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"\ The description of the total energy of a solid in terms of the effective medium theory

;, has been studied. Using the density functional theory an exact symmetric formula is

presented for describing the total energy in terms of embedding energies of individual

: atoms. Different approximate formulae are derived and compared to the conventional
;f* pair potential representation, to the model of Gordon and Kim, and to the semiempiri-

. cal embedded atom scheme of Daw and Baskes. The theory is applied to estimate the
W
‘ pair potential in rare gases He, Ne, and Ar, and the cohesive properties of Al metal. A
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; fair agreement with the experimental results is obtained. 4
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" 1. Introduction

The study of static and dynamic properties of lattice defects using molecular dynamics

-

is based on the pair potential representation of the structural part of the total energy of

TR
)‘J AL

the system!. In metals this is usually written as

ks

Eror = —ZZ R-R)) +E,,;, (1.1)
i fri

where V, is the pair potential, R; a position of an atomic nucleus and N is the total

TERRE

number of atoms. E,, is an energy term which depends only on the volume (or den-

£

sity) of the system but not on the structure. A pair potential expression of the form of

B Eq. (1.1) is formally obtained by describing the metal ions by pseudopotentials and
h.
‘;.‘, applying second order perturbation theory to calculate the total energy?>. Several
i
gé different schemes have been proposed to determine the pseudopotential and the

o corresponding pair potential. In alkali and other nontransition metals the results

obtained for example for the phonon spectra are in fair agreement with the experimen-

) tal results*. However, the pair potential picture becomes questionable when applied to
D)

§ lattie defects which cause large perturbations to the nearly homogeneous valence ¢lec-
(2

- tron density of the perfect metal. Also the treatment if impurities in the pseudopoten-
Y

2 tial scheme is not straightforward.

3

L) . . . . .

. Recently, another method has been proposed for calculating the interionic interac-
ch tions>S. In this so-called "embedded atom" method one tries to write the total energy
Pt in the form

oo .

£

.QE

i Eror = Z‘, F(n(R))) + 72 ®(R~-R)), (1.2)
¥y, i#f

.

:;: where F is a function of the electron density n; at the site of the atom i and @ is the
3

bt residual part of the pair ion interaction which can not be included in the first term of
Ti:. Eq. (1.2). The density n; is the electron density at site R; when the atom from that site
bW

3: is removed, i.e. it is the electron density provided by the surrounding atoms. The idea
"
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At is to approximate the total electron density as a superposition of atomic densities n, in

which case n; is

; N
§ N n(R;) = Y, n(R-R)). (1.3)
t o j#i
&
The equations (1.2) and (1.3) are essentially as easy to use in the computer simulations

ﬂ,‘% as the standard pair potential, Eq. (1.1).

O The function F(n) is generally nonlinear and then the first term implicitly takes into
account the volume dependent terms of Eq. (1.1). Also, the expression (1.2) includes
multi-ion interactions!8. It is expected that the embedded atom scheme can then better

describe defects like vacancies and surfaces where the density variations are large.

The idea behind the Eq. (1.2) comes from the so-called "effective medium” or "pseu-
doatom" theory first presented for calculating the energetics of single impurities in
metals”8, Daw and Baskes’ have applied successfully the embedded atom method for
many transition metal systems by taking an empirical approach, the functions F and @

are fitted to reproduce some experimental data.

The purpose of the present paper is to look more formally the possibilities of deriving

‘ interionic interactions of the form of Eq. (1.2) using the effective medium theory.
{'\\} First the total energy of the solid (in any ionic arrangement) is written in a symmetric
t‘. .' way in terms of the electron densities provided by the surrounding atoms. This can be
;" done formally exactly using the density functional theory. Then approximate formulae
,;‘.E:: are derived by using the same approachcs which have been carlier applicd for single
?—|:l!:. impurities. It is shown that the first order approximation, in the limit of a weak distur-
~:';:"" bance from a homogeneous lattice, reduces to the conventional pair potential picture
EE;:: with the same pair-potcntial as obtained from the perturbation theory. In the case of
¥ rare gascs, on the other hand, the result is closely related to the Gorgon-Kim? model
"’f for molecular binding.
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% In Section 2 we present a formal derivation of the total energy in terms of density
functionals. In Section 3 approximations are made for obtaining a usable equation of

} the form of Eq. (1.2). In Section 4 the results are compared to the conventional pair

% potential picture, to the scheme of Gordon and Kim®, and to the semi-empirical for-

K malism of Daw and Baskes>. Approximative ( ab initio ) results for rare gases and Al

2 metal are given in Section 5. Section 6 includes discussion and conclusions.
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2. Formal theory

According to the density functional theory!®!! the total energy of system of electrons
in an external potential can be expressed as a functional of the total electron density.
This functional has the variational property that the exact ground state electron density
minimizes it!2. In a solid the external potential is provided by the atomic nuclei which
are fixed a sites R; (adiabatic Bom-Oppenheimer approximation is assumed). The total

energy of the metal consisting of N atoms is
Efor = Exln] 1)

where n is the total ground state electron density and the subscript R indicates that the
functional depends on the sites R; and charges Z; of the nuclei (also the electrostatic
nucleus-nucleus repulsion is included). If one atom is removed from the metal the

energy change, the so-called embedding energy, is
AE; = Efor = EY5F = Extoms 22)

where E, rop is the total energy of a free atom in vacuum. The subscript i indicates
that the energy depends upon which atom is removed. The embedding energy can be

written as’

