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INTERATOMIC INTERACTIONS IN SOLIDS:

AN EFFECTIVE MEDIUM APPROACH

M. Manninen
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Abstract

The description of the total energy of a solid in terms of the effective medium theory

has been studied. Using the density functional theory an exact symmetric formula is

presented for describing the total energy in terms of embedding energies of individual

atoms. Different approximate formulae are derived and compared to the conventional

pair potential representation, to the model of Gordon and Kim, and to the semiempiri-

cal embedded atom scheme of Daw and Baskes. The theory is applied to estimate the

pair potential in rare gases He, Ne, and Ar, and the cohesive properties of Al metal. A

fair agreement with the experimental results is obtained. %Ah;%
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1. Introduction

The study of static and dynamic properties of lattice defects using molecular dynamics

is based on the pair potential representation of the structural part of the total energy of

the system'. In metals this is usually written as

1L N
ETOT = 2..;VP(R-R j) + E~ot, (1.1)

where Vp is the pair potential, Ri a position of an atomic nucleus and N is the total

number of atoms. E~d is an energy term which depends only on the volume (or den-

sity) of the system but not on the structure. A pair potential expression of the form of

Eq. (1.1) is formally obtained by describing the metal ions by pseudopotentials and

applying second order perturbation theory to calculate the total energy?- 3. Several

different schemes have been proposed to determine the pseudopotential and the

corresponding pair potential. In alkali and other nontransition metals the results

obtaincd for example for the phonon spectra are in fair agreement with the experimen-

tal results4. However, the pair potential picture becomes questionable when applied to

lattice defects which cause large perturbations to the nearly homogeneous valence elec-

tron density of the perfect metal. Also the treatment if impurities in the pseudopoten-

tial scheme is not straightforward.

Recently, another method has been proposed for calculating the interionic interac-

tions5,6. In this so-called "embedded atom" method one tries to write the total energy

in the form

N I
ETOT = F(ni(Ri)) + 2 $(R 5-R), (1.2). i 2 ij

where F is a function of the electron density ni at the site of the atom i and 0 is the
kpi

residual part of the pair ion interaction which can not be included in the first term of

Eq. (1.2). The density ni is the electron density at site Ri when the atom from that site

is removed, i.e. it is the electron density provided by the surrounding atoms. The idea

. . --
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is to approximate the total electron density as a superposition of atomic densities na in

which case ni is

N
ni(Ri) = _, a(Rj-Rj). (1.3)

j~i

The equations (1.2) and (1.3) are essentially as easy to use in the computer simulations

as the standard pair potential, Eq. (1.1).

The function F(n) is generally nonlinear and then the first term implicitly takes into

account the volume dependent terms of Eq. (1.1). Also, the expression (1.2) includes

multi-ion interactions 18 . It is expected that the embedded atom scheme can then better

describe defects like vacancies and surfaces where the density variations are large.

The idea behind the Eq. (1.2) comes from the so-called "effective medium" or "pseu-

doatom" theory first presented for calculating the energetics of single impurities in

metals 7 8. Daw and Baskes5 have applied successfully the embedded atom method for

many transition metal systems by taking an empirical approach, the functions F and 4)

are fitted to reproduce some experimental data.

The purpose of the present paper is to look more formally the possibilities of deriving

interionic interactions of the form of Eq. (1.2) using the effective medium theory.

First the total energy of the solid (in any ionic arrangement) is written in a symmetric

way in terms of the electron densities provided by the surrounding atoms. This can be

done formally exactly using the density functional theory. Then approximate formulae

are derived by using the same approaches which have been earlier applied for single

impurities. It is shown that the first order approximation, in the limit of a weak distur-

bance from a homogeneous lattice, reduces to the conventional pair potential picture

with the same pair potential as obtained from the perturbation theory. In the case of

rare gases, on the other hand, the result is closely related to the Gorgon-Kim 9 model

for molecular binding.



-3-

In Section 2 we present a formal derivation of the total energy in terms of density

functionals. In Section 3 approximations are made for obtaining a usable equation of

the form of Eq. (1.2). In Section 4 the results are compared to the conventional pair

potential picture, to the scheme of Gordon and Kim9, and to the semi-empirical for-

malism of Daw and Baskes . Approximative ( ab initio ) results for rare gases and Al

metal are given in Section 5. Section 6 includes discussion and conclusions.

'
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2. Formal theory

According to the density functional theory1°'1' the total energy of system of electrons

in an external potential can be expressed as a functional of the total electron density.

