
AD-A171 514 INY MIUIC i~

UNCLASSIFIED MI I A 8

M 2

I llI, 1.

!CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

/

I)
a-

* AD-A171 514 'I-
US Army Corps
of Engineers
o ct Engnee TECHNICAL MANUSCRIPT N-86/15

Research Laboratory July 1986

Intelligent Use of Constraints for
Activity Scheduling

by
Navinchandra

The primary goal of this research effort was to develop
a domain independent activity scheduling algorithm that
would be able to handle ad-hoc constraints.

The activity scheduling problem is one of assigning tasks
(activities) to objects (jobs) while adhering to time and re-
source constraints. Operations researchers originally had ap-
proached the problem using mathematical programming
techniques. This approach, however, is poor at solving real
world problems. Real World problems tend to be very large
and are often too complex to represent numerically.

An algorithm is presented that is based on an heuristic
search paradigm. It uses symbolic constraints to assist the
search process. Functionally, the task is similar to that of
linear programming. The scheduling problem is represented
as a group of variables. Each variable has a corresponding
set of possible values, called a value set. The aim is to assign
each variable a value from its value set while adhering to
the imposed constraints. The difference is that symbols
rather than just numbers are dealt with. In so doing, the

:P- constraints are able to capture the nuances of complex
I'.. domains. 'T l

A pattern directed constraint definition language called 'a%

CDL-l is presented. The language is based on set theoretic E L E C- TiEt
IJ operators and allows one to input constraints in an ad hoc

. fashion. The constraints are used to prune the search SEP 2 1986
LZ space through the mechanisms of constraint generation,

posting & propagation.

Al i t,'vd for public release; distribution unlimited.
86 u u t .

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO I ONGER NEEDED
DO NOT RETURN IT TO THE ORIGIN.4 TOR

UNCLASSIFIED
SECURITV CLASSIPICATION OF THIS PAGE (Whein DoneEntered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMMER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

CERL TM N-86/15
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

INTELLIGENT USE OF CONSTRAINTS FOR
ACTIVITY SCHEDULING Final

G. PERFORMING ORG. REPORT NUMBER

7. AUTHOR.) 0. CONTRACT OR GRANT NUMSER(a)

Navinchandra

to PERFORMING ORGANIZATION NAME AND ADDRESS t0. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERS

U.S. Army Construction Engr Research Laboratory

P.O. Box 4005 IAO 128-85

Champaign, IL 61820-1305

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 1986
1. NUMBER OF PAGES

130
14. MONITORING AGENCY NAME & ADDRESS(If differem (rm Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS&. DECL ASSI FICATION/ DOWNGRADINGSCH EDU LE

1. OISTI9UTION STATEMENT
(of tuis Report)

Approved for public release, distribution unlimited.

17. OISTRIBUTION STATEMENT (of'te abstract entered in Black 20, If different from Report)

I. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service
Springfield, VA 22161

IS. KEY WORDS (Contienu on revuee ide It neceesar nd Identify by block number)

scheduling
activity scheduling
algorithms

'Id hoc constraints

26 AYrNACY IT~~eri am seimmis N nonmewmid IdmffIr by block number)

The primary goal of this research effort was to develop a domain independent activity scheduling
algorithm that would be able to handle ad-hoc constraints.

The activity scheduling problem is one of assigning tasks (activities) to objects (jobs) while
adhering to time and resource constraints. Operations researchers originally bad approached the

problem using mathematical programming techniques. This approach, however, is poor at solving
real world problems. Real World problems tend to be very large and are often too complex to
represent numerically.

JM 76 OUNCLASS IFIED

SEcumIT CLASSIFICATION OP THIS PAGE (Whe Data Rnted)

UNCIASSI F I F)
SCCURITY CLASSIPICATION OF THIS PAOE(Whan Data Ea080"4)

BIOCK 20 (ConL'd)

An algorithm is presented that is based on an heuristic search paradigm. It uses symbolic
constraints to assist the search process. Functionally, the task is similar to that of linear
programming. The scheduling problem is represented as a group of variables. Each variable has a
corresponding set of possible values, called a value set. The aim is to assign each variable a value
from its value set while adhering to the imposed constraints. The difference is that symbols rather
than just numbers are dealt with. In so doing, the constraints are able to capture the nuances of
complex domains.

A pattern directed constrained definition language called CDL-!! is presented. The language is
based on set theoretic operators and allows one to input constraints in an ad hoc fashion. The
constraints are used to prune the search, space through the mechanisms of constraint generation..
posting & propagation.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Wh.en Date Entered)

FOREWORD

This is a reprint of a thesis submitted to the Department of Civil

Engineering, Massachusetts Institute of Technology, in partial fulfillment of

the requirements for a Master of Science degree. The thesis supervisor was
Professor David H. Marks.

This work was performed for the U.S. Army Training Support Center, Fort

Eustis, VA, under Intra-Army Order 128-85, dated January 1985, for the

Division Gunnery Model (D[GUM) Development project. The Technical Monitor is

Maj. Robert Behncke, Army Development and Employment Agency, Fort Lewis, WA.

The research was supported by the Environmental Devision (EN), U.S. Army

Construction Engineering Research Laboratory (USA-CERL). Dr. R.E. Riggins is
Acting Chief of EN.

COL Paul J. Theuer is Commander and Director, USA-CERL, and Dr. L.R.
Shaffer is Technical Director.

copy

]3"

I Preface
Introduction

This thesis is an effort towards the development of a domain independent activity scheduling

algorithm that can handle ad-hoc constraints. B~y combining the techniques of Artificial Intelligonce

and Operations research, a program has been developed that performs scheduling using a

constraint assisted search approach. The program has a high-level constraint definition languageI which allows the user to input ad-hoc constraints.

Activity scheduling is the problem of assigning certain objects (jobs) to tasks (activities) %ihile

adhering to time and resource constraints. It is a popular area in Operations Research circles.

Operations researchers, however, have been unable to solve large real world scheduling probilemns

through mathematical programming techniques. Consequently, the whole area of heuristic

scheduling has come to play an important role in this problem domain.

Several heuristic scheduling programs have been built. These programs tend to have the

specifics of the associated domain hard-wired into the program. The only flexibility that these

programs allow is the ability to change a few parameters in the constraint set. If a new,

unanticipated constraint is encountered, the program's code needs to be changed. This is often not,

A easily done.

To handle this problem, we present a constraint definition language called CDL-ll. It allows

the user to modify old constraints and add new ones at will. For example, let us consider the

domain of job shop scheduling. The typical inputs to the system. are the different jobs, the due

dates, the quantities to be produced etc. Each job shop presumably has constraints which need to

be adhered to. These constraints may range from due dates to machine preferences to problems

regarding resource availability. Such constraints are not static and are ever changing. These new

constraints may be of a totally unanticipated nature and would traditionally have beenI incorporated by painfully changing the original code. On the other hand, our framework allows one

4

to just write the constraint in CDL-11 and enter it into the computer.

The algorithm

The techniques/technologies which have played an important role in the development of the

ideas in this thesis are:

a) Branch and Bound Algorithms (from OR)

b) Planning Research (from Al)

c) Constraint Analysis (from Al)

d) Search paradigms and backtracking (from Al)

The algorithm presented in this thesis is based on the search paradigm. It uses constraints to

prune the search space. Instead of following the branch & bound technique it has a prune and then

branch & bound flavor.

This is done by using the constraints through the processes of generation, posting and

propagation. The constraints are written in a constraint definition language called CDL-ll. CDLII is

a production rule type, pattern directed language. This language is based on the set theoretic

operators: intersection, difference, restriction and union. The other feature of CDL-II which has

proved valuable is the ability to write constraints which, in turn, write constraints. This process of

constraint generation is also pattern directed.

Currently the implementation uses chronological backtracking. Even though the scheduler

uses contexts for the development of different branches, we have not used dependency directed

backtracking [Sussman, 19781. This is because our domain is not well suited for intelligent

backtracking. This is in contrast to Sussman & Stallman's work wherein intelligent backtracking is

facilitated by the scientific principles that govern the behavior of the objects in their domain,

namely, electrical circuits.

5

Thesis Reader's Manual

The domain that has been chosen is that of Army Training Scheduling. The thesis starts off

with a scenario (Chapter 1) which describes the problem. The see, ario, though anecdotal in nature,

is representative of the problem and its complexity.

The second chapter introduces the problem and reviews the relevant literature.

The rest of the chapters discuss the use of constraints for activity scheduling. Two different

implementations have been presented. The first implementation uses the constraints passivfrly

(chapter 111). The constraints are used only for bounding the sc:,rch. Such bounding is done only

after the branching step is taken. Chapter III introduces a crude constraint definition language

called CDL-I. It will be shown how CDL-I fails to capture the complexity of the problem and how

the passive use of constraints is not a good approach.

NOTE: To understand the syntax of CDL-! & CDL-i1 the reader is advised to perus the

IMST manual (.4PPENDIV Aj. This manual descri6es the notion of an aascrtional database and

explains the use of the IMST production rule language. CDL-11 is completely written in IMST.

Having dispelled the concepts related to the passive use of constraints the thesis enters into a

discussion about the active use of constraints. Chapter IV introduces the ideas behind this

technique. It builds an intuitive feel for how constraints can be used for pruning the search.

Chapter V continues the discussion on the active use of constraints and goes on to describe

the workings of the second implementation. This implementation is based on a constraint definition

language called CDL-Il. This language is entirely built in the IMST f vironment (Appendix A).

Appendix B presents a trace of the program run.

The author has assumed that the reader is familiar with planning research and constraint

analysis. Here are a few papers that this thesis draws from. They make excellent background

reading

I) Fikes R.E. (1970) "RIF-ARF : A System for Solving Problev- Stated as Procedures." Int.

6

J. of Al (1970) 1:27-120

2) Stefik M. (1981) "Planning with Constraints (MOLGEN: 1Partl)," Int. Journal of Artificial

Intelligence, Vol 16, pp 111-140.

3) Sussman G.J., Steele G.L. (1980) "Constraints: A language ror expressing almostr hierarchical descriptions ", Int. Journal of Artificial Intelligence 14:1-39.

4) Fikes R.E. and N.J. Nilsson (1971) "STRIPS: A new Approach to the Application of

Theorem Proving to Problem Solving", Int. Journal of Artificial Intelligence, Vol 2 pp 189-208.

7

Contents

Page

DD FORM 1473 1
FOREWORD 3
PREFACE 4

A Scenario 10

II Introduction 18

11.1 Literature Review
i.2 Current methodologies
11.3 The Role of Search in Scheduling
11.4 Scheduling Army Training Activities

III Passive use of constraints:
- the first Implementation 32

111.1 Introduction
111.2 Partial Schedules
111.3 The constraints
111.4 ('1)1-I: Perrormace Issues

IV Active use of constraints:
- some Intuitive Ideas 40

IV.A Introduction
IV.2 Instantiation
IV.3 Generation & Posting
IV .4 Propagation
IV.5 A Classification for Constraints

V Active use of Constraints:
- The second Implementation 51

V.0 Introduction
V.1 The representation
V.2 The Constraint Definition Language: CDL-II
V.3 The Algorithm

8

VA4 Backtracking

VI Future Directions 72

V1.1 Exploiting the Flexibility of CDLIIl
VI.2 Handling Multiple Heuristics in Scheduling
V1.3 Towards a system architecture

R~fhreneee A lbflogaphy 78

Appendix A PAST User's Manual 80

Appendix B Trae of'& run (CDL-li) 102

9

Chapter I

A Scenario

This chapter sets the stage for the application domain used in this thesis. An anecdotal

description of the doiiain is presented. It is representative of the complexity we had to deal with.

We have also tried to give the reader a flavor of the kind of expertise current domain experts

possess.

A

John Dale stood at the window watching trucks pass by. The air reeked of diesel and dust

from the parched land. In his twelve years as range officer at, Ft. IKami's Firing Range he had never

seen such an influx of troops for fall training. Since the authorities had decided to move several

battalions of the 5th Mechanized Infantry)ivision (Nil) demand for firing ranges had been rising.

The move was to be completed over the next few months, "things are going to get tougher" he said

to himself.

In the distance, he could hear the sound of M-1 tanks firing at practice targets. The schedule

on the wall told him that it was battalion 26 of the 5th Mil Division on range_9. The convoy that

had just passed the field office, 22 trucks of troops, were all headed for M-16 training on range 8.

John [)ale took great pride in his work and his acquired expertise in range scheduling and

coordination. The boys who just passed hire were headed for range 8, but he knew it would be

safe even though tanks were training in the adjacent range. Everything had been worked out, the

firing directions, the safety spans and the schedule conflicts.

John was concerned about the problems the new battalions might bring. fie was going to be

up against a very tough resource problem. The next master schedule was due in a month, and lie

anticipated problems with having to schedule so many more battalions.

The operations research group down at Ft. Kami had been helping John prepare the master

10

plan every quarter. He would send them a listing of all the battalions and the amount & type or

training activities to be carried out by each battalion. A schedule would be returned in under 2

weeks.

The schedule was not always very useful. It did not take into consideration all those real-tiff

problems that cropped up time and again. John remembered the time he spent with Mark Maser, a

young eager systems analyst from Ft. Kami. He had told Mark all about the firing- ranges and rules

of thumb used in scheduling, lie had told him about how certain activities can be carried out only

on certain ranges and how the safety span considerations can change the way a schedule is built.

Mark had been a good listener and sure enough, he came back in 3 months with a really impressive

scheduling program. Since then whenever John had had some new requirements he'd just call up

Mark and the changes would he made in a matter of days. Mark was gone now, had found a job in

Silicon Valley. There was nobody to make changes anymore. The other programmers never seemed

to have the time, nor did they seem to understand the nuances of the problem at hand.

B

The phone was ringing, John turned around to watch his assistant Fred Rufus pick up the

phone. Fred reached for a pad and started making quick notes. It was that time of the quarter

when the battalions filed their training request forms. A training request form containes

information about the training activities the battalion wishes to perform, including preferences

about timing and precedences. Many officers called in by phone to relay some exceptions and

special requirements. Fred walked up to the scheduling board and stood there looking intently at.

He scratched his head.

John Dale looked on. Fred was quickly becoming adept at his work, but not good enough t~o

be allowed to make any changes without an endorsement from John. Fred better learn the ropes

soon enough. It took John several years before he could get a handle on all the considerations

required to run a firing range safely and smoothly. He knew the ranges, their characteristics; the

11

weapon systems and their characteristics like the back of his hand. Hlis first and foremost cOIIceru

was safety, never should two battalions be scheduled to work on the same firing range on the same

day. Every time he scheduled a training activity he had to make sure that the safety spans of the

current weapon system did not interfere with any other training activity scheduled on an adjoining

range. fie had all this information on his finger tips. Fred still had to refer to the range maps and

safety span traces to schedule an activity.

John walked up to Fred, "What's the matter Fred?

Captain Roger Mason of battalion twenty-six, MI four called in and said that he would like

his men to train with battalion 9 of MI three for Mortar firing next quarter."

"Two battalions together? That's something new"

Battalion 26 of MI four is scheduled for Mortar on range 22 for the first week of December,

but battalion 17 of the fifth MI are on range2l during that period. I cannot figure out how I can

get 26 and 9 on adjoining ranges."

"Why?"

"For one thing, range23 is not suited for Mortar fire and range 21 is the only choice"

John cut in, "Can you move battalion 17 elsewhere?"

"No, they had requested completion of Dragon Qual before Christmas and I do not see any

other free time windows."

It was a tough problem. John wished Mark was around. fie could have just called Mark and

told him about the change. lie remembered the time when Central Training Command (CTCOM)

had issued an order to perform cyclic training. CTCOM had found that certain training activities

are most effective when carried out in a cyclic basis. That is, the total annual amount of training

on certain activities was to be divided into 5 or 6 sessions. Each session was then to be scheduled

such that no two sessions were less than one month apart nor were they more than 2 months apart.

12

It took Mark two weeks (o make this change. John shuddered at the thought of what miight

happen if a directive as radical as the cyclic one were to be sent out by CTCOM today. John

longed for a system that would be able to handle ad-hoc requirements.

C

John walked back to his desk to finish up a Memo he was preparing for CERI, (the Corps of

Engineer's Construction Engineering Research Lab.). Two researchers from CERL had come over

last week to discuss the development or a Intelligent Scheduler which would be able to handle

ad-hoc requirements. They had told him about how the scheduler would be able to handle changes

and would store all the rules of thumb he was trying to teach Fred.

John was preparing a memo describing the scheduling problem in the form of a small

representative example. He was to include a list of constraints.

The afternoon wore on, trucks were rolling past the range office. John Dale was smiling, he

had just finished the Memo:

13

F

D

MEMORANDUM

From: John Dale. Range Officer, Ft. Kami

To: Bob James, CERL

Date: April 2, 1985

Here is a small representative example of the scheduling problem. I have included some

constraints as you had requested.

Consider a firing range having three ranges:

range_ A

range_ B

and range_ C

Refer figure 1.1

There are three battalions:

bat A

bat _B1

bat C

and there are three activities:

act A

act B

act C

Let us assume a time period of two weeks:

days= (123456789101112)

Now we have several constraints on the problem:

Constraint: CI

14

-I .,. . .

A battalion can do only one activity in one time periodl
(usually a day).

Constraint: C2

Conflicts: There shall be only one battalion on a
particular range on a particular day.

Constraint: C3

If any battalion is scheduled for activity act_B
then that battalion should not be scheduled for anything
on the very next day. This is because act_B is very exahusting.

