

Report No. AMXTH-TE-CR 86085 Installation Restoration General Environmental Technology Development Contract DAAK11-85-C-0007

TECHNICAL REPORT

A17152

Economic Evaluation of Low Temperature Thermal Stripping of Volatile Organic Compounds From Soil

AD-A171 521

August 1986

Distribution Unlimited; Approved for Public Release

Prepared for: U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY Aberdeen Proving Ground (Edgewood Area), Maryland 21010

Roy F. Weston, Inc. West Chester Pennsylvania 19380

> REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE US DEPARIMENT OF COMMERCE SPRINGFIELD, VA 22161

REPORT NO. AMXTH-TE-CR 86085

INSTALLATION RESTORATION GENERAL ENVIRONMENTAL TECHNOLOGY DEVELOPMENT

CONTRACT DAAK 11-85-C-0007

TECHNICAL REPORT

ECONOMIC EVALUATION OF LOW TEMPERATURE THERMAL STRIPPING OF VOLATILE ORGANIC COMPOUNDS FROM SOIL

August 1986

Distribution unlimited; approved for public release.

Prepared for:

U.S. ARMY TOXIC AND HAZARDOUS MATERIALS AGENCY Aberdeen Proving Ground (Edgewood Area), Maryland 21010

ROY F. WESTON, INC. WEST CHESTER, PENNSYLVANIA 19380

UNCLASSIFIED	
ECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
AMXTH-TE-CR 86085 HD-FIIIS	
4. TITLE (and Subtitio) Installation Restoration	5. TYPE OF REPORT & PERIOD COVERED Technical Report -
General Environmental Technology Developmen	t. February 1986-August 19
Economic Evaluation of Low Temperature Thermal Stripping of Volatile Compounds	6. PERFORMING ORG. REPORT NUMBER
from Soil	6. PERFORMING ONG. REFORT NUMBER
7. AUTHOR(#)	8. CONTRACT OR GRANT NUMBER(*)
Peter J. Marks	
John W. Noland, P.E.	DAAK11-85-C-0007
•	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Roy F. Weston, Inc.	10. PROGRAM ÉLEMENT, PROJECT, TASK Area & Work Unit Numbers
Weston Way	
West Chester, PA 19380	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Toxic & Hazardous Materials Age	August 1986
Aberdeen Proving Ground	13. NUMBER OF PAGES
Edgewood Area, MD 21010 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
I. MONITORING AGENCY NAME & ADDRESS(IT different from Consoliting Office)	1
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different f	rom: Report)
18. SUPPLEMENTARY NOTES	
Contract Project Officer - Ms. Donna L. M (AMXIH-TE-D)	Koltuniak
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
Volatile Organic Compounds (VOC's) Low Temperature Thermal Stripping Unit Costs Sens Capit	rburner mal Processor omic Analysis itivity Analysis tal Costs ating Costs
20. ABSTRACT (Continue on severas odds M researcesy and identify by block manber	"
This report presents the results of a comp evaluates the economics of four separate 1 stripping (LTTS) system sizes and two separate tions (i.e., with and without flue gas scri at three separate size sites. LTTS system costs are presented in total dollars and up	ow temperature thermal rate system configura- ubbing) for application capital and operating
DD + JAN 73 1473 EDITION OF + NOV 65 IS OBSOLETE Unc	lassified

1

SECURITY CLASSIFICATION OF THIS PAGE (Then Deta Entered)

CONTENTS

Paragraph	1	EXECUTIVE SUMMARY	1	
	1.1	Background	1	
	1.2	Objective	1	
	1.3	Summary of major findings and		
		recommendations	2	
	2	INTRODUCTION	3	
	2.1	Technology status	3	
	2.2	Overview of the pilot investigation.	4	
	2.3	Process/description	4	
	2.3.1	Pilot system tested at LEAD	5	
	2.3.1.1	Soil feed system	5	
	2.3.1.2	Thermal processor	5	
	2.3.1.3	Processed soil handling system	9	
	2.3.1.4	Hot oil system	9	
	2.3.1.5	Air systems	9	
	2.3.1.6	Emission control system	12	
	2.3.2	Full-scale systems evaluated	12	
	2.3.2.1	Option 1 - without flue gas	T ~~	
	2.3.2.1	scrubbing	14	
	2.3.2.2	Option 2 - with flue gas scrubbing	16	
	2.4	General approach and economic	ĨŰ	
		assumptions	17	
	2.4.1	Alternative LTTS system sizes	1,	
	2.1.1.1	evaluated	17	
	2.4.2	Alternative system configurations	1,	
	6.1.6	evaluated	22	
	2.4.3	Alternative quantities of soil to be	66	
	2.7.3	processed	22	
	2.4.4	General economic assumptions	25	
	3	CAPITAL COSTS	28	
	3.1	Direct capital costs	28	
	3.2	Indirect capital costs	28	
	3.2.1	Site preparation/mobilization	28	
	3.2.2	Construction/erection/installation		
	3.2.3		31	
		Engineering	32	
	3.2.4	Permits	32	
		Startup and training	32	
	3.2.6	Spare parts	32	
	3.2.7	Freight	32	
	3.2.8	Site closure/demobilization	33	N
	3.2.9	Contingency	33	Ц

By Para	phone call
A	vailability Codes
Di_t	Avail and/or Special
A-1	

.

0347B

.

Distribution Statement A is correct for this report. Per Ms. Ekis, ATHMA/DRXTH-FS

i i

CONTENTS (continued)

Page

4	OPERATING COSTS	34
4.1	Equipment	34
4.1.1	Front-end loaders	34
4.1.2	Trucks	41
4.1.3	Additional roll-off boxes	41
4.1.4	Safety equipment	41
4.1.5	Trailers	41
4.1.6	Utility vehicle	41
4.1.7	Monitoring equipment	44
4.1.8	Sanitary facilities	44
4.2	Labor	44
4.3	Utilities	44
4.3.1	Fuel	49
4.3.2	Electricity	49
4.3.3	Water	49
4.3.4	Wastewater disposal	49
4.3.5	Caustic	49
4.3.6	Oversize debris disposal	50
4.4	Laboratory costs	50
4.5	Miscellaneous supplies	50
4.6	Contingency	50
5	TOTAL PROJECT COSTS	51
5.1	Option 1 - Without off-gas scrubbing	51
5.2	Option 2 - With off-gas scrubbing	51
6	SENSITIVITY ANALYSIS	59
6.1	Total project costs	59
6.2	Capital costs	64
6.3	Operating costs	67
6.4	General economic assumptions	69
6.4.1	Moisture content	69
6.4.2	Soil discharge temperature	69
6.4.3	System availability	71
6.5	Equipment salvage value	71
6.6	Procurement and contracting costs	71
7	CONCLUSIONS AND RECOMMENDATIONS	72
7.1	Conclusions	72
7.2	Recommendations	72
8	DISTRIBUTION LIST	74

iii

FIGURES

1.	Installed pilot system	6
2.	Schematic illustration of the low-	
	temperature thermal stripping pilot	
		7
3.	Front view of the thermal processor	8
4.	Internal view of thermal processor	10
5.	Off-gas discharge lines	11
6.	Schematic process diagram of the full-	
	scale low temperature thermal	
	-	13
7.		
	and vapor hood (System A)	20
8.		
		21
9.		55
		56
		57
12.		58
		60
14.		61
		62
16.		63
	· - · ·	
	content	70
	2. 3. 4. 5.	 Schematic illustration of the low- temperature thermal stripping pilot system

.....

WISSION

TABLES

Page

1.	Summary of four separate low-temperature thermal stripping systems evaluated .	19
2.	Summary of LTTS system data for Option 1	
3.	 without flue gas scrubbing Summary of LTTS system data for Option 2 	23
	- with flue gas scrubbing	24
4.	Summary of capital costs for Option 1 - without flue gas scrubbing	29
5.	Summary of capital costs for Option 2	
6.	 with flue gas scrubbing Operating costs for Option 1 - without 	30
	flue gas scrubbing at Site 1	
7.	<pre>(1,000 ton site) Operating costs for Option 1 - without</pre>	35
- •	flue gas scrubbing at Site 2	
8.	(10,000 ton site)Operating costs for Option 1 - without	36
0.	flue gas scrubbing at Site 3	
9.	(100,000 ton site) Operating costs for Option 2 - with	37
۶.	flue gas scrubbing at Site 1 (1,000	
10.	ton site)Operating costs for Option 2 - with	38
10.	flue gas scrubbing at Site 2 (10,000	
11.	ton site) Operating costs for Option 2 - with	39
	flue gas scrubbing at Site 3 (100,000	
	ton site)	40
12.	Equipment costs on a weekly basis for Option 1 at all sites	42
13.	Equipment costs on a weekly basis for	12
14.	Option 2 at all sites Labor costs on a weekly basis for Option	43
14.	1 at all sites	45
15.	Labor costs on a weekly basis for Option	4.0
16.	2 at all sites Utility costs on a weekly basis for	46
17	Option 1 at all sites	47
17.	Utility costs on a weekly basis for Option 2 at all sites	48
18.	Total project costs for Site 1 (1,000	5.2
19.	ton site) Total project costs for Site 2 (10,000	52
20	ton site) Total project costs for Site 3 (100,000	53
20.	ton site)	54
21.	Sensitivity analysis of capital costs	<i>с</i> . г
22.	for System B Sensitivity analysis of weekly operating	65
	costs for System B	68

v

1. EXECUTIVE SUMMARY

1.1 <u>Background</u>. Under Task Order 11 of Contract DAAK 11-82-C-0017, a field demonstration project was conducted at Letterkenny Army Depot in the fall of 1985. This pilot testing project demonstrated that the low temperature thermal stripping process could successfully remove volatile organic compounds (VOC's) from soils. The results of this prior investigation are presented in Report No. AMXTH-TE-CR-86074, "Task 11. Pilot Investigation of Low Temperature Thermal Stripping of Volatile Organic Compounds (VOC's) from Soil," dated June 1986.

1.2 <u>Objective</u>. This report presents an economic analysis of:

- 1. Four Separate System Sizes
 - <u>System A</u> One thermal processor consisting of two 24-inch diameter and two 24-foot long Holo-Flite@ screws.
 - <u>System B</u> One thermal processor consisting of four 24-inch diameter and four 24-foot long Holo-Flite® screws.
 - <u>System C</u> Two thermal processors as described for System B arranged in series.
 - <u>System D</u> Four thermal processors consisting of two parallel trains with two thermal processors each as described for System C.
- 2. <u>Two Separate System Configurations</u>
 - <u>Option 1</u> Without flue gas scrubbing.
 - Option 2 With flue gas scrubbing.
- 3. <u>Three Separate Size Sites</u>
 - Site 1 With 1,000 tons of contaminated soil.
 - Site 2 With 10,000 tons of contaminated soil.
 - <u>Site 3</u> With 100,000 tons of contaminated soil.

The objective of this report is to recommend which size and configuration of equipment (if any) should be considered for development of technical data packages for full-scale implementation at U.S. military installations. A secondary objective of this report is to recommend additional studies or investigations that may be required.

1.3 <u>Summary of major findings and recommendations</u>. System B is the most economic system evaluated for sites with 15,000 to 80,000 tons of soil to be processed. The estimated incremental total project costs for System B ranged from \$160/ton to \$74/ton, respectively, for the above size sites. With a flue gas scrubber, these estimated costs increased to \$184/ton to \$87/ton, respectively.

Recommendations are summarized below:

- A Technical Data Package (performance oriented) should be developed for System B. This is the most costeffective system for the range of sites from 15,000 to 80,000 tons. The Technical Data Package should include flue gas scrubbing (if required) based on soil characteristics.
- 2. A survey/literature search of sites targeted for remedial action under the Installation Restoration Program should be performed to determine if technical data packages for smaller (System A) or larger (System C) systems are justified.
- 3. To further refine operating costs, testing should be performed on a wide variety of uncontaminated soil types and moisture contents to establish an accurate data base for heat transfer coefficients and soil processing rates. This testing could be performed at the Joy Manufacturing Company test facility in Colorado Springs, Colorado, at a nominal cost and with no permitting requirements.
- 4. Continue economic evaluation to identify and estimate the appropriate procurement and contracting costs.

2. INTRODUCTION

The objective of this report is to provide a detailed economic evaluation of alternative full-scale options for low temperature thermal stripping of VOC's from soil at U.S. Army installations. The following subsections provide an overview of the technology status, discussion of the pilot study, process descriptions of the alternatives evaluated, and a description of the general approach and assumptions for this economic evaluation.

2.1 <u>Technology status</u>. Soils at several U. S. Army Materiel Command (AMC) installations have been contaminated with a variety of organic compounds. In many cases, the contaminated soil has resulted in the degradation of underlying groundwater supplies.

To limit further contaminant migration, the U. S. Army Toxic and Hazardous Materials Agency (USATHAMA) is investigating technologies to effectively treat the contaminated soil. One treatment alternative is low temperature thermal stripping of volatile organic compounds (VOC's) from soil. A pilot study was conducted at Letterkenny Army Depot (LEAD) near Chambersburg, Pennsylvania from 5 August 1985 to 16 September 1985. The study was conducted to determine the feasibility of this technology for future remedial action projects at Department of Defense (DOD) installations.

Soils from two lagoons used for the disposal of organic liquids were chosen for treatment. This selection was based on the type, variety, concentration, and volatile nature of the compounds found in the area. Two types of soil existed at this site: fill soil and native soil. A grain-size analysis indicated that the fill material consisted of gravelly sands, while the native soil consisted of sandy clay/sandy silt.

Soils were treated in a thermal processor, an indirect heat exchanger used to heat and dry the contaminated soil. The net effect of heating the soil was to evaporate volatile contaminants. A carrier gas (i.e., air) was introduced to the unit to enhance contaminant removal. Contaminants in the off-gases were thermally destroyed in an afterburner.

2.2 Overview of the pilot investigation. The pilot investigation was completed in two phases. Phase I consisted of 18 test runs to evaluate the effect on VOC removal efficiency of varying operating conditions, (i.e., soil discharge temperature, soil residence time, and air inlet temperature). of discharge The 18 test runs were designed in a matrix format to investigate three levels of soil discharge temperature: 50°C, 100°C, and 150°C; three levels of soil residence time: 30 minutes, 45 minutes, and 60 minutes; and two levels of air inlet temperature: ambient and 90°C. Phase I test runs were conducted from 5 August 1985 through 26 August 1985.

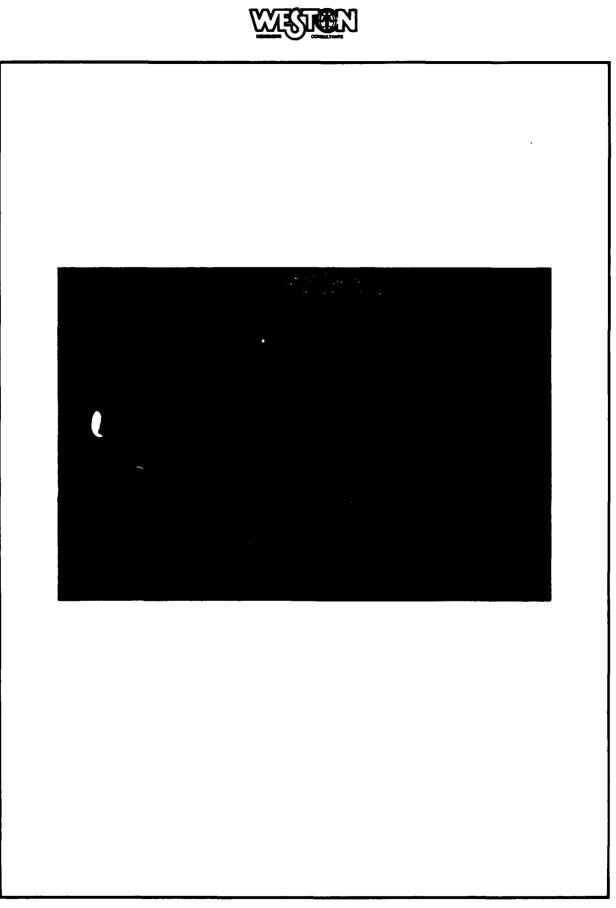
Phase II of the pilot study consisted of 10 "optimization" test runs. The purpose of the optimization runs was fourfold:

- To evaluate the effect on VOC removal efficiency of varying operating conditions beyond the limits set for Phase I of the investigation (i.e., maximum soil discharge temperature and maximum soil residence time).
- 2. To evaluate the VOC removal rate along the length of the unit.
- 3. To evaluate the VOC removal efficiency associated with three "duplicate" test runs to determine if the treatment was consistent and comparable.
- 4. To evaluate the VOC removal efficiency associated with reprocessing treated soils that still contained a VOC residual.

