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Foreword

These Proceedings of the First Workshop on Formal
Specification and Verification of Ada, held at the Institute
for Defense Analyses, are composed in part of papers and
slides supplied by the speakers, and in part of summaries of
the talks and discussions edited from recordings made of the
Workshop.

The purpose of this initial two-and-a-half day Workshop
was to identify current issues in Ada verification and to
decide what could be done to improve current understanding
and practice of Ada software verification. Since
verification impacts not only coding activities but all
development activities, it is desirable that many groups be
kept informed about the progress of these Workshops.

The chief issues raised in the introductory remarks by
Jack Kramer of IDA and Paul Cohen of the AJPO were: what are
the uses of formal verification; what verification techniques
and verification systems are available; what practical
experience is there in the use of these approaches and who
has this experience; what impact does Ada have on verificaton
(both before and during coding activities); what are the
major problems in the verification field; and what needs to
be done to overcome these problems.

Below is the list of presentations, which gives the
scientific program of the first two days, followed by a
summary of the discussions of the third day. Finally, a list
of participants, with their postal, telephonic, and
electronic addresses is given.
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The First Day

On Monday, March 18th, 1985, after opening addresses by

Jack Kramer and Paul Cohen, four talks were given:

A. Richard Platek (Odyssey): Towards the Formal

Verification of Ada Programs

B. David Guaspari (Odyssey): Towards Ada Verification

C. Richard Platek (Odyssey): Formal Specification

D. David Luckham (Stanford): ANNA, a Specification Language
for Ada

The second day

On the morning of Tuesday, March 19th, 1985, there were
two parallel sessions, each containing four talks:

Session on Secure Systems in Ada
Chair: Margie Zuk (MITRE)

E. Tony Brintzenhoff (SYSCON): Re-implementing ACCAT Guard

in Ada

F. Eric Anderson (TRW): Army Secure Operating Systems

G. Jim Freeman (Ford Aerospace): Trust Domains

H. LCDR Philip Myers (NAVALEX): Navy Technology and Ada

Session on Advanced Verification
Chair: Krzysztof Apt (IBM Yorktown Heights)

K. Krzysztof Apt (IBM Yorktown Heights): Reconsidering
Correctness of CSP Programs

L. Frank Oles (IBM Yorktown Heights): Thoughts on an

Ada-based Design Language

M. Norman Cohen (SofTech): Axiomatic Semantics for Ada

N. David Gries (Cornell): Teaching Programmers about Proofs

P. Discussion of papers in the session
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In the afternoon there were seven talks and a lively
discussion:

Session on Near Term Verification Systems
Chair: Donn Milton (VERDIX)

Q. Jim Williams (MITRE): Practical Verification Systems

R. Ryan Stansifer (ORA): Near Term Ada Verification

S. Ray Hookway (Case Western): Adapting a Modula
Verification System to Ada

T. John McHugh (RTI): Adapting the GYPSY Verification
System to Ada

U. Discussion of papers in the session

Session on Verification and Software Engineering

Chair: Norman Cohen (SofTech)

V. Norman Cohen (SofTech): Uses of Formal Verification

W. Friedrich von Henke (SRI): ANNA

X. David Luckham (Stanford): ANNA Tools

The Third Morning: General Review

The final session, on the morning of Wednesday, March
20th, began with summaries of the parallel sessions and
continued with a general discussion reviewing issues raised
during the Workshop.

Richard Platek said that although the meeting had been
about all levels of verification, the first need was to sort
out the problem of specification. He emphasized the urgent
need for a specification language tailored to Ada, and called
for several proposals, in addition to ANNA, which might then
be compared. The experience of Honeywell with the SCOMP
project was discussed and attention drawn to the great
difficulty of writing abstract specifications in GYPSY.
Norman Cohen remarked that a good specification for GYPSY
would not necessarily be a good one for Ada.

2!1
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LCDR Philip Myers asked whether formal semantics and
concurrency are issues that need to be resolved before large
strides can be made in Ada verification. A. L. Brintzenhoff
mentioned his work on evaluating the role of Ada as a
communications programming language. Jack Kramer led a
discussion of the role of verification in the life cycle of
software development systems.

The special application of verification to secure
systems was then discussed. LCDR Myers said that those
developing them must show that the systems are robust enough
to defend against the "414 hackers", and that a more secure
development environment is needed. Richard Platek said that
it was desirable for Ada verification systems to be exposed
to public criticism during the early stages of their
development, as that would help to test their soundness.

The structure and future of the body constituting the
Ada Verification Workshop was discussed. David Luckham said
that the Workshop had a valuable role to play as a forum for
continued information exchange. Norman Cohen stressed the
need for a committee to consider not only interpretations of
the Ada Reference Manual but also revisions of the language.
Fridrich von Henke pointed out the lack of activities on the
more formal aspects of Ada specification and drew attention
to the working groups of Ada-Europe on Formal Semantics and
Formal Methods. It was suggested that the possibility of
forming a Committee on Formal Methods within SIGAda be
explored.

The success of the IBM Cleanroom project under Harlan
Mills in training some 2000 programmers in practical but
informal methods of program testing was mentioned. LCDR
Myers warned that some success stories will be needed in the
near term if Ada Verification tools are not to miss the Navy
boat. Richard Platek suggested that a new use for
verification might be found in the fact that concurrent
programs are so complex that verification is needed even to
write them.

- - -. -- , mu m m mmi [ I3



I
The Third Morning: Preparation for the next Workshop

There was general agreement that the last several years
of effort has yielded some useful techniques. The role of
these Workshops will be to act as a mechanism for
establishing a group of experts that can assess the current

state-of-the-art, identify promising research areas, monitor

ongoing verification work, promote the use of the evolving
technology, and ensure that valuable outputs from one area
are fed into another area. The chief output of this group
will be recommendations to various bodies to coordinate and
sponsor certain R&D activities. It was agreed that Working
Subgroups on special topics should be established, as
follows:

SECURE SYSTEMS chaired by Margie ZUK
MITRE Corporation, Burlington Road, Bedford MA 01730;
(617) 271-7590;
MMZ@MITRE-BEDFORD

NEAR TERM VERIFICATION chaired by John McHUGH
Research Triangle Institute, Box 12194, Research

Triangle Park, NC 27709;
(919) 541-7327;
McHUGH@UTEXAS-20

FORMAL SEMANTICS AND CONCURRENCY chaired by Norman COHEN
SofTech, Inc., 705 Masons Mill Business Park,

1800 Byberry Road, Huntingdon Valley, PA 19006;
(215) 947-8880
NCOHEN@ECLB

SPECIFICATION LANGUAGES chaired by Friedrich VON HENKE
SRI International, 333 Ravenswood Avenue,

Menlo Park, CA 94025;
(415) 859-2560;
VONHENKE@SRI-CSL

VERIFICATION IN LIFE CYCLES chaired by Ann MARMOR-SQUIRES
TRW, Defense Systems Group, 2751 Prosperity Avenue,

Fairfax, VA 22031;
(703) 876-8170;
MARMOR@ISI

"OFFICIAL" CLUSTERS chaired by Richard PLATEK
Odyssey Research Associates, Inc., 408 E. State Street,

Ithaca, NY 14850;
(607) 277-2020;
RPLATEK@ECLB
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It was envisaged that these subgroups should prepare
material for the next Workshop and, where appropriate, draft
recommendations for forwarding to the relevant official
bodies after discussion at that meeting. There was some
discussion of the areas where such recommendations might be
needed, such as near-term, mid-term, and long-term Ada
verification; the lessons learned in verification; formal
semantics for verification; and the future role of Ada
Verification Workshops.

The account ADA-VERIFY was created on USC-ECLB and will
be used as a central repository for Ada Verification
announcements, files, etc. The following general mailing
list was also established on USC-ECLB to encourage the
exchange of ideas.

Ada-VERIFICATION-LIST

Ada Verification Workshops should be held on a regular
basis. The scope of the Workshops should not be restricted
to looking at verification of Ada code, but to address
verification throughout the software life cycle. They will
also serve the purpose of providing a focal point for the
development of verification technology and a coherent set of
activities that will address current verification issues.
The Workshop can also promote increased practical use of
verification techniques.

The next Ada Verification Workshop will be scheduled in
the July/August timeframe for a period of two- and- one- half
days (preferably from Tuesday through Thursday). The place
of this meeting was not decided; offers of hospitality from
RTI, MITRE, and TI were received.

It was agreed that attendance at the next meeting should
be by invitation, and that it would be undesirable to lose
the constructive character resulting from the small size of
the present meeting. It was suggested that our existence be
advertised and requests for invitations be solicited through
ACM's Software Engineering Notes and AdaLetters and that
particular thought should be given to inviting people from
the Language Maintenance Committee, the AJPO, and the safety
community.

Plans are under way to organize a session at the
July/August SIGAda meeting in Minneapolis that apprise the
technical community of the role and purpose of the Workshop
series and what has been documented by that time.

The Workshop ended at noon on the third day.
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Towards the Formal Verification of Ada Programs

Richard Platek

Odyssey Research Associates, Inc.

March 18 - 20, 1985

1 Introduction

The organization of the present meeting is part of a

contractural effort between Odyssey Research Associates (ORA) and

IDA. One of the goals of this effort,-and the purpose of this

meeting, is to begin to develop a community of interest centered

around the formal specification and verification of Ada

programs. Some of the issues to be discussed are: the use of Ada

In secure systems; verification needs as perceived by the general

Ada community; near term solutions to Ada verification; the issue

of standards as they apply to formal specification/verification;

advanced theoretical verification results applied to Ads; the

interface between verification and other software engineering

concerns.
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2 The Verification Worlds

I would like to begin by looking at the verification world

as it presently exists. I am aware of two essentially disjoint

groups focusing on formal verification. The first is the

academic community generally funded through NSF or DARPA; the

second consists of industrial contractors involved with the

building of secure systems and generally funded through the DoD

Computer Security Center. The academic verification world is

centered at Cornell, MIT, Stanford, and CMU and reports at the

annual ACM POPL (Principles of Programming Languages), the annual

IEEE FOCS (Foundations of Computer Science), and the biennial

Logic of Programs Symposium and Conference on Automated Deduction

(CADE). The Industrial Verification world is centered at SRI,

SDC, UTexas, and hopefully someday ORA, and reports at the annual

DoD/NBS Computer Security Conference, the annual IEEE Symposium

on Security and Privacy, and the Verkshops, the most recent of

which (the third) was held exactly one month ago in February,

1985. Neither of these tribes, the academic and industrial, have

rallied to the banner of Ada verification and I think we should

begin by examining why. 9
In the academic world the mathematical paradigm of I

abstraction and idealization is the principal method of

investigation. This method studies the logic of some programming f

A-2



language construct, such as iteration or concurrency, by building

a simplified model of it and then formulating properties of the

model which are sufficient to develop proof rules *adequate to

capture the semantics of the simplified model. What do I mean

that the model is simplified? First, it is customary to restrict

oneself to integer and boolean types with the integers considered

to be the infinite set of mathematical integers. Second, single

programming language features are studied in isolation and the

thorny problem of the interaction of various language features is

ignored. For example, while a logic of pointer types (Ada's

access types) which covers allocation, deallocation, and

assignment has been developed and a logic of simple concurrency

including inter-task communication has also been developed (I'm*

thinking of'Hoare's CSP) the academic literature does not address

inter-task communication using access types and this is a

non-trivial matter. In an actual language, like Ads, all these

features are intertwined and there is a very rich type structure

including task types and dynamic task creation. Furthermore,

Ada's raising and handling of exceptions related to the

finiteness of the integers complicates the simplified academic

results which assume the mathematical integers. Of course, one

can not object to simplification as an approach but it is odd

that the academic community finds their theoretical results

meaningful when in truth they have very little relationship to

the real problem of verified software.

While the academic world is free to proceed in an
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imaginative fashion, replacing hard, real problems by simpler

easier ones, the industrial world is faced (or will soon be

faced) with the actual job of producing verified running code.

The feeling there is that this problem is hard enough in simple

languages like Pascal without introducing a super-rich language

like Ada. Gypsy, for example, was designed to be an inherently

verifiable language: it eliminates side-effects by forbidding

global variables; pointers are replaced by a few dynamic type

constructors (e.g., arbitrarily long sequences); concurrency is

restricted to cobegin statements whose child processes can only

share buffers (FIFO queues with history sequences to support

specification/verification); etc. Although Gypsy has served as

an excellent teaching tool in the area of verification, the

bottom line is that although the Gypsy Verification Environment

effort was begun in 1975 and has been stable for a number of

years there is no fielded Gypsy software! Thus, we know nothing

about the life-cycle of verified software -- we do not know how

user bug reports relate to the original verification effort; we

do not know to what extent modification of requirements and

maintenance force reverification. Such information would be a

useful input into the design of an Ada verification system. The

Gypsy people feel that such information should be gathered before

we plunge into Ada. On the other hand, Gypsy's severe

restrictions make certain kinds of applications difficult if not

impossible. For example, the absence of global variables make it

difficult to implement transaction-oriented systems like data

I
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bases in the usual manner although it can be done using buffers.

One of the explanations of the industrial world's reluctance

to tackle Ada head-on is the fact that they are scientifically

about a decade behind the academic world. This decade-gap is an

observation not a criticism; the transformation of science into

technology is a formidable undertaking and there are not

sufficiently knowledgeable personnel in the area of program

verification to staff the industrial positions which are

arising. Gypsy, designed in 1975, is a good example of the

decade-gap; another is the current effort by I.P. Sharp to build

a Euclid verification system. Euclid was also designed about ten

years ago (by a blue ribbon committee) in an attempt to devise a

language which is inherently verifiable. More flexible than

Gypsy, Euclid is based on the academic results in program

verification of that era. It attempts to control the

interactions between language features in such a way that the

simplified academic results still apply. Actually, in the course

of their work, I.P. Sharp discovered that the Euclid definition

and verification results contained errors. Furthermore, I.P.

Sharp's approach to verification is through the generation of

Verification Conditions. This approach, which separates programs

from proofs, is considered inadequate by academic researchers and

other verification paradigms, such as program transformations,

are currently predominant.

In summary, it appears that while academics produce the
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basic results which will be embodied in verification systems

their approach is to study verification in a simplified fashion

ignoring interactions of constructs. The industrial verification

people, on the other hand, feel that we should learn to walk

before we try to run. By that they mean that we need basic

knowledge, which we don't have, about the feasibility of formal

verification and the role it plays in the software life-cycle.

Such knowledge, it is felt, can best be gathered on the basis of

inherently verifiable languages. In this way the problem of

verifiability can be separated from the question of its utility

and the embarassing fact of life is that we don't know the

utility of formal verification. Essentially, is it worth it? We

can't answer that because we don't know its cost and me don't

know its benefits.

Which brings us to Ada. The need to have a common DoD HOL

resulted in Ada which is an engineering compromise between

contending requirements each of which have strong supporters in

certain user communities (e.g., the real-time people, the

compiler people, the systems people, etc.). While formal

verifiability was one of the original goals it lost ground to

other requirements which were felt to be more pressing. That is

not really suprising since, as I mentioned above, the

verification people have not yet proved their case.

Although the verification people have not yet proved their

case the possibility of wide spread use of provable, non-toy

I
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software still retains its appeal after so many years of

expectant waiting. The explanation of the appeal is of course

the pay-off which would result from successful, industrial

verification. After all, what are the alternative assurance

criteria for secure systems, strategic systems, SDI, commercial

life-critical systems? And what really are the alternatives to

Ada? Assuming the compiler and tool building programs are a

success it seems to me that the utility of a universal standard

will dominate in all areas of computer usage. One has seen this

with the IBM PC and is presently seeing it with Unix. It doesn't

matter that both of these &e facto standards leave much to be

desired; they simplify the world. So I believe Ada will triumph

and if the verificatibn people wish to be relevant they ought to

try to understand the way the world actually works.

One of the Tasks in ORA's effort is to determine whether

users perceive a need for formal verification. I am not speaking

about builders of secure systems who when "Beyond Al" becomes a

reality will be forced to verify the security critical components

of their code. Instead, I am speaking about system builders who

are told about formal verification and then asked how they would

use it if it were available.

3 Questionnaire Development
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Our approach to determining user needs has been to develop

and circulate a questionnaire among people with experience in

programming large systems. This questionnaire is meant to find

out two things:

- What sort of system functionality is the most critical?

That is for which functions would formal verification most

increase reliability?

- Which Ada language constructs are the most heavily used?

Formal program verification is basically unkown and barely

used In the software development process. We did not simply ask,

"do you have a need for formal program verification?", because

that would probably have evoked no response at all. (In fact, in

military software development, the phrase "formal verification",

sometimes refers to the act of the military customer certifying

that a battery of tests has been run on the software.) Instead,

we tried to find those aspects of the software product the

developer is willing to spend the greatest amount of money to

test: this may be the surest indication of a need for formal

verification.

Correct proof rules are not known for all of Ada, but the

scope of Ada verifiablity can certainly be increased by

research. Thus, we also set out to find out the directions in

which future research would be most useful, i.e., which Ada

language features not now known to be verifiable do software

A-
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engineers feel are moat critical?

Initially, a draft, form of the questionnaire was prepared.

This draft was sent to a number of people for comments. We chose

roughly a dozen individuals whose opinion we respect, some from

the verification community, some designers of large software

systems. After collecting comments from these people, we

modified the questionnaire, incorporating many suggested

improvements. The modifications roughly doubled the length of

the questionnaire.

In its final form, the questionnaire divides into two parts:

1. general systems development experience

2. Ada-specific experience.

The first part asks for information about a system the

respondent has worked on, not necessarily involving Ada. The

questions pin down the type of system developed, its size,

languages and tools used, and a brief statement of its purpose.

The questions then try to determine how much testing effort was

or is expected to be devoted to the project, and in what specific

areas Is the greatest fraction of effort devoted. The point is:

if a developer is going to spend dollars on assurance, what

critical functions, modules, or features will be deemed the most

important to verify?

The second part asks questions about the use of Ada. Which
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I
language constructs are currently used, which are never expected

to be used, and which are avoided now because of lack of faith in

the particular compiler used.
I

The final form of the questionnaire is not limited to a

survey of Ada users; nevertheless, we decided to concentrate on

the Ada community for the first mailing. Our main source of

contacts was a list of current Ada contracts compiled by Ann

Reedy and published in Ada Letters. We telephoned most of the

organizations on that list, both to determine the most

appropriate recipient of the questionnaire, and to ask

knowlegible people in the Ada community for other potential

contacts.

4 Survey Results

Questionnaires were sent to key people in the following

organizations. 18 individuals in 15 organizations have responded

to date. The last questionnaires were sent out Feb 22, and

responses are still arriving.

AI
J
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Organization Project I responses

Singer/Librascope front-end for TACFIRE I
Singer/Librascope message communication terminal X

Dalmo Victor Operations tank sensor integration XX
Veda generic message editing XI
Tasc ASAP
McDonnel Douglas CAMP

McDonnel Douglas porting ICSC Ada
McDonnel Douglas convert AIS to Ada X
Ford Aerospace G-3 Maneuver Control X
General Dynamics TAG
General Dynamics decision support system X
General Dynamics IMF
GTE WIS
Magnavox AFATDS I
Harris Corp. ALPC
Sonicraft MEECM
LTS MEECM
NAV AIR F-18 operational flight program X

NAV AIR aircraft control & HUD X
Syscon ACCAT GUARD Ada reimplementation X
RCA MCF RTM O/S /ASOS X
System Development. Corp. STARS XX
TRW STARS
TRW prototype advanced APSE
TRW ASOS
TRW TDBMS
Computer Corp of America Ada DBMS
Intermetrics hardware description lang. analyzer X
Intermetrics S/370 Ada compiler X
Telesoft WIS compiler
SofTech Ada/M UYI-44 retarget
NYU Ada/Ed
Florida SU Cyber 170 Ada compiler
UC Irvine Arcturus
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Several interesting results have emerged so far. j

1. Many Ada systems have interfaces to other languages. The

foreign languages were various assembly languages, FORTRAN,

and in one case, PASCAL.

2. Correctness and precision of floating-point computations

are not large problems for testing.

3. Denial-of-service problems receive relatively less testing

effort than timing constraints.

4. A surprising number of respondents had encountered

erroneous programs or programs with incorrect order

dependence. One respondent called this question "academic

nit-picking": unfortunately, the fact that some Ada users

encounter these situations implies that it is not

"nit-picking", academic or otherwise.

5. Absolutely no respondent uses or claims to have an urge to

use tasks passed as parameters to subprograms.

6. Few Ads users can make do without access types.

7. Many Ada users can make do without using functions with

side-effects. I
8. Two-thirds of the respondents make use of recursive

subprogram calls.

I
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A copy of the questionnaire, with total numbers of responses

filled in, is given in the next section.

5 The Questionnaire

I. Please answer the questions below with reference to a

specific software development project that you are or have been

engaged in. If you cannot answer from experience about a project

involving Ada, we are still interested in any experience with a

medium- to large-scale software project.

a) Roughly, what is the size of the 40 KB - 60 HB

project, in bytes ?

b) To which hardware is it targetted ?

c) In what language(s) is it written ? Ada:16 FORTRAN: 2
What fraction for each ? Pascal: 1
(or give rough numbers for lines of code) assembly languages: 7

9000 - 500,000 lines total
d) Was a program development language

(PDL) used ? NO: 3 YES: 7 Ada: 4

e) Is the project a commercial product
development, DoD contract, IR&D, or DoD: 10 IR&D: 3
other ?

f) Describe briefly the goal of the project.

II. We are interested in estimating the potential needs for

'formal verification in such a project. Because formal

verification is not now a common phase of software development,

we would like to gauge the most likely applications for formal
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verification by finding the areas to which the greatest fraction

of testing now goes. For each area below, if it relates to the

project you described above, please indicate the relative

fraction of the testing effort devoted. Feel free to add any

other areas whi.ch consume significant testing resources.

Level of testing effort: none very some very
little much

a) timing constraints -- [7] [3] [3] [5]
verification that real-time limits
are not exceeded due to
computational complexity

b) space limitations -- [2] [5] [4] [7]
verification that space bounds
are not exceeded due to dynamic
memory allocation, or stack
overflow as a result of nested
procedure calls or interrupt
handling, etc.

c) protection of sensitive data [5] [5] [4] [4]

from unauthorized disclosure

d) protection of data integrity [2] [4] [6] [5]

e) resource management [4] [7] [5] [2]

f) denial of service [5] [9] [3] [0]

g) real-time external device control [10] [1] [3] [4]
with feedback

h) fault tolerance [6] [4] [5] [2] f
i) floating-point numerical computations:

correctness and precision [11] (3] [3] [0]

J) fixed-point or integer [6] [3] [6] [2]

numerical computations

k) machine-dependent interfaces, [4] [3] [5] [6]
perhaps using low-level Ada
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1) parallel processing [6] (1] [3] [8]

(concurrency; tasking)

m) handling of external interrupts [4] [1] [9] [4]

n) graceful recovery from errors in [1] [3] [8] [5]

external input

o) graceful recovery from internal (2] [4] [8] [2]

program errors --
logical design problems, hardvare
failures, etc.

p) independent module testing [0] [0] [10] [8]

q) integration of system modules, [0] [0] [5] [13]
each independently reliable

r) operations involving complicated [2] [4] [2] [9]

(e.g. nested) data types

s) portability [5] [4] [3] [6]

t) other -- please explain

- inter-process communication in a shared bus architecture

- mutual exclusion of processes using shared resources
(race conditions and deadlocks)

- generics - validation of the "correctness" of a generic definition
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III. The following questions are Ada-specific. We re&lize

that there are now compilers in use which implement only a

portion of Ada, or which may not implement esoteric language

features in an efficient manner. Which of these Ada language

constructs do you find are heavily used, avoided because your

compiler is not adequate, or not used. at all ?

heavily don't not used
used trust & not likely
now compiler to be used

a) low-level Ada: (*)
address clauses (6] [2] [4] 2

unchecked storage deallocation [4] [3] [4] 2

unchecked type conversion [5] [3] [4] 1

b) interfaces to other languages [7] [I] [6] 1

c) generics (3] [6] [4] 2

d) recursive constructs:
types (9] [0] [5]
subprogram calls [10] (0] [5]

e) exception handling [11] [3] [0]

f) tasking, [3] [4] [4]

including, in particular:
shared variables (2] [4] [8]
tasks passed as [0] [6] [8]

parameters to subprograms
task and entry attributes [2] [5] [7]

dynamic task creation [2] [3] [9]

g) functions with side effects [2] [0] [13]

h) global variables, except in packages [9] [0] [5]

i) limited private types [5] [1] [7] 1

J) subtypes of predefined integer types [11] [0] [2]

k) subtypes of predefined real types [7] [1] [6]

1) access types [10] [1] [1]
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II

I

IV. In your experience, how commonly used are the following

SUPPRESS pragmas ?

never rarely some often

ACCESSCHECK (9] [1] [1] 2]

DISCRIMINANT CHECK [9] [0] [2] [2]

INDEX CHECK [8] [0] [2) [3)

LENGT CHECK [8] [0] [2] [3]

RANGE CHECK [8] [0] [2] [3] 41

DIVISION CHECK [9] Ill (ll12OVERFLO-CHECK [9] [I ]

ELABORATION CHECK [10] [0] [1] [2]

STORAGECHECK [9] I1] [11 [2]

V. The Ada Language Reference Manual defines certain

compiler-dependent situations in the followingway:

Erroneous program: Compilers are not required to detect

violations of certain semantic rules of Ada, either at

run-time or compile-time.- For example, the results of

procedure calls should not depend on the method of parameter

passing, as it might if parameters are aliased. Programs

which violate these rules are called erroneous.

