IRI Report No. 1963

HMX: 14 Day Toxicity Study in Rats by Dietary Administration

Final Report by:

R.J. Greenough P. McDonald

> *30* July₄1985

Supported by:

U.S. Army Medical Research and Development Command Fort Detrick Frederick, Maryland, 21701

> Contract No. DAMD 17-80-C-0053 IRI Project 415669 SR

Inveresk Research International Limited Musselburgh, EH21 70B, Scotland

Contracting Officer's Technical Representative:

Jesse J. Barkley, Jr. U.S. Army Medical Bioengineering Research and Development Laboratory Fort Detrick, Frederick, Maryland 21701-5010

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorised documents.

Non	C]	las	si	f	i	eċ	1
-----	----	-----	----	---	---	----	---

TALOG NUMBER T & PERIOD COVERED nal <u>O-Nov 1980</u> G. REPORT NUMBER 963 RANT NUMBER(*) -C-0053
T & PERIOD COVERED nal O-Nov 1980 G. REPORT NUMBER 963 RANT NUMBER(*) -C-0053
T & PERIOD COVERED nal <u>O-NOV 1980</u> g. REPORT NUMBER 963 RANT NUMBER(*) -C-0053
nal <u>O-Nov 1980</u> g. REPORT NUMBER 963 RANT NUMBER(*) -C-0053
O-NOV 1980 g. report number 963 rant number(*) -C-0053
G. REPORT NUMBER 963 RANT NUMBER(*) -C-0053
963 RANT NUMBER(*) -C-0053
-C-0053
-C-0053
ENT. PROJECT, TASK
ATT NUMBERS
02720A035.00.
ly 1985
;ES
S (of this second)
s. (or mie report)
ified
TION DOWNGRADING
, Explosives,
, Explosives,
, Explosives,

Abstract

Male and female rats were dosed via the diet for 14 days with HMX in order to select dose levels for a 13 wee k study. Concentrations were selected to give doses of 0, 100, 1000, 3000 and 9000 mg HMX/kg/day. Deaths occurred in males at 9000 mg HMX/kg/day and in females at 1000 mg HMX/kg/day and above. There were substantial effects on food intake and upon body weight.

Histopathological examination revealed centrilobular toxic degeneration in the lives of male and female rats. There was also hepatocyte hyperplasia, increased cyto plasmic eosinophilia in the liver and lymphocytic depletion in the spleen and thymus.

IRJ Report No. 1963

5)

HMX: 14 Day Toxicity Study in Rats by Dietary Administration

Final Report by:

R.J. Greenough P. McDonald

> *30* July, 1985

Supported by:

U.S. Army Medical Research and Development Command Fort Detrick Frederick, Maryland, 21701

> Contract No. DAMD 17-80-C-0053 IRI Project 415669 SR

Inveresk Research International Limited Musselburgh, EH21 7UB, Scotland

Contracting Officer's Technical Representative:

Jesse J. Barkley, Jr. U.S. Army Medical Bioengineering Research and Development Laboratory Fort Detrick, Frederick, Maryland 21701-5010

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorised documents.

FOREWORD

"I, the undersigned, hereby declare that this work was performed under my supervision, according to the procedures herein described and that this report represents a true and accurate record of the results obtained."

A. b. Wither.

A.B. Wilson, B.V.Sc., M.R.C.V.S., D.A.B.T.

Accesi	on For	1		
NTIS DTIC Unann Justific	CRA&I TAB ounced cation			
By Distribution /				
A	vailability C	odes		
Dist	Avail and Special	or		
A-1				

Project No. 415669SR

C

5

00

~>

Report No. 1963

QUALITY ASSURANCE AUTHENTICATION

The conduct of this study has been subjected to periodic inspections by the IRI Quality Assurance Unit. The dates of inspection are given below.

IRI	Project	No.	415669SR	Report No. 1	1963

Date of Q.A. Inspection

Date of Report to Management

20 October 1980 31 October 1980 21 October 1980 3 November 1980

This report has been audited by the Quality Assurance Personnel according to the appropriate Standard Operating Procedure. The report is considered to describe accurately the methods and procedures used in the study and the original data generated during the study.

Signed: naren Waaca (Quality Assurance

Manager)

Date: 1411 January 1986.

CONTENTS

ŝ

 $\mathbf{\hat{U}}$

£,

<u>ر</u>

SUMMARY		1
INTRODUC	TION	3
MATERIAL	S AND METHODS	4
RESULTS		11
DISCUSSI	ON	17
TABLES		18
1 2a 2b 3 4 5a 5b	Incidence of Mortality Group Mean Body Weights - Males Group Mean Body Weights - Females Group Mean Food Consumption Achieved Dosages Absolute Organ Weights: Group Mean Values for Animals Killed at Term Relative Organ Weights: Group Mean Values for Animals Killed at Term Incidence of Histopathological Findings	18 19 20 21 22 23 24 25
FIGURES		26
1 2	Group Mean Body Weight Changes - Males Group Mean Body Weight Changes - Females	26 27
APPENDIC	ES	28
1a 1b 2	Analysis of Diet Analysis of Water Pre-experimental Analysis of Diet for Stability and Homogeneity Body Weights - Individual Values - Males	28 29 31
3b 4 5a	Body Weights - Individual Values - Males Body Weights - Individual Values - Females Formulated Diet Analysis Absolute Organ Weights: Individual Values	38 42 44
5b	Relative Organ Weights: Individual Values	46
5c	Absolute Organ Weights: Individual Values for Premature Decedents.	48
5d	Relative Organ Weights: Individual Values for Premature Decedents.	49

Page

CONTENTS (continued)

 \mathbf{X} \mathbf{x}

÷

5

er T

٩D

APPENDIC	ES (Continued)	
6	Gross Pathology and Histopathology for Individual Animals	50
PERSONNE	L INVOLVED	77
DISTRIBU	TION LIST	78
FINAL PAG	GE OF REPORT	78

Page

.

SUMMARY

The object of this study was to provide information on the subacute toxicity of the test substance and to give an indication of suitable dose levels for subsequent studies in rats.

Groups of 6d and 69 Fischer 344 rats were fed diets containing Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) for 14 days at nominal dose levels of 0, 333, 1000, 3000 and 9000 mg/kg/day. At the end of this period all the surviving rats were killed and subjected to necropsy and gross pathology. Subsequent histopathological examination of selected target organs was carried out on all control and group 5 animals, together with all the premature decedents from groups 3 and 4.

The results obtained are summarised below:

Mortality

J.

 \mathfrak{A}

4

There were 13 premature decedents distributed as follows:

			Ma	les			Fe	emales	5	
Dose Group	1	2	3	4	5	1	2	3	4	5
Nominal Dose Level mg HMX/Kg/ day	0	333	1000	3000	9000	0	333	1000	3000	9000
<pre>% Mortality</pre>	0	0	0	0	83	0	0	17	17	100

Clinical Signs

Emaciation, hunched posture, subdued appearance, piloerection and frequent incidences of red staining around the eyes and nostrils were observed in group 4 and 5 males and all HMX treated females. One convulsion occurred among the group 5 females.

Body Weight

Males receiving HMX showed a dose related reduction/loss in body weight gain. Groups 4 and 5 showed an actual loss in body weight at start of dosing. This weight loss was not regained by the group 5 animals.

Females receiving HMX all showed a significant body weight loss.

Food Consumption

Marked reductions in food consumption were observed for the HMX treated animals. The female rats consumed 50% or less compared with control animals during the first week of dosing.

Terminal Studies

Gross Pathology and Histology

Histopathological examination revealed centrilobular toxic degeneration in the livers of the group 5 male rats receiving an average achieved dose of 8504 mg HMX/kg/day. Hepatocyte hyperplasia and increased cytoplasmic eosinophilia in the liver, together with lymphocyte depletion in the thymus and spleen were observed for the group 5 females receiving an average achieved dosage of 3055 mg HMX/kg/day. These findings were also observed for the premature decedents from groups 3 and 4 receiving 1280 and 3474 mg HMX/kg/day respectively.

Organ Weights

Absolute liver and kidney weights were reduced for all HMX treated groups when compared to control animals. Relative liver weights were reduced for males whilst relative kidney weights were increased for both males and females. The increases observed in relative kidney weights, for HMX treated animals, can probably be attributed to the reductions observed in body weight gain.

INTRODUCTION

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is an explosive and is found in the water effluent from the manufacturing processes for RDX and HMX.

This report describes a 14 day dietary toxicity study in rats conducted to set dose levels for a proposed 90 day study.

The study was undertaken at the Elphinstone Research Centre of Inveresk Research International Limited over the period 9 October - 31 October 1980.

ي د ي

Ē

いいちょう しょうしょう

MATERIALS AND METHODS

The HMX (Lot No. HMX-IRI-001) was manufactured by the Royal Ordnance Factory, Somerset. The bulk of the material (5 kg: wetted with 15.25% water and packaged in individual 50 g lots) was stored at Nobel's Explosive Company, Muirside, Dunfermline.

Small amounts of HMX were transported, in an approved container, to the IRI laboratories as required. The samples used in this study were obtained on 4 August, 16 September and 7 October 1980. The test compound was stored in a Miristry of Defence approved container under ambient conditions in the company dispensary. Prior to use the required amount of HMX was removed from this container and dried at approximately 90°C overnight. The dried HMX was then stored in a glass dessicator until used.

Animals

Thirty five male and 35 female Fischer 344 rats (40-60 g body weight) were obtained from Charles River (U.S.A.) Limited, Wilmington, Mass. on 1 October 1980. Sixty rats (30d and 3°) were allowed to acclimatise to their new environment for 8 days before treatment commenced.

Pre-experiment Acceptance Testing

All animals were examined on arrival for signs of disease. Five animals of each sex were selected, firstly on the basis of a clinical examination and secondly in a random choice manner, and subjected to a microbial examination and histopathological evaluation of main organs. The results of these tests showed that the delivery of animals was of an acceptable standard for use on this study.

Animal Management

The rats were housed in an animal room dedicated to this experiment with a light intensity of approximately 200 lux, a 12 h light-dark cycle, temperatures automatically maintained at $20^{\circ}C + 2^{\circ}C$ with extreme limits of 21 C and 24 C, and humidity ca $50^{\circ}8$ with extreme limits of 34% and 59%.

Caging

The rats were housed one per cage in polypropylene cages (overall dimensions 48 cm x 15 cm x 22 cm) with stainless steel wire grid tops and bottoms. The cages were suspended over trays lined with absorbent paper. Cages, trays and absorbent paper were changed as necessary.

Diet

3

 \geq

10

Food and tap water were freely available to the rats at all times. The diet was BP Nutrition Rat and Mouse No. 1, a ground diet adequate for all stages of growth in rats.

Typical analyses of both water and diet are presented in Appendix 1.

Allocation of Rats to Cages and Treatment Groups

Empty cages were placed on racks, then upon receipt, starting first with male rats, a transporting box was opened and a rat placed in the first cage at the top left hand corner of the rack. A second rat was removed from the same transporting box and placed in the next cage and so on until 35 cages each contained one male rat.

This process was repeated using new cages and female rats.

Following a 2 day transportation recovery period the animals were allocated to specific treatment groups using a stratified body weight sequenced randomisation procedure.

Four body weight ranges were selected for each sex. Starting first with the males, the animals were removed from their cages, weighed and then segregated into 1 of 4 large stainless steel holding cages according to their body weight. Six rows of cages, each row containing 5 cages, were then arranged on racks. Two sets of computer generated random number permutations were obtained, the first set gave 5 random sets of numbers from 1-6 corresponding to the number of sequences of cages and the second gave 6 random sets of numbers from 1-5 corresponding to the number of treatment groups.

Starting with the lowest weight range of male rats one animal was placed in a cage according to the sequence position indicated by the first number in the first set of random numbers. The cage was then assigned to a treatment group using the second random number set. This process was repeated until all the male rats from the 4 different weight ranges had been assigned to cages and treatment groups.

This complete process was repeated for the female rats.