Phase II test runs were conducted from 27 August 1985 through 16 September 1985.

The data from the pilot investigation was statistically analyzed using multiple linear regression techniques. The objective was . develop simple linear equations that would identify those input or controlled variables that had a significant impact on the concentration of total VOC's in the processed soils (i.e., treatment effectiveness). The statistical analysis techniques were successful. Statistically significant simple linear equations were developed for design of a full-scale system operating at low, medium, or high soil discharge temperature. The results of the pilot investigation are presented in Report No. AMXTH-TE- CR-86074, "Task 11. Pilot Investigation of Low Temperature Thermal Stripping of Volatile Organic Compounds (VOC's) from Soil," dated June 1986.

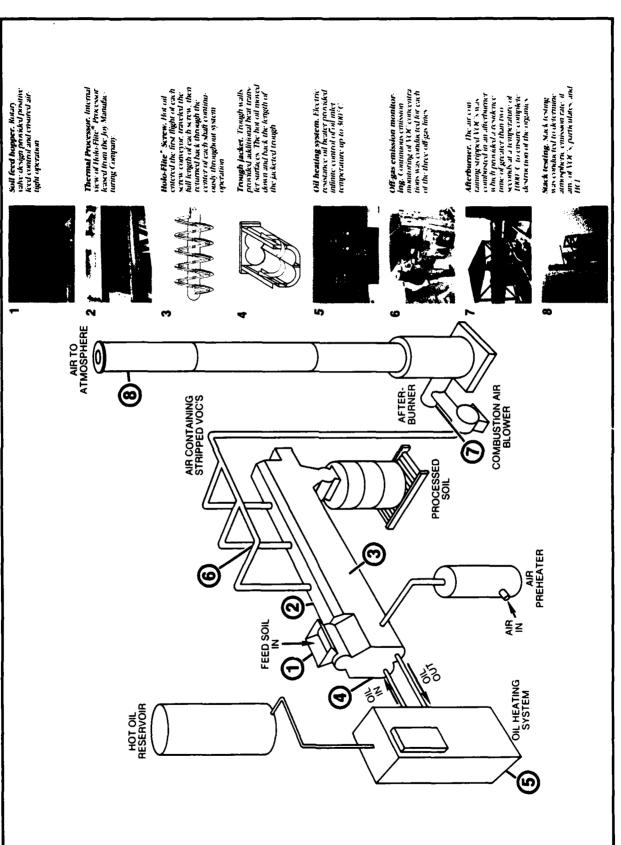
2.3 <u>Process/description</u>. The pilot system tested at LEAD served as the design basis for the full-scale systems evaluated in this report. Prior to describing the full-scale systems evaluated, a process description of the pilot system is provided.



Pilot system tested at LEAD. Figure 1 provides an 2.3.1 overall view of the low temperature thermal stripping pilot system installed at LEAD. Figure 2 provides a schematic illustration of the pilot system and describes the basic principles of operations. The thermal processor is a commercially available indirect heat exchanger which is commonly used to heat, cool, or dry bulk solids, slurries, pastes, or viscous liquids. For the pilot study, the thermal processor was used to heat and consequently dry the contaminated soil. The net effect of heating the soil was to evaporate the VOC's from the soil. volatilized, the VOCs were thermally destroyed in an Once afterburner. The following subsections provide a more detailed description of the pilot system.

2.3.1.1 Soil feed system. Depending upon the desired soil residence time, the soil feed rate varied throughout the pilot investigation from 100 to 265 pounds of soil per hour. However, the cycle feed rate (i.e., weight of soil per loading cycle) remained constant. Approximately 10 pounds of soil per loading cycle were fed to the unit at regular intervals. An air-tight rotary valve mechanism was used to introduce soil to the thermal processor.

2.3.1.2 Thermal processor. A photograph of the front view of the thermal processor is shown on Figure 3. The thermal processor consisted of a jacketed trough which housed a double-screw mechanism. The Holo-Flite® screws were seven inches in diameter and ran the entire length of the trough. The screw shafts and flights were hollow to accommodate circulation of the heat transfer liquid (i.e., hot oil). The oil flowed through the flights in a direction concurrent to the movement of the soil. The oil entered the unit at the soil feed end of the processor, circulated through the flights, and flowed back through the shaft to exit the unit at the same end that it entered. The trough jacket also circulated hot oil, providing additional heat exchange with the soils being processed.


The side clearance between the screws and the trough was 1/2 inch and the bottom clearance was 3/4 inch. The screws were driven at various rotational speeds via a chain drive connected to the gear reducer located beneath the conveyor. The continuous action of the screws promoted forward movement of the soil through the trough. The screws were set in the trough so that the flights of the two screws intermeshed to break up the soil and improve heat transfer.

•#

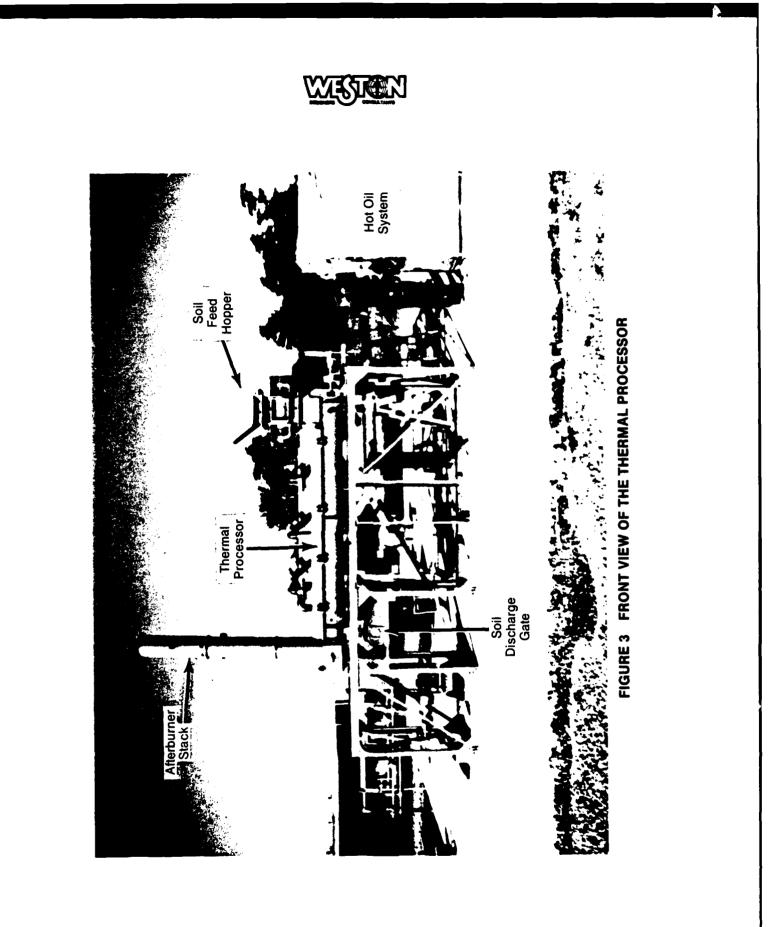

.

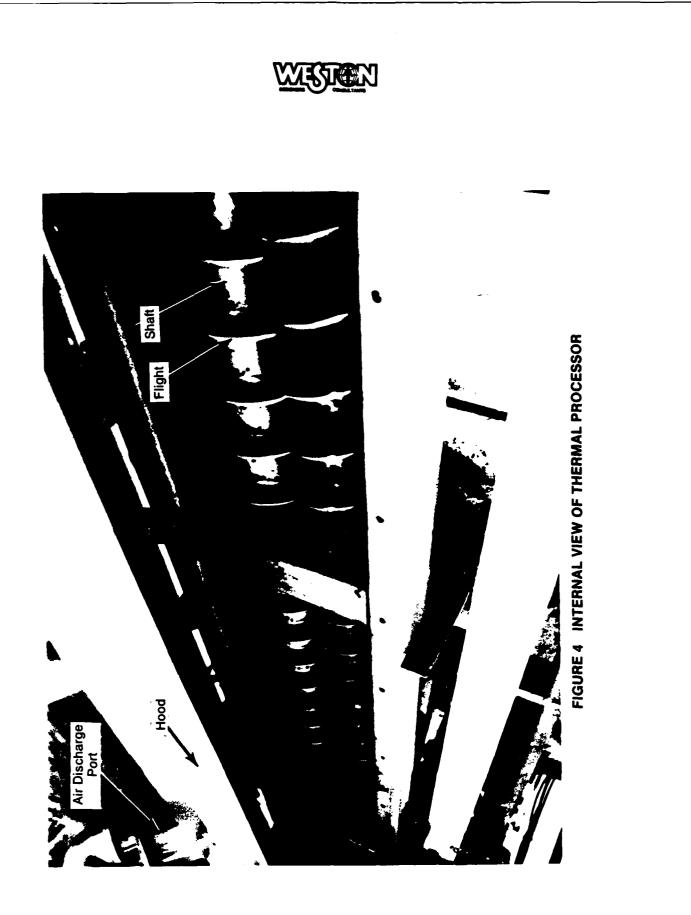
FIGURE 1 INSTALLED PILOT SYSTEM

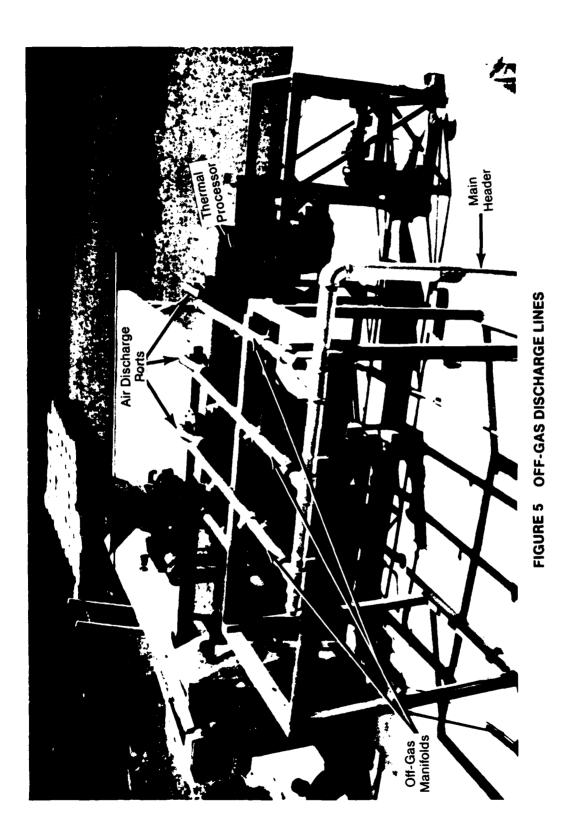
WESTEN

FIGURE 2 SCHEMATIC ILLUSTRATION OF THE LOW TEMPERATURE THERMAL STRIPPING PILOT SYSTEM

The area above the twin screws was covered by a hood as shown in Figure 4. The hood was equipped with three vertical plates that extended from the top of the hood to within a small clearance of the twin screws. The plates separated the head space in the unit into three equally sized sections. One air exhaust port was connected to each section to facilitate removal of vapors via three exhaust lines.

2.3.1.3 Processed soil handling system. The discharge end of the Holo-Flite® processor incorporated an air-tight rotary valve mechanism, similar to that used in the feed system. The air lock sealed the unit from air infiltration and prevented excessive dust generation within the unit.


The continuous discharge of soil was collected in open top 55-gallon drums. A fabric shroud and sealing band around the top of the processed soil drum minimized fugitive dust emissions. The drums were situated on a roller conveyor to facilitate removal and replacement.


2.3.1.4 Hot oil system. The source of heating fluid for the thermal processor was a Chromalox Type COS Hot Oil Heat Transfer System: Model COSX-650-80, rated at 80 kilowatts at 480 volts. The heat exchange fluid was Monsanto Therminol 66, which had a temperature range of ambient to 315°C (600°F).

The system was self-contained and consisted of an oil reservoir, heater element system, temperature control system, expansion tank, high temperature pump, controls, and steel housing.

The hot oil for a given test was delivered via piping and valving to each of the Holo-Flite® screws and subsequently to the thermal processor trough.

2.3.1.5 Air systems. A purge gas (i.e., air) was circulated through the unit to enhance contaminant removal. The air passed through a preheater and entered the thermal processor at a controlled temperature. Once inside, the air stream was forced to travel a tortuous path by flowing through the divided sections of the processor. Off-gases were removed through three ports located in the hood of the processor, as shown in Figure 5. The 3-leg manifold combined into a main header. A fan was located downstream of the header and induced air flow through the system. A brief description of the individual components of the air system is contained in the following subsections.

WISTON

2.3.1.5.1 Air preheater. A Chromalox Process Heater (Model GCH-60905-E4) was used to heat the purge air during selected test runs. The electrical resistance heater was rated at 9 kilowatts at 480 volts. It was equipped with a temperature control system that enabled the temperature of the air to be heated from ambient to approximately 90°C (200°F).

2.3.1.5.2 Off-gas manifold system. The purge air and volatilized moisture and organics were removed through the three ports located in the hood. Each leg of the manifold system contained an air orifice for balancing air flows as well as individual ports for off-gas sampling. The manifolds fed into a main header which had its own test port. The main header was ducted to the entry of the induced draft fan. The main header contained a damper to regulate the flow of air through the thermal processor. In the fully open position, approximately 200 dry standard cubic feet per minute (dscfm) of air flowed through the system. The minimum air flow, corresponding to a nearly closed position, was approximately 75 dscfm.

2.3.1.5.3 Induced draft fan. An induced draft fan was located downstream of the manifold system. It provided the motive power to induce air flow through the system. The discharge of the fan was fed directly into the afterburner and served as combustion air.

2.3.1.6 Emission control system.

2.3.1.6.1 Afterburner. The afterburner operated at a minimum temperature of 1,000°C (1,800°F) and a residence time of greater than two seconds. The afterburner was propane-fired using a North American burner rated at 1.5 x 10° Btu/hr. Safety controls on the burner included а combustion air pressure switch, gas low pressure switch, gas high pressure switch, burner safety control system, low fire switch, and ultraviolet (UV) flame safety.

2.3.1.6.2 Refractory-lined stack. The refractory-lined stack was 18 inches in diameter and 20 feet high. It housed two thermocouples: the first for controlling burner temperature and the second for a system high temperature alarm.

2.3.1.6.3 Propane system. Two propane tanks were available to provide fuel for thermal destruction of the VOC's. The propane was piped directly from the tanks to the gas train of the afterburner system.