Incorrect order dependence: A rule of the Ada language under

which different parts of a given construct are to be

executed in some order that is not defined by the language

(but not executed in parallel), and execution of these parts

in a different order would have a different effect. The

compiler is not required to provide either a compile-time or I
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run-time detection of a violation. An example would be

evaluation of the expression "f(x) + g(y)", where, due to

side-effects, the sum would depend on the order in which f

and g are evaluated.

never rarely some often

a) How often have you encountered [6] [2] [4] [2]

erroneous programs ?

b) How often have you encountered [9] [3]. [2] [0]
programs with incorrect order
dependence ?

6 Further Surveying of User Needs

In the future, we will expand the questionnaire with the

following:

- Somewhat more information about the respondent's project, to

discover correlations between the kind of project and the

use of Ada.

- A request for the respondent to indicate whether erroneous

programs or incorrect order dependence were left in the

final code, and if so, whether that was because the user of

the compiler knows the actual semantics of the compiler in

these situations.
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- The circumstances under which suppress checks were used.

- Any suggestions for improvements aired at the March workshop

at IDA.

We expect to receive from USAF Systems Command more contacts

in the Ada world in the near future. We also intend to extend

the survey beyond the limits of the Ada user's community, and to

developers of non-military systems.

7 The Predictability Problem

The primary objection to Ada from the verification community

which I have heard is that the language definition does not

determine actual program execution, i.e. the language is

unpredictable and therefore not verifiable. The so-called

unpredictability is a consequence of the requirement to maximum

portability which is perhaps the main goal of a standard

language. The language definition does not determine those

aspects of execution which a given architecture can optimize.

For example, the order of evaluation of an expression is not I
determined (just as it is not determined in Portable Standard

Lisp as contrasted with almost all other Lisps). Since user

defined functions can have side effects, different orders of

expression evaluation can lead to different states and thus the

same program can execute differently under different validated

P
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Ada compilers. If this occurs it is called an "incorrect order

dependence". A compiler is permitted to detect such an incorrect

order dependence (if it can, in general the* problem is

unsolvable) at either compile time or run time; in the latter

case a ProgramError exception can be raised and if there is an

exception handler present further execution can ensue. Thus, a

given piece of legal Ada text can give rise to a large variety of

executions. The general term for such programs is "erroneous"

but it is not clear if the types of "erroneous programs"

enumerated in the language manual exhausts all the kinds of

erroneous programs. Another example, of an erroneous program is

one in which a variable is read before it is written. The

language does not require ProgramError to be raised but permits

it. Of course a perfect example of the use of verification is to

show that a program is not erroneous.

Is non-predictability really an ultimate bar to formal

verfication as many critics have maintained? I think an approach

to an answer is suggested by the distinction usually made between

design and code verification and the realization that Ada

verification is actually a species of design verification rather

than code verification!

In design verification one proves properties of a system

from its formal specification. The formal specification, SPEC,

is really an axiomatic description of a family of systems (namely

all those which satisfy the axiomatic specification SPEC) and the
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proof of a property Q from the formal specification, namely

SPEC => Q

is really a proof that any system in the family has property Q.

Code verification is a proof that a system S (given by its

program P) meets the formal specification. In this way S is

shown to have property Q. The usual understanding of this process

is that the program P uniquely determines the system S. In

actuality, an Ada program P, just like SPEC, determines a family

of systems. This is due to to unpredictability. In summary, an

Ada program is a specification of a family of actual object code

systems and Ada verification is a very advanced species of design

verification.

Of course, this glib description doesn't solve any problems;

it only presents a framework within which to proceed. As it

stands now a given Ada program P has too many possible object

compilations (which we will call "execution models"). This makes

it difficult to develop proof rules. Attention has been centered

on finding verifiable subsets of Ada which will give rise to a

tractable model space for a given program. What we have found at

ORA is that such a search for a predictable subset of Ada must be j
coupled with a definition of a "predictable compiler" which

places restrictions on the Ada compiler beyond those given in the

language manual. Actually, we have been finding that the• I.
restrictions to be a "predictable compiler" aren't much different

from being a "reasonable compiler" since the language manuals
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permits behavior that no reasonable compiler would ever exhibit

and the exotic permitted execution models thus allowed complicate

the model space and make it difficult to devise proof rules.

8 Verifiable Subsets: The Cluster Approach

As mentioned above ORA is currently examining how far

existing techniques of program verification can be adapted to the

verification of Ada programs. We have surveyed the current

literature in verification from the point of view of Ada and are

preparing an extensive annotated bibliography

As the best understood and best worked-out methods are

calculi of "Hoare triples" , (P}S(Q), thQse are the techniques on

which we have concentrated. These seem to force on us the

following limitation:

executions which raise predefined exceptions be treated

like executions which fail to terminate.

That is, the triple "IP)S(Q)" is taken to mean "If P is true when

the execution of S is begun and execution of S terminates without

raising a predefined exception, then Q will be true when S

terminates." Original research remains to be done on the raising

and handling of predefined exceptions. Those which are machine

independent (e.g., when an array index is out of bounds) are

relatively straightfoward; the machine dependent exceptions
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(e.g., overflow) require the verification environment to contain

either explicit machine dependent constants (such as the actual

range of INTEGER) or assumptions about these contants (such as

the range of INTEGER includes the standard sixteen bit two's

complement signed integer range).

Our ultimate goal is to identify not "a verifiable subset"

but a number of overlapping subsets of the language, each of

which, individually, is reasonably tractable. We call the

"allowed subsets" clusters. The user would be required to write

any package, subprogram, etc., wholly within the restrictions

imposed by some cluster. This is our solution to the following

problem: Imagine a language with the constructs R, S, and T.

Suppose that one has in hand a usable proof system for programs

in which only R and S occur. It's quite possible that

incorporating T into the proof system would require not only the

introduction of rules for T, but also the introduction of new

complications into the rules for R and S -- so that even the

proofs for programs involving only R and S become more

difficult. If there were a domain of problems in which it seemed

unlikely that construct T would be used it would pay to

distinguish the subset (R,S) as a "verifiable" cluster with its j
own simple proof system. For example, introducing aggregate

types like records and arrays complicates the logic of procedure

calls; and, more generally, handling the logic of procedure calls

requires a more detailed than usual analysis of the assignment

statement.
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Our use of clusters is driven by the fact that Ada was not

designed as an inherently verifiable language (unlike Euclid and

Lucid). It is extremely rich, allowing interactions between

features which surprise even Adats designers. This is not a

criticism; .a programming language should be a flexible tool in

the hand of a creative system. builder. The introduction of

clusters is the recognition that Ada contains a large variety of

inherently verifiable sublanguages and that a large program

contains units from many clusters.

The cluster approach is not ad hoc since it is meant to

mirror Ada's ability to hide information -- using it to hide

awkward combinations of constructs from the sight of one

another. This strategy is a first crude step toward recognizing

that in actual programs constructs are not thrown together

arbitrarily but occur in contexts, and the allowed clusters are

meant to be abstract representations of "contexts."

Among the advantages of thus modularizing the proof system:

-- One concrete step is immediately suggested -- namely, to

study the requirements of individual problem domains (numerical

computation, communications, etc.) and look for useful tractable

clusters. If certain combinations of constructs that naturally

hang together are not well-handled in the existing literature

such combinations are obvious candidates for research.

-- Questions of technique are not prejudged -- nothing
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requires that different clusters be attacked by the same methods,

or by methods that can easily be integrated with one another.

-- The system can be improved piecemeal -- one can introduce

new clusters as research makes them tractable, or alter one of

the already carved-out clusters without having to alter any of

the others. Notice that there's no reason to think that the

proper strategy for improving the system will always be that of

extending some one or more of the the allowed clusters. It might

make sense to add to the collection an additional cluster which

is a proper part of one of the allowed clusters -- if that part

is useful and can be handled significantly more easily than its

parent, or to merge clusters if new methods of analysis are

developed.

-- More generally, cluster-building tools can be provided so

that the verification environment is user-extensible. This will

allow the user to formulate a cluster useful to him and prove the

soundness of the cluster's proof rules in terms of an abstract

mathematical model of Ada which the system would contain.

The word "construct" is used above as though one knew

precisely what it meant, and it may further suggest that

"constructs" are indivisible things whose combinations could only

be all or nothing matters. Neither suggestion is intended. i

Consider the following, standard, example. It's meant to

illustrate two things:
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- as things are added to a language the logical rules tend to

complexify more rapidly than the language grows

- different logics can be used for different fragments of the

language.

Example -- In a language with only scalar types a simple and

well known Hoare-style rule captures the assignment statement.

Once arrays are added that rule must be made more complex. Not

only is this well known, but it is also well known that the uses

of assignment which necessitate the new complexities are unlikely

to occur in practice.

If procedure calls are now added certain implicit

assumptions of the assignment axiom must be brought to light:

Namely, the assumption that variables which are syntactically

distinct correspond to disjoint areas of memory (i.e., are not

aliased). We can say this in another way: The naive rule for the

assignment assumes that syntactically distinct variables are

semantically unrelated.

The assumptions show themselves as follows: The obvious way

to infer the effects of a procedure call is to calculate what

effects execution of the procedure's body would have if carried

out on the formal parameters and then infer that it would have

corresponding effects on any actual parameters with which it was

called. Unfortunately, the syntactically unrelated formal

parameters of the procedure may be replaced by semantically
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- related actual parameters, in which case the effects on the

actuals need not correspond to the effects on the formals. if

there were no procedure calls there would be no need to express

this "deeper" analysis of the assignment rule in the formal

axiomatics.

Our proposal for procedure calls is that the "ordinary"

logic of them should forbid aliasing among the actual parameters

-- and, consequently, a naive semantics can be used to calculate

the effects of the body on the formal parameters. An

"extraordinary" procedure is one for which certain instances of

aliasing are explicitly allowed -- and in calculating the effects

of the body it is then necessary to use a more complicated logic

distinguishing locations from their contents, etc.

Here is another commonplace example: Access types can be

used to build complicated data types such as lists, trees, etc.

If such types were encapsulated as private types in packages

which exported only the algebraic operptions suitable for

manipulating lists and trees, then the rest of the program

needn't be cognizant even of the existence of access types.

Among the conclusions of our survey:

-- Procedure calls in full generality are intractible. The

only practical remedy seems to be to restrict the possibilities

for making aliased procedure calls (except in certain specified

instances). The difficulties in Ada go beyond the "classical"
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difficulties with aliasing because the parameters in Ada

procedure calls are specified functionally (as in, in out, or

out) rather than operationally (as var or val), making them

implementation-dependent. Further, the order of copy-in and

copy-out is also implementation-dependent%

-- The logic of the predefined exceptions is in general too

unstructured for us to deal with at the present time. To treat

them as though every statement were implicitly decorated with

conditional "goto's" (the "goto" branch being taken if the

exception is raised) would be combinatorially overwhelming.

There are just too many "goto's." Further, any single predefined

exception can be raised in-many places and one can't in general

be sure when an exception is raised where it was raised.

Therefore one can't in general know with any precision the state

of the machine at the moment the exception was raised. It is

possible, of course, that the exception handler will take charge

and restore the machine to some determinate state, even though

the state in which it was activated is in some sense unknown.

User-defined exceptions, being fewer and more specific, are much

easier to accomodate.

The last point outlines a very important area of research

which we are proposing to undertake. Although at present

applying existing techniques to the logic of predefined

exceptions is intractable the question must be faced for real

embedded systems. Presumably, the software must either be
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verified to recover gracefully from the raising of predefined

exceptions or not to raise them. It might be tractable to state

an entry condition for each exception handler which is then

proved to hold before any statement which could raise that

exception or to prove that before each such statement the state I
of the machine is such that the exception will not be raised.

I
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1 Introduction

1.1 Limitations

This paper is the current draft of a continuing attempt to
discover and to describe, as precisely as possible, restrictions
on the use of Ada which will forbid the use of features or
combinations of features which are clearly beyond the capacity of
current methods of program verification. Its origins as a list
of do's and don't's for programmers are still evident in its
current incarnation. This draft incorporates the criticisms made
at the workshop on Ada verification held at IDA on May 18 - May
20.

We would welcome any comments, which can be addressed to
Odyssey Research Associates, 408 East State St., Ithaca, NY 14850
or, through the arpanet, to rplatek@eclb.

By a "verification" we will mean a correctness proof which
is, if not fully automated, at least machine-checkable. We limit
ourselves to considering proof techniques currently available in
the literature, of which the commonest are the logical calculi of
"Hoare-triples": assertions of the form "If condition A holds and
program P is executed [and, perhaps, further hypotheses also
hold] then condition B will result." Our first approximation
added two hypotheses: that execution of P terminates (systems
that add this hypothesis are called systems for "partial
correctness"); that no predefined exceptions are raised during
execution of P.

The hypothesis that no predefined exception be raised was
criticized as being unnecessarily restrictive. The original
opinion and the criticisms are further explained in the
discussions of exception-handling.

The hypothesis that P terminate is the most common one to
make in axiomatizing sequential programming languages -- or, to
be more precise, in axiomatizing that part of programming which
consists in the computation of functions. But there is an
important distinction between constructs or modules which are
intended to terminate and those which are not. If a module is
intended to terminate then its effect is reasonably describable
by Hoare triples as an input-output relationship, and failure to
terminate is simply a mistake. A program unit which is not
intended to terminate ordinarily provides a service -- for the
moment we'll call them. "services." The design of an appropriate
language for speaking about services is a subject of active
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research. A Hoare-like strategy for specifying a service is to
record an invariant which holds true either at every moment of
the service's life, or at all moments except those explicitly
bracketed off. If this strategy is adopted it may then seem
unreasonable not to follow the strategy whole hog -- making the
whole logic a logic of invariance. This is also a subject of
active research. We mention the problems posed by
non-terminating program units simply to take note of a difficulty
with the approaches surveyed in this paper.

One final question, which might well have come first: Just
what are we verifying -- the logic of the source text or the
behavior of the compiled code? Here we're concerned not about
tne possibility of bugs in the compiler but about the variations
in behavior that can result from .optimizing compilers acting
quite legally. The discussion, in sections 2 through 4, of
initialization and undefined variables presents an example of the
difficulty.

1.2 One, Two, Many Systems

This notion of verification can be further refined, and that
is why it makes sense to us to speak in the plural of verifiable
subsets. Correctness is not the only goal of software
engineiring, and it might therefore be useful to carve out a
variety of "verifiable" subsets corresponding to a variety of
other goals (such as modifiability and portability).

One aim of Ada is to encourage the writing of software that
can be easily modified. If a verified program were revised it
would, in an ideal world, also be possible to modify a
verification of that program into a verification of its revised
version. Certain constructs (or certain uses of them) may well
be "rigid," meaning that they would make this difficult:
verification of the revised program would have to start from
scratch. Experience will be the final Judge of which constructs

are "rigid," but there are obvious candidates (non-local
constrUcts such as Lo to).

Another reason for choosing several "verifiable" subsets is
well-illustrated in the literature. Imagine a language with the
constructs R, S, and T. And suppose that one has in hand a usable
proof system for programs in which only R and S occur. It's
quite possible that incorporating T into the proof system would
require us not only to add rules for T, but also to complicate
the rules for R and S -- so that even the proofs for programs
involving only R and S become more difficult. For example,
introducing aggregate types like records and arrays complicates
the logic of procedure calls. More generally, handling the logic
of procedure calls requires a more detailed than usual analysis
of the assignment statement.
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If there were a domain of problems (numerical algorithms,
communications systems, whatever) in which it seemed unlikely
that construct T would be used it would pay to set aside the
subset-(R,S) as a "verifiable" subset with its own simple proof
system. For example, time- or space-critical applications are
unlikely to use recursive subprograms. It's at least thinkable
that one could verify systems using large amounts of the language
by restricting each program unit to some tractable combination of
constructs (and thereby hiding the difficult combinations from
one another). A fancy way to say this is to say that we're
hoping to pursue a strategy which is not "context free."

Among the advantages of modularizing the proof system: It
immediately suggests some concrete things to do -- namely, to
study the requirements of individual problem domains and look for
useful tractable subsets. It doesn't prejudge any questions of
technique -- nothing requires that different subsets be attacked
by the same methods, or by methods that can easily be integrated
with one another. Finally, the system can be improved piecewise
-- one can introduce new subsets at will, or incorporate an
additional construct into an existing subset without having to
incorporate that construct into any others.

1.3 Predictable compilers

There is not a sharp distinction between the work to be done
by a verifier and the work to be done by a compiler. Compilers
may use the results of verification to help optimize their
performance (for example, by suppressing certain run-time checks
that are known to be always satisfied). A user may wish to rely
on the compiler to enforce the dictates of the verifier -- for
example, to ignore the pragma suppress checks if the verifier has
not certified this to be safe. A verifier may verify a program
relative to the assumption that certain aliased procedure calls
don't occur, or are reported if they do -- and may thereby wish
to rely on a pragma which compels the compiler to generate code
which performs the necessary checks.

As the definition of Ada leaves many (semantically
consequential) details to the discretion of its implementors, it
might also be useful to verify certain programs relative to a
(broad) class of compilers. We therefore begin to explore this
possibility. A relative verification would contain the proviso:
so long as the program has been compiled on a "predictable"
compiler.

Predictability might be implemented by a set of pragmas which
could be invoked to call for certain run-time checks or
(selectively) to suppress others, etc.
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1.4 Outline

Section 2, a laundry list of restrictions on Ada, is
basically an account of how to incorporate into Ada the
"classical" restrictions that are currently imposed on languages
designed with verification in mind. It proceeds construct by
construct and rules out those constructs for which no substantial
principles of verification are known. "Known" means:
discoverable by a survey of the current (and straightforwardly
applicable) literature. It will be seen, for example, that our
restricted subset essentially limits Ada tasking to the resources
of CSP (see [Hoare, 1978].) Further, it describes the sorts of
information that must be supplied to a would-be verifier by the
writer of the program (even if writer and verifier are the same
person). In some cases we just throw up our -hands.

We do not claim to have a model of the "allowed" portion of
the language; nor that there are proof rules for arbitrary
combinations of the "allowed" constructs; nor, I fortiori to
guarantee that any program written with the "allowed" constructs
and accompanied by the appropriate sorts of comments can indeed
be verified from the rules in the literature, All we can say is
that programs which violate these restrictions lie comfortably
within the large domain of current ignorance. Section 2 follows
the order of ARM (the Ada Reference Manual ANSI/MIL-STD-1815A,
1983). By definition, it contains no surprises, although it does
point out that certain classical problems, such as aliasing and
side-effects, are especially awkward in Ada.

Section 3 is written mainly for the non-expert: It defines
"aliasing" and "side-effects", reviews the terminology of access
variables and access types, the text of the ARM's account of
undefined variables, etc. It also justifies our assertion that
aliasing is intractable in Ada. Most of the discussion of the
peculiarities of Ada is deferred to Section 4.

Section 4 contains a discussion of program errors --
"erroneous programs" and "incorrect order dependences." Programs
which are "erroneous" are sensitive to semantical decisions which
have deliberately been left undetermined by Ada's designers. As
different implementations will settle them in different ways the
behavior of such programs will be implementation-dependent.

Section 5 is an annotated bibliography. It cites, in
addition to the Ada literature, several of the standard papers in
program verification which were found useful in preparing this
survey.

The paper concludes with an index.
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2 Rules

The section numbers and names come from ARM.

ARM Chapter 1, Introduction

No restrictions.

ARM Chapter 2, Lexical Elements

No restrictions.

ARM Chapter 3, Declarations and Types

ARM 3.1 - ARM 3.2

No restrictions.

ARM 3.2.1 Object Declarations

Languages designed for the sake of verification typically
guarantee (by means of default values) that undefined variables
cannot occur. The alternative is to prove as part of the
verification that execution of a program will not result in
attempts to evaluate undefined variables. This could be
especially difficult to prove in Ada when declaration and
initialization are distinct: because legal optimizations could
allow an error to be raised between the declaration of a variable
and its initialization even if no executable text occurs between
them.

Ads does not allow most types to have default values, and
does not allow variables of some types (limited private types) to
be initialized by their declarations. We show, below, to what
extent the rule "initialize all variables" could be enforced.
Such a restriction would avoid a source of program errors: A
program which attempts to evaluate a scalar variable whose value
is undefined or attempts to apply a predefined operator to a
variable any of whose scalar subcomponents is undefined is
erroneous (ARM 3.2.1, 6.2). Further discussion is included in
section 4.

Case 1: No exceptions are raised.

- Any requirements about initializing variables must also be
applied, mutatis mutandis, to the formal out parameters of
procedures.
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- A declaration of a record type may, and therefore should,
provide default values for variables of that type (ARM 3.7).

- Access variables automatically have the default value null
and therefore need no explicit initialization.

- The execution of an allocator may and therefore should
initialize the object designated by the access variable
being allocated. The distinction between this case and the
last case is as foilows. If type POINTER is access T, and x
is declared to be of type pointer, then an immediate attempt
to evaluate any subcomponent of x, such as x.all, will
result in a constraint error (unless the subcomponent
appears as prefix to an attribute [ARM 4.1]). The value null
is in effect an out-of-range index. After executing new(x)
the result of evaluating x.all is unpredictable, as the
value of x is now in-range, but the value of x.all is
undefined. In particular an error need not be raised.

- Variables of limited private type which are declared outside
the package creating the type can be initialized in only two
ways: The type can be given a default value (which means
that it is implemented either as an access type or as a
record type with a default value). The package can provide
an initialization procedure, which accordingly must be
invoked immediately after a declarative part in which
variables of the type are declared. In this case we must
elso insist that the variable not appear elsewhere in the
declarative part in which it is decl-ared -- otherwise it
could be a parameter in an expression used to give an
initial value to some other variable (of a type which is not
limited private). The interval between declaration and
initialization can present a problem -- errors might be
raised.

- Variables of all other types can be, and therefore would be
required to be, initialized upon declaration, with the
following two exceptions:

- Variables can be attached (via address clauses) to addresses
which are hardware controlled and these cannot be
initialized by program declarations. Further, certain
addresses may have special significance for the operating
system and need not be initialized by program declarations.
The compiler must know which addresses are "wired" -- so
that it will not raise program error on the grounds that
variables assigned to those addresses are not undefined.

- If a variable is declared in the visible part of a package,
initialized by the declaration, and altered by execution of
the package .body, uses of the package by other program units
might be sensitive to the order in which program units were
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elaborated. (See the example in section 4, below.) A
program which is sensitive to the order of compilation
contains an (ARM 1.6, 10.5). This problem could be solved by
using the ELABORATE pragma to determine the order of
elaboration. An alternative to this solution is to demand
that a variable declared in the visible part of a package be
initialized in one and only one of the following two ways:
(i) when it is declared; (ii) by the package body. This
would also require use of the ELABORATE pragma, to make sure
that there were no other program units which tried to make
use of the variable before the package body was elaborated.

Case 2: Taking exceptions into account.

