




1. INTRODUCTION

Recovery of 3D structure and motion from a 2D image sequence is one of the most

challenging problems in computer vision. Most existing schemes are classified into two

types. One is the correspondence-based approach, which does not assume any particular

model of the object except the rigidity of motion and uses point-to-point correspondence

explicitly. The 3D structure and motion are recovered numerically [1-5]. Another is the

flow-based approach, which employs a specific model of the object and pays attention to

global characteristics of the optical flow such as vanishing points [6-9]. This idea is fully

developed by Kanatani [10-121; if the object is a plane, the 3D structure and motion are

given analytically in terms of invariants with respect to coordinate changes on the image

plane. These invariants are derived by means of irreducible reduction of the 2D rotation

group.

Although the flow-based approach does not make use of point-to-point correspon-

dence explicitly, the optical flow itself is usually obtained by detecting the point-to-point

correspondence between two successive images, and this correspondence detection is a

time consuming process [13-17[. Kanatani [18-20] proposed schemes which do not use

the correspondence when the object is a planar surface. In this paper, we first summar-

ize the analytical results of Kanatani [10-12] and then generalize Kanatani's schemes

[18-201 so that those analytical results can fit in the present new setting.

2. 3D MOTION FROM FLOW PARAMETERS

We assume that the image under consideration is decomposed into planar or almost

planar regions, say by the method discussed by Kanatani [10,11 . Now, attention is paid

to each region regarded as planar. Take a Cartesian xy-coordinate system on the image
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In other words, what we are viewing is a very restficted form of motion whose velocities

are specified only by eight flow parameters u0, v0, A , B, C, D, E and F. If these

parameters are the same, the motions seem identical to the viewer. Thus, our procedure

is divided into two stages. First, we detect the flow parameters u0, v0, A , B, C, D , E

and F from a given image sequence. Next, we compute the structure and motion

parameters p , q, r , a , b , c , w l, w2 and w3 from these flow parameters. The second

stage is performed by solving the non-linear simultaneous equations (2.2) as follows

(Appendix A): First, compute

Uo=uo+Ivo, T=A +D, R =C-B,
(2.3)

S =(A -D )+i (B +C), K =E +iF,

where i is the imaginary unit. Hence, Uo, K and S are complex numbers. If we put

V=a +ib, P p +iq and 1V--wl+iw, then V, c, P and w3 are given by

V=(f ±r)Uo'f , c =(f +c)c',

P (c ')=-L(f K-Uo/f ±/(fK_-Uo/f )"--4c'S )
2c'

iV(c')-i(fK-Uo/f ±v/(f7 K-Uo/f )-47c'S )+iUo/f (2.4)224

w3(c ')=T(R +Re[P (c ')( IV(c ')* +iU /f )]),

S 1
c - (T+InmfP(c')( lt(c')*+iUo*/f )J);

where Re .' and 1m.' denote the real and the imaginary part respectively and * the com-

plex conjugate. Here, P, It" and a:3 are functions of c', and c' is given by solving the

last of eqns (2.4). There exists only one non-zero solution c'. In fact, if we sub,titute

the expressions for P(c') and W(c') in it, the equation reduces to a cubic equation in c'

-3-

OU ='



(Appendix A). Since an explicit form of the solution of a cubic equation exists, we can

express the solution c' explicitly, although in in a complicated form, if we wish. How-

ever. application of an iteration scheme seems more feasible. In any case, the problem is

completely solved analytically, and we find that (i) the absolute depth r is indeter-

minate, (ii) a /(f +-r), b /(f +r) and c /(f +r) are uniquely determined, and (iii) there

exist two sets of solutions for p, q, wl, w., and w3, one being true and the other spurious.

However, the spurious solution disappears if two or more planar regions of the same

object are observed because wl, w., and w 3 must be common to them. Numerical schemes

of 3D recovery from point-to-point correspondence have been known [2-41 and the

existence of the spurious solution was pointed out [0], but analytical expressions like eqns

(2.4) have not been known.