Constraint: C4

There are only certain ranges that can host
certain activities:

Constraint# Activity Legal Ranges

C4_one actA rangeA range_B

C4 _ two actB range_ C

C4 three act C range_B

Constraint: CS

The battalions shall perform the activities
according to the following frequences:

activity

act A act B act C

batA 3 0 0

batB 1 1 1

batC 1 2 0

Constraints CO

15

R" C

Pi C,- v rI F

\16

There is a cyclic constraint on activity act_A.
This means that a battalion should perform actA at
regular intervals. If the first schedule date is x
then the next date should be after x+2 but before x+4.

Constraint: C7

Safety spans: When act_ A is carried out on rangeA,
the safety spans requires that it is unsafe to schedule
anything on range C.

I

17

Chapter H

INTRODUCTION

II.0 Introduction

In this chapter we shall set the stage for the intelligent use of constraints in scheduling

problems. We shall also review the relevant literature with includes references from both Artificial

Intelligence and Operations Research.

Scheduling had originally been looked upon as a problem suited to inathematical

programming techniques. This, however, is not true; the complexity and size of rtal-world

scheduling problems has moved research towards more tractable algorithms involving heuristic

search paradigms. Our hypothesis is that a domain independent scheduler can be built which

would only use constraints to guide the search. Scheduling, per se, has been tackled by several

researchers in Al, the most significant application is a system for Job-Shop scheduling called ISIS

Fox M.S., 19831.

We would like to remind the reader that scheduling has been researched by Management

Scientists and Operation Researchers for several years. Some very promising results have emerged

form such work. We now embark upon a survey of some of the work relfv ant to our interests.

I1.1 Literature Review

Parts of this section (11.1) has been adapted from [Fox, MS. 19831:

Management Science

"Management science research in scheduling has focussed on understanding the variety
of scheduling environments that exist, and constructing s heduling algorithms specific to
them. Four types of "shops" are distinguished in the literature:

* single machine -single operation
* parallel machines - single operation

* flow shop series of machines - multiple operations
* job shop network of machines - multiple operations

A job is defined as having:

18

* one or more operations
* a processing time for each operation
* a due date

And the utility of scheduling is
measured in terms of:

* lateness
* flowtime
* tardiness
* makespan

It was recognized early in management science that scheduling is an example of a
constraint satisfaction problem which could be optimally solved using mathematical
programming techniques. Integer programming approaches, while theoretically valid are
useless practically. One branch of research focuses on the attainment of optimal results,
but algorithmic complexity has restricted these results to the one and two server cases.
The achievement of these results requires the removal of much of the constraints, and the
focus on single criterion for measuring schedule efficacy."

Artificial Intelligence

The area of Planning Research is the most relevant part of Artificial Intelligence to

scheduling problems. The basic idea of using search to perform problem solving has been used both

by Al researchers and by Operations Researchers. The use of Constraints in Planning research has

proved very promising (Stefik Mark, 1981). Search is carried out within a space of possible solution

states for a state that satisfies a set of pre-specified requirements. A state can be changed into

another state by applying a heuristic operator to it. Planning can be viewed as a form of heuristic

search. The first problem in creating a planning system is to generate the states relevant to

reaching the goal.

"Given a description of the initial state, goal state, and a set of operators, the
operators can be iteratively applied to the initial state, and its solution path of operations,
or plan. Depending on the 'strength' of the operators, the space elaborated can be large or
small; however the better heuristics generate smaller search spaces and find the solution
faster. Planning, and related research, has focussed on a number of issues: for instance,
choosing the state to elaborate next, choosing which operator to expand a state, and
choosing alternative state representations and operators."

Robot planning is the most popular area in planning research. The STRIPS system (Fikes &

Nilsson, 1971) represented operators with pre and post conditions.

19

This thesis has borrowed several ideas from a constraint analysis system called REF-AIRF.

(Fikes, 1970). Its task was similar to that of linear programming. Given a set of linear equations as

constraints, it makes value assignments for all the variables. Instead of doing a brute force search

for a set of bindings that satisfies all the constraints (equations), it used the constraints to reduce

the generated binding set. Hence, the system can be viewed as a classical generate and test, where

the system was able to take the constraints and use them in the generator to reduce the size or the

search space. This thesis is an extension of REF-ARF wherein the constraints are symbolic in

nature and are pattern directed.

After the work on STRIPS came a very important and interesting planning program called

NOAH (Earl Sacerdoti 1975). By using hierarchical plan generation, Sacerdoti was able to

implement an intelligent planner. Taking a cue from NOAH, Austin Tate (Tate A, 1977) developed

NONLIN. It is a non-linear planner for generating Project Networks.

At about the same time some very interesting Constraint Analysis work was in progress at

MIT. Stallman & Sussman (1978) developed the concept of dependency directed backtracking. A

electrical circuit analyzer called EL was developed. El, used the concepts of constraint posting and

propagation together with intelligent backup.

In 1981-82 Mark Stefik worked on an Intelligent Planner called MOLGEN (Stefik 1981). It is

a planner for Genetic Experiments. MOLGEN uses constraints through the processes of generation,

posting and propagation. This work was one of the most significant contributions to symbolic

constraint propagation.

There are only a few Al scheduling systems:

'... One of the few Al scheduling systems was in the domain of train scheduling

(Fukumori, 1980). It used a constraint-based approach to determine the arrival and

departure times of trains . A second Al scheduling study was that of Vere (1981). In it

plans are constructed, and times associated with each step in the plan. A sophisticated

algorithm for time propagation based on interactions is described."

A third system is ISIS, a factory shop-floor scheduler. It is a constraint directed search

20

program which uses beam search to generate schedules. (Fox M.S. 1083)

Lastly there is a Intelligent Scheduling Assistant (ISA) project underway at the At

Teehology Center at DEC. It is a rule based scheduler and is built in OPS-5. Orciuch Ed, Frost

John, 1985J

21

11.2 Current Methodologies

In this section we shall describe two existing approaches to the scheduling problem. The first

one is a branch and bound method used for producing optimal schedules for a multi resource-

constrained case. The second is a constraint directed search methodology used for Job Shop

scheduling.

11.2.1 Branch & Bound I Stinson Joel, et.al. 19781

The Stinson algorithm uses a branch and bound cycle to develop a tree of choice nodes. III

order to keep the problem of tractable size, pruning is carried out using

- Dominance Principles

- Lower bound pruning.

As the search tree is being expanded, dominance rules prune off nodes that are statically inferior to

other generated nodes or are subsets of them. Once a set of candidate nodes are generated it ig

pruned using a lower bound estimate to complete. This estimate is calculated using heuristic

projection techniques.

As long as the estimate to complete is a lower bound on the real completion time, the

algorithm can be guaranteed to give optimal results.

The major problem with such an approach is that it cannot handle ad-hoc or complicah,,d

constraints. Our research efforts are toward a system which can handle any realistic constraint that

is tossed at it.

11.2.2 Constraint Directed Search

[Fox, 19831

The ISIS system, built at the Robotics Institute of the Carnegie-Mellon university, performs

constraint directed heuristic search; constraints are used to bound and guide the search

(scheduling) process.

We shall now describe the process of constraint directed search. The methodology described

22

here may look similar to that of ISIS. This discussion however, is vcnt an attempt to explain ISIS, it

is an attempt to familiarize the reader about the current technique:, used.

Consider a scheduling problem wherein several jobs need to L!:eduled in a machine shop.

Each job has a set of activities that need to be carried out on it. activities are essentially a

sequence of operations to be carried out on several machines.

We start the scheduling by picking up the job with the highest priority and start scheduling

it. While scheduling a job we start with its first operation, say 'opl'. It is possible that 'opl' may

be carried out on one of several machines. To represent such choices a activity-network for each

job is prepared. In figure 11.2.2.1 we can see that job Jl has three operations : opl, op2 and op3.

Operation opl may be carried out on machine mcl or mc2 and so on.. For operation op3 machine

mc5 may be chosea in place of mc4 and mc6 taken together.

The search tree is then developed using this activity-network. Figure 11.2.2.2 shows the

development of such a search tree. At point 'A' we were dealing with operation 'opl' and have the

choice of either taking mel or mc2. Going one step further we have four time periods to choose

from for each machine. The schedule developed up until the choice of the time period is called a

partial schedule. We now need some evaluation function by which the nodes can be weighted. This

evaluation function, as the readers can see, is very critical to the ernicacy of the search paradigm.

These evaluations are heuristic in nature and much research has gone into the study of these

evaluation functions.

Setting aside this issue for a the moment we proceed to devw': p our search tree. Assume we

decide to do operation opl on machine mci in time period 'tl'. T!_*,, places us at node 'II' with a

choice between nodes: I,J,K or L. The hatched line in the figure shows the path taken till node K,

where time period t4' was chosen for 'mc3'. This can be shown as a Gantt chart: figure 11.2.2.3

After having scheduled Job JI fully, the system chooses the next job and performs the same

process. If there ever is a clash at a machine, the system tries to backup and choose another

23

OP1 OP 2 OP 3

FIG 11 .2.2.1

24

START JOB= Ji

to t Q t tO 2 t5PERIODS

Fr G 11.2.2.2

25

MCJ

PARTIAL SCHEDULE AT No.)r- K IN FICUSZE 11. 2. 2

4

FrCnURE [1.2.2.3

.1

26

machine. If this is not possible, the job with higher Priority gets scheduled and the other one goes

back to the bag of unscheduled jobs.

That was the basic idea of scheduling using a search tree. We now discuss the method of

choosing a node when there are several viable choices. A evaluation function is used to find the

best choice.

In a constrained problem one can evaluate the nodes on the basis of the extent to which each

node satisfies the constraints. If each constraint has an utility then the total utility at a node i is

given by:

Utility (Utility of constraint i) * (level of satisfaction of i)

Such an utility can be calculated for each node, that is, for each partial schedule represented at

that node. The above evaluation function does not make an effort to "look forward". In other

words, the evaluation is based upon the choices made up until the current node Vn. Let us call this

utility g(n). If the choice of a node is said to be based on a value called f(n), then the evaluator just

described is:

f(n) =g(n) ... 121

The branch and bound technique's f(n) is different

f(n) =g(n) +h(n) -3

where h(n) is a heuristic estimate of the total cost to complete. If the h(n) is guaranteed to be

a lower bound on the actual cost to complete then the search is guaranteed to terminate at a

optimal solution. INillson 19711

The subsequent sections touch upon the problem we are trying to address in our scheduling

project. The domain is that of scheduling the training activities Of troops at an army installation.

27

11.3 The role of Search In Scheduling

We start this section with an explanation of the scheduling problem in a domain independent

fashion. A typical scheduler can be thought of as a system which answers the following questions

I Who

2 Where

3 What

4 When

In the job shop scheduling domain the 'who' is the job, 'where' is the machine, 'what' is the

operation and 'when' signifies the scheduled time. INote: More dimensions (e.g. 'which' for

resources) can be added to suit the domain in question]

Figure 11.3.1 shows how this kind of a scheme might work. Each cycle of choices "who -

where -> what -> when ... " is called a scheduling cycle.

The search tree, as shown in figure 11.3.1, is bound to become very large. To avoid a

combinatorial explosion we could restructure the representation as in figure 11.4.1 Changes in search

or control of constraints are all carried out by heuristic rules. This formalism allows us to change

the performance of the system by changing the heuristic rules.

11.4 Scheduling Army Training Activities

The research presented in this paper is all the product of the development of a scheduling

system for army training. Translating the framework presented in section 111.1, we have:

who = battalion

where = range

what = training activity

when = date

In addition to this basic framework, we have a large set of constraints that need to be

satisfied. The constraints specify the conditions to be met in the final solution. It is possible that

28

WHOa N

SC.HE 3ULIN(,

C YC. LE

WHO

NP 3. 1 .

29

IN)

uJ

2f2

30

there are several solutions to the problem. Our first objective now, i.. to find any of the satisficilig

solutions.

For this domain, a activity network is drawn for each battalion. The network is shown ill

figure 11.4.1 The figure shows the activity network of a battalions called '131' . The activities to be

chosen from are :al,a2 and a3. The firing range is to be chosen from among ri, r2 and r3. The

search tree has been reduced in size by assuming sequential scheduling. The activity network has

choice nodes at the beginning of each day.

Once an activity has been chosen for a particular day, the next step shall be the choice of the

range where the activity should be carried out. The ranges available to each activity is dictated by

the nature of the activity and the size of the range. (e.g. If a range is small, it cannot support

weapon systems which require large safety spans.)

Having presented the basics of schedule generation using the Search paradigm, we conclude

this introductory chapter. The following chapters start the discussion about the role of constraints

in scheduling.

31.

Chapter I

Passive Use of Constraints:

The First Implementation

II1.1 Introduction

It is our aim to develop a scheduling system that will be able to handle ad-hoc constraints.

This chapter presents some of the representations used for schedule generation and discusses the

passive use of constraints.

Constraints are said to be passive when they do not play an active role in guiding the search

process. The constraints are used only after a partial schedule is generated. In essence it is a case of

the Generate and Test paradigm.

HI.2 Partial Schedules

As stated in section 11.3, the scheduling problem can be solved by search techniques. The

product of each scheduling cycle is an assignment of a battalion to a range for a particular training

activity on a particular day. This is represented as a predicate called Rcheduled. The form of the

predicate is thus:

(scheduled (battalion_ name) (activityname) (rangeno) (timeperiod))

Each such assignment is called a schedule element. The complete schedule consists of several

such schedule elements. Consider a scheduling cycle of the following configuration:

battalions: (bat A batB batC)

activities: { act A act B act C)

ranges: { range A rangeB range C)

time periods: (123456789101112)

A search tree is shown in figure: 111.2.1 . The hatched lir,:i i the figure shows us that

battalion: batA is going to perform activity: act_A on range C cn day: 8. In addition it shows

32

that battalion: batB will perform actC on rangeB on day: 6.

The scheduling elements developed in the figure are:

(scheduled bat A actA rangeC 8)

(scheduled batB act_C rangeB 6)

By going deeper in the search tree the scheduling elements start representing a more detailed

schedule. The constraints are used to check the schedules prepared by the search process.

A depth first search technique was employed. The first implementation was built with the

idea of using constraints in an after the fact fashion. For successful completion, the schedule

produced by the system had to satisfy all the constraints. Every time the path is expanded, it is

checked. There are three outcomes of such a check. The check function returns a message to the

scheduler telling it the status of the schedule generated.

1 all satisfied

This means that all the constraints are fully satisfied, and that the schedule is complete.

2 continue

This message is passed back when the current schedule is found to be partial. When tile

schedule is partial, all the constraints will not have been invoked. However, those invoked will be

satisfied. (Note: a constraint is invoked when it's premises are true.)

8 failure

As soon as a violation occurs, failure is indicated. The failure message causes the scheduler to

backtrack to the last scheduling decision. This action is called chronological backtracking and is

generally very inefficient.

33

5TARI

tral-A

ac A A QLC t -C

Ct TICA Yct C.

12

(rAk A Grj--

r- ac

Fi 4,, Q r.
rcun ge -A "a"ge.

34

The procedure

1.0 Form a stack of constraints

2.0 Unstack the first constraint and test it against the
current partial schedule.
Add the returned message to a results list.

3.0 If any one of the results is failure then fail and
start backtracking.

4.0 If not end of constraints stack, go to 2.0

5.0 If any one of the results is: not-applicable then
continue the search.

6.0 If all results are 'satisfied' then return the message:
'allsatisfied' and terminate the search.

1M1.3 The constraints

The reader would have noticed the use of message called 'not-applicable'. This signifies the

situation where a partial schedule cannot satisfy all the constraints. Let us now examine what

'not-applicable' means:-

Each constraint has three parts:

(1) Name of the constraint

(2) The applicability pattern /patterns

(3) The tests

When a constraint is to be checked against a schedule, its applicability is checked first. If it is

applicable, then the tests are executed. The constraint is deer ed satisfied if all the tests return

'true'.

The constraints are written in a crude (first cut) constraint definition language called CDL-I.

The CDL used in a later implementation is more powerful than the one presented in this section.

Before we go further, let me set the stage for CDL-I and present a few examples.

35

CDL-I makes use of a pattern matching and variable binding facility. It's patterns act firecl)

on the schedule elements. Extending the example problem presented in scenario (Chapte, I) we

shall set up some constraints for the problem.

The syntax of a typical constraint is:

(constraint (name -name-)
C -pattern-)
C -tests-))

Let us now translate some of the constraints into CDL-I.

The constraint Cl: "A battalion can do only one activity in one time period".

(constraint (name C)

(>bat >act >range >day)

-- > (equal (sigma (<bat >act >range <day)) 1.0))

The above constraint has the name 'CI' and has a pattern:

(>bat >act >range >day)

and a test (for testing the generated schedule).

The program has a stack of such constraints. It picks up a constraint and tests it. The first

step is to match the pattern against a database. The use of the symbol '>' (do not view it as a

greater-than sign) means that the attached word is a variable. This variable can be bound to any

value in the process of pattern matching. For example, if we match the pattern:

(batA >xt >y1 >zt)

with the schedule element (stored in the data base):

(batA actA range A 8)

then the matcher will match batA to bat_ A , xl to act_ A, yI to rangeA and so on.

36

Consequently the bindings will be thus:

xl act A

yl range_A

zI 8

Once bound, the variables can be used in the testing part of the constraint.

Now for an extended example: let us assume that there is a partial schedule that looks like

this:-

C (batA actA range_B 8)

(batB actB range_C 4)
(bat C ac tC range_A 6)

(batB actA range_A 4))

There is a problem in this schedule. Battalion: batB has been scheduled to do two different

things on the same day (i.e. day: 4).

The constraint CI has to catch this. It has in its test a statement that says : "for each

battalion, the day assigned to each schedule element has to be unique to that schedule element". In

other words, the total number of schedule elements in the database that have the same battalion

name AND the same day should be unity.