This functional has the variational property that the exact ground state electron density

minimizes it 12. In a solid the external potential is provided by the atomic nuclei which

are fixed a sites R i (adiabatic Born-Oppenheimer approximation is assumed). The total

energy of the metal consisting of N atoms is

ETOT = ENR[n] (2.1)

where n is the total ground state electron density and the subscript R indicates that the

functional depends on the sites R i and charges Zi of the nuclei (also the electrostatic

nucleus-nucleus repulsion is included). If one atom is removed from the metal the

energy change, the so-called embedding energy, is

EN - E N - EATOM, (2.2)

where EATOM is the total energy of a free atom in vacuum. The subscript i indicates

that the energy depends upon which atom is removed. The embedding energy can be

written as7

AE i = AEi[ni], (2.3)

where ni is the self-consistent ground state electron density in the system after the

atom i has been removed (but other atom sites are kept fixed). Equation (2.3) is a

trivial generalization of the density functional theorem. The density ni uniquely

defines the external potential of the N-1 nuclei. Then, since the site of the removed

atom RL is known, also the external potential of the original system with N atoms is

known and both El" and ENoT can be formally expressed as functionals of the same

density ni. This is the key idea of the effective medium theory when applied to calcu-

late energetics of impurities in metals. It simply means that the binding energy of the

th



, impurity can be calculated directly from the unperturbed electron density of the host

metal','.

Using Equations (2.2) and (2.3) we write the total energy of the metal now in terms of

the embedding energies. By removing one atom we can immediately write

ETOT = Ero-[ni] + AEi[ni] + EATOvf. (2.4)

We can successively remove atoms one by one and get finally

N-I

ETOT = NEATOM + AEj[n 123... i (2.5)~i--1

where N is the number of atoms in the system and n 123 ..,i is the self-consistent electron

density of the system where atoms at the sites 1,2,3, - • • i have been removed. Each

term of this sum depends upon which atom is removed and which atoms had been

taken out before. By taking an average of all possible orders of removing the atoms

the equation (2.6) can be made symmetric:

1 N-1
ETOT = NEATOM + - Y AEi[ni] + N(N1) " AEj[nij]

+ -Z " ~~n +
N(N-1)(N-2) ijAk

=NEATOM+S1 +S 2 +S 3 + " (2.6)

The prime in the sums above indicates that terms which have two or more indexes the

same are omitted. Each sum in Eq. (2.6) contributes about the same order of magni-

tude to the total energy. To find a convergent series we first define sums

S2 N(n-l)-Aij Ej[nij] - AEj[nj] (2.7)

S3= '~'AF[n:,1l - AEk[nikJ - AETn '1 + AFFnIrk (2.8)
=N(N-I)(N-2) ij,.



In these sums only those terms in which each of the removed atoms are close to each

other are non-negligible. If the atoms are far apart they do not interact

(AEj[nij ] = AEj[nj] if iR-Rj large). The sums S are related to the sums S in Eq. (2.6)

by

Sn=S, + n-2 Jn- + + S1 . (2.9)

Equation (2.6) can now be rewritten as

ETOT = NEATOM + XAEi[n i]

+ l2Zi' (Ej[nij] - AEj[nj]l

+ f AEk[nijk - &Ek[nik - &Ek[njk] + AEk[n] ]69 ij,k

+ • • (2.10)

Now in each sum (except in the first) each term is negligible if any pair of the sites

are far from each other. It is then expected that the expansion converges fast even if

each sum has seemingly more terms than the previous one. (For example later it will

be shown that in calculating electrostatic interactions between atoms, only the first two

sums in this expansion are nonzero).

In this functional form the Eq. (2.10) is exact. In a large perfect crystal, each atom is

in a similar surrounding. The cohesive energy can the be expressed as

Ecoh = -AEj[nj - -Lj- [AEg[njj - AEjitjn]) + (2.11)2 i

and since, by definition, AEi[ni] is the embedding energy of an atom in a pre-existing

vacancy, the vacancy formation energy (for an unrelaxed vacancy) is

S AEj[, AEjj]

2 rL



The exact symmetric expression, Eq. (2.10), is now a starting point in trying to find

applicable approximate formulae.

Ii

.,

4

I S°



3. Approximative expressions

3.1. Electron density

The electron density which determines the embedding energy in the functional

AEi[n123...i] is the self-consistent ground state electron density of the system where

atoms from sites 123...i are removed. It is obvious that any expression based on the

embedding energy functionals can not be useful if the self-consistent electron density

has to be calculated for each atomic configuration. (It would then be easier to calcu-

late directly the total energy of the whole system self-consistently and the effective

. medium theory would not be needed at all). For making a practical scheme, the elec-

*. tron density has to be approximated by a superposition of densities associated with

each atom. These densities na(r-Ri) do not necessarily have to be the densities of free

atoms but can be densities of some kind of pseudoatoms which better describe the

screening charge in the metal. (In the linear screening of pseudopotentials 1ta would be

exactly the screening charge of the pseudopotential).

In the following we will always make the approximation that the density can be

expressed as

N
n123...(r). = na(r-Rj), (3.1)

j -i+1

and specify later, whenever necessary, what exactly is meant by the pscudoatom den-

sity na.