Exceptions raised during declarative parts will cause control
to be transferred out of the scope of the variables declared in
that declarative part (ARM 11.4.2). None of the variables
declared in that declarative part will linger as undefined
entities because all of them will cease to exist.

If initialization does not occur at declaration there is in
general no simple syntactical way to guarantee that it ever
occurs -- an error may intervene between declaration and
initialization even if no executable text occurs between
declaration and initialization. (Reason: optimizations may
reorder computations.) See examples in section 4.

ARM 3.2.2

No restrictions.

ARM 3.3 Types and Subtypes

Task types will be used only as templates; access types to
task types will be forbidden. (See restrictions to 3.8 and 9.)

ARM 3.4 - ARM 3.5.6

No restrictions.

ARM 3.5.7, 3.5.8 Floating Point Types, Operations

The difficulties in verifying floating operations, beginning
with the difficulty of stating what one means by correctness, are
well known and aren't the sorts of problem to which
"restrictions" are the appropriate response. We take as a
beginning [Sutherland, 1984] which formalizes the following
notion of the logical correctness of an algorithm: A program is a
logically correct representation of a mathematical function if
the values which it computes converge to the correct values of'
the function as the accuracy of the machine on which it is run
increases. If a (finite) polynomial is used to compute some
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transcendental function such as cos, the correct logical
specification of the algorithm would be that it computes that
polynomial, not that it computes cos. This proposal, equally
applicable (or inapplicable) to any programming language, was
criticized on the grounds that the model numbers of Ada are quite
carefully specified and might therefore make quantitative
analysis of Ada programs tractable.

3.5.9 - 3.8

No restrictions.

ARM 3.8 Access Types

No access types to task types.

ARM 3.9

No restrictions.

ARM Chapter 4, Names and Expressions

ARM 4.1 - 4.5.1

No restrictions.

ARM 4.5.2, Relational Operators and Membership Tests

Warning: If A and B are array variables it is possible that
the value of "A - B" could be true and the value of "A(2) - B(2)"
at the same time false. If the indices of A range from 1 to 5
and those of B from 2 to 6, the "-" operator asks only whether
the first value of A equals the first of B, etc. See also ARM
5.2.1.

ARM 4.5:3 - 4.7

No restrictions.

ARM 4.8 Allocators

If insisting on initializing variables: The execution of an
allocator may and therefore should initialize the object
designated by the access variable being allocated.

ARM 4.9 - 4.10

No restrictions.

ARM Chapter 5 Statements

,,_ m m • m-i---ramm -m
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ARM 5.1

No restrictions

ARM 5.2.1

Warning: If A and B are array variables, then after the
assignment "A :- B" it could still happen that, say,
A(2) /- B(2). If the indices of A range from 1 to 5 and those of
B from 2 to 6 the assignment will replace the first value of A by
the first value of B, etc. See ARM 4.5.2.

ARM 5.3 - 5.4

No restrictions.

ARM 5.5 Loop Statments

Loops immediately raise the problem, mentioned in the
introduction, of intentionally non-terminating program units.
Loops which are intended to terminate are well-understood in
terms of Hoare-triples: While-loops and indexed loops must be
annotated by "loop invariants" -- conditions true every time an
iteration of the loop begins. General loops of the form "loop S;
exit when B; T" must be annotated with two invariants: one which
is true whenever control reaches the beginning of S, and another
which is true not only whenever control reaches the end of S but
also whenever it reaches the beginning of T. Loops with more than
one exit are handled by an easy generalization. Loops can also
be left by executing a return statement or by the raising of an
exception. These in principle present no special difficulties
and [Luckham and Polak, 1980] asserts that such use of errors in
"normal" circumstances has not been found to be especially
burdensome.

We simply note that we know no generally satisfactory
strategy for specifying what it is that one wants to prove about
loops which are intended to be non-terminating. Nor is it
obvious that from a collection of pieces each of which is
specified by Hoare triples one can expect to assemble and verify
a loop specified in some other way (e.g., by an invariant true
throughout the loop's lifetime).

ARM 5.6 - 5.

No restrictions.

ARM 5.9 Goto Statements

As Ads has powerful control structures, including "return"
and "exit" statements it seems not unreasonable to say: no So
to's. (Ledgard and Singer, 1982] argues that the construct is
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"redundant" and [Good, Young, Tripathi, 1980] that it is an
"anachronism." Notice that goto's are also likely to lead to
"rigid" programs (programs whose verifications cannot be easily
modified to apply to modifications of the program). The standard
discussion of this matter is [Knuth, 1977].

ARM Chapter 6 Subprograms

ARM 6.1 Subprogram Declarations

The body of a subprogram may not contain a declaration for
another subprogram of the same name and parameter type profile.
("Parameter type profile" is defined in ARM 6.6).

Tasks or objects with tasks as subcomponents may not be
passed as parameters to subprograms. This restriction is imposed
not because this is known to be intractable or to present
additional difficulties beyond those already posed by
understanding tasking, but rather because no work has been done
on the question.

Subprogram specifications must be accompanied by comments
which: list the global variables occuring in the subprogram; list
the allowed exceptions to the "no aliasing" rule; and describe
its effects, including side effects. (This requirement is set
out in more detail in the discussions of ARM 6.4 and ARM 6.5.
Section 3 contains the definition of "alias.")

ARM 6.2 Formal Parameter Modes

If insisting on initializations: The formal out parameter of
a procedure must be initialized at the beginning oTfthe procedure
body. (See section 4.)

ARM 6.3 Subprogram Bodies

See 6.1, 6.2.

ARM 6.4 Subprogram Calls

These restrictions concern both the suggested way to annotate
subprograms with comments and the appropriate use of subprograms
based on their annotations.

1. Recall the comments about ARM 6.1 - ARM 6.3.

2. No forbidden aliasing. The term "alias" is elaborately
defined and discussed in section 3. Experts should beware
of a subtlety: The usual proof rules for Pascal-like
languages permit a val parameter to be aliased against a
var parameter. The Ads parameter modes in and in out,
however, do not quite correspond to val and var. Aliasing
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between in and in out parameters can result in erroneous
programs Tsee s;ctio'n 4).

3. This restriction could be enforced syntactically, by ruling
out all potential instances of alasing. Doing so would
rule out many calls in which aliasing does not actually
occur. Alternately, the verifier could be called on to
show that aliasing does not in fact occur. The verifier
would reject any program for which he could not make such a
demonstration.

4. If syntactical enforcement is chosen, there are two ways in
which the restrictions might be relaxed:

- The compiler could recognize a pragma ALIAS CHECKING
which would cause it to generate code that would at
run-time raise the error ALIASINGERROR if forbidden
aliasing were to occur.

- Subprograms which had been certified by the verifier
to meet their specifications for all calls, aliased or
not, would be exempt. This certification could, of
course, be fed back to a compiler called on to do
ALIAS-CHECKING;

5. In any case, procedure specifications must be accompanied
by comments which do the following:

- list the global variables of that procedure;

- describe the intended result of the procedure,
including the side-effects of a call on it

("side-effects" are defined in this section, in the
discussion of ARM 6.5);

- describe changes or potential changes in the objects
designated bX in parameters which are access variables
("designated Ts defined in section 4 in the
discussion of access variables);

- indicate which instances, if any, of otherwise

forbidden aliasing are to be permitted (premissions
one would expect to find mainly in already-verified
library routines).

ARM 6.5 Function Subprograms

1. We urge that unless it is prohibitively expensive, a
function body contain no global variables at all -- that it
should import as parameters any non-local variables which
it uses. The ideal is that all functions should act like
"mathematical" functions (i.e., like the predefined
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operations) -- fully describable in terms of input and
output. If global variables there must be, then the
function specifications must be accompanied by a comment
listing them and giving an account of their role.

2. No side-effects. This means that a function body may not
contain:

- assignments to global variables or calls to procedures
which can change global variables;

- I/0 operations;

allocators -- statements of the form "x :- new T",

where x is an access variable designating objects of
type T;

- occurrences of "run-time" attributes -- attributes
whose values can change during execution (this seconds
the general restrictions which will be imposed below
on the use of attributes);

- assignments to subcomponents of access variables, or
calls to procedures which make such assignments.

These matters are elaborately discussed in the next section.

ARM Chapter 7, PackaRes

Whether or not one is insisting on initializations: If a
variable is initialized in the visible part of a package neither
it nor any of its subcomponents must be altered by execution of
the package body. See the discussion, above, of ARM 3.2.1. Those
comments also discuss the treatment of limited private types.

Except for its effects on the variables declared in the
package specification, execution of the package body should have
no side-effects on entities visible outside the package body.
For the meaning of "side-effects" see the discussion, above, of
ARM 6.5. If a main program uses a package which violates this
restriction and the package is a library unit (in particular, if
it is one of the parts of a program that is separately compiled)
the effect of the main program could depend on when in the
sequence of elaborations of library units that package body is
elaborated. This would be both a logical difficulty and a
program error. See the discussions of ARM 10.5 in this section
and the discussion of incorrect order dependences in section 4.2,
below.

Packages don't provide a problem so much as they provide an
opportunity -- to modularize systems into coherent parts. The
problem is the problem of not wasting the opportunity, which
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means finding good ways to specify packages. Any restrictions on
writing packages will be for the sake of accomodating those
techniques.

ARM Chapter 8, Visibility Rules

No restrictions

ARM Chapter 9, Tasks

What's known about tasking is rather limited, and the rules
below are no more than an indication of the kinds of limitations
that have so far been imposed to isolate tractable fragments of
the language. We have not attempted to extend or to synthesize
these systems. The bibliography (section 5) sets out in some
detail the fragment of Ada tasking treated in each of the
included papers. These papers have, of course, deliberately
stripped down the language for ease of exposition and in some
cases extensions (of the sequential part of the fragment) seem
routine.

Typical restrictions on tasking

1. Parameters passed at a rendezvous are scalars.
Liberalizing this seems routine.

2. The collection of tasks must be fixed, the tasks must begin
together, and the tasks must themselves be sequential --
i.e., they must not create further tasks by declaration or
allocation. Accordingly: a task may not be declared within
a task and there can be no access types to task types.

3. Tasks may not share memory. Accordingly: tasks may not
have global variables in common and may not pass access
variables in a rendezvous. A warning to experts: It might
seem safe if tasks altered shared variables only by passing
as in out parameters to a third task. Such programs can
stiTT 5e-erroneous. (See section 4.)

4. Entry calls must obey all the restrictions (against
aliasing) imposed on procedure calls.

5. The attributes COUNT, CALLABLE, or TERMINATED may not be
used. This restriction effectively prevents the programmer
from writing his own scheduler.

6. I statements may not be used. In general, the logic of
the real-time features is not understood.

7. Certain formalisms also prohibit conditional entry calls
selective waits which contain an else clause.
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ARM Chapter 10, Program Structure and Compilation

No restrictions. Section 4.2, below, discusses incorrect
order dependences that could arise among separately compiled
program units. The ELABORATE pragma could be routinely used to
eliminate any indeterminacy resulting from variant orders of
elaboration.

ARM Chapter 11, Exceptions

1. Predefined exceptions: Our original position was to treat
programs which raised predefined exceptions as "failures"
analogous to (accidentally) non-terminating programs. The reason
was not theoretical, but practical -- there seemed to be too many
potential occurrences of them. The criticism of this was also
practical: that experience with the exception-handling mechanism
of Gypsy suggested that our position was mistakenly pessimistic.
No one claims to know how to deal with tasking exceptions. The
standard reference, [Luckham and Polak, 1980], omits tasking
exceptions altogether.

Notice that the (non-tasking) exceptions are of two kinds:
storage error and numeric error, which are strongly
implementation dependent; and program error and constraint error,
which are not. The first kind are (sometimes regrettable but)
"normal" occurrences and need not indicate that the program is
logically "incorrect," while it seems reasonable to regard the
raising of program and constraint errors as indicators of logical
mistakes. A formal verification of a program might be expected
to generate, in passing, a proof that program and constraint
errors would not occur.

2. Exception-handling: There seem to be three levels of
complexity in the way in which exceptions can be handled. In
order of increasing complexity they are:

- exceptions are handled locally and not propagated;

- exceptions are propagated, but within their scopes;

- exceptions are propagated outside their scopes.

The most conservative simplifying restriction would be to
insist that exceptions be handled locally. In any event the
proof rules require the programmer to supply: an "assumption"
about the state in which the handler begins to do its work; an
"assertion" about the states in which the exception is raised.
Actually, the rules are more complicated -- because the
association of exceptions with exception-handlers is dynamic.
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3. Exceptions raised during procedure calls: If execution of

the body of a procedure call is broken off by the raising of an
exception one can't in general know the values of the actual
parameters at the moment the exception is raised -- because the
parameter-passing mechanisms are not in general determined by the

language. The rules for procedure calls (see [Luckham and Polak,
1980]) make some assumption about the parameter passing
mechanism.

ARM 11.6, Exceptions and Optimization

[Cohen, 1985] observes that optimizing compilers which reorganize
computations present difficult problems to verifiers. Some legal
reorganizations, for example, can cause errors to be raised that
would not otherwise be raised or to alter the place at which an
error is raised. This presents a problem for verification which
can't be solved by subsetting.

ARM Chapter 12, Generic Units

No restrictions are imposed on the use of a generic X beyond
those imposed on the use of X. In a simple-minded sense generics
present no new difficulties because one can simply attempt to
verify particular instantiations. That, of course, contradicts
the spirit of the enterprise, which is to create an off-the-shelf
template all of whose instantiations come pre-verified as a
result of one "generic" verification. Like packages, generics
are not a burden on the verifier but, potentially, part of the
solution.

A few remarks, in keeping with the spirit of the enterprise:

Consider a case that is easy to deal with -- a generic stack
manipulator. What makes this easy is that the manipulation of
stacks is a kind of algebra, with calculational rules and
axioms. Verifying such a generic "algebra" requires a clear
setting out of what the algebra in question is.

We require of the objects being stacked nothing other than

that they be objects. We might require more -- that is, facts
about the operations that have been defined on them, or about
subprograms that are imported to help manipulate them. Consider
a generic sorting algorithm, which sorts with respect to some
given (imported) relation. One intends that the relation that's
imported should be some kind of ordering. The algorithm probably
won't do anything coherent unless the relation is transitive,
etc. The generic specification must therefore by accompanied by
comments indicating what properties the imported subprograms are
intended to have.

Accordingly, it seems that the important issue is not how to

prove things about generics -- one needs no new rules -- but how
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to specify the data structures a generic is intended to act on
and what the instantlation is or does.

ARM Chapter 13 Representation Clauses and
Ilementatin-Dependent Fteurs

We have little to offer here beyond ignorance.

Warning: The ways in which information can be coded into
Interrogations of the low-level attributes can be surprising and
obscure. (For example, by using the ADDRESS attribute a program
could discover whether a parameter had been passed by value or by
reference, and its behavior could be affected by that (ARM
13.7.2, paragraph 15).) For more discussion of this see section
4.

ARM 13.10 Unchecked Programming

It is at least possible to generate an
Implementation-independent proof that some application of
unchecked deallocation will not result in attempts to access
dangling pointers. One could impose the requirement that
unchecked deallocation not be used in the absence of such a
proof. Unchecked conversion, of course, is completely
implementation-dependent.

ARM Chapter 14 Input-Output

1No I/O operations in function or package bodies. (See rules
for ARM 6.5 and.ARM 7. See also sections 3 and 4, below.)
ARM Appendix A, Predefined Language attributes

* Notice that both the task attributes -r COUNT, CALLABLE, and

TERMINATED -- and the low-level attributes of chapter 13 have
4been disallowed.

3 General matters

This section rehearses definitions and terminology about

access types, undefined variables, aliasing, side-effects, and
subprograms -- and attempts to Justify our assertion that aliased
procedure calls are intractable in Ada. As before, section
numbers of the Ada Reference Manual are prefixed by "ARM."
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3.1 access types

The point of this paragraph is to rehearse some terminology
from ARM and make a few fine distinctions which will be useful
later. Consider:

tye T is array(l..2) of INTEGER;,
type POINTER is access T;
x,y : POINTER; -- x and y have default access value null;

-- attempts to evaluate x.all raise
-- constraint error

x :a new T'(O,O); -- x.all is initialized to (0,0);
y : -ew T'(1,1);

The terminology of ARM is: The allocator

"x :- new T'(0.0)"

creates an object, and yields, for x, an access value that

designates that object. The "'(0.0)" and "'(1,1)" are
initializations of x.all, and y.all, the objects designated by x

and y. The default initialization of x is a special access value
null, which does not designate an object. The simple-minded
mod7el of allocation is that x is assigned an address (the access

value), which is the location at which the new.object of type T
(the object designated. by x) resides. The terminology goes on:
So long as x contains the same access value it is said to
designate the same object, even though the object itself may

change. This is reflected in the two kinds of assignment
statements. Given the declarations above, the result of:

x := y

is that x and y designate the same object, because each

thereafter will contain the same access value (the one originally
contained by y). The result of

x.all :a y.all

is that x and y designate different objects (contain different

addresses) whose components happen to be the same: they're
identical twins. The result of

x(l) :a 2

is that x designates the same object as before -- an object that

is now changed (as in, "That's the same man, but now he has a
beard").
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3.2 initialization

ARM 3.2.1:

- The result of an attempt to evaluate an undefined scalar
variable, or to apply a predefined operator to a variable
that has an undefined scalar subcomponent will be
unpredictable, but need not raise an error.

- The v-alue of a scalar variable is undefined after
elaboration of the corresponding object declaration unless
an initial value is assigned to the variable by an
initializa-tion (explicitly or implicitly).

ARM 6.2:

- The value of a variable is said to be updated when an
assignment is performed to the variable, and also
(indirectly) when the variable is used as an actual
parameter of a subprogram call or entry call statement that
updates its value; it is also said to be updated when one of
its subcomponents is updated.

- The value of a scalar [out] parameter that is not updated
[by a procedure call] is undefined upon return; the same
holds for the value of a scalar subcomponent other than a
discriminant.

ARM 9.10:

- If the abnormal completion of a task takes place while the
task updates a variable, then the value of this variable is
undefined.

The reference manual carefully avoids talk about "defined" or
"undefined" or "partially defined" aggregates. No explicit
definition is given of what it means for a scalar variable to be
defined, other than to say that a scalar variable initialized
upon declaration is defined.

3.3 aliasing

Our principal difficulties are difficulties with the
parameter-passing mechanisms of Ada -- with the fact that they
are often implementation-dependent. This makes aliased procedure
calls even more awkward than usual, for the semantics of aliased
procedure calls will as a rule become correspondingly
Implementation-dependent. We think it will be necessary to rule
out certain aliesed procedure calls, as we are becoming persuaded
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that, as a rule, the peculiarities of Ada make them intractable.

The rule stated below is not peculiar to Ada, except for the
caution, mentioned in section 2, that in and in out parameters
should not be aliased. The effects -of Ada'T -u-nderdetermined
semantics are deferred to the account of erroneous progrmas in
section 4.

3.3.1 definition of alias

Two distinct occurences of variables are aliases 'if they

refer to common areas of storage. In particular, distinct
occurences of the same variable are, trivially, aliases. (The
term "alias" is often restricted to aliases which are distinct,
but it will be convenient here to speak more broadly.)

We first consider the case of records and arrays. Let A be
an identifier which is an array, and suppose the following
subcomponent is well-formed: A(t).NEXT(j). That is, A is an array
of records, and the objects occupying the record field NEXT are
themselves arrays. Combining the terminology of [Cartwright and
Oppen, 1981] and [Gries and Levin, 1980] we'll say that the
abstract address of the variable 'A(t).NEXT(J)' in some machine
state S is an ordered pair whose first co-ordinate is the
identifier'A' and whose second co-ordinate is the selector
sequence (value of t, NEXT, value of J> -- where the values of t
and j are computed in state S and we may as well think of the
field-name 'NEXT' as being its own value.

Let x and y be variables and let their abstract addresses be
(I1,sl) and (2,s2), respectively. Then,

x and y are aliases in state S

if and only if

- II and 12 are the same identifier;

- one of the selector sequences 9l, s2 is an initial segment

of the other (when both are evaluated in state S).

Further,

x and y are potential aliases

if and only if

- there exists some state in which they are aliases.

Finally,
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- a variable is aliased or potentially aliased with an
expression if and only if it is aliased or potentially
aliased with any variable which occurs in the expression.

Notice that the selector sequence of the variable A (where A is
an identifier) is the empty sequence, which is an initial segment
of any other sequence.

Examples:

- a(i).NEXT and a(i).NEXT(j) are guaranteed to be aliases in

611 states, as are a and a(i);

- a(i) and b(i) cannot be aliases (if 'a' and 'b' are distinct
identifiers);

- a(j) and s(t) are aliases if and only if J,= t;

- a(i) and a(i+l) cannot be aliases, nor can a(i).NEXT and
a(i).LEFT.

Access variables are only seemingly more awkward, because the

customary notation disguises their complete analogy with the case
of records and arrays. We adopt the terminology and adapt the
notation of (Luckham and Suzuki, 1979]. Suppose that type POINTER
is declared as an access type to T and that x is a variable of
type POINTER. We introduce a new entity, T*, of a new type (type
reference class), with the following meaning: T* is a
variable-lengt---array, whose allowed indices are the values of
the variables of type POINTER, and whose components are of type
T. In this new notation the object designated by x, denoted in
Ada by x.all, is instead denoted by T*(x). If all Ada variables
are rewritten in this new notation, then the definition of
aliasing used above carries through. Here is another example:

type T;

type POINTER is access T;

type T is
recor

VALUE : integer;
LEFT : POINTER;
RIGHT : POINTER;

end record;

x,y : POINTER;

In the revised notation,

- x.all becomes T*(x);
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- x.LEFT becomes T*(x).LEFT;

- x.LEFT.811 becomes T*T*x).LEFT)

- x.LLFT.RIGHT.LEFT becomes T*(T*(T*(x).LEFT).RIGHT).LEFT.

Notice that in the last example the selector sequence is not the
sequence <LEFT, RIGHT, LEFT> but a sequence of length two:
<T*(T*(x).LEFT).RIGHT, LEFT>. T* is, essentially, an array of
records, and its selectors can have length at most two -- the
first selector being an access value and the second a
field-name.

Accordingly,

- x and y are neither aliases nor potential aliases;

- x.all and y.LEFT are potential aliases, and will be aliases
whenever x = y -- for this translates to the assertion that
T*(x) and T*(y).LEFT are potential aliases and aliases when
x - Y.

- x.RIGHT and y.LEFT.al3 are potential aliases, and will be
aliases whenever y.LEFT = x -- for this translates to the
assertion that T*(x).RIGHT and T*(T*(y).LEFT) are aliased
just in case x - T*(y).LEFT.

One apparent anomaly remains: Suppose that x - y. Although

an assignment to x affects neither the value of y nor the value
of any of the subcomponents of y, an assignment to x.all alters
the object designated by y. Yet the definition above says that
x.all and y are not aliased -- T*(x) is not aliased with y. The
anomaly is psychological: we tend to give x no status of its own,
thinking of it as another name for T*(x). If we thought of an
integer variable i as another name for A(I) the same seeming
anomaly would result. What this does show is that calling
'x.sll' a component of x' can in some circumstances be
misleading -- as misleading as calling 'A(i)' a component of 'i'.

3.3.2 the no aliasing rule

Unless explicitly permitted by a procedure's annotations,
procedure calls with aliasing of types (i) - (iII), below, must
not occur. All parameters referred to in (i) - (III) are actual
parameters. All expressions involving access variables are to be
understood as written out in the notation of reference classes
given above; and, using the notation of the examples above, if
type POINTER is declared globally to a procedure body in which T*
occurs, then the logical entity T* will be a global variable of
the procedure.
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(1) aliasing between parameters to a procedure call and
variables which are global to the procedure;

(il) aliasing between in out parameters, between out
parameters, or between any ja o2ut and any out parameter;

(iii) aliasing between any in out or out parameter and
an expression which is an In parameter.

Notice that aliasing between in parameters is acceptable.
Once again we warn experts that aliasing between in and in out
parameters has been ruled out.

One can determine from the text of a procedure call whether
it potentially possesses aliasing of types (i) - (iii). There is
therefore a simple rule which is sufficient (but not necessary)
to ensure that no aliased procedure call occurs: forbid procedure
calls which potentially violate the rule. Note that doing so
rules out some calls in which no dangerous aliasing actually
occur.