For example, let us choose bat B. We start at the top with the first schedule element for

bat B:

(bat B actB range B 4)

The constraint C1 will have the following bindings: act = 'act_B', range = 'range C' and

day = 4. It now knows that for bat B there should not be any other schedule element with day

= 4. This is regardless of the activity and the range. In some sense, the total number of schedule

elements that match:

37

(batB >act >range 4)

should be unity. The summations is carried out by the s:,7ma function in the C(I-l

constraint shown above. The pattern has two variables >act and >range in it. For this reason it

will match any element which has the string "batB" in the firs. pl,.ce, anything in the second

and third places and "4" in the fourth place. We can see that the above pattern will match the

partial schedule twice. Consequently the test will fail.

Let us look at the constraint Cl's code again. It had a test part with the pattern:

(<bat >act >range <day)

in it. This pattern has two variables >act and >range. It has a new symbol "<" . This

symbol means that the value of the variable should be instantiated. In other wvords tile the above

pattern gets converted to

(batB >act >range 4).

This is the basic idea behind CI)L-Y's pattern matcher. We have used this method of binding

and instantiation because we later will write constraints which are able to write constraints.

The constraint C2: "There shall be only one battalion on a particular range in a particular

time period."

(constraint (name C2)
(>bb >aa >rr >dd)

-- > (equal (sigma (>b >a <rr <dd))
1.0))

Constraint C4: The ranges which are suited to each activity:

38

(constraint (name C4_one)

(>bat act A >range >day)
--> (or (equal <range rangeA)

(equal <range rangeB)))

(constraint (name C4_two)

(>bat actB >range >day)
--> (equal <range rangeC))

CDL-l is not good for some complex constraints. A CDL-11 has been developed which allows

for the intelligent use of constraints.

III.4 CDL-I: Performance Issues

The performance of the CDL-! based search mechanism was very poor. The program took

several hours to run. Slightly bigger problems caused serious problems and was full of backups. It

always seemed to be looking down the wrong path! It has been estimated that if this strategy is

used for a full fledged problem, it may require several months of CPU time before it can terminate

successfully. So much for the passive use of constraints.

The purpose of this chapter is to give the reader a feel for the motivations for moving

towards the intelligent use of constraints. The development of such intelligent techniques is the

essence of this thesis.

39

Chapter IV

Active Use of Constraints:

- Some Intuitive Ideas

IV.A Introduction

This chapter adopts a highly intuitive approach to the concept, of active constraint utilization.

In Chapter III we saw how the generate & test method of search fails to deliver. In this chapter we

show how constraints can be used for search pruning. We present a framework wherein constraints

are not hard-uired into the scheduler but are input via a constraint definition language (CI)l).

Consequently, the constraints can be changed by the user as and when adjustments are required.

Such flexibility is essential to real-world scheduling systems.

The constraints and the data are the only domain dependent parts of the program. Tle

constraints are essential to the operation of the scheduler. If there are no Constraints at all, the

program will do nothing. We need to tell it that it is a scheduler!

Consider the constraint shown below:-

[Note: The CDL used here is in plain English only for the sake of brevity, a more formal

development is presented in Chapter V]

[Constraint: Battalion #42 shall perform:
[1 300 hrs of tank _ training
121 50 hrs of Dragon_qual
131 50 hrs of M16 sustain

[41 I CALFX

Given the above constraint, the system may start scheduling all the activities on the same

day and maybe on the same range. More constraints need to be added to avoid this problem:

[Constraint: There shall be only one activity per
battalion per dayj

40

[Constraint: There shall be only one battalion per

range per day]

These two constraints will avoid clashes and ensure safety.

Having given the reader a flavor of what we mean by constraints; we now embark upon a

series of examples to illustrate the operations on the constraints. The basic operations are:

[1] Instantiation

[21 Generation

131 Posting

[41 Propagation

[51 Relaxation (not examined in this paper)

161 Satisfaction

IV.2 Instantlation

A constraint is said to be inslantiated when any of the variables within the CDL are bound to

objects in the domain. If there is a constraint which says that every battalion shall qualify on the

M-16:-

1 Constraint: For all values of 'x' ,where '' is a
battalion, that 'x' shall perform 50
hours of M-16 qualification]

The variable '' is then free to be bound to any battalion in the database. Once this generic

constraint is bound, it is posted against the corresponding object.

IV.3 Generation & Posting

Constraint posting can be initiated tither by a pre-specified global constr :int or by a

generated one.

(1) A pre-specified global constraint is one that is always
true (at least they are intended to be so).

Here's an example:-

I Constraint: There shall be no training on Sundayj

41

(2) A conditional constraint is generated in the process of
solution:

lConstraint: IF tank-training is scheduled for rangel6

THEN It is not safe to train on the
adjoining ranges: rangel5 and rangel7.

Such a constraint remains passive until its pre-conditions are met.

Preference constraints are also posted against objects in the database. One may prefer to do a

FTX type activity during the non-winter months or one may prefer not to schedule MIf qual on

rangel2. These constraints are posted at the appropriate location on the activity network.

IV.4 Propagation

The first significant use of constraint posting and propagation in planning was done by

Stallman & Sussman (1977). Later, Mark Stefik of Stanford built an excellent system called

MOLGEN (Stefik 1981). His work has shown us how symbolic constraints, through the process of

posting and propagation can help in complex domains.

There are several types of constraint propagation relevant to our work.

a) Forward Propagation

After a constraint is posted, it may be propagated. Consider a constraint which requires us to

perform an activity 'act6' for 3 successive days:

[Constraint: IF 'act6'is scheduled on a day 'x'
THEN 'act6' shall be scheduled on days x + I

and x + 2 alsoj

Figure IV.4.1 shows us how such a change might occur. As soon as 'act6' was scheduled on day 11,

the above constraint was activated and it was propagated to day12 & day13. The next scheduling

cycle will start on day14.

b) Cross Propagation

In section IV.1 we introduced a constraint which required that only one battalion can be on a

range at a time. Figure IV.4.2 shows us how such a constraint is propagated from one job to

42

another. If the Armor Battalion 10 is scheduled on range 'RI' on a particular day, the constraint. is

propagated to other battalions and the range is deactivated.

Another kind of cross propagation is diagonal in nature. Consider the following preference

constraint:

[Constraint: IF tank -training was scheduled on range
Y on day 'y'

THEN It is preferred to reschedule
tanktraining on range 'x' on
day ('y' + I). 1

This constraint captures the fact that the setup costs of targets on a range for a particular activity

should be translated to the next activity scheduled on that range. Figure IV.4.3 shows how this

may be done in a two battalion situation. As soon as tank _training was chosen for Batil at range

R3 on DAYI 16 it propagates 'diagonally' across to the other battalion and increases the prcfurenct

level of R3 for tank-training. In other words, if tanktraining is chosen for Bat2 on dayli7, then

range R3 would be preferred.

43

C4C

Ix)

444

SD I-

' ? I

" I ', .- I-', ',

L

IN FAm-r RY

BA1-rAL~oN 4t2.

45

r~
TANK TqA, IN NC,

~- DAY D ' PA I/~

R46

c) Backward Propagation

We shall examine two forms of backward propagation, the first type is used for due-date

constraints.

IConstrain t:Dued ate I Armor B~attalionl10 should complete

all training by Oct 151r Backward propagation (i.e. backwards from the due-date) is to be used only if there was a failure ini

the forward propagation. This mode of propagation is similar to forward propagation, but in

reverse.

The second type of backward propagation is very interesting. In the domain of troop)s

training, one has to design well balanced training programs. It is required that certain proficiency

levels are maintained among the troops in different weapon systems. In keeping with this, a cyclical

constraint is imposed. Such a constraint requires that certain training activities should be carried

out at regular intervals, throughout the year. This ensures that the troops neither train on one

weapon system all at once, nor have long time gaps between training sessions of a particular type.

Figure IVAA. [Source: Eilts, Wright, Houck 19841 shows a plot of proficiency levels vs time. In order

to maintain a steady level of proficiency in any weapon system, troops should be trained on that

system periodically.

[Constraint: Cyclical : IF a battalion is scheduled for
tank _ training on some day Vd

THEN it should not be rescheduled for
tank-training over the next 30 days
after Vd

AND it should be rescheduled in less
than 60 days after Vd]

Assume that a typical tank-training session was 5 days long and there were to be five Stich

sessions in a year. Figure IV.4.5 shows this constraint as a bunch of blocks and springs. The blocks

signify the training sessions and the springs allow us to incorporate some slack. The length of a

block represents the time period of the corresponding session and the length of the spring between

two blocks is the time gap between sessions. The level of compression of the springs is a measure of

47

u
Z SU$TAIN PRO PIC. II-NC'9

LL

06

Dr:CAY

FI L RF I P4. i LGARNINC, AND F,RC.ETTI JG

CuprV-s FOR TPAININGl ('zouRce' EILTS,, We'Jc,~r g or- lqR4

48

deviation from the constraint's tenets.

Once the scheduling starts, a constraint like the one in figure IV.4.5 lurks about the vicinity

of the planning networks and waits to be invoked. This constraint will come into effect only after

the first training session is actually scheduled. As the scheduler advances along the planning

network the cyclical constraint's block&spring system gets pushed back. As the end of year

approaches the block&spring system gets pushed up the 'utility mountain' (figure IV.4.6). As the

scheduling front moves forward without scheduling tank-training it gets tougher and tougher to

push back the block&spring system. This is corrected by a backwardly propagated constraint. As

shown in the figure, constraint 'A', propagates backwards and increases the preference level of

tank-training for the next day.

IV.6 A classification for constraints.

Constraints can be classified on the basis of the effects that they have on the schedule

elements and their variables. A constraint that uses data of several schedule elements is called

multi-element in nature. The multiplicity of variables is the other dimension.

Single Multi
Element Element

Single
variable SV/SE SV/ME

Multi
variable MV/SE MV/ME

The most complex constraint is the MV/ME (Multi-variable/multi-element) type. It involves

several scheduling elements and places constraints on a more than one variable. By using constraint

generation, it is possible to convert complex constraints into simpler cases. The simplest case is the

SV/SE case. The methods used to convert a constraint from one class to another is presented in

the next chapter.

49

30 3

dl l 4.30 L + 6 0

Fl(u9 I 4. S 13LDCI S PRIN(I s Ys rFm

CaM4

o') fIi

TAINK

FRONT

F(Iu~r SVI A0-,WAlp PROPA C, ArToi'

50

Chapter V

Active Use of Constraints

- The Second Implementation

V.0 Introduction

Having given the reader a intuitive feel of how constraints may be used for scheduling. We

now proceed to understanding the workings of the second implementation. The second

implementation uses constraints through the powerful mechanisms of con.straint generation, posting

P propagation. Unlike the passive case, this technique tends to be lot more efficient. Large problems

could be solved in reasonable (few hours) time.

A new and improved constraint definition language called CTDL-II was used. CDL-I1 is built

wholly in a production system (similar to YAPS) called IMST. (Refer ,.ppfndix A)

V.1 The representation

The basic task performed by the scheduling algorithm presented in this thesis is similar to

that of linear programming.

The problem is set up as a large group of variables. Each variable has a corresponding value

set. These value sets are lists of atoms. Through a search process one of the atoms is chosen from

the value set. This is done for each variable. When all the variables are assigned to unary (single

valued) sets, the schedule is deemed to be complete.

In Chapter IV we mentioned that a schedule consists of several schedule elements. In the

program the schedule elements have variables in them. For example, the schedule element (batA

actVC rangeA 9) says that battalion bat A will perform activity act_C on range A on day:

9. This schedule element will now be represented as:

(batA actl rangel dayl)

where acti, rangel and dayl are variables that are attached to battalion: batA. The

51

corresponding variable bindings are:

act] = act A

rangel = range A

day 1 9

Each schedule element represents one schedule instance. That is, it represents a unique set of

variable assignments. These scheduling elements are stored in a data base. The element can be put

into the data base by using the assert function.

For a better understandvg:7 !'f the concepts of assertional databases and of pattern dirrcted

infirencing, the reader is urged to .:ead Chapters 1 & 2 of Appendix A

V.2 The constraint Definition language CDL-II

CDL-11 is based on the concepts of fundamental set theory. Each schedule element has

variables in it. For example a schedule element:

(bat,_A act,0019 rangeOO19 dayOO19)

has three variables actOO19, rangeO019 and dayOO1. These variables have associated sets of

values from which one value has to be chosen.

The constraints are used to trim and focus these value sets and thus help in pruning the

search space. The physical action of the constraints on these sets are set theoretic in nature:

- Intersection

- Subtraction

- Union

- Restriction

These basic operations allow us to manipulate value sets in various ways. The first three

operators are obvious. Restrict is used to filter a value set based on a particular predicates or some

52

. J b

testing function. For example, if one wants to restrict a list of the first 10 integers to only those

that are greater than 6:-

(restrict '(1 2 3 4 5 6 7 8 9 10)

'Cgt $$$ 6)

The $$$ symbol signifies the list which has to undergo restriction. The result of the above

restriction will be (7 8 9 10).

The other functions available in CDL-I1 are:

(set_value -var- -list-
this sets the value of a variable to a particular list.

(get_value -var-)
retrieves the latest value of a variable.

(selected? -var-
checks to see if all the variables in the supplied list are

selected variables. A selected variable is one which has a value set
with only one value in it.

With these functions it is possible to write constraints. Once again, picking up the example

problem from part D of chapter 1.

(a) Constraint: CI

In English:

"A battalion can do only one activity in one time period ."

In CDL-I:

53

(constraint C1 (>bat >act >range >day)

test (selected? <day)

--> (constraint Claux (<bat >al >rl >dl)

test (not (equal (quote <day) dl))

--> (setvalue dl

(subtract (getvalue dl)
(getvalue (quote <day)))

Here is a good example of constraint generation. The constraint Cl produces a secondary

constraint called Claux. Once generated, the Cl_aux performs SV/SE (refer Section IV.5)

propagation. Note that CI is SV/ME constraint and it gets converted into the SV/SE case.

Let us complement this with an example. If we have a partial schedule:

1: (assert batA act001 rangeOO day001)

2: (assert batA act002 range002 day002)

3: (assert batA act003 range003 day003)

4: (set value 'act001 '(al))

4 5: (setvalue 'act002 (al))

6: (set value 'act003 '(at))

Figure: V.2.1

This way of setting up the data explicitly lists down the number of scheduling elements

required. Notice that the scheduling elements are added to the database via assertions which

consist of a battalion name followed by three variables. The database produced will be:

54

(batA actOO1 rangeOO1 dayOO)

batA actO02 rangeO02 dayO02)

batA actO03 rangeO03 dayO03)

The corresponding variable bindings:

Variable Binding

actOO1 (al)

actO02 (al)

actO03 (al)

When the constraint Cl is executed it will generate the following new constraint.

(constraint Claux (batA >al >rl >dl)

test (not (equal 'dayO01 dl))

-- > (setvalue dl

(subtract (getvalue dl)
(getvalue 'dayOOl))))

The other two constraints will have day002 & day003 in place of dayOO1 above. Claux can

match any element of battalion 'bat-A' except the one with dayOO1 in it. It will then proceed to

subtract the value from the current element's day set (bound to dl, above). For example if dayOO1

was set to (8), then it would be deemed aelected and will makt constraint CI generate Claux. In

turn Claux will subtract out the value (8) from the value sets of all other day elments of that

battalion.

(b) Constraint: C2

In English:

55

V

There shall be only one battalion on a particular range in a particular time period.

In CDL-II:

(constraint C2 (>bat >act >range >day)

test (selected? <range <day)

-- > (constraint C2 one (>b2 >a2 >r2 >d2)

test (not (equal a2 (quote <act)))
; make sure its not the same one!

(equal (getvalue r2) (quote <(getvalue range)))

--> (set-value d2

(subtract (get value d2)
(quote <(getvalue day)))))

the second constraint generated by C2

(constraint C2_two (>b3 >a3 >r3 >d3)

test (not (equal a3 (quote <act)))

(equal (getvalue d3)
(quote <(getvalue day)))

-- > (set-value r3
(subtract (getvalue r3)

(quote <(get-value range))))))

The use of '!' is equivalent of the use of the comma for the backquote macro.)

Constraint C2 looks for any schedule element that has both the range & the day selected.

Once this is done it generates two new constraints C2_one and C2_two. For example, if range:

range _B is reserved for day 5, then C2_one will go around looking for any battalion that is

scheduled for range: range _B, it will then remove day: 5 from the value set of that schedule

element. C2 two does just the opposite.

Constraint C2 was multi-variable/multi-element whereas C2_one and C2_two are SV/ME.

Extending the data set in figure V.2.1 we have:

56

7: (assert bat_-B act0O4 range004 day004)

8: (set value 'actOO4 '(actA))
9: (set value 'range004 '(range -A))
10: (set-value 'dayOO4 '(6))

II: (assert batB actOOS rangeOS day006)
12: (set-value 'dayOb '(1 2 3 4 5 6 7 8 9 10 11 12))

13: (set-value 'rangeOO5 '(rangeA))

Figure: V.2.2

The statements 7,9 & 10 will cause constraint C2 to generate 02 _one and C2_ two, a-, the

range & day are both selected for battalion bat B, the new constraints that are generated are:

(constraint C2 one (>b2 >a2 >r2 >d2)

test (not (equal a2 'actOO4))
(equal (get value r2 '(rangeA)))

-- > (set-value d2

4 (subtract (get-value d2) '(5))

(constraint C2_two (>b3 >&3 >r3 >d3)

test (not (equal a3 'actOO4))
(equal (get value d3) '(6))

-- > (set-value r3 (subtract (get-value r3)

'(range one))),

Let us go through the process by which 02_two is tested against the partial schedule

presented in figures V.2.1 and V.2.2. When C2 two comes to expression 11. The bindings will be

b2 -batA

57

a2 = actOO5

r2 = rangeOO5

d2 = dayO05

The first test is:(not (equal 'actOO 'act004)), the second one is: (equal

(get-value 'rangeOO5) ' (rangeA)). Both tests are true. The final part expands to:

(set-value 'dayOO5

(subtract '(1 2 3 4 5 6 7 8 9 10) '(5)))

The value of dayOO5 is now set to a new valv.' set without the value (5). The search proceeds

with this new restricted value set.