AE" = AE"[H"], (2°3)

where n; is the self-consistent ground state elcctron density in the system afrer the
atom i has been removed (but other atom sitcs are kept fixed). Equation (2.3) is a
trivial generalization of the density functional theorem. The density n; uniquely
defines the external potential of the N—1 nuclei. Then, since the site of the removed
atom R; is known, also the external potential of the original system with N atoms is
known and both E’}'(;} and EY,r can be formally expressed as functionals of the same
density n;. This is the key idea of the effectivc medium theory when applied to calcu-

late encrgetics of impurities in metals. It simply means that the binding cnergy of the

=
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impurity can be calculated directly from the unperturbed electron density of the host

metal’'8,

Using .Equations (2.2) and (2.3) we write the total energy of the metal now in terms of

the embedding energies. By removing one atom we can immediately write
N—
Eror = Efoi(n] + AE{n] + E 70y (2.4)

We can successively remove atoms one by one and get finally
N-1

Eror = NEsrom + E AE|[nyp3 ] (2.5)
where N is the number of atoms in the system and n;,5 ; is the self-consistent electron
density of the system where atoms at the sites 1,2,3, - - - i have been removed. Each
term of this sum depends upon which atom is removed and which atoms had been
taken out before. By taking an average of all possible orders of removing the atoms
the equation (2.6) can be made symmetric:

1ML

ETOT—NEATOM"'—'ZAE[”]‘*' Z AE[HU]

N(N 1)

1

WZ AEngl + -

The prime in the sums above indicates that terms which have two or more indexes the

same are omitted. Each sum in Eq. (2.6) contributes about the same order of magni-

tude to the total energy. To find a convergent series we first define sums

= 1
52 = N(n-1)

%! (pEny1 - k)

- 1

5= N-O-D) S [AE*["UL] AE ) = AE ) + AEk[nu]
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&,, In these sums only those terms in which each of the removed atoms are close to each
D)
. other are non-negligible. If the atoms are far apart they do not interact

‘:::.l (AEj[n,-j] = AEj[nj] if IR,—-RjI large). The sums S are related to the sums S in Eq. (2.6)
O
.:'Q by

. S, =5, + [Z:é]ﬁ,,_l + oo + S, 2.9)
'.':':' Equation (2.6) can now be rewritten as
Eror = NEsrom + YAE|n)]
4
' 1 ,
:. o + 721,,- [AEj["ij] - AEj["j]]

l -
.l."l + EZJL[AEk[ﬂUk] - AEk[nik] - AEk[njk] + AEk[nk]]

”'E Now in each sum (except in the first) each term is negligible if any pair of the sites
t Q are far from each other. It is then expected that the expansion converges fast even if

each sum has seemingly more terms than the previous one. (For example later it will

- an e =
ARRIIAL -
X :

be shown that in calculating electrostatic interactions between atoms, only the first two

sums in this expansion are nonzero).

P In this functional form the Eq. (2.10) is exact. In a large perfect crystal, each atom is
3

4088 in a similar surrounding. The cohesive energy can the be expressed as

R

o ) 1

j“.& Ecoh = —AE"[H"] - EZ[AE/['IU] - AEj[Ilj] + -, (211)
= j

::l,q '

o and since, by definition, AE;[#;] is the embedding encrgy of an atom in a pre-cxisting
::ﬁ . |

L vacancy, the vacancy formation encrgy (for an unrelaxed vacancy) is

1 . s . 0
o E e = 52 |AE [0l — AE{nj]} + (2.12)
N 25

) :

R
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The exact symmetric expression, Eq. (2.10), is now a starting point in trying to find

applicable approximate formulae.
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:, 3. Approximative expressions
J"‘
3.1. Electron density
()
N
o The electron density which determines the embedding energy in the functional
o~
- AE;[n;»3 ;] is the self-consistent ground state electron density of the system where
,;.:' atoms from sites 123...i are removed. It is obvious that any expression based on the
i)
I‘:'.:' embedding energy functionals can not be useful if the self-consistent electron density
Wy
:::! has to be calculated for each atomic configuration. (It would then be easier to calcu-
", late directly the total energy of the whole system self-consistently and the effective
o , : :
) medium theory would not be needed at all). For making a practical scheme, the elec-
4
'-': tron density has to be approximated by a superposition of densities associated with
;‘f each atom. These densities n,(r—R;) do not necessarily have to be the densities of free
o ” : :
S atoms but can be densities of some kind of pseudoatoms which better describe the
39
4 screening charge in the metal. (In the linear screening of pseudopotentials 7, would be
X exactly the screening charge of the pseudopotential).
3
L}
; T4 In the following we will always make the approximation that the density can be
N
*'- expressed as
s N
Wy niy3 i(r) = Y ng(r-R)), (3.1)
:,:; Jeivl
]
(R , .
h and specify later, whenever necessary, what exactly is meant by the pscudoatom den-
s .
Te sity n,.
o,
h
5 3.2. Local approximation for the embedding functional
{,“n'
{2,
*Z As an illustrative €xample we will now assume that the embedding energy is a func-
i : - . :
L tion of the local electron density. This is the simplest form of thc embedding energy
{ . N
", functionals. The function can be calculated for example by embedding the atom in a
;' homogencous clectron gas, in which case it can be viewcd as the first term in a
"l
o
“
o .
:_-'-' SO N ,,)':'. ™" ; .J. ‘, . \ %" '*‘S_.} -,{ '\ N WL N RS S LY TN NN }\‘s' s;_\’}-s.’\‘.\:_-.'_:.
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N systematic expansion of the embedding energy in terms of density gradients or pertur-
B bation corrections’. In the local approximation
5
- AE{[n] = AEhom(ni(Ri)), 3.2)
::: where AE"™(n) is the embedding energy of the atom in a homogeneous electron gas
,, . of density n. To simplify the notations we have dropped the subscript i from the func-
; tion AE"™ assuming that there is only one kind of atoms in the system. Using Eq.
e
"":j (3.1) for the density we can write
W2
¥ nij(Rj) = nj(Rj)—na(Rj—R‘-) (3.3)
‘\'}
§ “ot
e and the function AE""'"(nij) needed in Eq. (2.10) can be expanded as
:.’ e hom
LA AE™™(n;)
52 AE"™(n) = AEM™(n) — na(Ri—Rj)T + o (3.4)
o
g
o Expanding also AE"O”'(nijk) in the same way and substituting in Eq. (2.10) we find (by
)
neglecting a small second order term and all higher order terms, see Appendix A)
: ::::: hom 2 A hom
o Eror = NEyroy + X |AE"™(n)) ~ 2 o T T o | (3.5)
PLry L 1 i f
4
:
i By defining a function
: “N hom 2 A r-hom
{ :-,"’ hom _ ho _ _1_ BAE (fl) _1_ ga AE (n)
iy F*"(n) = Extom + AE"™(n) 2 n——-—a” + 6 n ——_8”2 3.6)
‘i.h
v 3:-\'\. the total energy of the metal can be written as
‘
5
N N "
) ETOT = ZF om(n‘-(R‘-)). (37)
A i=1
.
. §: This is of the desired form of Eq. (1.2). In this simplcst local approximation there is
Q]
:'.';: no additional pair potential sum. The relationship (3.6) between the function F*™ and
K,
- the embedding cnergy function AE*™ can also be obtained dircctly by requiring that
Od
::3 / the total cnergy is written in the form of Eq. (2.7) as shown in the Appendix A. A
3
RO
s
;i )