The other possibility is to attempt to prove that aliased
calls do not occur -- in particular, that no potential aliasing
becomes actual. A verifier would reject any program for which
this attempt failed.

To flatly rule out potentially aliased calls is awkward but
possible, since it is always possible to "preprocess" procedure
calls in a way that guarantees that forbidden aliasing will not
occur. It would then be up to the programmer to find a
preprocessing that results in a program that has the desired
effect. For example, if a procedure Q has two out parameters,
representing conceptually distinct values, one must begin the
preprocessing of Q(x,x) by asking why Q(x,x) is supposed to
result in anything meaningful-.

The simplest kind of preprocessing is a reassignment: If
Q(x,...) is aliased or potentially aliased because of links
between the in out actual parameter x and other variables, then
one can declare a brand new variable y of the appropriate type
and replace the code "Q(x,..) by "y :- X; Q(y,...); X ..
If several variables are so treated, then, of course, the order
in which the assignments are made will matter. It is up to the
programmer to decide which of these, if any, achieves the desired
effect. One of the effects of this trick is to guarantee that
the result of the call will be equivalent to the result of a call
by copy-in/copy-out

One can sometimes guard against potentially aliased
variables' becoming actual by guarding a procedure call with a
conditional:
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if x /- y then Q(a(y),a(x))
else ... something suitable

It's up to the programmer to decide what is suitable.

Notice that guarding a call with a conditional may be
insuT Tcent if the actual parameter a(x) is potentially aliased
with a global variable (say, a(z)) of the procedure. Whether x -

z at the point of call is irrelevant. What will matter is
whether the value of x at the point of call equals the value of z
current at certain crucial moments during the execution of the
subprogram body.

3.4 subprograms

The suggested restrictions can be justified not only because
they simplify the logic of subprogram calls, but because they
make it possible for subprograms to be used as Ada intends that
they be used -- as modules one can pull off the shelf and insert
into a program without any need to know the details of their
inner workings.

3.4.1 functions

The logic of function calls is simplified if the functions
produce no visible external effect other than their output --

that is, if they have no side-effects. The
implementation-supplied functions "+" and "*" have no
side-effects, and we rely on that: not only on evaluation of
"x+y" returning a correct value, but also on that act of
evaluation's leaving unchanged the values of all the variables in

the program. (Note: A serious practical and logical problem
corresponds to the big difference between "f(x)" and "x+y" --
namely, that "f(x)" may not return a value.)

The question arises: What is a side-effect? When a function
call is made: the program counter moves, the machine's clock
ticks, storage fills up, the universe expands. Not everything in
the world remains the same. The notion of side-effect is
relative. A change is a side-effect only if there is a way in
which information about that change is in some way available to
the program and can therefore affect its execution. These
considerations justify the restrictions on functions.

Changes in the values of variables are visible effects:
Therefore, global variables may not be changed, either by
assignment by calling on subprograms which change them.
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An I/O operation, although not changing the values of any
explicit program variables, nonetheless produces a detectable
change (movement of a file pointer) -- a change detectable by the
next call to that operation.

The rule which forbids updating any (or all) -of the
components of an access variable closes a loophole: Such updates
are not, strictly speaking, updates of the variable, which
continues to have the same value and designate the same object.
This forbids the following sort of trick:

type POINTER is access T;
y : POINTER;
function F(...) ... is

x POINTER;
beitn.

X .my;
alter the object designated by x;

end F;

This, if allowed, would produce what we'd have to count as a
side-effect, since the object designated by the global variable y
would be changed. But there is no way to alter that object
except by assignments to the dereferenced versions of x or y
(including x.all) -- i.e., assignments to subcomponents of access
variables.

Notice that the "no side-effects" rule means that. the objects
designated by access parameters passed to a function will not be
changed by the call. On the other hand, objects designated by
parameters passed to a procedure, even those passed as in
parameters, may be changed by the call.

Allocators are forbidden in function bodies because (as ARM
says) an access type implicitly brings into a being a global
variable which stands for the totality of allocated objects, and
a new statement updates that variable, "incrementing" it by the
adZ-ition of another object. If x is a local variable of thq
function, then any object allocated to x is inaccessible after
any execution of a call to the function is completed.
Nonetheless, such an allocation may leave tracks behind: It may
not be cleaned up, and could lead to a STORAGE ERkOR (ARM 11.1,
paragraph 8).

Notice that merely to read a non-local variable in a function
body is to allow external influence on the behavior of that
function. Calls on run-time attributes also allow outside
influences on the behavior of functions, and in ways that can be
much harder to keep track of.
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3.4.2 procedures

We provide, below, a standard illustration of the sort of
awkwardness that arises as the result of aliased procedure calls
and note the standard remedy. The discussion of erroneous
programs in section 4 will show why the standard remedy is not
necessarily helpful in Ada. Consider:

procedure P(x: in out INTEGER;
y: in ou -INTEGER) is

begin
x :- y+l;

end P;

We would like to be able to reason about P by enunciating a

general principle like this: If x and y are passed to P then,
after the call to P, x = y+l. Unfortunately, after the call
P(a,a) -- a syntactically legitimate, but aliased, call -- it
would seem to "follow" that a - a+l.

The logical mistake is that the demonstration of the original
principle implicitly assumed that the parameters were not aliased
against one another. The standard way to correct the mistake is
to verify two separate facts about P, one under the assumption
that its actual parameters will be unaliased and another and
another under the assumption that they're aliased. The number of
cases goes up rapidly with the number of parameters and the
analysis of any one case requires that one know: (a) the method
of parameter passing; (b) the order of copy-out, should
parameters be passed out by copy.

Further discussion of aliased procedure calls is contained in
the next section (erroneous programs).

4 Erroneous Programs, Incorrect Order Dependences.
Predictable Compilers

4.1 Erroneous Programs

The term "erroneous" is defined in ARM 1.6 as follows:

The language rules specify certain rules to be
obeyed by Ada programs, although there is no
requirement on Ada compilers to provide either a
compilation-time or a run-time detection of the
violation of such rules. The errors of this category
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are indicated by the use of the word erroneous to
qualify the execution of the corresponding constructs.
The effect of erroneous execution is unpredictable.

In effect, the compiler is allowed to make certain assumptions
about the execution of the program as a basis for generating
code, doing optimizations, etc. Presumably, the more ingenious a
compiler is at exploiting the assumptions the more peculiar will
be its possible behavior if they are false.

The rules in question occur in sections 3.2.1, 5.2, 6.2,

9.11, 10.5 11.7, 13.5, 13.10.1, end 13.10.2 of ARM.

ARM 1.6 goes on to say that:

If a compiler is able to recognize at compilation

time that a construct is erroneous or contains an
incorrect order dependence, then the compiler is

allowed to generate, in place of the code otherwise
generated for the construct, code that raises the

predefined exception PROGRAMERROR. Similarly,
compilers are allowed to generate code that checks at
run time for erroneous constructs, for incorrect order
dependences, or for both. The predefine exception
PROGRAMERROR is raised if such a check fails.

ARM 3.2.1 Object Declarations

An attempt to evaluate a scalar variable which is undefined

or to apply a predefined operator to a variable that has an
undefined scalar subcomponent is erroneous.

Example(i)

x, y : integer;
x := y; -- erroneous, as execution of this statement

-- requires evaluation of y
x := 0;

A compiler could reject this program. It could generate code

that detects the erroneous step during execution and raises
program error at that point. Strictly speaking, the language
manual does not even permit the inference that if the program is
run without the raising of programerro the program will
terminate with the value of x equal to zero.

Example(ii)
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type BA is array (1..10) of Boolean;
x,y : BA
x :- y; -- erroneous?

It is not obvi1ous whether this-is erroneous or not. The question

comes down to the following: Does "evaluation of y" necessarily
imply evaluation of its components?

Example(iii)

The point of this example, taken from ARM 11.6, is that an error

can be raised between the declaration of n and its

initialization, even though no executable statement appears
between them.

declare
n : integer;

betin
n := 0;
for J in 1 .. 10 loop

n :- n + J**A(k); -- A and k are global variables
end loop;

exception
when others -> PUT(n);

end;

ARM says that an implementation may evaluate A(k) before the
assignment to n, but not before the beiin (as that would
associate an error in the evaluation of A(k) with a different
handler). If this evaluation raises an exception the handler

will attempt to PUT the value of an undefined variable.

ARM 5.2 Assianment Statement

An assignment to a variable which is a subcomponent and which
depends (as a subcomponent) on the discriminants of an
unconstrained record variable is erroneous if any of the
discriminants of that unconstrained object is changed by the
assignment. (A similar warning is issued in ARM 6.2 about

producing such an effect by means of a subprogram call. See the
discussion of 6.2, below.) The definition of "depending on a
discriminant" can be found in ARM 3.7.1. It's illustrated in the
next example.

type ANSWER(LENGTH: INTEGER: - 3) is
record

ITT STRING(l..LENGTH);
end record;

y : ANSWER; -- y is an unconstrained record variable

c : ANSWER(2) :- (OK -> "no");

3-27



Odyssey Research Associates

function f return STRING(I .. 3) is

y :- C;
return "yes";

end function f;

y.OK :W f; -- erroneous: y.OK is a subcomponent of y
-- which depends (as a subcomponent) on the
-- discriminants of the unconstrained record
-- variable y and the assignment changes the
-- discriminant of y

Here the (one and only) component OK depends on the

discriminant LENGTH. The assignment of c to y is legal and
changes the discriminant of y in the only legal way -- by a
complete assignment to all the components of y.

ARM 6.2 Formal Parameter Modes

1. ARM 6.2 (paragraphs 5 and 13) says that a procedure call
is erroneous if any of its =u parameters is not updated by the
call. And the updating must be done by updating the formal out
parameter. It does not suffice to update some alias of t-e
actual parameter. The only parameters which can be given default
values are in parameters.

2. Paragraph 10 of ARM 6.2 says:

If the actual parameter of a subprogram call is a
subcomponent that depends on discriminants of an
unconstrained record variable, then the execution of
the call is erroneous if the value of any of the
discriminants of the variable is changeable by this
execution.

This sounds like the warning of 5.2, and will also, but for a
different reason, be superfluous -- if aliasing is entirely
disallowed.

Procedure calls are allowed to have side-effects, but if x.A

is a parameter to a procedure call which affects x, that means
that the call has either called on a function that produces
side-effects or has violated the rules against aliasing.

3. Scalar and access variables must be passed by
copy-in/copy-out. The method of parameter passing for parameters
of array, record, or task type is up to the compiler (and need
not even be the same for successive calls to the same
subprogram). In neither case is the order of copy-in or copy-out
specified.
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The execution of a program is erroneous if its

effect depends on which mechanism is selected by the
implementation. (ARM 6.2)

The word "mechanism" is to be understood broadly, so as to

encompass such details as the order in which parameters are
copied in or out, etc.

ARM notes a condition sufficient to rule out such erroneous
programs -- namely, that

no actual parameter of such a type is accessible by
more than one path

-- i.e., that there is no aliasing. So, ARM disapproves aliasing
certain parameters, and we extend that, on logical grounds, to
all parameters.

Here are some examples of erroneous programs that result from

aliasing. Another example is given in the discussion of shared
variables (ARM 9.11).

Example (i)

Let the body of P be:

procedure P(xi inout INTEGER; y: inout INTEGER) is

y:- x+l;
end P;

The result of the call P(u,u), which violates the rule

against having linked in out parameters, is unpredictable: The
initial value of u (calT-it"uO) is copied into both x and y.
Executing "y:- x+1" leaves uO in x and uO+l in y. The result of
copying both x and y back into u will depend on the order in
which the copying is done.

Example (ii)

Let the body of Q be:

procedure Q(x: in out ARRAY(1..N) of boolean) is
beiin

x: - not x
"Search for an i such that x(i) - b(u). If one is found,

x: = not x; otherwise, skip."
end if;

end Q;
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The procedure call Q(b) is aliased since b(u) is a free
variable of Q and is linked to the actual parameter b. If b is
called by copy, then b is changed by the execution of the call.
If b is called by reference it's unchanged. Accordingly, the
program is erroneous.

Example (iii) Let R be like Q, but with the global parameter
made into an explicit in parameter:

procedure R(c: in boolean)
x: in out ARRAY(1..N) of boolean) is

bepin
x: - not x
"Sear-1Ffor an i such that x(i) - c. If one is found,

x: - not x; otherwise, skip."
end if;

end Q;

In the call R(b(u),b) an in paremeter is aliased against an
in out parameter. Just as in example (ii), the call is
erroneous.

ARM 9.11 Shared Variables

A shared variable is one which occurs in more than one task.
A Orogram which violates either of the following restrictions is
erroneous:

- If between two synchronization points of a task, this task
reads a shared variable whose type is a scalar or access
type, then the variable must not -be updated by any other
task at any time between these two points.

- If between two synchronization points of a task, this task
updates a shared variable whose type is a scalar or access
type, then the variable must not be either read or updated
by any other task at any time between these two points.

Synchronization is defined as follows:

- Two tasks are synchronized at the start and at the end of
their rendezvous. At the start and at the end of its
activation, a task is synchronized with the task that causes
this activation, a task that has compl~ted its execution is
synchronized with any other task.

This series of definitions is poorly worded: taken literally
they seem to imply that every point in a task is between two
synchronization points (the one at the beginning of activation
and the one at completion). What is presumably intended is to
define something like a matched pair of synchronization points
and to require exclusion during the innermost matched pair
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surrounding a read or update.

The point is as follows: During a rendezvous (for example) an

implementation may keep a local copy of a shared variable and

read and write to it rather than reading or writing the shared
variable itself.

It seems worth pointing out another, perhaps surprising, way

in which shared variables can lead to erroneous programs. The

example below is boiled down from an example in [Welsh and
Lister, 1980].

type boolean array is array(1..1) of boolean;
xoolean array :-T1 => true);

task resource is
entry request(u: in out boolean_array);

end;

task type caller;

task body resource is
beigin

loop
accept request(u: in out boolean array) go

u :- not u;.
end request;

end loo;
end resource;

task body caller is
request(x);

end caller;

callerl, caller2 : caller;

Suppose callerl and caller2 make their calls on resource at

roughly the same time, so that one -- let's say it's callerl --
gets accepted and the other is queued. The crucial point is that

the execution of an entry call is begun by "any evaluations
required for actual parameters in the same manner as for a

subprogram call" -- (ARM 9.5) -- and only after that is the call

suspended to await a corresponding accept. Suppose that the

parameters are passed by copy-in/copy-out, Then the value which
caller2 is waiting to pass to resource is the value (true) and

the fact that the value of x will have been changed before
caller2's call is accepted is irrelevant. When tasks callerl and

caller2 terminate the value of x will be (false). If the

parameters are passed by reference, then caller2 passes to
resource the address of x, and when caller2's call is accepted
that address contains the value (false). Accordingly the value of
x will be (true) when the caling tasks terminate. This
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dependence on the parameter passing mechanism means that the
program is erroneous.

ARM 11.7 Suppressing Checks

If checks on constraints, overflows, etc., are suppressed and
the constraints, etc., violated by an execution of the program,
then that execution is erroneous. As indicated in the discussion
of exceptions, a verification is likely to accumulate in passing
enough information to show that constraint checks and checks for
program errors can be safely suppressed.

ARM 13.5 Address Clauses

An address clause resulting in overlaying an object or
program unit, or linking an interrupt to more than one entry is
erroneous. Whether an address clause results in overlaying an
object is entirely implementation dependent. Verifications of
programs with address clauses are non-portable. One might verify
such programs under the assumption that this error did not
occur.

ARM 13.10.1 Unchecked Programming

Use of unchecked deallocation can lead to dangling pointers.
An attempt to access the objects which such pointers designate is
erroneous. It is easy to show that there is no algorithm for
deciding whether a program is free of dangling pointers.

4.2 Incorrect Order Dependences

ARM says of certain steps in execution (or elaboration, or
evaluation) that they occur "in some order that is not defined by
the language" and that constructs which depend on the order in
which those steps are executed are incorrect. This is
principally an instruction to the writers of compilers, but the
programmer can, with no outside help, produce incorrect order
dependences, by producing side-effects, either in functions or in
the bodies of packages. This is therefore another reason to
restrict constructs which cause side-effects.

[The sections of ARM that discuss and define the incorrect
order dependences: 1.6, 3.2.1, 3.5, 3.6, 4.1.2, 4.3.1, 4.3.2,
4.5, 5.2, 6.4, 10.5.]

Consider the following sequence of declarations:

packafe A is
I: integer :- 1;

end A;
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package body A is
I :- 0;

end A;

with A;
package B is

J: integer := A.I;
end B;

The rules for elabo.ration require that the specification of A
be elaborated before either the body of A or the specification of
B -- but require nothing further of the order of elaboration.
Should the specification of B be elaborated before the body of A
the value of B.J will be 1, and otherwise it will be 0.

All further points about incorrect order dependences can be
made fully by looking at one further example, (ARM 3.5): When
elaborating a range constraint the simple expressions specifying
the bounds are evaluated "in some order not specified by the
language." Let the range in question be f(m)..g(n). Here are
two cases in which it will matter whether f(m) is evaiuated first
or second:

(a) if a call to the function g alters the value of m;

(b) if the result of a call to f can be affected by the fact
of a previous call on g.

In each case the call on g has a side-effect. The kind of
side effect seen in example (a) has already been ruled out by the
restrictions placed on the definitions of functions. The example
in (b) is probably ruled out in the same way -- that is, it's
ruled out.i one fleshes (b) out to an actual example in the
obvious way: Let the value returned by f depend on some global
variable i and let each call of g increment i by 1. But it's
possible to record the fact that g has been called without
storing anything in a variable. Here is an example:

Let T be a task with the single entry ENTER, whose sole
action consists of the following: Accept ENTER and then
terminate. Let F and G be functions with the same body:

x: INTEGER
beuin

if T'TERMINATED then x :- I
eTse ENTER;

x := 2;
end if;
return x;

end;
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The value of F(1) - G(1) will be +1 or -1 according to

whether F(1) or G(l) is evalluated first.

4.3 "Predictable" compilers

Here are some preliminary suggestions for pragmas that would

a compiler keep company with a verifier. They are mainly

gathered together from the preceding sections.

1. Pragmas that will identify a compilation unit as one that
has been verified, allowing the compiler to suppress certain
checks; and pragmas that will warn of occurrences of "dangerous"
constructs which have not been certified as verified.

2. A pragma alias check that would generate code, where

appropriate, that would check at run-time for improperly aliased

procedure calls and raise alias-error if such a call occurred.

3. Pragmas that would restrict the compiler's ability to

raise program-error clairvoyantly. Consider the following
example:

procedure P is
El, E2: execption;
x:INTEGER

function F(u:INTEGER) return INTEGER is
begin

raise' El;
end F;

function G(u:INTEGER) return INTEGER is

raise E2;
end G;

begin
x :- F(2) + G(2);

exceDtion
when El > x :- 0;
when E2 -> x :- 1;

end=-

This program terminates with the value of x equal either to 0

or to 1, depending on the order of evaluation of the terms in the
expression F(2) + G(2). Since the language definition does not

specify the order of evaluation (ARM 4.5, paragraph 5) "the
construct is incorrect" (ARM 1.9, paragraph 9). It's not clear
whether the fact that different errors can be raised is already
erroneous, or whether the program is erroneousness only because
the errors are handled differently. Furthermore, should the
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compiler detect this fact, it may generate code which does

nothing but raise the predefined exception PROGRAMERROR. Notice

that this kind of incorrect construct is possible whenever

different errors can be raiseraised by different terms occurring
in the same expression. It seems likely that one still might get

intelligible predictions from the verifier about program
behavior, in which case we would like to forbid the compiler
from, in effect, rejecting the program.
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it should first read [Gries and Levin, 1980]

Cohen, N., "Axiomatic semantics for Ada", talk given at the Ada
verfication workshop, March 18-20, 1985, at IDA

Cook, S.A. "Soundness and completeness of an axiom system for
program verification", SIAM J. Computing vol. 7, no. 1,
1978, 70-90

This paper sets out the now-standard theoretical definition
of the meaning of "completeness" for Hoare-like axiom systems
-- namely, that a system is complete if it is complete
relative to the complete theory of the underlying domain of
data types (and assuming also that the language of the
underlying domain meets a certain technical condition called
"suffficient expressiveness").

deBakker, J.W., Mathematical Theory of Program Correctness,
Prentice-Hall, 1980

A microscopic account, all details provided, of the
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terminated task is now treated, as in Ada, as an error. The
authors observe that they can trivially extend their system
to incorporate delays, conditional and timed entries, and
conditional and timed accevts for the trivial reason that the
effects of such calls aren t expressible in the assertion
language. The authors remark that their approach depends
essentially on the assumption of a fixed number of tasks,
activated simultaneously, and on forbidding queue attributes
and access variables to task types.

Good, D.I. and Young, W.D., "Generics and verification in Ada",
Proceedings of the ACH Sigplan Symposium on the Ada
Programming Language, 1980, 123-127
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variables are allowed in procedure bodies. Aliasing is n6t
allowed, but specific instances of aliased calls can be

accomodated by rewriting the given aliased call as an
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This paper extends [Hoare, 1969] by adding a rule for

procedure calls (including recursion). The problems with
aliasing are illustrated and it is observed that if the proof
rule is taken as the definition of the semantics of procedure
calls, then programs using only unaliased calls can be
correctly implemented by any of the standard mechanisms for
parameter passing. No formal semantics is provided. !

Hoare, C.A.R., "Communicating sequential processes", ACMCommunications, vol. 21, no. 8, 1978, 666-677

This paper proposes a construct which is the ancestor of the
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Ada rendezvous. CSP is a toy language having as sequential
constructs assignment, iteration, guarded alternatives. A
*cobegin statement may activate a fixed set of (non-nested)
arallel processes simultaneously, and control may not pass
eyond the cobegin until all processes have terminated. The
processes may communicate only through paired input-output
statements that have the effect of an Ada rendezvous in which
parameters are passed but the accept body is empty.

Ichblah, J. et al, "Rationale for the design of the Ada
programmin lan;guage", Sigplan Notices, vol. 14, no. 6.
June 1979, part A

Note that many of the features of Ada discussed in this
report have since been changed.

Knuth, D.E., "Structured programming with goto statements", in
Current Trends in Pr ming Methodology, vol. 1, R. T.
Yeh, ed., Prentice-Hall, I/977,14- -

From the paper's introduction: "This study-focuses largely on
two issues: (a) improved syntax for iterations and error
exits, making it possible to write a larger class of programs
efficiently without go to statements; and (b) a methodology
of program design, beginning with readable and correct, but
possibly inefficient, programs that are systematically
transferred if necessary into efficient and correct but
possibly less readable code."

Ledgard, H.F. and Singer, A., "Scaling down Ada", Communications
of the ACM, vol. 25, no. 2, Feb. 1982, 121-125

Luckham, D.C. and Polak, W., "Ada exception handling: an
axiomatic approach", ACM TOPLAS, vol. 2, no.2, April 1980,
225-233

Proof rules are presented for Ada exception-handling which
are adaptations of the standard rules for gto to. The authors
note that applying their method to the predefined exceptions
requires in effect the insertion of several implicit go .o's
after every program step -- one for each exception which
could be raised by its execution -- and that this may wellin.crease the computational costs to impractical heights. tTo
deal with exceptions raised during the execution of
procedures it is in general necessary to know the methods
used for parameter passing. Tasking exceptions are not
covered.

Luckham, D.C. and Suzuki, N., "Verification of array, record, and
pointer operations in Pascal, ACM TOPLAS, vol.1 no. 2,
ctober 1979, 226-244
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Proof rules are provided for the operations of assignment,
selection, dereferencing, and allocation. Extensions are
proposed to the standard rules for a fragment of Pascal which
would incorporate procedure calls with pointer variables as
actual parameters, etc. Pointer operations are modelled on
arrays, which are already well-understood. Pointer variables
are though of as indices to an "array" and dereferenced
pointers as the components of the "array." Allocation adds to
the range of the "array"'. allowed indices. The authors
refer to, but do not provide, proofs of the soundness and
completeness of their rules, but it is not made clear with
respect to what assertion languages. A correction to their
allocation rule is noted in [Gries and Levin, 1980]. The
authors note that reasoning about complex (especially:
recursive) data structures requires additional notions, such
as "reachability." A list of 20 axioms is provided for the
notions of "reachability" and "betweenness." Sample proofs --
both proofs by hand and automated proofes -- are provided.