(c)Constratnt C3

In English:

If any battalion is scheduled for activity actB then it should not be schtduled for anything in

the immediately next period.

In CDL-II:

(constraint C3 (>bat >act >ran >dd)

test (equal (getvalue <act) '(act B))

(selected? <dd)

--> (constraint C3_aux (<bat >actl >ranl >ddd)

test (not (equal rani) (quote <ran))

--> (setvalue ddd

(subtract (getvalue ddd)

(list (+ 1 (car (getvalue (quote <dd)))))

58

(d) Constraint C4

In English:

Activity actA can be carried out on ranges range_A and range B only

In CDL-11:

(constraint C4 (>bl >al >rl >dl)

test (equal (getvalue <al) '(activityA))

--> (setvalue <rl '(rangeA rangeB)))

Note that C4 is a SV/SE constraint and is directly applicable.

(e) Constraint C5

These constraints are expressed directly as assertions and set value calls. Figures V.2.1 k

V.2.2 show us how this may be done. This is probably one of the limitations of CDL-1I. it. requires

the user to specify the actual number of schedule elements. Each assertion produces one schedule

element with three variables, the constraints could be used to develop the elements but it would

require some kludgery.

(f) Constraint: C6

The cyclic constraint produces a constraint network which allows for backward propagation.

In English:

There is a cyclic constraint on the activity called actA. This means that a battalion should

perform act_A at regular intervals. If the first scheduled date is z, then the nezt date should be

after z+f but before z+4.

The constraint is clearly MV/ME in nature. It should allow for both backwards and forward

propagation, as discussed in section IV.4 . Being a MV/ME case we will have to reduce it to a

SV/ME case by using the constraint generation technique we have been using till now. To avoid

59

excessive kludgery it was decided to present only the SV/ME case (after generation is done).

The constraint (6 is to be exposed on actA, there are three occurrences of actA (figure

V.2.1). From the figure we see that the three variables dayOOl, day002 & day003 are to be

governed by the cyclic constraint. Assuming that there is a function called create cycle which

produces the following constraint, we have:

(constraint c6_one (bat A actOO rangeOOi dayO01)

being specific to battalion one

could be done automatically

(setvalue 'dayO03
(restrict (get_value 'dayO03)

'(and (ge $$$ (+ (get_min_value 'dayO02) 2))

(le $$$ (+ (getmax_value 'dayO02) 4)))))

(setvalue 'dayO02

(restrict (getvalue 'dayO02)
'(and (ge $$$ (+ (get_min_value 'dayOOi) 2))

(le $$$ (+ (get-max_value 'dayOOi) 4))

(le $$$ - (getmaxvalue 'dayO03) 2))

(ge $$$ (- (get_minvalue 'dayO03) 4)))))

(setvalue 'dayOO

(restrict (get_value 'dayOO)

'(and (le $$$ (- (get maxvalue 'dayO02) 2))

(ge $$$ (- (get Min value 'dayO02) 4)))))
)

The functions get_maxvalue and get rin value get the maximum and minimum value

of a specified variable. The form of the constraint sets up a constraint network (Sussman G.J., G.L.

Steele 1980). This network deals with value sets and has to maintain consistent propagation. As the

values are numeric, propagation is simple and definitive.

Let us take up an example at this point. Extending the example in figure V.2.1 we have:

60

14: (set 'total period '(1 2 3 4 5 6 7 8 9 10 11 12))
15: (set 'earlier '(1 2 3 4 5))

16: (set 'later '(8 9 10 11 12))

17: (set-value 'dayOOI later)

18: (set-value 'dayOO2 total_period)

19: (set-value 'dayOO3 total_period)

4

Let us now walk through the propagation. The initial value sets are as below:

dayOOl: (8 9 10 11)

day002: (1 2 3 4 5 6 7 8 9 10 11 12)
day0O3: (1 2 3 4 5 6 7 8 9 10 11 12)

When C6_one executes, the first set-value expands to:

(set-value 'daYOO3

(restrict '(1 2 3 4 5 6 7 8 9 10 11 12)

'(anid (ge $$$ ('. 1 2))

(le $$$ (+ 12 4))

The restriction causes the value set to shrink-.

day003: (3 4 6 6 1 8 9 10 1 12)

When the second part expands, we get:

61

(set-value 'dayO02 (restrict '(1 2 3 4 5 6 7 8 9 10 11 12)

'(and (ge $$$ 10)
(le $$$ 16)

(le $$$ 10)
(ge $$$ (- 3 4)))

This will return:

dayO02: (10)

The next times C6_one is called we get:

dayOO: (8)
dayO03: C12)

This is really how constraint propagation alone could be used to come up with answers.

Things do not always work out this way. Generally constraints reduce the value-sets to some

smaller sets which then require search techniques. This is the topic of the next section.

62

V.3 The Algorithm

The underlying algorithm is that of search. The process of search consists of prop~agation-

search-propagation cycles which terminates when all the variables have reached selected status.

The Algorithm:

1 Load data

2 Load Constraints

3 Carry out all the propagation possible.

Unless the propagation return, an error,
continue propagation

IF a failure In reached

THEN backup and retract all
the generated constraint.

IF the backup returns failure,

THEN announce schedule failure and stop.

4 After all propagation, choose the most constrained
varlableji.e. the variable with the smallest value-set
other than unary.

IF no such variable exists,
THEN announce success and stop.

5 Expand (branch further down the tree)

0 Go to step 3

Figure V.3.1

63

There are two ways that the algorithm terminates:

(1) success

Success is reached when all the variables have unary value-sets. This condition is detected in

step4 in figure: V.3.1 . A function called get mostconstrainted -variable searches from

among the variables which have yet to be assigned. It returns that variable which has the smallest

value set other than unary. This is done to reduce the branching factor.

2) failure

A total failure occurs when the backup (step 3) reaches the bottom of the scheduling stacwk.

Currently the backup is chronological in nature. This is because non-chronological or dependency

directed backup is not easily determined (Stallman, R & G.J. Sussman 1977). These ideas will be

developed later in this chapter.

V.3.2 Contexts and their Tracking

Every time the scheduler passes through the propagate-branch cycle, it produces a new

context. The new tvalues sets that are assigned to a variable in each propagation step are all

context dependent. Further, in order ot help backtracking the program stores a history of the

value eds for each variable. In this way, the retraction of a decision is done by just undoing all the

effects of the corresponding context. Contexts are represented by the symbol cycle. The

progression of Contexts is represented by numerically increasing the cycle number: cyclel

cycle2 cycle3

We will now go through an example which shows how new contexts are created and how they

are used. Before we go further, lets look at the functions setvalue and getvalue once again

and see what they really do. The value of a variable is actually stored as a push down stack. The

met value pushes the new value onto the stack along with the value of the current context. The

getvalue looks up the top of the stack and hence returns the latest value.

Consider a new example:

64

-- -- h ----. ..--

1: (assert bat_-A acti rangel dayl)

2: (set value 'acti '(actA)

3: (set value 'dayl '(1 2 3 4 5 6))

4: (set-value 'rangel *(range-A rangeB rangeC))

5: (assert bat_-A act2 range2 day2)

6: (set value 'act2 '(actA)

7: (set value 'range2 '(rangeA))

B: (set-value 'day2 '(6))

9: (assert batB act3 range3 day3)

10: (set -value 'act3 '(actC))

11: (set -value 'range3 '(rangeA rangeB rangeC)

12: (set-value 'day3 '(1 2 3 4 6 6))

Figure: V.3.2

The above data assignments will translate into the variable assignments as shown in figure

V.3.3 . Assuming that the current cycle number is cycleO, we have:

65

Variable Value

acti ((cycleO (act_-A)))

dayl C Ccy.JleO (1 2 3 4 6 6)))

rangel C CcycleO (rangeA rangeB range_C)))

act2 C (cycicO (act._ A)))

day2 C CcycleO C5)))
range2 C CcycleO CrangeA)))

act3 C CcycleO (act_-C)))

range3 C CcycleO CrangeA rangeB range_C)))
day3 C CcycleO (1 2 3 4 6 6)))

Figure: V.3.3

Note how the cycle number is stored along with the value-sets. We are now ready to start

applying the constraints. Using the same constraints as in chapter I (except constraint: C7) ' getr

the the following new values. These values are put in on the top of the stacks of the corresponding

variables:

New value added Constraint

Variable to the stack name

rangel CcycleO (rangeA rangeB)) C4 one

range3 CcycleO (rangeB)) C4 three

dayl CcycleO C0 2 3 4 6)) C1

Note that during propagation the cycle number does not change. In the current

66

implementation the constraint numbers are not stored along with the propagated lists. If this

practice were adopted, it could help in performing dependency directed backtracking.

Once all the propagation is complete, the program looks for the most constrained variable.

This variable, by definition, is one whose latest value-8et has the minimum number of values. The

minimum number is however has to be greater than unity.

The variable 'rangel' is the most constrained. The branches that are produced are: range_ A

and range _B. These two values constitute two different choices and are hence attached to new

contexts. This is performed in two steps.

(setvalue 'rangel '(cyclel (range_B)))

(setvalue 'ranger '(cycle2 (rangeA)))

The stack for rangel now looks like this:

variable: rangel

(cycle2 (rangeA))

(cycle I (rangeB))
(cycleo (rangeA range B))
(cycleO (rangeA rangeB rangeC))

Figure: V.3.4

The program attempts propagation once again. The latest context being cycle2. No

effective propagation occurs. NOTE that we had dropped constraint C7 from the current

constraint set. We have dropped C7 only momentarily and will reintroduce it later.

Once again, the most constrained variable is chosen, this time it is dayl with the value set (I

2 3 4 6). The stack for dayl looks like this:

67

variable: dayl

(cycle7 (1))

Ccycle6 (2))
(cycleS (3))

(cycle4 (4)

Ccycle3 (6))

CcycleO Ul 2 3 4 6))

(cycicO (1 2 3 4 5 6))

Figure: V.3.6

After the branching shown above, propagation is attempted. Once again, propagation does

not occur. We enter the next branching stage by choosing day3.

- --- --

variable: day3

Ccyclei3 (1)

Ccycle12 (2))
(cyclell (3))

(cyclelo (4)

Ccycleg (5))

(cycle8 (6))

(cycleO (1 2 3 4 5 6))

Figure: V.3.5

Once again no effective propagation occurs. We now look at a listing of all the variables and

their values. The value of a variable, as returned by the function get-value is it's latest value

(top of the stack) regardless of the associated cycle number.

68

Variable (get value -Tar-)
name

acti Ccycleo (act_-A))
dayl Ccycle7 W1)
rangel Ccycle2 (range_A))

act2 (cycleO (act_-A))
day2 (cycico (5))
range2 CcycleO (rangeA)

act3 CcycleO (actC))
range3 (cycleo (range_B))
day3 (cyclel3 (1)

Figure: V.3.6

As all (be variable% are unary, the program would announce success and stop (after

propagation) If howerver a rontradction was reached during propagation backup would be

initiated

Let u% reflect)n the ... ,- rot a moment Compared to the first implementation, this

program terninateil .rt% quitrkI ity judiviously using the constraints, backtracking was reduced.

Using constraints thr4.agh mee hanor-m- like g'rrohaton,posting and propagation, search programs

have been round to reduf P bai ktrackimg dramatically (Stefik M. 1980).

69

V.4 Backtracking

To illustrate backtracking we now introduce the constraint C7 into the example we have

been working on. C7 is a safety constraint that says " doing activity: act .4 on range A on a

particular day, wilt cau.rc ranzge_B to be unusable on that day." By glancing at. the final results as

shown in figure V.3.6 one notices that C7 is violated. On day '1' battalion: bat A will be

performing actA on range_A, however rangeB will be occupied by bat_ B on the same day.

This causes an error when constraint C7 is enforced.

There are several ways of backtracking at this point:

1: Change day3 to (2)

or 2: Change day I to (2)

or 3: Change rangel to (rangeB)

or 4: Some combination of the above

It is very difficult to decide upon which backtracking technique to adopt. To get around (his

decision, the current implementation just retracts the latest cycle. The latest cycle is cycle13 and

retracting it is equivalent to adopting strategy 1 (above). By popping the stack for variable day3,

the top of the stack now is: (cyclel2 (2)). On propagating this, the program returns successfully.

Instead of ending on this rather encouraging note, we shall examine likely strategies for

backtracking. Using chronological backtracking can often be very inefficient. There should be somrie

way of finding out the best strategy. The first step in this direction is the identification of

dependencies. In other words, we look for the culprits, the variables and constraints which cause

the error to occur.

An error occurs when a constraint tries to set the value of a variable to the empty set (). The

null set means that the variable got over-constrained and that the constraints have forced a

contradiction to occur. At this point, the culprits are the corresponding constraints and all the

variables that take effect through that constraint. As the constraints are the only form of domain

70

dependent knowledge, backtracking should be based on the form and structure of the constraints

alone. I believe that the constraints can be pre-compiled into a complex, multi-referenced network.

This symbolic constraint network would be able to look-ahead and make intelligent choices. An

ability to look ahead is valuable because, under the current implemc',tation, constraints seem to

suddenly pop up when certain choices are made. The constraints, :i some sense, lurk about the

program and appear suddenly, often to the dismay of the scheduling program.

There is an important tradeoff while pre-compiling the constraints. It is possible that the time

spent in developing the constraint network itself might waste too much time, one might be better

of going ahead with the search.

71

Chapter VI

Future Directions

V1.1 Exploiting the Flexibility of CDL-11

VI.1.0 Personal Constraint sets

In real world scheduling problems there are several people involved in the development of the

schedule. Each person has his/her own requirements off the schedule. As it is not possible to

accommodate all the people, traditional scheduling programs tend to have a rew, well established

constraints hard wired into the system. These constraints, however, are subject to change. For

example, changes in the staff of an organization can bring new managers who have unanticipated

idiosyncrasies. You cannot rewrite old software to accommodate them!

Given the framework presented in this thesis, it is possible to input the constraints of several

people at the same time. Each person will have his/her own set of constraints. The computer

consequently tries to satisfy all the constraints. To facilitate usage, one would have to develop a

higher level constraint definition language than the one (CDLIl1) presented in chapter V. Let us call

this natural constraint definition language: CDL-N.

Armed with something like CDL-N each person could input his/her own set of constraints.

Further, he/she will be able to review and edit the constraint sets to suit his/her personal feelings.

Each set of constraints will consequently reflect the personality of the person who owns it. These

data set% can be added and removed when required, for example:- when a person gets transferred

all he/she does is, take his/her constraint sets with him/her to his/her new job site. Likewise, if a

senior manager retires, his/her personalityi can be retained in th(form of CDL-N statements.

In addition to personality datasets there are datasets which correspond to other extraneous

constraints:-

a) Personality dataset

b) Resources dataset

72

c) Shop floor constraints

d) Environmental factors

Environmental constraints can cover expected conditions like snow rail or financial climate,

depending upon the application one is dealing with.

r The system uses these constraints to draw up a plan and a schedule. It may not be possible

to satisfy all the constraints. Under such conditions, the system Will initially try ot satisfy the

constraints which rank higher (fuzzy ranking). Further, a person higher up in the organizational

structure will get higher weightages.

Drawing from the concept that an organization is basically an information processor (at some

level). one will be able to model the whole organization. CDL-N could be an extension to the

Business Definition Language developed by IBM corporation.

VI.1.2 What It Games

Once the constraint sets are entered, the users can go into a what if mode and can change

their constraint sets to see how sensitive the system's response is to the changes he/she makes.

The system, in the process of scheduling should give reports on costs, resource requirement,

performance standards etc. The user can play around with his data set and see how he can best

adjust to the personalities of others.

The computer may even be able to ask itself what if questions.

V1.2 Handling Multiple Heuristics In Scheduling:

-towards a system Architecture

VI.2.0 Introduction

This section explores the techniques that may be used for handling multiple heuristics.

Several researchers in Operations Research have developed heuristics for activity scheduling. Each

of the heuiristic is suitable for particular types of problems. None of the heuristics can perform well

73

in all scheduling problems. In this chapter a system architecture is proposed that which allows one

to use these heuristics as and when required. It is stipulated that: If one could find out the

conditions under which a particular heuristic is effective or ineffective, then it may be possible to

recognize patterns and invoke the heuristics appropriately.

In section 11.3 we introduced the concept of the scheduling cycle. In figure 11.3.1 our cycle

looped from the choice of 'who' to 'where' to 'what' to 'when' and back. There are two very

fundamental questions that this formalism raises:

1) flow does one decide upon the sequence of choices in the scheduling cycle.

2) Having generated some choices how does one choose which to pick.

There are no hard-and-fact algorithms or techniques by which these problems can be

addressed. Only heuristic methods can be used to perform such tasks.

V1.21 Multiple Heuristics

Having decided to work with heuristics, how does one decide which kinds of heuristics are

best for our problem. If we really do decide upon a particular heuristic, is it possible that half way

through the scheduling process a dirferent type of heuristic might be more relevant.

Heuristics come in all shapes and sizes. Aggressive strategies like to schedule as early as

possible. "Wait & see" strategies exercise least-commitment. Backup heuristics help in undoing

poor-choices.

Here are some examples:j Moder & Phillips 19831

Name of Heuristic consultant Description

Late Finish Give priority to activities in
order of increasing late finish
time.