2.3.2 Full-scale systems evaluated. Figure 6 presents a schematic process diagram of the two full-scale systems evaluated during this economic analysis:

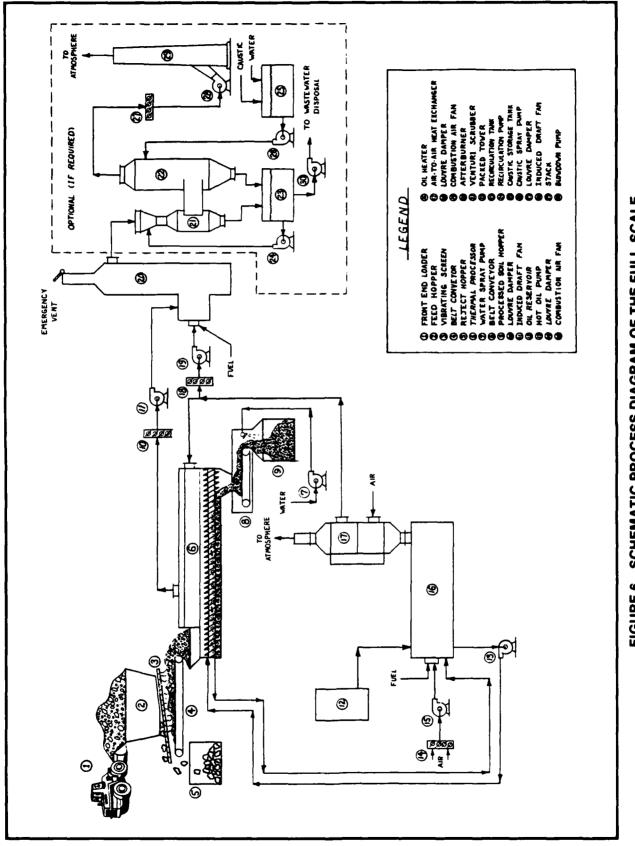


FIGURE 6 SCHEMATIC PROCESS DIAGRAM OF THE FULL-SCALE LOW TEMPERATURE THERMAL STRIPPING SYSTEM

(a) Option 1 - Without Flue Gas Scrubbing (b) Option 2 - With Flue Gas Scrubbing

The dashed lines in Figure 6 indicate the additional equipment required for the flue gas scrubbing system in Option 2. The following subsections provide descriptions of these two alternative system configurations.

2.3.2.1 Option 1 - Without flue gas scrubbing. As shown in Figure 6, the Option 1 system configuration consists of the following major equipment items:

Equipment No.	Description
1	Front end loader - Reclaims feed soil from a stockpile located adjacent to the processing site and loads the soil into the feed hopper.
2	Feed hopper - Provides surge capacity for the soil feed system.
3	Vibrating screen - Provides both feed control and size classification of the feed soil. Oversized rocks and debris are sent to the reject hopper.
4	Belt conveyor - Provides feed control in combination with the vibrating screen and conveys soil to the thermal processor.
5	Reject hopper - Provides collection and storage of oversize rocks and debris.
6	Thermal processor - Heats the soil and volatilizes the VOCs for subsequent thermal destruction in the afterburner.
7	Water spray pump - Provides a water spray to cool and compact the processed soil and to minimize fugitive dust emissions.
8	Belt conveyor - Conveys the processed soil from the discharge of the thermal processor to the processed soil hopper.
9	Processed soil hopper - Provides collection and storage of the processed soil.

Equipment No.	Description
10	Louvre damper - Provides flow control of sweep air and maintains a slight negative pressure within the thermal processor.
11	Induced draft fan - Induces sweep air flow through the thermal processor and delivers the volatilized VOC's to the afterburner.
12	Oil reservoir - Provides storage and thermal expansion capacity for the hot oil system.
13	Hot oil pump - Provides flow control and circulation of the hot oil to and from the thermal processor.
14	Louvre damper - Provides flow control of combustion air to the oil heater.
15	Combustion air fan - Provides forced combustion air supply to the oil heater.
16	Oil heater - Provides the necessary indirect- fired heating of the oil which in turn provides indirect heating of the soil in the thermal processor.
17	Air to-air heat exchanger - Provides heat recovery through preheat of the purge air and combustion air for the afterburner.
18	Louvre damper - Provides flow control of combustion air to the afterburner.
19	Combustion air fan - Provides forced combustion air supply to the afterburner.
20	Afterburner ~ Provides thermal destruction of the VOC's and converts volatilized chlorinated or halogenated compounds into HCl.

.

2.3.2.2 Option 2 - With flue gas scrubbing. As shown in Figure 6, the Option 2 system configuration includes all of the Option 1 equipment plus the following additional major equipment items:

Equipment No.	Description
21	Venturi scrubber -Provides quenching (e.g., desuperheating) of the flue gas and particu- late emission control.
22	Packed tower - Provides acid gas (i.e., HCl) emission control.
23	Recirculation tank - Provides storage and surge capacity for the scrubber water recirculated to the scrubber system.
24	Recirculation pump - Provides flow control and fluid pressure for the scrubber recircu- lation system.
25	Caustic storage tank - Provides storage and surge capacity for the caustic scrubber water make-up system.
26	Caustic spray pump - Provides flow control and fluid pressure for the caustic scrubber water make-up system.
27	Louvre damper - Provides flow control of scrubbed combustion gases to the induced draft fan.
28	Induced draft fan - Induces flow of combus- tion gases through the scrubber system and delivers the scrubbed combustion gases to the stack.
29	Stack - Discharges the scrubbed combustion gases to the atmosphere.
30	Blowdown pump - Provides flow control and fluid pressure for transferring the scrubber blowdown to the wastewater disposal facilities.

WISTON

2.4 <u>General approach and economic assumptions</u>. The objective of this report is to present an evaluation of the economics of low temperature thermal stripping of VOC's from soil for various size sites. In order to accomplish these objectives, this report follows the general approach outlined below:

- (a) Four separate sizes of low temperature thermal stripping (LTTS) systems are evaluated in order to determine the sensitivity of project costs to alternative system sizes.
- (b) Two separate system configurations are evaluated (i.e., Option 1 - Without Flue Gas Scrubbing, and Option 2 - With Flue Gas Scrubbing) in order to determine the sensitivity of project costs to the requirement for flue gas scrubbing.
- (c) Three separate quantities of soil to be processed are evaluated in order to determine the sensitivity of project costs to site size (i.e., soil quantity) and to determine which system sizes are most cost effective for various size sites.
- (d) A uniform set of economic assumptions are established for all options evaluated so that the costs can be compared on an "apples-to-apples" basis. A sensitivity analysis is presented in Section 6 to determine the impact upon project costs of varying the economic assumptions.

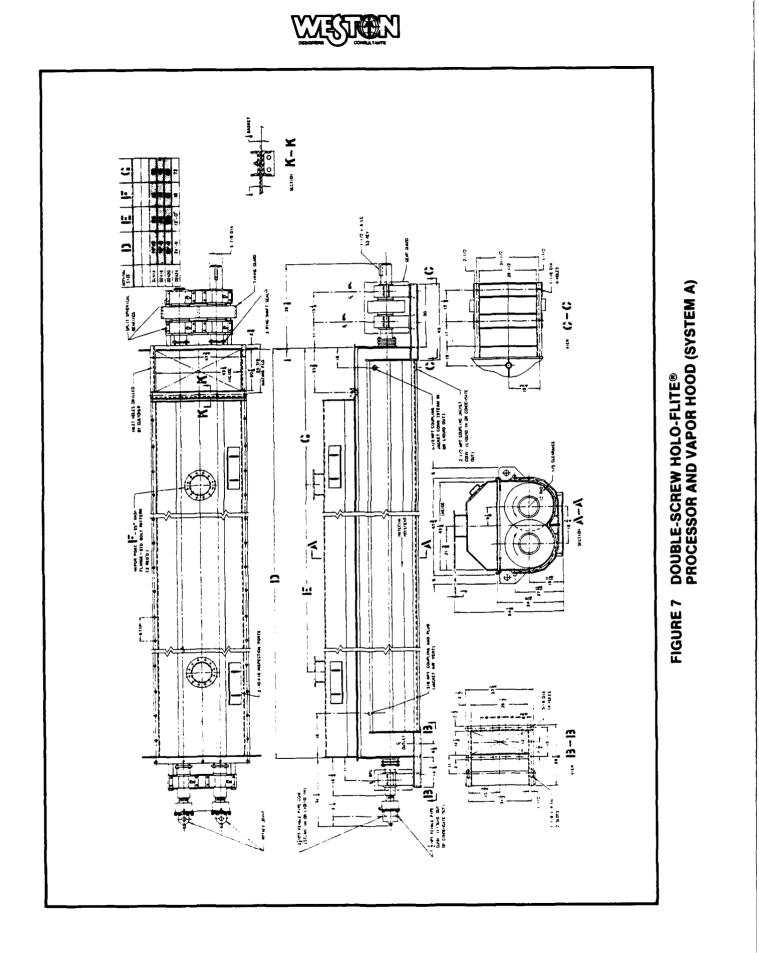
2.4.1 Alternative LTTS system sizes evaluated. In order to select the alternative LTTS system sizes to be evaluated, the following selection criteria were established:

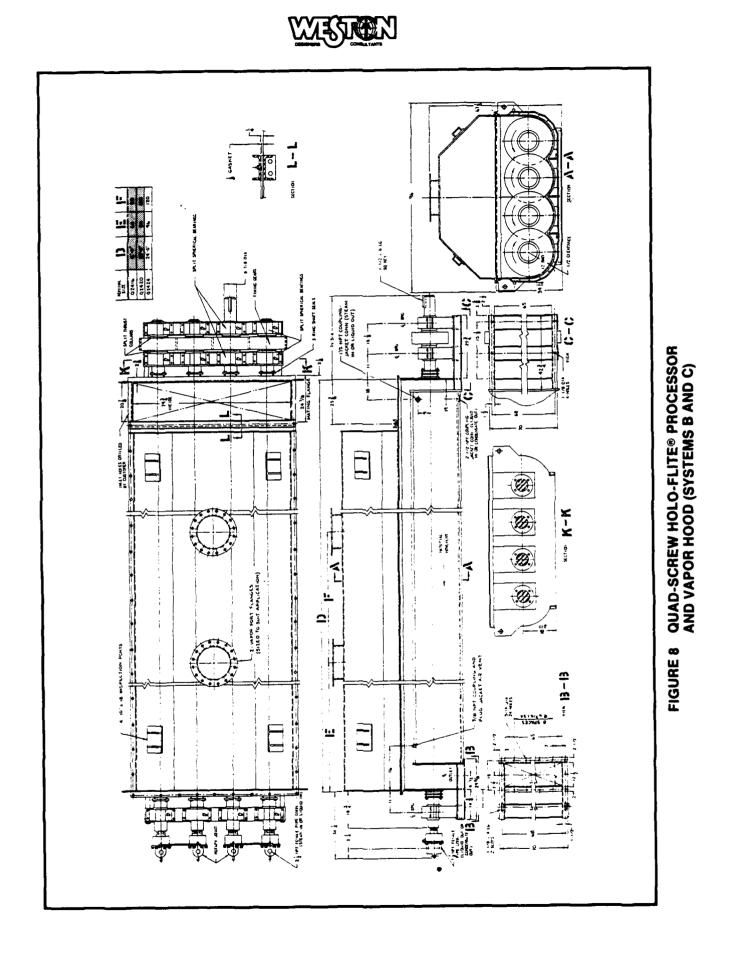
- (a) All LTTS systems must be transportable (i.e., size and weight of largest system component suitable for over-the-road truck shipment) preferably without requiring special permits for oversize or overweight transport.
- (b) All LTTS system components had to be commercially available "off-the-shelf" items with proven operating experience in other applications.
- (c) All thermal processors must be of the double-screw or quad-screw design, due to the improved materials handling and heat transfer capability of these designs compared to a single screw unit.
- (d) All screws must be as large in diameter as practical (i.e., 24 inches) in order to minimize the sensitivity of the mechanical operation of the thermal processor to rocks, sticks, and debris, and to minimize the extent of prescreening of the feed soil required.

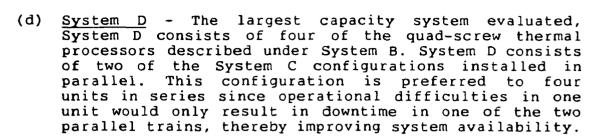
- (e) All thermal processors must be designed to use hot oil as the indirect heat transfer agent instead of steam, since hot oil will allow considerably higher operating temperatures, if required.
- (f) All thermal processors should be as long as practical (i.e., 24 feet) in order to allow higher rotational speeds to improve heat transfer characteristics and to provide longer residence times, if required.
- (g) Multiple units (i.e, either in series or parallel) are acceptable. However, they should be identical units to ensure spare parts interchangeability.
- (h) With regard to the method of procurement, it is assumed that a "turnkey" contractor would own and operate the LTTS system. If the government decides to purchase the system and operate the equipment under a separate contract, additional costs will be incurred which are not considered in this analysis (See Subsection 2.4.4 (h) and (i)).

Based upon the above criteria, four separate LTTS system sizes were selected, as summarized in Table 1. A brief description of each system is provided below:

- (a) System A The smallest capacity system evaluated, System A consists of a single unit of the double-screw design. The Holo-Flite® screws are 24 inches in diameter and 24 feet long. This is the largest screw diameter and longest screw shaft length commercially available. A detailed design drawing for the D-2424 Holo-Flite® processor and vapor hood cover is presented in Figure 7.
- (b) System B The next larger capacity system evaluated, System B consists of a single unit of the quad-screw design. The Holo-Flite® screws are identical in diameter and length to System A. However, the design incorporates four screws instead of two. Figure 8 provides general outline and installation dimensions for the Q-2424 Holo-Flite® processor.
- (c) System C System C consists of two of the quad-screw thermal processors described under System B arranged in series (i.e., the processed soil discharges from the first unit into the feed hopper of the second unit). This configuration is preferred to two separate parallel units since it provides a faster screw rotational speed which results in better material agitation and improved heat transfer efficiency.


System D System C System B System A Description Model Numb Number of Design Typ Diameter o Length of Spacing Be Configurat Soil Fee Screw Sp Soil Res Soil Uis Oil Inle Oil Outl PROCESSINC MOISTURE (THERMAL PI


THERMAL PROCESSOR DATA				
Model Number Number of Units Design Type Diameter of Screws, Fret Length of Screws, Feet	D-2424-6 Q-2424-6 1 1 1 Double-Screw Quad-Screw 24 24 24 24		Q-2424-6 2 Quad-Screw 24 24	Q-2424-6 A Quad-Screw 24 24
configuration	Single Unit	Single Unit Single Unit	Two units in series	Two paral- lel trains, each with two units
PROCESSING DATA @ 20% Motsture Content Soil:				
Soil feed Rate, lbs/hr Screw Speed, RPM	7,500 1.3		30,500 2.8	9
Soil Residence Time, Minutes Soil Discharge Temperature. "F	54.0 400		23.5 (each) 400	
Oil Inlet Temperature, °F Oil Outlet Temperature, °F Oil Flowrate, GPM	600 530 204	600 530 416	600 530 831	600 530 1,663
PROCESSING DATA @ 30% MOTSTURE CONTENT SOIL:				
Soil feed Rate, lbs/hr Screw Speed, RPM Soil Residence Time, Minutes Soil Discharge Temperature, °f Oil Inlet Temperature, °f Oil Outlet Temperature, °f Oil Flowrate, GPM	5,500 1.0 73.0 600 530 209	11,000 1.0 65.0 400 530 530	22,200 22.0 32.2 (each) 400 530 835	44,400 2.0 32.2 (each) 400 530 1,670


TABLE 1. SUMMARY OF FOUR SEPARATE LOW TEMPERATURE THERMAL STRIPPING SYSTEMS EVALUATED

0 44 /H

2.4.2 Alternative system configurations evaluated. Two separate system configurations are evaluated for each system size as described previously in Subsection 2.2.2 and shown previously in Figure 6. These system configurations are as follows:

- (a) Option 1 Without Flue Gas Scrubbing (Reference Subsection 2.2.2.1)
- (b) Option 2 With Flue Gas Scrubbing (Reference Subsection 2.2.2.2)

Summaries of the LTTS system data for Options 1 and 2 are presented in Tables 2 and 3, respectively.

2.4.3 Alternative quantities of soil to be processed. Three separate size sites (i.e., quantities of soil to be processed) are evaluated. These site sizes are as follows:

- (a) Site 1 1,000 tons (741 cubic yards)¹
- (b) Site 2 10,000 tons (7,407 cubic yards)¹
- (c) Site 3 100,000 tons $(74,074 \text{ cubic yards})^{1}$

In order to ensure a common basis for comparison of each alternative at each site, it is assumed that the characteristics of the contaminated soil at each site are identical as summarized below:

- (a) Soil type: Silty clay with sand, gravel, and metallic and non-metallic debris.
- (b) Soil density prior to excavation: Average 100 lbs/ft³ Range - 90-110 lbs/ft³
 (c) Soil bulk density after excavation: Average - 75 lbs/ft³ Range - 65-85 lbs/ft³

^{&#}x27;Assumes an average soil density of 100 lbs/ft' prior to excavation.