Luckham, D.C., von Henke, F.W., Kireg-Bruecken, B., and Owe, 0.,
"Anna, a language for annotating Ada programs, preliminary
reference manual" Stanford Computer Systems Lab technical
report 84-261

A report on the most substantial effort known to us for
producing a specification and verification system for Ads.
Annotations are by and large generalizations of the Ada
notion of "constrbant." An annotation may, for example,
constrain all variables of some integer type to have even
values (a constraint which can't be made in Ada). The
annotator can control the scopes in which annotations are to
hold -- and, in particular, what is usually called an
"embedded assertion" is an annotation whose scope is a single
point in the text. An-annotated program (possibly containing
specially marked off auxiliary code, called "virtual text")
is to be translated into an "Anne kernel," a new Ada program
In which, for the most part, the annotations have been
rewritten as embedded assertions. If, for example, an
integer type is annotated as having only even values, every
place in the program at which a variable of the given numeric
type could be altered would be followed by an embedded
assertion saying "the value of the variable is even." Such a
kernel could be executed -- with the truth of the embedded
assertions being tested wherever they arose -- or run through
a verifier which would generate verification conditions,
etc. There is no formal semantics for Anna. Instead, its
semantics is defined by the reduction of Anna programs to the
Anna kernel -- in effect, to Ada semantics.

Manna, Z. and Pneuli, A., "Temporal verification of concurrent
programs: the temporal framework for concurrent programs", in

The Correctness Problem In Computer Science, ed. R.S. Boyer
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and J.S. Moore, Academic Press, 1981

This paper sets out a system of temporal logic, a modal logic
suitable for expressing and reasoning about certain
properties of ordinal (non-quantitative) discrete time. A
formal semantics for temporal logic is provided and a variety
of assertions are shown to be semantically valid. Execution
of concurrent sequential processes- is modelled by
interleaving the steps in their execution, and it is then
shown that many interesting properties of concurrent
computations are expressible in the notation of temporal
logic: invariance properties (stating that some condition
always holds true), eventuality properties (stating that if
condition A occurs then condition B must eventually become
true), and precedence properties (stating that one event must
precede another.

O'Donnell, M.J. "A critique of the foundations of Hoare-style
programming logic", Communications of the ACM, Dec. 1982,
vol. 25, no. 12,. 927-935

This paper shows that the failure to demand a correct
definition of "correctness" has filled the literature with
"proof systems" which are inconsistent outright, or are
unsound in the sense that the addition of true axioms can
make them inconsistent. On the way to true conclusions these

systems in effect indulge in a kind of trick -- intermediate
inferences which are illegitimate, and lead to trouble as

soon as there are enough truths available in the system to
exploit their weaknesses. The correct definition of
"correctness" is that every inference (and not merely every
theorem) lead from truths to truths.

Olderog, E.R., "Sound and complete Hoare-like calculi based on
copy rules", Acta Informatica 16 (1981), 161-197

A systematic treatment of procedure calls is given for a
variety of Algol-like languages, with various scope rules,
which allow procedures as parameters. The author is
primarily interested in characterizing the languages for
which his calculi will be complete. Although this is in some
sense the fullest treatment of procedure calls it does not
help solve the problems encountered in treating procedure
calls in Ada.

Olderog, E.R., "Hoare's logic for programs with procedures --
what has been achieved?", in Logics of Programs, 983,
Lecture Notes in Computer Science no. 164, ed. E. Clarke
and D. Kozen, Springer-Verlag, 1984

A survey which is emphatically not an introduction.
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Pneuli, A. and deRoever, W.P., "Rendeavous with Ada -- a proof
theoretical view", Proc. AdaTEC Conference on Ada, Arlington,
Va., October 1982, 129-137

An operational semantics is defined for an informally
described fragment of Ada, using Interleaved execution to
model concurrent execution. It is then shown that for any
program written in this fragment and not using the queue
attribute COUNT partial correctness semantics cannot
distinguish between: (a) putting entry calls into a fifo
queue, and (b) always selecting non-deterministically but
"fairly" from the waiting calls. A system of temporal logic
is defined for making assertions about programs over this
semantics and various proof rules are shown sound. A program
in the fragment is a block containing a fixed number of
tasks. Within tasks: there may occur no subprograms or
nexted blocks; there may be no delay statements;
selective-wait alternatives may only be accept-alternatives
or terminate.

Stanford Verification Group, "Stanford Pascal verifier user
manual", STAN-CS-79-731, March, 1979

This report describes the use of the PASCAL verifier.
Practically all of PASCAL is handled. "Only some of the
theory [of data structures] is implemented by the simplifier
and it is up to the user to include in his rulefile rules ...
to express any required data structure axioms."

Sutherland, D., "Formal verification of mathematical software,"
NASA contract report 172407, Odyssey Research Associates,
1984

This paper presents a definition of logical correctness for
floating point computation -- the "asymptotic paradigm." It
says, intuitively, that a logically correct program (which
computes a mathematical function) is one whose outputs
converge more and more closely to the mathematically correct
value if it is run on more and more accurate machines. This
is formalized using non-standard models of the real line.

Wegner, P. and Smolka, S.A., "Processes, tasks, and monitors: a
comparitive study of concurrent programming primitives", IEEE
Transa-ctions on Software Engineering, vol. SE-9, no. 4,
July 1983, 446-462

As the title indicates, CSP, Ada, and monitors are compared
at work on several standard concurrent applications.

Welsh, J. and Lister, A., "A comparative study of task
communication in Ada," Software Practice and Experience,
vol. 11, 1980, 257-290

Ada is compared to CSP and Distributed Processes.
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Richard Platek: Formal Specification

As an introduction to the first of three talks on ANNA,
the creation of David Luckham and his collaborators and to date
the only specification language for ADA, let me say a few words
on formal specification.

Aside from informal comments ADA provides no way to
specify a program unit's functionality. There is obviously a
need to develop an ADA specification language so that one can
actually say what that program unit means, so it could be used by
other units. For example, a package may have two procedures and
a named exception in the visible portion and there is no way of
telling which of the two procedures might raise that exception.
A formal specification language would be used to present the
semantic interfaces between ADA program units. The interface
would communicate to users the total effects of calling such
units. Such effects would include the results of normal
execution, the conditions on which named exceptions are
propagated out of the unit, the conditions ender which predefined
ADA exceptions are handled within the unit and the effects of
such handling, the specification of a unit's concurrency features
(for example, the conditions under which rendezvous occur and
what the effects are), and the effects of elaboration of package
initialisation.

Another use of specification is to encourage the use of
generics by providing a way of semantically restricting generic
parameters. For example, the generic parameters to a generic
sort package might include a user-suppled type and user-supplied
linear order over that type. At present only the type-signature
of the latter function can be specified. One would like to add
to this a semantic specification which states that a linear order
is needed. This is necessary for generic, re-usable proofs.
This would communicate that the specified effects of -he
package's subprograms can only be expected if the user-supplied
function is indeed a linear order.

Another use of a good specification language is to
encourage the use of ADA as a program development language.
Formal specification would play the role of informal pseudocode.

A formal specification language should support formal
design verification, that is, proofs that a design entails
certain system properties, and should support program
verification.
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There are other uses of a good specification language,
e.g. for the generation of runtime monitors in the absence of
formal verification, and, if essentially executable, for rapid
prototyping of a system before it is actually fully encoded.

There is no way to build a library of packages without a
formal specification language, because you have no way of knowing
what packages mean. My vision is of a large library of formally
specified and verified programs and means to retrieve what is
needed from that library using the formal specification of the
packages. Such a library retrieval system must have a great deal
of knowledge built into it. If I am looking for a package which
has property A and some package which has been proved correct has
property B, the retrieval mechanism should allow me to prove that
B implies A, so that I can get the verified package out to be
able to use it.

Obviously such a language should be fully compatible with
ADA, it should use the ADA type philosophy, and ADA structuring.
It is my belief that taking existing specification languages like
INA JO or revised SPECIAL or anything like them and trying to
retrofit them to ADA is not the way to go. One should actually
develop a formal specification language that has the ADA
philosophy embedded in it.

I feel a standard should be chosen. Just as a standard
was chosen for an ADA programming language, a standard should be
chosen for an ADA specification language; and I would personally
recommend going through a cycle just like the choice of the
programming language.

I view ANNA as a very good first beginning in that
direction. I don't think it goes far enough. It has certain
restrictions to a low level that I think a specification language
should not have.

Perhaps I should introduce rather than undermine the next
speaker. I think we all owe David Luckham a great deal for
beginning this work and giving us something to chew on.
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David Luckham: ANNA, a Specification Language for ADA

ANNA is a proposal for a specification language, or

rather a language in which one might experiment with

specification languages. The work was begun by Bernd

Krieg-Brueckner and myself, and subsequent collaborators have
been 0. Owe from Oslo, who worked on the axiomatic semantics, and
Friedrich von Henke who worked on the language reference manual

and redesigned some of the finer points of the language. S.

Sankar, D. Rosenblum, R. Neff, and D. Bryan are currently

implementing various prototype tools for experimentation.

ANNA is an syntactic extension of ADA: it takes a subset

of ADA productions and adds more. The ANNA specifications appear

as formal ADA comments. This means ANNA comments can be
processed by a standard ADA tool, which will simply ignore them,
and also by special ANNA tools.

All proposed ANNA tools use an extension of DIANA, and

therefore can be interfaced easily with other tools in an ADA
environment.

ANNA can be used for comparative testing. Comparative

testing means comparing the ADA code against its formal
specifications for consistency. Self-checking programs are ones

which leave the runtime checks compiled from the formal

specifications in the program permanently.

If you are going to design a specification language,
there are at least two approaches. One is the fresh start; the

other is the evolutionary approach. The fresh start has the
advantage that you do not have to put up with the quirks of the

rogramming language such as those discussed in D. Guaspari's
ecture. The evolutionary approach is to start with an existing

high level programming language and to extend it gradually to

allow the program to supply information that cannot be expresssed
in the programming language itself. The general philosophy has
been one of cautious extension which is why critics will say that
it does not go far enough.

There are two kinds of formal comments: virtual text and

annotations. Webster's Dictionary defines the word "virtual" as

"possessinj all of the properties but not accepted or
recognsed.

The scoping rules of ADA are applied to formal comments

so that the formal comments apply over regions of text; they are
not just assertions which apply at a point.
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There are different kinds of annotations for the
different kinds of ADA constructs. Here is a reasonably complete
list:

- objects,

- types and subtypes,

- statements,

- subprograms,

- packages,

- exceptions,

- context clauses, and

- geuerics.

I am going to concentrate on packages today. I'm going
to tell you just enough about the others so that you can look at
some package specifications.

Let us start very briefly with virtual text. Consider
tke time-honoured example, the standard stack package with two
procedures PUSH and POP. For some reason the ADA implementers did
not want to provide a function LENGTH, but it turns out to be a
very natural concept to use in talking about the stack, so we
introduce it as a virtual function declaration. This virtual
function is visible in the normal ADA scope of visibility, but
only in annotations.

Now the expressions in ANNA are somewhat richer than they
are in ADA in that you have quantifiers, conditional expressions,
a few new operators and a few new attributes. Each of the
annotations is constructed from ANNA boolean expressions and some
extra reserved words.

Here is an example of an object annotation:

m, n : INTEGER; --I n <- f(m)

What it means is that in every observable state duringa
computation in this scope n must be less than or equal to f
The function f is some previously defined virtual function. Now
you need to be precise about what you me.an by an observable
state. During a simple statement a constraint does not have to
hold. After a simple statement completes there is an observable
state in which that constraint must then hold. Let me emphasize
that this is not an assertion but an object constraint; it holds
over the whole scope; every time m and n are updated the
constraint must be checked.
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There are two parallel definitions of formal semantics:
one is checking semantics, which tells you what you have to do to
check each of these annotations; and the other is axiomatic
semantics, which tells you what the correct rules of proof are,
to prove consistency between the text and the annotations.

Exception annotations are useful for describing the state
of affairs after an execption has been raised. Consider using a
table managing package which may raise the error TABLEFULL. What
has happened to the items that have been inserted previously?
Can the package be used further? Other exceptions might be
raised which reveal the implementation.

When you look at the structure of a package you can put
annotations at various places in it. The annotations in the
visible part are visible annotations and the ones in private or
body parts are hidden. It turns out that a lot of packages can
be specified using the previous kinds of annotations, e.g. type,
subprogram, exceptions, and procedures.

Consider a string conversion package. (See slides
17-20.] The main problem is that SHORT INTEGER is
implementation-dependent so you do not know how many characters
can be stuffed into a short integer. You might like to know what
PACK and UNPACK actually did, because if you call .them with
parameters that have the wrong lengths what is going to happen?
Will an exception be raised, will the packed string be truncated,
will some of the characters be lost? How can we annotate this
behaviour?

Probably .the first thing is to write some comments in
English. What do you do next? You might still be inept at
writing a general specification, so you might just try writing a
few test cases; you can express these cases on some inputs and
output in ANNA. I claim that by the time you have the test cases
formalised you are in a position to write the fully formal
specification.

The fully formal specification says everything you need
to know. You can check the implementation against the
specification.

There are two other concepts that seem to be required in
one form or another to specify all kinds of packages. The first
is ate Packages can have a memory or value and their behaviour
depends on that memory or value which we call state.

States conceptually are a new kind of value associated
with the package, and you cannot see any of their structure from
the outside. They behave just like a limited private type
exported by the package itself.
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There is a state type, a type of the states of the
package, and that is an attribute of the package in ANNA. Then
there are some important states, the initial state and the
current state, and these are attributes of the package, since the
current state is used so often we allow you to contract notation
and just use the package name.

The other thing that you can do is declare the package
axioms in the visible part of a package. [See slide 24.] Their
semantics is a little different. The normal statement (without
"axiom" there) is just a constraint that would have to be true at
that position. If you add "axiom" this becomes a promise to the
outside user that this is true when you use the package and it is
a constraint on the implementation in the body. Some properties
are more easily expressed in axioms and some in subprogram
annotations.

I am going to end this talk today by showing you
something that could be taken as a package specification in a
reasonable state for negotiation, the DIRECT 10 package from
Chapter 14 of the ADA Reference Manual.

Chapter 14 is an attempt to specify a standard I/O
environment for ADA. It begins with a preamble to define what a
direct access file is: really a linear sequence of elements, it
is set-theoretical and has an index. External files are machine
dependent things.

The English explanation of the DIRECT 10 facilities talks
about the concept of a new file and hopes that you understand
what a new file is. It talks about creating, severing and
deleting files, and it assumes you know what that means.

Following this English explanation, there then come
several paragraphs for each subprogram saying what sorts of
exceptions it propagates under what kinds of conditions, all in
English. At the end we get the ADA package specifications. So
this is a tacit admission that ADA by itself does not specify a
package for you but you have got to explain it in formal English
somehow first.

I have gone from that formal English to a formal ANNA
specification. [See slides 28-32.] We can negotiate about its
correctness, and such negotiations are still going on in Language
Standard committees.

One of the things I can do in using this as a medium of
negotiation is to automate the drawing of consequences or
conclusions. It is not hard, a PROLOG program can be written to
do it. I claim that not only can we write the specifications in
ANNA but we can automate the negotiation process of asking
questions about the consequences of the specifications.

D-4



The notation of ANNA needs improvement, but the major
omission in ANNA is tasking. It is just not practical to go into
full temporal logic: what ideas we have are not mature enough to
be presented.
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ANNA is an extension of Ada

** Machine processable specifications together with
underlying Ada text form an Anna program.

** Anna specifications appear as (formal) Ada
comments.

Anna programs can be processed by standard Ada
tools.

Can also be processed by special Anna tools.

All proposed Anna tools use an extension of DIANA and
can be interfaced easily with other tools in an Ada
environment.

MOTIVATION for ANNA:

** To permit precise machine-processable
specifications and documentation to be supplied
with an Ada program.

** To investigate the possible applications of formal

specifications.

Specification prior to full implementation:

Checking of Designs
Rapid Prototyping

Annotation of complete Ada programs

Comparative testing (debug)
Self-Checking programs
Instrumentation (e.g. Simulations)
Formal Verification
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DESIGN APPROACHES FOR SPECIFICATION LANGUAGES:

(1) The fresh start e.g., PROLOG.

(2) Evolutionary An existing high level
programming language is
extended.

ANNA design can be applied to other Languages:

MODULA-2
VHDL (VHSIC Hardware Design Language)

Design Philosophy: Cautious extension of Ada

* Two kinds of formal comments in Anna:

Virtual text -

Annotations

* Formal comments apply over regions of the program

They obey the standard Ada scope and visibility
rules.

* Different kinds of annotations apply to the different
kinds of Ada constructs:

Object annotations
Type or Subtype
Statement
Subprogram
Package
Except ion
Context
Generic Units

* There is no assumption that Anna specifications are
. omaplete" - the programmer can specify what he wants
to.
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EXAMPLE OF VIRTUAL TEXT

package STACK is

function LENGTH return NATURAL;

procedure PUSH (X : in ITEM);
-- I where in STACK.LENGTH < MAX,
--I out (STACK.LENGTH = in STACK.LENGTH + 1);

procedure POP (X : out ITEM);

end STACK;

LENGTH is used to specify PUSH. It is not an actual
operation of STACK. It is a specification concept. LENGTH
can be given a virtual body, and used to check the
correctness of PUSH at runtime.

RESTRICTION: * VIRTUAL TEXT must not change the values of
actual objects -- read only.

* VIRTUAL TEXT must not hide actual entities.

Anna Boolean expressions are a small extension of the
Ada Boolean expressions.

Quantifiers
Conditional expressions
A few new operators, relations, and tests
A few new attributes

Annotations are constructed from

" Anna Boolean expressions

" Reserved Words
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EXAMPLES OF ANNOTATIONS

* Object annotation

M, N : INTEGER; --I N < FCm);

The VALUE of M and N must satisfy the annotation in
every observable computation state in the scope of the
declaration.

Type annotation

type INTERVAL is
record

LEFTEND, RIGHTEND : REAL;
end record;

-- I where I:INTERVAL -,
--I I.LEFTEND <- I.RIGHTEND;

All INTERVALs must satisfy the annotation.
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* Statement annotation

if A(X) > A(X+I) then
Y :A(X);

A(X) :- A(X+1);
A(X+1) :-Y;

end if;
--I A() < A (X+1);

Simple assertion. Statement annotations may also be
given for invariants over compound statements.

* Subprogram annotation

procedure BINARYSEARCH (A : in ARRAYOFINTEGER;
KEY : in INTEGER;
POSITION : out INTEGER);

--i where ORDERED (A),
out ( A(POSITION) - KEY),

--I raise NOTFOUND ->
-- I for all I in A'range -> KEY - A(I);

includes: an in-annotation on A,
an out-annotation on POSITION
a propagation annotation for exception
NOT-FOUND.
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Propagation Annotations Two kinds: Strong
Weak

package TABLEMANAGER is

r type ITEM is ...

procedure INSERT (NEW-ITEM : in ITEM);

procedure RETRIEVE (FIRSTITEM : out ITEM);

TABLEFULL : exception;
-- raised by INSERT when table full (s)

end;

(*) could have said "when FREELISTEMPTY"

package TABLEMANAGER is

type ITEM is ...

function FULL return BOOLEAN;

TABLEFULL : exception;

procedure INSERT (NEW-ITEM : in ITEM);
--I where
--I in TABLEMANAGER.FULL -o raise TABLE-FULL, (1)
-- I raise TABLEFULL -)
-- ITABLE_MANAGER - in TABLE-MANAGER; (2)

procedure RETRIEVE (FIRSTITEM : out ITEM);

end;

(1) is a strong annotation, (2) is a weak annotation.
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• Context Annotations

• * Apply to program units (not Just library units)

• * Used to declare dependency on global variables:

A, B, C : T;

-- I limited to A;
package P is

-- A may occur here.
end P;

D * T;

package body D is
-- A and D may occur here.

end P;

• Used to restrict context:

with U, V, W;
--I limited to U.A, V;

Package P is
-- any visible variable of V,

..*. -- but only A from U, and
-- no variables of W.

end P;
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* Package Annotations

** Placed in the Package:

package P is
-- VISIBLE annotations

private
... at-- HIDDEN annotations

end P;

package body P is
-- HIDDEN annotations

end P;

** The private part and body together are the HIDDEN
implementation.

** VISIBLE annotations specify the semantics of
visible types and subprograms INDEPENDENTLY of (and
prior to) any body.

** HIDDEN annotations specify the (implementation in
the) body.

Previous kinds of annotations (types, subprograms,
exceptions) are sufficient for specifying many packages.
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I

NeN oonoepts are required for speoifying (the visible

parts of) paokages:

* * paokage has a memory (STATE) QUEUES, STACKS,
SYMBOL TABLES.

pao kage and private type define a data structure
and operations on the data (algebraic
speoifioations) - COMPLEX NUMBERS, LIST PROCESSING.



Package states

From the outside, a package is viewed as an object of
some new Anna type having a state (or value).

** Anna attributes of a package:

* STATE TYPE P'TYPE
* INITIAL STATE P'INITIAL
" CURRENT STATE P'STATE, P

** Successor states

New states of a package result from sequences of
package operations.

Terms in Anna written as sequences

STACK [ PUSH (A); POP (Y) ] - STACK

* Package axioms

** Visible annotations,

axiom A;

** promises to the package user

constraints on the package body



Example ofa Symbol Table Package

type TOKEN is pdi-te;
N : INTEGER;

package SYNTAB 1S

OVERFLOW. UNDEFINED :XCeP1W

function SIZE return INTEGER range 0 N:
function "-" (SS. TT : SYNTAB@TYPE) return BOOLEAN;

function DEFINED (S STRING) return BOOLEAN;

procedure INSERT (S STRING: I : TOKEN);
-- I raise OVERFLOW -) in SYNTAB.SIZE - N:

function LOOKUP (S : STRING) return TOKEN:
-- I raise UNDEFINED

procedure ENTERBLOCK:

procedure LEAVEBLOCK:

-- axiom
-- forall SS : SYNTAB*TYPE: S. T : STRING; I : TOKEN )
-° SYMTAB'INITIAL [LEAVEBLOCK] a SYNTAB'INITIAL.
-- SYMTAB'INITIAL.DEFINED (S) a FALSE.
--I SS ENTERBLOCK; LEAVEBLOCK] a SS.
--I SS [ENTERBLOCK].DEFINEO (S) w FALSE.
--I SS [ENTERBLOCK].LOOKUP (S) a SS.LOOKUP(S).
-- SS [INSERT (S. 1): LEAVEBLOCK] a SS(LEAVEBLOCK].
-- SS [INSERT (S. 1)J.DEFINED (T)

il s T then TRUE
else SS.DEFINED (T) end if;

-- SS [INSERT (S. I)].LOOKUP (T) a
if S T then I else SS.LOOKUP (T) end if;

end SYMTAS;
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Ezample: Ada specification of a string conversion package.

package STRING-CONVERSION Is

type PACKED-STRING Is array (INTEGER range <>) of SHORT-INTEGER;

procedure PACK STRING(S : STRING; BUFFER :out PACKED-STRING);
procedure UNPACK-STRING(BUFFER PACKED-STRING; S out STRING);

end STRING CONVERSION;
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Example: Ada specification of a string conversion package with comment.

package STRING CONVERSIOW Is

type PACKED-STRING is array (INTEGER range <>) of SHORT-INTEGER;

-- a short integer is represented as two bytes

procedure PACX STRING(S :TRING; BUFFER :out PACIEDSTRING);
-- packs two consecutive characters of S in each short integer of BUFFER

procedure UNPACK-STRING (BUFFER :PACKED-STRING; S :out STRING);
-- expands each short integer in BUFFER into two characters and puts them

-in S PARA METER LENGTH ERROR exception is propagated if
-- parameter lengths dion't match.

end STRING-CONVERSION;
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Example: String conversion package declaration with formal test cases.

package STRING-CONVERSION is

-- A short integer is represented as two bytes.

type PACKED STRING in array (INTEGER range <>) or SHORT-INTEGER;

procedure PACK STRING(S : STRING; BUFFER :out PACKED STRING);
-- Assume S'FIRST = I and BUFFER'FIRST = I to simplify equations.
-- Then the following are intended test cases:

-- I where out (if S = "01230 then
-- BUFFER) : CHARACTERPOS(10) * 2568

+ CHAACTER POS('1') and
-- IBUFFER(2) = CRARACTERPOS(82') * 268

CHARACTER'POS(03')

-- I BUFFEARLENGTH =
-- I out (if s = abcde" then

IDUFFER(1) = CARACTERPOS( a) • 256
-- I + CHARACTER'POS('b') and
-- I BUFFER(2) = CRARACTER'POS('€) • 268
-- I * CHARACTER'POS('d') and
-- I ... BUFFER(3) = CHARACTE'POS('e') • 258

-- BUFFER LENGT 3;
A

procedure UNPACK STRING (BUFFER PACKED STRING; S : out STRING);
Similar annotations of test cases.

