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ABSTRACT

The effect of camera rotation on the description of optical flow is analyzed. The
transformation law of the parameters is explicitly given by considering infinitesimal gen-
erators and irreducible reduction of the induced representation of the 3D rotation group.
The parameter space is decomposed into invariant subspaces, and the optical flow is ac-
cordingly decomposed into two parts, from which an invariant basis is deduced. A pro-
cedure is presented to test the equivalence of two optical flows and to reconstruct the
necessary amount of camera rotation. The relationship with the analytical expressions
for 3D recovery is also discussed.
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- Recovery of 3D structure and motion from a 2D image sequence is one of the most
e X

' ::E challenging problems in computer vision. Most existing schemes are classified into two
A9

o types. One is the correspondence-based approach, which does not assume any particular
X .
,:‘;‘ model of the object except the rigidity of motion and uses point-to-point correspondence
)
::: 4 explicitly. The 3D structure and motion are recovered numerically [1-5]. Another is the
!'“I

D . . .

:!:s flow-based approach, which employs a specific model of the object and pays attention to
X global characteristics of the optical flow such as vanishing points [6-9]. This idea is fully
v’ .
X
‘:.' developed by Kanatani [10-12]; if the object is a plane, the 3D structure and motion are
!'|

L) . . .
‘.o::‘. given analytically in terms of invariants with respect to coordinate changes on the image
2 . . . .
d plane. These invariants are derived by means of irreducible reduction of the 2D rotation
i
"y group.
P,

L2008 . .
W Although the flow-based approach does not make use of point-to-point correspon-
:.' dence explicitly, the optical flow itself is usually obtained by detecting the point-to-point
', . . L

:0:' correspondence between two successive images, and this correspondence detection is a
N

s time consuming process {13-17]. Kanatani [18-20] proposed schemes which do not use
)
"‘{ the correspondence when the object is a planar surface. In this paper, we first summar-
K

,\1 ize the analytical results of Kanatani {10-12] and then generalize Kanatani’s schemes
K

o [18-20] so that those analytical results can fit in the present new setting.
oG

>

o,
$$ 2. 3D MOTION FROM FLOW PARAMETERS
S
‘u
i We assume that the image under consideration is decomposed into planar or almost
u ,I: .

.&‘-;. planar regions, say by the method discussed by Kanatani [10,11]. Now, attention is paid
.' b

fite

o to each region regarded as planar. Take a Cartesian zy-coordinate system on the image
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plane and the z-axis perpendicular to it. Let z==pz +qy+r be the equation of that
plane. The coeflicients p and ¢ are the components of the gradient of the plane, and r
represents the absolute depth from the image plane. Let (0,0,r ), the intersection between
the plane and the z-axis, be a reference point (Fig. 1). The instantaneous rigid motion
is specified by translation velocity (a ,b,c) at the reference point and rotation velocity
(wy,wp,wy) screwwise around it (i.e., with rotation axis orientation (w,,ws,ws) and angular
velocity \/;?‘m (rad /sec) screwwise around it). Hence, our goal is to reconstruct
the nine structure and motion parameters p, q, r, a, b, ¢, w,, ws and wy from observa-

tion of the projected image motion.

(1) PERSPECTIVE PROJECTION

Let (0,0,-f ), the point on the z-axis at distance f from the image plane on the
negative side, be the viewpoint or focus of the camera. A point (X ,Y,Z) in the scene is
projected to (fX /(f +Z),fY /(f +Z)) on the image plane. If the point is on the plane
z=pz +qy +r which is moving as described above, it is easy to show that the following

optical flow is induced at point (z,y) on the image plane:

u =ug+Az +By +(Ez +Fy)z,

(2.1)
=vo+Cz +Dy +(Ex +Fy)y,
where eight flow parameters are given by
L b
—— [+’ J+r
..Hi; > 2 A ==p WQ—-L-H, B =q w2-<d3———&,
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b E=t(wp-L),  F=Ll(w+2)
T T
h In other words, what we are viewing is a very restficted form of motion whose velocities
’()
;-' are specified only by eight flow parameters ug, vy, A, B, C, D, E and F. If these
i
3
R, parameters are the same, the motions seem identical to the viewer. Thus, our procedure
1,
S‘y is divided into two stages. First, we detect the flow parameters vy, vg, 4, B, C, D, E

and F from a given image sequence. Next, we compute the structure and motion

o

R S

parameters p, ¢, r, a, b, ¢, w, wa and w3 from these flow parameters. The second

ab

s A2,

stage is performed by solving the non-linear simultaneous equations (2.2) as follows

s

o

(Appendix A): First, compute

U0=UO+1.U0' T=A+D y R =C—B,

vf”; "”

. (2.3)
? ) S=(A-D)+i(B+C), K=F +iF,
[\ -
)'_- where ¢ is the imaginary unit. Hence, Uy K and S are complex numbers. If we put
+