Animal Identification, Treatment Groups and Dose Levels

Each animal received a unique ear punch which identified it individually within the study and which corresponded to that

animal's number. Each rat was ascribed a cage card which identified that animal by project number, cage number, animal number, sex and treatment group. Each cage card was colourcoded according to the treatment group.

The treatment groups were as follows:

Dose	Dose Level HMX	Colour	Animal Numbers			
Group	(mg/kg/day)	Code	්	ę		
1	0 (Control)	Green	501-506	531-536		
2	333	Blue	507-512	537 - 542		
3	1000	Yellow	513-518	543-548		
4	3000	Buff	519-524	549-554		
5	9000	Red	525-530	555-560		

Animal Room Sanitation

Floors were mopped each morning, before other work in the room had begun. In the afternoon floors were swept and then mopped with a disinfectant solution after work in the room was finished.

Diet Preparation

Diets containing HMX were prepared freshly at the beginning of each study week. The concentration of test compound in the diet was calculated weekly after predicting the mid-week body weight and food consumption for the forthcoming week. The following equations were used in this calculation:

		Dose	level	(mg/kg/day)	x pr	edicted	mid-
			v	veek body we	eight	(g)	
Concentration	(PPM) =	=					

predicted daily food consumption (g/day)

Amount of test substance required (g) = 1000 PPM x weight of diet required 1000

After drying to a constant weight HMX was sieved through a plastic 100 μ m mesh sieve immediately before use. The requisite amounts of HMX and powdered diet were measured out, transferred

to plastic containers, sealed and mixed for 20 min using a Winkworth change drum tumble mixer.

Dietary Sampling

2.0

0

0

 \mathbf{T}

PERSONAN

G

÷

Ten gram samples were taken from the top, middle and bottom of the container holding the freshly mixed diet to confirm stability and homogeneity of mixing of HMX. These samples, along with a 100 g sample taken for archives, were taken from all diet mixes including controls.

Analysis of HMX in Diets

Analytical Method

HMX was analysed by high performance liquid chromatography (HPLC).

Three samples (of an appropriate size depending on the nominal concentration of HMX in the diet) were weighed into 3 x 8 oz glass jars. To this was added an appropriate volume of internal standard solution (1,3-dinitrobenzene in acetonitrile) and sufficient acetonitrile for complete extraction. The glass jars were then capped and shaken mechanically for 1 h after which the jars were removed and the contents allowed to settle. An aliquot of the liquid fraction was injected into the HPLC and analysed either directly or after suitable dilution using acetonitrile:water (20:30 v/v).

Standard solutions of HMX were prepared by adding known amounts of HMX to samples of untreated diets. These were treated with internal standard solution and extracting solvent as described above for the formulated diet samples. Further details are reported under project DAMD 17-80-C-0053.

Stability and Homogeneity of HMX in Diets

Before commencement of the study experiments were performed to determine homogeneity and stability of HMX treated diets. Accordingly diets containing 1,250, 10,000 and 25,000 PPM (w/w) of HMX were formulated. Ten representative samples from each diet mixture were analysed immediately after preparation. Ten samples from each diet were subjected to accelerated ageing by storage at 40°C in an environmental cabinet and analysed after 14 days. The remainder of each diet was stored at room temperature and analysed after 21 days.

Results of these analyses showed that mixing procedures and stability were satisfactory (see Appendix 2).

HPLC Conditions

HPLC:Altex pump, Pye Unicam LC3 UV SpectrophotometerColumn:Hypersil ODS (10 cm x 0.5 cm)Solvent:Acetonitrile:water (20:30 v/v)Flow:1 ml/minWavelength:228 nmRecorder:Servoscribe 1s - 10 mVChart Speed:300 mm/h

Observations on the Animals

Mortality

All animals were inspected for any deaths at the start of each day and again during the afternoon clinical signs check.

Clinical Signs

The rats were observed at intervals throughout the day for any signs of ill health or reaction to treatment.

Physical Examination

Each animal was given a weekly detailed physical examination for external lesions or palpable masses.

Body Weight

The weight of each rat was recorded on the day dosing commenced and twice each week thereafter. Animals were also weighed twice prior to the start of treatment.

Food Consumption

Food consumption was recorded on a weekly basis. The quantity of food eaten by each rat was calculated by measurement of the amount of food given at the beginning of each week and deducting that remaining in the food hopper at the end of each week and any that may have been scattered on the cage floor during that week.

Water Consumption

The quantity of water consumed by each rat was assessed each week by visual assessment of the calibrated water bottle.

Terminal Studies

ي. بي چ

On day 15 of dosing all the surviving rats were sacrificed by nitrogen asphyxiation. Blood samples of $\underline{ca} \ 2 \ ml$ were taken into heparin via the posterior vena cava from all animals. Plasma was separated by centrifugation and stored deep frozen at -20°C for analysis at a later date.

Gross Necropsv

A full necropsy was performed as detailed below. Each rat was examined externally including the body orifices along with examination of internal organs and tissues.

The following organs were taken at necropsy:

Brain Heart *Kidneys *Liver Spleen Thymus

The fresh weights of the organs marked * were recorded before preservation.

All organs were examined in situ, then dissected from the carcass, re-examined, including cut surfaces, and then preserved in 10% neutral buffered formalin.

Tissues were fixed after slicing to a thickness not exceeding 0.5 cm.

Liver lobes were sliced, the kidneys longitudinally bisected and the cut surfaces examined before fixation.

All gross lesions were recorded in narrative, descriptive terms, including size (in mm), number, shape, colour and texture.

Carcasses of animals were discarded immediately following autopsy and the placing of all tissues listed above in fixative.

Processing of Fixed Tissues

The fixation time was 14 days.

Tissues were trimmed to a maximum thickness of 0.3 cm for processing.

Parenchymal organs, e.g. liver, were trimmed to allow the largest surface area possible for examination.

Multi-longitudinal sections through the entire cortex and medulla of each kidney were submitted.

Three cross-sections of brain including (a) frontal cortex and basal ganglia, (b) parietal cortex and thalamus and (c) cerebellum and pons were submitted.

Histological Technique

Tissues were cut to 4-6 μm thickness and stained with haematoxylin and eosin (H & E).

All staining methods used are described in "Histological Laboratory Methods" by Disbrey and Rack (E.S. Livingstone Ltd., Edinburgh, 1970).

Histopathological Examination

Histopathological examination of the tissues listed above was carried out on all control and group 5 (top dose) animals, together with all the premature decedents.

Statistical Analysis

Whenever considered necessary, numerical data were subjected to statistical analysis using Student's 't' test.

The levels of significance as indicated in the report are:

- * Significantly different from controls, P<0.05
- ** Significantly different from controls, P<0.01
- *** Signficiantly different from controls, P<0.001

Archiving

On completion of all practical work the biological material and data generated during the study was stored, together with samples of the diet formulations and a sample of the test compound used, in the Scientific Archives of Inveresk Research International Limited. All materials relating to this study will be retained for a minimum period of 5 years.

RESULTS

Dosing period:	16-30 October 1980
Necropsy:	31 October 1980

Observations

Mortality

5

÷

 \mathfrak{D}

50

 $\langle \cdot \rangle$

5

0

۴.

There were 13 premature decedents during the course of this study. The time of death and mortality distribution is presented in Table 1.

All the premature decedents showed a pronounced body weight loss during the period they were dosed. Clinical signs observed prior to death or sacrifice <u>in extremis</u> were emaciation, unkempt appearance, hunched posture and piloerection.

Clinical Signs

Males

Group 1 (Control) - Group 2 - (333 mg/	-	No abnormalities were observed. No abnormalities were observed.
kg/day) Group 3 - (1000 mg/ kg/day)	-	5185 slight loss of body tone at the start of week 2, no abnormalities were observed for remaining animals in group.
Group 4 (3000 ma/	-	Day 4: all animals observed to have a slightly emaciated appearance.
		Day 11: mild piloerection in 3/6 animals. Piloerection observed for remainder of dosing period.
Group 5 - (9000 mg/	-	Day 4: all animals observed to have a slightly emaciated appearance, No. 5303 had red staining around nostrils and a hunched appearance.
		Day 7: all animals emaciated and dis- playing a hunched posture with pilo- erection - these signs were observed for the remainder of the dosing period. Nos. 5283 and 5293 were observed to have some bald patches.
		Day 9: 5283 found dead in cage, hyper- kinesia observed in surviving animals.
		Day 11: emaciated, unkempt appearance.

Day 12: 5273 found dead in cage.

Day 13: 5253, 5263 and 5293 found dead in cage.

Females

1927 J. 1926

Sector States and

E \$55.5474

S. 1992.20

Group 1 (Control)	- No abnormalities detected.
Group 2 (333 mg/ kg/day)	 Day 4: all animals observed to have a slightly emaciated appearance.
	Day 7: 539 had red staining around nostrils, mild piloerection observed in all animals.
	Day 11: mild piloerection in 2/6 animals.
Group 3 (1000 mg/ kg/day)	 Day 4: all animals observed to have an emaciated appearance with a hunched pos- ture and piloerection - these signs per- sisted for the remainder of the dosing period.
	Day 11: 548° ataxic, extremely emaciated with a hunched posture and marked pilo- erection - killed <u>in extremis</u> .
Group 4 (3000 mg/ kg/day)	 Day 4: all animals observed to have an emaciated appearance and piloerection - these signs persisted for the remainder of the dosing period. Blood stains were observed on the tray papers for Nos. 5499, 5539 and 5549.
	Day 7: red staining observed around nose of Nos. 550° and 554°.
	Day 8: 5539 observed to have eaten the tip of its own tail, later observed to be ataxic and vocalising.
	Day 9: 550º found dead in cage. Sur- viving animals hyperkinetic.
	Day II: all surviving animals hyperkinetic when aroused. The tail of 5539 was slightly swollen.
	Day 12: 5539 was observed gnawing at remainder of tail

Day 13: 553 - eyes were observed to be very pale.

Group 5 (9000 mg/ kg/day)

 Day 4: all animals were emaciated. Subdued appearance, hunched posture, reduced body tone, piloerection and unkempt appearance were also observed - these signs persisted until death. Blood staining observed on tray papers of all animals. Animal 5569 had red/brown staining around nostrils.

Day 5: animal 556 had red staining around nostrils. Animal 557 standing on the tip of its digits - not on the whole foot, ataxia, sneezing, red/brown staining on nostrils and fore paws also observed.

Day 6: 555° very subdued - resists handling. Red staining around nose, eyes, lower jaw and fore paws - killed in extremis. 556° had red staining on eyes, nose and chin, yellow staining observed around perigenital area. Aggressive when handled. No. 557° resists handling. No. 558° observed having a convulsion during morning observations eyes dull with red staining, also red staining on nose and jaw. Nos. 559° and 560° had red staining on eyes, nose and jaw.

Day 7: 556 found dead in cage. No. 559 hyperkinetic.

Day 8: 557, 558 and 559 found dead in their cages.

Day 9: 5609 found dead in cage.

Body Weight

Group mean body weights are presented numerically in Tables 2a and 2b and graphically in Figures 1 and 2. Individual values are given in Appendix 3.

Males

Significant dose related reductions in body weight gain were observed. Groups 4 and 5 receiving 3000 or 9000 mg/Kg/ respectively showed an actual body weight loss by Day 4 of dosing. Group 4 animals' body weights were slightly above initial body weights by Day 7.

Females

Animals fed HMX treated diet showed a significant loss in body weight during the first 4 days of dosing. Group 5 animals continued losing weight and eventually died, or were killed in extremis. Groups 2, 3 and 4 showed a marked depression in body weight gain with only group 2 animals exceeding their pre dose body weight values.

Food Consumption

Group mean food consumption values are presented numerically in Table 3.

During the first week of dosing HMX treated animals showed a marked reduction in food intake when compared to controls. Food consumption values were increased for all treated groups during week 2 of dosing although groups 4 and 5 male and 2, 3, 4 and 5 female were still significantly less than controls.

Water Consumption

No differences were detected between control and HMX treated animals.

Achieved Dosage

The actual amounts of HMX consumed by each dose group are presented in Table 4. The achieved dosage for group 5° during the second week of dosing has not been calculated due to the premature decedency of the test animals.