3.2. Local approximation for the embedding finctional

As an illustrative example we will now assume that the embedding energy is a func-

tion of the local electron density. This is the simplest form of the embcdding energy

functionals. The function can be calculated for example by embedding the atom in a

homogeneous electron gas, in which case it can be viewed as the first term in a

; ; ? ' ' : ? ? .' : .:. ...: :: . ,..',. -.= ,-.T '2 ,,.-,? .? .: .' ., . .2 2 ? W..%? .



systematic expansion of the embedding energy in terms of density gradients or pertur-

bation corrections7 . In the local approximation

AEi[ni] = AE&m(ni(Ri)), (3.2)

where AEh° (n) is the embedding energy of the atom in a homogeneous electron gas

of density n. To simplify the notations we have dropped the subscript i from the func-

tion AEh m assuming that there is only one kind of atoms in the system. Using Eq.

(3.1) for the density we can write

nij(R ) = n(Rj)-na(Rj-Ri) (3.3)

and the function AEhm(nij) needed in Eq. (2.10) can be expanded as

aAE110m(ni)
AEhm(nij) -= AEhom(nzj) - na(Rj-Rj) - + • (3.4).', anj

Expanding also AEhm(ijk) in the same way and substituting in Eq. (2.10) we find (by

neglecting a small second order term and all higher order terms, see Appendix A)

" r i aM hor(ni) 1 2 a 2 AEhon(ni)

ETOT = NEATOM + ] AEho(nd-ini 6 £ (3.5)
i2 n Jni  6n.

By defining a function

1hom h I AEhOm(n) 1 , D2 AEh"m(n) (3.6)

Fh(n) = EATOM + hE - -n + -,n-
2 dn 6 an2

the total energy of the metal can be written as

N
ETOT = IFhom(ni(Ri)). (3.7)

This is of the desired form of Eq. (1.2). In this simplest local approximation there is

no additional pair potential sum. The relationship (3.6) between the function Fh'n and

the embedding energy function AEho" can also be obtained directly by requiring that

the total energy is written in the form of Eq. (2.7) as shown in the Appendix A. A

'u4o



purely local expression of the form of Eq. (3.7) can not be a good approximation for

solids since it results unreasonable results for elastic constants as shown by Daw and

Baskes5 .

I.
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3.3. Corrections from the perturbation theory

One systematic way to improve the local approximation in the effective medium theory

is to use the perturbation theory7'8 . The first order correction to the homogeneous elec-

tron gas term of Eq. (3.2) is

AE(')(R i) = fd3rAp(r-Rj)Sve#a(r) (3.8)

where Api(r) is the atom induces charge density in the homogeneous electron gas

(Ap(r) = An(r)-ZS(r), where An is the induced density) and 8v'(r) is the difference in

-w the external potentials between the homogeneous electron gas and the real metal.

Equation (3.8) can be written in a more useful form by using for the homogeneous

electron gas density an average density

i" 1(Ri) = -lfd3rni(r)fd3rAp(r'-Ri)
c JIr-r'l (3.9)

where c is defined as

a = -fd 3rfd3r' Ap(r-r') (3.10), ,:?; J j Ir-r'l

and is assumed to be nonzero (which is not necessarily true for all Ap7'8). Using Eqs.

(3.9) and (3.10) it is straightforward to show that the first order correction reduces to

the electrostatic interaction between the induced charge density of the embedded atom,

Ap, and the total charge density of the system in which the atom is embedded. Eq.

(3.8) then becomes

AE(I)(Ri) = fd 3rAp(r-Ri)0(r) (3.11)

where 0 is the total electrostatic potential of the system (without the potential of the

atom to be embedded). To be consistent with the approximation (3.1) the pseudoatom

density na should be taken to be the electron density corresponding to the induced

charge Ap (i.e. Ap minus the nuclear charge). With this approximation the correction

AE(t) can be written as follows

. 'll I . -. ..- . N , , ,' % %



AE()(Ri) = _ d 3 rd' Ap(r-Ri)Ap(r'-RJ) (3.12)ri [r-r'

Substituting this to Eq. (2.10) it turns out that only the two first sums of the expression

are non-zero. Including also the local part of the embedding energy from the previous

section the total energy of the metal will be

ETOT = hom(R))+ 2 j r-r'l (3.13)

This expression is again of the form of Eq. (1.2), the pair potential being now the elec-

trostatic interaction between the pseudoatoms. The fact that the average density know

appears in the function Fh' m does not make the application of the Eq. (3.13) more

difficult since the averaging can be made to the pseudoatom density before the summa-

tion of the total density (i.e. the pseudoatom density in Eq. (3.1) is replaced by an

averaged pseudoatom density h-, ). However, there is a self-consistency requirement:

the induced density Ap should be calculated by embedding the atom in a homogeneous

electron gas of density itwhich depends on Ap through Eqs. (3.1) and (3.9). This con-

dition can not be strictly fulfilled if the superposition approximation for the total elec-

tron density is required. The most consistent way is to calculate Ap in a density ho

which is an average over all atom sites (as defined in Appendix C, Eq. (C.3)). The

induced charge density is spherically symmetric. At small distances from the nucleus it

is governed by the core electrons and is very close to that of a free atom. At large

distances Ap(r) has Friedel oscillations whereas the free atom density goes to zero

exponentially. If the short range atomic like behavior is dominating in the electrostatic

sum of Eq. (3.13) then the results should not be sensitive on which density Ap is

determined. However, if the long range Friedel oscillations turn out to be important,

then the self-consistency becomes essential and also the approximation of the superpo-

sition of the pseudoatom densities questionable.