V=a+ib, P=p +iq and W =w;+iw,, then V', ¢, P and w; are given by
@
< =(/ +r)Uo/f,  e=(f +e)e!
;;' ] 1 s - g
P(eYmger [ -Uo/f £y/[TR=Ug/T TS ),

e:" ;
o W(cy=o(/K-Us/f £\/(fK-Uo/f )*~4c'S )+iUo/ [ , (2.4)
. -
- 1 e
, wy(e)==(R +Re[P (c') (W (c")"+iUq /[ )]),
n' 1 ( FUAINE LTI
2 ¢'=-=(T +Im{P ("YW (c")"+iUg /[ )])s
[ -
,' where Re[.; and Im|.] denote the real and the imaginary part respectively and * the com-
’; ' plex conjugate. Here, P, W and wj; are functions of ¢’, and ¢’ is given by solving the
V)
]
:, last of eqns (2.4). There exists only one non-zero solution ¢’. In lact, if we substitute
)
:: the expressions for P(c') and W (c') in it, the equation reduces to a cubic equation in ¢’
P
3 -3-
3
N
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:' (Appendix A). Since an explicit form of the solution of a cubic equation exists, we can
s express the solution ¢’ explicitly, although in in a complicated form, if we wish. How-
o
3:} ever, application of an iteration scheme seems more feasible. In any case, the problem is
.\ l‘
‘_\'.' . . . .
ey completely solved analytically, and we find that (i) the absolute depth r is indeter-
: . minate, (i) ¢ /(f +r), b /(f +r) and ¢ /(f +r) are uniquely determined, and (iii) there
‘T
:3.( exist two sets of solutions for p, ¢, w;, wa and w;, one being true and the other spurious.
4 )
ll M
e However, the spurious solution disappears if two or more planar regions of the same
o ', object are observed because w;, ws and w; must be common to them. Numerical schemes
" "
2%y
"; of 3D recovery from point-to-point correspondence have been known [2-4] and the
Wy
LIN existence of the spurious solution was pointed out (9], but analytical expressions like eqns
L2
" N (2.4) have not been known.
<>‘ .
o4
§ogy
-~ (2) ORTHOGRAPHIC APPROXIMATION
tay If we take the limit f —oo of a large focal length f in eqns (2.2), we obtain the
) '.h_ﬁ
":1 following orthographic approximation:
f ::2‘_1
uWed ug=a, vo=b,
_4
::\:; A=pw; B=gquwsw,;, C=-pwtw;, D=-qu, (2.5)
oy
o~ E =0, F =0,
S
. and the solution is explicitly given as follows (Appendix B):
oo V=0, wy==(R V557 -T?),
A -
:3_':-' S oo 1 1 .
: P = exXpi (-:‘-—Farg(.S' )+5arg(2wa-(R +:iT ), (2.6)
T
AN W =k expi (Z+ Targ(§ )-s-arg(2ws—(R +iT ).
S 4 2 2
e
et
'\

o
;7
a

a where arg denotes the argument. Here, £ is an indeterminate scale factor. Thus, (i) the




absolute depth r and the velocity ¢ in the z-direction are indeterminate, (ii) an indeter-
minate scale factor k is involved, and (iii) there exist two types of solutions, one heing
true and the other spurious. However, the spurious solution disappears if two or more
planar regions of the same object are observed because w;, wy; and w; must be common to
them. 3D recovery from point-to-point correspondence under orthographic projection
was first studied by Ullman (2], and the fact that an indeterminate scale factor is neces-
sarily involved was already pointed out [5]. However, analytical expressions of the solu-

tion have not been known.

(3) PSEUDO-ORTHOGRAPHIC APPROXIMATION

If we omit terms of O(1/f 2) but retain terms of O(1/f ) in eqns (2.2), £ and F

are replaced by

E=w'l/fv F=_wl/f: ("

[
-3
e

respectively, which we call the pseudo-orthographic approzimation. The solution is

analytically given as follows (Appendix C):

S

V=(f +r)U,/f, W=ifK, P=W,

ws=(R +Im(Se %)), ¢ =L (T Re[Se2)), (2.8)

as=arg(fKN-Uy/ f ).
Hence, (i) the absolu e depth r is indeterminate, (ii) a /(f +r), b6 (f ~r)and ¢ (f +r)
are uniquely determined, and (iii) p, ¢, w;, wo and w3 are uniquely determined. It should

be noted that no spurious solution ezxists.

The parameters of eqns (2.3) have geometrical meanings |10, 11]: U7 translation, T

divergence. R rotation. S shearing and K fanning (Fig. 2). They are transformed by a




. o8 a

coordinate rotation by & on the image plane as

T — T, R - R,
Uy — Uge™?, K — Ke™ (2.9)

~ _9
S — Se ¥

(see Appendix D.) In other words, T and R (as well as r, ¢ and wj3) are (absolute)
invariants of weight 0 (or scalars), Uy and K (as well as 1", P and W) are (relative)
invariants of weight -1 (or vectors), and § is a (relative) invariant of weight -2 (or a ten-

sor){12].

3. FLOW PARAMETER ESTIMATION BY FEATURES

Let X(z,y) represent the image. For example, if the image consists of gray-le.els,
X (z,y) denotes its intensity at point (z,y). If the image consists of colors, X'(z,y)
may be a vector valued function corresponding to R, G and B. If the image consists of
points and lines, X (z,y) has delta-function-like singularities. In any case, we define a
feature of image X (z,y) as a functional, i.e., a map F || from the set of images X (z.y)

to the real numbers.