‘.. LN,

B e i T s O S R R R e




purely local expression of the form of Eq. (3.7) can not be a good approximation for

0

solids since it results unreasonable results for elastic constants as shown by Daw and

& Baskes>.
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3.3. Corrections from the perturbation theory

One systematic way to improve the local approximation in the effective medium theory
is to use the perturbation theory”8. The first order correction to the homogeneous elec-

tron gas term of Eq. (3.2) is
AEDR)) = [drAp(r-R)5v*"(r) (3.8)

where Ap,(r) is the atom induces charge density in the homogeneous electron gas
(Ap(r) = An(r)-Z8(r), where An is the induced density) and 8v¥(r) is the difference in
the external potentials between the homogeneous electron gas and the real metal.
Equation (3.8) can be written in a more useful form by using for the homogeneous

electron gas density an average density

oy leg 5, Ap(r-R)
AR =~ [ rmofdr — —— (3.9)
where o is defined as
o = —[drfadr BRETT) (3.10)
Ir—r’|

and is assumed to be nonzero (which is not necessarily true for all Ap”3). Using Eqs.
(3.9) and (3.10) it is straightforward to show that the first order correction reduces to
the electrostatic interaction between the induced charge density of the embedded atom,
Ap, and the total charge density of the system in which the atom is embedded. Eq.

(3.8) then becomes
AEDR)) = J’d3rAp(r-R,-)¢(r) (3.11)

where ¢ is the total electrostatic potential of the system (without the potential of the
atom to be embedded). To be consistent with the approximation (3.1) the pseudoitom
density n, should be taken to be the electron density corresponding to the induced
charge Ap (i.e. Ap minus the nuclear charge). With this approximation the correction

AEY can be written as follows

X

ﬂ\ "

R e, % ‘.. DA R W RG] ;' . e e e .\... « LT O ‘ \!' R
N R R R R N A AR LR S D O 5L {41 i

S,
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P | ~
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v ’

! Ap(r-R)Ap(r'-R))

55 AEDR) = ¥ [rfdy’ P ‘,) L, (3.12)
R oy [r—r’}

.\ . JE

wai Substituting this to Eq. (2.10) it turns out that only the two first sums of the expression
¢

_: : are non-zero. Including also the local part of the embedding energy from the previous
[} {

pU section the total energy of the metal will be

-, 1 ,Ap(r-R)Ap(r'-R))

-3 Eror = TFP™mR)) + = L ¥ [d*rd’r — (3.13)
S' i 255 r—r’]

I

1"

This expression is again of the form of Eq. (1.2), the pair potential being now the elec-
N trostatic interaction between the pseudoatoms. The fact that the average density 7 now

appears in the function F°™ does not make the application of the Eq. (3.13) more

L difficult since the averaging can be made to the pseudoatom density before the summa-
&

%‘, tion of the total density (i.e. the pseudoatom density in Eq. (3.1) is replaced by an

e averaged pseudoatom density n, ). However, there is a self-consistency requirement:

]

5.1,

the induced density Ap should be calculated by embedding the atom in a homogeneous
:}: electron gas of density n which depends on Ap through Eqgs. (3.1) and (3.9). This con-
0 dition can not be strictly fulfilled if the superposition approximation for the total clec-

tron density is required. The most consistent way is to calculate Ap in a density i

';I which is an average over all atom sites (as defined in Appendix C, Eq. (C.3)). The
[
.;-3 induced charge density is spherically symmetric. At small distances from the nucleus it

e
W . .

o is governed by the core electrons and is very close to that of a frce atom. At large

% distances Ap(r) has Friedel oscillations whereas the free atom density goes to zero

’j"

." . . . . . . . . .
"C* exponentially. If the short range atomic like behavior is dominating in the electrostatic
bt sum of Eq. (3.13) then the results should not be sensitive on which density Ap is
*Z: determined. However, if the long range Friedel oscillations turn out to be important,

N .

oo then the self-consistency becomes essential and also the approximation of the superpo-

o
:,\' sition of the pscudoatom densities questionable.