-- PARAMETERLENGTH-ERROR exception is propagated if parameter
-- lengths don't match.

end STRING-CONVERSION;
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Ezample: Anna specification of a string conversion package.

package STRING-COIIVESION Is

-- I for all X : SHORT INTEGER => X'SIZE = 16;

type PACKED-STRING is array (INTEGER range <>) of SHORT-INTEGER;

PARAETER LENGTH ERROR exception;

procedure PACK STRING(S STRING; BUFFER :out PACKED-STRING);
-- I where
-- Iin BUFFER'LENGTH = (SILENGTH / 2) * (S'LENGTH mod 2).
-- I in S'FIRST z I and in BUFFERFIRST =1.
-- I out (if S'LENGTH mod 2 a 0 then
-- I for all N : BUFFIVFIRST .. BUFFER'LAST =>
-- I BUFFERN) CHARACTERMPOS(S(N * 2 - 1)) * 256
--I + CHARACTERPOS(S(N * 2))
- - else
-- I for all N BUFFER'FIRST .. BUFFERLAST - =>
-- I BUFFER(N) = CHARACERIPOS(S(N * 2 - )) * 256
-- I * CHARACTER 9POS (SN • 2))
-- I and
-- BUFFER (BUFFER'LAST) CHARACTER'POS(S(S'LAST))2568
-- I end if).
-- I raise PARAMETER LENGTH ERROR;

procedure UNPACKSTRING(BUFFER : PACKED-STRING; S : out STRING);
-- I where
-- I SLENGTH = BUFFER'LENGTH * 2.
-- I In S'FIRST = I and in BUFFER'FIRST a 1.
-- out (for all N : SANGE =>
-- ifNmod2- 1 then
-- I CHARACTER'POS(S(N) = (BUFFER(N/2 + N mod 2) -

-- I BUFFER(N/2 + N mod 2) rem 258) / 258
-- I else
-- I CHARACTER'POS(S(N)) = BUFFER(N/2+N mod 2) rem 256
-- I end If).
-- I raise PARAMIU..LENGTHERROR;

end STRING CONVERSIO1;

")-21



Ezample: TABLE MANAGER package from the Ada Rationale

package TALE MANAGM is

type ITEM Is ...
procedure CNSEiT(NEg TI in frO ;
procedure REThtIEVEKCFtrSTTEM out ITMO;
TABLE-FULL : exception; -- Raised by INSERT when table is full.

end TABLE MANAGER;
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Example. Specification of the ezceplion propagation in the TABLE MANAGER
package.

package TABLE MANAGER is

type ITEM is ...
TABLE-FULL : exception;

function FULL return BOOLEAN;

procedure INSERT C EITDI :in ITEM);
-- I where
-- J in TABLE MANAGER. FULL => raise TABLE-FULL.
-- J Iraise TABLE-FULL => TABLE MANAGER = in TABLE MANAGER;

procedure RETRIEVE(FIRST ITEM out ITEM);

end TABLE MANAGER;



Example: Specification of the TABLE-MANAGER package.

package TABLE-MANAGER Is

subtype DATA in STRING (1 .. 10);
type PRIORITY in range 0 256;

type I1TE is
record

D DATA;
P PRIORITY;

end record;

TABLE FULL : exception;

function FULL return BOOLEAN;
function MEMBER (X : I/ ) return BOOLEAN;

procedure INSERT(NEW ITEI : in ITEM);
S--I where
S-- Iin TABLE MANAGER.FULL => raise TABLE FULL,
-- Iraise TABLE FULL :> TABLE MANAGER : in TABLEMANAGER,
-- in NEW _ITEi.PRIORMTYDEFINED. -

* -- I out ( not in TABLEMANAGER.MEMBER (NEW_IT ) ->

-- TABLE MANAGER. ER (NEW ITE)),
4 --I out ( in TABLE MANAGER.MEMBER (NEW ITEM) ->

-- I TABLEMANAGER = in TABLE-MANAGER );

procedure RETRIEVE(FIRST-ITEM : out ITEM);I -- I where
-- I out ( not TABLEMANAGER. MEBER (FIRST.ITEM)).

--I out( for all X : IT = TABLE MANAGER.MEWBER X) ->

-- i X.PRIORTY >= FIRST ITEL.PRIORITY )

end TABLE _MANAGER;

I
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Ezample: Axiomatic annotatione for an integer package.

package INTE RS Is

type INTEGER Is -- Implemenationdefined;

-- t.e predefined operator.:
function 0=0 (LEFT. RIGHT : INTEGER) return BOOLEAN;
function 0+0 (LEFT. RIGHT : rNTEGER) return INTEGER;

-- I axiom
-- I for all A. B. N : INTEGER =>
-- I A modB a (A + N* B) mod B.
-- I A = (A / B) * B " (A rem B).
-- I (-A) / B a -(A / B).
-- I A / (-B) -A / B).
-- A rem (-B) = A rem B.
-- I (-A) rem B -(A rem B).

i ~--I ..

end INTEGERS;
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PARNAS : A RATIONAL DESIGN PROCESS

HOW AND WHY TO FAKE IT

STEP C : DESIGN and DOCUMENT MODULE INTERFACES
PRECISE INTERFACES MUST be specified for each

module.

It MUST be FORMAL and provide a black box picture
of each module.

It is written by a SENIOR DESIGNER and reviewed by
both the future implementors and programmers who
will use the module.

An INTERFACE SPECIFICATION contains just enough
information for another programmer to use the
module, and NO MORE.

CONTENTS: (1) Ada Package visible part

(2) Externally-visible effects of
subprograms

(3) Timing Constraints

(4) Definition of undesired events

FAKING IT : * Produced by a process of negotiation

The resulting documentation is not easy
or relaxing reading

Acts as an accurate reference manual
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A PL/1 STRING MANIPULATION PACKAGS

Our first example is the specification of a package that provides operations on strins similar to the string
manipulation facilites in PL/I. These operation can all be described uing the standard Ads string
operations and attributes. There e no special concepts outside the Ads domain of strings, so the
package should be easily understood from a quick reading of its specification. Two virtual fuction &te
used to same expressions occiring frequently in the annotations; the virtual definitions enable us to
shorten the anotations. In fact, one of the virtual functions, SLENGFH, duplicates u actual function,
LENGTH, and its only used is to make some annotations a little clearer. The package has a trivial state
- it does not store ay values. This example was suggested by Paul Reilly IREIL84AI.

Example: A PL/I erring manipulation package.

package PLI STRINGS In

-- Virtual functione homing commonly used expressione.

-- : function SLENGTH(STR STRING) return NATURAL;
-- I where return LEN NATURAL a)
-- I (for all I : NATURALs s (I In STR'FIRST .. STR'FI1ST * LEU-I
-- I -> STR() /a ASCII.NUL)) and STR(STR'FIRST * LES) a ASCII.XUL;

functlon SLAST(STR STRING) return NATURAL;
-- I where return I NATURAL :3 I = SLEMT(STR) * STR'FIRST -I);

-- Actual subprograms:

procedure NUL(STR out STRING).
-- Create an empty string.
-- I where out (fop all I : STR'RANGE -> STR(I) ASCII.NUL);

function ISMTY(STR : In STRING) return BOOLEAN;
-- Indicate whether or not a string is empty
-- I where return STR(STIFIRST) = ASCII.NUL;

function LENGTH(STR : In STRING) return NATURAL;
-- Return the length of a string.
-- I where return SUMM(STR);

procedure ASSIGN(TARGET out STRING;
SOURCE In STRING):

-- Asign Source to Target
-- I whee
-- 1 out (TARGET(TARGET*FIRST .. TARGET'FIRST * SLENGTH(SOURCE)-I) =
-- I In. SOURCE(SOURCEFIRST .. SLAST(SOURCE)).
-- I out (TARGET(TARGET'FIRST * SLENMTI(SOURCE)) z ASCII.NUL).
-- I SLUGT(SOURE 3 TARGET'LENCTJI W- r e CONSTRAINTjRR ;

Atnetl.. CATIATZ(LU. 21UT : STRING) rurn STRING;
-- Rdum the cemalin of1 leftf/o U ed by right
-- I whre retur SIR : STRING =3
-- I STR(O .. UJ.XI.(LUT)) a
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-- I LDrT(LEFTFIRST .. SLAST(LUFT)) and
-- I STRCSLUGT(LDFT) * I .. SLEIIGTII(IT) + SLENGTH(RIGH))z
-- I RXCHRRGUITIP2T SLAST(RICII));

function EWIALLT. RIGHT: STRING) return BOOLEAN;
-- Indicae if string LEFT mtabs string RIGHT.
-- I where return SLENUMET a SLENOTH1(RIMMr and then
-- I LEFT( LDT9FIPRS ..- SLENOTHLUT)) aRIGII( RIGHT 'FIRST .. SLENGTHRIWH))

function INDEX(3AgSTRING. FRAMET :STRING) return KATUAL;
-Return the sta~rting position in BASE SMhING where FRAGMENT is found,r -- return 0 ot/wrvisc

-- I whs return I : NATURAL a),
-I I /a 0 and DASE-STRINOCI .. I + SLENGT(FRAGENT) -21)

-- I FRAGET (FRAGMENT 'FIRST .. SLAST(FRAGIT))
-I or
-I I z 0 and (for al J : BlASE STRING'FIRST

-- I 3ASkSTRING(i .. J7 + SLUNGTH(FRAGMEMr) -1) /x
-- I FRAGNT(FRAGNENT'FIRST .. SLAST(FAGENT)) )

end PLI STRINGS;

Commentary
This specification depends only on Ada concepts -and quantification over constrained ranges, which is
really just a for loop test. So we should be able to analyse it to see if it fits our understanding of. PL/1.
One way to do this is to execute the specifications symbolically on small test cues. Consider,

A 5MV00C 9) :a 0I =3 W. 2 z3, W. 5 a), ASC1Z.NWJ.
3 3T3RIN6(l 5) :8 (1 .. 2 u" W. others 83, AIICZ.L);

begin
PULINU.PAMZGU(. Q;:
-1 2(i . 2) a ACI .. 2).
-1 a(s) *r*

-1 2(0) * *8CU.UL;
end;

We can deduce that SLENGTH(A) is 2 and SLENGTH(B) is 3. But take care. This should be done
mechanically by trying each value of LEN in the specification of SLENGTH, starting at 1, 2, .. until one
is found that satisfies the quantified expression when A or B is substituted for STR. This tells us that the
call, ASSIGN(B.A), should not raise the exception. Then we can make substitutions in B, using A, so that
the out specification of Assign is satisfied for this particular pair of parameters. The result &hould satisfy
the assertions. However, EQLJAL(A,B) is false ia this outptut state. Is that correct PL/ 1?

Symbolic execution of package specifications on small tests is a powerful way to check the consequences of
specifications. The results con be used to negotiate changes before implementation begins, or to see if a
package provides features needed by some using program. Symbolic execution should be automated
because it is easy to make mistakes in executions by hand - indeed the same mistakes that were made in
the specification.

As discussed in Chapter 5, the specifications of units is a package ca depend on *o another in ways that
have unforeseen, cousequences. The dependencies in PLISTRINGS are very simple. The only package
functions tha wre used in other specfflcatIons are Sleegth (or Length) and Slust. There are no mutually
despendent subprograms. Thereore, ay implicit constrain onte package musd a consequence of as
Individual subprogrm specllaalo.
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Ezample.- Specification of the Package Direct JO

with IO EX(CPTONS;
go-eric

type ELNITYPE Is private;
package DIRECT 1O Is

type FILETYPE Is limited private;

type FILE MODE Is (IN FILE. INOUT FILE. OUTFILE);
type COUNT Is range 0 .. imp1mentation defined;
subtype POSITVE-COUNT Is COUNT range I .. COUNT'LAST;

-- implementation concepts
-- : package EXTERNAL-SYSTE Is

-- : type EXTERNAL..FILE is limited private;
-- " NOFIuE : constant EXTERNAL..FZLE;

fuction PROPER(NAME STRING) return BOOLEAN;
- -: function FILE MAP(F FILE TYPE] return EXTERNAL FILE;

- function NAME-MAP (NAME: STRING) return EXTERNAL.FILE;
-J where PROPER (NAME);

- function INACCESSIBLE(E : EXTERNAL FILE) return BOOLEAN;
I where return (for all X : FILE-TYPE =>

-- ~ E /= FILE MAP (X) ) and
-- I (for all X : STRING => E /= NAMEMAP(X));

function DISTINCT(F. F1 : FILE TYPE) return BOOLEAN;
-i where return FILE MAP(F) / FILE MAP(Fl);

-- end EXTERNALSYSTW;

-- : use EXTERNALYSTEI;

D-29



-- Exceptions
-- fExceptions have been moved up so that they are visible in the anotation../

STATUS ERROR : exception renames IO 15 TIO1S STATUSUERROR;
MODEmRR : exception renames IOCTONS .MODERROR;
NAKCERROR : exception renames I EXTEONS.I ERIROR;
USE-ERROR : exception renames IO DCCTIONS. USEERROR;
DEVICE-ERROR : exception renames X0OEXCTONS DEVIC ERROR;
END ERROR : exception renames 10_E)CEPTONS EPDERROR;
DATAERROR : exception renames IOENCMTIONS. DATAERROR;

-- (The following function declarations have been moved up and reordered

-- in order to make them properly viaible in the annotations.

function ISOPEN (FILE : in FILETYPE) return BOOLEAN;

function MODE (FILE : in FILE TYPE) return FILEMODE;
-- I where
-- I not IS OPEN(FILE) => raise STATUS-ERROR;

function NAME (FILE : In FILE TYPE) return STRING;
-- I where
-- J not IS OPEN(FILE) => ral STATUS-ERROR;

function FORM (FILE : in FILE-TYPE) return STRING;
-- I where
-- I. -not ISOPEN (FILE) => raise STATUSERROR;

function INDEX (FILE : in FILE-TYPE) return POSTIVECOUNT;
-- I Jwhere
-- J Inot ISOPEN(FILE) => raise STATUS-ERROR;

function SIZE (FILE : In FILE-TYPE) return COUNT;
-- I where
- - I not IS OPEN (FILE) => raise STATUSERROR;
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-- File management

procedure CREATE (FILE In out FILE TYPE;
MODE : In FILE MODE : INOUT FILE;
NAME In STRlI := N;
FORM : In STRING :z 00;

-- I where

-- IS OPEN(FILE) =I raise STATUS ERROR.
-- not PROPER(NAME) z> raise NAiEERROR.
-- raise USE ERROR.
-- I out ISOPE (FIL).
-- I out (IiDEX(FILE) 1 ).
--I out (MODE(FILE) = MODE).
-- Iout in INACCESSIBLE (FILEMAP (FILE)).
-- I out FILE MAP (FILE) / NO FILE.
-- I out ( FILEMAP(FILE) = NAMEMAP(NAME) );

procedure OPEN(FILE : in out FILETYPE;
MODE : in FILE MODE;

AME: In STRING;
FORM : In STRING);

- - where
-- IS OPEN(FILE) => raise STATUS ERROR.
-- Inot PROPER(NAME) or NAME MAP(NAME) = NO-FILE =>

raise NAME-ERROR.
-- raise USE ERROR.
-- Iout IS OPEN(FILE),
-- I out (INDEX(FILE) = 1).
-- I out (MODE(FILE) = MODE),
-- I out (FILEMAP (FILE) = in NAME MAP (NAME));

procedure CLOSE(FILE : in out FILETYPE);
-- I where
-- I not ISOPEN(FILE) => raise STATUS-ERROR,
-- I out (not IS OPEN(FILE)).

-- I out (FILEMAP(FILE) z NO.FILE);
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procedure DE.ETE (FILE in out FILEJTYPE);
-- I where
-- I not IS OPEN(FILE) => raise STATUS ERROR.
-- raise USE ERROR.
-- I out (not IS OPEN (FILE)).
-- I out (FILE MAP(FILE) = NO FILE).
-- I out INACCESSIBLE(in FILE MAP (in FILE));

procedure RESET (FILE : in out FILE-TYPE; MODE in FILE MODE);
-- Iwhere
-- not IS OPEN(FILE) => raise STATUSERROR.
-- raise USE ERROR.
-- out (INDEX(FILE) = 1).
-- I out (MODE(FILE) = MODE);

procedure RESET(FILE : in out FILE TYPE);
I where

-- I not IS OPEN (FILE) => raise STATUS ERROR.
--1 out (CiDEX(FILE) 1),
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-- Input and output operations

procedure READ(FILE In FILE TYPE; ITEM : out E.LEENTTYPE;
FROM POSITIVE-COUNT);

-- I where
-- I not IS..OPE(FIL. => raise STATUS-ERROR.
-- I MODE(FILE) = OUT FILE =) raise MODE ERROR.
-- I FROM > SIZE(FLET) =) raise ENDE OR.R
-- I raise DATA-ERROR.
-- I out (INDEC(FIL.E) = FROM * 1);

procedure READ(FILE : in FILE-TYPE; ITEM out ELEMENTjYPE);
- - I where
-- 1 " not IS OPEN(FILE) z> raise STATUS ERROR.
-- I MODE(FIE. a OUTFILE => raise MODEERROR.
-- IEND OF FLEMM => raise END-ERROR.
-- I raise DATA ERROR.
-- I out (INDCC(FILE) = In IND(FI) * 1);

procedure IRITE(FILE : in FILE TYPE; ITEM in ELEMENTTYPE;
TO : POSTIVECOUNT);

-- I where

-- I raise USE ERROR.
-- Raised if capacity of external file is exceeded.
-- I not IS.OPEN(FILE) => raise STATUSERROR.
-- I MODE(FiLE) a INFILE => raise MODE-ERROR.
-- I out (INDEX(FILE) = TO - I);

procedure WRITE(FILE : in FILE TYPE; ITEM : in ELEMENTJTYPE);

-- l where
-- I raise USE ERROR.

-- Raised if capacity of external file is exceeded.
-- I not IS OPEN(FILE) => raise STATUSERROR.
-- I MODE(FiLU) = INFILE => raise MODE-ERROR.
-- I out (INDEN(FILE) = in INDW(FILE) + 1).

procedure SETIN E(FILE in FILE-TYPE; TO : In POSTIVECOUNT);
-- I where
-- I not IS OPEN(FILE) => raise STATUS-ERROR.
-- I out (INDE(FILE) = TO);
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function ENDOF.FILE(FILE In FILE TYPE) return BOOLEAN;
-- I where
-- I not IS OPEV (FILE) => raise STATUSEUROR.
-- I moDE(FI.E) = OUT FILE => raise MOW_ EROR.
-- I return (INDEX(FILE) ) SIZE(FJE);

-- axiom for all S : DIRECT I0"TYPE; F, F1 : FILE TYPE;
-- INDEX. I. J POSITIVE COUNT; ITEM. X. Y-: EMJIENTTYPE;
-- NAME. FORM STRING; MODE : FILE_1MODE
-- --

-- I S [READ (F. ITEM. INDEX)] = S [SETINDEX(F. INDEX);
-- READ (F. ITM) I.
-- I S [RITE (F. ITI. INDEX) ] = S [SET INDEX (F. INDEX);
-- V~wITE(F. ID)] .
-- I S[IRITE(FI. X. INDEX)] .READOUT(FIE =>F. ITEM =>Y. FROM =>
-- I INDEX) . ITD =
-- I If not DISTINCT(F. F1) then X
-- else S.READ'OUT(FLE => F. ITE =) Y. FROM =>
-- INDEX). INDEX
-- I end if.
-- I S[IRITE(F, X. I); READ(F1. Y, J)] = it DISTINCT(F, Fl) or else

-- II /= J then
-- I S[READ(Fl. Y. J);
-- I WRITE(F. X. I)]
- - else
--I S(WRITE(F. X. I);
-- I READ(Ft. Y. J)]
-- I end it.
-- I S(IRITE(F, X. INDEX); IRITE(F. Y, INDEX)] =
-- I S(WRITE(F. Y, INDEX)).
-- I S[READ(F. X. I)].READ'OUT(FILE => F, ITEM => Y.

-- I INDEX => I).ITEN =
-- S.READIOUT(FILE => F. ITEM => Y. INDEX => I).ITEM;

private
-- Iplementation dependent

end DIRECT_10;
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SYMBOLIC EXECUTION: "What Happens IF ...

CREATE (F, N)
OUT :FIL2E1AP (F) - FILEMAP (N) -E,

* ISOPEN (F);

CREATE (F', N)
OUT : FILEMAP (F) - E,

FILEMAP (F') - NAMEMAP (N) E'
ISOPEN (F),
ISOPEN (F),
E -E;

CLOSE (F)
OUT :FILEMAP (F) - NOFILE,

FILEMAP (F') =E,

NAMEMAP (N) - E',
ISOPEN (F'),
not ISOPEN (F),
E - E';

OPEN (F, N)
OUT :FILEM4AP(F)-NAMEKAP(N)-FILEMAP(F')-E',

ISOPEN (F'),
ISOPEN (F),
E M E';

Anna Near Term Tools

The primary goal is to encourage use of Formal Specifications
in the development and maintenance of correct Ada programs.
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Transformational Semantics

* " More powerful annotations can be transformed into
sets of simpler annotations (in most cases)

** The simplest annotations, assertions, can be
transformed into runtime checking code.

EXAMPLE: Type annotation -- Object annotations

type EVEN is new INTEGER;
-- I where X : EVEN -> X mod 2 = 0;

subtype POSEVEN is EVEN;
-- I where X : POSEVEN -> X >= 0;

A EVEN;
B : POS_EVEN;

type EVEN is new INTEGER;
subtype POSEVEN is EVEN;

A : EVEN; -- I A mod 2 - O;
B : POSEVEN; --I B mod 2 - 0 and

( B >- 0 );
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- Annotations can be transformed into executable runtime
checks

ANNA
Program

i +--------------- ------------
i I Annotation I Ada program I Ada I
+---I i----------------I I -+

i Transformer I with checks I Compiler I I
------------------ -------------- I

V
Self

Checking
Program

Checking of consistency between the underlying Ada
program and its formal specifications is performed
automatically at runtime.

Exceptions and diagnostics are propagated in case of an
inconsistency.

UPSHOT: Capability to run an Ada program against (in
comparison with) its formal Anna
specifications.

D-37



I

* APPLICATIONS

** Test and Debug

** Permanent checking of crucial specifications

Security in data bases

Error situations in control systems

** Comparative simulation (validation) of high level
specifications of architectures

* ISSUES

** Implementation of Anna transformations

** Testing on significant examples

** OPTIMIZATION of runtime checks

** DESIGN-ANNA, a language for systems design

** Annotations of timing constraints

D.-3
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PROJECT STATUS

Anna Language Manual -- available

Anna Overview Paper -- available

Introduction to Anna -- in progress

Rationale for Anna design -- in progress

Transformation for Runtime Testing

Initial implementation'for large Anna subset

* Implementation specification -- completed

* Support Tools:

* DIANA extension -- completed
* Anna parser -- completed
* Validaton suite -- in progress

first tests -- July 84
first experimental version -- April 85

* Anna Book -- in progress
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SOME OTHER ANNA TOOLS

* Optimizer For Runtime checks,

Uses rules associated with
annotation concepts

* Parallel Checker Preprocessor compiles runtime

checks for execution on
parallel processors

Specification Analyzer
Consistency of package
specifications,

Symbolic execution of
specification for question
answering.

Structure Editor Prompts for annotations

Semantic analysis

Context annotation checking

Allows deferred decisions and
tracks them.