Results obtained from analysis of the freshly prepared diets are presented in Appendix 4.

Terminal Studies

Organ Weights

Group mean values for organ weights expressed in absolute terms and as a percentage of body weight are presented in Tables 5a and b. Values for group 5° are not presented due to premature decedency of all animals. Individual values for all animals are given in Appendix 5.

Liver weights in all the HMX treated groups showed statistically significant reductions compared with control animals. These reductions were significant in absolute and relative terms for the males but only in absolute terms in the females. Kidney weights showed a significant dose related reduction in absolute terms, this being reflected in the dose related effects on body weight resulting in elevation of relative kidney weights compared with controls.

Organ weight profiles for most of the premature decedents showed reductions in absolute terms. Relative weights were considered to be slightly elevated, due primarily to the observed body weight loss following dosing with HMX.

Pathological Examination

Gross pathology and histopathological findings for individual animals are presented in Appendix 6.

Histopathological findings are summarised in Table 6.

Gross pathological examination revealed smaller than normal spleens and enlarged adrenals in 4/6 group 5 females. Enlarged adrenals were also observed in the group 4 female premature decedent. It was also noted that the group 3 premature decedent had a smaller than normal liver and small kidneys. The brains from one male and 2 females in group 5 were described as friable. Blood was observed under the skull of 2 group 5 males. Dark red lungs were also described in 2 control females and 4 group 5 males, this high incidence possibly being the result of autolysis.

Histopathological examination revealed centrilobular toxic degeneration in the livers of the group 5 male rats treated with a target dose level of 9000 mg HMX/kg/day (actual achieved dose 8504.3 mg HMX/kg/day). In the case of female rats hepatocyte hyperplasia and increased cytoplasmic eosinophilia was found in the liver together with lymphocyte depletion in the thymus and spleen.

These lesions were found in female rats dosed at a target level of 9000 mg HMX/kg/day (actual achieved dose 3055 mg HMX/kg/day for a maximum of 9 days), and the premature decedents from groups 3 and 4 (target 1000 and 3000 mg HMX/kg/day dose levels).

Two male rats from group 5 also showed haemorrhaging into the cerebral ventricles and meninges.

The 2 control females and 4 males from group 5 which were described as having dark red lungs showed areas of congestion on histological examination, autolytic changes being confirmed.

On the basis of these findings it is recommended that the histopathological evaluation is extended to include

examination of the liver, thymus, spleen and brain of all the HMX treated rats. Such an extension will provide information regarding whether or not there is a 'no effect' level, together with clarification of the sex difference in lesions diagnosed in the animals so far examined.

DISCUSSION

Dose levels selected for the 90 day study were 0, 50, 150, 450, 1350 and 4000 mg HMX/kg/day for males and 0, 50, 115, 270, 620 and 1500 mg HMX/kg/day for females.

Initial reductions in food consumption and body weight loss/reduced body weight gain were observed for all HMXtreated groups. Female rats were shown to be more sensitive than male rats, 1/6 females dying in each of the groups fed 1000 or 3000 mg/HMX/kg, and all the females dying at 9000 mg/kg; 5/6 males treated at 9000 mg/kg died during the study. The emaciated appearance of all premature decendents was consistent with a reduced food intake possibly due to unpalatability of the test diet. Surviving animals tolerated the test diet and by the end of the dosing period, showed a slightly increased level of food consumption and a trend towards body weight gain.

Unpalatability and extreme body weight effects meant that the achieved dosages were unavoidably erratic. Differences observed in liver weights for HMX-treated animals correlate with the histopathological diagnosis of toxic degeneration seen for the males and hepatocyte hyperplasia seen in the females. The organ weight data is difficult to interpret because of the observed body weight changes.

The histopathological findings of toxic degeneration in the livers of male rats and hepatocyte hyperplasia with increased cytoplasmic eosinophilia in the females indicate the liver to be a target organ for HMX treatment related effects. The liver and kidney together with thymus and spleen in which lymphocyte depletion was observed, will need detailed scrutiny in the histopathological evaluation undertaken after the scheduled 3 month dietary study with HMX in rats.

TABLE 1

というです

HMX : 14 Day Toxicity Study in Rats with Die.ary Administration

ortality
e of Mc
idence
Inc

	5 t	1	ı	1	ı	ı	18	1 A	3 A	IA	•	ł	ı	ı	ı	v	9
	4? 3000	1	ł	1	1	,	1	1	1	IA	1	ı	1	1	1	1	9
ay)	32 1000	1	1	1	1	1	I	I	I	1	1	1 B	ı	1	I	-	و
HMX∕kq/ð	27 333	,	1	1	1	,	١	,	1	1	1	1	,	,	,	0	9
rel (ma	610	t	1	ı	1	ı	ı	ı	ı	ı	4	1	۱	1	1	0	9
Dose Lev	5.5 9000	1	1	1	I	1	1	ł	1	17	1	ı	IA	3.0	1	5	و
e Group/	4 f 3000	1	4	,	1	ł	1	t	ı	1	1	1	1	1	1	0	ور
Dose	3.f 1000	1	ı	1	ı	1	I	1	I	ł	I	I	,	1	t	0	و
	2 f 333	1	ı	I	I	I	I	ı	ı	ı	I	1	I	ı	ı	0	9
	1 5 0	1	1	1	ı	1	ł	ı	I	I	I	ı	ı	ı	ı	0	9
	Day of Dosing	1	2	۳ ا	4	5	r	7	œ	6	10	11	12	13	14	Total	Number commenc- ing treatment

Found dead in cageKilled in extremis

A 8

TABLE 2a

2002

and the second second

244644

e."

Ð

x)

ð

t)

R

1

\$

HMX : 14 Day Toxicity Study in Rats with Group Mean Body Weights (g) - Males Dietary Administration

	Week 2	14	2 203.8 4 11.2	8 195.2 0 12.8	2 175.8 0 11.7	3 159.2 1 14.1	6 (b) 135.0 7 0.0
[ng		11	188.	182. 12.	165. 12.	*** 149. 13.	(a)*** 121. 9.
ay of Dosi	ek I	7	170.8	167.2 11.3	152.3 10.9	139.0 135.0 13.5	*** 122.2 8.2
nent Week/D	Wee	4	155.3 9.8	151.8 10.4	* 138.8 10.4	** 126.2 13.4	*** 116.5 8.8
Treat		0	135.8 9.8	145.0 12.3	134.8 12.0	135.8	139.3 8.7
	Pre-trial	3	117.2 10.2	125.8 11.3	116.2 8.7	116.8 13.2	120.5 7.4
		7	9.6	103.2	99.0 8.8	95.3 11.1	99.5 6.5
			Mean <u>+</u> S.D.	Mean <u>+</u> S.D.	Mean - S.D.	Mean + S.D.	Mean <u>+</u> S.D.
No. of	Animals		Q	Q	Q	Q	9
Dose	Level	/ App / hy / hun	o	333	1000	3000	0006

(a) n=5 (b) n=1

* Significantly different from controls, P<0.05

** Significantly different from controls, P<0.01</pre>

*** Significantly different from controls, P<0.001

TABLE 2b

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Group Mean Body Weights (g) - Females

Dose	No. of				Treatmer	nt Week/Day	r of Dosing		
Level	Animals			Pre-trial		Weel	k 1	Wee	ik 2
iq/kg/aay)			7	3	0	4	7	11	14
0	Q	Mean <u>+</u> S.D.	85.3 4.0	99.2 3.9	110.7	119.5 3.9	125.8	132.7	138.7 6.1
333	9	Mean <u>+</u> S.D.	84.7 4.1	98.3 4.8	108.8	*** 94.8 4.9	*** 100.8 5.1	*** 108.0 4.3	*** 112.2 3.8
1000	و	Mean <u>+</u> S.D.	85.3 11.3	101.8 7.4	112.3 7.6	*** 96.0 7.3	*** 101.0 6.2	*** 100.3 10.9	*** (a)109.2 4.5
3000	و	Mean <u>+</u> S.D	88.0 2.4	102.8 3.7	113.7 2.6	*** 92.8 4.2	0°56 3°8*	*** 98.8 7.2	(a) <mark>103</mark> .4
9006	و	Mean <u>+</u> S.D.	86.0 2.8	98.8 2.9	109.7 2.9	*** 84.0 3.2	*** (b) 77.8 3.9	+	+

(a) n=5 (b) n=4

*** Significantly different from controls, P<0.001

† = all animals dead

TABLE 3

5

45

 $\hat{\gamma}$

2

۳)

 HMX : 14 Day Toxicity Study in Rats with Dietary Administration Group Mean Food Consumption

Ĩ		Do	se Group	/Group M	ean Food	l Consump	otion (g/	An1ma1∕I	Jay)	
II EA LMEN L Week	۰. 1 ر•	2.ď	3.5	4.5	5.5	51	25	35	4	54
	(0)	(333)	(1000)	(3000)	(0006)	(0)	(333)	(1000)	(3000)	(0006)
Pre Trial	16.4	16.9	15.8	17.0	16.7	12.9	12.7	13.3	13.4	12.6
1	17.4	15.1	13.9	11.5	7.6	13.1	6.7	6.6	5.8	3.8
2	18.9	18.3	17.2	15.5	12.2	14.4	9.11	12.2	0.11	5,0

TABLE 4

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Achieved Dosage : Group Mean Values (mg/kg/day)

		Δ	ose Grout	Achieved	1 Dosade	A/XWH JmJ	rd /dav)			
Treatment					263-02	u /un 6	Inp /6			
Yaaan		2.5 (333)	3J (1000)	4 <i>5</i> (3000)	5. ³ (9000)	(0)	2 (333)	32 (1000)	4? (3000)	52 (9000
1	0	272.6	769.7	2092.9	4430.5	0	191.0	536.7	1533.1	3055.
2	0	397.8	1145.1	3870.9	12578.1	0	548.3	2023.5	5415.4	1
Average Achieved Dosage	o	335.2	957.4	2981.9	8504.3	0	369.6	1280.1	3474.3	3055.

Values in parenthesis indicate target concentrations (mg/kg/day)

Achieved dosage based on actual concentration of HMX analysed in diet.

22

TABLE 5a

×0

ų٧

ð

ŵ

soorentein associatielle annantaile antaisach 2

¢.

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Absolute Organ Weights (g)

Group Mean Values of Animals Surviving 14 Days Dosing

Dose	No. of		Kidne	:ys	
Level (mg/kg/day)	Animals/ Sex		L	R	Liver
0	وع	Mean + S.D.	0.79 0.03	0.77 0.02	9.42 0.80
333	و ر	Mean <u>+</u> S:D.	0.77	0.75 0.07	8.45* 0.64
1000	6 5	Mean + S.D.	0.70*** 0.03	0.69*** 0.03	7.53*** 0.58
3000	6 ð	Mean <u>+</u> S.D.	0.67** 0.06	0.64*** 0.06	6.34*** 0.75
0006	1 đ	Mean <u>+</u> S.D.	0.60	0.57 0	5.54 0
0	6 9	Mean <u>+</u> S.D.	0.58 0.02	0.58 0.03	5.54 0.40
333	6 \$	Mean <u>+</u> S.D.	0.51*** 0.02	0.50*** 0.02	4.32*** 0.26
1000	5 9	Mean <u>+</u> S.D.	0.50** 0.05	0.49* 0.06	4.32*** 0.16
3000	5	Mean ± S.D.	0.48*** 0.03	0.48*** 0.03	4.12*** 0.32

* Significantly different from controls, P<0.05

** Significantly different from controls, P<0.01
*** Significantly different from controls, P<0.001</pre>

Group mean organ weight values for group $5^{\,\rm Q}$ (9000 mg HMX/kg/day) are not presented due to premature decedency of all animals.