-~
o
t."l
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v':;,' In the perturbation theory also higher order corrections can be systematically added in
. calculating the embedding energy functional in a inhomogeneous electron gas. Since
N ‘ \ . . 3 » .
Y we want to keep the approximation of Eq. (3.1) there is not any obvious systematic

A way to improve the total energy functional , Eq. (2.10), using higher order perturbation

theory.

. V%, 2, 30 --‘ ‘-'\ u'-'-.-‘vp- w* ,m
SRy """‘ ! *""“ '.‘.' s v “‘ .:‘ x LW ", . -‘!‘-"L .‘:"1 Q“ ’,«,:[&Rﬁﬂmmﬁzmmf



-1y —

3.4. Corrections using the mixed perturbation scheme

For taking advantage of the local nature of the screening in metals and for avoiding
the problems arising from the long range Friedel oscillations, Nérskov !3 has proposed
a "mixed perturbation scheme"”. The key idea is that in the close vicinity of the embed-
ded atom (region a;) the potential is governed by the atom and can be approximated to
be the same both in the homogeneous electron gas and in the real metal. Further out,
on the other hand, the potential can be approximated to be that of the host, i.e.

unaffected by the embedded atom. The lowest order correction to AE"™ in this

o
! approach can be written as follows®!3,
)
i ~a
¢ SAE; = [d®rap(r-R)8¢™%(r)
N a;
Kl
X + [d3rAp(r-R)8va,(r)
- a;
: y
, + 8 | deeAn(e) (3.14)
: le
3
&' -a: . . . .

where 8¢ “(r) is the part of the electrostatic potential of the metal which is caused by
) the charges outside the region a; and &v5,,(r) is the change in the external potential

caused by the positive charges inside the region a;. The last integral comes from the
1 change in the one-electron energy eigenvalues when the atom is moved from the
Y

homogeneous electron gas to the rcal metal. The first two integrals are extended over
. a sphere a; centered ar R;. In practice the sphere g; is always so small that inside it
) there is no other nuclei than that of the embedded atom. Then &v5,, is caused by the
; positive background charge of the homogeneous e¢lectron gas. By making again the
t approximation (3.1) of superposition of pscudoatom densities, Eq. (3.14) can be written
! as (see Appendix B for details)

Ap(r-RpAp(r'-R))
' SAE; = ZI(Pr &r — !
' o [r=r’|
A I8
FL}
M
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Ap(r-R)Ap(r'-R))
r—r|

=Y [drfdr

]#l -a;

€

+ 8 [ deeAn(e) (3.15)

where the notation —a; under the integral means that the sphere a; omitted in the

integration.

The change in the one-electron eigenvalues is difficult to estimate. Nérskov et al®
have studied approximate ways to derive this term and thus go beyond the result of
Eq. (3.13). Here we only want to mention that if the potential outside the sphere g; is
assumed to be purely electrostatic and apply simple perturbation theory to estimate the
change in the eigenvalues, the last term in Eq. (3.15) cancels exactly the second term.
The result of the :iormal perturbation theory of Section 3.3 is then recovered. Note that

in this limit the result is independent of the choice of the radius of the sphere a;.
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4. Relation to other methods

4.1. Pair potential

The present result of the effective medium theory, Eq. (3.13), which includes perturba-
tion correction to the local energy functional, can be related to the conventional pair
potential picture derived from the pseudopotentials. This can be done by extracting
from the first term of Eq. (3.13) the pair interaction part and the structure independent

part. The straightforward derivation is done in Appendix C and it gives
Eror = E_[EATOM + AE"™ () — 0"70]
3

[Ap(r-R;)-n (r-R)]Ap(r'-R))
lr—r'|

Lssivie ,

i j#i
where 7y is an average of the (averaged) densities in Eq. (3.9) and Ap and n, are the
charge density and electron density of the pseudoatom, respectively. The first sum is
now structure independent but depends of the volume of the system through 7y . The
second sum is the pair interaction: it is the sum of the electrostatic interactions
between a screened atom (screened pseudopotential) and a bare pseudopotential

expressed in the form

Ap(r-r’) = n,(r-r’)

Vpseudo = J'd3r' [r-r| (4.2)

Note that n, is here the electron density corresponding to the charge density Ap so that

the difference of these is caused by the atomic core (nuclcus) or a positive pseudo-

charge corresponding to the pseudopotential.

Equation (4.1) has exactly the same form than obtained from the pscudopotential
theory using local —pseudopotemials. The volume dependent term is is the embedding
energy of an atom in an homogencous clectron gas without a compensating positive
background charge (subtracting this out gives the third term in Eq. (4.1)). The elec-

trostatic interaction between the atom and compensating positive charges cnters now in
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the second sum as interaction between the atom and bare pseudopotentials (which have
replaced the positive background). The volume dependent term (the first sum in Eq.
(4.1)) can be cast to the form familiar from the perturbation theory by noticing that
AE"™ is the sum of embedding energies of the bare pseudopotential and free electrons
minus the binding energy of the atom (E,rgy). The average electron density 7, as
defined in Appendix C is not exactly the overall average of the valence electron den-
sity which appears in the formulae of the conventional pseudopotential theory. How-
ever, if the potential is weak the difference between these two densities is small and in
this limit of weak pseudopotentials the effective medium result agrees with the pseudo-

potential result.