In the perturbation theory also higher order corrections can be systematically added in

calculating the embedding energy functional in a inhomogeneous electron gas. Since

we want to keep the approximation of Eq. (3.1) there is not any obvious systematic

way to improve the total energy functional , Eq. (2.10), using higher order perturbation

theory.

4.
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3.4. Corrections using the mixed perturbation scheme

For taking advantage of the local nature of the screening in metals and for avoiding

the problems arising from the long range Friedel oscillations, Ndrskov 13 has proposed

a "mixed perturbation scheme". The key idea is that in the close vicinity of the embed-

ded atom (region ai) the potential is governed by the atom and can be approximated to

be the same both in the homogeneous electron gas and in the real metal. Further out,

on the other hand, the potential can be approximated to be that of the host, i.e.

unaffected by the embedded atom. The lowest order correction to AE h '" in this

approach can be written as follows6, 13,

iAE "= Sd3rAp(r-Ri)&-a'(r)
a.

+ fd 3rAp(r-Ri) ve(r)
ai

+ 5 J dcuAn(E) (3.14)

where ,-a;(r) is the part of the electrostatic potential of the metal which is caused by

the charges outside the region ai and 8va (r) is the change in the external potential

caused by the positive charges inside the region ai. The last integral comes from the

change in the one-electron energy eigenvalues when the atom is moved from the

homogeneous electron gas to the real metal. The first two integrals are extended over

a sphere ai centered ar Ri. In practice the sphere ai is always so small that inside it

there is no other nuclei than that of the embedded atom. Then 5 va is caused by the

positive background charge of the homogeneous electron gas. By making again the

approximation (3.1).of superposition of pseudoatom densities, Eq. (3.14) can be written

as (see Appendix B for details)

5AE = Ap(r-Ri)Ap(r'-Rj)

i Y rfetr'- r-r'
is'o



-~f drfd'r' Ap(r-R1)Ap(r'-Rj)
jri -a, Ir-r'

EF

+ 8 f d.cAn(e) (3.15)

where the notation -a i under the integral means that the sphere ai omitted in the

integration.

The change in the one-electron eigenvalues is difficult to estimate. N46rskov et a16

have studied approximate ways to derive this term and thus go beyond the result of

Eq. (3.13). Here we only want to mention that if the potential outside the sphere ai is

assumed to be purely electrostatic and apply simple perturbation theory to estimate the

change in the eigenvalues, the last term in Eq. (3.15) cancels exactly the second term.

The result of the n ormal perturbation theory of Section 3.3 is then recovered. Note that

in this limit the result is independent of the choice of the radius of the sphere ai.

'4
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4. Relation to other methods

4.1. Pair potential

The present result of the effective medium theory, Eq. (3.13), which includes perturba-

tion correction to the local energy functional, can be related to the conventional pair

potential picture derived from the pseudopotentials. This can be done by extracting

from the first term of Eq. (3.13) the pair interaction part and the structure independent

part. The straightforward derivation is done in Appendix C and it gives

ETOT = . (EATOM + iEhm(no) - thlo]

+ 1 .. f~rl3r' - [Ap(r-Ri)-na,(r-Ri)]Ap(r'-Rj)r-''(41
+ 2~ Efd'rfd r'r-I, (4.1)

where H0 is an average of the (averaged) densities in Eq. (3.9) and Ap and na are the

charge density and electron density of the pseudoatom, respectively. The first sum is

now structure independent but depends of the volume of the system through h-0 . The

second sum is the pair interaction: it is the sum of the electrostatic interactions

between a screened atom (screened pseudopotential) and a bare pseudopotential

expressed in the form

VPs eud = fd3 r"' Ap(r-r') - na(r-r') (4.2)

Ir-r'l

Note that na is here the electron density corresponding to the charge density Ap so that

the difference of these is caused by the atomic core (nucleus) or a positive pseudo-

charge corresponding to the pseudopotential.

Equation (4.1) has exactly the same form than obtained from the pseudopotential

theory using local pseudopotentials. The volume dependent term is is the embedding

energy of an atom in an homogeneous electron gas without a compensating positive

background charge (subtracting this out gives the third term in Eq. (4.1)). The elec-

trostatic interaction between the atom and compensating positive charges enters now in



the second sum as interaction between the atom and bare pseudopotentials (which have

replaced the positive background). The volume dependent term (the first sum in Eq.