TABLE 2. SUMMARY OF LTTS SYSTEM DATA FOR OPTION 1 - WITHOUT FLUE GAS SCRUBBING

Description	System A	System B	System C	System D
THERMAL PROCESSOR DATA				
Model Number	D-2424-6	Q-2424-6	Q-2424-6	Q-2424-6
Number of Units	1	1	2	4
Soil Feed Rate, lbs/hr	7,500	15,250	30,500	61,000
Soil Moisture Content, %	20	20	20	20
Soil Discharge Temperature, °F	400	400	400	400
Soil Residence Time, minutes	54	47	47	47
'uel Requirements, 10 ⁶ Btu/hr	2.75	5.6	11.21	22.4
Sweep Air Flowrate, ACFM	500	500	1,000	2,000
weep Air Temperature, °F	400	400	400	40 0
Sotal Air Flow to Afterburner, ACFM	1,165	1,864	3,728	7,456
Air Temperature to Afterburner, °F	272	247	247	247
elative Humidity, %	4.9	24.3	24.3	24.3
FTERBURNER DATA				
lumber of Units	1	1	1	2
inside Diameter, Feet	5.0	6.0	7.0	7.0
nside Length, Feet (Each)	12.0	13.5	20.0	20.0
efractory Thickness, Inches	9	9	9	9
Burner Size, 10 ⁶ Btu/hr (Each)	5.0	7.5	15.0	15.0
uel Requirements, 10 ⁶ Btu/hr (Each)	3.9	6.4	12.5	12.5
xit Gas Temperature, °F	1,800	1,800	1,800	1,800
xit Gas Flowrate, ACFM	6,978	11,523	22,786	45,572
as Retention Time, Seconds	2.0	2.0	2.0	2.0
CRUBBER DATA				
lumber of Units	N/A	N/A	N/A	N/A
xit Gas Temperature, °F	N/A	N/A	N/A	N/A
xit Gas Flowrate, ACFM	N/A	N/A	N/A	N/A
TILITIES				
uel Type	Propane	Propane	Propane	Propane
uel Burn Rate, 10 ⁶ Btu/hr	6.65	12.0	23.7	47.4
lectrical Requirements, kW				
ater Consumption, gallons/hr	105	210	420	840
crubber Blowdown, gallons/hr	N/A	N/A	N/A	N/A

23

.

- - -

TABLE 3. SUMMARY OF LTTS SYSTEM DATA FOR OPTION 2 - WITH FLUE GAS SCRUBBING

Description	System A	System B	System C	System D
THERMAL PROCESSOR DATA				<u> </u>
Model Number	D-2424-6	Q-2424-6	Q-2424-6	Q-2424-6
Number of Units	1	1	2	4
Soil Feed Rate, lbs/hr	7,500	15,250	30,500	61,000
Soil Moisture Content, %	20	20	20	20
Soil Discharge Temperature, °F	400	400	400	400
Soil Residence Time, Minutes	54	47	47	47
Fuel Requirements, 10 ⁶ Btu/hr	2.75	5.6	11.2	22.4
Sweep Air Flowrate, ACFM	500	500	1,000	2,000
Sweep Air Temperature, °F	400	400	400	400
Total Air Flow to Afterburner, ACFM	1,165	1,864	3,728	7,456
Air Temperature to Afterburner, °F	272	247	247	247
Relative Humidity, %	4.9	24.3	24.3	24.3
AFTERBURNER DATA				
Number of Units	1	1	1	2
Inside Diameter, Feet	5.0	6.0	7.0	7.0
Inside Length, Feet (Each)	12.0	13.5	20.0	20.0
Refractory Thickness, Inches	9	9	9	9
Burner Size, 10 ⁶ Btu/hr (Each)	5.0	7.5	15.0	15.0
Fuel Requirements, 10 ⁶ Btu/hr (Each)	3.9	6.4	12.5	12.5
Exit Gas Temperature, °F	1,800	1,800	1,800	1,800
Exit Gas Flowrate, ACFM	6,978	11,523	22,786	45,572
Gas Retention Time, Seconds	2.0	2.0	2.0	2.0
SCRUBBER DATA				
Number of Units	1	1	1	2
Exit Gas Temperature, °F	195	195	195	195
Exit Gas Flowrate, ACFM	3,780	6,160	12,300	24,600
JTILITIES				
Suel Type	Propane	Propane	Propane	Propane
Tuel Burn Rate, 10 ⁶ Btu/hr	6.65	12.0	23.7	47.4
lectrical Requirements, kW				
Nater Consumption, gallons/hr	805	1,380	2,760	5,520
Grubber Blowdown, gallons/hr	300	500	1,000	2,000

•

24

 (d) Soil moisture content: Average - 20% Range - 15-30%
 (e) Soil contamination: Various volatile organic compounds (VOCs) in concentrations up to 20,000 ppm.¹
 (f) Soil Clean-up objectives: Less than 5 ppm of any individual VOC in the processed soil.

2.4.4 General economic assumptions. The following general economic assumptions are applicable to each alternative evaluated at each site:

- It is assumed that excavation and process operations can be conducted during all 12 months of the year. (a) However, some site excavation operations may not be practical during severe winter months. This analysis either year-round excavation assumes that is sufficient quantities of practical, or that contaminated soils can be excavated and stockpiled to support process operations during severe winter months.
- (b) It is assumed that excavation operations are conservatively limited to 6 hours per day to ensure daylight operations with adequate time allowance for equipment and personnel decontamination.
- (c) The excavation system, transportation system, materials handling and feed system, and thermal processor system are designed to handle saturated soils. However, treatment of groundwater or standing lagoon water is beyond the scope of this analysis.
- (d) It is assumed that the soil does not contain heavy metals that will cause an EP toxicity problem, and that the processed soil will be suitable for on-site disposal as backfill once the clean-up objectives have been demonstrated.
- (e) All capital costs, as well as operation and maintenance costs, are valued in January 1986 dollars.
- (f) This analysis assumes zero inflation to escalate either project capital costs or operation and maintenance (O&M) costs. Thus, the analysis results are in "real" terms (1986 dollars). This avoids the complications associated with assuming future inflation conditions.

Results of pilot testing conducted at the Letterkenny Army Depot (Reference: Report No. AMXTH-TE-CR-86074, June 1986) demonstrated that the LTTS system can effectively decontaminate soils containing organics with boiling points as high as 175°C.

- (g) This economic analysis does address the estimated costs of environmental permitting. However, it does not attempt to address the cost associated with potential project delays due to regulatory review or approvals.
- (h) The costs presented in this analysis are typical of the costs that would be obtained from a "turnkey" contractor responsible for the design, fabrication, construction, startup, performance testing, and operation of the system (including excavation and transportation of the soil to the site and disposal of process residuals). It is not assumed that the LTTS system is "leased" or "purchased" by the government. Rather, it is assumed that the government would contract for a service to be performed on a firm, fixed-unit-price basis (i.e., \$/ton). It is con-servatively assumed that the "turnkey" contractor would totally capitalize the equipment over the life of the project and that no salvage value for the equipment would be credited to the project.
- (i) If the government decides to purchase the equipment and operate the equipment under separate contract, many costs will be incurred which are not considered in this analysis. These costs include, but are not limited to, the following:
 - Government contracting costs.
 - Requirements for rigorous Reliability and Maintainability (RAM) analyses.
 - Requirements for extensive documentation, such as:
 - Technical drawing packages.
 - Detailed start-up, operating, shut-down, emergency, and maintenance procedures.
 - Detailed parts listing and inventory.
 - Detailed procedures for assembly, disassembly, and packaging for shipment.
 - Detailed equipment, instrumentation, and control systems operation and maintenance.
 - Requirements for preparation, submission and approval of a detailed site plan and safety submission.
 - Interest charges due to delayed payment schedules and retainages.
 - Rigorous requirements for system and subsystem performance testing.

The costs presented in this analysis should not be used directly to estimate the government's total costs for appropriation purposes.

The above costs have not been included in this analysis, since they would only serve to confuse the comparison of this technology to other technologies. It is recommended that an additional pre-bid cost estimate be performed once the performance specifications, method of procurement, purchasing and documentation requirements, regulatory requirements, etc. are known to ensure that the estimate for appropriation will be adequate or will not be exceeded.

3. CAPITAL COSTS

The objective of this section of the analysis is to present the total direct and indirect capital costs for each of the alternative low temperature thermal stripping (LTTS) systems evaluated. Table 4 provides a summary of the capital costs for the Option 1 LTTS systems without flue gas scrubbing. Table 5 provides a similar summary of the capital costs for the Option 2 LTTS systems with flue gas scrubbing.

3.1 <u>Direct capital costs</u>. The direct capital costs presented in Tables 4 and 5 are based upon direct vendor quotations from the Denver Equipment Division of the Joy Manufacturing Company, located in Colorado Springs, Colorado. The contact at Joy is Mr. Daryl P. Jones, Engineering Manager, 303-471-3443. This is the same firm that manufactured the Holo-Flite® processor used during the field demonstration project conducted at the Letterkenny Army Depot.

3.2 <u>Indirect capital costs</u>. The indirect capital costs are based upon the data and assumptions presented in the following subsections.

3.2.1 Site preparation/mobilization. The site preparation/ mobilization activities include the following:

- (a) Project mobilization:
 - Assembling of equipment, materials, and supplies for shipment to the site.
 - Progressive shipment of above items to the site as needed.
- (b) Site preparation:
 - Site grading and security fences. It is assumed that minimal site grading is required. A chain link security fence will be placed around the LTTS system. Active excavation areas will be enclosed with moveable snow fencing to preclude accidental intrusion into open holes.
 - Construction and/or improvement of site access roads.
 - Installation of foundations and pads and soil staging/storage areas.

TABLE 4. SUMMARY OF CAPITAL COSTS FOR OPTION 1 - WITHOUT FLUE GAS SCRUBBING

Capital Costs	System A	Syst am B	System C	System I
DIRECT CAPITAL COSTS				
Holo-Flite@ Processor(s)	152,000	250,000	500,00 0	1,000,000
Hot Oil System	42,600	58,000	84,600	169,200
Feed System	56,600	91,900	149,300	298,500
Processed Soil System	6,800	11,100	18,000	36,000
Afterburner	66,000	100,000	151,600	303,200
Flue Gas Scrubbing System	N/A	N/A	N/A	NZA
Piping and Electrical	48,600	76,700	135,500	271,100
Instrumentation & Controls	32,400	51,100	90,400	180,700
Iotal Direct Capital Costs	405,000	638,800	1,129,400	2,258,800
INDIRECT CAPITAL COSTS				
Site Preparation/Mobilization	98,800	120,000	154,400	210,100
Construction/Erection/Installation	101,000	156,900	267,300	534,500
Engineering	48,600	76,700	135,500	271,100
Permits	150,000	150,000	150,000	150,000
Start-Up and Training	101,300	107,300	149,400	195,400
Spare Parts	20,300	31,900	56,500	112,900
Freight	9,000	15,000	24,000	36,000
Site Closure/Demobilization	50,500	78,400	133,600	267,200
Contingency	147,700	206,200	330,000	605,400
Total Indirect Capital Costs	727,200	942,400	1,400,700	2,382,500

TABLE 5. SUMMARY OF CAPITAL COSTS FOR OPTION 2 - WITH FLUE GAS SCRUBBING

Capital Costs	System A	System B	System C	System [
DIRECT CAPITAL COSTS				
Holo-Flite@ Processor(s)	152,000	250,000	500,000	1,000,000
Hot Oil System	42,600	58,000	84,600	169,200
Feed System	56,600	91,900	149,300	298,600
Processed Soil System	6,800	11,100	18,000	36,000
Afterburner	66,000	100,000	151,600	303,200
Flue Gas Scrubbing System	53,700	69,200	118,400	145,900
Piping and Electrical	56,700	87,000	153,300	292,900
Instrumentation & Controls	37,800	58,000	102,200	195,300
Total Direct Capital Costs	472,200	725,200	1,277,400	2,441,100
INDIRECT CALLTAL COSTS				
Site Preparation/Mobilization	105,000	130,000	170,600	236,500
Construction/Erection/Installation	123,800	186,300	317,600	596,500
Engineering	56,700	87,000	153,300	292,900
Permits	150,000	150,000	150,000	150,000
Start-Up and Training	125,800	136,400	188,900	255,700
Spare Parts	23,600	36,300	63,900	122,100
Freight	12,000	21,000	33,000	48,000
Site Closure/Demobilization	61,900	93,200	158,800	298,200
Contingency	169,600	234,800	377,000	666,200
Total Indirect Capital Costs	828,400	1,075,000	1,613,100	2,666,100

- (c) Utilities installation:
 - Electricity.
 - Potable water supply.
 - Telephone service.
 - Fuel supplies.
 - High temperature/high pressure water for decontamination of equipment.

(d) Installation of support facilities:

- Project command trailer.
- Decontamination trailer.
- Laboratory trailer.
- Equipment storage trailer.

(e) Installation of wastewater storage tanks:

- Decontamination rinse waters.
- Scrubber "blow down" water (Option 2 only).
- (f) Implement site security.

3.2.2 Construction/erection/installation. The construction/erection/installation costs are estimated as a percentage of the direct capital costs. However, the percentages for shop assembled skid mounted components are considerably lower than for field assembled and erected components. The percentages assumed for each of the direct capital cost line items are as follows:

Dire	ct capital cost item	Percentage Used to Estimate Construction/ Erection/ Installation Costs
(1)	Holo-Flite [®] processor	10%
(2)	Hot oil system	30%
(3)	Feed system	20%
(4)	Processed soil system	20%
(5)	Afterburner	30%
(6)	Flue gas scrubbing system	
	(Option 2 only)	30%
(7)	Piping and electrical	50%
(8)	Instrumentation and controls	50%

0347B

3.2.3 Engineering. Project engineering costs are estimated as 7 percent of the total direct capital costs (TDCC). Project engineering does not include design engineering conducted by the equipment supplier (which is included in equipment costs), but does include off-site project engineering and project management

3.2.4 Permits. Permitting costs are very difficult to estimate at this time due to pending regulatory revisions which may substantially streamline the permitting process for on-site transportable thermal treatment units. However, based upon WESTON's current experience, typical permitting costs are \$25,000 to \$75,000 (an average of \$50,000 is assumed for this analysis) for engineering support and regulatory agency liaison plus \$50,000 to \$150,000 (an average of \$100,000 is assumed for this analysis) for trial burn testing, analysis, and reports. This does not include the operational costs for running the LTTS system during the trial burn testing period. These operational costs are covered under Subsection 3.2.5 - Start up and training.

3.2.5 Start-up and training. Start-up and training costs are based upon 2 weeks of labor costs as discussed in Sub-section 5.2 plus 2 weeks of operation at design capacity (i.e., total operating costs for 2 weeks including labor). The 2 weeks of operation include the LTTS system operational costs during trial burn and performance testing. No credit is taken in this analysis for contaminated soil processed during the start-up and training period. It is assumed that full-scale operations will commence immediately after start-up and training is complete, and that no additional costs are incurred due to demobilizing and remobilizing the operating staff (this situation might occur if regulatory agencies would not grant operating permits until trial burn testing results are submitted and approved).