(2) ORTHOGRAPHIC APPROXIMATION

If we take the limit f -oo of a large focal length f in eqns (2.2), we obtain the

following orthographic approximation:

Uo -a , vo- b ,

A =p wo, B =q w"- 3 , C =-p W1+w 3, D =-q c-,1, (2.5)

E =0, F =0,

and the solution is explicitly given as follows (Appendix B):

V=u 0 , -.3=!(R ±VSS-T),

a.-..
e-p.. 7r -LaS 1 )+larg(2.,,_( 1

P =-expi (-- T (2.6)

W k 4expi (!+ -arg(S)-L-arg(2,3-(R -iT ))),

where arg denotes the argument. Here, k is an indeterminate scale factor. Thus, (i) the
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absolute depth r and the velocity c in the z-direction are indeterminate, (ii) an indeter-

minate scale factor k is involved, and (iii) there exist two types of solutions, one being

true and the other spurious. However, the spurious solution disappears if two or more

planar regions of the same object are observed because w1 , w., and vJ 3 must be common to

them. 3D recovery from point-to-point correspondence under orthographic projection

was first studied by Ullman [2], and the fact that an indeterminate scale factor is neces-

sarily involved was already pointed out [51. However, analytical expressions of the solu-

tion have not been known.

(3) PSEUDO-ORTHOGRAPHIC APPROXIMATION

If we omit terms of 0 (1/f 2) but retain terms of 0 (1/f ) in eqns (2.2), E and F

are replaced by

E=w/f , F=-wl/f , (2.7)

respectively, which we call the pseudo-orthographic approximation. The solution is

analytically given as follows (Appendix C):

V=(f +r)Uu/f, IV=ifK, P= S
fK-Uo/f

.-3= 1(R T -rlm]Se - s]), c -- f +r ( T -RelSe - a]), (2.8)

a=arg(fK-Uo,,'f ).

Hence, (i) the absolu e depth - is indeterminate, (ii) a i(f -- r ), b '(f -r ) and c '(f -r

are uniquely determined, and (iii) p , q , w l , w and W3 are uniquely determined. It, should

be not(l that no spurious solution exists.

The parameters of eqns (2.3) have geometrical meanings '10, 11]: (U0 translation, T

livergence. R rotation, S shearing and K fanning (Fig. 2). They are transformed b% a
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coordinate rotation by 0 on the image plane as
T - T, R R,

U o -. U e -  K -* Ke -  (2.9)

S - Se -2.

(see Appendix D.) In other words, T and R (as well as r, c and "73) are (absolute)

invariants of weight 0 (or scalars), U0 and K (as well as V, P and IV) are (relative)

invariants of weight -1 (or vectors), and S is a (relative) invariant of weight -2 (or a ten-

sor)1121.

3. FLOW PARAMETER ESTIMATION BY FEATURES

Let X(x,y) represent the image. For example, if the image consists of gray-!e,-els,

X(x ,y) denotes its intensity at point (x ,y). If the image consists of colors, X(x ,y)

may be a vector valued function corresponding to R, G and B. If the image consists of

points and lines, X(x ,y) has delta-function-like singularities. In any case, we define a

feature of image X(x,y) as a functional, i.e., a map F 1.1 from the set of images X(x ,y)

to the real numbers.

Suppose that there is an optical flow u (x,y), v (x ,y) on the image plane and thit

the image is moving according to this flow. Then, if X(x,y ) is an image at time t, it

changes at time t -6t after a short time interval into

X (X -u (X y )bt 'y-v(X 'y )6t )

=X (Xy)2Vit( xt-2 IY6 (:3.1)
ax ay

Then. a feature F X at time t changes at t -6t into FA'X-DF .X bt....., and the

change rate DF. is in general a linear "unctional in u (z y) and v' (x ,y ).
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In view of the optical flow of eqns (2.1), this means that we have a linear equation

of the form

DF1[X=C1 [X]u 0 +C.[X]vo+ . . . +C 7 [jE+C 8 [XIF, (3.2)

where Cl., .... C 8[.] are functionals derived from the given feature functional F[.j, so

*.. that they are all known functionals. On the other hand, the change rate DF .j of

feature F [. can be estimated by difference schemes. For example, observe the image at

time t and compute feature F(t). Next. observe the image at time t -bt after a short

time interval and compute the same feature F(t -6t ). Then, the time change DF [X] is

approximated by (F(t+6t)-F(t))i6t, or we can use a higher order numerical

differentiation scheme if observations are made on three or more consecutive images.