Dagens, Rasolt, and Taylor!%!5 have developed an method for deriving pair interac-
tions in metals which is related in the effective medium theory in the sense that the
results of atoms embedded in an electron gas was used. In their method the key quan-
tity is the induced electron density of an atom embedded in a jellium vacancy. This
has two obvious advantages. First, the electron density inside a jellium vacancy
describes better than the homogeneous jellium the electron density in the vacancy of
the actual metal. The second advantage is that the density of the electron gas is fixed
to the average valence electron density which e.g. guarantees that the Friedel oscilla-
tions have correct wave length. In the theory of Dagens et al'*! the induced electron

density was used to derive a pseudopotential which then was used in normal way to

calculate the pair ion interaction. In the effective medium theory one could also use
the jellium vacancy model as a reference systcm instead of a homogencous electron
gas. One would then first calculate the embedding energy of an atom in a jellium
vacancy and approximate the functional AE;[n;] by

Ap(r-RpAp(r'-R))
Ir—r]

AE{[n;) = AE™“(R)) + ¥ [r[d*r

J#i

, (4.3)

where the effective elcctron density 7; is now defined requiring
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.0 ,Ap(r-R)m;8(Ir"-R| — Ry) ,Ap(r-R)Ap(r'-R))
oy [drfdr — =3 [drdr —— (49
AL ir=r’| ot r—r’|
=
NN The Wigner-Seitz radius is here determined from the average density of the metal. An
s
; other possibility to satisfy Eq. (4.4) would be to fix the density 7} to be the average
&
valence electrc n density and vary Rys. In any case, the use of the systematic expan-
(]
W sion (2.10) would not any more be straightforward since the evaluation of functionals
A
8 . .
315 AEj[n;] would be more difficult. Also, the electron gas calculations would have two
i:" o¥
parameters, the density and the Wigner-Seitz radius which determines the size of the

[P )
,“ vacancy. Approximation (4.3) would nevertheless lead to a formula which would have
Wil
:,‘. " the same form as (3.13) but where the function F would be related to the embedding
)
Wl . . 19 o . .
{2 energy in a jellium vacancy (not necessanly in the same way as in Fhom 1o AE"™ in
:}j Eq. (3.6)).
LSy
oo
-',-‘,‘v
! e 4.2. Gordon-Kim modcl
P

Y

N 9
AN Gordon and Kim” have proposed a non scitconsistent method for calculating binding
) ) . .
ol energies of molecules. In the simplest torr this theony muakes an assumption that the

S
|l
o ::: total electron density of a molecule s the s perposition of atomic electron densities.
4 ﬁ)’
D)
‘.'._ Density functional approximations are then used to estunate the encrgy change when
et atoms are brought together to form a molecule. The total energy consists of kinetic,
1A
':-’:: electrostatic, and exchange-correlation parts. The electrostane contribution is exactly
Wy
PO ) : : .
hoNY, the same as in Eq. (3.13) when the charge density Ap is taken to be the charge density
.-"_l of a free atom. The simplest approximation for the kinctic and exchange-correlation

l.

"g parts is a local approximation;
N
=W AT + AE,, = [drn(r\in(r)) = Nfd'rng(0)f(ng(r)), (4.5)
sg: where n(r) is the total electron density of the molecule of N atoms (supposed to be
bte
P
'a':f
&}l‘f
,_-,.I::‘ .-
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similar to simplify notations) and f(n) is the energy per electron of a homogeneous
electron gas of density n. By substituting the superposition approximation (3.1) to

n(r), Eq. (4.5) can be written as follows

AT+AE, = ¥ [drn,(r-R) %(Zna(r—Rj)) - f(na(r-R,-))] (4.6)
i j

If we define now an effective density r'i?K (different from that used in the normal

effective medium theory, Eq.(3.9)) as a solution of the following equation

[drn (r-R) [/(na(r—R.-)—zna(r—R,-)) —ﬂna(r—Ro—ﬁ?’()] =0 @.7)

J#i

we can write the total energy as

P 1 ,Ap(r-R)Ap(r'-R))
Eror = SFOKATX) + XX [dr[dr — (4.8)
w3 J*
.,
g
Vi where
™ FOK@) = Exop + [drag(r) [f(na(r)+r'z)—f(na(r))]. (4.9)
o
;I:- Eq.ation (4.8) has now the same form as Eq. (3.13), but the function F is slightly
oA different. Moreover the average density appearing in Eq. (4.8) can not in generally be
expressed as a simple superposition of (averaged) atomic densities without doing addi-
L
$I tional approximations. The non-selfconsistent approach could also be used to estimate
N the embedding energy of an atom in a homogeneous electron gas. Since the atom
-\{
::! electron density is kept frozen there will be no Coulomb contribution to the embedding
]
N energy and it will be, using the same local approximation as in Eq. (4.6),
- AERT(R) = jd3r[(n(,(r>+ﬁ)f<na(r)+m ~ Hf(m) - na(r)ﬂna(r))]. (4.10)
; .
Xy
(':J The relation between AER™ and FOK is not exactly the same as in Eq. (3.6) but gives
< additional terms which nevertheless are smaller than the three first term in Eq. (3.6).
§
)
:Ef The use of the local density approximation for the exchange-correlation cnergy
o
LS
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v functional in Eq. (4.6) is commonly accepted and widely used in the density functional
o«
\.
calculations. For the kinetic energy, however, the local approximation (Thomas-Fermi)
' . . . a
".j is not accurate. Harris!® has made an extension to the Gordon-Kim model, by calcu-
Y
_j lating the kinetic energy change from singe-particle energy eigenvalues. This approach
. )J
> .
- clearly improves the local model, but seems not to be very useful here where we want
-
_"\ to express the energy with help of the electron density alone. Recently Plumer and
%
"r Stott!” have made an extensive study on approximations of the kinetic energy func-

tional. The resulting approximations for embedding energies of atoms in inhomogene-
ous electron gas could be better used in looking for approximations of the form of Eq.