(4.1)) can be cast to the form familiar from the perturbation theory by noticing that

AEhom is the sum of embedding energies of the bare pseudopotential and free electrons

minus the binding energy of the atom (EATOM). The average electron density - as

defined in Appendix C is not exactly the overall average of the valence electron den-

sity which appears in the formulae of the conventional pseudopotential theory. How-

ever, if the potential is weak the difference between these two densities is small and in

this limit of weak pseudopotentials the effective medium result agrees with the pseudo-

potential result.

Dagens, Rasolt, and Taylor 14,1 5 have developed an method for deriving pair interac-

tions in metals which is related in the effective medium theory in the sense that the

results of atoms embedded in an electron gas was used. In their method the key quan-

Stity is the induced electron density of an atom embedded in a jellium vacancy. This

has two obvious advantages. First, the electron density inside a jellium vacancy

describes better than the homogeneous jellium the electron density in the vacancy of

the actual metal. The second advantage is that the density of the electron gas is fixed

to the average valence electron density which e.g. guarantees that the Friedel oscilla-

tions have correct wave length. In the theory of Dagens et al14' 15 the induced electron

density was used to derive a pseudopotential which then was used in normal way to

calculate the pair ion interaction. In the effective medium theory one could also use

the jellium vacancy model as a reference system instead of a homogencous electron

gas. One would then first calculate the embedding energy of an atom in a jellium

vacancy and approximate the functional AEi[ni] by

AEi[nil = AEac(nii) Xv+ d3 rd 3r, Ap(r-Ri)Ap(r'-Rj) (4.3)

I+ Ir-r'l
j*i

where the effective electron density ii' is now defined requiring



Sd rjd r,._Ap(r-Ri)njO(Ir'-RI - Rjts) = Xyd3 rfd3r, Ap(r-Ri)Ap(r'-Rj)
r -.r f Ir - r 'l

The Wigner-Seitz radius is here determined from the average density of the metal. An

other possibility to satisfy Eq. (4.4) would be to fix the density ?i' to be the average

valence electr n density and vary Rgs. In any case, the use of the systematic expan-

sion (2.10) would not any more be straightforward since the evaluation of functionals

AE[nq] would be more difficult. Also, the electron gas calculations would have two

parameters, the density and the Wigner-Seitz radius which determines the size of the

vacancy. Approximation (4.3) would nevertheless lead to a formula which would have

the same form as (3.13) but where the function F would be related to the embedding

energy in a jellium vacancy (not necessarily in the same way as in Fhot to AEhm in

Eq. (3.6)).

4.2. Gordon-Kim model

Gordon and Kim 9 have proposed a n,,n sclitn,:,tcnt method for calculating binding

energies of molecules. In the simplest to ' 0h1I theorN makes an assumption that the

total electron density of a molecule is the v )c-o)-stion of atomic electron densities.

Density functional approximations are tl.on uscJ to estimate the energy change when

atoms are brought together to form a molecule. lhe total cnergy consists of kinetic,

electrostatic, and exchange-correlation parts. 'he electrostatic contribution is exactly

the same as in Eq. (3.13) when the charge density Ap is taken to be the chi.rge density

of a free atom. The simplest approximation for the kinetic and exchange-correlation

parts is a local appioximation;

AT + AExc = fd3rn(ryf(n(r)) - Nf,'3rna(r)f(na(r)), (4.5)

where n(r) is the total electron density of the molecule of N atoms (supposed to be
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similar to simplify notations) and fln) is the energy per electron of a homogeneous

electron gas of density n. By substituting the superposition approximation (3.1) to

n(r), Eq. (4.5) can be written as follows

AT+AEXC =YXId3 rna(r-Ri)j)) -f(na(r-Ri) (4.6)

If we define now an effective density n (different from that used in the normal

effective medium theory, Eq.(3.9)) as a solution of the following equation

fd3rna(r-Ri) L(na(-Ri)--na(r-Rj)) -ftna(r-Ri)-iK)] 0  (4.7)

we can write the total energy as

EoT = ZFGK(- K) + j ,dyrldr, Ap(r-Ri)Ap(r'-Rj)
"'-~ ~ i" ',i j.r-r'l '(48

where

FG(n-) - EATOM + drn,,(r) n,(r)+n-)-f(na(r)). (4.9)

EqLation (4.8) has now the same form as Eq. (3.13), but the function F is slightly

different. Moreover the average density appearing in Eq. (4.8) can not in generally be

expressed as a simple superposition of (averaged) atomic densities without doing addi-

tional approximations. The non-selfconsistent approach could also be used to estimate

the embedding energy of an atom in a homogeneous electron gas. Since the atom

electron density is kept frozen there will be no Coulomb contribution to the embedding

energy and it will be, using the same local approximation as in Eq. (4.6),

AE,.(n-) fd (jr)+h)f(na(r)+fi) - h(if) - fa(r)fna(r))]. (4.10)

The relation between AE h"' and FGK is not exactly the same as in Eq. (3.6) but gives

additional terms which nevertheless are smaller than the three first term in Eq. (3.6).