3.2.6 Spare parts. Spare parts are estimated based upon 5 percent of TDCC.

3.2.7 Freight. The freight costs are based upon the number of trucks required to ship the equipment to the site, assuming a distance from the point of manufacture to the site of 1,000 miles and a trucking cost of \$3 per load mile. The estimated number of trucks required to ship the alternative systems evaluated are as follows:

	Number of trucks transport the LTTS sy	
Alternative system	Option 1 - without scrubber	Option 2 - with scrubber
System A	3	4
System B System C System D	5 8 12	11
	8	/

3.2.8 Site closure/demobilization. The site closure/ demobilization activities include the following:

- (a) Equipment demobilization:
 - Dismantling and off-site disposal of all structures that covered the LTTS system and soil staging/storage areas.
 - Dismantling and removal of the LTTS system.
 - Removal and off-site disposal of all concrete pads.
 - Removal of the fuel storage tank(s) and the support facilities.
 - Decontamination and removal of all project equipment.
 - Final grading of earthen berms and stormwater flow diversion ditches around equipment and soil staging/storage areas to achieve a flat, gentle, sloping surface.

(b) Site restoration:

- Backfilling and grading of the excavation and processing areas to promote positive drainage of stormwater away from the excavation area.
- Installation of stormwater diversion ditches and erosion control devices.
- Seeding and mulching to provide vegetative cover.

3.2.9 Contingency. The contingency is estimated based upon 15 percent of the TDCC and other indirect capital costs.

33

0347B

4. OPERATING COSTS

The objective of this section of the analysis is to present the estimated operating costs for each of the alternative sizes and configurations of LTTS systems evaluated at each of the sites. Tables 6 through 11 provide a summary of this data as follows:

Table	No	Opera	ting cost data summarized
6			l - Without flue gas scrubbing at (1,000 ton site)
7		-	<pre>1 - Without flue gas scrubbing at (10,000 ton site)</pre>
8			<pre>1 - Without flue gas scrubbing at (100,000 ton site)</pre>
9			2 - With flue gas scrubbing at (1,∩00 ton site)
10			2 - With flue gas scrubbing at (10,000 ton site)
11			3 - With flue gas scrubbing at (100,000 ton site)

4.1 Equipment. Tables 12 and 13 provide a summary of the equipment costs on a weekly basis for Option 1 and Option 2, respectively. A brief description of each equipment item is presented in the following subsections.

front end loaders are Front end loaders. Two 4.1.1 required for each system evaluated. One front end loader is required for excavation operations. A second front end loader is needed for reclaiming stockpiled soil from the contaminated soil storage area and feeding the soil to the LTTS system feed hopper. The excavation front end loader's bucket capacity was sized to allow excavation of one week's production supply of contaminated soil in only 30 hours of operation. The feed system front end loader's bucket size was selected to ensure less than six bucket loads per hour would be required to meet the design processing rate. As it turns out, in all cases the same size front end loader satisfies both requirements and provides some additional benefit in terms of redundancy and spare parts interchangeability.

0347B

TABLE 6. OPERATING COSTS FOR OPTION 1 - WITHOUT FLUE GAS SCRUBBING AT SITE 1 (1,000 TON SITE)

Description	System A	System B	System C	System D
EQUIPMENT	\$21,079	\$12,750	\$ 9,886	\$ 7,386
LABOR	\$23,415	\$12,608	\$10,007	\$ 5,925
JTILITIES				
Fuel	\$17,643	\$17,140	\$19,337	\$19,340
Electricity	\$ 795	\$ 642	\$ 612	\$ 612
later	\$28	\$ 30	\$ 34	\$ 34
lastewater Disposal	\$ 43	\$ 30	\$ 26	\$ 17
austic	N/A	N/A	N/A	N/A
Oversize Debris Disposal	\$ 401	\$ 432	\$ 498	\$ 498
ABORATORY COSTS	\$11,143	\$ 6,000	\$ 4,571	\$ 2,286
IISCELLANEOUS SUPPLIES	\$ 2,786	\$ 1,500	\$ 857	\$ 429
CONTINGENCY at 15%	<u>\$11,600</u>	<u>\$ 7,670</u>	\$ 6,874	\$ 5,479
OTAL OPERATING COSTS	\$88,933	\$58,802	\$52,70 2	\$42,006
COTAL QUANTITY OF SOIL PROCESSED, TONS	1,000	1,000	1,000	1,000
PPERATING COSTS (UNIT COST BASIS)	\$88.90/ton	\$58.80/ton	\$52.70/ton	\$42.00/ton
OTAL TIME REQUIRED	13 days	7 days	4 days	2 days

•

TABLE 7. OPERATING COSTS FOR OPTION 1 - WITHOUT FLUE GAS SCRUBBING AT SITE 2 (10,000 TON SITE)

Description	System A	System B	System C	System D
EQUIPMENT	\$212,245	\$117,300	\$ 79,580	\$ 59,455
LABOR	\$235,770	\$115,994	\$ 80,555	\$ 47,693
JTILITIES				
Suel	\$ 177,650	\$157,688	\$155,664	\$ 155,687
lectricity	\$ 8,004	\$ 5,906	\$ 4,927	\$ 4,927
later	\$ 281	\$ 27 6	\$ 276	\$ 276
lastewater Disposal	\$ 430	\$ 27 6	\$ 207	\$ 138
austic	N/A	N/A	N/A	N/A
oversize Debris Disposal	\$ 4,039	\$ 3,974	\$ 4,011	\$ 4,011
ABORATORY COSTS	\$112,200	\$ 55,200	\$ 36,800	\$ 18,400
IISCELLANEOUS SUPPLIES	\$ 28,050	\$ 13,800	\$ 6,900	\$ 3,450
ONTINGENCY at 15%	\$ 116,800	\$ 70,562	\$ 55,338	\$ 44,106
OTAL OPERATING COSTS	\$895,469	\$5 40,976	\$424,258	\$338,143
OTAL QUANTITY OF SOIL PROCESSED, TONS	10,000	10,000	10,000	10,000
PERATING COSTS (UNIT COST BASIS)	\$89.50/ton	\$54.10/ton	\$42.40/ton	\$33.80/ton
OTAL TIME REQUIRED	18.7 Weeks	9.2 Weeks	4.6 Weeks	2.3 Weeks

TABLE 8. OPERATING COSTS FOR OPTION 1 - WITHOUT FLUE GAS SCRUBBING AT SITE 3 (100,000 TON SITE)

Description	System A	System B	System C	System D
EQUIPMENT	\$ 2,120,180	\$1,171,725	\$ 795,800	\$ 594,550
LABOR	\$2,355,174	\$1,158,675	\$ 805,552	\$ 476,928
UTILITIES				
Fuel	\$1,774,600	\$1, 575,166	\$1,556,640	\$1,556,870
Electricity	\$ 79,950	\$ 59,000	\$ 49,226	\$ 49,266
Water	\$ 2,802	\$ 2,757	\$ 2,7 60	\$ 2,760
Nastewater Disposal	\$ 4,296	\$ 2,757	\$ 2,070	\$ 1,380
Caustic	N/A	N/A	N/A	N/A
Oversize Debris Disposal	\$ 40,349	\$ 39,700	\$ 40,112	\$ 40,112
LABORATORY COSTS	\$1,120,800	\$ 551,440	\$ 368,000	\$ 18 4 ,0 0 0
MISCELLANEOUS SUPPLIES	\$ 280,200	\$ 137,850	\$ 69,000	\$ 34,500
CONTINGENCY at 15%	\$1, 166,753	\$ 704,860	<u>\$ 553,380</u>	<u>\$ 441,055</u>
TOTAL OPERATING COSTS	\$8,945,104	\$5,403,930	\$4,242,5 80	\$3,381,421
TOTAL QUANTITY OF SOIL PROCESSED, TONS	5 100,000	100,000	100,000	100,000
OPERATING COSTS (UNIT COST BASIS)	\$89.50/ton	\$54.00/ton	\$42.40/ton	\$33.80/ton
COTAL TIME REQUIRED	186.8 Weeks	91.9 Weeks	46.0 Weeks	23.0 Weeks

TABLE 9. OPERATING COSTS FOR OPTION 2 - WITH FLUE GAS SCRUBBING AT SITE 1 (1,000 TON SITE)

Description	System A	System B	System C	System D
EQUIPMENT	\$ 23,493	\$14,050	\$10,629	\$ 7,757
LABOR	\$ 30,145	\$16,232	\$12,078	\$ 6,960
JTILITIES				
Fuel	\$ 17,643	\$17,140	\$ 19,337	\$19,340
Electricity	\$ 995	\$ 771	\$ 734	\$ 734
later	\$ 214	\$ 197	\$ 225	\$ 225
Vastewater Disposal	\$ 2,396	\$ 2,130	\$ 2,451	\$ 2,451
Caustic	\$ 2,043	\$ 2,150	\$ 2,457	\$ 2,443
Oversize Debris Disposal	\$ 401	\$ 432	\$ 498	\$ 498
ABORATORY COSTS	\$ 11,143	\$ 6,000	\$ 4,571	\$ 2,286
IISCELLANEOUS SUPPLIES	\$ 2,786	\$ 1,500	\$ 857	\$ 429
CONTINGENCY at 15%	<u>\$ 13,683</u>	\$ 9,090	\$ 8,0 76	\$ 6,468
COTAL OPERATING COSTS	\$104,902	\$69,69 2	\$ 61,913	\$49,591
COTAL QUANTITY OF SOIL PROCESSED, TONS	1,000	1,300	1,000	1,000
PERATING COSTS (UNIT COST BASIS)	\$104.90/ton	\$69.70/ton	\$ 61.90/ton	\$49.60/ton
OTAL TIME REQUIRED	13 days	7 days	4 days	2 days

TABLE 10. OPERATING COSTS FOR OPTION 2 - WITH FLUE GAS SCRUBBING AT SITE 2 (10,000 TON SITE)

Description	System A	System B	System C	System D
EQUIPMENT	\$ 236,555	\$129,260	\$ 85,560	\$ 52,445
LABOR	\$ 303,538	\$149,334	\$ 9 7 ,226	\$ 56,028
UTILITIES				
Fuel	\$ 177,650	\$157,688	\$ 155,664	\$155,687
Electricity	\$ 9,612	\$ 7,093	\$ 5,911	\$ 5,911
later	\$ 2,150	\$ 1,812	\$ 1,812	\$ 1,812
lastewater Disposal	\$ 24,123	\$ 19,596	\$ 19,734	\$ 19,734
Caustic	\$ 20,570	\$ 19,780	\$ 19,780	\$ 19,665
Oversize Debris Disposal	\$ 4,039	\$ 3,974	\$ 4,011	\$ 4,011
ABORATORY COSTS	\$ 112,200	\$ 55,200	\$ 36,800	\$ 18,400
MISCELLANEOUS SUPPLIES	\$ 28,050	\$ 13,800	\$ 5,900	\$ 3,450
CONTINGENCY at 15%	<u>\$ 133,773</u>	<u>\$ 83,631</u>	\$ 65,010	\$ 52,071
TOTAL OPERATING COSTS	\$1,056,260	\$ 641,168	\$498,408	\$399,214
TOTAL QUANTITY OF SOIL PROCESSED, TONS	10,000	10,000	10,000	10,000
PPERATING COSTS (UNIT COST BASIS)	\$105.60//ton	\$64.10/ton	\$49.80/ton	\$ 39.90/ton
OTAL TIME REQUIRED	18.7 Weeks	9.2 Weeks	4.6 Weeks	2.3 Weeks

39

.

TABLE 11. OPERATING COSTS FOR OPTION 2 - WITH FLUE GAS SCRUBBING AT SITE 3 (100,000 TCN SITE)

Description	System A	System B	System C	System D
equi Pment				
	\$ 2,363,020	\$1,291,195	\$ 855,600	\$ 624,450
ABOR	\$ 3,032,138	\$1,491,721	\$ 972,256	\$ 560,280
TILITIES				
uel	\$ 1,774,600	\$1,5 75,166	\$1,556,640	\$1,556,870
lectricity	\$ 96,015	\$ 70,855	\$ 59,110	\$ 59,110
ater	\$ 21,482	\$ 18,104	\$ 18,124	\$ 18,124
astewater Disposal	\$ 240,972	\$ 195,747	\$ 197,340	\$ 197,340
austic	\$ 207,348	\$ 197,585	\$ 197,800	\$ 196,650
versize Debris Disposal	\$ 40,349	\$ 39,700	\$ 40,112	\$ 40,112
ABORATORY COSTS	\$ 1,120,800	\$ 551,400	\$ 368,000	\$ 134,000
ISCELLANEOUS SUPPLIES	\$ 280,200	\$ 137,850	\$ 69,000	\$ 34,500
ONTINGENCY at 15%	\$ 1,376,539	\$ 835,398	<u>\$ 650,097</u>	<u>\$ 520,715</u>
OTAL OPERATING COSTS	\$10,553,463	\$6,404,721	\$4,984,079	\$3,992,151
OTAL QUANTITY OF SOIL PROCESSED, ONS	100,000	100,000	100,000	100,000
PERATING COSTS (UNIT COST BASIS)	\$105.50/ton	\$64.00/ton	\$49.80/ton	\$39.90/ton
OTAL TIME REQUIRED	186.8 Weeks	91.9 Weeks	46.0 Weeks	23.0 Weeks

.

4.1.2 Trucks. The trucks considered in this analysis are 20 yd³ capacity dump trucks with roll-off box type beds. These type of trucks and roll-off boxes are commonly used for industrial and commercial solid waste collection and transportation. The trucks listed in Tables 12 and 13 will serve two purposes:

- (1) They will be used to transport excavated soil to the contaminated soil staging and storage area near the processing site.
- (2) They will be used to transport the roll-off boxes of processed soil back to the excavation area for on-site disposal as backfill.

The weekly rental price of \$1,000/wk includes the truck and one roll-off box.

4.1.3 Additional roll-off boxes. Additional roll-off boxes are necessary to provide sufficient storage capacity for processed soil analysis prior to disposal. The estimated cost for additional roll-off boxes is \$150 per box per week.

4.1.4 Safety equipment. It is assumed that Level "C": safety equipment will be sufficient with Level "B" respiratory protection available, if required. Safety equipment costs are estimated at \$50 per man day for disposable Tyvek suits, rubber gloves, rubber overboots, respirator rental, and cartridge replacement. Tables 12 and 13 provide the estimated man days per week for each system and option. The increased man days per week for the larger and more complex systems are because of the number of additional operators who are required. The labor categories are presented in Subsection 4.2.

4.1.5 Trailers. It is assumed that three trailers will be provided for all systems evaluated, including:

- (a) Office trailer at \$375/week.
- (b) Decontamination trailer at \$375/week.
- (c) Equipment storage trailer at \$250/week.

4.1.6 Utility vehicle. The utility vehicle for all systems evaluated is a 1/2-ton capacity 4-wheel drive pick-up at a cost of \$350/week.