\
Ca
%

N (1.2) for the total energy.
!
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,‘:. \ 4.3. Semiempirical method of Daw and Baskes
e
i Using the ideas of the pseudoatom method of Stott and Zaremba’ Daw and Baskes®
’LS‘E postulated that the total energy is written as
L0y
155 Eror = zi:F(n,-) + %?Z(b(R,-—Rj), (4.12)
JH
:' where #; is the density defined in Eq. (3.1) and taking n, to be the free atom density.
E?u& The pair potential @ was assumed to be a purely repulsive short range potential
” describing the core-core repulsion. The functions F and @ where fitted to reproduce
g experimental lattice constant, elastic constants, vacancy formation and sublimation
'F: energies, and the energy difference between FCC and BCC phases. Equation (4.12)
_ was found to give good results to surface geometries of solid Pd and Ni°, and proper-
\;5 ties of several transition metal liquidslg. The comparison of Eq. (4.12) to Eq. (3.13)
:f shows that even if they have the same form, the individual terms are very different.
‘ ‘ The pair potential in (3.13) is attractive in typical interatomic distances in metals
9 ‘:; whereas in Eq. (4.12) it is weakly repulsive. However, there is an ambiguity in deter-
;ﬁ mining the functions F and ®: any part of the function F which is proportional to the
'Jl density n can be equally well included in the pair potential sum>!8. This means that
,." one can always add to the pair potential d(r) a term yn,(r) where v is any constant by
:’_’? subtracting from the function F(n) the linear term yn. The functions £ and @ from a
) "IA semiempirical scheme can then not be separately compared to those determined from
5%3 an ab initio theory.
S
“? In the semiempirical model one uses directly the density n; without any averaging of
: g the type of Eq. (3.9). If one can approximate n,=cn, where ¢ is a constant, then also
% in Eq. (3.13) 7, can be replaced by n, by redefining the function F. This approxima-
;:;: tion is reasonable if only the short range behavior of n, is important (meaning also that
,3:' one could use the frce atom densities in Eq. (3.13)). The form of the total energy
EE: : assumed by Daw and Baskes 5 can thus be obtained in an approximate way also from
::75.‘.
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f: x> the present theory. One should also mention that in the transition metals the semiem-
r‘
LY pirical formula also includes the interactions between the localized d-electrons, which
_:"' are strongly underestimated in the approximate formula (3.13).
’
[0y
v
)
[/
Ny

S 5. Results

A" . hom . . . —_
by Lo In rare gases the function AE"°™(n) is proportional to the density 7" and the total energy
e of the form of Eq. (3.13) can be expressed as sum of pair interactions. In Fig. 1 the

oy
:fs calculated pair potentials for He, Ne, and Ar are compared to the experimental scatter-
L
‘N . . . . .
4 og ing potentials!®. In the calculations the free atom densities were used for Ap(r). This
; 2 is a good approximation in the case of a rare gas which is a closed shell atom and

3

- . . . .
Y relaxes only slightly when embedded in an low density electron gas. The effective

-
A

% medium theory can not reproduce the attractive part of the potential which is mainly

p due to the van der Waals interaction. In the repulsive region the calculated potentials

‘-- -,
o are in fair agreement with the experimental results.
[ .
D For Al metal we have estimated the cohesive energy, equilibrium lattice constant, bulk
)

AN modulus, vacancy formation energy, and surface energy, using for Ap both the free

>

o : : : . o
*}2 atom density and (in an approximate way) the induced densities in homogeneous clec-
B a
W tron gas. The results are shown in Table I. The free atom density gives a too large lat-
I :‘, tice constant and a too small cohesive energy. The reason is that the function F(n)
: 3:; becomes too repulsive due to the fact that the core electrons overemphasized in deter-
)

2‘: mining 7. When the atom is embedded in an electron gas the screening makes the
Ko atom more compact (only the Friedel oscillations reach further out). This means that
ol . . . - - o :

3 ’: if Ap is the induced density in an electron gas the average density #; in Eq. (3.13) will
Yo

' ‘ . .
1 be smaller and the lattice constant will be reduced from the too large value obtained
“_" . . . . .

RS using the free atom densitics. The usc of functions Ap calculated in a sclf-consistent
) .\l

.,:C way so that it is the induced density of the atom when embedded in the electron gas of
"

\.\3. .
o e e
(3% . .-.'.' -)'s-_‘,.:,‘-_,'l,,\-. f(,,-.:) )
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Ly
density 7; are very tedious to obtain due to the long range Friedel oscillations. As a
O first approximation we have completely neglected these oscillations and approximate
: that Ap(r) is zero beyond a radius R, which is determined as the first radius which
satisfies
b
. [ draper) =o0. (5.1
N r<R,,
: The radius R,, depends on the electron density in which Ap is calculated, and for Al it
" varies from 4.5 to 3.9 when 7 goes from .001 to .03. Since this radius is smaller than
the interatomic distance in Al, the electrostatic interactions in Eq. (3.13) reduces to
; o (mn, where o, is defined in Eq. (B.3) (the integrals go over a sphere of radius R,,).
% The total energy then becomes
Eror=3 {F(/Ti)+‘/zaw(7f,-)ﬁ‘] (5.2)
2 :
and depends in this approximation only on the density. Since there is no pair potential
| part, the equation (5.2) can not reproduce the correct elastic constants or lattice struc-
. ture (any structure would have the same energy). However, it is known that the con-
b tribution from the pair potential sum to the cohesive energy for example in Al is very
'.'E small® and that the energy difference between different lattice structures, e.g. BCC and
y FCC, is small in simple metals. In Figure 2 the total energy of Eq. (5.1) is shown as a
€4
N function of the density n for aluminum. The cohesive properties of Al metal are
E: estimated using the expression (5.2) and again the free atom electron densitics for
:; determining the density #. The interpolation formulae for all the numerical data for Al
T
'g are given in Appendix D and the results are shown in Table I. The agreement with
E the experimental results is better than in using the free atom densitics also in as the
" averaging function. This demonstrates the importance of the screening of the atomic
‘; densities in metals. Still better agreement with the experiments could perhaps be