The use of the local density approximation for the exchange-correlation energy
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functional in Eq. (4.6) is commonly accepted and widely used in the density functional

calculations. For the kinetic energy, however, the local approximation (Thomas-Fermi)

is not accurate. Harris 16 has made an extension to the Gordon-Kim model, by calcu-

lating the kinetic energy change from singe-particle energy eigenvalues. This approach

clearly improves the local model, but seems not to be very useful here where we want

to express the energy with help of the electron density alone. Recently Plumer and

Stott 17 have made an extensive study on approximations of the kinetic energy func-

tional. The resulting approximations for embedding energies of atoms in inhomogene-

ous electron gas could be better used in looking for approximations of the form of Eq.

(1.2) for the total energy.
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4.3. Semiempirical method of Daw and Baskes

Using the ideas of the pseudoatom method of Stott and Zaremba7 Daw and Baskes 5

postulated that the total energy is written as

ETOT = XF(ni) + 1.. I(Ri-Ry), (4.12)

i 2 i j

where ni is the density defined in Eq. (3.1) and taking na to be the free atom density.

The pair potential (D was assumed to be a purely repulsive short range potential

describing the core-core repulsion. The functions F and (D where fitted to reproduce

experimental lattice constant, elastic constants, vacancy formation and sublimation

energies, and the energy difference between FCC and BCC phases. Equation (4.12)

was found to give good results to surface geometries of solid Pd and Ni5, and proper-

ties of several transition metal liquids 18. The comparison of Eq. (4.12) to Eq. (3.13)

* ~shows that even if they have the same form, the individual terms are very different.

The pair potential in (3.13) is attractive in typical interatomic distances in metals
:, whereas in Eq. (4.12) it is weakly repulsive. However, there is an ambiguity in deter-
-I

mining the functions F and D: any part of the function F which is proportional to the

density n can be equally well included in the pair potential sum 5,18 . This means that

one can always add to the pair potential D(r) a term yna(r) where y is any constant by

subtracting from the function F(n) the linear term yn. The functions F and D from a

semiempirical scheme can then not be separately compared to those determined from

an ab initio theory.

4 ,j In the semiempirical model one uses directly the density ni without any averaging of

the type of Eq. (3.9). If one can approximate -aCfna, where c is a constant, then also

in Eq. (3.13) F can be replaced by na by redefining the function F. This approxima-

tion is reasonable if only the short range behavior of na is important (meaning also that

one could use the free atom densities in Eq. (3.13)). The form of the total energy

assumed by Daw and Baskes 5 can thus be obtained in an approximate way also from



the present theory. One should also mention that in the transition metals the semiem-

pirical formula also includes the interactions between the localized d-electrons, which

are strongly underestimated in the approximate formula (3.13).

5. Results

In rare gases the function AEhm(n-) is proportional to the density i-and the total energy

of the form of Eq. (3.13) can be expressed as sum of pair interactions. In Fig. 1 the

calculated pair potentials for He, Ne, and Ar are compared to the experimental scatter-

ing potentials 19. In the calculations the free atom densities were used for Ap(r). This

is a good approximation in the case of a rare gas which is a closed shell atom and

relaxes only slightly when embedded in an low density electron gas. The effective

medium theory can not reproduce the attractive part of the potential which is mainly

due to the van der Waals interaction. In the repulsive region the calculated potentials

are in fair agreement with the experimental results.

For Al metal we have estimated the cohesive energy, equilibrium lattice constant, bulk

modulus, vacancy formation energy, and surface energy, using for Ap both the free

atom density and (in an approximate way) the induced densities in homogeneous elec-

Stron gas. The results are shown in Table I. The free atom density gives a too large lat-

tice constant and a too small cohesive energy. The reason is that the function F(n)

becomes too repulsive due to the fact that the core electrons overemphasized in deter-

mining hF When the atom is embedded in an electron gas the screening makes the

atom more compact (only the Friedel oscillations reach further out). This means that

if Ap is the induced density in an electron gas the average density Fii in Eq. (3.13) will

be smaller and the lattice constant will be reduced from the too large value obtained

using the free atom densities. The use of functions Ap calculated in a self-consistent

way so that it is the induced density of the atom when embedded in the electron gas of

%i.
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density -i are very tedious to obtain due to the long range Friedel oscillations. As a

first approximation we have completely neglected these oscillations and approximate

that Ap(r) is zero beyond a radius R,, which is determined as the first radius which

satisfies

f d3rAp(r) = 0. (5.1)
r<R,.