Thus, all quantities except u0 , v 0 , A , B, C, D, E and F in eqn (3.2) are directly com-

puted from an image sequence without requiring point-to-point correspondence. Since

an equation of the form of eqn (3.2) provides a linear constraint, we obtain a set of

simultaneous linear equations to solve for the flow parameters u 0 , v0 , ..., E and F if we
-p

provide eight or more independent feature functionals Fl[.], F 2 [.1.

The idea of using feature functionals was suggested by Amari [21,22] and was

applied to 3D recovery by Kanatani [18-20]. However, he did not divide the computa-

tion process into two stages as described here but tried to compute the structure and

motion parameters p. q . r, a , b, c , and c 3 directly. This leads to a set, of

simultaneous non-linear equations which are difficult to solve, lie proposed an iterative

schome which traces the motion along time, starting from known initial values of p . q

.mid r as described later. Here, however, the process is divided into two stages. \We first

estimate the flow , arameter.s by solving a set of linear equations. This poses no compi-

tational problem . Then. the stru|cture and motion parameters ,re com1puted in
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analytical terms as described in the previous section.

As for the feature functionals, we can use those used by Amari [21,22] and K'ana-

tani t18.20]. We review and modify them so that they fit in the present new setting.

(1) ANISOTROPY OF TEXTURE

Consider a surface which has a spatially homogeneous (but not necessarily isotro-

pie) texture consisting of line segments. The 3D structure and motion are detected by

checking the anisotropy of the texture. This method, applicable in the case of ortho-

graphic projection, was first suggested by \Vitkin ]231 and combined with integral

geometry or stereology by Kanatani ]181.

Let the line texture on the image plane be dissected into infinitesimal line elements.

The orientation of each line element is specified by angle 0 from the x -axis Since there

are two angles for the same orientation, i.e., 0 and O-r designate the same orientation,

we choose one of them randomly with a probability of 1,72. Let the distribution density

f (0) be defined in such a way that f (O)dO is the summed length of those line segments,

per unit area, whose crientations are between 0 and O+dO. By definition,

,0o=f
2 ,f (O)dO is the total length of the line segments per unit area, If the distribution

' " y is isotropic, f (0) is constant for all 0. If the distribution is nearly isotropic, the distribu-
,,%"

tion dentitv f (0) is approximated by a Fourier series up to the second order

,.* f (0)=- c- .,cos20--b .,sin20"

co=f 0 f (0)(10, (3,3)

a f ()cos20d0, b.,- f f (O)sm2OdO
Co 0 0 C 0) 0

Ilere, first order term- do not appear because of the symneirv f (0- )=-f (0).

, .......... .... ......... ................. ........
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If the image is changing according to orthographic optical flow (i.e., eqns (2.1) with

E=0 and F=0), the Fourier coefficients co, a., and b., of eqns (3.3) change as follows

-1, S29 301:

c O(a .- 2) cOb2 c .b2  -c (a .,--2)-2 . - :2 B

D c° =1'7[ -a,2 -6 -b2(a -4) -bA a 2 -- ) - (.A)

4 .2

Thus, co, a., and b., serve as feature functionals, and eqn (3.4) corresponds to eqn (3.2),

although another feature must be added to determine A , B C and D uniquely.

In order to measure co, a., and b., from a given image, we tnust estimate the distii-

bution density f (0) from the histogram of line segment orientations. To this end, we

must choose an appropriate class interval for the histogram. If it is too large, estimation

becomes crude. If it is too small, the counting for each class is greatly affected by noise.

This difficulty arises because the definition of the distribution density f (0) involves

infinitesimals, i.e., a limit taking process.

