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‘o S Optical Emission Properties of Metal/lll-V Semiconductor Interface States

1
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N Abstract

:":‘u /

,!:!:9 \.4

e We report the first study of optical emission properties associated with formation of
!'.

}"s metal/lll-V semiconductor interface states. Cathodoluminescence spectroscopy
%E reveals discrete levels distributed over a wide energy range and localized at the
. microscopic interface. Our results demonstrate the influence of the metal, the
semiconductor and its surface morphology on the energy distributions. Evolution of

e spectral features with interface formation, particuiarly above monolayer metal

- coverage, is correlated with Fermi level movements and Schottky barrier heights.
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s The identification of interface states and their role in Schottky barrier
formation have long been key issues in understanding electronic properties of

metal/semiconductor (SC) junctions!. For clean, ordered InP or GaAs (110), intrinsic

Lol gap surface states are absent, and a few monolayers of deposited metal create new
g charge states which stabilize the Fermi level (E¢) in a limited range within the band
,:;:,( gap2. Considerable spectroscopic evidence suggests that chemical effects (e.g.,
:E:S‘ reaction and interdiffusion) take place concurrently which promote localized charge
R formation. Physical models for the localized charge states which influence
,.;;;;c metal/compound SC contact rectification vary from gap states due to defects formed
E:‘;: by metal atom condensation3, to metal-induced gap states defined by the SC band
‘_‘é:;‘ structures, to chemisorption and cilarge transfer involving metals atoms and
T* clusterss, to chemically formed dipole layersé and effective work functions of
‘:'::: interface alloys?. Nevertheless, except for isolated absorption studies of surface and
::f‘: interface states by total internal reflections or surface photovoltage spectroscopy?
;;2::: and near edge photoluminescence of mechanically-damaged surfaces'o, the presence
Eé?::: and energies of interface states have been inferred largely from measurements of |
:?f!:, capacitance'.'!, current''2, and Er movementzs.

pt

ff::; Here we report the most direct observation of metal/SC interface states thus
Ez?\" far. We have detected luminescence from interface states by means of
;éi" cathodoluminescence spectroscopy'3(CLS), a technique common to bulk studies and
.:E. recently applied to laser-annealed metal/SC interfaces's and to GaAs/GaAlAs
::':f multilayer structures's. We have characterized the formation and evolution of
:::5- interface states with metal deposition on UHV-cleaved (110) III-V SC surfaces of
:E?:: submonolayers up to several monolayers, where the metallic state of the overlayer is
:’:fs well defined. We show that dramatic changes are produced in the optical emission
il properties of III-V SC’s upon metal deposition, both broad and discrete emission
439
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bands at energies below the band gap. Our studies reveal the influence of the

particular metal, the SC, its morphology and bulk growth quality on the spectral

L distribution. Furthermore, the evolution of electron-excited optical emission spectra
:;;‘é of metal/InP or GaAs interfaces show qualitative differences at submonolayer vs.
:‘:'E multilayer metal coverages which can be correlated to their Er movemen*s and
P macroscopic Schottky barrier heights (SBH).

ho

’:i The CLS excitation was produced by a chopped electron beam from a glancing
Jh& incidence electron gun impinging on a (110) crystal face. The room-temperature
:::‘:é' luminescence was focussed into a monochromator and the transmitted signal was
"‘:f: phase-detected using a LN;-cooled Ge detector (North Coast) and a lock-in amplifier.
":3'21 Excitation depths on a scale of nanometers were achieved using low (500- 3000 eV)
:?,“, incident electron energies at glancing angles'416.17, As expected, interface specific
:::.:. features exhibited monotonic intensity increases relative to bulk features with
i decreasing excitation energy'8. We evaporated metals on cleaved (110) single crystal
':;; surfaces of InP (n= 4.3x10'5 cm-3, p=10'8cm-3) and GaAs (n= 4x10'S ¢cm-3) from
i?% Metal Specialties. A quartz crystal oscillator positioned next to the cleaved surface
I monitored film thicknesses. Injected electron concentration ranged from 10's- 1017
:'g:j ~ cm-3, We raised injection levels to 1018 cm-3 in order to identify any effects of electron
3’{:«‘} beam damages (which we found to be distinct from the spectral features reported
b’j’ here)!8. Additionally, in situ photoluminescence spectra provided evidence for any
‘i; bulk related features!8.