TABLE 5b

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Organ Weights as a % of Body Weight Group Mean Values of Animals Surviving 14 Days Dosing Γ

	Liver	4.572 0.168	4.308** 0.084	4.274* 0.177	3.986*** 0.134	4.328 0.0	4.030 0.224	3.901 0.240	4.051 0.125	4.069 0.185
ska	æ	0.376 0.014	0.381 0.012	0.394* 0.012	0.402* 0.016	0.445 0.0	0.420 0.015	0.449* 0.017	0.458 0.058	0.475** 0.028
Kidne	L	0.382 0.016	0.392 0.009	0.396 0.017	0.418 ** 0.012	0.469 0.0	0.420 0.015	0.462*** 0.013	0.469* 0.045	0.474** 0.024
		Mean ± S.D.	Mean + S.D.	Mean <u>+</u> S.D.	Mean <u>+</u> S.D.	Mean + S.D.	Mean <u>+</u> S.D.	Mean + S.D.	Mean + S.D.	Mean - S.D.
No. of	Animals/ Sex	k a	6.5	6 <i>4</i>	6 <i>ď</i>	٦ů	62	64	5 4	5 \$
Dose	Level (mg/kg/day)	0	333	1000	3000	0006	0	333	1000	3000

* Significantly different from controls, P<0.05</p>

** Significantly different from controls, P<0.01</pre>

*** Significantly different from controls, P<0.001

Group mean organ weight values for group 59 (9000 mg HMX/kg/day) are not presented due to premature decedency of all animals.

TABLE 6

accore = annocadd = 2.5 + 2.

(Å)

->

~1

'µ4

<u>,</u>

•

N

Ŀ

1

*

3

HMX : 14 Day Dietary Toxicity Study in Rats Incidence of Histopathological Findings

				,						
(mg liMX/Kg/ day)	-	(0)	2 (3	33)	3a (1	(000	4a (3	(000)	5a (9	(000
/	a,	\$	•	4	يه	~	ئ و	۰	ئە	0+
hilic cytoplasm	9/0	0/6	1	1	1	1/1	ı	1/1	6/6	4/6
neration	0/6	0/6	'	1	ł	1/0	1	1/0	5/6	0/6
rplasia	0/6	0/6	1	1	1	0/1	I	1/1	0/6	9/9
ļ	9/0	0/6	1	1	1	1/1	1	1/1	0/6	0/0
pletion	0/6	0/6	1	I	I	1/1	1	1/1	1/6	6/6
pletion	9/0	0/6	1	,	1	1/1	1	1/1	0/6	5/6
etion	0/6	0/6	,	,	I	0/1	•	0/1	0/6	5/6
	0/6	0/6	ł	1	1	1/1	1	0/1	1/6	1/6
	1	2/2	•	I	¢	1/0	1	1	4/4	1
blood vessels	0/6	0/6	ı	ł	t	1/0	1	1/0	1/5	0/6
	0/6	0/6	'	1	1	1/0	•	0/1	2/5	0/6
	blood vessels	0/6 - blond vessels 0/6	0/6 0/6 - 2/2 - 2/2 blood vessels 0/6 0/6	0/6 0/6 - - 2/2 - blood vessels 0/6 0/6 - 0/6 0/6 -	0/6 0/6 - - - 2/2 - - blond vessels 0/6 0/6 - -	0/6 0/6 - - - - 2/2 - - - blood vessels 0/6 0/6 - -	0/6 0/6 - - 1/1 - 2/2 - - 0/1 blond vessels 0/6 0/6 - - 0/1	0/6 0/6 - - 1/1 - - 2/2 - - 0/1 - blond vessels 0/6 0/6 - - 0/1 - 0/6 0/6 0/6 - - - 0/1 -	0/6 0/6 - - 1/1 - 0/1 - 2/2 - - 0/1 - 0/1 blond vessels 0/6 0/6 - - 0/1 - 0/1 blond vessels 0/6 0/6 - - 0/1 - 0/1	0/6 0/6 - - - 1/1 - 0/1 1/6 - 2/2 - - - 0/1 - - 4/4 blond vessels 0/6 0/6 - - - 0/1 - 4/4

(a) Premature decedents observed in groups 3, 4 and 5

- No histopathology undertaken

Only lungs found to be abnormal at necropsy were examined histopathologically *

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Group Mean Body Weight (g) - Males

October 1980

ΛŅ,

Q.

1

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Group Mean Body Weight (g) - Females

October 1980

APPENDIX 1a

28

HMX: 14 Day Toxicity Study in Rats With Dieta y Administration Analysis of Diet

B.P. NUTRITION (U.K.) LTD. SPECIAL QUALITY CONTROL OF LABORATORY ANIMAL DIETS

CERTIFICATE OF ANALYSIS

PRODUCT: RAT & MOUSE NO.1 (MODIFIED) EXPANDED FINE GROUND

BATCH NO: 919

DATE OF MANUFACTURE: 15TH AUGUST 1980

PREMIX BATCH NO: P110

Nutrient	Found Analysis	в.	Contaminant	Found Analysis		Limit of Detection
Moisture	7.1	*	Fluoripe	7.6	matka	10.0 mo/ka
Crude Fat	3.5*	%	Nitrate as NaNO3	11.0	ma/ko	1.0 mo/kg
Crude Protein	14.9	%	Nitrite as NaNO2	<1.0	ma/ka	1.0 mo/kg
Crude Fibre	2.2	%	Lead	∠ 1.0	ma/ka	1.0 mo/kg
Ash	4.8	%	Arsenic	0.23	maika	0.2 mo/kg
Calcium	0.69	*	Cedmium	0.13	mo/ko	0.2 mo%o
Phosphorus	0.53	*	Mercury	∠ 0.01	ma/ka	
mube	0.22	%	Selenium	0.12	maha	
Chlorine	0.34	%				
Potassium	1.10	%				
Magnesium	0.13	%	Total Allatoxins NON	e detecte	D ug/kg	1 ug/kg
Iron	231	mg/kg				81,82,GLG2
Copper	7	mg/kg				
Manganese	55	mg/kg				
Zinc	40	mg/kg	Total P.C.B. NONE	DETECTED	mg/kg	0.001 mg/kg
			Total D.D.T.	0.003	mg/kg	0.001 mg/kg
			Dieldrin	0.001	mg/kg	0.001 mg/kg
			Lindane	0.005	mg/kg	0.001 mg/kg
			Heptachior NONE	DETECTED	mg/kg	0.001 mg/kg
			Malathion NONE	DETECTED	mg/kg	0.02 mg/kg
Vitamin A	7000	iu/kg	Total Viable Organisms 1	.13 x 10 ³	per grm	1 000/ a
Citamin E	60	mg/kg				•
Vitamin C		mg/kg	Mesophillc Spores 17	5 x 10 ²	per grm	100/g
*repeat 3.4			Salmonellae Species NONE (DETECTED	per grm	Absent in 20 grm
			Presumptive E. Coli NONE, 1	ETECTED	per grm	Absent in 10 grm
	••••	· · · · · · · · · · ·	E. Coli Type 1 NONE	DETECTED	per grm	Absent in 10 prm
			Fungal Units NONE	DETECTED	per grm	Absent in
pf	Por		Antibiotic Activity			10 grm
Signed L L	oppliestone	· • · · • • • • • · · · • • • • • • • •	· .			
Dated 10	September	1980		B P Ste	Nutrition	(U.K.) Limited

C.R. POPPLESTONE M.Sc., Ph.D., C.Chem. M.R.I.C. Quality Control Manager

B.P. Nutrition (U.K.) Limited Stepfield, Witham, Essex, CM8 3AB Telenhone: (*1778) 513651
Ē 3 This amopic is practically clear and bright is appearance and is free from moticeeble colour. The rescion is slightly on the alkaline side of motirality and the rise of is character with a low content of dismolved motion. The water is free from motion appart from a minute trace of sumpasses and is of a mutiafactory standard of organic quality. These results indicate, from the appect of the chanton and sideral analysis, a wholesome water muitable for driming and domestic purposes. 40 0 B0 0,0 9 0.12 12 0.21 0.0 1.88 ę 4 ġ Ragneel an Carbonate Magnesius Sulphate Potassium Chioride Calcium Carbonate G/N/ 1882 Sodium Sulphate Sodium Chioride \$111ce (miligrammes per litre and milequivalents per litre) loie l Signed Mimeral Analysis of a Sample of Water (after fiftration if necessary) 50. 20 0.42 38 8.- 8 9 0**.**X Maine Veter Supply ٠ Anions PSH/SRL 73rd September, 14An رتار. بال o solution and balance pro-

ģ

Caricons

Late led

. No

2 0.05

ō

8 0.31 or..0 P 16 0.80

ž

ş 13

Total

محمومه مودو بدودهما لإروا 88

Comment

0.10 10. 11 0.55 0.03 0.03 0.01 LT 0.02 L I \$ LT 0.1 13/8/00 Zinc(Zn) LT 5 Fluorine in Fluoride LP 0.1 Stice (SiO) Alummum(Al) 1.51 Our Ref Q/3/3/82 N. Scott Your Ref Ammoniacal Nitrogen Permanganale value Sugned Albuminoid Nitrogen PHA units konifei LF 0.03 Residual Chlorine rogen in Nitrate rogen in Nitrite LT 0.0005 LT 0.0005 8.8 Colour (Haren) Corperticul LT 0.03 Lead(Pb)LT 0.03 ManganeserMini 0.04 Odour Signed Inverseit Research International D. Brow Bright with a few particles \$ r the states is an 3 .. σ 5 \$ ~ Ê Witness Volatile Total Dissolved Solida Nercury expressed as Ng Selenium expressed as Se Dissolved Oxygen Takanby R. Scott Winas Results in miligrammes per litre) they and Laboratory Sold Maise Vater Supply PSW/SL 23rd September, 1980 (()) (()) Non carbonale Comment Comment Mardmess as Ca CO+ Total Carbonate Analysis of a Sample of Water : lar I i cal Conductively Chlorine in Chloride Free Carthon Dioxide Alkalimity as CaCO. 5 Dissolved Solids dried at 180 C 2 $\overline{)}$ Appearance Labelled Ē \sum Ł

HMX: 14 Day Toxicity Study in Rats With Dietary Administration Analysis of Water

APPENDIX 1b

٩.

ĥ Ċ,

The state of the state of the

N

5

3

۲ð

\$

 (\cdot)

Έ

1

(

C

Ċ,

Э

ICLS

<u>G/8/3882</u>

Polynuclear Aromatic Hydrocarbons

Fluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene 2, 3 0 - phenylene pyrene Benzo (b) fluoranthene Benzo (a) pyrene	NDLT 20 ng/litre NDLT 4 ng/litre NDLT 4 ng/litre NDLT 4 ng/litre NDLT 4 ng/litre	
Benzo (a) pyrene	NDLT 4 ng/litre	

Total P.A.H. NDLT 40 ng/litre

Organochlorine Pesticides

alpha B.H.C. gamma B.H.C. Heptachlor Aldrin Dieldrin p.p. D.D.T.

NDLT	10	ng/litre
NDLT	10	ng/litre
NDLT	20	ng/litre
NDLT	20	ng/litre
NDLT	40	ng/litre
NDLT	20	ng/litre
		-

Polychlorinated biphenyls

NDLT 400 ng/litre (expressed as AROCHLOR 1248)

NDLT = Not Detected, Less Than

₽U

APPENDIX 2

HMX : 14 Day Dietary Toxicity Study in Rats Summary Data for Pre-experimental Homogeneity and Stability Testing of HMX Treated Diet

	_	Nominal Concentration (ppm)										
Time Analysed	l, Mean	250 ppm *Coeff Var %	10,00 Mean	0 ppm *Coeff Var %	25,000 Mean	ppm *Coeff Var %						
Immediately after Preparation	1177	5.3	10198	5.4	24817	2.5						
After 14 d at 40°C	1234	3.8	10130	3.6	25004	4.4						
After 21 d at Ambient	1291	3.9	10311	3.0	25598	3.5						

*Coefficient of Variation (%)

Ŀ,

10° 84683359 5000

and a state of the second

Ċ,

....