The radius Rm depends on the electron density in which Ap is calculated, and for Al it

varies from 4.5 to 3.9 when h-goes from .001 to .03. Since this radius is smaller than

the interatomic distance in Al, the electrostatic interactions in Eq. (3.13) reduces to

Oaat(n-)i where oxat is defined in Eq. (B.3) (the integrals go over a sphere of radius R,).

The total energy then becomes

ETOT = [F(Fi)+/2(C( ]i) fi (5.2)

and depends in this approximation only on the density. Since there is no pair potential

part, the equation (5.2) can not reproduce the correct elastic constants or lattice struc-

ture (any structure would have the same energy). However, it is known that the con-

tribution from the pair potential sum to the cohesive energy for example in Al is very

- small 3 and that the energy difference between different lattice structures, e.g. BCC and

FCC, is small in simple metals. In Figure 2 the total energy of Eq. (5.1) is shown as a

function of the density Fi- for aluminum. The cohesive properties of Al metal are

estimated using the expression (5.2) and again the free atom electron densities for

determining the density . The interpolation formulae for all the numerical data for Al

are given in Appendix D and the results are shown in Table I. The agreement with

•.' the experimental results is better than in using the free atom densities also in as the

' averaging function. This demonstrates the importance of the screening of the atomic

densities in metals. Still better agreement with the experiments could perhaps be

obtained by the fully selfconsistent application of the formula (3.13), but the method

Av



would not any more be practical.

6. Discussion and conclusions

Using the effective medium approach we have shown that the the total energy of a

metal can be written in the form of Eq. (1.2), where the function F can be calculated

from the embedding energy of an atom in a homogeneous electron gas, and the pair

potential contribution becomes the electrostatic interaction between screened atoms.

The resulting equation (3.13) reduces to the conventional pair potential result in the

limit of a weak pseudopotential. In the case where the total electron density is well

described as a superposition of free atom densities, the result of the effective medium

theory is closely related to the Gordon-Kim model of molecular binding.

The application of the formula (3.13) has some unwanted difficulties. The charge den-

sity Ap is the induced density of an atom embedded in a homogeneous electron gas of

density Fi0, and has thus long range Friedel oscillations. Since the density - 0 is gen-

erally lower than the average valence electron density of the metal, these oscillations

have a longer wave length than the Friedel oscillations in the real metal. The existence

of these oscillations makes the summations in Eqs. (3.1) and (3.13) slowly converging.

Another problem is the self-consistency requirement, that i 0 should be consistent with

Ap through equations (3.1), (3.9) and (C.1). Fortunately, the main part of the electros-

tatic interaction comes from small distances where the induced electron density is

nearly that of a free atom and fairly independent on ;0.

Even if the equation (3.13) is a result of a systematic calculation it contains only the

first terms of the exact expansion (2.10). Moreover, it has the additional approxima-

tion (3.1) of superposition of pseudoatom densities. In the case of closed shell atoms,

rare gases, free atom densities can be used to replace the induced densities in the Eq.



(3.13). In the case of metals, however, the screening is more important and can not be

totally neglected. Estimations of the properties of Al gives reasonable results for the

cohesive energy and equilibrium lattice constant but underestimates the bulk modulus,

vacancy formation energy, and surface energy.

In conclusion, we have derived an approximate formula for interatomic interactions in

solids. In the limit of weak pseudopotentials it reduces to the conventional pair-

potential formula for simple metals and in the limit of extremely rigid atoms (e.g. rare

gas) it is closely related to the Gordon-Kim model for molecular binding. Because the

formula describes these two extreme limits correctly, it gives support for replacing pair

potentials for more general interatomic interactions of the form of Eq. (1.2) in com-

puter simulations. It seems, however, that ab initio calculations for the functions in

Eq. (1.2) do not give as accurate results as one would want in applications of the

method. A semiempirical approach might then be more fruitful in practical applica-

tions to molecular dynamics, and the present theory would merely serve as a guideline

for parametrizing the functions needed.
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Appendix A

Assuming superposition of atomic densities, Eq. (3.1), and taking na(Rr-Rj) to be

small if Ri, Rj we can write Eq. (3.4) to the second order as

AEhOM(nlj) =AEA"m(fl.) -A~ 1 nla(i-J) 2 Lij2aA~j (A. 1)

and

Ahm(nijk. Ahom(n) - [nik+,(-) Ahom(nA)

+ -[nla(i-k)+la(frk)1 2 
,2EO~k. (A.2)

where a short hand notation i-j = Ri-Rj has been used. Substituting these in Eq. (2.10)

keeping all term shown, we get

*ETO2- NEATO.%f + XAE"(n) 12: a(idj)}DEN

6 .[1 J -':[~ {n(i...)J an (A.3)

Since in a solid each atom has of dhe order of 10 nearest neighbors, it is obvious that

the last term in Eq. (A.3) is much smaller than the other second order term. If this last

term is neglected we get Eq. (3.5) by using the definition of Eq. (3.1) for ni.