o

‘;:3 Figure 1 shows CL spectra which illustrate the effect of submonolayer coverage

‘::‘: on clean UHV-cleaved InP(110) surface for different metals and their similarity with
EEEE; ! step-cleaved features. We observe new emission features which indicate that metal

f;:;: deposition modifies the SC surface and forms new states. Similar features are

e observed for both p-type and n-type (not shown) InP (110). Within the energy range
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0.6-1.6 eV, the CL spectra of clean InP shows only one emission centered at 1.35 eV,
which corresponds to a near-band-gap (NBG) transition. Whereas for mirror-like
areas there is no detectable emission in the energy region below the NBG transition
over two orders of magnitude <{ injection level, the CL spectrum of step-cleaved
areas shows weak emission at sub-band gap energies. The similarities in CL spectral
shapes of step-cleaved areas and those from chemisorbed metals on mirror-like areas

suggest that the initial metal deposition causes the formation of broken bonds, such

as those formed during a step-cleavage process.

Multilayer metal deposition produces new spectral features which evolve
differently for several metals. Fig. 2(a)-(d) demonstrate that the changes produced in
the optical emission properties of InP upon metal deposition are strongly dependent
on the particular metal. For Au deposition, Fig 2(a) exhibits significant new peak
features at 0.8 eV and 0.96 eV, and a broad band whose energies extend up to the
onset of the NBG transition. Deposition of 15 A of Au dramatically reduces the
relative emission intensity at energies higher than 0.9 eV. Relative to Au, Cu
deposition on InP(110), Fig. 2(b), produces interface states which exhibit a different
spectral dependence on metal thickness, i.e., these interface states evolve faster with
Cu versus Au thickness. This result is consistent with Ex movements extracted from
photoemission core level shifts for these interfaces, which showed a faster movement
and stabilization for Cu versus Au'd over similar thickness ranges. The 0.78 eV
emission is a common feature between the Au and CuwInP interfaces. However,
spectral differences are apparent at higher energies. In contrast, Fig. 2(c) shows that
for Al deposition the NBG transition dominates the spectra even after deposition of
20 A, whereas the low energy emissions are similar to those of Fig. 1. The overall
luminescence intensity is drastically reduced, but Al deposition does not

substantially change the spectrum. Similar low energy emission are found for Pd
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deposition, Fig. 2(d), although the NBG transition is now totally suppressed. The p-
InP specimens display lower overall luminescence efficiency than the n-type
crystals, but the behavior of reactive metals such as Al, Pd, and Ni (not shown)
differs only in the persistence of the NBG transition for Al. Sub-band gap spectral

features appears to be roughly independent of doping.

Fig. 3 shows CL spectra of Au on cleaved GaAs (110). The mirror-like cleaved
surface exhibits three strong emissions. a 1.42 eV emission corresponding to a NBG
transition and lower energy peaks whose intensities depend on cleavage quality,
doping, and doping level'8. Deposition of Au causes a small shift of the 0.8 eV
emission to lower energies, following by development of a peak centered at 0.75 eV
which dominates the spectral shape after 15 A of Au. The evolution of spectral
features with metal deposition in both Figs. 2 and 3 demonstrate that strong changes
in electronic state energies and densities take place at multilayer coverage which

are not apparent in the lower coverage regime.

Metal deposition reduces the NBG luminescence intensity for all systems
investigated, due in part to electron beam attenuation by the overlayer and to
formation of a surface "dead layer" (ca.1000 - 4000A) in which increasing band

bending and width of the surface space charge region reduces bulk radiative

recombination20.2', For coverages of only a few atomic layers, overlayer attenuation
of 500-3000 eV electrons depends only weakly on the particular metal's. In contrast,
the magnitude and rate of band bending changes depend sensitively on specific
metal, and the NBG intensity attenuation in Figs 2(a)-(d) correlate strongly with E;
movement with metal deposition measured by photoemission'd. Thus, E; shifts
slowly (rapidly) with Au (Cu) coverage'9, producing large n-type band bending with
10-20 A (2-4 A) deposition, which reduces NBG luminescence intensity at a

corresponding rate. Al deposition produces relatively little band bending' **,




consistent with the NBG feature dominant after 20 A coverage. The NBG intensity
reduction observed for Pd/p-InP is also consistent with the large Er movement

expected’?.