Suppose that there is an optical flow u(z.y), v(z,y) on the image plane and that
the image is moving according to this flow. Then, if X'(z,y) is an image at time ¢, it

changes at time ¢t —&¢ after a short time interval into

N (r-ulz,y)bt.y-viz.y)dt)

=X(r. J)—%u(z J)&t—%l(l’ y)ot = - - (3.1)
Then. a feature F X' at time ¢ changes at f =4t into FF X --DF X 8t +~ - and the

change rate DF . is in general a linear "unctional in u{z .y ) and v(r,y).

-8 -
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In view of the optical flow of eqns (2.1), this means that we have a linear equation

of the form
DF[.\'}=Cl[‘\']uo+0.3[.\'}vo+ -+ CH X E+CeXF, (3.2)

where C'y[.], ... Cg[.] are functionals derived from the given feature functional F|], so
that they are all known functionals. On the other hand, the change rate DF {] of
feature F[.! can be estimated by difference schemes. For example, observe the image at
time ¢ and compute feature F{t). Next, observe the image at time t +6f after a short
time interval and compute the same feature F'(¢t+6t). Then, the time change DF [X] is
approximated by (F(t+6t)-F(t))/6t, or we can use a higher order numerical
differentiation scheme if observations are made on three or more consecutive images.
Thus, all quantities except ug, vg, A, B, C, D, E and F in eqn (3.2) are directly com-
puted from an image sequence without requiring point-to-point correspondence. Since
an equation of the form of eqn (3.2) provides a linear consiraint, we obtain a set of
simultaneous linear equations to solve for the flow parameters uy, vy, ..., E and F if we

provide eight or more independent feature functionals F';[.], Fa[], ... .

The idea of using feature functionals was suggested by Amari {21,22] and was
applied to 3D recovery by Kanatani [18-20]. However, he did not divide the computa-
tion process into two stages as described here but tried to compute the structure and
motion parameters p. q. r. a, b. ¢, wy, wa and wy directly. This leads to a set of
simultaneous non-linear equations which are difficult to solve. Ile proposed an iterative
scheme which traces the motion along time, starting from known initial values of p. ¢
and r as described later. Here, however, the process is divided into two stages. We first
estimate the flow parameters by solving a set of linear equations. This poses no compu-

tational problem. Then. the structure and motion parameters are computed 1n




e

analytical terms as described in the previous section.

As for the feature functionals, we can use those used by Amari [21,22] and Kana-

tani {18.20]. We review and modify them so that they fit in the present new setting.

(1) ANISOTROPY OF TEXTURE

Consider a surface which has a spatially homogeneous (but not necessarily isotro-
pic) texture consisting of line segments. The 3D structure and motion are detected by
checking the anisotropy of the texture. This method, applicable in the case of ortho-
graphic projection, was first suggested by Witkin [23] and combined with ntegral

geometry or stereology by Kanatani [18].

Let the line texture on the image plane be dissected into infinitesimal line elements.
The orientation of each line element is specified by angle 6 from the r-axis Since there
are two angles for the same orientation, i.e., § and 0+r designate the same orientation,
we choose one of them randomly with a probabkility of 1/2. Let the distribution density
f (0) be defined in such a way that f (0)d 8 is the summed length of those line segments,

per unit area, whose crientations are between 6 and 6+d8. By definition,
cozfog”f (0)d 8 is the total length of the line segments per unit area. If the distribution

is isotropic, f (#) is constant for all §. If the distribution is nearly isotropic. the distribu-

tion dentity f (6) is approximated by a Fourier series up to the second order

¢
f ()= .-.)2{1 +a 400820-+b »sin20),

2n

c(,:fof (0)d 0, (3.3)

o= [ [ (D)eos20d 0, ba=—[ [ (O)sn20d0
o™ 0 € 0

Here. first order terms do not appear because of the symmetry f (8- )= f (0).




If the image is changing according to orthographic optical flow (i.e., eqns (2.1) with
E =0 and F =0), the Fourier coeflicients ¢q, as and b, of eqns (3.3) change as follows

'18.29,30):

co colaa-2) cobo czbo —colay=2) A
Dtas =% —as+6  -bslasd) ~bsfai 1) as -6 [(} (3.4)
b2 —(l-lb-_) 'b;? "‘1(1;)‘7‘6 _b-:l 1—4(1_1-—-6 d ._\b-‘) D

Thus, cg, as and b, serve as feature functionals, and eqn (3.4) corresponds to eqn {3.2),

although another feature must be added to determine A, B ' and D uniquely.

In order to measure ¢, a, and b, from a given image, we must estimate the distri-
bution density f () from the histogram of line segment orientations. To this end, we
must choose an appropriate class interval for the histogram. If it is too large. estimation
becomes crude. If it 1s too small, the counting for each class is greatly affected by noise.
This difficulty arises because the definition of the distribution density f () involves

infinitesimals, i.e., a limit taking process.