There exists a method of estimating the distribution density f (0) which does not

involve a limit taking process. This is possible by a stereological technique. Instead of

making a histogram, we count the number of intersections between the line segments

and a probe line (or equally spaced parallel scanning lines). Let N(0) be the number of

intersections per unit length of the scanning line of orientation 0. Then, the observed

intersection count N(0) is related to the distribution density f (0) by what IKanatani 1.

30 called the (two-dimensional) Buffon transform

0

If the distribution densitv f (0) is given bv eqns (3 3). t he intrse'( ii(, c,, it \0t
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becomes 18, 301

CO
N(O)=- I-+A .,cos2O± -B.,Sin 20l

0

4 - f .(O)cos2O , B.,=-f N()siQ2Od 0.
CO 0 C0  0

where

C0 =4c 0, A 2 -a.,, B=- -b. (3.7)

hience, we can use C0 , A , and B., themselves as feature functionals. They are computed

by measuring the intersection count N(0) and app~roximating the integrations of eqns

(3.6) by appropriate summations. For example, putting Nk =N(rk IN), k =0,1,..N1

we may adopt the approximation

k =0
(3.8)

N-i 2~k 1V-1 .7i rk \i
A,2 '5Z\k Cos V k B.,=2YZk s In Ark

t 0k =0 k =0 k =0

Consider Fig. 3, for example. If we draw on it equally spaced parallel scanning lines

kNhose spacing is 1 22 of' one side of the square frame for orientations 0
k=7k 16.

k =0, L.-15 with N =16. i.e.. at 11.25' intervals, we obtain the intersection count as

hion in F ig. .1. from wihw tamA.,=-0. 172 and BnAlhw ban. .,=-OO68. The solid cuirve is

lie correspondiing ip proxiination of' eqns (3.6). Fig. 5 is thew recovered (listribu1t ion dn

sOif eq' (3 3) estimnatedl by using eqns (3 7).

F rom eIn~s (3.6) and (3 10). the rh an ge rates of' (). A and~ D., becme * s fol( 's

'S.t-10



-Co(A.+=-) -COB 2  CoB. Co(A
S3 

3I=AC A22- B4oA.+±) B(A- -A -.2"+ - C] (3.9)

B22B2 B 2 _4 a _2 2 4 9
A 2 -'- B2 -A -= -A 2 B2

3 3 "*3

(2) ANISOTROPY OF CONTOUR

In the above, we assumed spatial homogeneity, since anisotropy is expressed per

unit area. This assumption assures that the portion of the texture newly coming into

view has the same statistical characteristics as the portion of the texture going out of

view. However, this assumption is not necessary if the entire planar region is viewed,

i.e., if we can always identify the planar region that we are looking at. Then, the distri-

bution density f (0) is defined in such a way that f (O)dO is just the summed length (not

per unit area) of those line segments whose orientations are between 0 and O+dO. By

definition, co=fo0f (O)dO is the total length of the line segments. If the distribution is

isotropic, f (0) is constant for all 0. If the distribution density f (0) is approximated by

the Fourier series (3.3) up to the second order, the change rates of co, a2 and b. are

given by eqn (3.4) except that the first row of the matrix is replaced by

co(a,2 +2) c ob, cob,2  -co(ao-2). (3.10)

If we count the number of intersections between the texture of the entire planar

region in question and a probe line (or equally spaced parallel scanning lines), and if

A'0) is the number of intersections per unit length of the scanning line of orientation 0,

then A'(0) and f (0) are again related by the Buffon transform of eqn (3.5). Hence. if the

distribution density is approximated by eqn (3.3), N(0) is given by the form of eqn (3.6),

and the change rates of C 0 , A 2 and B 2 are given by eqn (3.9) except that the first row

of the matrix is replaced by
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.44
-Co(A 0 -. 3 ) -COB., 2Co(A2+3). (3.11)

. 3 3

An interesting application arises when the planar region has no texture but its con-

tour is viewed. Then, the contour itself can be regarded as a texture. If the contour

shape is convex, the intersection counting is equivalent to measuring the diameter D (0)

defined as the spacing of two parallel lines of orientation 0 tangent to the contour (Fig.