Minimum Slack Schedule first those activities
with low slack time.

74

Random Priority given to jobs selected
randomly

Bumping If there is a clash, then
bump the activity of lower
priority.

Meta-OR If total variables in the
problem < 5000 & total
constraints < 5000 then use
Dynamic Programming

TABLE I

Given a set of heuristics we have to decide which one is most useful. Presumably different

strategies are relevant in different situations. In addition some strategies may always performs

better than other. There are two ways of invoking a heuristics

(a) Pattern directed

(b) Relative grading

Establishment of patterns for choosing a heuristic is very tough. The meta-OR heuristic in

Table I is an example. We do not have any good ideas in this area yet.

Heuristics can be graded relatively. This is done by running the system on several typical

problems, each time with only one of the heuristics in place. Performance characteristics of each

heuristics is gathered and is used to rank the heuristics.

V1.2.2 Search Heuristics

When coming down the search tree we will have to adopt some kind of pruning mechanism.

Having used some of the heuristics (like those in Table I) we reach a stage, at the end of a

scheduling cycle, where there are several viable partial schedules. Due to time & computer memory

constraints all these nodes cannot be developed. As mentioned in Sections 11.2 & 11.3, we need a

function by which the nodes can be evaluated and then chosen for further branching.

From equation [3j, section 11.2, there are two parts of a evaluation function: (at node n)

75

f(n) = g(n) + h(n)

A measure of goodness of a node is based on utilities, equati ;n [II of section 11.2 . This gives

us g(n) only. The estimate to complete is found by doing a depth first search from the node in

question. Such a search is designed to be a lower bound on the total utility and is hence conducted

in a rash manner; constraints are not fully satisfied, no backtrackin. is performed, due dates are

violated etc. This quick 'look ahead' will give us a good h(n) to work with. We now choose the node

with highest f(n).

VI.3 System Architecture

Based on the ideas presented till now, we proceed to develop an architecture

a) The constraints are defined by users and are subject to chanre.

b) The jobs (battalions) to be performed are ever-competing to be chosen next. For this

reason they are said to exist in a market of jobs.

c) Each heuristic consultant has his own way of doing things they may either support one-

another or give raise to conflicting situations. For this reason they are said to be in a board of

consultant,,. These consultants communicate via a blackboard.

With this we are able to hone in on a system architecture. Figure VI.3.1 . The controller

examines the advice (bids) deposited on the blackboard. A consult-mt is chosen and applied for a

few scheduling cycles. The constraints are used as outlined in sections IV & V.

76

!MARKE-T OF

rc, ~ BOARDr

CoNS LTANTS

EXAMMNAT 0N

C 0N ST RAI NT 5

B~L A C I-,

GE AR CH

APRBITRATOR. DE'j rxIOps

FlqUE VI3.1A,4 pr-ITP.TUR

o77H)U-

REFERENCES & BIBLIOGRAPHY

Bansal, S.P. 1977" Minimizing the Sum of Completion Times of a n Job over m machines in a

Flowshop- A Branch&Bound Approach", AIIE Trans, Vol 9, No3, Sept 1977.

Chandra Navin, 1985 "IMST user's Manual: A tool for building Rule based Expert Systems"

MIT, Center for Construction Research & Education, Technical Report: CCRF-85-6.

Doyle, J. 1979 "A truth maintenance system". Al 12: 231-272

Eilts, T.B., Wright, J.R., Houck, M.H. (1984) "The division gunnery Model (DIGUNI) as an

aid in Army training decision", Report CE-HSE-84-3, Purdue University.

Fahlman, Scott (1978) "A planning System for Robot Construction Tasks" (MS Thesis) Al

TR-283 MIT Al Lab.

Fikes R.E. (1970) "REF-ARF: A system for Solving Problems Stated as Procedures", Artificial

Intelligence, Voll, pp27-120

Fikes R.E., and N.J. Nilsson (1971), "Strips: A New Approach to the Application of Theorem

Proving to Problem Solving", Artificial Intelligence, Vol. 2, pp 189-208

Fox, M.S. (1983) "Constraint Directed Search: A case of Job Shop Scheduling". PhD Thesis,

Carnegie-Mellon University.

Fukumori K., (1980) "Fundamental Scheme for train Scheduling", MIT AI Memo No 596,

Artificial Intelligence Laboratory, MIT, Cambridge MA.

Goldstein I.P.,Robert R.B. (1977) "NUDGE: A knowledge-based Scheduling program," MIT

Al Memo 405.

Moder JJ,C R Phillips, E W Davis (1983) "Project Management with CPM PERT and

Precedence Diagramming", VNR Company NY

Nilsson N.J. (1971) "Problem solving Methods in Al", New York, N.Y.; Mc Graw Hill.

78

Ouciuch Ed, Frost John (1985)- ISA: Intelligent Scheduling .. ;it", Al Technology

Center, Digital Equipment Corp. Hudson MA 01749

Sacerdoti, E.D. (1977) "A Structure for Plans and Behaviour." NY: Kh!evier North-Holland

1977. Al Series.

Stallman,R. and G.J. Sussman (1977) "Forward reasoning and dependency directed

backtracking in a system for computer aided circuit-analysis", Al 9:135-196.

Stefik M. (1981) "Planning with Constraints (MOLGEN: Partl)", Al, Vol 16, pp 111-140.

Stefik M. (1980) "Planning with Constraints", STAN-CS-80-784, PhD. Thesis

Stinson Joel, David Edward,Khumwala Basheeer (1978). "Multiple Resource Constrained

Scheduling using Branch & Bound", AIIE Trans, Vol 10, No 3, Sept 1978.

Sussman G.J., Steele G.L. (1980) "Constraints: A language for expressing almost heirarchical

descriptions" AIJournal 14:1-39.

Tate, Austin (1977) "Generating Project Networks" IJCAI-77, Cambridge, Cambridge, MA

888-893

Vere, Steven A (1983) "Planning in Time. Windows and Durations for Activities and Goals.

IEEE-PAMI, May 1983 pp245-267

Vere, Steven A (1984) "Temporal Scope of Assertions & Window cutoff." Al Research Group

Report, Jet Propulsion Laboratory, Nov '84.

Wilkins, D.P. (1984) "Domain Independent Planning: Representation and Plan Generation."

Artificial Intelligence. 22:3 April (1984). pp 269-301

Winston P.11., 1984 "Artificial Intelligence", 2nd Ed. , Addison-Wesely, Reading,

Massachusetts.

79

Users Manual

A Tool for Building Rule-based Expert Systems

April 1985

Copyright e Navin Chandra

Center for Construction Research & Education
Departmient of Civil Engineering

Massachusetts Institute of Technology

80

ABSTRACT

INIST is a tool for building rule-based systems. It has been built to merge the technologies of

Knowledge Representation in Artificial Intelligence with that of Relational Database Management

systems. While maintaining a relational (in the eyes of the user) type database it allows the user to

operate on the data using production rules.

IMST also allows the user to do some meta-level control. Rules can be loaded, and unloaded.

Facts can be black boarded for easy access and modularity.

IMST is written in Franz-LISP (with parts in C) and is built for the user who is not familiar

with LISP. It, however, does allow the users to define their own functions and even their own

interface.

This paper explains the workings of IMST through the use of numerous examples.

81

Table of Contents Page

1.0 Introduction

1.1 The System Architecture
1.2 The data base

2.0 An Example

2.1 Introduction
2.2 Example
2.3 More Examples

3.0 The rule Syntax

3.1 The rule
3.2 Test Predicates
3.3 Actions

4.0 Database Capabilities

4.1 Tabular data
4.2 Database actions

5.0 Miscellaneous Actions

5.1 Meta level Control
5.2 1/0 Commands

6.0 Top-level Command Summary

7.0 IMST functions list

82

1.0 Introduction

IMST is an environment for building rule based expert systems. It is modeled after some of

the popular production systems like OPS-5 (Charles Forgy '81 Carnegie-Mellon U.) and YAPS (Liz

Allen '83 Maryland).

IMST was written to merge the technologies of rule based systems with that of data base

management. It allows the user to think of his/her data in the form of a relational database.

The system is written in Franz-Lisp and it operates in a UNIX 4.2 environment. Even though

IMST has its own top-level environment, it does not insulate the user from the full power of LISP.

1.1 The system architecture

IMST, like all other production systems, has two major parts; the rule base and a data base

of facts. The rules operate upon the facts and make inferences. These inferences are added back to

the facts list and are then available for use by the other rules.

IMST has its own top-level environment. The purpose of this environment is to let users

interact with the system without knowing any LISP. Once an application is developed, tile IMST

top-level can be overridden by a user defined interface,

1.2 The data base

The data base is a collection of sentences. Each sentence is an assertion about the domain one

is dealing with. Data can be entered into the database via the function assert.

The assertions are stored in a file which can be loaded into the IMST environment by using

the loadfile command.

Consider a world about which we have the following inforwation:

"There is a strong boy named john who lives on 33 Maple Street. There is a beautiful girl

who is 5.5 ft tall. They both are good dancers."

This information can be broken up into assertional statements and can be stored in a file as

83

shown in figure 1,2.1 below.

(assert mary isa girl)
(assert john is_a boy)
(assert john is strong)
(assert john address 33 maplestreet)
(assert john is a good dancer)
(assert mary is beautiful)
(assert mary height 5.6)
(assert mary is a good dancer)

Figure: 1.2.1 ------------...............-- ---- -.

The database of facts can now be queried and can be used by a rule base.

Whenever an assertion is made, the first word is treated as an object and all subsequent

assertions having the same first word are grouped together. The assertions listed above will be

stored in the database like this:

john: mary:

(john isa boy) (mary is_a girl)
(john address 33 maple_street) (mary is beautiful)
(John is a good dancer) (mary height 6.5)
(john is strong) (mary is a good dancer)

Figure: 1.2.2

The reader should be aware that there is no restriction on the contents of an assertion. The

same data could be asserted like this:

(assert there is a boy named john)
(assert he is strong and he lives on 33_maplestreet)
(assert john is a good dancer)
(assert she is mary)
(assert she dances well)
(assert mary is five feet 6 inches)

84

(assert she is beautiful)

Figure: 1.2.3

The semantic content is the same but there is no modularity and consistency, The facts

(mary dances well) and (john is a good dancer) may be the same for the user but not to the

computer. The use of statements like (she is beautiful) can be very misleading. It is advisable to use

the (<object> <attribute> <value>) format . In essence, consistency is highly desirable.

Before closing this section it is useful to know that a database fact can be removed by the

unasert function. The tile:

(unassert john is strong)

(unassert john is a boy)
(unassert john is a good dancer)

(unassert john address 33 maple street)

Figure 1.2.4

will, when loaded, delete all the information on john.

85

2.0 An example

2.1 Introduction

This chapter is intended to instruct the user about the use of IMST. It contains a simple

example and attempts to explain the important features of IMST through the example.

In section 1.2 the notion of an assertional database was introduced. We now show how the

data may be used by production rules.

A production rule is basically an IF-THEN rule. A rule states that IF certain facts are true

THEN there are a few other facts that are deemed true.

The example below is a fully annotated trace of the IMST environment. The text in boldface

is which is typed in by the user. The text in italics is the explanation and the normal typeface is

that which is printed by the computer.

2.2 Example

2.2.I First the data:

To start IMST one first logs into the UNIX system where the program has been in.qtalled.

After logging in just type 'imst' to the uniz shell

unix% inst

This may be followed by a few system messages and in about 5-8 seconds you will find yourself

with the IMST prompt: 'imst> '. The first thing to do is to initialize the system with the 'init'

command

imst> Init

Now let us -.nput some data. The data is normally added to the system via a file. To create

such a file we can go into the editor by using the 'emacs' command. Let us call the file 'people'

imst> emace people

This will put you into a full screen editor. If you are not familiar with emacs you could ust the

86

command: 'vi''(for the unix visual editor). Here is how the data is entered in the file.

(assert John is_& boy)
(aasert John height 0.0)
(assert John spa 3.8)
(assert John likes sailing)r(assert Jack Is_ a boy)
(assert Jack height 5.5)
(assert Jack spa 5.0)

(assert mary Is_& girl)
(assert mary Is beautiful)
(assert mary spa 4.2)
(assert mary height 5.5)
(assert mary likes sailing)

(assert boy Is_a person)
(assert girl Is_& person)
(assert person Is_a mortal)
(assert person has a soul)

Figure: 2.2.1 - -- -- - -- - - -- -- - -- - -- - -- - -- -- - - -- - --

Having typed the data in, exit emacs normally. This will put you back in JMST. You are now

ready to load the file.

imat> loadtile people

The above command will produce the following data base in IAST

john: (john is_ a boy) jack: (jack isa boy)
(john height 6.0) (jack height 5.5)
(john gpa 3.8) (jack gpa 5.0)
(john likes sailing)

mary: (mary isa girl) girl: (girl isa person)
(mary is beautiful)
(mary gpa 5.0) boy: (boy isa person)
(mary height 5.5)
(mary likes sailing) person: (person is_a mortal)

(person has a soul)

Figure 2.2.2 -- ------------------------------- -----

87

There is a way of tiewing this data. This is shown below:

imst> describe John

Description of object: john

is a boy
height 6.0
gpa 3.8

imst>

2.2.2 Now for some rules

A rule consists of a set of facts (patterns) in the IF part, followed by a set of actions in the

THEN part. The IF & THEN parts are separated by a implication sign '-->'

Here is the syntaz:

(rule -name- -pattern _ 1- -pattern_2-

.... -pattern n-

-> -action _- -action _ 2- -action M-)

Assume that we want to conclude that john knows how to swim because we know that he likes

sailing. Here is what the rule may look like

(rule john_swim (john likes sailing)

-> (assert john knows swimming)

There is only one pattern in this rule and when the rule is run, it will fire because the pattern

(john likes sailing) is found to ezist in the database. The action 'assert' witl add (john knows

swimming) to the database.

There is a problem here, we also want to conclude that mary can swim because she too goes

sailing. The rule should be able to handle all those who like sailing. In other words the rule should be

able to handle variables. Here is what it might say "IF there is an '' which likes sailing, then assert

88

that that 'z' knows swimming"

This is done by introducing a variable into the pattern. The pattern (>z likes sailing) will

match any fact which has any object with the words 'likes' 83 'sailing' in the attribute and valur

positions. In other words, (>z likes sailing) will match the fact (john likes sailing) and (mary likes

sailing) and will bind z to john & mary respectively.

Assuming x is bound to john', the assertion (assert <z knows swimming) will actually assert

(john knows swimming). The use of the the symbol > before a variable name means "bind this

variable" 8 the symbol < means "lookup the value "

A mnemonic way of looking at this is:

>x can be looked upon as ->x , that is, a value going
into x

and <x can be looked upon as <-x , that is, the value coming
out of the variable x

Let us now write the rule in a file called 'rule'

(rule swimmingrule (>x likes sailing)

-- > (assert <x known swimming))

imst> loadfile rule

imst> run
Trying rule: swimming rule

asserting > (John knows swimming)
asserting > (mary knows swimming)

done

imst> describe John

Description of object John

isa• boy
height 6.0
gpa 3.8

89

likes sailing
knows swimming

Notice that the data for object john has been updated. We now go on to write some more

rules:

Here is a rule that says that any boy with a gpa of 5.0 is a nerd (we have a 5.0 system for

Grade point average here at MIT).

(rule nerd (>x gpa 5.0
(<x is_a boy)

-> (assert <x is_a nerd))

Here is how the rule works:

The first pattern will match (jack gpa 5.0) and z will be bound to 'jack'. The second pattrn

has a lookup for z and will become (jack isa boy). As the second pattern is found in the data base,

the rule will fire and (jack is_ a nerd) will be asserted. Notice that the rule will not fire for mary.

90

2.2.3 More examples

a) "if any boy's height is greater than 6 feet, then he is tall"

We now introduce yet another part of the IMST rule: the test. A test is a function that either

returns true or false.

(rule tall-boys (>al isa boy)

(<al height >ht)

test (ge <ht 6.0)

--> (assert <al is tall))

The rule says: "IF there is a boy 'al' of height 'ht' and if 'ht' is greater-than-or-equal-to (ge)

6.0 then assert that 'al' is tall."

b) "If any boy is less than 6.0 feet tall but greater than 5.5 feet in height, then that person is

of average height"

(rule average_height_boys

(>x isa boy)

(<x height >ht)
test (ge <ht 6.5)

(It <ht 6.0)

--> (assert <x is of_averageheight))

c) "All beautiful girls like nerds"

(rule only at mit

(>x is-a girl)

(<x is beautiful)

(>y is-a nerd)

-.- > (assert <x likes <y))

Notice how this rule uses the inference made by rule "nerd" of section 2.2.2

d) "To find who is taller than whom"

91

(rule taller (>x height >iht)

(>y height >yht)

test (gt <xht <yht)

--> (assert <x is taller than <y))

e) Now an interesting rule on inheritance:

Inheritance is an important part of building object based semantic networks. If an object 'y'

isa object 'x' (e.g. dog isa animal), then the object 'y' should inherit the propertis of 'y'.

Stated in rule form we have:

"if there is any object x with property px and value vx and if some y isa x then y should

also have the property px and value vx"

(rule inheritance (>y is a >x)
(<x >px >vx)

--> (assert <y <px <vx))

If we run this rule on the data in 2.2.2 we will get the following assertions

(jack isa person) (jack is a mortal) (jack has a soul)
(mary isa person) (mary isa mortal) (mary has a soul)

(john isa person) (john isa mortal) (john has a soul)

You have just been exposed to the most important part of IMST and are ready to write rule

based systems!

f) A arithmetic rule: To convert the height to meters.