1

 \mathcal{S}_{2}^{*}

APPENDIX 3a

いっているい

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Individual Body Weights (q) - Males

	× 2			212	198	197	223	198	195	203.8	11.2
	Wee	=		198	179	187	206	181	178	188.2	11.4
	ek 1	6		179	161	169	190	163	163	170.8	11.5
	Nee	4		161	144	155	171	147	154	155.3	9.8
		0		142	125	135	151	126	136	135.8	9.8
	Pre-trial	, m		123	105	117	133	108	117	117.2	10.2
		7		66	85	66	109	86	96	95.7	0.0
Treatment	Week/Day Animalf Dosing No./	Sex		501 J	502	503	504	505	506		
	Dose Level	(Åργάζαα)	,	0						Mean	± s.b.

(?

с. 19

k -

1111111

•_•

Ş

Ŷ

¢,

\$

đ.-

							-		
ek 2	14	187	205	179	214	197	187	195.2	12.8
Wee	11	175	194	167	199	184	178	182.8	12.0
ek 1	7	165	176	150	183	164	165	167.2	11.3
A	4	150	158	134	165	150	154	151.8	10.4
	0	142	153	123	158	144	150	145.0	12.3
Pre-trial	3	124	133	105	137	125	131	125.8	11.3
	7	105	109	95	111	66	100	103.2	6.2
Treatment Week/Day Animal f Dosing	Sex	507 J	508	509	510	511	512		
Dose Level	(mg/kg/day)	333						Mean	+ s.D.

<u>3</u>7

Sector 1 SSSSSSS DUDDUD AUDUUD

Sec.3

APPENDIX 3a (continued)

k 2	14	160	177	196	175	171	176	175.8	11.7
Wee	11	150	165	187	163	163	163	165.2	12.0
-	6	141	155	172	148	153	145	152.3	10.9
Week	4	127	141	157	135	141	132	138.8	10.4
	0	125	139	155	130	138	122	134.8	12.0
Pre-trial	3	109	121	130	110	119	108	116.2	8.7
	7	89	86	108	06	66	110	0.66 .	8.8
Treatment Week/Day of Dosing	No./ Sex	513 5	514	515	516	517	518		
Dose Level	(mg/kg/day)	1000						Mean	± s.b.

Sec. R. Maria

1:12hold

and an an and a constant a constant a substant a constant a constant a constant a constant a constant of the co Model of the constant of the con

ek 2	14	160	145	169	155	181	145	159.2	14.1
Wee	11	153	136	156	145	170	136	149.3	13.1
	7	142	125	143	135	162	127	139.0	13.5
Мее	4	130	113	127	122	150	115	126.2	13.4
	0	138	127	137	128	162	123	135.8	14.1
Pre-trial	m	118	107	120	109	141	106	116.8	13.2
	7	100	87	95	06	115	85	. 95.3	11.1
Treatment Week/Day Animal of Dosing	No./ Sex	519 J	520	521	522	523	524		
Dose Level	(mg/kg/day)	3000						Mean	+ s.b.

.

-h

2.22.5

(mg/kg/day) No./ Sex	eek/Day f Dosing		Pre-tria]		WG	ek 1	Wee	ik 2
		7	e	0	4	7	11	14
9000 52	5 J	92	112	130	103	109	110	+
52(107	128	150	128	134	134	+
22.	-	92	112	131	110	119	114	+
52(80	100	121	140	118	122	4.	ı
52	6	106	129	149	122	126	127	+
53(0	100	121	136	118	123	123	135
Mean		. 99.5	120.5	139.3	116.5	122.2	121.6	135.0
± S.D.		6.5	7.4	8.7	8.8	8.2	9.7	0.0

+ = animal dead

and a start of the factor of t

APPENDIX 3b

*

ŵ

. T

0

÷.

Ç,

•3

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Individual Body Weights (g) - Females

			_		_	_	_		
ek 2	14	143	130	132	140	143	144	138.7	6.1
Ke	11	137	128	127	131	136	137	132.7	4.6
ek 1	2	130	122	120	125	128	130	125.8	4.2
Me	4	123	115	116	117	122	124	119.5	3.9
	0	115	107	105	109	114	114	110.7	4.2
Pre-trial	3	103	96	95	96	103	102	99.2	3.9
	7	87	82	84	80	06	89	85.3	4.0
Treatment Week/Day of Dosing Animal	No./ Sex	531 4	532	533	534	535	536		
Dose Level	(mg/kg/day)	0						Mean	<u>+</u> s.p.

y on sourcest second second second second second second second provide second second second sources

	ek 2		-	011	211		***	117	106	c	3.8
	We	=		106	107	110	108	115	102	0 801	4.3
	ek 1	-		97	100	103	102	109	94	100.8	5.1
	We	4		16	94	67	95	103	89	94.8	4.9
		0		107	105	109	108	117	107	108.8	4.2
	Pre-trial	~		98	93	98	66	107	95	98.3	4.8
		7		85	80	85	84	92	82	84.7	4.1
Treatment	Week/Day Of Dosing	Sex		537 4	538	539	540	541	542		
	Dose Level	(mg/kg/day)		333						Mean	+ S.D.

1

13592 2555 G

2009-00 2009-00 2000-00

.

•)

· · · · · · · · · · · · · · · · · · ·	-	_	_	_	_		_		
ek 2	14	107	105	113	115	106	+	109.2	4.5
ž.	11	102	102	106	110	103	79	100.3	10.9
sek 1	4	63	97	102	109	98	107	101.0	6.2
ž	4	86	97	97	103	89	104	96.0	7.3
	0	102	117	113	118	104	120	112.3	7.6
Pre-trial	3	95	106	102	107	91	110	101.8	7.4
	٢	80	92	87	95	65	66	. 85.3	11.3
Treatment Week/Day Of Dosing Animal	No./ Sex	543 ×	544	545	546	547	548		
Dose Level	(mg/kg/day)	1000						Mean	+ S.D.

+ = animal dead

States and States and

2012112

NGS C

·		 _		_		-	_		
ek 2	14	66	1	107	114	63	104	103.4	8.0
We	11	£6	+	101	109	16	100	98.8	7.2
ek 1	-	56	06	63	101	97	96	95.0	3.8
Wee	4	89	89	93	100	16	95	92.8	4.2
	0	113	110	114	118	113	114	113.7	2.6
Pre-trial	e.	104	86	101	109	103	102	102.8	3.7
	2	88	85	86	92	88	89	. 88.0	2.4
Treatment Week/Day Animal of Dosing	No./ Sex	549 2	550	551	552	553	554	i ,	
Dose Level	(mg/kg/day)	3000						Mean	+ S.D.

t = animal dead

32 S. 100000 N (h 1 3 Ś 4 ~

٨,

4

ø

APPENDIX 3b (continued)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pre-trial 3	0 011	Wee 84	k 1 7	Wee	K 2
ex 7 7 55 90 90 90	3	0 110	4 8	7		
55 ¥ 87 56 90	001	110	84		11	14
56 90				+		
	103	114	88	+	1	ł
57 84	96	107	81	73	+	ı
58 83	96	108	80	81	+	ı
59 68	101	112	84	76	+	ı
60 84	6	107	87	81	+	ı
. 86.	0 98.8	109.7	84.0	77.8		
2.	8 2.9	2.9	3.2	3.9		

t = animal dead

Ser. 1

APPENDIX 4

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Formulated Diet Analysis

Treatment	Dose	esog .	Theoretical	Observed C	oncentration	(MPM)	Mean	Standard	Deviation (%) from
week	Group/Sex	Level (mg/kg/day)	(PPM)	Sample 1	Sample 2	Sample 3	Concentration (PPM)	Deviation (PPM)	Mean Concentration
	1 J	0	0	0	0	0	0	0	0
	7	333	2714	2723	2842	2667	2744	+ 89	+ 1.1
	m	1000	7650	7366	7558	8002	7642	<u>+</u> 326	- 0.1
	4	3000	23550	23322	22527	23489	23113	+ 514	- 1.9
	'n	0006	72000	67087	70922	71856	69955	<u>+</u> 2527	- 2.8
4	1 *	0	0	0	0	0	0	0	0
	7	333	2642	2744	2684	2903	2765	<u>+</u> 129	+ 4.7
	e	1000	.8133	8430	7855	7867	8051	+ 329	- 1.0
	4	3000	24800	25327	25647	25155	25376	<u>+</u> 250	+ 2.3
	5	0006	72000	72017	69442	70809	70756	+ 1288	- 1.7

Theoretical concentration (PPM) calculated from predicted group mean mid-week body weight and predicted group mean food consumption.

÷

	<u> </u>					<u> </u>	_		-	
ve/ rrom Mean Concentration	0	+ 1.7	- 5.8	- 0.7	+ 4.3	0	- 1.3	+10.6	- 0.5	+ 1.1
Devlation (PPM)	0	+ 104	+ 134	+ 777	<u>+</u> 3525	0	+ 161	+ 640	+ 388	+ 3605
Concentration (PPM)	o	3935	10785	36961	125781	0	4930	16586	48739	177482
Sample 3	0	3873	10671	36514	122352	0	4791	15847	49143	175516
Sample 2	0	3876	10933	36512	125597	0	4893	16941	48370	181643
Sample 1	0	4055	10752	37858	129395	0	5107	16969	48703	175287
(PPM)	0	3869	11448	36720	120600	0	4995	15000	49000	175000
Level (mg/kg/day)	0	333	1000	3000	0006	0	333	1000	3000	0006
Group/Sex	ا رو	2	m	4	5	1	2	e	4	5
Week			-		2					
	Week Group/Sex (mg/kg/day) (PPM) Sample 1 Sample 2 Sample 3 (PPM) (PPM) Mean (PPM) (PPM) (PPM) (PPM) (PPM) Concentration	Week Group/Sex Level (mg/kg/day) Concentration (PPM) Totol (PPM) 1 J 0 0 0 0 0 0	Week Group/Sex Level (mg/kg/day) Concentration (PPM) Total (PPM) 1 J 0 0 0 0 0 0 0 1 J 333 3869 4055 3876 3876 3873 3935 ± 104 ± 1.7	Week Group/Sex Uncentration (mg/kg/day) Concentration (PPM) Deviation (PPM) Itol Mean 1 0	Week Group/Sex (mg/kg/day) (PPM) Sample 1 Sample 2 Sample 3 Concentration Ivition Visual 1 0 1 1 <	Week Group/Sex (mg/kg/day) (PPM) Sample 1 Sample 2 Sample 3 Concentration With 1000 1 J 0 1 1	Week Group/Sex (mg/kg/day) Concentration (PPM) Deviation (PPM) Violation Mean 1 J 0 <	Week Group/Sex Impleded Sample I Sample I Sample I Sample 3 Concentration beviation beviated by bobvindit beviation beviated by bovevee beviation beviated	Week Group/Sex Level (mg/kg/day) Concentration (PPM) Deviation (PPM) Value (PPM) 1 0 11.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7 10.4 + 1.7	Week Group/Sex (mg/kg/day) (PPM) Sample 1 Sample 2 Sample 3 Concentration Value Value 1 0 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1

APPENDIX 5a

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Absolute Organ Weights (g) Individual Values - Males Surviving 14 Days Dosing

Dose Level		Kiđ	neys	
(mg/kg/day)	Animal No.	L	R	Liver
0	501	0.83	0.80	9.92
	502	0.77	0.75	9.19
	503	0.74	0.76	8.61
	504	0.80	0.79	10.78
	505	0.79	0.79	9.18
	506	0.78	0.75	8.84
	Mean	0.79	0.77	9.42
	<u>+</u> S.D.	0.03	0.02	0.80
333	507	0.74	0.72	8.19
	508	0.81	0.82	9.07
	509	0.71	0.65	7.92
	510	0.87	0.85	9.42
	511	0.77	0.73	8.19
	512	0.71	0.72	7.92
	Mean	0.77	0.75	8.45
	<u>+</u> S.D.	0.06	0.07	0.64
1000	513	0.68	0.65	7.13
	514	0.72	0.70	7.88
	515	0.74	0.74	8.44
1	516	0.68	0.69	6.97
	517	0.68	0.67	7.08
	518	0.68	0.71	7.70
	Mean	0.70	0.69	7.53
	<u>+</u> S.D.	0.03	0.03	0.58
3000	519	0,69	0.65	6.15
	520	0.64	0.59	5.77
	521	0.70	0.67	6.86
	522	0.61	0.58	5.94
	523	0.76	0.73	7.62
	524	0.59	0.61	5.70
	Mean	0.67	0.64	6.34
	<u>+</u> S.D.	0.06	0.06	0.75
9000	530	0.60	0.57	5.54