0347B

TABLE 12. EQUIPMENT COSTS ON A WEEKLY BASIS FOR OPTION 1 AT ALL SITES

Description	System A	System B	System C	System D
FRONT END LOADERS (EXCAVATION)				<u> </u>
Quantity/Capacity, yd ³	2 @ 1.0	2 @ 1.5	2 @ 2.25	2@5.0
Max. Production Rate (each), yd ³ /hr	50	80	100	185
Weekly Rental Fee	\$4,000	\$4,800	\$5,500	\$10,100
TRUCKS (W/ROLL-OFF BOX)				
Quantity/Capacity, yd ³	1 @ 20	1@20	2 @ 20	2@20
Weekly Rental	\$1,000	\$1,000	\$2,000	\$2,000
ROLL-OFF BOXES (EXTRAS)				
Quantity/Capacity, yd ¹	8 @ 20	12 @ 20	20 3 20	40 @ 20
Weekly Rental	\$1,200	\$1,800	\$3,000	\$6,000
SAFETY EQUIPMENT				
Man days/Week	67	67	98	119
Weekly Cost	\$3,350	\$3,350	\$4,900	\$5,950
TRAILERS (OFFICE, DECON. AND STORAGE)				
No. of Trailers	3	3	3	3
Weekly Rental	\$1,000	\$1,000	\$1,300	\$1,000
JTILITY VEHICLE				
Quantity/Type	1-Pick-up	1-Pick-up	1-Pick-up	l-Pick-up
Neekly Rental	\$350	\$350	\$350	\$350
MONITORING EQUIPMENT				
Quantity/Type	1-0VA	1-0VA	1-OVA	1-OVA
	or HNu	or HNu	or HNu	or HNu
Veekly Rental	\$350	\$350	\$350	\$ 3 5 0
SANITARY FACILITIES				
Quantity	2	2	2	2
leekly Rental	\$100	\$1 00	\$100	\$100
OTAL EQUIPMENT COSTS, per week	\$11,350	\$12,750	\$17,300	\$25,850
QUIPMENT UNIT COSTS, per ton				
Assuming Operation @ 85% of Design Capacity)	\$21.20	\$11.70	\$7.90	\$5.90
capacity/	\$C1.CU	JII. / U	\$1.9U	92.AA

0347B

TABLE 13. EQUIPMENT COSTS ON A WEEKLY BASIS FOR OPTION 2 AT ALL SITES

Description	System A	System B	System C	System D	
FRONT END LOADERS (EXCAVATION)					
Quantity/Capacity, yd ³	2 @ 1.0	2@1.5	2 @ 2.25	2 @ 5.0	
Max. Production Rate (each), yd ³ /hr	60	80	100	185 \$10,100	
Weekly Rental Fee	\$4,000	\$4,800	\$5,600		
TRUCKS (W/ROLL-OFF BOX)					
Quantity/Capacity, yd ³	1@20	1 @ 20	2 @ 20	2 @ 20	
Weekly Rental	\$1,000	\$1,000	\$2,000	\$2,000	
ROLL-OFF BOXES (EXTRAS)					
Quantity/Capacity, yd ³	8 @ 20	12 @ 20	20 @ 20	40 @ 20	
Weekly Rental	\$1,200	\$1,800	\$3,000	\$ 6,00 0	
SAFETY EQUIPMENT					
Man days/Week	93	93	124	145	
Weekly Cost	\$4,650	\$4,650	\$6,200	\$7,250	
TRAILERS (OFFICE, DECON. AND STORAGE)					
No. of Trailers	3	3	3	3	
Neekly Rental	\$1,000	\$1,000	\$1,000	\$1,000	
UTILITY VEHICLE					
Quantity/Type	1-Pick-up	1-Pick-up	1-Pick-up	1-Pick-up	
Weekly Rental	\$350	\$350	\$350	\$350	
MONITORING EQUIPMENT					
Quantity/Type	1-0VA	1-OVA	1-OVA	1-OVA	
	or HNu	or HNu	or HNu	or HNu	
Neekly Rental	\$350	\$350	\$350	\$ 350	
SANITARY FACILITIES					
Quantity	2	2	2	2	
Neekly Rental	\$100	\$1 00	\$100	\$ 100	
TOTAL EQUIPMENT COSTS, per week	\$12,650	\$14,050	\$18,600	\$27,150	
QUIPMENT UNIT COSTS, per ton					
Assuming Operation @ 35% of Design					
Capacity)	\$23.60	\$12.90	\$8.50	\$6.20	

0347B

4.1.7 Monitoring equipment. The monitoring equipment for all systems evaluated is a hand-held portable VOC detector (either an OVA-Flame Ionization Detector or HNu-Photo-Ionization Detector) to provide field identification of contamination hot spots at the excavation site, and for the Site Safety Officer to perform routine VOC monitoring sweeps for personnel protection. The weekly rental rate for one monitoring device is \$350/week. It is assumed that stack monitoring equipment will not be required.

4.1.8 Sanitary facilities. Two portable sanitary facilities are included for each system evaluated. The weekly rental cost including clean-out and disposal service is \$100/week for both units.

4.2 Labor. Tables 14 and 15 provide a summary of the labor costs on a weekly basis for Option 1 and Option 2, respectively. The job classifications and assumed hours per week are clearly shown in Tables 14 and 15. For the Site Leader, Site Safety Officer, Maintenance Technicians, and Excavation Operators, 60 hour work weeks have been assumed. It is WESTON's experience that field work of this nature will typically require 10 hour days and 6 day weeks. Not accounting for this in the cost estimate will result in unrealistically low labor costs. Shift positions requiring 24 hours per day coverage, 7 days per week are estimated based upon 168 hours per week per shift position (i.e., LTTS operators and scrubber operators). The hourly salary rates assumed (including overheads and fringe benefits) are summarized below:

Job classification	Hourly salary rate including overhead and fringe benefits
Site Leader	\$30/hr
LTTS Operators	\$18/hr
Scrubber Operators	\$ 18/hr
Site Safety Officer	\$20/hr
Maintenance Technicians	\$10/hr
Excavation Operators	\$18/hr
Contract Mechanic/Electrician	\$20/hr
Secretary	\$ 10/hr

4.3 <u>Utilities</u>. Tables 16 and 17 provide a summary of the utility costs on a weekly basis for Option 1 and Option 2, respectively. A brief discussion of the utility costs is presented in the following subsections.

TABLE 14. LABOR COSTS ON A WEEKLY BASIS FOR OPTION 1 AT ALL SITES

Description	System A	System B	System C	System D
SITE LEADER				
Hours/Week	60	60	6 C	60
Weekly Labor Costs*	\$ 1,800	\$ 1,800	\$ 1,800	\$ 1,800
LTTT OPERATORS				
Hours/Week	336	336	504	<u>672</u>
Weekly Labor Costs	\$ 6,048	\$ 6,048	\$ 9,072	\$12,096
SCRUBBER OPERATORS				
Hours/Week	N/A	N/A	N/A	N/A
Weekly Labor Costs*	N/A	N/A	N/A	N/A
SITE SAFETY OFFICER				
Hours/Week	60	60	60	60
Weekly Labor Costs*	\$ 1,200	\$ 1,200	\$ 1,200	\$ 1,200
MAINTENANCE TECHNICIANS				
Hours/Week	60	60	120	120
Weekly Labor Costs*	\$ 600	\$ 600	\$ 1,20C	\$ 1,200
EXCAVATION OPERATORS				
Hours/Week	120	120	180	180
Neekly Labor Costs*	\$ 2,160	\$ 2,160	\$ 3,24C	\$ 3,240
CONTRACT MECHANIC/ELECTRICIAN				
Hours/Week	20	20	30	40
Neekly Labor Costs*	\$ 400	\$ 400	\$ 60C	\$ 300
SECRETARY				
Hours/Week	40	40	40	40
Neekly Labor Costs*	\$ 400	\$ 400	\$ 40C	\$ 400
IOTAL LABOR COSTS, per week	\$12,608	\$12,608	\$17,512	\$20,736
LABOR UNIT COSTS, per ton				
(Assuming Operation @ 85% of Design				
Capacity)	\$23.50	\$11.60	\$ 3.00	\$ 4.80

* Labor Costs include overhead and fringe benefits.

TABLE 15. LABOR COSTS ON A WEEKLY BASIS FOR OPTION 2 AT ALL SITES

Description	System A	System B	System C	System D
SITE LEADER				
Hours/Week	60	60	6 0	60
Weekly Labor Costs*	\$ 1,800	\$ 1,800	\$ 1,800	\$ 1,800
LTTT OPERATORS				
Hours/Week	336	336	504	672
Weekly Labor Costs	\$ 6,048	\$ 6,048	\$ 9,072	\$12,096
SCRUBBER OPERATORS				
Hours/Week	168	168	168	168
Weekly Labor Costs*	\$ 3,024	\$ 3,024	\$ 3,024	\$ 3,024
SITE SAFETY OFFICER				
Hours/Week	60	60	60	60
Weekly Labor Costs*	\$ 1,200	\$ 1,200	\$ 1,200	\$ 1,200
MAINTENANCE TECHNICIANS				
Hours/Week	120	120	180	180
Weekly Labor Costs*	\$ 1,200	\$ 1,200	\$ 1,800	\$ 1,800
EXCAVATION OPERATORS				
Hours/Week	120	120	180	180
Neekly Labor Costs*	\$ 2,160	\$ 2,160	\$ 3,240	\$ 3,240
CONTRACT MECHANIC/ELECTRICIAN				
Hours/Week	20	20	30	40
Neekly Labor Costs*	\$ 400	\$ 400	\$ 600	\$ 800
SECRETARY				
Hours/Week	40	40	40	40
Weekly Labor Costs*	\$ 400	\$ 400	\$ 400	\$ 400
TOTAL LABOR COSTS, per week	\$16,232	\$16,232	\$ 21 ,1 36	\$ 24,360
LABOR UNIT COSTS, per ton				
(Assuming Operation @ 85% of Design				
Capacity)	\$30.30	\$14.90	\$ 9.70	\$ 5.60

* Labor Costs include overhead and fringe benefits.

.

TABLE 16. SUMMARY OF UTILITY COSTS ON A WEEKLY BASIS FOR OPTION 1 AT ALL SITES

Description	System A	System B	System C	System D	
FUEL					
Fuel Consumption, Btu/wk	950x10 ⁶	1,714x10 ⁶	3,384x10 ⁶	6,769 x10⁶	
Weekly Fuel Cost, per wk	\$9,500	17,140	33,840	67,690	
LECTRICITY					
emand, kW Consumption, kWh/wk Weekly Electricity Costs	50 7.14x10 ³ \$428	75 1.07x10 ⁴ \$642	125 1.79x10⁴ \$1,071	250 3.57x10 ⁴ \$2,142	
VATER					
later Consumption, gal/wk	15x10 ³	30x10 ³	50x10 ³	120×10 ³	
Weekly Water Cost	\$15	\$30	\$ 60	\$120	
VASTEWATER DISPOSAL					
Disposal Requirements, gal/wk	750	1,000	1,500	2,000	
Weekly Disposal Costs	\$23	\$30	\$45	\$60	
CAUSTIC					
austic Requirements Weekly Caustic Costs	N/A N/A	N/A N/A	N/A N/A	N/A N/A	
OVERSIZE DEBRIS DISPOSAL					
)isposal Requirements, tons/wk Weekly Disposal Costs	27 \$215	54 \$432	109 \$872	218 \$1, 744	
OTAL UTILITY COSTS, per wk	\$10,182	\$18,274	\$35,888	\$71,756	
TILITY UNIT COSTS, per ton Assuming Operation 큰 35% of Design apacity)	\$ 19.00	\$16.8 0	\$1 0.50	\$16.50	

.

- ----

TABLE 17. UTILITY COSTS ON A WEEKLY BASIS FOR OPTION 2 AT ALL SITES

Description	System A	System B	System C	System D	
FUEL					
Fuel Consumption, Btu/wk	950x10°	1,714x10 ⁶	3,384x10 ⁶	6,769x10	
Weekly Fuel Cost, per wk	\$ 9,500	\$17,140	\$33,840	\$67,590	
ELECTRICITY					
Demand, kW Consumption, kWh/wk Weekly Electricity Costs	60 8.57x10 ³ \$514	90 1.29×10 ⁴ \$771	150 2.14x10 ³ \$1,285	300 4.28×10⁴ \$2,570	
WATER					
Water Consumption, gal/wk	115×10 ³	197×10 ³	394x10 ³	788x10 ³	
Weekly Water Cost	\$11 5	\$197	\$394	\$ 788	
WASTEWATER DISPOSAL					
Disposal Requirements, gal/wk	43x10 ³	71x10 ³	143×10 ³	286x10 ³	
Weekly Disposal Costs	\$1,290	\$2,130	\$4,290	\$ 8, 5 80	
CAUSTIC					
Caustic Requirements, lbs/wk Weekly Caustic Costs	2.2x10 ³ \$1,100	4.3x10 ³ \$2,150	8.6x10 ³ \$4,300	17.1x10 ³ \$8,550	
OVERSIZE DEBRIS DISPOSAL					
Disposal Requirements, tons/wk Weekly Disposal Costs	27 \$216	54 \$432	109 \$872	218 \$ 1,744	
TOTAL UTILITY COSTS, per wk	\$12 ,735	\$22,820	\$44,981	\$89,922	
UTILITY UNIT COSTS, per ton (Assuming Operation @ 85% of Design Capacity)	\$ 23.80	\$21.00	\$20. 70	\$ 20.50	

.

48

4.3.1 Fuel. This analysis assumes that propane will be burned in both the oil heater and the afterburner. Use of propane allows for ease of operation in remote locations and ensures clean burning and minimization of stack air pollutants. The fuel cost assumed is \$10.00/10⁶ Btu (which is somewhat conservative). No. 2 fuel oil is currently available at less than \$7.00/10⁶ Btu which would reduce the fuel costs presented in Tables 14 and 15 by 30 percent.

4.3.2 Electricity. The electricity costs are estimated based upon an energy charge of \$0.06/kWh multiplied by the kwh of electricity consumed per week at an 85 percent capacity factor.

4.3.3 Water. The water consumption for Option 2 is based upon water consumed for processed soil cooling, conditioning, dust control and for decontamination of personnel and equipment. The water consumption for Option 2 includes all of the above, plus the water consumption for the scrubbing system. Water costs are estimated based upon \$1.00 per 10³ gallons which assumes the availability of uncontaminated well water. If uncontaminated well water is not available (which is often the case at VOC-contaminated remedial action sites) then uncontaminated water must be trucked in. This may result in water costs an order of magnitude higher. This potential impact is investigated in Section 6, Sensitivity Analysis, of this report.

4.3.4 Wastewater disposal. The wastewater disposal requirements for Option 1 are based upon the disposal of decontamination water at a local municipal wastewater treatment plant within a 50 mile radius of the site. The estimated disposal cost is \$30 per 10³ gallons which includes transportation by 6,000 gallon tanker truck as well as the disposal fee at the wastewater treatment plant. Option 2 includes the above plus the scrubber blowdown water. If the wastewater treatment facility, it may require trucking to a permitted hazardous waste treatment facility which again could result in an order of magnitude increase in wastewater disposal costs. This will also be considered in the sensitivity analysis.

4.3.5 Caustic. Caustic consumption is only applicable to Option 2 - With Flue Gas Scrubbing. The caustic costs are estimated based upon a delivered caustic price of \$0.50 per pound.

4.3.6 Oversize debris disposal. The oversize debris disposal quantities are based upon 5 percent of the total feed soil quantities. The disposal costs are estimated to be \$8 per ton for disposal at a nonhazardous landfill. If the oversize debris must be manifested to a licensed hazardous waste landfill, these disposal costs would be considerably higher. The impact of this situation is investigated in the sensitivity analysis, Section 6.

4.4 Laboratory costs. The laboratory costs are based upon performing all analyses on-site in a mobile laboratory, providing one-day turn-around for processed soil decontamination verification. The cost for rental of the on-site laboratory plus one on-site laboratory technician is \$6,000 per week. Due to the larger number of samples to be analyzed, Systems C and D will require a second laboratory technician at an additional estimated cost of \$2,000 per week.

4.5 <u>Miscellaneous supplies</u>. Miscellaneous supplies for maintenance, office supplies, and other consumable items is estimated to be \$1,500 per week for all systems evaluated.

4.6 <u>Contingency</u>. The contingency is based upon 15 percent of the total operating costs.

5. TOTAL PROJECT COSTS

The objective of this section is to present the total project costs for each of the alternatives evaluated. Tables 18 through 20 provide a summary of this data as follows:

Table no.	Total project cost data summarized
18	Total Project Costs for Site 1 (1,000 ton site)
19	Total Project Costs for Site 2 (10,000 ton site)
20	Total Project Costs for Site 3 (100,000 ton site)

5.1 Option 1 - Without off-gas scrubbing. Figure 9 presents a graphical summary of the total project costs for the range of sites evaluated (i.e., up to 100,000 tons of soil preocessed) for Option 1. Figure 10 presents a similar graphical summary of the project unit costs on a \$/ton basis for Option 1.

5.2 Option 2 - With off-gas scrubbing. Figure 11 presents a graphical summary of the total project costs for the range of sites evaluated for Option 2. Figure 12 presents a similar graphical summary of the project unit costs on a \$/ton basis for Option 2.