(rule feet to meters

(>x height >y)
--> (unassert <z height <y)

(assert <x height metric
(/ (* <* <y 12.0) 2.64) 100.0)))

92

3.0 The rule Syntax

3.1 The rule

The rule in IMST are of the following form

(rule -rulename- -pattern_--
-pattern 2-

....... -pattern -

test -test_1- -test 2-
... -testp-

-> -action_1- -action2 2.- action m-)

The use of tests is optional. If there are no tests, simply drop the word 'test' from the body of

the rule.

The rule fires when all the patterns match & all the tests are true. The tests are evaloated

using the lisp eval, the same goes for the actions.

3.2 Test Predicates

There are several predicates that are provided by IMST

(ge -argi- -arg2-) Returns true if argi is greater than or equal to arg2.

(le -argi- -arg2-) Less than or equal to

(9t -argi- -arK2-) Greater than.

(it -argi- -arg2-) Less than.

(=-argl- -arg-l-) E~qual to

Ine -argJ- -arg2-) Not Eiqual to

(Dot* -pattern I-) The pattern I does not exist in the database.(The pattern should not have

any variables in it.)

93

3.3 ActIons

The most common action i.s assert. One can use any user-defined LISP function. By using

Franz Lisp's Fast function it is possible to include actions that are written in C or Fortran.

The other pre-defined actions provided by IMST awe presented in the following chapters.

94

AD-11171 514 IEVJIfflOFO4IM IT FQ~j[2RACTITV tcHEDULIWGC V/

N wD

Jrjr c 4 41 N0 THp/6/

i • | | | |~u~ Ul , Lr

to

JU ma 12

!E.

wm 1n -2

11.25 1IE6 1 M

!CROCOPY RESOLUTION TEST CHART
MATIOBA BUREAU OF STANDARDS-1963-A

4.0 Database Capabilities

In building real-life systems, it is not possible to have a long data file full of assertions. IMST

has a ability to handle tabular data.

4.1 Tabular Data

4.1.1

It is popular to think of data in a tabular form. IMST allows you to input data in this form.

Consider the table below

student ID# Gpa Height

john 43433 3.8 6.0

jack 39393 5.0 5.5

mary 39204 5.0 5.5

The data is converted into object-attribute-value triples automatically . Here is what will be

asserted for john:

(john ID# 43433)
(john gpa 3.8)
(john height 6.0)
(john is_& student)

The above 'isa' relationships are implied by the virtue of the fact that the names john, jack

& mary are listed below the field 'student'.

4.1.2 The create, edit & loaddata commands.

create

The create cdmmand takes no arguments and is used to create a table. Here is a self

explanatory example:

95

imst> create

Name of the f ile => people

type 'quit' to finish up

Field 1 =>student
Field 2 => ID#
Field 3 =>gpa
Field 4 => height
Field 5 => quit

imst>

A tile should be created oniy once. Having created the tile, it is now ready for editing.

edit

edit takes no arguments and it is used to edit a tabular data file. It allows one to input data

record by record. It can be used to edit old files too.

The editor is currently very simple, it only allows you to go forward from field to tield & from

record to record. Atter typing in data one can exit the editor by hitting return on a blank line only.

If you make a mistake, you will have to exit the editor and re-enter the editing routine, you cannot

go back.

Note: The editor torces you to use a directory to store your files. You can choose your current

directory by providing the appropriate pathname in full.

For example: It we wish to store the above tile 'people' in a sub-directory called 'knowledge-

base', then the trace may look like this:

imet> edit

Give me a directory name => knowledge-base

Name of the data file within the above directory =>people
Which record would you like to start at?
(if this is a new file, start at #1) => 1

96

loaddata

This function takes no arguments and it is used to load in a file which was a product of the

create and edit commands. It automatically converts the records into a frame representation and

makes the appropriate assertions.

4.2 Database actions

Here are some of the database actions that IMST can perform within the body of a rule:

(assert ...data...) To assert data into the database.

(unassert data...) To remove a data element from the database.

(glue string 1 string 2) It is used to create new objects. For example: If x is bound to

'john' and we wish to create a new object called 'johns girlfriends' then one could use:

(assert (glue <x s girlfriends) data....)

(cardinality objecti) Counts the number of facts within a given objecti.

(summation fieldl objectl) Returns the summation of a particular field from an object. It

requires that the selected object has the specified in the 'value' position (rightmost) in each fact.

(average field l objectl) Same as summation, only it returns the arithmetic mean

97

5.0 Miscetlaneous Actions

.1 Meta Level Control

The rule base in IMST exists in two areas, the active and the inactive set.

(swapin rule]) This will swapin the rulel into the active set from the inactive set.

(swapout rulel) Will send an active rule to the inactive set.

(rmrule rulel) Will remove the rulel from the active set, forever.

(loadflle file 1) This will load the file IMST into the top-level and is useful for pattern

invoked loading or rulebases.

(Initrules) Will clean up all the rules in the current active ruleset.

5.2 I/O Commands

(skip n) Skips 'n' lines.

(tab n) Will tab cursor forward by n columns.

(say ...message....) The say action is like assert but does not assert the message but just

echo's it to the screen.

(ask ...question....) It will accept a value for a variable in the text of the question. For

example:

(ask What is your >name)

The system will stop and wait for input from the user. The input will be bound to the

variable 'name'.

98

L I i

U I ~ p

6.0 Top-Level Command Summary

A summary of all the commands that can be issued from the IMST top-level.

create Creates table

describe object Returns a description

dumplisp filename Will dump the whole system, the data, the rules and IMST into the

specified file. You need about 2.0 megabytes.

edit Edit a created table

emacs file Edit a unix file using emacs.

help Gives some help

Init Initializes the whole system.

InItrules Throws away the current ruleset but not the data.

lisp Lets you talk to Franz lisp directly.

loaddata Used for tabular data loading.

loadfile filename Will load the specified file.

quit Quit

run Starts the inference Engine

top Return to top-level of IMST.

Al file The unix vi editor

99

7.0 IMST function list

The test and actions in IMST can be any lisp function. IMST comes with a library of useful

functions:

Arithmetic functions:

The operators: + / * -

The predicates: gt It ge le - ne not*

Database operations:

assert

unassert

glue

cardinality

summation average

I/O

say

ask

skip

tab

Meta-level Control

swapin

swapout

rmrule

loadfile

loaddata

initrul"e
100

L - ,: ,

APPENDIXB

Trace of a run

ThiB appeadix is the trace of a run. It has three part:

Pati The input data to the program.

Partil The constraints (is CDL-D)

Partli An annotated trce of the rm.

The example used here mB am exteatioa of the ease presented in Chapter 1.

101

Appendix

Iw

Th. input dt

;;TIHE INPUT DATA

;; This file contains the data used for the trace of CDL-II
;; It contains the definition of all the schedule elements

;esse seeese*,esssssese cssse sese,. ses sse*sssss ss.

The TIME PERIODS & FIRING RANGES

;; Setting the full time period to be one month

(set 'one_ month '(I 2345 o 78 o 11121314 15161718
10 20 21 22 23 24 25 26 27 28 29 30))

Setting the holidays

(set 'holidays '(1 6 14 22 28))

;- Setting sub time periods: early and late.

(set 'early '(2 3 4 8 6))

(set 'late '(26 27 28 20 30))

;; Setting the firing ranges

(set 'all_ ranges '(range A range B range C range D range E range F))

THE BATTLIONS
Defining the battalions and their schedule elements

;BATTALION : bat_A

The first schedule element, "bat _A will carry out
act_ A on any range any time of the total period

(assert bat_ A actAl rangeAl dayAl)

(set_ value 'actAl '(act A))
(set _value 'dayAl one month)
(set_value 'rangeAI '(rangeA range_ B range C))

;; The second schedule element:

(assert bat _A actA2 rangeA2 dayA2)

(set_ value 'dayA2 onemonth)
(set_ value 'rangeA2 '(range _ A range _ B range_ C))
(set_ value 'actA2 '(act_ A))

;;The third schedule element

(assert bat_A actA3 rangeAa dayA3)

(set _value 'dayA3 one__ month)
(set_ value 'rangeA3 '(range _ A range _ R range _C))
(set_ value 'actAS '(act A))

103

The fourth schedule element

(assert bat-A actA4 rangeA4 dayA4)

(set__value 'actA4 '(actB))
(set _value 'rangeA4 all _ranges)
(set value 'dayA4 early)

BATTALION 'B'

First Schedule element:
(assert bat _13 actBl rangeBi dayfll)

(set value 'day~iI one _month)
(set value 'rangeBl all ranges)
(set value 'actBl '(act_ B))

;the second schedule element:
(assert bt-B actB2 ratigeB2 dayB2)

(set value 'actB2 '(actA))
(set-value 'rangeB2 all _ranges)
(set _ value 'dayfl2 late)

the third schedule element:

(assert bat _B actB3 rangeB3 dayB3)

(set-value 'actB3 '(actC))
(set-value 'rangeB3 all _ranges)

(set-value 'dayB3 late)

BATTALION "C"

the first element

(assert bat _C artCj rangedl daydi)

(set-_value 'actCl '(actA))
(set-value 'rangeei all _ranges)

(set _value 'dayC1 one -month)

;the second element

(assert bat _C actC2 rarigeC2 dayC2)

(set-value 'actC2 '(act-B))
(set value IrangeC2 all _ranges)
(set _value 'dayC2 early)

;the third elememnt

(assert hat_ C actC3 rangeC3 daYC3)

(set -value 'actC3 '(act_ B))
(set _value 'rangeC3 all _ranges)

104

(set value 'dayCS one month)

;BATTALION"D

the first element

(assert bat-D actDl rangeDi dayDI)

(set value 'act[)1 '(actA))
(set value 'rangeDi ali ranges)
(set. value 'dayDI early)

the second element

(assert btD actD2 rangeD2 dayD2)

(set value 'actD2 '(actA))
(set value 'ringeD2 all ranges)
(set value 'dayD2 late)

105

F, ..

Appendix B

Part 10

The Constraints (in CDL-II)

106

;;THE CONSTRAINTS (IN CDL-I)

;; The constraint set presented here is used in the attached trace of
:; the program.

CONSTRAINT C1

A battalion can do only one activity per day

(constraint CI (>bat >act >range >day)
test (selected? <day)

-> (constraint el _aux (<bat >Ia >rl >dl)

test (not (equal (quote <day) di))

-> (set value dl
(subtract (getvalue dl)

(get_ value (quote <day))))

CONSTRAINT C2

Constraint 2:: Two battalions cannot be on the same range
on the same day.

(constraint C2 (>bat >act >range >day)
test (selected? <range <day)

-> (constraint C2 one (>b2 >a2 >r2 >d2)
test (not (equal &2 (quote <act))) ; make sure its not the same one!

(equal (get value r2) (quote I (get value range)))

-> (set value d2
(subtract (getvalue d2) (quote I (getvalue day)))))

(constraint C2_ two (>b3 >aa >r3 >d3)
test (not (equal a3 (quote <act)))

(equal (getvalue d3) (quote I (get value day)))

-> (set-value r3
(subtract (get value r3) (quote I (get value range))))))

;;.............ececc.cc...*.*..c.c.c******..*..ss..s.ce..s.cs..e.sc.c

;; CONSTRAINT C3

;; constraint C3

if any battalion is scheduled for activity actB then that
battalion should not be scheduled for anything
the very next day.

107

(constraint C3
(>bat >act >range >day)

test (selected? <day <act)
(equal (get value act) '(actB))

-- > (constraint C3_aux (<bat >al >rl >dl)
test (not (equal (quote <day) di))

-- > (set value dl
(subtract (get_ value d1)

(list (+ I (car (get value (quote <day)))))))))

CONSTRAINT C4

Constraint C4
assignment of ranges to activities

actvity acceptible ranges

act_A range A range B
act_B range C
act C rangeB

(constraint C4_one (>bat >act >range >day)
test (equal (get value act) '(act A))
-- > (set value range '(range A range_ B)))

(constraint C4_two (>bat >act >range >day)
test (equal (get value act) '(act B))
-> (set_ value range '(range_ C)))

(constraint C4 _ three (>bat >act >range >day)
test (equal (get value act) '(actC))
-> (set _value range '(range_ B)))

**********************ss***************~q** ***** * **** **

CONSTRAINT CO

;; Cyclic constraint on activity act_ A.
;; the window is set at x+5 and x+10

(constraint C6_ one (bat_ A actAl rangeAl dayAl)
being specific to battalion one
could be done automatically.

-- > (setvalue 'dayA3 (restrict (get value 'dayA3)
'(and (ge $$$ (+ (get_mi _value 'dayA2) 6))

(le $$$ (+ (get_ ma_ value 'dayA2) 10)))))

(set_ value 'dayA2 (restrict (get_ value 'dayA2)
'(and (ge $$$ (+ (get min _ value 'dayAl) 5))

(le $55 (4. (getmaxvalue 'dayAI) 10))
(le 555 (- (get max-value 'dayAS) 5))
(ge $$5 (- (get_ min_ value 'dayA$) 10)))))

108

(set _value 'dayAl (restrict (get value 'dayAl)
'(ad (le S$(- (get _maX _ Value 'dayA2) 5))

(ge 83 -(get min value 'dayA2) 10)))))

;CONSTRIANT C7

;;Constriant C7

The safety spans constraint: When act _A. is carried out on rangeA
;then the safety spans requires that it is unsafe to schedule anything on
;range_ C

(constraint C7 _safety spans (>bit >act >range >day)

test (selected? <day <act <range)
(equal (get value act) '(actA))
(equal (get value range) '(rangeA))

;has two parts: If the range is rangeC then do not use the day
If the day is the same then do not use rangeC

-> (constraint Cl aux (>bb >&a >rr >dd)
test (not (equal aa (quote <act)))

(equal (get value rr) '(rangeC))
-> (set-_value dd

(subtract (get-value dd)
(get_ value (quote <day)))))

(constraint Cl' aux aux (>bbb >&&a >rrr >ddd)
test (not (equal &&a (quote <act)))

(equal (get value ddd) (quote <day))

-> (set _ value rrr
(subtract (get value rrr)

'(range C))

;CONSTRAINT CS

;Constraint Ce : there shall be no training on holidays"

(constraint Ce (> bet > act > rouge > day)

(set_ value day
(restrict (get value day)

'(not (member5$ holidays)))))

109

Appendix B

Part Ml

The Trace of the Program

This trace uses the data and the constraints shown in parts I and 11 of this appendix. The

program is started by entering lisp, loading the program, the data, and then issuing the command

(search)

The program follows the algorithm oulined in section V.3 of this thesis. The main steps are:

(1) Try to propagate the constraints.

Whenever a constraint causes an effect
the new value is echoed along with the
current cycle number.

At the end of each propagate cycle the
program echoes "PROPAGATION COMPLETE"

(2) After the above step, it branches and sets up
new contexts. The word "BRANCHING" is echoed
on the screen.

If during the propagation stage the program encounters a contradition, it backs up and

"PURGES" the latest context.

110

Script started on Wed May 8 10:43:31 1986
hera % rsh hades lisp
Franz Lisp, Opus 38.91

-> (load 'RUN.I)
(load RUN.II
[fasl compiled/rulengine.o]
[fast compiled/cdl.o
jgasl compiled/utils.o)
[fast compiled/search.o]

you will have to load data and then issue command (search)t

-> (load 'data.)
[load data.l]

asserting > (batA actA! rangeAl dayAl)
Setting value of actAl to (actA) with context - cycle

Setting value of dayAl to (1 2 3 4 6 6 7 80 10 11 12 13 14 15 16 17 18 10 20 21 22 23 24 25 26 27 28 29 30) with conte

Setting value of rangeAl to (range A rangeB rangeC) with context - cycle

asserting > (batA actA2 rangeA2 dayA2)
Setting value of dayA2 to (1 2 3 4 5 6 7 8 0 10 11 12 13 14 16 16 17 18 10 20 21 22 23 24 25 26 27 28 20 30) with conte

Setting value of rangeA2 to (range A rangeB rangeC) with context - cycle

Setting value of actA2 to (act A) with context m cycle

asserting > (batA actA3 rangeA3 dayA3)
Setting value of dayA3 to (1 2 3 4 6 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2 30) with conte

Setting value of rangeA3 to (range A range_ B rangeC) with context = cycle

Setting value of actA3 to (actA) with context = cycle

asserting > (bat_ A actA4 rangeA4 dayA4)
Setting value of actA4 to (act_ B) with context s cycle

Setting value of rangeA4 to (range A rangeB rangeC rangeD range E rangeF) with context - cycle

Setting value of dayA4 to (1 2 3 4 6 6) with context cycle

asserting > (bat_B actBI rangeBi dayBl)
Setting value of dayBI to (1 2 3 4 6 6 7 8 0 10 11 12 13 14 16 16 17 18 10 20 21 22 23 24 26 26 27 28 20 30) with conte

Setting value of rangeB! to (range A rangeB range C rangeD range E rangeF) with context - cycle

Setting value of actBl to (act B) with context - cycle

asserting > (batB actB2 rangeB2 dayB2)
Setting value of actB2 to (act _A) with context - cycle

Setting value of rangeB2 to (range A rangeB rangeC rangeD range E rangeF) with context - cycle

Setting value of dsyl2 to (26 27 28 20 30) with context m cycle

asserting > (bat B actB3 rangeB3 dayB)
Setting value of actB3 to (act_C) with context - cycle

Setting value of rangeBl to (range A range_B rangeC rangeD range E rangeF) with context - cycle

Setting value of dayflS to (26 27 28 20 30) with context - cycle

111

asserting > (batC actCl rarigeCt dayCi)
Setting value of actCl to (act_ A) with context =cycle

Setting value of rangeCl to (range_ A ranigeB rangeC rangeD rangeE range F) with context cycle

Setting value of dayCl to (1 2 34 5 67 80 10 11 12 13 14 15 18 17 18 1g 20 21 22 2324 25 2627 2820 30) with Conte

asserting > (bat C actC2 rangeC2 dayC2)
Setting value of actC2 to (ad B) with context = cycle

Setting value of rangeC2 to (range__A range H rangeC rangeD rangeE range F) with context =cycle

Setting value of dayC2 to (1 2 3 4 5 6) with context -cycle

asserting > (batC actC3 rangeC3 dayC3)
Setting value of actC3 to (act_ B) with context - cycle

Setting value of ringeC3 to (range_ A range B rangeC rangeD rangeE range_ F) with coutext cycle

Setting value of dayCS to (12 234 5 67 8 g 10 11 12 13 14 15 16 17 18 10 20 2122 23 24 252627 28 20 30) with, Conte

asserting > (batD actDi rangeDi dayDl)
Setting value of actDl to (act _A) with context - cycle

Setting value of rangeDi to (rangeA rangeB rangeC rangeD rangeE rangeF) with context = cycle

Setting value of dayDI to (1 2 3 4 5 6) with context = cycle

asserting > (baD aetD2 rangPD2 dayD2)
Setting value of actD2 to (act A) with context = cycle

Setting value of rangeD2 to (rangeA rangeB rangeC rangeD rangeE rangeF) with context =cycle

Setting value of dayD2 to (26 27 28 20 30) with context = cycle

We can Inquire the database by using the describe function. This function
takes as an argument the name of an object. It echoes all the associated
variables and their values.