There exists a method of estimating the distribution density f (8) which does not
involve a limit taking process. This is possible by a stereological technique. Instead of
making a histogram, we count the number of intersections between the line segments
and a probe line (or equally spaced parallel scanning lines). Let N(0) be the number of
intersections per unit length of the scanning line of orientation 8. Then, the observed
intersection count V(@) is related to the distribution density f (#) by what Kanatani 18

30 called the (two-dimensional) Buffon transform :
N(O)=] |sin(8-0[f (0)d O (35)
0

If the distribution density f () is given by eqns (3.3). the intersection count N (#)

O A T
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becomes {13, 30

Co., :
N(0)=-—5~{1+4 yc0s20+B asin20],

CO:]'O"/ (0)d 0, (3.6)

27 Re
A gz?‘o- [, ¥ (0)cos20d6, B.,:CLO [ N(o)sin20d0.

where

00246' 0 A 2=——=0a9, B:.):— bn. (37)

Hence. we can use Cy, A2 and B, themselves as feature functionals. They are computed
by measuring the intersection count ;V(f) and approximating the integrations of eans
{3.6) by appropriate summations. For example, putting N, =N (rk /N ), k=0,1,....N-1.

we may adopt the approximation

V-1
C=2 Z ‘/Vk //IV,
k=0
(3.8)
N-1 q"k N-1 N-1 077'/\': N-1
-t . 4
A,=2Y%] Njcos N /YN, Bo=2Y Ngsin s Y N

k=0 Nok=0 k=0 N 2o

Consider Fig. 3, for example. If we draw on 1t equally spaced parallel scanning lines
whose spacing is 1722 of one side of the square frame for orientations 0, =mk . 16.
A =0,1.....15 with N=16. 1.e.. at 11.25° intervals. we obtain the intersection count as
shown in Fig. 1. {from which we obtain 4,=-0.172 and B,=0.068 The sold curve is
the corresponding approximation of eqns (3.6). Fig. 3 is the recovered distribution den-

sity of eqns {33) estimated by using eqns (3 7).

From eqns (3.6) and (3 10), the change rates of ("¢, 4. and B, become as follows

-10 -
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_CAtd)  -CuB, CoB:  Cofdr=)
o 3 3 A
D AS 3| az-2 BiAst=) BoArd) A+l B (3.9)
2 3 3 ATl A%y L) ¢
B. 4 4, 2 D
Aq:B, Bi-—A,= B7 Y ..-% -A.B;

(2) ANISOTROPY OF CONTOUR

In the above, we assumed spatial homogeneity, since anisotropy is expressed per
unit area. This assumption assures that the portion of the texture newly coming into
view has the same statistical characteristics as the portion of the texture going out of
view. However, this assumption is not necessary if the entire planar region is viewed,
Le., if we can always identify the planar region that we are looking at. Then, the distri-
bution density f (6) is defined in such a way that f (0)d 0 is just the summed length (not

per unit area) of those line segments whose orientations are between 6 and §+d 8. By

definition, co=f63”f (6)d 0 is the total length of the line segments. If the distribution is
isotropic, f (6) is constant for all 6. If the distribution density f (4) is approximated by
the Fourier series (3.3) up to the second order, the change rates of ¢y, a, and b, are
given by eqn (3.4) except that the first row of the matrix is replaced by
colaat+2) coby  cobs  -co(as-2). (3.10)
If we count the number of intersections between the texture of the entire planar
region in question and a probe line (or equally spaced parallel scanning lines), and if
N{f0) is the number of intersections per unit length of the scanning line of orientation 0,
then .V(0) and [ (0) are again related by the Buffon transform of eqn (3.5). Hence. if the
distribution density is approximated by eqn {3.3), N (0) is given by the form of eqn (3.6),
and the change rates of Cy, A, and B, are given by eqn {3.9) except that the first row

of the matrix is replaced by

- 11 -
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Codr3)  -CoBy  2C(Ar+). (3.11)
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An interesting application arises when the planar region has no texture but its con-

o Vi e
P

tour is viewed. Then, the contour itself can be regarded as a texture. If the contour

shape is convex, the intersection counting is equivalent to measuring the diameter D (0)

. defined as the spacing of two parallel lines of orientation @ tangent to the contour (Fig.

N
3

Jr }’ 6). for every line has two intersections if they exist (excluding the exceptional case of

v tangency). The contour shape need not be convex if the diameter is measured from out-
b side, for in this case the conver hull of the contour plays the role of a texture. The con-
o
:-;\4 vex hull is invariant with respect to projection; the convex hull of a projected contour is
AN
"‘ the same as the projection of the convex hull of the original contour. The diameter D ()
0 and the distribution density f (0) of the contour are related as follows [19}:

P

-,'.'. 1 L

D (0)=Ff0|sm(9—6')|f (@)de. (3.12)
2% If this function is expressed in Fourier series as in eqn (3.6), the coeflicients C'g, A o
W
ot and B, change as in eqn (3.9) with the first row replaced by (3.11). Consider the two
o)y
- contour images C and C' of Fig. 7, for example. The diameters measured at 10° inter-
-~/

2N vals of orientation are plotted in Fig. 8, where the white circles correspond to C and the
,'J-.\

"3
- black ones to C'’'. The solid curves are approximations of the form of eqn (3.6) with C,
5.0

f. . . . . .

d A, and B, computed by eqns (3.8), indicating that they fairly well characterize the data.
1 ‘;::: (3) FILTERING GRAY-LEVEL IMAGES