»

obtained by the fully selfconsistent application of the formula (3.13), but the method
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ol would not any more be practical.
Jo y P
XX
LR?
1294
R
i 6. Discussion and conclusions
‘{T"'
K, Using the effective medium approach we have shown that the the total energy of a
AN
r. . . .
’.'" metal can be written in the form of Eq. (1.2), where the function F can be calculated
e " from the embedding energy of an atom in a homogeneous electron gas, and the pair
o potential contribution becomes the electrostatic interaction between screened atoms.
ab3 : : : : : :
“: The resulting equation (3.13) reduces to the conventional pair potential result in the
,;:::, limit of a weak pseudopotential. In the case where the total electron density is well
#.51
}... described as a superposition of free atom densities, the result of the effective medium
.0. 0\
gt bt . . . .
;:»‘p. theory is closely related to the Gordon-Kim model of molecular binding.
n‘:'
NS
X The application of the formula (3.13) has some unwanted difficulties. The charge den-
" sity Ap is the induced density of an atom embedded in a homogeneous electron gas of
t‘.'i: P g s
)
v - . — . .
'. density np, and has thus long range Friedel oscillations. Since the density ny is gen-
l‘ A '
e erally lower than the average valence electron density of the metal, these oscillations
; ' have a longer wave length than the Friedel oscillations in the real metal. The existence
N
0 o C .
g of these oscillations makes the summations in Eqs. (3.1) and (3.13) slowly converging.
A
) . . . —_ . .
o Another problem is the self-consistency requirement, that 7 should be consistent with
;’ Ap through equations (3.1), (3.9) and (C.1). Fortunately, the main part of the electros-
1
* “1
": tatic interaction comes from small distances where the induced clectron density is
1o o _
Y5 nearly that of a free atom and fairly independent on 7y,
T : . . : . :
:9' <, Even if the equation (3.13) is a result of a systematic calculation it contains only the
t:,.t

( . : - .
:.:.t first terms of the exact expansion (2.10). Morcover, it has the additional approxima-
el
The . - -
o tion (3.1) of superposition of pseudoatom densitics. In the casc of closed shell atoms,
0 . . o
'2:»;,: rare gascs, free atom densities can be used to replace the induced densitics in the Eq.
KRX
=y
o"i:a

" -
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"f (3.13). In the case of metals, however, the screening is more important and can not be
s .. . .
e totally neglected. Estimations of the properties of Al gives reasonable results for the
o . . .
;::'v: cohesive energy and equilibrium lattice constant but underestimates the bulk modulus,
?‘ vacancy formation energy, and surface energy.
{.‘.r
. In conclusion, we have derived an approximate formula for interatomic interactions in
. X g
O solids. In the limit of weak pseudopotentials it reduces to the conventional pair-
il
j potential formula for simple metals and in the limit of extremely rigid atoms (e.g. rare
L}
gas) it is closely related to the Gordon-Kim model for molecular binding. Because the
4 ‘ vy . .
ﬁ formula describes these two extreme limits correctly, it gives support for replacing pair
L}
R potentials for more general interatomic interactions of the form of Eq. (1.2) in com-
3 puter simulations. It seems, however, that ab initio calculations for the functions in
‘
o . . N
o Eq. (1.2) do not give as accurate results as one would want in applications of the
S
; sﬁ method. A semiempirical approach might then be more fruitful in practical applica-
Y ods
tions to molecular dynamics, and the present theory would merely serve as a guideline
2 for parametrizing the functions needed. L
I h)
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Appendix A

Assuming superposition of atomic densities, Eq. (3.1), and taking n(R~R)) to be

small if R,-#Rj, we can write Eq. (3.4) to the second order as

i i s ™ g

-

OAE(n; 02AE(n:
AER™(n) = AP () ~ (i) — AR Pl Nl (A1)
n.
]

nj
and

W AEhom
AEP™ ()= AER™ () [na(i—k)+na<i—k)la——an—k("—")

o
23

e

82 AEhom( nk)

X I

+ [ (kb)) , (A2)

‘-

Lk

:;_;’5‘_ LN

2
ank

ptt Vo

where a short hand notation i—j = R;-R; has been used. Substituting these in Eq. (2.10)

keeping all term shown, we get

-

hom AE(I ‘)
- Eror= NE403 + Z—\E () - 32 (i) B
:-]: ] j;tt nl
1‘; Z il AE(h-) 5 [sniii? O*AE(n) A3)
n(i—j n(i—))|——s——. .
] 6 i |j=i ”i 12 i =i an‘Z
o
7 Since in a solid each atom has of the order of 10 nearest neighbors, it is obvious that
3, the last term in Eq. (A.3) is much smaller than the other second order term. If this last
‘:? term is neglected we get Eq. (3.5) by using the definition of Eq. (3.1) for n;.
:'5":
0
:::: Now we demonstrate that Eq. (3.6) follows dircctly if we require that the total energy
i'.
'o. is written in the form of Eq. (3.7). We assume a perfcct lattice and derive the vacancy
e formation energy for a unrelaxed lauice:
B . ’
u Evae = XIF(n,) = F(n))
' ij
y;i "
o oF(n;) 1 d-F(n))
ALY = JU-0) + —n,(j~i)? — +
i S T
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4 - |
b :
" F(n;)
A% ~ d .
s =n; . Ad :
' on, (A4) |
'
B . - .
- The second order term can be neglected since it is proportional to the sum of squares