1000000

F

Ľ

والمراجع وتعالياتها وتعاويتها وتعاويتها وتعاريتها وتعاريتها وتعاويته وتعاويتها

a states and a states of the s

EEUUUU G

 $\mathbf{\hat{v}}$

¢ S

Individual Values - Females Surviving 14 Days Dosing

Dose Level		Kiđ	neys	
(mg/kg/day)	Animal NO.	L	R	Liver
0	531	0.61	0.60	6.10
	532	0.54	0.56	5.11
	533	0.58	0.54	5.24
	534	0.56	0.58	5.94
	535	0.58	0.56	5.44
 	536	0.59	0.62	5.38
	Mean	0.58	0.58	5.54
	<u>+</u> S.D.	0.02	0.03	0.40
333	537	0.52	0.49	4.80
	538	0.50	0.49	4.19
	539	0.53	0.52	4.13
	540	0.49	0.47	4.16
	541	0.53	0.52	4.21
	542	0.50	0.49	4.40
	Mean	0.51	0.50	4.32
	<u>+</u> S.D.	0.02	0.02	0.26
1000	543	0.43	0.39	4.22
	544	0.54	0.54	4.28
	545	0.50	0.47	4.22
	546	0.54	0.55	4.59
	547	0.51	0.49	4.27
	Mean	0.50	0.49	4.32
	<u>+</u> S.D.	0.05	0.06	0.16
3000	549	0.45	0.46	3.84
	551	0.52	0.50	4.49
	552	0.49	0.48	4.27
	553	0.45	0.45	3.73
	554	0.49	0.51	4.28
	Mean	0.48	0.48	4.12
	<u>+</u> S.D.	0.03	0.03	0.32

APPENDIX 5b

HMS : 14 Day Toxicity Study in Rats with Dietary Administration Organ Weights as a % of Body Weight Individual Values - Males Surviving 14 Days Dosing

Dose	Animal	Body	Kidn	eys	Thurs
(mg/kg/day)	Number	(g)	L	R	Liver
o	501	216	0.384	0.370	4.593
	502	202	0.381	0.371	4.550
	503	200	0.370	0.380	4.305
	504	223	0.359	0.354	4.834
	505	200	0.395	0.395	4.590
	506	194	0.402	0.387	4.557
	Mean	_	0.332	0.376	4.572
	<u>+</u> S.D.		0.016	0.014	0.168
333	507	192	0.385	0.375	4.266
	508	210	0.386	0.390	4.319
	509	179	0.397	0.363	4.425
	510	215	0.405	0.395	4.381
	511	195	0.395	0.374	4.200
	512	186	0.382	0.387	4.258
	Mean		0.392	0.381	4.308
	+ S.D.		0.009	0.012	0.084
1000	513	160*	0.425	0.406	4.456
	514	180	0.400	0.389	4.378
	515	198	0.374	0.374	4.263
	516	175	0.389	0.394	3.983
	517	170	0.400	0.394	4.165
	518	175	0.389	0.406	4.400
	Mean		0.396	0.394	4.274
	<u>+</u> s.D.		0.017	0.012	0.177
3000	519	162	0.426	0.401	3.796
	520	147	0.435	0.401	3.925
	521	169	0.414	0.396	4.059
	522	152	0.401	0.382	3.908
	523	182	0.418	0.401	4.187
	524	142	0.415	0.430	4.014
	Mean		0.418	0.402	3.986
	<u>+</u> S.D.		0.012	0.016	0.134
9000	530	128	0.469	0.445	4.328

* = Body weight at day 14 of dosing - not weighed at necropsy.

Individual Values - Females Surviving 14 Days Dosing

Dose	Animal	Body	Kiđn	eys	
(mg/kg/day)	Number	weight (g)	L	R	Liver
0	531	143	0.427	0.420	4.266
	532	131	0.412	0.427	3.901
	533	130	0.446	0.415	4.031
	534	137	0.409	0.423	4.336
	535	142	0.408	0.394	3.831
	536	141	0.418	0.440	3.816
	Mean		0.420	0.420	4.030
	<u>+</u> S.D.		0.015	0.015	0.224
333	537	112	0.464	0.438	4.286
	538	107	0.467	0.458	3.916
	539	111	0.477	0.468	3.721
	540	112	0.438	0.420	3.714
	541	114	0.465	0.456	3.693
	542	108	0.463	0.454	4.074
	Mean		0.462	0.449	3.901
	<u>+</u> S.D.		0.013	0.017	0.240
1000	543	104	0.413	0.375	4.058
	544	103	0.524	0.524	4.155
	545	110	0.435	0.427	3.836
	546	112	9.482	0.491	4.098
	547	104	0.490	0.471	4.106
	Mean		0.469	0.458	4.051
	<u>+</u> S.D.		0.045	0.058	0.125
3000	549	97	0.464	0.474	3.959
	551	105	0.495	0.476	4.276
	552	112	0.438	0.429	3.813
	553	91	0.495	0.495	4.099
	554	102	0.480	0.500	4.196
	Mean		0.474	0.475	4.069
:	<u>+</u> S.D.		0.024	0.028	0.185

APPENDIX 5c

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Premature Decedents Absolute Organ Weights (g) - Individual Values

Dose	Animal	Kidn	eys	Tiver
Level (mg/kg/day)	Number / Sex	L	R	
9000	525 3	0.58	0.54	6.15
	526	0.55	0.60	7.04
	527*	NDA	NDA	NDA
	528	0.65	0.63	5.79
	529	0.59	0.64	6.33
1000	548 💲	0.46	0.44	2.46
3000	550 ¥	0.44	0.44	4.63
9000	555 ¥	0.41	0.42	2.42
1	556	0.47	0.49	4.99
l	557	0.42	0.44	2.73
	558	0.56	0.53	3.15
]	559	0.52	0.50	3.53
	560	0.42	0.44	2.41

* No organ weights recorded

APPENDIX 5d

HMX : 14 Day Toxicity Study in Rats with Dietary Administration Premature Decedents Organ Weights as a % of Body Weight Individual Values

Dose	Animal	Body	Kiđn	eys	Times
(mg/kq/day)	Number	(g)	L	R	Liver
9000	525 đ	113	0.513	0.478	5.442
	526	140	0.393	0.429	5.029
	527*	113	NDA	NDA	NDA
	528	121	0.537	0.521	4.785
	529	130	0.454	0.492	4.869
1000	548 Ş	79	0.582	0.557	3.114
3000	550 ¥	85	0.518	0.518	5.447
9000	555 ¥	68	0.603	0.618	3.559
	556	82	0.573	0.598	6.085
	557	. 63	0.667	0.698	4.333
	558	72	0.778	0.736	4.375
	559	73	0.712	0.685	4.836
	560	66	0.636	0.667	3.652

* No organ weights recorded

222222

5

5

-...

APPENDIX 6

HMX: 14 Day Toxicity Study in Rats with Dietary Administration Gross Pathology and Histopathological Findings in Individual Animals

Abbreviations used:

тк	Terminal kill
KIE	Killed <u>in extremis</u>
FD	Found dead
NAD	No abnormality detected
HE	Haematoxylin and Eosin
SS	Special stain

50

1.1

F

1998 19

12202

۶,

															51	1																		
	Γ	Ţ	SS		\Box	Ι	Τ	Γ	Γ	Π	Ι	Γ	\Box	Ι	Ι	Π	Π	Ι	Π	Τ	Γ	Π	Γ	Π	Ι	Π	I	Γ	Π	Ι		Π	Ι	Γ
	Number of	ections Examine		Liver	Kidneys	Heart	Brain Criser	Thymus											_														_	
	L	ŵ	Э	1	4		-	<u> </u> _			L					\Box					Γ	Ш				Π		Ι				Π	J	Ι
				ology																														
Death	τĸ			Histopath																														
me on Study	2 weeks					NAD.					 																							
7		J		Organ																											_			
Project No: 4156695R Group No: 1	Animal No: 501 Sex: d			Internal and External Necropsy Findings		NAD																												

		1		П	Т	T	Π	Т	Т	Π	Т	Т	Π	Π	Т	T	T	П		Т	Т	Π	Т	Т	Π	Π	Т	Г	Π	Π	Т	Т	Π	Т
	Number of Sertions Franting	HE	1 Liver	2 Kidneys	1 Heart	1 Spleen		1	Ī			Ι			Ţ		Γ		Ī	1	T		Ī	Ī			Ι	1			I	Γ		1
		٦	tology																															
Death	ТК		Histopath																															
ime on Study	2 weeks				NAD.															_											-			
F		J	Organ												 					_														
Project No: 4156695R Group No: 1	Animal No: 502 Sex: d		Internal and External Necropsy Findings		NAD																													

فتتشيئكم

 \sim

K. . .

÷.

٠,

....

÷

....

	_				_				 					 			_	_	 		 		-+		_	
	2	SS						Π	Ц		П		Π	Ш		Ц		Ц								
	Number of ections Examin		Liver	Kidneys	Brain	Spleen	s nu Áu I																			
	×	НЕ	-	4-	-[<u>-</u>	Ι	Π	\Box	Ι		Ι	Π	Π	Ι	Π	Ι		Π	Ι	Ι	Γ		Ι	Γ	Γ
			ology																							
Death	ТК		Histopath																							
e on Study	2 weeks			UAN					 					 		<u> </u>										
Tim			Organ					_																		
Project No: 4156695R Group No: 1	Animal No: 503 Sex: d		Internal and External Necropsy Findings																							

	Γ.	SS		Τ	Π	Ι		Γ	Π	Ι	Π	Π	Π	Ι	П		Π	Π	Π	Τ	Π	Π	Ι	Ι	Π	Π	Ω
	Number of Sections Examine	HE	1 Liver	2 Kidneys 1 Heart	3 Brain	L Thymus				T			Π	T	TT	1	Π	Π	T	T			Ţ	1	Π		I
			ology																								
Death	тк		Histopath																								
lme on Study	2 weeks				NAD.		_		_				 														
F		J	Organ																		_						
<pre>Project No: 415669SR Group No: 1</pre>	Animal No: 504 Sex: d		Internal and External Necropsy Findings		NAD																						

5*1*;

azarten meneren binnene men 6 - 6 - 6

6 6 6

																	5:	5																		
	Γ		ss	Γ	Π				Ι	Τ	Τ	Ι	Τ	T	Γ	Π		Ι	Τ	Ι		ſ		Π	T	T		T	Π	Π	Ι	Ι	Ī	Π	Τ]
		setions Examine		Liver	Kidneys	Heart	Brain	Spleen	Thymus																											
	L	Ň	HΕ	1	Ā	-	٦	Ê	ļ		Ι		Ι	Γ			Ι		Ι	Γ	Τ	Γ			Ι			T		\Box	Ι	Ι	Γ		Τ	1
				ology																																
Death	Ě	Y.I.		Histopath																																
line on Study	- 1 6	z weeks				NAD.				_																	 			 			<u> </u>	_		
F				Organ																-				,						 						
Project No: 415669SR Group No: 1	Animal No: 505 Sex: d			Internal and External Necropsy Findings		NAD																														

K CAN G

														56		-											
	Γ	Ţ	SS		Τ	Γ		T	Ι	Γ	Π	Π	Ι		Ι	П		\Box	Ι	Π	Γ	Π	Π	Π		\Box	
	Number of	ections Examine		Líver	Kidneys	Brain	Spleen	Thymus																			
	L	Ň	HE	-	4-	-	-	-				\prod				Π				Π			\prod	П	Γ	Ш	L
]		opathology																							
Death	ŢK			Hist																							
e on Study	2 wooks	24222				NAU.						 			 		 -								 		 _
717	<u> </u>			Organ																							
Project No: 415669SR Group No: 1	Animal No: 506 Sex: d			Internal and External Necropsy Findings		NAD																					

١÷

•_•

-?