6), for every line has two intersections if they exist (excluding the exceptional case of

tangency). The contour shape need not be convex if the diameter is measured from out-

side, for in this case the convex hull of the contour plays the role of a texture. The con-

vex hull is invariant with respect to projection; the convex hull of a projected contour is

the same as the projection of the convex hull of the original contour. The diameter D (0)

and the distribution density f (0) of the contour are related as follows [191:

2,r 3.2D, (0)2 0 Isin(0-0)lf (0')d 0 (3.12)

If this function is expressed in Fourier series as in eqn (3.6), the coefficients Co, A

and B.2 change as in eqn (3.9) with the first row replaced by (3.11). Consider the two

contour images C and C' of Fig. 7, for example. The diameters measured at 100 inter-

vals of orientation are plotted in Fig. 8, where the white circles correspond to C and the

black ones to C'. The solid curves are approximations of the form of eqn (3.6) with C,

,A., and B2 computed by eqns (3.8), indicating that they fairly well characterize the data.

(3) FILTERING GRAY-LEVEL IMAGES

Suppose we are observing a sequence of gray-level images of a planar region. Amari

21, 22' suggested the use of filtering or weighted at'eraqing f'r feature detection.

* ., Namely. we use
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F [Vx=ff, m (z ,y )X(z,y )dxdy, (3.13)

as a feature, where m (x ,y) is a fixed weight function of the filter, and integration is

done over a fixed domain or window IV on the image plane. Suppose the area of non-

zero gray-levels is. localized in the window IV so that X(x,y)=O along the window

boundary and suppose the gray-level does not depend on the gradient or the depth of

the object surface. An example is letters, lying entirely in the window IV, drawn on a

white (or black) object surface.

If the image X(z,y) changes according to eqn (3.1), the feature F[X} becomes

after a short time interval 6t

fL 1f in (x ,y )dxdy -ff 1  m (x ,y )(-Y-u (x ,y )+L- v (x ,y ))6tdxdy+ .=ffy 
(3.14)-ay.. ~ ~=F [X I+f f v(-+--'- )X 6tdxdy + ',

where we performed integration by parts, setting integrals along the window boundary

to be zero according to our assumption that X(x,y) is zero at the window boundary.

Thus, the change rate DF[XI of the feature FIX] is given by

DF[Xl=ffW,( au m+ O3 m +uW+v-, )Xdxdy. (3.1.5)-- ~a a f-zm -y ax aroy

When the optical flow is given by eqns (2.1), functionals Cl[.], ..., C 8 [.] of eqn (3.2)

become
-U-

Cin 2~fl AYxy CI]f 1  Xdxdy,

"" C 3 [X]l=ff ,(M ,xm, )Xdxdy, C 4[Xl=f f, Yi., Xdxdy,

C. x=f fVxrnXdxdy, C6 X]=f f1v(m -yrm)Xdxdy, (3.16)

'l-, i=f f (3x , +x ?I, -Xym )Xdx'd

-13-
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Cs[X]==ff,,(3yn +xy,,,- +y~my )Xdxdy,

where ,n ==am/ax and in. =a/n lay are known functions. Thus, C 1 1., ... , C8 1.[ can

be implemented as filters. Here, we assumed that X(x,y )-o at the window boundary.

This assumption is not essential, and it can be removed. Instead, the expressions of the

functionals C 1[.1 ... , C8[.] include terms of line integral along the window boundary

(4) INTEGRATION ALONG AND INSIDE THE CONTOUR

Kanatani [201 considered the case where only the bounding contour of a planar

region is observed. He proposed the use of integration along the contour C of a given

fixed function in (x ,y),

F [X]=4f m (x ,y )ds, (3.17)

as a feature, where ds denotes the line element along the contour C. This integration is

easily performed on the image by using a scheme of numerical integration 120[. Then.