Standard Packages

Timing Package

I
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Tony Brintzenhoff: Reimplementing ACCAT guard in ADA

Brintzenhoff was involved in an effort sponsored by DCA
to evaluate Ada as a language for communications software. This
effort involved reimplementing TCP/IP and ACCAT Guard in Ada. He
talked about the reimplementation of ACCAT Guard, which also had
as a goal the evaluation of Ada as a language for developingsecure systems.

ACCAT Guard is a trusted application for the Kernelized
Secure Operating System (KSOS) whose purpose is to connect two
hosts with different security levels on a network (ostensibly the
Arpanet) and allow controlled communication by upgrading and
downgrading information moving between the hosts. Communication
is through the ACCAT Guard, and reclassification is controlled by
a security watch officer.

The project had three major objectives:

1. To evaluate Ada constructs for secure applications

2. To develop a list of restrictions on the use of Ada
constructs which would enhance the verifiability of secure
Ada systems

3. To develop a methodology for developing software in Ada

In order to provide an environment in which the ACCAT
Guard could be executed, the project also designed emulations of
the ACCAT Guard's interface to KSOS and to the Arpanet.

Brintzenhoff's group used a draft formal specification of
ACCAT Guard written in the formal specification language SPECIAL.
The aim was to translate the SPECIAL specification into an Ada
program.

The Ada design methodology developed for the project used
the concept of "virtual packages". It was discovered that
developing a design at the package level offered too little
granularity in constructing a design, while developing the design
at the subpxogram level provided too much granularity. Virtual
packages are a graphical representation of a package which
contains some detail of the units internal to the package. This
offered a medium level of granularity, as well as facilitating
stepwise refinement.

The designers attempted to translate the OFUNs of the
SPECIAL spec into Ada subprograms bn a one-to-one basis. This



aim was not completely realized, in part due to inadequacies of
the SPECIAL specs. In certain places, the SPECIAL specs seemed
to have been written procedurally rather than non-procedurally,
as SPECIAL is meant to be written.

The designers felt that Ada provided an adequate degree
of separation between the trusted and untrusted software.
Generics and variant records were felt to be particularly useful
in minimizing the amount of trusted code. It was estimated that
the use of generics and variant records would decrease the amount
of trusted code by roughly 4000 lines (generics were not used in
the design because the compiler used did not support them).

Problems were encountered arising from erroneous
programs.
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I&SYSCON6 amp awa,&? Ia to

TRUSTEDSOFTWARE DESIGN METHODOLOGY

-I
SECURITY POLICY
OPERATIONAL ENVIRONMENT
PERSONNEL
APPLICATION REOUIREMENTS

I]I I
i(NON-SECURITY PATH) (SECURITY PATH)

SYSTEM SEGMENT SPECIFICATION (A)
NORMAL REQUIREMENTS
TC8 REQUIREMENTS SECURITY POLICY

EVALUATION CRITERIA _-

MANDATORY/DISCRETIONARY ACCESS ) MODEL

SOFTWARE REQUIREMENTS SPECIFICATION (BSA)
HARDWARE
OPERATING SYSTEM I

MAN-MACHINE INTERFACE "L-
NON-TRUSTED SOFTWARE IDENTIFICATION (Ada/ANNA) ---- I
TRUSTED SOFTWARE IDENTIFICATION (Ada/POL)

SOFTWARE TOP LEVEL DESIGN DOCUMENT (C5A) I*
VIRTUAL PACKAGE DESIGN FILS/DILS __-I
MACROSCOPIC DESIGN(Ada/ANNA)

SOFTWARE DETAIL DESIGN DOCUMENT (CSB) I
MICROSCOPIC DESIGN mSOL

MCOCPC(Ada/ANNA)

SOURCE CODE FnLS/DnLS ----

(Ada/ANNA)
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SYCON

SOFTWARE PERFORMANCE CRITERIA

SOFTWARE TESTS

TCP/IP/ADCCP ACCAT GUARD

FUNCTIONALITY TESTING: FUNCTIONALITY TESTING:

TCP HIGH-LOW MAIL
MISSING SEGMENT(S) LOW-HIGH MAIL
DUPLICATE SEGMENT(S) HIGH-LOW GUERY

SEGMENT CHECKSUM ERRORS LOW-HIGH RESPONSE

SECURITY/PRECEDENCE VIOLATIONS LOW-HIGH QUERY
HIGH-LOW RESPONSE

IP DOWNGRADE REJECTION
DATAGRAM CHECKSUM HIGH/LOW BUFFER WATERMARKS
DESTINATION-UNREACHABLE GUARD TERMINATION
TIME-TO-UVE DOWN GRADING

I NVALI D-SUBNET-PARAMETERS SANITIZATION

ADCCP
OUT-OF-CONTEXT COMMANDS

- OUT-OF-CONTEXT RESPONSES
TIMEOUTS
INVAUD FRAME ERRORS
CRC ERRORS

LINE CONTROL MODULE (LCM)
TIME-OUTS (LINE DROP)
DATA ERRORS (BIT DROP)

ADA-SPECIFIC EFFICIENCY II CRITERIA

PRAGMAS: CONTROLLED, INLINE,. OPTIMIZE, PRIORITY, SHARED, SUPPRESS
TYPES/OBJECTS: DYNAMICALLY VS. STATICALLY CREATED OBJECTS
SUBPROGRAMS: EFFECTS OF EXTENSIVE ELABORATION
TASKS: REGULARITY, ACCURACY OF EVENT TIMING, INTERRUPT PROCESSING

TASK ACCESS ALTERNATIVES

EXCEPTIONS: HANDLING, PROPAGATION, TASKING INTERACTIONS
GENERICS: EFFECTS OF DYNAMIC INSTANTIATIONS
IMPLEMENTATION-DEPENDENT FEATURES: UNCHECKED PROGRAMMING
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Eric Anderson: Army Secure Operating Systems

Eric Anderson is the Project Manager for TRW's Army
Secure Operating System (ASOS) project. ASOS will be written in
Ada and is required to meet the DoD Computer Security Center's Al
rating.

Defining Security Subjects

Security subjects are the active entities of the system
from the point of view of security. The ASOS project had to
decide what the security subjects of ASOS are. There were two
candidates: a security subject could be an Ada program or a task
within an Ada program.

The ASOS project found that tasks within an Ada program
can communicate by means both overt (shared global variables,
rendezvous) and covert (using the same global packages, having
the same devices open to all tasks in a program). The only way
to limit this communication would be to place severe restrictions
on the use of Ada in the programs running on ASOS. It was felt by
the ASOS designers that these restrictions were too severe, and
chus all tasks within a given program must be considered to have
the same security level. This essentially amounts to having the
security subjects be complete Ada programs, so it was decided to
define security subjects to be complete Ada programs. The
security subjects would therefore communicate, when necessary, by
a mechanism outside Ada which would be mediated by the ASOS
Security Kernel. This approach also has the advantage of
separating security issues from the Ada domanin of intertask
communication.

RSL Issues

Ada features such as tasking and exception handling,
which are classically functions of the operating system, require
extensive runtime support. The Runtime Support Library (RSL) of
the Security Kernel must be as secure as the Ada code for the
Security Kernel itself.

To solve this problem, the ASOS project developed a
layered approach in which the -applications programs running on
ASOS have an Applications RSL which makes calls to the Security
Kernel. The Security Kernel has its own Kernel RSL, which
implements a restricted subset of the functions of the
Applications RSL. The Kernel RSL is thus intended to be small and
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verifiable.

A set of restrictions on the Kernel RSL were formulated,
which included:

1. No tasking

2. No explicit dynamic storage allocation using NEW

3. No dynamic arrays

4. No use of Ada standard packages other than STANDARD and
SYSTEM

5. No exception handling

Under these restrictions, it turned out that there was no Kernel
RSL. It was useful, however, to have a small Kernel RSL to
propagate exceptions. Many things, such as I/O, which are

usually done for Ada programs by the RSL are not done by the RSL
for the Security Kernel, but instead are done directly by the
Security Kernel using embedded assembly.

Hardware Issues

It was necessary for the Security Kernel to have the

following hardware-related capabilities:

1. Access to privileged instructions

2. Access to specific machine addresses

3. Ability to directly address bits in memory

4. Inline capability

Direct access to memory locations was accomplished using the Ada

address and representation clauses. Access to privileged
instructions was accomplished by the use of machine language gate
routines.

Compiler Issues

The security of ASOS depends on the correct compilation

of the Security Kernel. The ASOS Project concluded that the
validation and certification procedures for Ada compilers provide

an adequate degree of assurance for ASOS.
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Jim Freeman: Trust Domains

Jim Freeman presented an approach to stating system

requirements and modeling systems called Trust Domains. The
approach describes, at a high level of abstraction, the various

components of a system, how they are related structurally, and
what assumptions they make about the behavior of each other and
the system's environment. The goal of the approach is to present
a more "understandable" view of the system, thereby providing
assurance of the system's correctness.

In the approach developed by Ford Aerospace, a system is
represented as a set of trust domains. The structural
relationships between domains are described by stating which
domains "inhabit" other domains, which domains "contain" other
domains, which domains are "associated with" other domains, which
domains "adjoin" other domains and which domains "adjoin" other
domains "via" a third domain. The assumptions which domains make
about other domains are stated in terms of "constraint
relationships". A domain A may "receive" a constraint X "from" a
domain B, which means that A assumes that B meets constraint X,
and a domain A may "derive" a constraint X "for" a domain B,
which means that A meets constraint X with respect to B.

Examples of trust domains and relationships were given.
Most were in graphical form, with the domains represented as
nodes and the relationships as links between nodes. One example
was given in a textual form which is processable by tools built
by Ford Aerospace. The Trust Domains approach was applied to both
WIS and the Multinet Gateway.
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Structuring Systems for Formal Verification

Richard S. Neely

James W. Freeman

Ford Aerospace & Communications Corporation

This research was sponsored in part by the USAF Rosso Air
Oevelopment Center under the Pultinet Gateway Pro;ram, con-
tract number F3C602-81-C-C233.

High levels of assurance for tle security of a system are
obtained, in parto by the description of its trusted comput-
ing base in terms of a formal top-level specification.
Nevertheless, the use of a single-level specification can
result in an inability to link the behavior of the trusted
computing base with the security policy of the system as a
whole. This paper discusses that disperity and presents an
approach to structuring systems that helps to avoid the
problem. Such structuring is shown to be effective in
bridging the gap between the trusted computing base itself,
and the overall system.

1. INTRODUCTION

It is generally accepted that formal methods can be used to
increase the level of assurance that a system is secure. In
spite of current improved understanding of such mothodso
concepts used in describing the trustworthiness of com-
ponents retain the same limitations they have had for a
number of years. Only the most simple and monolithic of
systems or components can be characterized by a single "top
level specificationo -- yet the attempt is made to describe
even entire operating systems by such means. Additionally,
at the completion of the formal verification of a component,
it is often not clear that that verification provides any
increased understanding of the component and the overall
system. Finally, the trustworthiness of an individual com-
ponent is typically ensured only by assigning some sansi-
tivity label to it and doing an analysis based on this
assignment, rather than establishing its trustworthiness in
relation to its individual constraints and requirements.

Some work has been accomplished in deriving security
requirements from the environment of the component itself,
and what the component actually does. Examples of such work
include the development of the "separation kernel" as
dO~p~ha ".. . '1C3 and related work, the modeling
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approach described by 3artels and Dinolt C13. and various
approaches being investigated ;ithin the University of Texas
environment C4J.

Further investigation and development of such concepts are
needed. We introduce the notion of a "trust domain" as a
partial answer to that need. A trust domain encapsulates a
component in terms of "rule abstraction." This allows a
characterization of the component in terms of expectations

that it places on its environment and on its on implementa-
tiono as well as expectations It is prepared to meet for
other domains. Application of the trust domain concept
promises reduction of proof complexity, better understanding
of the formal specification and verification resultsp and
explicit identification of underlying assumptions. If these
goals are realized, then an increased level of assurance
will follow.

The remainder of this paper focuses on providing motivation
for and application of the trust do~uain concept. First,
some problems to be solved are characterized. Then the lia-
itations of previous structuring attempts jo solve tie prob-
lems are recounted, This is followed by a detailed descrip-
tion of the concept of a trust domain together with an
explanation of how the concept helps to solve the problems
presented. An extended example of the use of trust domains
is provided, including an embodiment of the example in a
trust domain representation language. Finallye we demon-
strate the utility of the trust domain approach for formal
verification in terms of the identified problems, and from
this demonstration we draw several conclusions.

2. Problem Statement

Several problems related to the structuring of a system for
verification are at least partially solved by the use of
trust domains. Those problems are described in this sec-
tion.

2.1 Problem 1: Assessment of Verification Rosultse

Consider a moderately complex computer system whose adher-
ence in operation to a given security policy is critical.
Suppose that the design, development, and documentation of
the system follow the guidelines given in the Ooc Computer
Security Center's ICU2129 C2M2WSC 323129 121MIia±n CCi=
lucia C23. One might now ask exactly kihat was verifiedo and
further, how do the verification results really contribute
to the confidence that the system will not violate the secu-
rity policy. The answer can be formulated and expressed
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only in terms of t?,e formal structure of the system, how
- that structure relates to the system environmento and how

the proofs relate to the system structure. Cn one hand, a
small quantity of proof output Ce.g.p "TRUE" or "FALSE") is
easy to understand, but not much confidence is gained from
such trivial results. On the other hand, a great deal of

outputs if it is not eell-structured or does not relate
clearly to a well-structured systemp is impossible to under-
stand well enough to be sure what is proved.

At least three criteria need to be used in assessing the
specification and verification output:

1. Proofs are small or at least uutacsOn|it- The
proofs Pre not Just terse, but both complete and sii-
plo as possible.

2. The specification information and verification-results
are £SIjSMC Cja j A to the actual implemented system.

3. There are uSgj-±gCnMd bgyu axC ;iggiigoa (environmen-
tal assumptions).

The latter two criteria are directly tied to the system's
"architectural reference points." They allow more meaningful
discussion of what is actually modeled, the underlying
hardware constraints, assumptions, other non-proved com-
ponents and code correspondence issues. By an architectural
reference point we mean a significant aspect of a system
architecture that Is taken as given and so must be reflected
by not only the system implementation, but also by the for-
mal description of the system. For example, in a system of
network gateways, an architectural reference point might
include specific an;pacts of the geographical separation of
the gateway nodes. Attributes of the layering of the proto-
cols might form another example. The idea of an "architec-
tural reference point" is that it constrains the allowed
design space of the system.

2.2 Problem 2: Verifying System Specific Charecteristics.

While the previous discussion was In terms of a "moderately
complex" system, distributed systems typically possess an
especially complex structure. A noteworthy class of exam-
ples is the class of communications systems. In an "AOPP"
or hosto system, a case might be made to consider the inter-
face of an operating system kernel as the exclusive province
of formal specification; but there is ro analog in a commun-

ications environment. The software and hardware that isple-
ment network functions are structurally and conceptually far
removed- from +" "'vstem interface," i.e., the network

,-3
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system as seen from the "host users."

2.3 Problem 3: Ensuring Trustworthiness.

Many systems, in enforcing a specific set of requirements,
such as a given access control scheme based on sensitivity

labels, determine properties and derived requirements that

are not directly related to the 'labeling requirements.
Sometimes the traceability between the original and derived 4
requirements is weak because the derivation process has not

been well documented. Seconds some systems have well-

defined security requirements that are not given via sensi-

tivity labels. The result is a problem of truly understand-

ing and agreeing on what 1SruaacZSb;oasi means in an
environment that may include but is not entirely dependent
upon sensitivity labels.

2.4 Problem 4: Domain Reusability.

In order to reduce the cost and, hopefully, technical risk

of the specification and verification process, different
components that are either identical In function, similar
with only parametric differences, or significantly different
while assuming or providing similar or identical interfaces

-- such different components ought not to have to be speci-
fied and verified in a completely independent manner. Some
means of reusing the formalism of these components is

needed. This concept has been discussed and an approachr
based on a notion of reusable problem domain theories, has
been suggested by Don Good C41. Additional work is needed
in this area.

3. Previous and Current Structuring Attempts

Previous attempts to provide effective verification results

have paved the way to the current state of the art.
Although much good work has been accomplished, crevious
attempts fall short of what e feel is possible not. :t is

instructive to see in which ways this statement is true, in
terms of the three criteria presented in the discussion of
the assessment of vorification results. Although specific

examples in the following discussion refer to the Kernelized
Secure Operating System (KSCS), and by extension to
oneywall's SCOMP C113, they are relevant to a wider spec-
trum of contemporary projects. These examples focus on the
assessment of verification results of the first identified
problem area.

I
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3.1 Criterion 1: Proof Complexity.

Cften, verification conditions CYCs) to be proved have been

linked to the formal specification in a way very difficult
to trace because they were the result of much syntactic
manipulation and other processing. Further, even though the

most trivial of the VCs ware weeded out early, large numbers

of proofs were still necessary. And yet, the true complex-
ity of the results was much greater than it would seem from
the quantity of verification results generated. A typical

location of hidden complexity was in special-purpose VC gen-
*ration mechanisms. These observations were true, for exam-

pler for the KSOS formal verification E93. The translation

steps from the Special language of the Hierarchical Oesign
Methodology (HOM) into VCs sultable for the Boyer-Moore

theorem nrover were rather large ones. Examination of
intermediate forms (to aid understanding of the translation
process) was possible. 3ut such examination only added to
the complexity to be digested. The Feiertag VC generator

3 iAs indeed a very complex program, and for the purpose of
analyzing complexity, must be included in the actual proofs
to be examined.

In addition, the body of verification results was artifi-
cially small because it was not the full system that was
involved. In KSOS, the kernel. interface, along with
relevant internal functionality, was the only part formally

specified and verified. Yet what the user of. KSOS depends
on for enforcing security is the KSOS system as a whole, and
so statements about the system as a whole are what needed
proving. While the Unix emulator was not to be part of the

trusted computing base, that fact needed to be a Caat l of
the specification and proof processf not an 8i,1UM9140 of
it. Further, the Non Kernel Security Related (NXSR) portion

was part of the trusted computing baser yet tas not part of
any integrated proof process. Were the proof of KSOSP using
the HDM-Feiertag technologyo to be complete and integrated
into a single formal top-level specification (FTLS) as ordi-
narily conceived, the complexity of the proof would be
increased by a large factor.,

3.2 Criterion 2: True System Representatione

Accurate representation of the target system also fell short
in several ways. Security models were typically simple
"flowupward" models based on a lattice structure of secu-

rity classifications. However, within the system (and some-
times visible to at least certain users), "exceptions" or
special privileges had to be allowed for the sake of correct
system operation. These never fit within the model, and so
had to he a4ha.p '--qred in specification or else allowed to
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generate "spuriouso" unprovable VCs, which wore then
explained away informally. In additions because of dispar-
ity between the structure of the specification and the
implemented codes the informal code correspondence argument
in KSOS was not as convincing as had been hoped.

3.3 Criterion 3: Boundary Conditions.

Finally, assumptions necessarily made by the system (but not
intmnded to be proved) wore dealt with quite informally, and
in fact often more never mentioned but made tacitly. Such
assumptions involved hardware and other entities with which
the trusted computing base must interface and on which it
depended, as well as the Initial setup of file system data
bases and correct administrative procedures. Sy handling
such issues informally, more unprovable VCs mere generated.
Consequently the specification and verification results were
sometimes confusinge lacked convincing power, and missed the
opportunity to point out exactly where certain conditions
had to be maintained externally for the system to remain
secure.

4. TOWARDS A SOLUTION

Progress has been made in each of the four identified prob-
lem areas in recent years. What is needed still is a con-
ceptual framework to aid in organizing this type of specifi-
cation and verification information. While much work
remains to be accomplished in solvin; the problems
described, we have seen initial applications of tte trust
domain concept to offer an effective step. The motivation
for the trust domain idea is provided next via a conceptual
description. After the concept is established, details of
the structural and constraint relationships are given to
explain how to apply the concept.

4.1 Trust Domain Description: Concept

A trust domain Is characterized by the following list of
attributes:

1. It is a part of a system Ca component) with a well-
defined functional boundary.

2. There are certain properties about its behavior that
other domains are entitled to expect.

3. It is entitled to expect the valldity of certain
assertions about its environment.

CSO-TR669 arch 14, 1985
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4. Zt may have internal (non-externelly visible) charac-
teristics that are used to provide behavioral guaran-
tees*

The "well-definedness" attribute Is essential in producing
the limitations on the scope of a trust domain construct to
specify what is actually "trusted". A trust domain's
trustworthiness is established either by assumptions that
may not be proved (but are clearly identified), or else by
proofs of assertions based on the environment of the trust
domain. Note that part of a trust domain's environment is
typically some set of other trust domains. In that case.
the 2uarantees of the other trust domains become part of the
environmental assertions of the original trust domain. The
assertions to be proved are termed "derived constraints" or
resultant theorems. The original trust domain is then said
to be constrained by of the other trust domains. The rela-
tionship of the other trust domains with the original is
spoken of as a 62031CIlaJ ca&1112Qobiu. Other constraints
external to a trust domain include assertions about the
system's environment that must be taken as given in the
development process.

4

$
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The conceptual interface between tso trust domains so
related consists of functional abstraction (based an func-
tional decomuposition); data abstraction (based on private
and shared abstract data types); and rule abstraction (based
on constraints for function usage and interactions among
functions and the data types they govern). A trust domain
is pictured in Figure 1.

- C sGIVEDb

COPISuA&Miu

Figure 1. Trust Domain

1
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Trust domains may have not only constraint relationships,
but also containment r4lationships. Figure 2 provides an
example of trust domains mwih constraint relationships; the
figure also serves as a basis for illustrating containment
relationships.

AC DERIVED
CoNsTA Trs

100,APPLICATION
(AP)

ACCESS AP RECEIVED
CONTROL CNTAT
(AC)

NRA DUNNEID
CONSTRAINTS

RECEIVED
CO~RP7 \ H ARDWARE

RESOURCE4 ALLOCATOR
(NRA)

Figure 2. Trust Domain Constraint Concept

Figure 2 could be a picture of the major activities within a
simple secure system. The system as a whole is a trust
domain that contains the three trust domains shown. This
must be sop since it is only about trust domains that pro-
pertios can be proved, and it is the system as a whole that
must be proved secure. Further, the individual trust
domains of Figure 2 themselves may (usually at this levels
will) contain interior trust domains.

It is important to note that no & gCJgCc distinction is made
between wtrusted" and "untrusted" components, though that
distinction falls out of the interpretation of constraint
rules. The Idea Is that external constraints (portrayed as
*xtornally applied assumptions) allow a limited scope of
activity. so that all that must be proved #bout te trust
domain itself is that, within that limited scope, It will
not allow a violation of the constraint rules (its derived
--eaa~tr- in ---1 " *o enforce. Consequently, a trust domain
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is "trusted" to satisfy only the derived constraints. If a
trust do.ain is placed so that no expectations need to be
applied to its behavior Cit has no derived constraints), it
is "trusted" to satisfy no constraints. It is then said to
be "untrusted". It is this usage in which the term
muntrustod" is applied and simply means a trust domain with

no resultant theorems or derived constraints. "Trusted", of
course, means that derived constraints do exist. Note that
this implies that 'trusted" is not an absolute term, but is
relative to the content of the derived constraints -- i.e.,
it is always in the sense of "trusted to obey what particu-
lar rules".

A key issue, then in the application of such a concept is
the facility to describe the various sets of rules or
behavior properties of a given trust domain. The realiza-
tion of truzt domains and associated constraint rules
depends on the use of certain established software design
techniques, viz.o functional abstraction and data type
abstraction. A given formally described set of constraints
or rules then is represented in terms of the visible func-
tions and the abstract data types.

4.2 Trust Domain Description: Structure and Constraint

The trust domain notion has been described to this point as
a structuring concept to of express desired properties and
system structure. The previous discussion was to motivate
the types of entities needed In a tescription of a trust
domain. The explicit means by which a trust domain is
described is outlined now so that specific examples can be
described.

