4, 0.8),

and observed

= (- 0.0416, 0.,1052), u' = (- 0.0975, 0.1767), u" = (0.077, 0.1593),

éA respectively (Fig. 12). From eqns (8.1) and (8.3),

%3 a = - 0,0486, b = 0.1523,

: A =-0.0349, B =0.1396, C = - 0.0698, D = - 0.0262,

Ef T = - 0.0611, R = ~ 0,209, S = - 0.0087 + 0.06981.

;Eg The corresponding flow is shown in Fig. 13. By the procedure we showed

before, we see that the two solutions are

pm‘-'.’

*:. w3 = -~ 5 (deg/sec), W= (0.4477 + 0.8942i)k (rad/sec),

S

b P = (- 0.0390 + 0.05851)/k,

Lo

o w3 = - 5 (deg/sec), W = (0.8319 + 0.55491i)k (rad/sec),

e P = (- 0.0629 + 0.03151)/k.

O Hence, the equation of the plane is

" z = - 0.0390x/k + 0.0585y/k + r or z = - 0,0629x/k + 0.0315y/k + r.

) Therefore, the z-coordinates of the three points are

ﬁg z=-0.0117/k +r, z'=-0.0156/k + r, z" = 0.0624/k + r

' i

fi or z = - 0,0314/k + r, z' =r, z" = 0.0504/k + r,
where k is the common scale factor and r is the common absolute depth.

|

Ly

'2 Thus, our flow-based approach is a generalization of the correspondence-
based approach, including it as a special case. In practice, however,

]

:‘ observed velocities of a small number of points are unreliable due to

(el

:- noise and misdetection of point correspondence, as was pointed out

N

< earlier., Hence, it seems a wise policy to base the whole computation on
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the flow parameters a, b, A, B, C, D obtained by the process of taking

sums or averages of a number of data, which is less sensitive to 1local
errors in general. Therefore, our present formulation seems preferable
for actual processing. Moreover, since our flow-based approach starts
with the flow parameters, we do not necessarily have the optical flow or
detect point correspondence. For example, if we wuse the methods of
Kanatani {7 - 9], the flow parameters are determined directly without
knowing correspondence. As we have seen, indeterminacy is involved in one
optical flow. However, the indeterminacy is reduced if a sequence of
successive optical flows of the same object, because p, q, r, a, b, ¢ (the
velocity along the z-axis if not =zero), wl, w2 and w3 cannot evolve

arbitrarily. Namely, we have the following "compatibility conditions"

dp/dt = pqul - (p> + 1)w2 - qu3, (8.4)
dq/dt = (q2 + 1)wl - pqw2 + pw3. (8.5)
dr/ft = ¢ - pa - gb. (8.6)

Taking a flow-based approach rather than the correspondence-~based
approach of Sugihara and Sugie [15] has also led to various other useful
concepts and interpretations. Our flow-based analysis enabled us to study
the transformation properties under coordinate changes and to express the
quantities, formulations and interpretations in frame indifferent manners.
The concept of invariance is important not only for consistent and elegant
descriptions but also for practical applications, because it allows us to
choose a specific coordinate system suitable to each different region.
Furthermore, the concept of invariance has naturally lead to hydrodynamic
analogies which make clear the intuitive meanings of our interpretations.

Taking full advantage of our invariant approach, we expressed the solution

in explicit forms, while Sugihara and Sugie '15] gave a scheme only to
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compute numerically. In the course of our analysis, we showed the
existence of the spurious sviurion and gave its geometrical interpretaion.
We also showed that it disappears if flows of two different regions of the

same object are observed.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

1 A plane of equation z = px + qy + r 1is moving with translation
velocity (a, b, 0) at (0, 0, r) and rotation velocity (wl, w2,
w3) around it. An optical flow is induced on the xy-plane by
orhtographic projection along the z-axis with (0, 0, - f) as the
viewpoint.

2 Interpretation must be "invariant'" with respect to coordinate
changes, i.e., it must "commute" with coordinate changes.

3 A new x'y'-coordinate system is taken by rotating the xy-
coordinate system by t cunterclockwise and translating it by (hl,
h2). The new origin O' is at (hl, h2) and the new x'-axis makes

angle t with the old x-axis.
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i Fig. 4 Divergent flow.
,? Fig. 5 Rotational flow.

.: Fig. 6 Pure shear flow with two principal axes Ql (maximum extension)
i? and Q2 (maximum compression). )

:~ ' Fig. 7 The canonical form of pure shear flow. The principal axes
. coincide with the coordinate axes.

t: Fig. 8 An example of optical flow. The flow parameters are a = 0.1, b =
. 0.1, A = 0.0873, B = - 0.2269, C = 0.0873, D = 0.0524.

y

Fig. 9 The result of our analysis of the flow of Fig. 8. Two solutions

‘é are possible, the true one and the spurious one. The principal
& axes and the direction of maximum shearing are also indicated.

- Fig. 10 Another example of optical flow. This flow cannot be regarded as
;: that of a single plane. It consists of two planar regioms. The
E dashed line is the intersection line computed from the flow.

2 Fig. 11 The result of our analysis of the flow of Fig. 10. The spurious
€ solution does not appear.
f: Fig. 12 Observation of three moving points on the image plane. The
{- optical flow of the plane spanned by these three points are
; uniquely determined unless the three points are colinear.

‘ Fig. 13 The computed hypothetical optical flow associated with the motion
y of Fig. 12.
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