we see that

DF [X] a y a ya y af[2nt MaX2(Ual + _ 2)nis , (3.18)

where x'=dx/ds and y'=dy/ds. When the optical flow is given by eqns (2.1), func-

tionals Cla., ... , C 8 [] of eqn (3.2) become as follows:

CjX= in., ds , C,-[X I=f c n'J "S,

C3 '1AXj=fC fXrnz±X' 2m lds , C4 1rX'=fC~, u'm -X-- M ds'

Cx =f x,, -. 'y'rn ]ds, C 61X-=f fing, -- y'rn (IS . (3.9)

.%. f, C =fc z,-,,..-y,,, +(2xx'.-yx'y'xy '),, i4s,

C&X=f ~sum -~yI2 (YXI 2±xXX,~2Y I 2 ) ds.

- 14-
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Hence, C1 [.] ... , C8 [.1 can be computed on the image plane by using a scheme of numeri-

cal integration.

Kanatani [9] also proposed the use of surface integration inside the planar region S

F IX=f fs m (x ,y )dxdy, (3.20)

of a fixed function m (z ,y). Now, integration is clone over a moving region S, not over

a fixed window W. The change rate is expressed in two ways, due to Green's theorem.

as follows:

* DF [X]'f=ff [um+vL+(22+v)m Idxdya x CS x Cy O X ay (3 .2 1 )

* f¢ (uy'-vx')mds.

When the optical flow is given by eqns (2.1), functionals C11.] . .., C81.1 of eqn (3.2)

become

C X1----fcmy'ds =ff m dxdy, C,.[Xl=-f mx'ds-=ff s m y drdy,

C3[X]=f¢ xy'?mds =f fs [m +xmn. Idzdy,

C4[X]=f yy' mds =f fs Ym, dzdy,

C 5[X l=-fe xx' irids =f f xmy dxdy, (3.22)

C6[Xl=-fc yx'mds =ff Fm +ym ldady,

C17 ".=fC (x 2y'-xyx')"ds =f f[3x -t-x*2 1m-+-XY ]dy ',

c( xy'-y%" f')mds =f f 3ym -. ry -y M '.rdy.

Hence. C1'.. C 8 .j are computed on the image plane as either line integrals or surface

integrals.
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In the pseudo-orthographic approximation, the process goes similarly except that

C, 1 of eqns (4.3) is replaced by

1 "

Co [.1=-7 ( C C[ (4.8)
-; f +r
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APPENDIX A

If w~e sub~stitute eqns (2.2) in eqns (2.3), we obtain

.f (a +ib)
f -4- r

7)( I?1 p ,I 2 - pb -qa

j) q p qb qpb -qa

f f (f- r f f (f-r)

It' %e put V'= a - ib , P =p - iq and I .~--i...,these equ ationts atre rewri tte ci as
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U°f -rV

R -T=2 3  -P( (II V* 4-U~ 0). (A.2)
f+r I

'I s =-iPI '-- ,o0) I< H. cP +
.Ip f f f (f+r)

Putting

f fI c -i- r' , __. 0 (A13)

the above equations are further rewritten as

V +r Uo0  (A.4)
f

, Pt'* =(2wz3-R )-i (2cI+ T ), (A. 5)

PIV' =iS c 'P -iIV'- f K -1-U 0. (A 6)

f

Since V" is given by eqn (A-1), the remaining equations are the equations to determine

c', P, It' and "3.

First, we check whether c'=0 or not, If so, we have IW=i (fK- U0 ; f ) from the

second of eqns (A.6) Then. P =S/'(fK - U 0 /f ) from the first. \Ve can conclude c'=0

if and only if these 11" and P satisfy Pit'"  (2 . 3-R )-iT obtained from eIn (A.5) If

this is satisfied (within a certain threshold), .3 is given by ,:3=-(R I-R&ePl " 
* ') 2.