P

).::_.
K N Suppose we are observing a sequence of gray-level images of a planar region. Amari
. o 21, 22 suggested the use of filtering or weighted averaging for feature detection.
-

-, ¢

oh Namely. we use

.
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~
e
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ey FIX|=[[,m(zy)X(z,y)dzdy, (3.13)
Al as a feature, where m(z,y) is a fixed weight function of the filter, and integration is
AN
&Y
:{j\ done over a fixed domain or window W on the image plane. Suppose the area of non-
i
Q zero gray-levels is. localized in the window IV so that X(z,y)=0 along the window
W, boundary and suppose the gray-level does not depend on the gradient or the depth of
iy
o the object surface. An example is letters, lying entirely in the window W, drawn on a
“
\
s white (or black) object surface.
o If the image X (z,y) changes according to eqn (3.1), the feature F [X'| becomes
-
Ao after a short time interval §¢
Q'b
"
4 ff m(z,y)dzd —ff m(z 3 )(ﬂu(x y)+ oX y))otdzdy + - - -
o w miz y=lym@ylGruley)rgre(e, y a1
L 14
: - aum dvm
o =F[X]+ X btdzdy + -
.:: 3 } ff“/( 8I ay ) J
b
i where we performed integration by parts, setting integrals along the window boundary
.‘:‘-: to be zero according to our assumption that X(z,y) is zero at the window boundary.
Xy
2ol
Thus, the change rate DF [X'] of the feature F [X] is given by
w
: - du dv dm dm
DF X |= —m + == + U=t v—— ) Xdzdy. 1
\:: X ffw(az ay 9z ay) (3.15)
N
5; When the optical flow is given by eqns (2.1), functionals C[.], ..., Cg[] of eqn (3.2)
K-
i become
-~
' :_- 1Y ] ff m, \'dzdy, C.z[.\']=ffw m, Ndzdy,
k- ColX|=] [, (m +2m, )Xdady, C [X|=[ [, ym, Ndzdy,
- CsX1=[ [ am, Xdedy, Co(X|=] [ (m+ym,)Ndzdy, (3.16)
ﬁ .:E (GFIRY }:ffw (3zm +z°m, +zymy ) Ndxdy .
l\‘
L)
'
5 -13-
Y
>
&
~
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ey
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A A
wow
W . 2
‘:,!.: CglX ]=ffw (3ym +zym, +y-m; ) Xdzdy,
-;_ where m, =0m /dz and my=0m /dy are known functions. Thus, C[], ..., Cgl] can
SRS
:‘; be implemented as filters. Here, we assumed that X (z,y)=0 at the window boundary.
(s
T This assumption is not essential, and it can be removed. Instead, the expressions of the
:'\:: ' functionals €[}, ..., Cg[.] include terms of line integral along the window houndary.
[} L
N
;k\ (4) INTEGRATION ALONG AND INSIDE THE CONTOUR
Wt Kanatani [20] considered the case where only the bounding contour of a planar
058
"_;.: region is observed. He proposed the use of integration along the contour C of a given
Wy
"t fixed function m(z,y),
o
- FIX]=[ m(z,y)ds, (3.17)
N
N as a feature, where ds denotes the line element along the contour C'. This integration is
, easily performed on the image by using a scheme of numerical integration {20]. Then.
N
:{:2 we see that
g dm , om 3 du 9 v
ey DF X |= 1L (L2 (CY Gy 1 OV iy g
3 Xl= [, 5~ "By (o2 (dy 5707y Pt *ym lds (3.18)
Y
zx. where z/=dz /ds and y’=dy /ds. When the optical flow is given by eqns (2.1), func-
AL
kS .
K '-g"- tionals C'{.], ..., Cg[.] of eqn (3. ) become as follows:
4-: C’,{X]=fc m, ds CQ[.\']=fC my ds
‘ % '
:.\ﬁ C_;{.\"]:fc fzm, +2'°m |ds | Cﬁ.\'}:fc (ym, +z'y'm|ds
K2
-y CqX ‘—f am, +x'y'mds 06[4\"5:]0 lym, +y"*m ids . (3.19)
NN . .
"ﬁ C'7[,‘{}=fc [z m, +zym, +(2xz""+yz'y' +zy’ Y lds,
2
~ C'si_‘(’zzfc xym, +y2my +(yz"+zz'y' +2yy'*)m | ds.
A ).
1
i
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e, Hence, C [, ..., Cgl.] can be computed on the image plane by using a scheme of numeri-
A

cal integration.
A
K. Kanatani [9] also proposed the use of surface integration inside the planar region S
Y
.
: FIX|=[ [ m(z,y)dzdy, (3.20)
o3 of a fixed function m(z,y). Now, integration is done over a moving region S, not over
& a fixed window W . The change rate is expressed in two ways, due to Green's theorem,
iy
as follows:

B
s dm _ dm , du

. DF X |= —tv—- + dzxd

! =] [ g rv g, Gy +5,)m dzdy a21)

2 =fc(uy'—vz’)mds.

i\

;0 When the optical flow is given by eqns (2.1), functionals C[.], ..., Cg[.| of eqn (3.2)
8
¥ become
d
‘.

| C‘[X]=fc my'ds =ffs m, dzdy , CQ[X]=—fC mz'ds szs m, dzdy,
. C:,[X]=fczy’mds =ffs[m +zm, |dzdy ,

v CoX]|=[, yy'mds =] [ ym, dzdy,

H CslX ]=—fc zz' mds =ffs zmy drdy (3.22)
4
B

C'G[X]=-fc yz'mds =ffs (m +ym, |dzdy
Csl. '}=fc (r°y'-ryz')mds =ffs [Bzm +z7m, ~xym, dxdy,

b C'gi_\'}:-—fc(ryy'—ygx’)mds =ffs Bym ~rym, +y*m, drdy.