Ł

2

2222222

 \mathbf{v}

Second Control Second S

Set: 6 Il drys PD Namer of a section function External Weccopey Findings Organ Histonathology Il lawr ND Liver Areas hepatocytes with dense staining Il stores fraining ND Liver Areas hepatocytes with dense staining Il stores ND Liver Areas hepatocytes with dense staining Il stores ND Liver Areas hepatocytes with dense staining Il stores ND Kidney Tubular structure indistinct - probabily due Il stores In Linng Congested sits Areas advanced. Linng skull. Brain Not present. Not present. Il stores	25 Sex: d							
Areas Histonathology 1 Liver Histonathology 1 MD Liver Areas Areas hepatocytes with dense staining 1 Liver MD Liver Areas hepatocytes with dense staining 1 Liver MD Liver Areas hepatocytes with dense staining 1 Areas MD Liver Areas hepatocytes with dense staining 1 Areas MD Ridney Tubular structure indistinct - probably due 1 Areas MD Lungs Congested alveol possibly contain fluid, 1 Dung MI Not present. Not present. Not present. 1			13 days	FD		ů.	Number of ctions Examine	
Liver Organ Histonathology 1 Liver Attack Attack Attack Attack Attack MD Liver Attack Attack Attack MD Kidney Tubular structure indistinct - probably due Attack Attack Tubular structure indistinct - probably due Attack Attack Lungs congested alveoil possibly contain fluid, Attack Lungs congested alveoil possibly contain fluid, Attack Not present. Not present.						Ŧ		SS
MD Liver Areas hepacoytes with dense staining 1 Mart MD Cytoplasm. Mild cellular degeneration 1 Mart ND Kidney Tubular 1 Mart MD Tubular Tubular 1 Mart MD Congested alveoit possibly contain fluid, or blood, but autolysis advanced. 1 Mart Mull. Not present. Not present. 1 Mart Mart	ternal Necropsy Findings	Organ		Histopatho	logy	-	l ver	
ND Liver Areas heartorytes with dense staining - trees with restrict - probabily due 2, bung to autolysis advanced. Thunds MAD Kidney Tubular structure indistinct - probabily due 2, bung to autolysis advanced. Main Not present. Not present. Main Not present. Not present.						Ą	tidneys	
MD Ridney Tubular. Equation - Equa		Liver	Areas hep	atocytes with de	ense staining		leart 	
AD Ridney Tobular structure indistinct - probably due Image internation In all lobes. Lungs Tobular structure indistinct - probably due Image internation In all lobes. Lungs Congested alveoil possibly contain fluid, or blood, but autolysis advanced. Image internation Null. Not present. Not present. Image internation Image internation			cytoplasm	. Mild cellular	r degeneration -	,] .	55 G L N	Ι
In all lobes. Kidney Tubular structure indistinct - probably due to autolysis. I in all lobes. Lungs congested alveoli possibly contain fluid. Brain Not present. entolysis advanced.			mainly ce	entrilobular.		-	stands	
AD Kidney routed structure industrinct - probably due to alter industriation in all lobes. Lungs confested alveoli possibly contain fluid, or blood, but autolysis advanced. Evolution in the industriation is a structure industriation in the industriatinatination in the i			-		tate another due	~	Dun	
In all lobes. Lungs Congested alveolt possibly contain fluid, and or blood, but autolysis advanced. In ull. Not present.		Kidney	to autoly	structure indisti sis.	лист - probably que	Π		Ш
In all lobes. Lungs Congested alveol1 possibly contain fluid. Under the congested alveol2 possibly contain fluid. Under the congress advanced. In the configuration of the config						Ι		
aulı. brain katolysis advanced.	i in all lobes.	Lungs	Congested	l alveoli possibl	ly contain fluid,	Ι		
kult.			or blood,	, but autolysis a	advanced.]		
		brain	Not prese	ant.				
	kull.					Ι		
						Ι		
						Γ		
			-					
						Ι		
						Ι		
						Ι		L
						Ι		
						Γ		
						L		
						Ι		
			_					L
						Γ		

Project No: 415669SR Group No: 5

																	58	ſ																		
	Γ	Ţ	SS									Ι	Ι	Τ	Τ	Π	Ι	Ι	Ι	Τ	Τ	Γ		Π	Ι	Ι		\Box	Ι	Γ	\Box		Ι	Ι	ľ	Γ
	Number of	ections Examine		Liver	Kidneys	Heart	Brain	Spleen	Thymus	Cung																										
		ň	¥	-	<u>न</u>	Ī	Ī	Ē	Ē	Ī	Ι	Τ	Ι	Ι	Ι	Π	Ι	Ι	Ι	Ι	Ι	Γ			Ι	Γ	Π	Π	ł	Γ	Π		Ι	Ι	Γ	Γ
				ology		ense staining	r degeneration -			ood in alveoli.																										
Death	FD			Histopatho		nepatocytes with d	ism. Mild cellula	centrilobular.		ongested. Some bl																										
Time on Study	13 days					Areas h	cytopla	mainly	-	Very cc							 					_	 								 					_
				Organ		Liver				rungs							 			-		-	 													
Project No: 415669SR Group No: 5	Antmat No: 526 Sex: d			Internal and External Necropsy Findings		NAD				Lungs dark red.		Red staining round mouth.																								

٢o

Ľ

3

•;

2

E Number of Sections Examined Kidneys Heart Brain Spleen Thymus Lung Liver 2 ~~ HΕ Areas hepatocytes with dense staining cytoplasm. Mild cellular degeneration -mainly centrilobular. Fat stain negative. Congested but autolysis advanced. Ventricles filled with blood. Histopathology Death FD Time on Study 12 days Organ Brain Liver Lungs Lungs - dark red patches on all lobes. Internal and External Necropsy Findings Yellow staining round mouth and fore-feet. ŝ Group No: Sex: d 415669SR QNN NAD 527 Project No: Animal No:

<u>5</u>0

Project No: 415669SR

a shakarar

																						f	ŝ	1																														
	Γ		ŝ	: E	Γ	Γ	Τ	I			Γ	Τ	Ι	Τ	T	J		Γ	Τ	Ι	7	Γ	J	C	Γ	J		I	J	Ĺ	Γ	J		Γ	I	J	J	J	Γ	Γ	Τ	Ι	Τ	Ι	I		Γ	Γ	Ι	I	J	J	Г	Γ
	W. where he	ections Examine		t.i ver	Vidnova	- County	Train a	Brain	spleen .	Thymus					-		-		•	-	•	-	•		-				-	-	-	-	-		•	-	-		-	-				-									-	
	L	Ň	ЭH	E	Ŀ	Ŀ	Ŀ]]	B	Ľ	Ľ	Ι	Ι	Ι	Ι		Ľ	Γ	Ι]	Ľ	Ι	ר	Ι	Ι		Ι]		Γ]]	Γ	Ι]]		Γ	Ι	Ι	Ι	Ι	Ι			Γ	Ι	I			Γ	Γ
				100V			es with dense	d cellular		negative.	-	sub arachnoid space.	•		E .	-				-				•.									2			-		-			L		•										1	b .
Death	C 2	2		Histopathr			ireas of hepatocyt	id cvtoplasm, M1)		ation. rat stain		n ventricles and																																										
me on Study	שורה ס	9 uays					Large a	stainin	doconor	rauahan		Blood 1																								_		_								 						_		
11				Organ			Liver					Brain															_	_									_	_			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_											
Project No: 415669SR Group No: 5	Animal No: 528 Sex: d			Internal and External Necropsy Findings			UNU					UAN		Ked Staining around the mouth.																																								

-

RICER 1.

45

.

55775755 (j

• •

.

.

•

¢

Ŀ.

														61															
		Γ.	, S	Γ	Π		Τ	Γ	Π	Τ	Π	Ι		Τ	Π	Τ	Ι	Τ		Π	Τ	Π	Τ	Π	Γ	Τ	Π	Τ	
		Number of Sections Framina		Liver	Kidneys	Heart	Spleen	Thymus	Lung			-		 															
			꾶	-	4	<u>-</u> L	7-	-	-										Ц		L								
_				ology			ng hepatocytes. lon.		Dn.	. may contain blood	aused loss of																		
	Death	FD		Histopath		- - - - - - - - - - - 	ltn dense stalni llular degenerat		mphocyte depletion	ed. Some alveoli	1 but autolysis o		essels congested.																
	ne on study	13 days					Mild Ce	_	Some ly	Congeste	or fluid	ארד תריתו	Blood ve	 				 								 			
				Organ		1 1.000	12417		Thymus	Lung			Brain					 											
Brotact No: 41566958 Crosse No: 5	Animal No: 529 Servis			Internal and External Necropsy Findings		UNI)			NAD	Lungs dark red.	Froth in trachea.		Blood under skull.																

444

Ń

C 1

CALLY DISCRETE AND DESCRIPTION OF A SALARY

SS Number of Sections Examined 2 Kidneys 1 Heart 3 Brain 1 Spleen 1 Thymus Liver ٦ ΗE Cytoplasm of hepatocytes very dense staining. Loss of some nuclei. Some nuclei enlarged. Slight congestion in glomeruli. Histobathology Death ТΚ Time on Study 2 weeks Organ Kidney Liver Internal and External Necropsy Findings ŝ Group No: Sex: ð Project No: 415669SR NAD UAD 530 Animal No:

62_

2 C. C. S. S. M.

		. - -
, ₩°. •° 1.	 	•-
•		
<u>.</u>		
9		
-		
G ay		
	(j	
	nue	
	ntl	
	20	
	9	
	(IQ)	
4 -	PPE	1
	A	
•		
_		
•		
•		
.		
•		
•		
4		
•		
		APENDIX 6 (continued)

.

														63															
	5	; "		Π		Ι	Ι	Π	Π	Τ	Π	Γ	Π	Π	Π	П	Π	T	Π	Π		Π	Π	Γ	Π	Π	Π	Π	
	Serficial Fundation	HE	1 Liver	2 Kidneys	1 Heart			Lung	Ī	T			Ι	Π		Π	Π			Π			Π	1	Π	Π	TT	Π	
 		1	thology																										
Death	ТК		Histopat		ongestion.																								
lme on Study	2 weeks				Slight c													<u> </u>	<u></u>										
F]			Organ		[und																								
Project No: 415669SR Group No: 1	ANIMAL NO: 531 SEX: *		Internal and External Necropsy Findings		Lungs - irregular dark areas in all	10065.																							

. T

											64													
	ined	SS		Π	Π	Π	Π	П	П	Π		П	Π	Π	Π	Π	Ш	Π	Τ	Π	Π	Π]	
	Number of Sections Exam	HE	1 Liver	Z Kidneys 1 Heart	J Spleen		Π	П	П	Π			Ш	Ш	II	Π			Τ	Π		П		
			loqy																					
Death	TK		Histopatho																					
me on Study	2 weeks			NAD								 												
1			Organ																					
roject No: 415669SR Group No: 1	nimal No: 532 Sex: 2		Internal and External Necropsy Findings	NAD	2																			
÷

:

1

5

...

4

andra andra a state a state a state a la state a state a data da an an andra a state a state da an andra da an Di

, **^**,

₹.

•

1.

65 SS Number of Sections Examined 2 Kidneys 1 Heart 3 Brain 1 Spleen 2 Lung Liver 1 HΕ Histopathology Death Slight congestion. ТΚ Time on Study 2 weeks Organ Lungs Internal and External Necropsy Findings Lungs - irregular reddening on all lobes. Group No: 1 Sex: 2 Project No: 415669SR 533 Animal No:

1.1.1.1.1.1

<u> SANGARANAN SI SI SI S</u>ANGA

SS Number of Sections Examined Kidneys Heart Brain Spleen Thymus Liver 7-1-1-ΗE ----Histopathology Death ŦΚ Time on Study 2 weeks NAD. Organ Internal and External Necropsy Findings Group No: 1 • Sex: **Project No: 415669SR** NAD 534 Animal No:

ول م

A BEACH

رد. در در در در در

No.