Suppose Nve hr ave already checked that c' is not. zero. The first of eqns (A 6) is

rewritten as cP (-i1")=c'.. Hence, eqns (A.6) means that c'P and -,11" are the

two roots of the quadratic eqtuation

X 2.2-LV - c '.N = O  L fh-U,, J * 7)

d.* -22-
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P (C'). '(L ±/L7--Ic'5 . W'(c')=i(L ±v'77 .''.\ s
2c2

Then, eqn (A.5) gives '3 as a function of c' by

")3= .(B +Re[p (e ')"W'( )" ), ..)

and the equation to deternine c' is

C'=-( 7' -IhnrP(c') IV"(c')' ). (A 10)

Eqn (A.10) defines a unique equation although two sets of solutions exist for P. 11"

and "3. To see this, let X, and X., be the two roots of eqn (A.7). If we choose

P =Xic' and IV'=iX.,, we have lmPV'*!=-Re[XiX* ,'c', while if we choose

P =PX.. c' and '= 1' wh e have ]m- *=c'. Since

Re"XX., *=ReX.V'.\, ImPlI" of eqn (A.10) remains the same for both cases.

If we actually substitute eqns (A.S) in eqn (A.10), we ol)tain

V'161S 12c -- 8Re'L 2" * c '-IL 14=-Sc '2-4 Tc '-,-JL . (A. 11)

The left-hand side is a smooth concave function (or a constant if S =0) passing through

SOIL 12). while the right-hand side is a smooth convex quadratic function also passing

through (0,L 12) (Fig. A). Since we know that c3'#0, there exists a single unique non-

zero solution c'.

If we take the squares of both sides, we obtain a cubic equation

S- , 1 , _'' ( "- 1.5 2  
'I c i '- ,, 1e L . -T IL 12)= 0. I. 12)

Froim Fig A. it is e.sY to see that this cubic equation has three real roots and that the

((middle one is the desired root. IThe other two roots were introduced by sqi aring of

(both Sid e s.)
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APPENDIX B

Since u,)=, and c,)=b, we only need to determine p q, ;, and (c and r

are inA."terminate due to orthograplhy ) If we substitute eqns (2.5) in eqns (2.3), we

obtain

(B 1)
S =p W.2t q "I-I (q -]) .

The first two equations are combined into a single equation

R +iT --=2,,-p w-q , (p -q --). (13.2)

It e put P =p -iq and tl'=.,.'-i'. the equations become

PW =2,;3-(J? -iT), PIV =iS. (B 3)

S i-ce P1 "° 
=PV the right-hand sides must have the same moduls. Le

-. ,,-(2-'3-(R, - T ))(2,.,3-(R -T ))= SS;' (B 4)

.. r which ' is given by

-3= ( /S T -(B,5)

From e(ius (B 3). we inmediately see that if It' and P are a solution then so are

4- IV and P) k Mhere k is an arkitrarv non-zero real (onst ant. I li(c. we 1()1 not lose

..oncralhtv if \c lut It' ,e )xparg(Ir )). where k is an indeterminate scale 1I'(t ,, Flili -

i.i- iti P from (iB. 1B3) by taking ratios of both sides. we obi tin

(13 (i)2-,:j-(? I T

T;iking h,' :,riglin,.lt of both sides yields

-4 -

. Ik,..-.-

o- . . . --



2arg(TV)=L+arg(S)-arg(2W3 -(R +iT)) (mod 2ir), (B.7)

and hence'

arg( IV)=-!+-larg(S )--larg(2w3-(R +iT)) (mod r). (B.8)
4 2 2

However, we can ignore the mod r by allowing the scale factor k to be negative. Then.

IV is given by the second of eqns (2.6). Finally, P is given from the second of eqns (B.3)

by P =iS/ ', and hence it is written as in eqns (2.6).