4

: Hence. C'y.], ... Cgi.] are computed on the image plane as either line integrals or surface
‘, integrals.
|
[)

X
[/

{
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4. STEPWISE TRACING AND STEREO

According to the method described so far, the flow parameters ug, vo, A, B, C,
D, E and F can be extracted from two (or more) consecutive images, and then the
structure and motion parameters a, b, ¢, p, ¢, w;, wa and w3 are determined by analyt-
ical equations. As was shown, however, there remain certain indeterminacies including
the absolute depth r. These indeterminacies can be removed if « sequence of images is
available and if the initial position of the surface is known (19, 20]. This becomes possi-
ble if we note the fact that if a plane z =pz +qy +r is moving with translation velocities
a, b and ¢ and rotation velocities w,, w, and w; as described in Section 2, the

coeflicients p, ¢ and r change as

d] d
—d%=P¢I wy=(p *+1)wy-q ws, 7?"“—‘( 02+ 1)wy—pq watp wy,

. (4.1)
r — — —
I—c pa —qb.

Suppose p, ¢ and r are known at time ¢. Substitution of eqns (2.2) in eqn (3.2)

yields
DF [X]=Cu [X]+Cb [X]+Ce [X]+Cu1[)(.]+CW¢[‘Y]+Cw.[‘Y]' (4.2)

where C, ], Gy [}, C. [}, Cyl), €yl and €[] are functionals defined by

Coll=p s U CllIpCsliaC L), Oy ll=—l/ Cal 1-pCsl1-aCl),
Ce L= (sl 1+ Col -S-{pCrl 1 +4C4l )
(4.3)
Cu.[-l='(P05[-]+'ICs[-]+‘%“Cs[-l): Cu,[-]=P03[-]+qu[-f+%07[‘],
C uyl:J=Cs[J-C [ ]-
Since p, ¢ and r are known, C, [}, ..., C,|] are known functionals. The left-hand side

- 16 -
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of eqn (4.2), ie., the change rate F[X] of feature F[X], is obtained by a numerical
differentiation scheme as described earlier. Hence, if we use six or more independent
feature functionals, we obtain a set of simultaneous linear equations of the form of eqn
(4.2) to determine a, b, ¢, w), ws and ws. Then, p, ¢ and r at time { +6¢ are deter-

mined by integrating eqns (4.1) by some numerical integration scheme like

PP +[pgwi(pP+1)wywy|8t, qe—q+[(g%+1)w,-pgwstp ws)bt, b
rer+[c-pa-gb|ét,

or some other higher order scheme. This process is repeated to determine the course of
motion uniquely along time [19, 20|. During this process, small errors at each step may
accumulate, so that appropriate modifications are necessary once in a while, say, by the

direct method described earlier or some other source of information.

This method is also used to determine the surface orientation and position p, ¢
and r from stereo vision without using point-to-point correspondence. If we move the
camera by ! in the negative z-direction, the object moves by ! in the z-direction rela-
tive to the camera. In view of eqn (4.2), the change rate dF [X|/dl of feature F X ]| is
equal to C, [X'|. Similarly, C; [X] and C, [X'] are directly obtained by moving the cam-
era in the y- and the z-direction and measuring the change rate of feature FX]. (In
practice, of course, the camera need not be moved if the necessary number of cameras
are appropriately positioned beforehand.) Then, the first three of eqns (4.3) provide a

set of simultaneous equations to solve for p, ¢ and r, since C, [X], ..., €, [X] are also

measured on the image. First, p and ¢ are given as a solution of

-17 -
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C. [XIC:;!XH-}—C. (X]CqlX] €. [XIC4[«V]+-}-C. X ]CslX]

p
c, [X]CleH-}-Cs IX]eqX] €. lxw,mﬁc. IX]CslX] [.,]

(4.5)
_ |G X]C\[X]+C, [X|(C4[X ]+C[X])
T |G [X]CoX]+Cy [X|(C3[X|+C[X]) |
and r is given by
_JO1X|-pCs[X|-904X| = [CO4X|-¢Cs[X]|-qCsX] s (456)
C, [X] Cy [X] ' ;

(If we use more than three independent feature functionals, the camera need be moved
in only one direction, say, in the z-direction alone. However, this does not seem to be

feasible in view of noise susceptibility.)
In the orthographic approximation f —oo, eqns (4.3) become

C, [‘lzcl“' Gy [‘]=C2[']’ C. [']20'
Cull=ApCs[1+4Ce[]). Cull=pCsl|+4C5l] (4.7)

Cul|=CslI-C [,

and the process goes similarly except that ¢ is not determined, as is obvious for ortho-
graphic projection. If the feature functionals that we use are invariant with respect to
translations as in (1) and (2) of the previous section, only three such features are neces-
sary to compute wy, ws and ws, which in turn determine the trajectoryof p and ¢q. Fig.
10 shows the trajectory of the l_njotion of Fig. 9 obtained by measuring the diameter D (6)
[19]. However, special care should be taken when p =0 and ¢ =0, in which case both

C,X] and C",,z[X] vanish and hence w, and w, are not determined. In this case, we

must use a higher order expression of the optical flow as shown in [18, 19].