(describe 'batA)
actA4 - (act_ B) cycle - cycle
rangPA4 - (range_ A range_1B range__C rangeD rangeE rangeF) cycle - cycle
dayA4 (1 2 3 4 5 6) cycle - cycle
actA3 (act_ A) cycle - cycle
rangeA3 - (range_ A range B range C) cycle -cycle
dayA3 (1 2 34 567 80 10 11 12 13 14 15 16 17 18 10 20 21 22 222425626 27 2829230) cycle - cycle
actA2 (actA) cycle = cycle
rangeA2 - (range_ A range_ B rangeC) cycle - cycle
dayA2 (1 2834 56780 101If12 13 14 15 161718 1020 21 22 2224 2326 27 28 2020) cycle = cycle
actAl -(actA) cycle - cycle
rangeA I - (range _A range _B range _C) cycle -cycle
dayAl -.~ (12 34 5607 80 10 11 12 13 14 15 16 17 18 1020 21 22 23 242526 27 28 2030) cycle = cycle
nil
-> (describe 'bat B)
acIBS - (actC) cycle - cycle
rangeB3 - (rang. A range__B rangeC rangeD rangeE rangeF) cycle - cycle
dayB3 -(26 27 28 20 30) cycle -cycle
actB2 -(actA) cycle - cycle

112

rangeB2 = (range A range B range C rangeD range E range F) cycle - cycle

dayB2 - (28 27 28 20 30) cycle - cycle
actBi = (actB) cycle - cycle
rangeBi = (range A range B range C range D rangeE range F) cyele = cycle

dayBI - (1 2 3 4 6 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 20 30) cycle =cycle

-> (describe 'bat_C)
actC3 = (act_ B) cycle - cycle
rangeC3 = (rangeA range B rangeC rangeD rangeE rangeF) cycle = cycle

dayC3f(1234567801011 121314151S 17 18 10 20 2122 23 24 25 26 27 28 20 30) cycle = cycle

actC2 - (act_ B) cycle - cycle
rangeC2 - (range_A range B range C rangeD rangeE range F) cycle = cycle

dayC2 - (1 2 3 4 5 6) cycle - cycle
actCl f (actA) cycle - cycle
rangeCl - (rangeA range B range _C rangeD rangeE range F) cycle - cycle

dayCl - (1 2 3 4 5 6 7 8 0 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 27 28 20 30) cycle cycle

nil
-> (describe 'batD)
actD2 - (act_A) cycle - cycle
rangeD2 = (range A rangeB range C rangeD range E range F) cycle - cycle

dayD2 = (26 27 28 29 30) cycle = cycle
actDl - (act_ A) cycle - cycle
rangeDI = (rangeA rangeB range _C rangeD rangeE range F) cycle = cycle

dayDI - (1 2 3 4 5 6) cycle = cycle

nil

Having loaded all the data we now issue the command: (search) We do not
have to load the constraints yet, the search routine will do that automatically.

The computer starts off in the propagation state. Whenever a constraint is
used it echoes the fact that it is setting the value of a variable to some new

value met. The computer echos "USING CONSTRAINT:" followed by the

name of the constraint.

-> (search)
[load constraints.l)
USING CONSTRAINT: CS

Setting value of dayD2 to (26 27 20 30) with context - cycle

Setting value of dayDI to (2 3 4 5) with context - cycle

Setting value of dayC$ to (2 3 4 6 7 8 1 11 12 13 15 16 17 18 10 20 21 23 24 25 26 27 20 30) with context = cycle

Setting value of dayC2 to (2 3 4 6) with context - cycle

Setting value of dayCj to (2 3 4 5 7 8 0 10 11 12 13 16 16 17 18 10 20 21 23 24 26 26 27 20 30) with context - cycle

Setting value of dayB3 to (26 27 20 30) with context - cycle

Setting value of dayB2 to (26 27 20 30) with context - cycle

Setting value of dayBl to (2 3 4 5 7 8 10 11 12 18 15 16 17 18 10 20 21 23 24 26 26 27 20 30) with context = cycle

Setting value of dayA4 to (2 3 4 6) with context - cycle

113

setting value or 'ayAS to (23 4 5789 10 11 12 13 15 16 17 18 1 2021 2324 24262729 30) with context. cyclt-

Setting value of dayA2 to (2 3 4 5 7 8 0 10 11 12 13 15 16 17 18 10 20 21 23 24 25 26 27 20 30) with context = cycle

Setting value of dayAl to (2 3 4 5 7 8 1 10 11 12 13 15 16 17 18 19 20 21 23 24 25 26 27 29 30) with context = cycle

USING CONSTRAINT: CO one

Setting value or dayA3 to (7 8 9 10 11 12 13 15 16 17 18 19 20 21 23 24 25 26 27 29 30) with context = cycle

Setting value of dayA2 to (7 8 0 10 11 12 13 15 16 17 18 10 20 21 23 24 25) with context = cycle

Setting value of dayAl to (2 3 4 5 7 8 0 10 11 12 13 15 1 17 18 10 20) with context = cycle

USING CONSTRAINT: C4_ three

Setting value of rangeB3 to (range B) with context - cycle

USING CONSTRAINT: C4_ two

Setting value of rangeC3 to (rangeC) with context = cycle

Setting value of rangeC2 to (range C) with context - cycle

Setting value of rangeBl to (range C) with context = cycle

Setting value of rangeA4 to (range C) with context = cycle

USING CONSTRAINT: C4 -one

Setting value of rangeD2 to (range A range_B) with context = cycle

Setting value of rangeDl to (range A range B) with context = cycle

Setting value of rangeCl to (range A range B) with context = cycle

Setting value of rangeB2 to (range_ A range B) with context = cycle

Setting value of rangeA3 to (range A range B) with context = cycle

Setting value of rangeA2 to (range A range_ B) with context = cycle

Setting value of rangeAl to (range A range B) with context - cycle

USING CONSTRAINT: C6 one

Setting value of dayA3 to (12 13 15 16 17 18 19 20 21 23 24 25 26 27 20 30) with context = cycle

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeD2 to (range B) with context - cycleO

Setting the value of rangeD2 to (range_ A) with context - cyclel

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeDl to (range_ B) with context - cycle2

Setting the value of rangeDI to (range A) with context = cycle3

114

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeCl to (rangeB) with context - cycle4

Setting the value of rangeC to (range A) with context = cycleS

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeB2 to (range B) with context - cycle6

Setting the value of rangeB2 to (rangeA) with context - cycle7

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeA3 to (range B) with context = cycle8

Setting the value of rangeA3 to (range A) with context - cycle9

BRANCHING ...

Setting the value of rangeA2 to (range_ B) with context - cyclel0

Setting the value of rangeA2 to (rangeA) with context = cyclel I

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of rangeAl to (range B) with context - cyclel2

Setting the value of rangeAl to (rangeA) with context - cyclell

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayD2 to (30) with context = cyclel4

Setting the value of dayD2 to (20) with context - cycleiS

Setting the value of dayD2 to (27) with context - cyclelS

Setting the value of dayD2 to (26) with context - cyclel?

Setting value of dayC! to (2 3 4 5 7 8 1 10 11 12 13 15 IS 17 18 19 20 21 23 24 2.5 27 20 30) with context = cyclf17

Setting value of dayB2 to (27 20 30) with context - cyclel?

Setting value of dayA3 to (12 13 18 16 17 18 1 20 21 22 24 25 27 29 30) with context - cyclel7

USING CONSTRAINT: C7_aux aux

USING CONSTRAINT: C7 aux

Setting value of dayC3 to (2 3 4 5 7 8 0 10 l lif 11 16 i 17 18 It 20 2 23 24 25 27 20 80) with context - cyclel7

115

Setting value or daylil to (2 3 4 5 7 8 0 10 11 12 13 15 1 17 18 19 20 21 23 24 25 27 20 30) with context = cyclel7

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayB2 to (30) with context = cyclelS

Setting the value or dayB2 to (29) with context = cyclelO

Setting the value of dayB2 to (27) with context = cycle20

USING CONSTRAINT: cl aux

Setting value o dayB3 to (26 29 30) with context = cycle20

Setting value or dayBI to (2 3 4 5 7 8 9 10 11 12 13 15 18 17 IS 10 20 21 23 24 25 20 30) with context = cycle20

USING CONSTRAINT: C2_one

Setting value of dayCl to (2 3 4 5 7 8 0 10 11 12 13 15 16 17 18 tO 20 21 23 24 25 20 30) with context = cycle20

Setting value of dayA3 to (12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context = cycle20

USING CONSTRAINT: C7- aux

Setting value of dayC3 to (2 3 4 5 7 8 0 10 11 12 13 15 16 17 18 10 20 21 23 24 25 20 30) with context = cycle20

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayB3 to (30) with context = cycle2l

Setting ti- value of dayB3 to (20) with context = cycle22

Setting the value of dayD3 to (26) with context = cycle23

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayDI to (5) with context = cycle24

Setting the value of dayDI to (4) with context = cycle25

Setting the value of dayDl to (3) with context = cycle26

Settng the value of dayDI to (2) with context - cycle27

USING CONSTRAINT: C2 one

Setting value of dayCI to (3 4 5 7 8 0 10 11 12 13 I, 16 17 18 10 20 21 23 24 25 20 30) with context - cycle27

Setting value o dsyAl to (3 4 5 7 8 0 10 11 12 13 15 16 17 16 10 20) with context - cycle27

USING CONSTRAINT: C7_ aux

Setting value of dayC3 to (3 4 5 7 8 10I 112 13 15 16 17 18 10 20 21 23 24 25 20 30) with context = cycle27

Setting value of dayC2 to (3 4 5) with context - cycle27

116

l__II____ll

Setting value of dayBi to (3 4 6 7 8 9 10 11 12 13 16 16 17 18 10 20 21 23 24 25 20 30) with context = cycle27

Setting value of dayA4 to (3 4 6) with context - cycle27

USING CONSTRAINT: C6_ one

Setting value of dayA2 to (8 0 10 11 12 13 16 16 17 18 10 20 21 23 24 25) with context - cycle27

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayC2 to (5) with context - cycle2

Setting the value of dayC2 to (4) with context = cycle20

Setting the value of dayC2 to (3) with context - cycleg0

USING CONSTRAINT: CO one

Setting value of dayA3 to (13 15 16 17 18 10 20 21 23 24 25 29 30) with context - cyclego

USING CONSTRAINT: ci _aux

Setting value of dayC3 to (4 6 7 8 0 10 I1 12 13 15 16 17 IS 19 20 21 23 24 25 20 30) with context = cycle30

Setting value of dayCi to (4 5 7 8 9 10 11 12 13 15 16 17 18 10 20 21 23 24 26 20 30) with context = cycle30

USING CONSTRAINT: C2_one

Setting value of dayB! to (4 5 7 8 0 10 11 12 13 16 16 17 18 19 20 21 23 24 25 20 30) with context = cycle3O

Setting value of dayA4 to (4 5) with context = cycle3O

USING CONSTRAINT: C3 aux

Setting value of dayC$ to (5 18 0 10 11 12 13 16 16 17 18 10 20 21 23 24 26 20 30) with context = cycle30

Setting value of dsyCl to (5 7 80 10 11 12 13 16 16 17 18 10 20 21 23 24 25 29 30) with context = cycle30

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayA4 to (6) with context - cycle3l

Setting the value of dayA4 to (4) with context - cycle32

USING CONSTRAINT: e_ aux

Setting value of dayAI to (3 6 7 8 0 10 It 12 13 I IS 17 IS 19 20) with context , cycle32

USING CONSTRAINT: C 2one

Setting value of dayBI to (6 870 1 I 11 IS 617 1 0 17 20 21 21 24 25 20 30) with context - cycle32

USING CONSTRAINT: CS aux

Setting value of dayAl to (3 76 0 10 If 12 IS 16 16 17 18 10 20) with context - cycle32

PROPAGATION COMPLETE

BRANCHING ...

117

Setting the value or dayA3 to (30) with context = cycle33

Setting the value of dayA3 to (29) with context = cycle34

Setting the value of dayA3 to (25) with context = cycle35

Setting the value or dayAs to (24) with context = cycle3e

Setting the value or dayA3 to (23) with context = cycle37

Setting the value of dayA3 to (21) with context = cycle38

Setting the value of dayA3 to (20) with context = cycle39

Setting the value or dayA3 to (19) with context = cycle,1O

Setting the value of dayA3 to (18) with context = cycle,11

Setting the value of dayA3 to (17) with context = cyclc42

Setting the value of dayA3 to (is) with context = cycle43

Setting the value of dayA3 to (16) with context - cycle,44

Setting the value of dayA3 to (13) with context = cycle45

USING CONSTRAINT: CO-one

Setting value of dayA2 to (8) with context = cycle45

Setting value or dayAl to (3) with context = cycle45

USING CONSTRAINT: C2_one

Setting value of dayCi to (6 7 9 10 11 12 13 15 16 17 18 10 20 21 23 24 25 29 30) with context =cycle4s

USING CONSTRAINT: C2_-two

USING CONSTRAINT: C2_ one

Setting value of dayCl to (5 7 9 10 11 12 15 1S 17 18 19 20 21 23 24 25 29 30) with context = cycle45

USING CONSTRAINT: C7_aux

Setting value of dayC3 to (567 8 9 10 11 12 IS IS I7 I8 19 20 21 23 24 25 20 30) with context = cycle4s

Setting value of dayBl to (5 7 8 0 10 It112 15 16 17 18 19 20 21 23 24 25 29 30) with context = cycle45

PROPAGATION COMPLETE

BRANCHING

Setting the value of dayCl to (30) with context - cycle,1S

Setting the value or day(l to (29) with context - cycle47

Setting the value of dayCl to (25) with context - eycle48

Setting the value of dayCI to (24) with context - cycle4g

Setting the value of dayCl to (23) with context - cyclebO

118

Setting the value of dayCi t3 (21) with context = cycle~l

Setting the value of dzyCi to (20) with context = cycle52

Setting the value of dayCI to (19) with context = cycle53

Setting the Value of dayCI to (18) with context = cycle54

Setting the value of dayCI to (17) with context -cycle5S

Setting the value of dayCI to (10) with context = cyclesfi

Setting the value of dayC] to (15) with context - cycle5?

Setting the value of dayCI to (12) with context = cycleSS

Setting the value of dayCI to (11) with context = cycle5Q* 1

Setting the value of dayCI to (10) with context - cycle6fl

Setting the value of dayCI to (2) with context - cycleSl

Setting the value of dayCI to (7) with context - cycle2

Setting the value of dayCt to () with context - eycleS3

USING CONSTRAINT: el aux

Setting value of dayC l to (7 8020 11812 15 I017 1S 1 2021 2324 2520 30) with context = cycle63

USING CONSTRAINT: C7 aux

BACiKTRACKING... purging context cyclet e

Here to the first BACKTRACKING point. It found a problem at constraint
C7_-aux. It does a chronological BACKTRACKING by just purging the
context cycle3.

We shall break the program to look at the current state of the problem. It
would be Interesting to find out the cause of the failure.