TABLE 18. TOTAL PROJECT COSTS FOR SITE 1 (1,000 TON SITE)

Description	System A	System B	System C	System D
Option 1 - without flue gas	scrubbing			
 Total capital costs Total operating costs Total project costs \$/ton basis Total time required 	\$1,221,100 \$ 1,221 13 days	\$ 58,800	\$ 52,700 \$2,582,800 \$ 2,583	\$ 42,000 \$4,683,400 \$ 4,583
Option 2 - with flue gas so	rubbing			
- Total capital costs - Total operating costs - Total project costs - \$/ton basis - Total time required	\$1,300,600 <u>\$ 104,900</u> \$1,405,500 \$ 1,406 13 days	\$ 69,700	<u>\$61,900</u> \$2,952,400	\$5,156,300

TABLE 19. TOTAL PROJECT COSTS FOR SITE 2 (10,000 TON SITE)

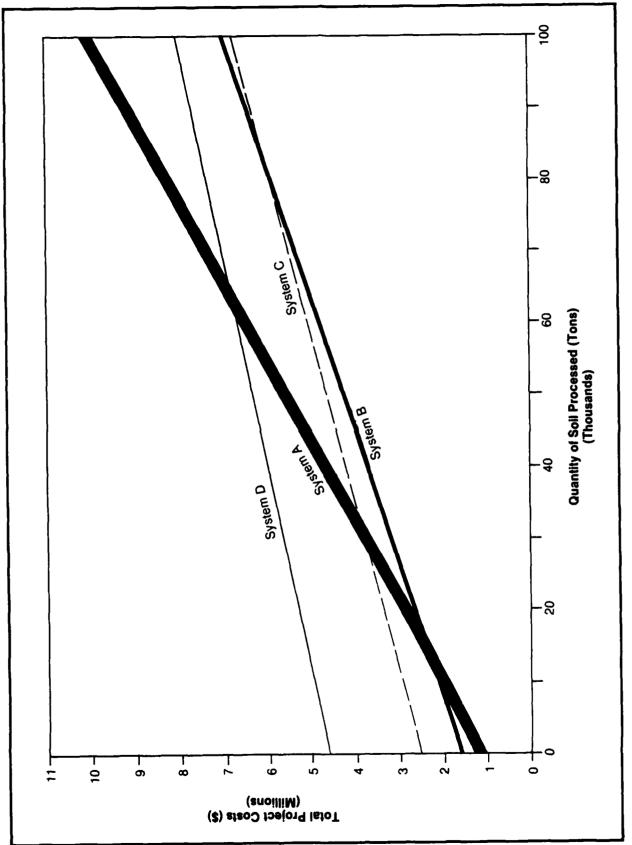
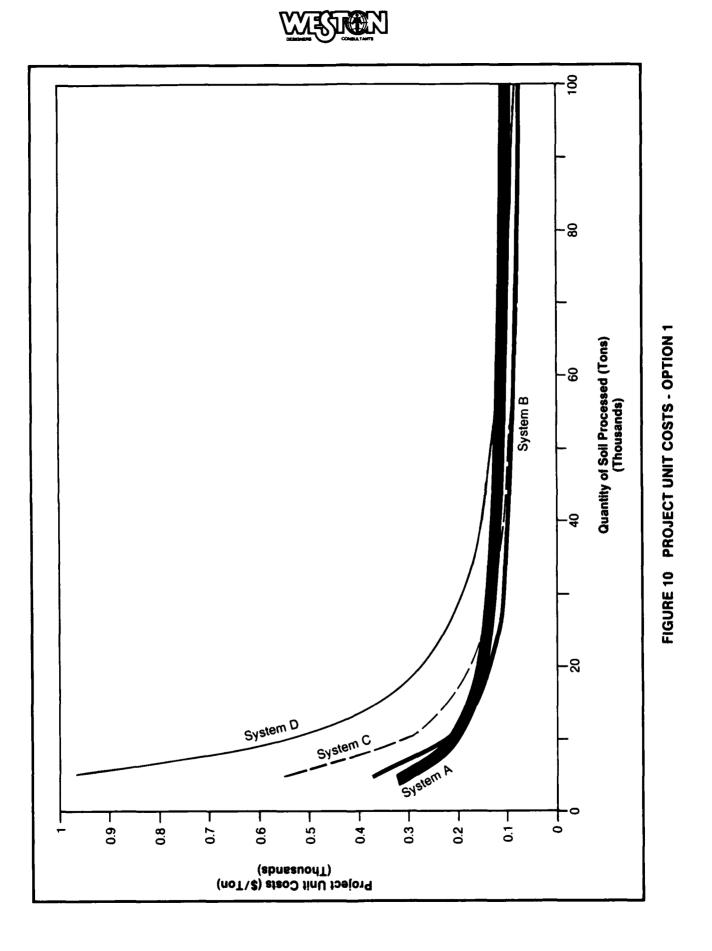
Description	System A	System B	System C	System D
Option 1 - without flue ga	s scrubbing			
- Total capital costs	\$1,132,200	\$1,581,200	\$2,530,100	\$4,641,400
- Total operating costs	\$ 895,500	\$ 541,000	\$ 424,300	\$ 338,100
- Total project costs	\$2,027,700	\$2,122,200	\$2,954,400	\$4,979,500
- \$/ton basis	\$ 203	\$ 212	\$ 295	\$ 498
- Total time required	18.7 weeks	9.2 weeks	4.6 weeks	2.3 weeks
Option 2 - with flue gas s	crubbing			
- Total capital costs	\$1,300,600	\$1,800,200	\$2,890,500	\$ 5,107,200
- Total operating costs	\$1,056,300	\$ 641,200	\$ 498,400	<u>\$</u> 399,200
- Total project costs	\$2,356,900	\$2,441,400	\$3,388,900	\$5,506,400
- \$/ton basis	\$ 236	\$ 244	\$ 339	\$ 551
- Total time required	18.7 weeks	9.2 weeks	4.5 weeks	2.3 weeks

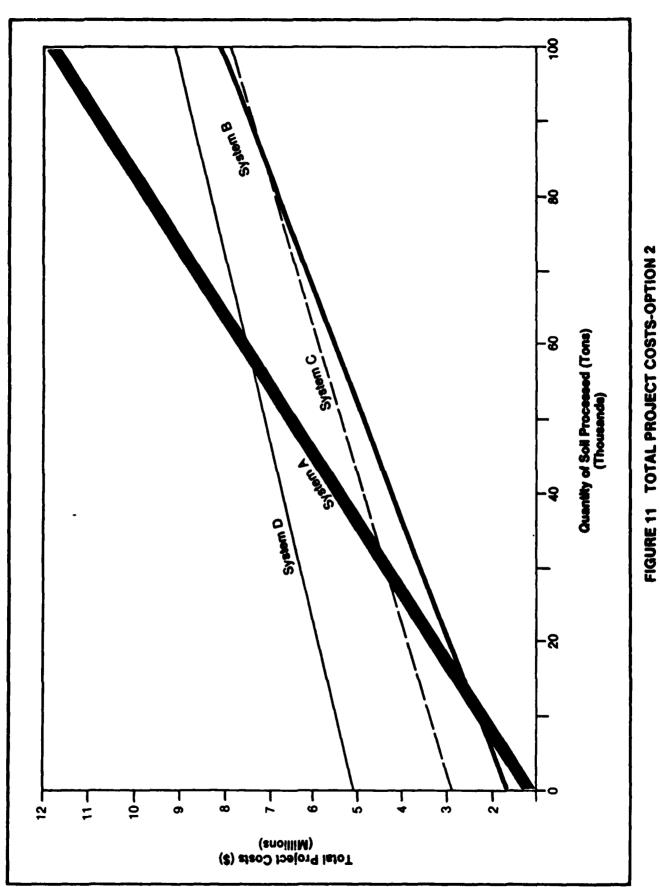
TABLE 20. TOTAL PROJECT COSTS FOR SITE 3 (100,000 TON SITE)

Description	System A	System B	System C	System D
Option 1 - without flue ga	s scrubbing			
- Total capital costs	\$ 1,132,200	\$1,581,200	\$2,530,100	\$4,641,400
- Total operating costs	\$ 8,945,100	\$5,403,900	\$4,242,600	\$3,381,400
- Total project costs	\$10,077,300	\$6,985,100	\$6,772,700	\$8,022,800
- \$/ton basis	\$ 101	\$ 70	\$ 68	\$ 80
- Total time required	186.8 weeks	91.9 weeks	46.0 weeks	23.0 weeks
-	(3.6 years)	(1.8 years)		
Option 2 - with flue gas so	crubbing			
- Total capital costs	\$ 1,300,600	\$1,800,200	\$2,800,500	\$5, 107,200
Makal anawakiwa asaka	#10 EE1 E00	R 6 404 700	CA 004 100	* 2 002 200

_	rocur	capical coscs	φ 1,300,	000	ψ 1 ,000	,200	ψc ,00	0,000	φ υ , τ	01,200
-	Total	operating costs	\$10,553,	500	\$6,404	,700	<u>\$4,98</u>	4,100	\$3,9	92,200
-	Total	project costs	\$11,854,	100	\$8,204	,900	\$7,78	4,600	\$9,0	99,400
-	\$/ton	basis	\$	119	\$	82	\$	78	\$	91
-	Total	time required	186.8 we	eks	91.9 w	reeks	46.0	weeks	23.0	weeks
			(3.6 yea	rs)	(1.8 y	vears)				
			-		-					

WISSEN


FIGURE 9 TOTAL PROJECT COSTS-OPTION 1

• •

...

10 10 System A -8 Quantity of Soil Processed (Tons) (Thousands) -09 **.** System B * System C -2 System D 0 <u>.</u> 0.4 0.7 -0.6 0.5 -0.3 0.2 – Γ I - 6.0 . 8.0 F

ESTREN

Total Project Costs (\$/Ton) (Thousands)

6. SENSITIVITY ANALYSIS

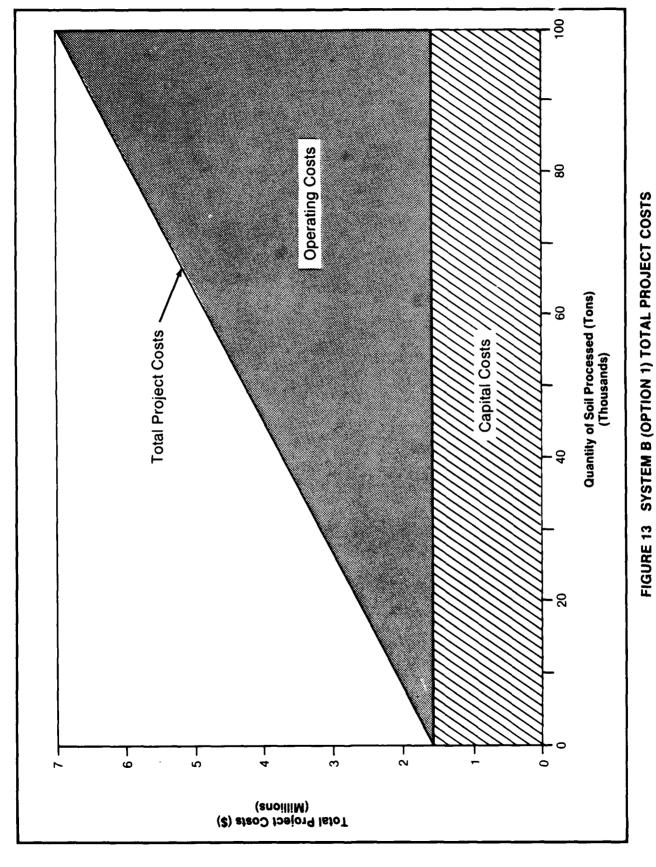
The objective of this section is to analyze the cost data and determine the following:

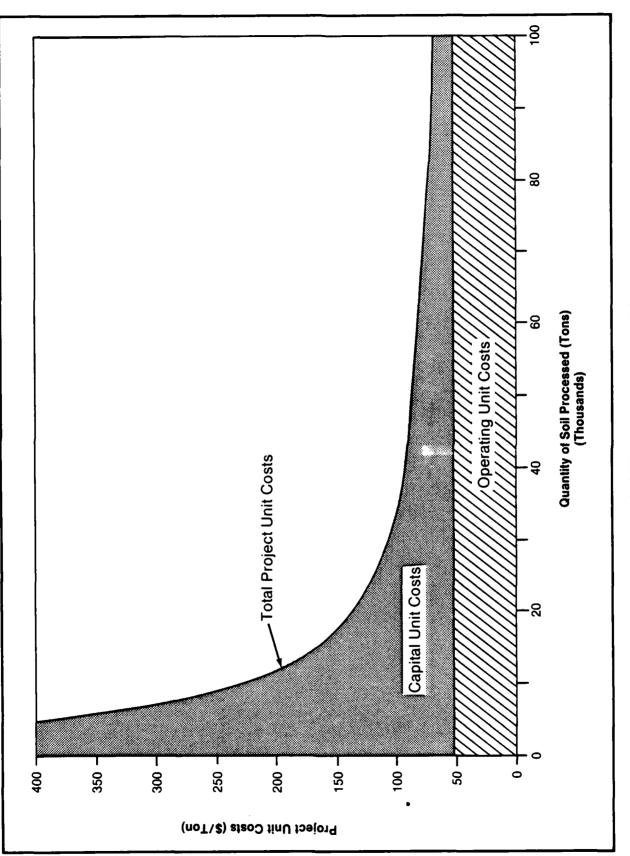
- What is the sensitivity of total project costs to variations in capital and operating costs?
- Which capital cost factors play a major role in determining the total project capital costs?
- Which operating cost factors play a major role in determining the total project operating costs?
- How will changes in the general economic assumptions affect the results of this analysis?

For ease of discussion the sensitivity analysis is performed on a single "base case" system. The base case system is System B (i.e., single quad-screw system) without flue gas scrubbing (i.e., Option 1). Observations will also be made on how the results of the sensitivity analysis would be affected if the other systems (i.e., Systems A, C, or D) were evaluated.

6.1 Total Project Costs. Figure 13 subdivides the total project costs for System B (Option 1) into capital and operating cost elements. As shown in Figure 13, the capital costs are constant regardless of the quantity of soil processed; whereas, the operating costs are variable and directly related to the quantity of soil processed.

Figure 14 provides similar data for System B (Option 1) except that incremental costs (i.e., \$/ton) are presented. On this basis the incremental operating costs are constant (i.e., \$37.70 per ton of soil processed); whereas, the incremental capital costs are variable and inversely related to the quantity of soil processed.


The other systems evaluated exhibit similar relationships to those shown for System B in Figures 13 and 14. By comparison System A would have lower capital costs and higher operating costs than shown for System B. Conversely, Systems C and D would have higher capital costs and lower operating costs than shown for System B.


Figures 13 and 14 both demonstrate that for low quantities of soil processed (i.e., small sites) operating costs are relatively insignificant and capital costs are domain determining total project costs. For large sites operating costs become dominant. For intermediate size sites (~40,000 tons), the capital and operating costs are about equally significant in determining total project costs.

Figures 15 and 16 provide similar graphs for System B (Option 2).