Now we demonstrate that Eq. (3.6) follows directly if we require that the total energy

is written in the form of Eq. (3.7). WVe assume a perfect lattice and derive the vacancy

formation energy for a unrelaxed lattice:

=,, XrFnj - F(ii1)j
isi

aF(ni) ~ .2 o 2F(n,.)

i~e+ 2



DF(ni)
-ni  n(A.4)

The second order term can be neglected since it is proportional to the sum of squares

of individual atomic densities which is much smaller than n;. The embedding energy

is the negative of the sum of the vacancy formation and cohesion energies and in the

local approximation this means that

aF(ni)(A5
AEhm(ni)=F(ni) - EATOM -ni i  (A.5)

for which the expansion (3.6) is a solution.

Appendix B

Since the electron density is described as in Eq. (3.1) the electrostatic potential &-a(r)

can be written as

X fai(r) = A d3 r" -R j) .1)

" i -a, I r-r'.

We assume that there is no other positive charges inside ai than the nucleus of the

atom in question. Then SV , is caused solely by the homogeneous background charge

of the jellium. In the mixed perturbation theory the effective density is defined as

I Ap(r-R i)Ap(r'-Rj)
SY, d3rdr Ir-r' (B.2)

aat j~i ai aj

where

3 *~~ Ap(r-Ri)
aat fd rfd'r' Ir-r'l (B.3)

aT ai

The second term in Eq. (3.14) can now be written as



= fd3rfd3r' Ap(r-Rj)Ap(r'-R) (B.4)
j~i a, a, Ir-r(

Combining this to the first term of Eq. (3.14) where the substitution (B.1) has been

made results Eq. (3.15).

Appendix C

In a nearly homogeneous metal where the pseudopotential approach is good, the varia-

tion in the average densities n(Ri) at different sites Ri is small. We defineft..

o =- iRi) (C.1)
N i=1

and write the first term in Eq. (3.13) as

F ' h (m(Rj )) = n ,(R i-R j))

z Fhm(it0O) + .(R-Rj) - FhmiO)] (C.2)

Describing Fhom in terms of AE hOm and including only the first two terms in the expan-

sion (3.6) we get

yfomio aIAEhomQij) a o(Fl1

+ E c).Z-°  Zj -lfd3rna(Ri-Ri-r)Jfd3r' Ap(r') (C.3)- ii i) { aji "(XJ (-r

where Fi, is described in terms of n, using Eq. (3.9). Since a defined in Eq. (3.10) can

be shown to be exactly 78



* ~,~ho-rn~
+ D = (C.4)

equation (C.3) immediately gives Eq. (4.1).

Appendix D

The embedding energy AEhr was approximated by an analytic fit to the numerical

data. This was chosen to be

AEhom(n) = -1.65 + 1250n - 490e- 120 n  (D.1)

where n is in atomic units and AE in eV. The function at(n) was approximated by

aaa(n) = -1002 - 68.24n / . (D.2)

Both above expressions describe the numerical results for aluminum with 0.1 eV accu-

racy within the density range n=0.001 • 0.03. The averaging of the atomic electron

density using the function Ap with a cutoff radius R. defined in Section 5 results to a

nearly constant enhancement to the local density. This is approximated by

i (r) = 7 n(n-,(-) (D.3)

where y depends on the average density itas

y(n) = 1.369 + .0478n1/3. (D.4)

The Gunnarsson-Lundqvist interpolation formula -0 for the exchange-correlation poten-

tial was used in the calculations of AEh°wn and the electron densities of free atoms.

4
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Table I: Calculated properties of aluminum metal. In the non-selfconsistent model the

Eq. (3.13) and in the semi-selfconsistent model the Eq. (5.2) were used, respectively.

In both cases the electron densities of free atoms were used. The experimental surface

energy is estimated from the surface tension of the liquid phase.

non-selfconsistent semi-selfconsistent experimental

Lattice constant (a.u.) 9.8 7.3 7.6

Cohesion energy (eV) 2.2 3.3 3.3

Bulk modulus (Mbar) 0.1 0.3 0.7

Vacancy formation energy (eV) 0.05 0.2 0.7

Surface energy (111) (erg/cm 2 )  50 260 700
Surface energy (100) (erg/cm 2) 30 170 700

!2

Surfce eerg (10) (rg/c ) 0 17 70
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Figure captions

Figure 1. Interatomic potentials for He, Ne, and Ar. The solid lines are the results of

the present calculation and the dashed lines the experimental results 19. Note the change

of the vertical scale from linear to logarithmic at 10 meV.

Figure 2. The variation of the approximate total energy of Eq. (5.2) as a function of

the average electron density h- at a lattice site in aluminum. The quantity plotted is

A.F = ETOT/N-ETOM.
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