-18 -




c.!

In the pseudo-orthographic approximation, the process goes similarly except that

.} of equs (4.3) is replaced by

1
[ +r

C, [J=-——(C3[ ]+ Csl)). (4.8)
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3 APPENDIX A
] If we substitute eqns (2.2) in eqns (2.3), we obtain
[
v .
P (;0:}'50%'1(’)'
‘ S +r
I
. ~qb ~2¢ pb ~qa
N T—=pas—qgu -_—_[)(l 4 R =P W= Wa+Jwa— ’
y P a2~ I Pey=qws 3f+r
| (A1)
- pa -qb

y : b ~qa
R A —i( wiyp w - 212

: f -~r f -~r '
" K= P

“' ] (—‘—w'l""

e €9
[ (=) " f

f{f=r)

I we put Vi=u ~ib. P=p—~iq and W =0 +iw,, these equations are rewritten as
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(/'0: fv ’
[ +r
R +iT =225 p (W 2ug) (A2
-3 [ +r -/ or 2)
. ] ; . - P
S=-iP(W-LU), K=-tVo S
;e S S +r)
Purting
¢ , T
("zj'-+rrv Wi=i-—0, (A3)
the above equations are further rewritten as
V= j +r ('/0 (A\-‘)
PW' =(2ws-R)-i(2¢'+T), (A45)
PW'=i§, c¢'PiW'=[K —~}—U0. (46)

Since V' is given by egn (A.4), the remaining equations are the equations to determine
¢’ P, W and wy

First, we check whether ¢'=0 or not. If so, we have W/'=i(fN -l [ ) from the
second of eqns (A.G). Then. P=S/(fK-Ugy/f ) from the first. We can conclude ¢'=0
if and only if these W' and P satisfy PW'* ={2w;~R )-iT obtained from eqn (A5) If
this is satisfied (within a certain threshold), ws is given by wy=(R ~Re:PW'* ) 2.

Suppose we have already checked that ¢’ is not zero. The first of eqns (A G) is
rewritten as (¢'P ) —W/')=c'S . lence, eqns {A.6) means that ¢'P and =1 are the

two roots of the gquadratic equation
NELN - 'S =0 (L=fK-U, f) (A7)

Hence P oand W' are ziven as functims of ¢! by




P AR K .-“-

4y

il R e R

[>(¢-')=2LC'(L VL ac's ), H"(c'):%l/‘ VTSN (AN
Then. eqn (A.3) gives w3 as a function of ¢’ by
w;,zé-(l? FRelP(c)W'(c") ), (A.9)
and the equation to determine ¢’ is
¢'=a (T ~Im{P (") W(c")"). (A.10)

Eqn {A.10) defines a unique equation although two sets of solutions exist for P. W/
and w3 To see this, let X', and \'» be the two roots of eqn (A.7). If we choose
P=X,’c’" and W'=i\,, we have ImPW'"|=-Re[\'|X; | 'c’, while if we choose
P=X.'c¢' and W'=i\}, we have Im{PW'* =-Re'\ |\, c" Since
Re \'\X3 =Re X{\'.,, Im/PIW'" | of eqn (A.10) remains the same for both cases.

It we actually substitute equs (A.8) in eqn (A.10), we obtain

V165 e *-8Re L35 * e/ ~|L [Y=-8¢ >4 Tc'+|L |* (A.11)
The left-hand side is a smooth concave function (or a constant if S =0) passing through

(0.1L)*

). while the right-hand side i1s"a smooth convex quadratic function also passing
through (0.JL |*) (Fig. A). Since we know that ¢’'5£0, there exists a single unique non-

zero solution ¢!,

If we take the squares of both sides, we obtain a cubic equation

Je '~

(Re:L=S*1-T|L |*)=0. (A12)

x|—

From Fig A it 15 eusv to see that this cubic equation has three real roots and that the
middle one is the desired root. (The other two roots were introduced by squaring of

both sides.)
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e APPENDIX B
N
L858 Since ug=u and vy=b. we only need to determine p, ¢q. w;, wo and wy. (¢ and r
AN - . . . .
F e are incteterminate due to orthography ) If we substitute eqns (2.5) in eqns (2.3). we
A
B~
b ’h. .
W obtain
A