Several possibilities exist for the physical nature of the observed metal-induced
transitions. Initially, metal deposition perturbs the surface bonding and thereby the
electronic structure of the semiconductor surface. However, with multilayer metal
coverage, these states evolve into interface states with different energies and
densities. At submonolayer coverages, these states can not be ascribed to metal-
induced gap states® since the overlayers are not yet metallic. At higher coverages,
the spectral shape also rules out surface amorphization, which would produce a
structureless optical emission spectrum or a broad NBG wing. On the other hand,
diffusion of the m~tal in the SC may cause the formation of a highly doped surface
layer, which may account for the observed optical emission spectra. The high
diffusion coefficient and macroscopic transport of Cu in InP, even at temperatures as
low as 400°C* suggests that an indiffusion process may form a similar albeit
microscopic layer even near room temperature. The qualitative difference between
unreactives metals such as Au or Cu versus reactive metals such as Al or Ni may be
attributed to the formation of a reacted interfacial layer which inhibits metal
indiffusion in the latter case. However, we have not found clear correlation between
the emission energies of the metal/InP interfaces and optical emission from the same
metal-doped InP**#. A recent luminescence investigation of Cu metal diffusion in
InP” at various temperatures displayed formation of a neutral complex at 400°C
which evolved with increasing temperature, giving rise to an intense band at ca. 1.0
eV versus our 0.78 eV band. The results suggest that isolated metal impurities
within the SC are alone insufficient to account for the observed optical emission.

More likely, metal indiffusion coupled with semiconductor outdiffusion of the
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different species forms defect complexes (e.g., impurity-native defects) which are

responsible for the optically-detected interface states.

) The dominant CLS features at multilayer coverages in Figs. 2 and 3 can

: account for the reported SBH'’s of Au and Cu on n-InP (110) and Au on n-GaAs (110).

Transitions from interface states into (out of) the valence (conduction) band as well

o -

as between localized states can contribute to the CL spectrum. Of these, transitions
which have the valence band maximum as the final state have the highest
probability since the upward band bending of n-type SC’s results in accumulation of
3 injected beam-excited valence holes at the interface. This fact also accounts for the
4 lower overall CL efficiency observed for p-type specimens, where such hole
accumulation is not in general expected. Thus, assuming that localized state
transitions to the valence band maximum produce the dominant contribution to the

A n-type CL spectra and that recombination cross sections do not vary discontinuously

with energy, the pronounced peak feature at 0.78 eV in Figs. 2(a) and (b) suggest a
" relatively high density of states located 0.58 eV below the conduction band edge.
This value is close to the 0.43-0.5 eV’ SBH reported for Au and Cu on InP (110) and
can account for the observed Er stabilization. Surface photovoltage spectra of Au on
' InP (110) supports this spectral interpretation?, although CLS alone provides optical
evidence at metallic coverages. Similarly, the evolution of CLS peaks in Fig. 3to a
single emission feature at 0.75 eV indicates a high density of states located 0.7 eV
below the conduction band edge, compared with the reported SBH of 0.8-0.9 eV’. Of
course, Er stabilization need not be precisely at a density-of-states peak but rather

may be weighted or averaged toward such a value from the bulk E¢ position.

On the other hand, the more reactive AlInP system displays a SBH s 0.2eV'*"

PN XD

which correlates well with the persistence of the NBG transition and weak sub-band

gap emission detected.
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RO We have observed the formation and evolution of metal/SC interface states by
| optical emission techniques. We were able to distinguish between interface states
RN promoted by metal deposition from those of step-cleaved areas. The CL spectra show
;:,3.: qualitative differences between metals, especially with different chemical reactivity.
| These metal-induced states are distributed over a wide energy range, are localizevd at
oy the interface, and can differ substantially from those produced by only submonolayer
At metal coverages. Dominant CL features show interface levels at energies which can

account for Schottky barrier heights.
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Figure Captions

CL spectra of clean, mirror-like p-InP (110) surfaces before and after

submonolayer Ni, Pd, or Cu deposition, and the clean step-cleaved surface.

CL spectra of (a) Au, (b) Cu, and (c) Al on clean, mirror-like n-InP (110) and (d)

Pd on clean mirror-like p-InP (110) as a function of deposition.

Cl spectra of clean, mirror-like n-GaAs (110) with increasing Au deposition.
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