APPENDI C

If the pseudo-orthographic approximation (2.7) is adopted, eqns (A.6) are replaced

by

"." PIV'---iS, IV =if K. .1

Hence, It is explicitly obtained, and P=iS/IV'=S/(fK-Uo/f). The remaining w3

and c are given from eqn (A.5) as

,-3=1(R +ne7Pl" ), c =f r +Im[Pl" * ). (C.2)

If we note that

V .f-U / fpi" PW --. fl J U0 1 .-Se -2i ck, (C.3)

we obtain eqns (2.8).
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APPENDIX D

Optical flows are observed in the form of eqns (2.1) with respect to an xy-

coordinate system arbitrarily fixed on the image p)d,,e. The choice of the coordinate sys-

tem is completely arbitrary. Suppose we use an z'y'-coordinate system ol)tained by

rotating the ry-coordinate system by angle 0 counterclockwise. Then, the optical flow

must bear the same form

< =--V 1 +C~'x'+D'y'+(E'z'+F'y')y',

because we are still observing the rigid motion of a plane. In other words, the optical

flow is form invariant. Here, the old coordinates x,y and the new coordinates x', yI are

related by

Fx1 [cosO sin0 O x (D.2)

Since the velocity components are transformed as a vector, the old components u. s' and

the new components it', v' are also related by

Ecos0 sinO 1(.3)

[V'= -sino cosOj [U]

If we substitute eqns (D.2) and (D.3) into eqns (DA) and compare the result with eqns

(2.1), we find that tio, tv( are transformed as a vector. .4 , B . C D are transformed as a

tensor. and E. F are transformed as a vector, namelh,

(J] = [cosO sinO][u l", (I),
()I,, L-s,,o cosoj k""

rlB CsO sinO' F BI1 coso U)n -5)
D' - n cos0j L C K, ,in ct
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[E']= Ecoso sinO [E1 (D.6)
[F' -sinO cosOj F

Eqns (D.4), (D.5) and (D.6) are a linear mapping from u0 , v0 , A , B, C, D, E, F

to u0, v0
1 , A', B1, C', D', E', F', and this -iapping is a representation, i.e., a

homomorphism, of the 2D rotation group. As is well known in group representation

theory, any representation is reduced to one-dimensional irreducible representations clue

to Schur's lemma, since the 2D rotation group is compact and Abelian. In fact, if we

define U0, T, R and S as eqns (2.3), the above mapping is rewritten as

UO'=e -Uo, T'= T, R'=R ,
(D.7)

S'=e-2i9S, K'=e-IOK.

As Herman \Veyl pointed out, irreducible representations describe physical quanti-

ties which are inherent to the phenomenon and independent of the choice of the coordi-

nate system. Indeed, the above parameters describe geometrical characteristics of the

flow itself familiar in fluid dynamics as is stated in the text. In particular, T, R and S

are obtained by resolving the matrix composed of A, B, C and D into the scalar part,

the deviator (or traceless symmetric) part and the antisymmetric (or skew) part. This is

not a coincidence; according to the general theorem of Weyl, all irreducible representa-

tions of any tensor representation of SO (n) are obtained by a combination of these

decomposition processes.

7p
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z=px+qy+r

::: 2r , b, c

"9.. z .. , ', "

}':" x ~ ~(xy)tif

SI.

Fig. 1. A plane of equation z=px +qy+r 's moving with translation velocity (a ,b ,c) at

(O,),r) and rotation velocity (w1 ,w2,w 3) around ;t. An optical flow is induced on the xy-plane by

perspective projection, (0,0,-f) being the viewpoint.
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S0 ; 1121r

Fig. 4. The number of intersections of the texture of Fig. 1 with parallel scanning lines ofdifferent orientation, the spacing being 1/22 of the side of the square frame. The data are nor-
malized so that the average is 1/2,r. The solid curve is the Fourier approximation up to the
second order.
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Fig. S. The caliper diameter D (0) is the distance between two parallel lines tangent to the con-
tour fromn outsidle.
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Fig. 7. Two contour images C and C' of the samne planar surface.
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Fig. 8. Diameters of tle contours C and C' of Fig. 7 for different orientations - white circles for
C and black dots for C . The solid curves are the Fourier approximation up to the second order.".
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V

Fig. 9. Contours of a moving plane viewed orthographically. The orientation of CO is assumed
to be knowvn.
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4%*.4Fig. 10. The true and the computed trajectory of the gradient (p q) obtained by measuring the
diameter D (0) of thc contours of Fig. 9 at 100 intervals,
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Fig. A. Existence and uniqueness of nonzero c
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