USING CONSTRAINT: cl _aux

Setting value of dayC3 to (6 8 0 10 11 12 15 IS 17 18 10 20 21 23 24 25 20 30) with context = cycle62

USING CONSTRAINT: C? aux

BACKTRACKING... purging context cycleS2

[load constreints. hI
USING CONSTRAINT: CS

Interrupt:
Break nil
< I>: (describe 'bat _A)
SctA4 - (octB) cycle cycle

raTgeA4 - (range C) cycle cycle
dayA4 - (4) cycle m cycle 2

119

actA3 = (act A) cycle = cycle
rangeA3 = (range A) cycle = cycle9
dayA3 (13) cycle = cycle45
actA2 (act A) cycle = cycle
rangeA2 = (range A) cycle = cyclell
dayA2 - (8) cycle = cycle45
actAl - (act A) cycle = cycle
rangeAl = (range A) cych. = ryclel3
dayAl = (3) cycle = cycle45
nil
<1>:

(describe 'batD _ B)
actB3 = (act - C) cycle = cycle
rangeB3 = (range B) cycle= cycle
day133 (26) cycle - cycle23
actB2 = (act_ A) cycle = cycle
rangeB2 = (range A) cycle = cycle7
dayB2 - (27) cycle = cycle20
actBI (act B) cycle = cycle
rangeBR = (range C) cycle = cycle
dayBl (578010 11 12 15 16 17 18 19 2021 23 24 25 29 30) cycle -cycle45
nil
<I>:

(describe 'bat _ C)
actC3 = (act D) cycle = cycle
rangeC3 = (range C) cycle = cycle
dayC3 S (57 8 0 011 12151617 1819 20 21 23 24 25 20 30) cycle cycle45
actC2 = (act B) cycle = cycle
rangeC2 = (range C) cycle = cycle
dayC2 - (3) cycle = cycle30
actC! - (actA) cycle = cycle
rangeCl = (range A) cycle = cycle5
dayCi = (0) cycle = cycleel
nil
<I>:

(describe 'bat _ D)
actD2 = (act _ A) cycle - cycle
rangeD2 - (range__ A) cycle = cyclel
dayD2 = (26) cycle = cyclel7
actDl (act _ A) cycle = cycle
rangeDl - (range A) cycle = cycle3
dayDl = (2) cycle = cycle27
nil

We see that the backup was initiated by using the constraint C7 aux. This
constraint says that If activity actA Is scheduled on range_A on any day 'x'.
Then rangeC will be unsafe to use on that day.

We see that

rangeA 1 = range A

actAl actA

dayAl = (3) Cycle = 46

rangeC2 = range. C

dayC2 = (3) Cycle = 30

120

With the current context, however, Is cycle~i. The stupid program does not
realize that It should backtrack to cycle45 to get rid of the problem. It will
backtrack and try to propagate 20 times. I hereby force the backup just to
save time. This Is the problem In chronological BACKTRACKING.

I take the liberty of backing up to cycle45.... This In done despite the fact
the program will (eventually) reach do the same.

< I>: (loop for x from 45 to 61 do (backtrack))

BACKTRACKING ... purging context cycle~l

BACKTRACKING ... purging context cycleflo

BACKTRACKING ... purging context cycleSg

BACKTRACKING ... purging context cycleSe

BACKTRACKING... purging context cycleS?

BACKTRACKING ... purging context cycleSS

BACKTRACKING ... purging context cycleSS

BACKTRACKING ... purging context cycleS4

BACKTRACKING ... purging context cycleS3

BACKTRACKING ... purging context cycle62

BACKTRACKING ... purging context cycll

BACKTRACKING ... purging context cyclebl

BACKTRACKING ... purging context cycle,1g

121

BACKTRACKING... purging context cycle48

BACKTRACKING... purging context cycle47

BACKTRACKING... purging context cycle46

BACKTRACKING... purging context cycle45

nil
< I >: (reset)

[Return to top levell
-> (describe 'bat_ A)
actA4 - (act_ B) cycle = cycle
rangeA4 - (range C) cycle - cycle
dayA4 = (4) cycle = cycle32

4 actAS - (act_A) cycle = cycle
rangeA3 = (range A) cycle = cycle0
dayA3 (15) cycle = cycle44
actA2 (actA) cycle - cycle
rangeA2 - (rangeA) cycle - cyclell
dayA2 - (8 g 10 11 12 13 15 1 17 18 10 20 21 23 24 25) cycle = cycle27
actAl f (actA) cycle - cycle
rangeAl = (rangeA) cycle - cyclel3
dayAl - (3 7 8 9 10 If 12 13 16 18 17 18 19 20) cycle cycle32
nil

I
(describe 'bat _B)

actB3 - (actC) cycle = cycle
rangeB3 = (rangeB) cycle = cycle
dayB3 - (26) cycle = cycle23
actB2 (act_ A) cycle = cycle
rangeB2 = (rangeA) cycle - cycle7

4 dayB2 - (27) cycle = cycle20

actBl I (act B) cycle - cycle

4 rangeBI - (range C) cycle - cycle
dayBI - (5 7 8 9 10 11 12 13 16 16 17 18 19 20 21 23 24 26 20 30) cycle - cycle32
nil
-> (describe 'batC)
actC3 f (act B) cycle = cycle
rangeC3 - (rangeC) cycle - cycle
dayC3 (S 7 9 10 11 12 13 3616 17 18 10 20 21 23 24 25 20 30) cycle - cycle3O
actC2 - (act B) cycle - cycle
rangeC'2 - (rangeC) cycle - cycle
dayC2 = (3) cycle = cycle30
actcl (actA) cycle - cycle

rangeCI - (range_ A) cycle - cycles
dayC! - (6 7 8 0 10 11 12 13 16 1S 17 I 20 21 23 24 25 20 30) cycle - cycle3 O

nil

(describe 'bat _ D)
actD2 - (act A) cycle = cycle
rangeD2 - (range A) cycle - cyclel
dayD2 = (26) cycle m cyclel7
actDI - (act A) cycle - cycle
rangeDi - (range_ A) cycle - cyclel
dayDl - (2) cycle - cycle27

122

nil

-> (search)

USING CONSTRAINT: C6_ one

Setting value of dayA2 to (8 9 10) with context = cycle44

Setting value of dayAl to (3) with context - cycie44

USING CONSTRAINT: C2_ one

Setting value of dayCl to (6 7 8 0 10 11 12 13 18 17 18 1 20 21 23 24 26 29 30) with context = cycle44

USING CONSTRAINT: C7 aux

Setting value of dayC3 to (5 7 8 0 10 11 12 13 16 17 18 10 20 21 23 24 26 29 30) with context = cycle44

Setting value of dayBl to (5 7 8 9 10 11 12 13 16 17 18 19 20 21 23 24 25 29 30) with context = cycle44

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayA2 to (10) with context - cycle45

Setting the value of dzyA2 to (9) with context - cycle46

Setting the value of dayA2 to (8) with context - cycle47

USING CONSTRAINT: C2_one

Setting value of dayCl to (5 7 0 10 11 12 13 1g 17 18 10 20 21 23 24 25 20 30) with context - cycle47

USING CONSTRAINT: C7_aux

BACKTRACKING... purging context cycle47

USING CONSTRAINT: C2_ one

Setting value of dzyCI to (6 7 8 10 11 12 13 16 17 18 19 20 21 23 24 2629 30) with context = cycle4g

USING CONSTRAINT: C_ aux

BACKTRACKING... purging context cycle4g

USING CONSTRAINT: C2 one

Setting value of dayCI to (6 7 8 0 11 12 18 16 17 18 10 20 21 23 24 26 20 80) with context cycle45

USING CONSTRAINT: C?_sux

BACKTRACKING... purging context cycle45

123

USING CONSTRAINT: C7__ aux

BACKTRACKING... purging context cycle44

USING CONSTRAINT: C6 one

Setting value of dayA2 to (8 9 10 II) with context = cycle43

Setting value of dayAl to (3) with context - cycle43

USING CONSTRAINT: C2_one

Setting value of dayCI to (5 7 89 10 11 12 13 15 17 18 19 20 21 23 24 26 29 30) with context = cycle43

USING CONSTRAINT: C7 aux

Setting value of dayC3 to (5 7 8 9 10 it 12 13 15 17 18 19 20 21 23 24 25 29 30) with context - cycle43

Setting value of dayBI to (5 7 8 9 10 11 12 13 15 17 18 19 20 21 23 24 25 29 30) with context = cycle43

USING CONSTRAINT: CI

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayA2 to (11) with context = cycle44

Setting the value of dayA2 to (10) with context = cycle45

Setting the value of dayA2 to (9) with context = cycle46

Setting the value of dayA2 to (8) with context = cycle47

USING CONSTRAINT: C2_one

Setting value of dayCl to (5 7 9 10 11 12 13 15 17 18 19 20 21 23 24 25 20 30) with context cycle47

USING CONSTRAINT: CTaux

BACKTRACKING... purging context cycle47

USING CONSTRAINT: C2 one

Setting value of dayCI to (6 7 8 10 11 12 13 IS 17 18 19 20 21 23 24 25 20 30) with context - cycle4a

USING CONSTRAINT: C?_ aux

BACKTRACKING... purging context cycle4S

124

USING CONSTRAINT: C2_ one

Setting value of dayCi to (6 7 8 11 12 13 15 17 18 10 20 21 23 24 26 20 30) with context - cycle45

USING CONSTRAINT: C7 aux

BACKTRACKING... purging context cycle45

USING CONSTRAINT: C2_one

Setting value of dayC1 to (6 7 8 0 10 12 13 16 17 18 10 20 21 23 24 25 20 30) with context - cycle44

USING CONSTRAINT: C7_aux

BACKTRACKING... purging context cycle44

USING CONSTRAINT: C7_aux

BACKTRACKING... purging context cycle43

USING CONSTRAINT: CS-one

Setting value of dayA2 to (8 0 10 11 12) with context - cycle42

Setting value of dayAl to (3 7) with context = cycle42

USING CONSTRAINT: C2_one

Setting value of dayCi to (5 7 8 0 10 11 12 13 16 16 18 10 20 21 23 24 26 203 0) with context - cycle42

USING CONSTRAINT: C2_ two

USING CONSTRAINT: C7_ aux

Setting value of dayC3 to (5 7 8 0 10 1 12 13 15 1S 18 10 20 21 23 24 26 20 0) with context = cycle42

Setting value of dayBI to (5 7 8 0 10 I 12 13 16 16 18 10 20 21 23 24 25 20 30) with context - cycle42

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dsyAI to (7) with context - eycle4l

Setting the value of dyAl to (8) with context - cyele44

USING CONSTRAINT: C7_aux

BACKTRACKING... purging context cycle44

125

USING CONSTRAINT: CO- one

Setting value of dayA2 to (12) with context - cycle43

USING CONSTRAINT: C2_one

Setting value of dayCl to (5 8 0 10 11 12 13 15 18 IS 19 20 21 23 24 25 20 30) witb context cycle,13

USING CONSTRAINT: C2_one

Setting value of dayCi to (SB 0 10 11 13 15 16 1t 10 20 21 23 24 25 20 30) with context - cycle43

USING CONSTRAINT: C7_aux

Setting value of dayC3 to (S 8 0 10 11 12 13 IS 16 18 19 20 21 23 24 25 20 30) with context =cycle,13

Setting value of day~i to (5809 10 11 12 13 15 16 18 10 20 21 23 2425 20 30) with context = cycle43

PROPAGATION COMPLETE

BRANCHING..

Setting the value of dayCI to (30) with context - cycle44

Setting the value or dayCI to (20) with context = eycle4fi

Setting the value of dayCi to (25) with context - cycle,16

Setting the value of dayCl to (24) with context = cycle,17

Setting the value of dayCl to (23) with context =cycle4S

Setting the value of dayCi to (21) with context - cycle4g

Setting the value of dayCi to (20) with context -cycleSO

Setting the value of dayCI to (10) with context - cycle~i

Setting the value of dayCt to (18) with context - cycleS2

setting the value of dayCl to (18) with context -cycleS3

Setting the value of dayCI to (15) with context - cycleS4

Setting the value of dayCi to (13) with context - cyclefS

Setting the value of dayCi to (11) with context = cyclesSl

Setting the value of dayCi to (10) with context - cycleS?

Setting the value of dayCi to (0) with context - cyclc56

Setting the value of dayCl to (8) with context - cycleSO

Setting the value of dzyCi to (5) with context - cyclefO

USING CONSTRAINT: el _aux

Setting value of dayC3 to (830 10 11 12 13 IS 1S 18 10 20 2123 24 25 29 30) with context =cycleSo

126

USING CONSTRAINT: C7_aux

Setting value of dayC$ to (8 9 10 11 13 15 16 18 10 20 21 23 24 25 29 30) with context c eycle60

Setting value of dayBi to (5 8 0 10 It 13 16 10 18 10 20 21 23 24 26 29 30) with context - cycleG0

USING CONSTRAINT: C7 aux

Setting value of dayBi to (8 0 10 11 13 15 16 18 19 20 21 23 24 25 20 30) with context cycleSO

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dsyC3 to (30) with context - cyclegl

Setting the value of dayC3 to (29) with context - cycle62

Setting the value of dayC3 to (25) with context = cycle63

Setting the value of dayC3 to (24) with context = cycle54

Setting the value of dayC3 to (23) with context = cycle85

Setting the value of dayC3 to (21) with context - cycless

Setting the value of dayC3 to (20) with context - cycle67

Setting the value of dayC3 to (10) with context = cycled8

Setting the value of dsyC3 to (18) with context - cycleog

Setting the value of dayC3 to (16) with context = cycle7O

Setting the value of dayC3 to (15) with context - cycle7l

Setting the value of dayC3 to (13) with context - cycle72

Setting the value of dayC3 to (i) with context - cycle73

Setting the value of dayC3 to (10) with context - cycle74

Setting the value of dayC3 to (0) with context - cycle75

Setting the value of dayC3 to (8) with context = cycle76

USING CONSTRAINT: C2 one

Setting value of dayB! to (9 10 1113 15 16 18 10 20 21 23 24 26 20 10) with context eyeleTs

PROPAGATION COMPLETE

BRANCHING ...

Setting the value of dayBi to (30) with context - cycle?7

Setting the value of dayBI to (29) with context = cycleT8

Setting the value of dayBl to (26) with context - cycle79

Setting the value of dayBl to (24) with context ,, cycleS0

127

Setting the value of dayBI to (23) with context - cycleM

Setting the value of dayBi to (21) with context - cycle82

Setting the value of dayBI to (20) with context - cycle82

Setting the value of dayBl to (10) with context - cycle84

Setting the value of dayBi to (I) with context - cyclegS

Setting the value of dayBi to (16) with context = cyele85

Setting the value of dayBI to (15) with context = cycle8?

Setting the value of dayBi to (13) with context - cycle87

Setting the value of dayBl to (11) with context = cycleg8

Setting the value of dayBi to (10) with context = cyclegO

Setting the value of dayBl to () with context = cycleol

PROPAGATION COMPLETE

BRANCHING ...

SCHEDULE GENERATED SUCCESSFULLY t

The program has successfully terminated. We now look at the results. The
four battalions are described below.

At the end, we look at the stack of one of the variables. It Is Interesting to
note how the value of dayA2 changed from one context to another. Note that
the cycle numbers Jump from nil to 27 to 42.

-> (describe 'bat_A)
actA4 - (act_ B) cycle = cycle
rangeA4 = (rangeC) cycle = cycle
dayA4 = (4) cycle - cycle32
actA3 f (actA) cycle - cycle
rangeA3 = (range_ A) cycle - cycles
dayA3 = (17) cycle = cycle42
actA2 - (actA) cycle - cycle
rangeA2 = (rangeA) cycle = cyclell
dayA2 - (12) cycle - cycle43
actAl - (act A) cycle = cycle
rangeAl - (range A) cycle - cyclel3
dayAl - (7) cycle - cycle43
nil
-> (describe 'bat_ B)
actB3 - (act_ C) cycle - cycle
rangeB3 - (range_ B) cycle = cycle
dayB3 - (26) cycle - cycle23
acaB2 - (act A) cycle - cycle
rangeB2 - (range_ A) cycle - cycle?
dayB2 - (27) cycle - cycle20
aetl - (act_ B) cycle . cycle
rangeBI m (rangeC) cycle = cycle
dayBi - (0) cycle - cyclet1
nil

128

-> (describe 'bat_C)
actC3 = (act_ B) cycle = cycle
rangeC3 = (range C) cycle = cycle
dayC3 = (8) cycle - cycle76
actC2 (actB) cycle = cycle
rangeC2 = (rangeC) cycle - cycle
dayC2 - (3) cycle = cycle3O
actCl - (actA) cycle - cycle
rangeC = (rangeA) cycle - cycle5
dayCI - (5) cycle - cycle6f
nil

(describe 'bat_ D)
actD2 - (actA) cycle = cycle
mngeD2 = (rangeA) cycle - cyclel

dayD2 = (26) cycle - cycleI7
actDI (act A) cycle = cycle
rangeDI = (rangeA) cycle - cycle3
dayD i (2) cycle - cycle27
nil
-> (get 'dayDi 'values 0
nil
t

-> (apply 'pp (get 'dayA2 'values))
(cycle43 (12))
(cycle42 (8 0 10 11 12))
(cycle27 (8 0 10 11 12 13 15 16 17 18 10 20 21 23 24 25))
(cycle (7 8 0 10 11 12 13 15 16 17 18 10 20 21 23 24 25))

(cycle (2 3 4 3 7 8 9 10 11 12 13 15 16 17 18 10 20 21 23 24 25 26 27 20 30))
(cycle (1 23457 80 10 11 12 13 15 16 17 18 102021 23 24 25262720 30))
cycleol

hera% ^D script done on Wed May 8 12:03:22 1985

129

D ISTRI BUT ION

Chief of Engineers

ATTN: DAEN-RDM
ATTN: DAEN-ZCE
ATTN: DAEN-ZCF

ATTN: DAEN-ZC[
ATTN: DAEN-ZCM

FESA, ATTN: Library 22060

US Army Engineer Districts
ATTN: Library (41)

US Army Engineer Divisions
ATTN: Library (14)

CRREL, ATTN: Library 03755

WES, ATTN: Library 39180

NCEL, ATTN: Library, Code L08A 93041

Defense Technical Info. Center 22314
ATTN: DDA (2)

US Govt Printing Office 22304
Receiving Sect/Depository Copies (2)

Army Development and Employment Agency (ADEA)
ATTN: MODE-FDD-TDB
Ft. Lewis, WA 98433-5000

ADEA
P.O. Box 33368
Ft. Lewis, WA 98433-0368

Comma nder
Army Training Board
ATTN: ATTG-BT
Ft. Monroe, VA 23651

The Army Library (ANRAL-R) 20310
ATTN: Army Studies Section

LME 1