1225

Ø

		SS		π	П	Т	ГГ	Π	Π	TΤ	Π	Π	П	Π	Π	Π		Π	TT	Π	Π	Π	Π
	of	Τ				_			.														
	Number Lons E		ver	dneys art	ain leen	ymus																	-
	Sec	щ	- -	<u>7-</u> 					П	Π	Π	Π	Π	П	Ш		\square	Π	Π	Π	Π	Π	Π
			٨																				
		1	holog																				
÷	 		stopat																				
Dea	ТĶ		H																				
Study	eeks			VAD.																			
lme on	2 M																						
Ĥ]	Jan																				
			Ore																				
																<u> </u>				<u> </u>			
			nding																				
No: 1	•		SY F1																				
roup 1	ex:		Necro																				
SR	•		ernal	9																			
115669	535		d Exte	Ĩ																			
No: 4	ö		nal an																				
oject	Imal N		Inter																				
Pro	Yn i									<u> </u>													

APPENDIX 6 (continued)

				60
		SS		
	Number of tions Examin		lver	idineys eart Jacr Jymus
	Sec	뛷	-	
			ology	
Death	ΤK		Histopath	
time on Study	2 weeks			NAD.
			Organ	
project No: 415669SR Group No: 1	Animal No; 536 Sex: 9		Internal and External Necropsy Findings	δ

ئ

Number of Sections Examined 2 Kidneys 1 Heart 3 Brain 1 Spleen 1 Thymus Liver 2 1 ¥ White pulp depleted of mature lymphocytes. Blood vessels congested, especially in glomeruli. Blood vessels and sinusoids congested. Cytoplasm of hepatocytes very dense staining. Histopathology Lymphocyte depletion. Death KIE Time on Study 11 days Organ Kidneys Spleen Thymus Liver Project No: 4156695R Group No: 3 Animal No: 548 Sex: 9 Internal and External Necropsy Findings Internal and External Necropsy Findings NAD NAD Kidneys small. Liver small.

6ĝ

Group No: 4 Sex: ? **Project No: 415669SR Animal No: 550**

Death 5 Time on Study

												70												_				
ņ	SS		Τ	Π	\prod	Τ	\prod	Τ	Π	Ι	Π	Ι	\prod	Π	Ι	Ϊ	Τ	Π		Ι	Π	Ι	Π	Π	Ι	Γ		Π
Sections Examine		Liver	Kidneys Heart	Brain	Thymus	Adrenals		-1	T 1		F-T	- T	T 1		т			TT	77	- -	ττ		r r	.	- T	T		ŦŦ
	aH	-1	4-1	٠ŀ	11		Ц	1	11		Ц	1	Ш	Ц	1	Ц	1	11		1	П	1			1		Ц	Ц
4 days FU		Histopathology	Sections not reliable for interpretation	owing to autolysis.	Very dense staining cytoplasm, Blood	degree cellular hyperplasia.		White pulp depletion.	Lymphocyte depletion.	NAD but sections autolytic.																		
_		Organ			Liver			spieen	Thymus	Adrenals																		
		Internal and External Necropsy Findings			NAD			NAU	NAD	Adrenals slightly enlarged.	The state of the s	ked staining found mouth and nose.																

and the second secon

٩

Contraction of the second s

1.3

Death

Time on Study

Ś

Group No:

Project No: 4156695R

3

Ì <u>C</u>

Ċ.

£

10000

Ċ

Ċ

1		Γ'n	—	רי	- T	Т	r	r	L.L.				Т	Т	т-		-	Т	т-	T	T.	Т	Т	r r	- T	r	Г		T	-		r -	
	ned	»				L	L	L	Ш	Ц	L	Ц	1	L	L	Ц		1	1				T	Ц	T	L	L	Ц					Ц
	Number of ections Exami		Liver	Kidneys	Heart	Soleen	Thymus	Adrenals																									
[й —	HE	-	Ч	-[-	- [-	[]	~		Π				Ι					Γ	Γ			Ι		Ι		Γ				T		
			topathology		iny nuclei, less	ocyte hyperplasia.	lomeruli conceted	tomet att couldested.	depletion.	- do																							
	KIE NIE		HIS		cellular. Ma	lasm. Hepato	vessels in c		nd white pulp	sevte depleti	ranting on for																						
	b days		, 		Very	cytop	Blood		Red a	L.vmpho		NAD.			<u> </u>		 			<u>.</u>	-			,									
1			Organ		Liver		Kidnev	formers.	Spleen	Thymus		Adrenals																					
Animal No: 555 Sex: 9			Internal and External Necropsy Findings		NAD		NAD		Spleen small and pale.	NAD		Adrenals both enlarged.	Animal sutromoli. Loss	WITHAT EVITERIAL TRAIN																			

Project No: 415669SR Group No: 5

	٢		SS		Π		٦			Π	٦	Т	T	T	Т	T	T	Т	Т	Τ	Γ	Γ	Γ	Г	Γ	T	Π	T	T	Т	Γ	Π	٦	Т	Ī	T	T	Ţ	T	Т
		Number of Sections Examined		Liver	Tridneys	Heart	Brain	Spleen	Thymus	<u> </u>			Ť	1	- -	<u> </u>	<u> </u>	.	1	- T				<u>ــــــــــــــــــــــــــــــــــــ</u>	-	<u> </u>			- - -	<u> </u>								- - -		
	L		н	1	4	-1	-	-	F	1		1			T	L	1		L	L			L	L				1	L	1	L	Ц					_		1	
	–			lology		ss fairly dense	nuclei. Slight	lasia.																																
Death	FD			Histopat		sm of hepatocyte	ig. Some double	cellular hyperp:		yte depletion.																														
e on Study	l week					Cytopla	stainin stainin	degree		Lymphoc											 	_								_										
Time				Organ		Liver				Thymus																														
Project No: 415669SR Group No: 5	Animal No: 556 Sex: 9			Internal and External Necropsy Findings		NAD				NAD		Red staining round nose.	Villan the state of the second s	retrow scanning in genical area.																										

CAN A COMPANY

ί Λ.Υ

 $\widetilde{\mathfrak{A}}$ \gg

	_	.							 -	· ·	,	- -7		-	- - -		7 7	- T	-	 τŦ		 ,	-		ד -ד	
	P	SS		Ш		Ш			Ц_			Ц					Ш			Ц					L	
	Number of Sections Examin	3	Liver	2 KIdneys Heart J Brain	Thymus		TT	T.	τŢ		T		1	11	T	Ţ	П	-T	Ţ	TT	Т	T		ГТ	1	
	L	L			ירב	1	1.1	11		╘╼┶						1				1-1	I_	1.1		<u> </u>		
			ology	i fairly dense erplasia.	etion.																					
Death	FD		Histopath	sm of hepatocyte g. Cellular hype	nd red pulp deple	yte depletion.	some autolysis.											•								
me on Study	8 days			Cytopla stainin	White a	гутрнос	NAD but	NAD.				=			<u> </u>					 						
11			Organ	Liver	Spleen	Thymus	Adrenals	Brain																		
<pre>project No: 415669SR Group No: 5</pre>	Animal No: 557 Sex: 8		Internal and External Necropsy Findings	NAD	Spleen småll.	NAD	Adrenals enlarged.	Brain friable.	Absence of body fat.	Red/brown staining round nose and mouth.																

-
2
- <u>e</u> i
- 21
드
- u (
E l
- 61
- 74
21
-1
Ψļ
1
×
<u></u>
1
-
G .
<

ר היי היי

Salara Salara

Ŗ

Project No: 415669SR Group No: 5 Animal No: 558 Sex: ?

time on Study	Death
S dave	FD

	T ë		П	Т	Г	Π	Π	Т	Т	TT	Π	ТТ	Т	Π	Т		T	T	ГТ	T	TΤ	Т	Π	Т	Т	П	T	ГТ	Т
Number of		Liver	kidneys	Heart Brain	Spleen	Thymus Adrenals			<u> </u>	<u> </u>		<u> </u>	1	1		<u> </u>		1			,,					<u> </u>			
	¥			- -	Ŀ		Π		1_	Ш	Ш	Ц		Ш									Ш		L	Ш			
		ology		: - dense stalning.			tion.																						
FD		Histopath		sm of hepatocyte: <pre>c hvpernlasta.</pre>	. newsdandler	ls.	white pulp deple		/re depietion.		autolysis.																		
9 days				Cytoplas		Autolys	Red and		[rympnoc)	NAD.	NAD but				 														
		Organ		Liver		Kidney	Spleen	Ē	snukur	Brain	Adrenals																		
		Internal and External Necropsy Findings		NAD		NAD	Spleen small.		NAU	Brain friable.	Adrenals enlarged.	Red staining round nose and mouth.	Absonce of body fat	ADSENCE OF BOOK LAL.															

. .

7h

10.

0

<u>.</u>

¢

C

1.1.1.1

Project No: 415669SR Group No: Animal No: 559 Sex: ?

ŝ

Time on Study Death 8 days FD

	- - T					-	-	T	—	- , -	—	, ,		7 -7		┯┯		~ ~	T T	 T		T T	 	 гт	7 1		[-]-
.	ş	SS		Ц		1	L	L	Ц	1	L	Ц	1	Ц		П	1		П			Ц	Ц	Ц		1	Ш
Number of	ections Examin		Liver	Kidneys	Heart	brain reloce	Thymus	Adrenals																			
Ľ	Ĩ	Æ	-	2	-ŀ	-	Ŀ	2		L		Ш	Ι			Π		Ι	Ш	\prod	Ι	Π	Π	\prod		Τ	
8 days FD			Histopathology		Dense staining cytoplasm in hepatocytes,	cellular nyperplasia.	White and red pulp depiction.		Lymphocyte depletion.	Who but suitelingte	WAD DUL AUCOLYSIS.				 												
]		Organ		Liver		Spleen		Thymus	Advent a	ST PILA TOV		_														
			Internal and External Necropsy Findings		NAU		Spleen small.		NAD	Ndronale hoth on largod	anafaria tana tana tan	Absence of body fat.	Red staining round eves, mouth and nose.														

415669SR

22 Number of Sections Examined Z Kidneys 1 Heart 1 Brain 2 Spleen 2 Adrenals 1 ILI VET £ White and red pulp depletion. Histopathology Hepatocellular hyperplasia. Lymphocyte depletion. Death NAD but autolysis. FD Time on Study 9 days Adrenals Organ Spleen Thymus Liver Internal and External Necropsy Findings Group No: 5 • Adrenals slightly enlarged. Sex: Red staining on nose. UVD Spleen small. Thymus small. 560 Project No: Animal No:

÷ .

PERSONNEL INVOLVED IN PROJECT NO. 415669SR

Principal Investigator:	A.B. Wilson, B.V.Sc., M.R.C.V.S.
Project Leader:	R.J. Greenough, B.Sc., M.I.Biol.
Technicians:	P. McDonald, H.N.C., L.I.Biol. P.C. Robinson, B.Sc. A. Everett, A.I.A.T.
Diet Formulation:	A.T. Soden
Diet Analysis:	M. Henderson, B.Sc., Ph.D.
Pathologists:	 B. Rushton, Ph.D., B.V.M.S., M.R.C.V.S., R.C.V.S. M. Jones, B.V.M.S., M.R.C.V.S.
Autopsy Room Supervisor:	E.P. Hall, F.I.M.L.T.
Histology Supervisor:	I. Nicol, A.I.M.L.S.
Pathology/Histology Assistants:	<pre>C. Petrie, B.Sc. G. Ash, B.Sc. V. Derbyshire A. Kirkwood D. Frazer R. Johnston, H.N.C. D. McBride F. MacLean</pre>
Quality Assurance:	A.W. Waddell, B.Sc., Ph.D. E.M. Baxendine, B.Sc. N.C. McLachlan, B.Sc.

Constant and a lot of the

4

アンシンと言いたかない

ć

Ĉ

DISTRIBUTION LIST

5 copies to:

Commander U.S. Army Medical Research and Development Command Attention: SGRD-RMS Fort Detrick, Frederick, Maryland 21701-5012

copies to

Inveresk Research International Limited Musselburgh, EH21 7UB, Scotland VL.