'. . - . . . 13 . .
_3:: of individual atomic densities which is much smaller than n,-2. The embedding energy
; is the negative of the sum of the vacancy formation and cohesion energies and in the
Ky L
b local approximation this means that

»
)
& N oF (n))

AF (n,-)~F(n,-) - EATOM - niT, (AS)

e. i
2 for which the expansion (3.6) is a solution.
N
i

Appendix B

Since the electron density is described as in Eq. (3.1) the electrostatic potential 8¢ “(r)

can be written as

A —
% m=3% | d3"—‘p(i -

— ]#l -a;

(B.1)

0 We assume that there is no other positive charges inside g; than the nucleus of the
i atom in question. Then 3V2,, is caused solely by the homogeneous background charge

N of the jellium. In the mixed perturbation theory the effective density is defined as

& A r-R,-A '-R;
3 ey [ RN
.

% Oty jm a;

lr—r'l , (B.2)

R where

= [ Jpr( R)
= J'd {1 Pt (B.3)

)
g The second term in Eq. (3.14) can now be written as
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Ap(r-R)Ap(™-R))
r—r’| '

-, =y J‘d3r'fd3r'

jﬁl. a; a;

(B.4)

Combining this to the first term of Eq. (3.14) where the substitution (B.1) has been

made results Eq. (3.15).

Appendix C

In a nearly homogeneous metal where the pseudopotential approach is good, the varia-
tion in the average densities #(R;) at different sites R; is small. We define
1 N
my = -ﬁZmR‘.) C.1)

i=1

and write the first term in Eq. (3.13) as

SFmER,) = tho”'[zna(R,— j)]
i i J#i

i B _ _ ) Fhom(l_lb )
b~ Z F 0’"()10) + Z"a(Ri—Rj) - nl—— (CZ)
i f*‘. allo

Describing F*°™ in terms of AE**™ and including only the first two terms in the expan-
b4 4 y p

sion (3.6) we get

aAEhom T)
ZFhOM(,—l-O) = Z AElxom('To) _ 'TO — ¢ 0
i i 0

1 JAEM™ (i) 1 ¢ a Ap(r’)
—_— ——[d*rn (R~R 1) |[Br —, (C.3)
2 oy 21:5 aI o J- [r-r’|

where 71, is described in terms of #, using Eq. (3.9). Since a defined in Eq. (3.10) can

be shown to be exactly’s
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XX -
o
.t / aAEhOM(—)
04 n
e 0=+ — (C4)
|"'| a'To
o equation (C.3) immediately gives Eq. (4.1).
')kg
L
b
)
":(:I’
;:Q. dix D
:::?:: Appendix
i.'ﬂ
’ ‘\"-‘E The embedding energy AE"™ was approximated by an analytic fit to the numerical
o)
-§::| '. data. This was chosen to be
Lk
ol AE"™(n) = —1.65 + 1250n — 490¢™1207 (D.1)
:‘.' .;,: where n is in atomic units and AE in €V. The function o,(n) was approximated by
R
B i)
a,(n) = —1002 - 68.24n%>, (D.2)
:0 O
o Both above expressions describe the numerical results for aluminum with 0.1 eV accu-
ak
:“. racy within the density range n=0.001 - - - 0.03. The averaging of the atomic electron
:",f. density using the function Ap with a cutoff radius R, defined in Section 5 results to a
2 nearly constant enhancement to the local density. This is approximated by
v
by m(r) = Yny(R) (D.3)
s i; v
:':E::": where v depends on the average density 7 as
R
o
4o Y(n) = 1.369 + 0478013, (D.4)
RAN]
The Gunnarsson-Lundqvist interpolation formula™ for the exchange-correlation poten-
e 4
- ’ tial was used in the calculations of AE**™ and the electron densities of free atoms.
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i::ﬁ.: Table I: Calculated properties of aluminum metal. In the non-selfconsistent model the

Eq. (3.13) and in the semi-selfconsistent model the Eq. (5.2) were used, respectively.

o
-

In both cases the electron densities of free atoms were used. The experimental surface

s
-

*-::; energy is estimated from the surface tension of the liquid phase.

-

"'

g

/]
-

-

1

non-selfconsistent  semi-selfconsistent  experimental

Lattice constant (a.u.) 9.8 7.3 7.6
Cohesion energy (eV) 2.2 3.3 3.3
Bulk modulus (Mbar) 0.1 0.3 0.7
Vacancy formation energy (eV) 0.05 0.2 0.7
_ Surface energy (111) (erg/iem?) 50 260 700
','3. Surface energy (100) (erg/cm?) 30 170 700
A
’:!, )
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e Figure captions

Figure 1. Interatomic potentials for He, Ne, and Ar. The solid lines are the results of
» the present calculation and the dashed lines the experimental results!®. Note the change

of the vertical scale from linear to logarithmic at 10 meV.

" Figure 2. The variation of the approximate total energy of Eq. (5.2) as a function of
the average electron density 7 at a lattice site in aluminum. The quantity plotted is

o AF = Eror/N-Esrom-
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