T=pws—quw;, R =23-pwi-quws,

(B1)
S =pwatquTi(guwrpwy).
The first two equations are combined into a single equation
R +iT =203-pw—quari(pwaq ). (B.2)
I ' we put P=p —iq and IV =w|~iwa, the equations become
T PW* =203~(R ~iT), PW=is (B.3)
’ Since |[PW * |=!PW |, the right-hand sides must have the same modulus. ie
_— (2wg~(R —iT ))(2ws~(R —iT ))=55". (34
M
YN . . -
.- from which «y1s given by
.'."‘\ i
2 wy==—(R £V SS"-T") (B5)
:'_ From eqns (B.3). we immediately see that ff W and P are a solution then so are
,\_".-'
[ . . .
RS kW oand PPk where & is an arbitrary non-zero real constant. Ilence. we do not lose
LS
S generahity if we put W=k explarg{ 7)), where & is an indeterminate seale factor  Ehm-
'-:::- imating I from »qns (B 3) by tuking ratios of both sides. we obtain
oo
-\:;--'. W IS .
" AP = 6
1 W 2wy (R T (B )
- "-'
~:. Taking the argument of both sides vields
DA
,'{-",-
r
N
o
) -24 -
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o

S% 'Zarg(W)=%r—+arg(5)—arg(2w3—(1? +iT)) {(mod 2}, (B.7)
and hence -

A arg(W)=%+%arg(S )—-‘l;arg('lw;,-(R +iT)) (mod ). (B.8)

B However, we can ignore the mod = by allowing the scale factor £ to be negative. Then,
5 W is given by the second of eqns (2.6). Finally, P is given from the second of eqns (B.3)

by P =15 /W, and hence it is written as in eqns (2.6).

i APPENDIX C

If the pseudo-orthographic approximation (2.7) is adopted, eqns (A.6) are replaced

.

P

by

4

i

,A
i, A :r‘l

o

PW'=iS, W=ifK. (C.1)

~i

Hence, W is explicitly obtained, and P=iS/W'=S/(fK-Uy/f ). The remaining ws

e
Bt g an BV

and ¢ are given from eqn (A.5) as

i

wy=i(R +RePW!"), ¢ =LEL(T 4Im[PWI")). (C.2)

"n:' L

B S

If we note that

. . ..'l )"'ll ,

2

.’— e
| purr = s I N0 T e
- TN-Uy/ S

/‘f .
e T, 2t

(C3)

AR

we obtain eqns (2.8).

Lk’-’v
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APPENDIX D

Optical flows are observed in the form of eqns (2.1) with respect to an zry-
coordinate system arbitrarily fixed on the image plaine. The choice of the coordinate sys-
tem is completely arbitrary. Supposc we use an z'y’-coordinate system obtained by
rotating the ry-coordinate system by angle 8 counterclockwise. Then, the optical flow

must bear the same form

w'=ug+A'2'+B'y' +(E'2'+F'y")z’,
(D.1)
v'=v+C'z'+D'y'+(E'z'+F'y")y',

because we are still observing the rigid motion of a plane. In other words, the optical
flow is form invariant. Here, the old coordinates z,y and the new coordinates x', y' are

related by

! _ cqse sind I (D2)
y' -sinf cosf | ly
Since the velocity components are transformed as a vector, the old components u . r and

the new components «', v’ are also related by

v -sinf cosf v

[“:]= cosf sind [u] (D3)

If we substitute eqns (D.2) and (D.3) into eqns (D.1) and compare the result with eqns
(2.1), we find that u,, v, are transformed as a vector. A . B. ", D are transformed as a

tensor. and E . F are transformed as a vector, namely,

uf] [ cosd sinf g (D1
vy |~ | -sind cosO [ | vq |
A B! cost? sind A B cosf ~~Sll\0-l (D 5)
B ! 5
' D'"| 7 | -sind cosd C D| ysin0 ('os()J'
-26 -
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Po s

E'l_ cosf sind E]
5 [F']_ l:—sinf) cosl [F ‘ (D.6)

Eqns (D.4), (D.5) and (D.6) are a linear mapping from ugy, vg, A, B, C, D, E, F

% to uy, vy, A', B', C', D', E' F' and this mapping is a representation, ie., a
b homomorphism, of the 2D rotation group. As is well known in group representation
"_“ theory, any representation is reduced to one-dimensional irreducible representations due
P

: to Schur’s lemma, since the 2D rotation group is compact and Abelian. In fact, if we
)

- define Uy, T, R and S as eqns (2.3), the above mapping is rewritten as

j (JO’=e_i0U0, T'=TY R’=R,

N S'=e0S,  K'=eK.

'Y As Herman Weyl pointed out, irreducible representations describe physical quanti-

ties which are inherent to the phenomenon and independent of the choice of the coordi-

F L LA

nate system. Indeed, the above parameters describe geometrical characteristics of the

PR

-

flow itself familiar in fluid dynamics as is stated in the text. In particular, T, R and S

are obtained by resolving the matrix composed of A, B, C and D into the scalar part,

Rt ]

the deviator (or traceless symmetric) part and the antisymmetric {or skew) part. This is

Lt g8

not a coincidence; according to the general theorem of Weyl, all irreducible representa-

¢

: tions of any tensor representation of SO (n) are obtained by a combination of these

'

decomposition processes.
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-, perspective projection, (0,0,~f ) being the viewpoint.
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Fig. 7. Two contour images C and C' of the same planar surface.
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Fig. 9. Contours of a moving plane viewed orthographically. The orientation of Cy is assumed
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