0347B

WISSICN

WL STOON

FIGURE 14 SYSTEM B (OPTION 1) UNIT COSTS

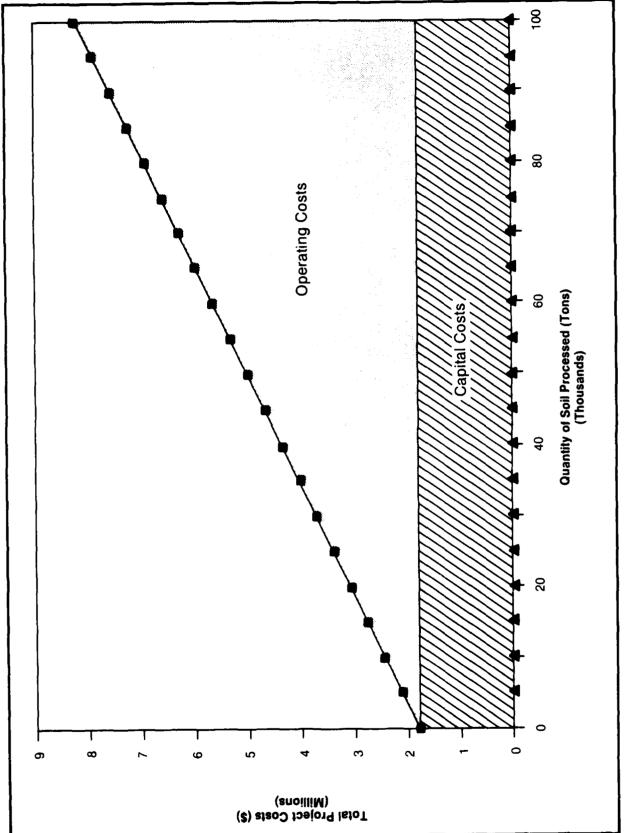
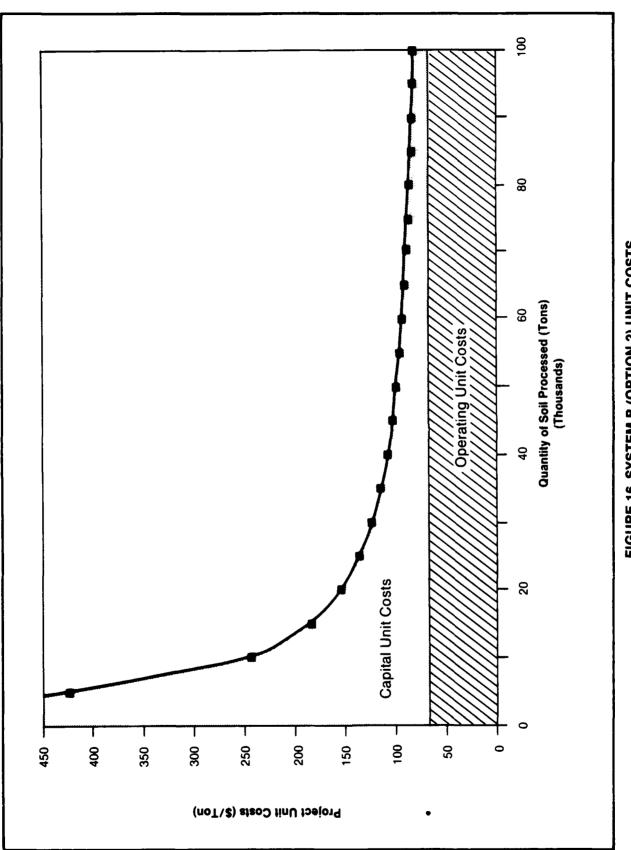



FIGURE 15 SYSTEM B (OPTION 2) TOTAL PROJECT COSTS

WESTEN

6.2 <u>Capital Costs</u>. A sensitivity analysis of capital costs for System B is presented in Table 21. Table 21 presents the itemized estimated capital costs for both the Option 1 (without scrubber) and Option 2 (with scrubber) configurations. In addition, the percentage of the total capital costs represented by each line item is also presented. In general the total direct capital costs (i.e., Equipment Costs F.O.B. Point of Manufacture) represent about 40 percent of the total capital costs. The indirect capital costs account for the remaining 60 percent of the total capital costs.

Four major direct capital cost items account for over 70 percent of the total direct capital costs for both Options 1 and 2:

Major direct capital cost items		direct ca	e of total <u>pital costs</u> Option 2
Holo-Flite® Processor		39.1	34.5
Afterburner		15.7	13.8
Feed System		14.4	12.7
Piping and Electrical		12.0	12.0
	Total	81.2	73.0

Since these costs are based on vendor quotes, confidence in these estimates is relatively high. The reason for the differences in Options 1 and 2 above are due to the scrubbing system which results in an overall increase in direct capital costs of about 14 percent. Excluding the contingency, three major indirect capital cost items account for over 70 percent of the total indirect capital costs:

TABLE 21. SENSITIVITY ANALYSIS OF CAPITAL COSTS FOR SYSTEM B

Description		System B w/o Scrubber (Option 1)			System B w/scrubber (Option 2)		
		timated capital costs (\$)	Percentage of total capital costs		stimated capital costs (\$)	Percentage of total capital costs	
Direct capital costs							
Holo-Flight@ Processor(s)	\$	250,000	15.8	\$	250,000	13.9	
Hot oil system	\$	58,000	3.7	\$	58,000	3.2	
Feed system	\$	91,900	5.8	\$	91,900	5.1	
Processed soil system	\$	11,100	0.7	\$	11,100	0.6	
Afterburner	\$	100,000	6.3	\$	100,000	5.6	
Flue gas scrubbing system		N/A	N/A	\$	69,200	3.9	
Piping and electrical	\$	76,700	4.9	\$	87,000	4.8	
Instrumentation and controls	<u>\$</u>	51,100	3.2	<u>\$</u>	58,000	3.2	
Total direct capital costs	\$	638,800	40.4	\$	725,200	40.3	
Indirect capital costs							
Site preparation/ mobilization		120,000	7.6	\$	130,000	7.2	
Construction/erection/ installation		156,900	9.9	\$	186,300	10.3	
Engineering		76,700	4.9	\$	87,000	4.8	
Permits		150,000	9.5	\$	150,000	8.3	

(continued next page)

.

•

TABLE 21. (CONTINUED)

	System B w/o Scrubber (Option 1)		System B w/scrubber (Option 2)		
Description	Estimated capital costs (\$)	Percentage of total capital costs	Estimated capital costs (\$)	Percentage of total capital costs	
Indirect capital costs (c	continued)	<u> </u>			
Start-up and training	107,300	6.8	\$ 136,400	7.6	
Spare parts	31,900	2.0	\$ 36,300	2.0	
Freight	15,000	0.9	\$ 21,000	1.2	
Site closure/ demobilization	78,400	5.0	\$ 93,200	5.2	
Contingency	206,200	_13.0	\$ 234,800	13.1	
Total indirect capital costs	942,400	59.6	\$1,075,000	59.7	
TOTAL CAPITAL COSTS	1,581,200	100.0	\$1,800,200	100.0	

.

I

٠

Major indirect	Percentage operatir (excluding o	ig costs
capital cost items		Option 2
Construction/Erection/Installatio	n 21.3	22.2
Permits	20.4	17.9
Site Preparation/Mobilization	16.3	15.5
Start-Up and Training	14.6	<u>16.</u> 2
Total	72.6	71.8

The construction/erection/installation and start-up and training are conservative estimates and the confidence in these estimates is relatively high. The permitting and site preparation/mobilization will be very site-specific and dependent on regulatory requirements. Therefore, these costs could be widely variable.

6.3 Operating Costs. To perform a sensitivity analysis of operating costs, the first step is to eliminate the impact of site size from the evaluation. This is valid since the unit operating costs (on a \$/ton basis) are constant regardless of site size or quantity of soil to be processed. For ease of evaluation, weekly operating costs were selected for this analysis since these operating costs were previously developed in Tables 12 through 17. Table 22 presents the itemized estimated weekly operating costs for both the Option 1 and Option 2 configuration. In addition, the percentage of total operating costs represented by each line item is also presented.

Excluding the contingency, three major operating cost items account for approximately 70 percent of the total operating costs:

		Percentage operatir	
Major indirect		(excluding c	contingency)
capital cost items		Option 1	Option 2
Equipment Labor Fuel		21.7 21.4 29.2	20.1 23.3 24.6
	Total	72.3	68.0
	67		· - · · · · · ·

0347B

TABLE 22. SENSITIVITY ANALYSIS OF WEEKLY OPERATING COSTS FOR SYSTEM B

	System B w/o scrubber (Option 1) Estimated weekly Percentage		System B w/ scrubber (Option 2) Estimated weekly Percentage		
Operating costs	operating costs (\$/week)	of total operating costs	operating costs (\$/week)	Percentage of total operating costs	
Equipment	12,750	21.7	14,050	20.1	
Labor	12,608	21.4	16,232	23.3	
Utilities					
- Fuel - Electricity - Water - Wastewater	17,140 642 30	29.2 1.1 0.05	17,140 771 197	24.6 1.1 0.3	
Disposal - Caustic - Oversize	30 N/A	0.05 N/A	2,130 2,150	3.1 3.1	
Debris Disposal	432	0.7	432	0.6	
Laboratory Costs	6,000	10.2	6,000	8.6	
Miscellaneous Supplies	1,500	2.6	1,500	2.2	
Contingency	7,670	13.0	9,090	13.0	
Total weekly operating costs	\$58,802/wk	100.0	\$69,692/wk	100.0	
Total weekly quantity of soil processed	l,089 tons∕wk		1,089 tons/wk		
Operating unit costs (\$/ton basis)	\$54.00/ton		\$64.00/ton	-	

The labor costs and fuel costs are based on conservative estimates and equipment costs are based on WESTON's current remedial action experience. Therefore, confidence in these estimates are relatively high.

6.4 <u>General economic assumptions</u>. Three major assumptions were made in this analysis that significantly impact the total project costs:

- (1) Soil Moisture Content 20%
- (2) Soil Discharge Temperature 400°F
- (3) System Availability 85%

All three of these assumptions directly impact the total time required to perform the remedial action project. Therefore, they will not impact the capital costs but will directly impact the operating costs.

Moisture content. The feed soil moisture content 6.4.1 assumed in this analysis is 20 percent, which is typical based on WESTON's experience regarding excavated soil from unsaturated zones above the groundwater table. Table 1 presents the processing data corresponding to 30 percent moisture content soil. In order to achieve the 400°F discharge temperature with the increased moisture content, an increased residence time (i.e., approximately 40 percent longer) is required. This effectively reduces the processing rate by about 40 percent. Since operating costs (in \$/week) are directly related to processing rate, a 10 percent increase in soil moisture content from 20 percent to 30 percent will result in an increase in total operating costs of approximately 40 percent. Correspondingly, a decrease in soil moisture content will result in a significant decrease in total operating costs. As stated previously, capital costs will not be affected by variations in soil moisture content. Figure 17 illustrates the impact of 30 percent soil moisture content upon the total project costs for System B (Option 1).

6.4.2 Soil discharge temperature. The soil discharge temperature assumed in this analysis is 400°F. This is a conservative estimate since 400-450°F is the maximum practical soil discharge temperature due to the maximum temperature limitation of the heating oil. For soils contaminated with relatively low boiling point volatile organic compounds considerably lower soil discharge temperatures may be acceptable. This would allow a reduced soil residence time and corresponding increases in soil feed rate. The net effect would be to substantially reduce total operating costs.

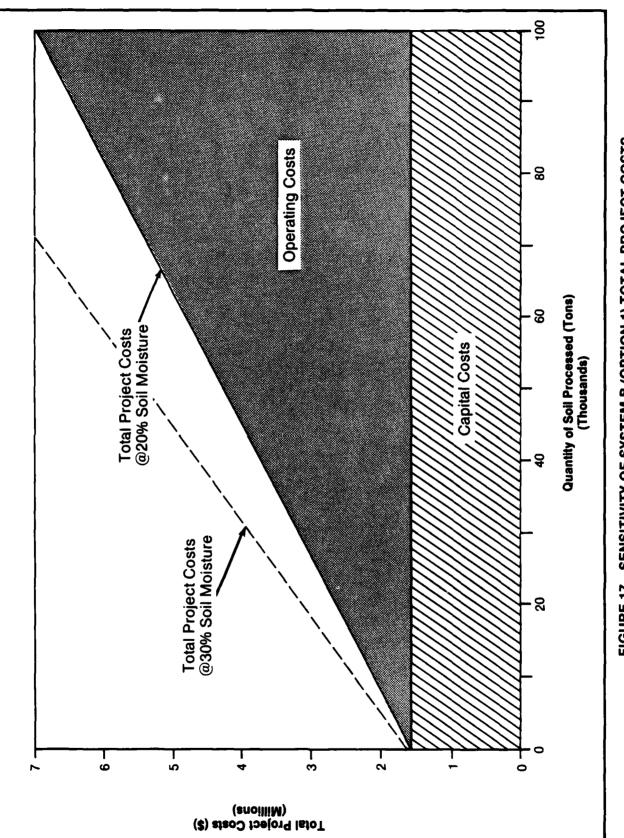


FIGURE 17 SENSITIVITY OF SYSTEM B (OPTION 1) TOTAL PROJECT COSTS TO SOIL MOISTURE CONTENT 6.4.3 System availability. System availability, as used in this analysis, is defined as the equivalent percentage of time that the system is assumed to be operational at the rated design capacity. This includes downtime as well as periods of o_1 eration at less than the rated design capacity. The overall system availability assumed in this analysis is 85 percent. This means that the total time required to process a given number of tons is calculated in this manner.

Total time required = No. of tons to be processed (in hours) Soil processing rate (tons/hr) x 0.85

This is consistent with WESTON's experience on the availability of similar types of systems. Decreases in system availability will result in increased total operating costs. Capital costs are not affected by variations in system availability.

6.5 Equipment salvage value. No credit was assumed in this analysis for equipment salvage value at the end of the project life. This approach significantly increases the total project costs for the small sites (i.e., 1,000 tons and 10,000 tons sites) evaluated. Realistically, at least 50 percent of the direct capital costs should be recoverable costs for the turnkey contractor as salvage value for equipment to be used at a subsequent site. For System B without the scrubber this would result in a salvage value of approximately \$319,000 or approximately 20 percent of the total capital costs.

6.6 Procurement and contracting costs. Depending on the method of procurement and contracting (i.e., government owned/government operated, government owned/contractor operated, turn-key contractor owned and operated, etc.) additional costs will be incurred above and beyond those identified in this report. Identifying and estimating these costs is beyond the scope of this report.

0347B

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions.

- 1. Regardless of whether a flue gas scrubbing system is required or not, System B is the most economical system evaluated for sites with 15,000 to 80,000 tons of soil to be processed.
- 2. System A was somewhat less expensive than System B for sites smaller than 10,000 tons of soil. However, processing costs were in excess of \$200 per ton for these smaller sites.
- 3. System C was somewhat less expensive than System B for sites larger than 85,000 tons of soil.
- 4. In general, if a flue gas scrubbing system is required, the total capital costs will increase by 10 percent to 15 percent and the operating costs will increase by 15 percent to 20 percent.
- 5. The sensitivity analysis yielded these conclusions:
 - Direct capital costs represent about 40 percent of the total capital costs. Confidence in these estimates is high since they are based on vendor quotes.
 - Indirect capital costs represent about 60 percent of the total capital costs. Confidence in these estimates is also high except for permitting and site preparation/mobilization which are sitespecific and dependent upon regulatory requirements.
 - Operating costs are estimated based on conservative assumptions, and confidence in these estimates is high.
 - Soil moisture content and soil feed rate are very significant parameters affecting operating costs.
 - Equipment salvage value (assumed to be "zero" for this analysis) is a very significant parameter affecting capital costs.
 - Procurement and contracting costs (not considered in this analysis) may significantly impact total project costs.

7.2 Recommendations.

1. A Technical Data Package (performance oriented) should be developed for System B. This is the most costeffective system for the range of sites from 15,000 to 80,000 tons. The Technical Data Package should include flue gas scrubbing (if required).

- 2. A survey/literature search of sites targeted for remedial action under the Installation Restoration Program should be performed to determine if technical data packages for smaller (System A) or larger (System C) systems are justified.
- 3. To further refine operating costs, testing should be performed on a wide variety of uncontaminated soil types and moisture contents to establish an accurate data base for heat transfer coefficients and soil processing rates. This testing could be performed at the Joy Manufacturing Company test facility in Colorado Springs, Colorado, at a nominal cost and with no permitting requirements.
- 4. Continue economic evaluation to identify and estimate the appropriate procurement and contracting costs.

8. DISTRIBUTION LIST

Receiving Agency	Number of <u>Copies</u>
Defense Technical Information Center Cameron Station Alexandria, Virginia 22314	14
Defense Logistics Studies Information Exchange U.S. Army Logistics Management Center Fort Lee, Virginia 23801	2
Commander U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Ground, Maryland 21010-5401	34