A "domain" Is an entity with, of necessity, two types of
relationships. The types of relationships ara structural
and constraint. A domain say "adjoin" another domain or
"contain" orCWinhabit") another domain. These two relation-
shipse adjoin or contain, are structurale. f two domains
adjoin one anothere they cannot contain one another. The
identification of which domains adjoin or contain other
domains provides a topographical description of the system.
A domain may "derive" or "receive" from another domain.
These are constraint relationships. Figures 3 and 4 iden-
tify and illustrate how the two types of relationships are
identified and described (denoted). The following.pars-
graphs provide motivation for such a description.
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Suppose domain A adjoins domain 3 and contains domain C (or
C inhabits A). In order to represent actual systems and to
describe communications among system entities (whether
within a personal computer or among internets)p domain are
identified as either node or link. This identification is
called the gender of the domain. Adjoined domains must be
of opposite gender. Figure 3 identifies additional rela-
tionships among three domains that share adjoin and contain
relationships.

LINK DOMAN

Figure 3. Trust Oomain Structure Relationship

First, a domain that inhabits another domain is either
[ boundary or an interior domain with respect to the contain-

ing domain (C is interior to A and is, in f~ct, a boundary
J domain of A). Note also that domain A, containing domain C,

m"associates" C with domain 3 and C adjoins 3 "via" A. From

A'S point of view C is associated with 3; from C's point of
- view C is adJoined to B via A; from 3's point of vie C is

not present or in fact not visible. Thus "adjoin", "adjoin
i via" and "associates" are distinct structural relationships.

CS0-TR 669 March 14. 1983
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Constraint relationships are now incorporated with the
structural relationships. Figure 4 identifies and illus-
trates this. Note that domain A "derives" constraints Ye Z
for domain Be and "receives" constraint X from C; do.sain 3
"receives" constraints YPZ from A and domain C "derives"
constraint X for A. Note also that A receives an arbitrary

constraint from a if and only if i derives that sade con-
straint for A. This if-and-only-if relationship provides a
redundancy to aid in the readibility of the constraints.

LINK DOMAN
I

Figure 4. Trust Domain Constraint Relationship

The three domains can be described in terms of a trust
domain description language as follows:

node domain A shall
contain boundary node C;
adjoin link 8;
associate C with 8;
derive for 3

constraint Y;
constraint Z;

receive from C
constraint X;

end A;
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node domain C s all
inhabit boundary of node A;
adjoin link 8 via A;
derive for A

constraint X;
end C;

link domain 8 shall
adjoin node A;
receive from A

constraint Y;
constraint Z;

end 3;

It is useful to observe that although the arrows in Figure 3
illustrate the contains, adjoins and associates relation-
ships, they are'not integral to the structural description.
Such arrows are redundant to the identified relationships.
The dotted arrows together witl the "boxes" identified in
Figure 4 denote wha*4 constraints are levied between which
domains. They are integral to the description.

Examples of domains using this description are given next.

Mr 1P3
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5. EXAMPLE: STRUCTURING A SYSTEM4

This section presents an example that Illustrates the previ-
ously described aspects of a trust domain. Tte *xamrlo is a
network system fabricated for purposes of illustration. it
includes multiple site* containing local are& networksp and
inter-site (presumably geographically extensive) transmis-
sion. 2each site possesses a single mainframe processor
operating in multilevel secure mode and multiple sorksta-
tions. Figure 5 shows the topography of the system.

Figue 5 fxapl.SyseNIMmEtrutr

Note that all P ~RSsosadwrsai r osdrd t

be "surfac"system com NEtsCOuNETsete yem omu-
cations element (the ~~Inronc) nd tu oial

G-1
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t

outside of any site. This choice of representation has boon
seen to provide a clear view of security-related constraints
in several actual systems described in terms of trust
domains. The level of detail of system roprosontation dep-
Lcted in Figure S might be typical of the Initial structur-
ing stop performed to provide a security architecture.

G-13
CSO-Tm669 March 14, 1935



Figure 6 describes a portion of the example system, intro-
ducing the cnstraint relationships. In fect Figure 6 is
representative of a second step performed in building up a
system security architecture. It is characterized by the
analysis of the constraints relating the trust domains. The
assignment of suggestive names to those constraints lays the

groundwork for the addition of rigorouso mathematically
oriented representations for each of the constraints.

ENVIRONMENT

\S SYSTE C.

CI- CORRECT END POINT IDENTIFICATION
LD. LABELED DATA
LP - LASEL ASSOCIATION PRESERVATION
NTC. NO4 TRANSMISSION COMPROMISE

WS PM - POLICY MODEL

.PT- PROTECTED TRANSMISSION
SA- SECURE AUTHENTICATION

IF so -SECURE DELIVERY: -SECURE TRANSMISSION ENCAPSULATION
SITE SL, SECURE LABELING

RO "SLA - SECURE LABEL A SRANCE

PIF ST - SECURE TRANSPORT
LAN WiL -WELL-ORMED LABELS

LINE \UP - UPWARD FLOW

TRANSMISSIONUINES

Figure 6. Example System Constraints

Several properties of the constraints in Figure 6 should be
noted. A single named property is derived by the system
"for the environment." This property Is suggestively named
"policymodel," shich is the set of assertions Comprising
the model of the system security policy. Other constraints
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between domains build upon one another, finding their ulti-
mate source in the descriptions of the Components of the
trusted computing base (and further in its implementation).
If these source constraints are correct, and the proofs
linking all the constraints are correct, and the trust
domain structuring of the system faithfully represents the
system's designo then the resultant constraint, the
#olicy.model, has been verified to be valid for the impe-
monted system.

5.1 Trust Domain Description

This subsection contains the text of the description of the
example system in terms of the trust domain description
language introduced in the description of structural con-
straints of trust domains.

node domain ENVIRONMENT shall

contain
interior node System;

receive from System
constraint policymodel;

end ENVIRONMENT;

node domain System shall
inhabit interior of node ENVIRONMENT;
contain

interior link Interconnect;

interior no4e Processor multiple;
interior node Workstation multiple;

derive constraint policy-model;
receive

from Interconnect
constraint s~cureotransport;

from Processor
constraint labeled-data;
constraint upwardflouonly;

from Workstation NO.CONSTRAINTS;
end System;

node domain Workstation shall
inhabit interior of node System;
adjoin link Interconnect;
derive NO.CONSTRAINTS;

end Workstation;

G-17
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node domain Processor shall
inhabit interior of node System;
adjoin link Interconnect;
derive for System

constraint labeled-dats;
constraint upward~flow.only;

end Processor;

link domain Interconnect shall
inhabit interior of node System;
contain

boundary link korkstation.Line multiple;
boundary link ProcessorLine multiple;
interior node Site multiple;
interior link Transaission.Link multiple;

adjoin
node Workstation;
node Processor;

associate
Workstation-Line with Workstation one-to-one;
ProcessorLine with Processor one-to-one;

derive
for System

constraint secure-transport;
for Processor

constraint well formed~labels;
receive

from Site
constraint w*llformed labels;
constraint correctendpont.10;

from Workstation-Line
constraint protected-transmission;

from Processor-Line

constraint protected-transmission;
from Transmission-link

constraint no-trans~compromise;
end Interconnect;

link domain Workstation-Line shall
inhabit boundary of link Interconnect;
adjoin

node Site;
.node Workstation via Interconnect;

derive for interconnect
constraint protected transmission;

end Workstation.Line;
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link domain Processor-Line shall
inhabit boundary of link Irterconnect;
adjoin

nod* Site;
nod* Processor via Interconnect;

derive for Interconnect

constraint protectedtransmission;
end Processor.Lino;

link domain Transmission-Link shall
inhabit interior of link Interconnect;
adjoin node Site many~tomany;
derive for Interconnect

constraint no-trans~compromise;
receive from Site

constraint no~trans.compromise;
end Transmission-Link;

0-19
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node domain Site shall
inhabit interior of link Interconnect;
contain

boundary node borkstationLAN_.!P
boundary node Proc~ssorLAN_!F;
boundary node Gateway;

interior link LocalAroa-rntwcrk;
adjoin

link dorkstationyoLin on.tomany;
link Procsssor.LinA_
link TranswissionLink manytouany;

associate
Workstation LAN-.AIFk

with WorkstationLine anetoaone;
Procossor-LAN-rP

with ProcossorLin onetoon
Gateway with TransmisslonLink ontoon

derive
for Interconnect

constraint ell-formed-lab1s
constrint corrLct*endpointIo;

forTa i Transmissionnk
.constraint no-trans-compronis.i

receive
from Local-Area-Notwork

constraint labelassocprservaticn;
constraint socurodlivery;

from lorkstationLAN-IF
constraint secureauthentication;
constraint scurenabrlin ;

from Processor-LAN..IF
constraint secureabvelassuranc

from Gateway
constraint secure.transencasulation;

end Site;

node domain Workstation.LAN.!F shall
inhabit boundary of node Site;
adjoin

link Local-Area-Network;
link Workstation.Line via Sit@;

derive for Site
constraint secure.authentication;
constraint secure.labeling;

end Workstation.LAN.1P;

G-20
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node domain ProcossorLAN.1F shall
inhabit boundary of node Site;
adjoin

link Local.AromNetwork;
link Processor.Line via Site;

derive for Site
constraint secur*.-abel-assurance;

end Processor.LAN.PF;

node domain Gateway shall
inhabit boundary of nod* Site;
adjoin

link Local.Area.twork;
link Transmission-Link via Sits;

derive for Site
constraint secure-trans-encapsulation;

end Gatemay;

link domain Local.Area.Network shall
inhabit interior of node Site;
adjoin

node Workstation.LAN.IF oneoto~many;
node Processor-LAN-IF;
node Gateway one.tomany;

derive for Sit*
constraint labelassoc.preservation;
constraint secureodelivery;

end Local.AreaH.Ntwork;

5.2 Selected Oetaled Examples

The example in Figure 6 is complete in its identification of
major structures and constraints in terms of trust domains.
Two areas of expansion remain to be completed. The first is
the elaboration of each of the constraints to include a com-
plete mathematical representation of tI~e constraint. Such
representation will typically follow the standards of the
specification language into which the trust domains are to
be mapped. In generalt this will involve expressions (e.g.,
predicate calculus)t which are in fact prascribed by the
existing trust domain language grammer. The second area Is
the description of the implementation requirements for the
hardware and software interfaces so that they can be related
to the rest of structure of the system, Incluaing the inter-
face of the system itself. The following two subsections
present a limited example of the Identified areas.

5.2.1 CaoiCaaS|1JAh2kca1Laa The trust domain choser for
constraint elaboration is the Processor, depicted in Figure
6 with the notation "Proc." Folloeing is the Processor trust
domain deeei1n+4- ith constraints elaborated in terms of

r-21
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predicate calculus expressions.

node domain Processor shall
inhabit interior of node System;
adjoin link Interconnect;
derive, for System

constraint labeled-data:
FORALL datump

is-valid-lab~l Cclass (datum));
constraint uprardflouonly:

FORALL datumvprocf
canroad(procpdatum) a>

dominates (class (prac),
class (datum))

AND canwrit*(Procedatum) =>
dominates Cclass~datum),

class Cproc)),
specify

type element, procisubject,
procabject, label;

variable datum: proc~object;
variable proc: proc~subject;
function is-valid-labol(labl.):

boa lean;
function class(olement): label;
function

cantreadCproc~subjct.Proc-obJect):
booloari;

function daminatt(labelplabol): boolean;
and Processor;

Hato the "specify" clause added to the domain that allows
truncated declarations of typoe variableso and functions
(also constants) to clarify the predicate calculus expres-
sions0  With the full form of the constraintso the sugges-
tive, names are retained; the ta parts of each constraint
thus complement each other.

5-2.2 Sgi~vgc2=J2Ia~ada_.Z&a1z The example of this section
has so far only been described in terms of, its major system
structures. This description wi11 now be' augmented by a
selected example that relates the interface of a portion of
the trusted computing base to the rest of the system struc-
ture0
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The domain to be so augmented is the Processor LAN interface
(Procossor.LAN.IF). A pictorial description of that domain
is given in Figure 7.

U..q' • OST LANUNi PROTOC0L PUIC~TOR
LYC. -ASUL VAUOITY CUKSI

PP S ilU PROTOCOL FUNUICTIS N
IPC.- IUIIN.PRUIUI CONNICATION

M.A. 1-I.LASK-.AflI t1A1N
inca. iUTUPUO~c m.In lrrv
C •C - 3 'rF.VAUI0".agcX

LJ - cONlWuTLAWL..IN nOWrT
SLA. a WlUY-.LAUL.Au.nCI

Figuro 7. Software Oomains of Procossor.LAN.IF

It consists of three software domainsr a Most Labeling Pro-
tocol Function, a Label Validity Checkerp and an internet
Protocol Function. These domains communicate via a multiply
Instantiated Inter-Process Communication link domain* As
with the previously presented portion of the examplo, these
internal domains derive constraints that allow the proof of
the constraint that the Processor.LAN.IF derives for the
Site (viz., socure.label.assurunce).

This do.main, as detailed In Pigure 7, is now presented in
terms of the trust domain description language.
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node domain Proc~ssor-LAN-!P shall
inhabit boundary of node Site;
contain

boundary node HostLab~elingProtocolFcn;
boundary node I'nttrnetProtool_Fcn;
interior node LabelValidityChck~r;
interior link 1nterProceussComm multiple;

adjoin
link Local-Area-Notwork;
link Processor-Line via Site;

as sociate
HostLtbelingProtocolPcn wit'* ProcessorLino;
Intornet-Protocol-Fcn with LocalArea-Netuork;

derive for Site
constraint secure-labol-assuranco;

receive
from Most-LabelingProtocolPcn

constraint ILPabol-association;
from IntruetProtocol-Fcn

constraint corroct-labl-inseetion;
from Labol-ValidityChocking

constraint correctvalidity~chock;
from Intor-Procoss-Coam

constraint interproc~commilntogrity;
end Processor-LAJ-IF;

node domain Host-LabolingProtocolFcn shall
inhabit boundary of node ProcessorLANIF;
adjoin

link Inter-Process-Comm one-to-one;
link Processor-Line via Processor-LAN-IF;

derive for Procesor-LAN-I
constraint IIL-labol-association;

end HostLabolingProtocolFcn;

node domain Internet-Protocol-Fcn shall
inhabit boundary of node ProcessorLANI?;
adjoin

link Inter-Process-Comm one-to-oneft
link LocalAreaNotuork via ProcessorLAN-IF

derive for PreossorLAN-IP
constraint correct-labol-insertion;

end Internet-Protocol-Fcn;

node do-vain LabelValidityChecker shall
Inhabit interior of node Processor-LAN-XP;
adjoin link InterProcossComm onet*_mny;
derive for ProcessorLAN.IF

constraint corroctvaliditychock;
end LabolValidity-Checker;



link domain Inter.Process-Comm shall
inhabit interior of node Processor.LAK IF;
adjoin

node Host.Labelin;.Protocol.Fcn oneoto~one;
node Internet.Protocol.Fcn one-to-one;
node Label.Validity.Checker manyto~one;

derive for Processor.LAN.IF
constraint interproccomm.inteority;

end Intor.Process.Comm;

6. ENODINENT IN SPECIFICATION LANGUAGES

The intented result of the description of a system security
architecture In terms of trust domains is to provide the
foundation for a well-structured formal specification of the
system using an established specification language. Some
thought has been given to the applicability of the trust
domain description language to be mapped to several formal
specification languages, as sheen in Figure 8.

Trust Domain m 1om I Anna I Gypsy

domain labs. machineijpackago/ Iscope/
I module/ I procedure I function
IOFUN I I
I I I

inhabit/ jsyntactic )syntactic' Isyntactic
contain I context I context I context

I I I
adjoin IEFFECTS.OF [call Icall

I I I
realization |ZLPL functionlgenerics I -"I i I
instantiationi -- Igenerics I -

I I I
presentation lexternal lwith/use Ifrom

Figure 8 Association of Trust Camain Constructs
With Formal Specification Languages

Work is currently under way in the Rome Air Development
Center's Multinet Gateway Certification Program at Ford
Aerospace. Our work in this program Includes establishing
more stron2ly the mapping from trust domains to the Gypsy
language, in which the Aultinet Gatesay System is being
specified*
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7. EFFECTIVENESS OF TRUST OOMA!NS

Four problems have been identified regarding the structuring
of a systam for verification. The concept of a trust do-vain
is being examined and applied to each of the four problems
within the context of Multinet Gateway and other programs.
The status and results of the investigation with respect to
each of the problems is given in the following subsections.
7.1 The Verification Result Assessment Criteria

Figures 4, 6P and 7P along with the associated descriptions
in the trust domain languageo demonstrate how the verifica-
tion result criteria are more effectively met by structuring
the system in this way. The received constraints of the
most fundamental domains specifically provide the relation-
ships. to the system implementation. and to system boundary
conditions. Furtherp the whole verification (particularly
proof) process is made more comprehensible by the subdivi-
sion of the work into smaller pieces. For each domain, the
received constraints, along with internal constraints
obtained from formal statements about the implementations
are used to prove the derived constraints of the domain. If
the domains have been delineated to the right degree of
detall, then each such proof will not be very hard to follow
intuitively. Such decomposition of structure and proof -have
been part of some formal design approaches (e.g.o. C53, [63,
C73o C83)p including this trust domain approach. That this
approach allows recomposition using the identified con-
Atraints as a closure mechanism is a key to the effective-
ness of this approach. Hence. the domain proofs are cas-
caded on the basis of SgAUZ ggeOS according to the topo-
graphic and constraint relationships identified for all the
trust domains of the system. This casctding is the basis fir
the recomposition. The resultant theorem of this cascade of
proofs. of course, is the policy model itself. It is gen-
*rally accepted that a proof Is made more understancable if
it is broken into smaller pieces. Further, in order for the
verification of a system to be understandable, not only must
the proof itself be understood, but the relationship of the
structure of the proof to the system and Its security policy
must be clearly understood. These conditions for understan-
dability are met by the trust domair based description of
the system structure and related constraints*

7.Z Special System Specific Requirements: Network Systems

The structure of a network itself Intensifies the complexity
problem. The exterior interface of the system trusted
software and hardware is specifically not the interface seen
by system users (connected hosts). Thusp some sort of

G- 2
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mapping between the interface of the trusted computing base
and the interface to the hosts must be provided. Alsop in
order to verify the system, constraint relationships are
necessary to go along with the structural relationships to
relate the trusted computing base interface(s) to the user
interface. We have demonstrated that such a mapping is pro-
vided by decomposing a system into trust domains whose
structural and constraining relationships are explicitly
identified. In this way. the complexity problem is effec-
tively addressed.

7.3 Ensuring Trustworthiness

The ability of trust domains to allow explicit characteriza-
tion of formal requirements on system components allows a
departure, when appropriate, from ensuring the trustworthi-
ness of a component by the assignment of a security label to
the component and limiting the component's behavior only on
that basis. The labeling mechanism is certainly appropri-
ate at times; but the use of trust domains allows a choice
based on system analysis.

7.4 Reusable Domains.

Based on examples generated from Multinet Gateway work. the
verification of components with the three identified kinds
of similarities stated in Problem 4 can be streamlined by
reusing similar trust domains. This is a direct application
of methods suggested by Oon Good E43. The three kind% of
similarities are Cl) actually identical in function (pro-
vided by ths trust domain "multiple" construct); (2) differ-
ing only parametrically (provided by the trust domain.
"instantiation" construct); and (3) different in internal
functi.on while providing similar or identical interfaces
(provided by the trust domain "realization" construct).

8. CONCLUSION

The trust domain concept generalizes the Idea of trusted-
nessr encompassing the concepts of untrusted components and
components of the trusted computing base. The meaning of
trustedness can be better described; It Is also possible to
describe trusted components that are distributed throughout
a system.

One aspect common to much of the formal specification and
verification work accomplished in past years is that In
order to perform a formal verification of a real system, the
system has had to be abstracted to a level compatibla with
the verification method and available tools. Current
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specification and verification methods cannot directly han-
dlo many aspects of actual systems and the result has been a
single highly abstracted level. The single or "too" level
specification varied from system to system. For relatively
small systems the necessary degree of abstraction was not so
severe that the designer and evaluator could not intellectu-
ally grasp the association between the real systom and an
abstraction of it. People have seemed to feel comfortable
about being able to handle the inherent "complexity gap" by
informal memory devices either in the designer*s mind or
functional descriptions written with which.ever specification
language the designer felt most comfortable. Attempts have
been made to apply directly such concepts to larger or func-
tionally more complex systems. Problems have arisen as a
consequence. Attempts to use traditional conceptual frame-
works to structure a system and to specify formally and ver-
ify more complex systems have engendered an enormous "com-
plexity gap." Such a gap became so large that it was Intel-
lectually difficult, or even impossible, to describe a use-
ful relationship between a system's abstraction and its
realization on a hardware base. Nearly every methodology
developed has had, as a primary purpose, that of reducing
this gap.

Are we, with trust domains, introducing yet another .uetho-
dology and additional layers of abstraction to address a set
of problems that an experienced systems designer or software
engineer has boon facing and solving for some time? In
answer, the question should be asked: Hoe moll have we been
solving the problems, particularly with respect t3 specify-
ing and verifying properties that directly aid the increased
understanding and correctness a system, and thereby increas-
Ing the assurance that the system operates according to its
behavioral (e.g., security) policy?

eased on an initial assessment and current status of some
examplas, the use of the trust domain concept is v con-
sistent approach for organizing the relationships among the
functional processing requirementso the' types of datao
architectural reference points, and most impartantly, the
constraints that are often left unstated or implicitly
assumed In the specification and verification of a system or
a component. The concept can be incorporated into a formal
specification language and verification approach as is
presently being done in terms of Gypsy. The conceptual
framework can be applied consistently from a level of
specification from an "outside user" of a component to a
description of how resources c€n be allocated within a pro-
cas or.
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The trust domain concept is not "yet another methodology."
The concept allows the identification and description of a
component and the relationships among components that are to
be realized within the system. This overall approach, in
effect, raises the question of whether a verified system
must be an understandable system. We answer in the affirm.&-
tive.
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LCDR Philip Myers: Navy Technology and ADA

LCDR Myers spoke on the relationship of verification
technology to the Navy's anticipated use of Ada.

There is a need for near term "successes" to sell
verification technology to Program Managers for Navy software
development projects. Program managers need to be convinced
that spending money on verification during the development
phase of a system will minimize costs incurred in the
maintenance phase due to incorrect software. In addition,
verification technology must be useable by a wide class of
people, rather than being limited to users with extensive
training in logic.

The Navy in particular is adopting the following
policies for Navy software systems:

I. The Navy is procuring Ada for its standard set of
processors, the AN/UYK-43, AN/UYK-44, and AYK-14.
These processors are the ones required for use by
all mission critical systems. That is the policy.

2. All Ada software will be developed and maintained
on the ALS/N. This is an "envisioned policy" (not
promulgated, but anticipated). The ALS/N is being
acquired as a Navy Tactical Embedded Resource and
would fall under the same policy as the processors.

3. There will be one set of runtime environments for
the one set of processors because the ALS/N will
have one set of standard compilers for the standard
processors.

One implication of the above policies is that if verification
technology is to be used in the development of Navy systems,
it must be used in the near term, since systems which are
developed in the near term will not be replaced for a long
time, on the order of 20 to 45 years (the life of the ship
and its systems, including software).
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Krzysztof Apt: Reconsidering Correctness of CSP Programs

First a review of Hoare's communicating sequential
processes (CSP) was presented. Then a very simple proof
system for a subset of CSP was introduced. This proof system
can be used to handle simple Ada programs using a restricted
form of tasking.

First CSP programs without nested parallelism are put in
normal form. This normal form has one iteration command and
all the I/O commands are in the guards. If the respective
branches of matching I/O commands re-establish the invariant,
then the invariant holds for the iteration command.

In contrast to other CSP proof systems this one does not
necessitate an introduction of several auxiliary notions and
can be used directly. The proof system has been successfully
used to verify a non-trivial example.

In the ensuing discussion the following points were
brought out. The transformation to normal form is like
changing a program with GOTOs to one with one WHILE loop. A
change in size is possible, but many actual programs are
nearly in normal form. The global invariant cannot be
decomposed into invariants for the individual processes. As
a result the method is not modular. However, the individual
(sequential) processes can be specified in any high level
specification language.

This excerpt consists of sections 1 through 4. The
complete paper will appear in:

NATO ASI Series, Vol. F13
Logics and Models of Concurrent Systems
Ed. K. R. Apt.
Springer-Verlag Berlein Heidelberg 1985
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Krzyazot R. Apt
L.I.T.P, Universitt Paris 7

2, Place JUssleu, 75251 Paris, PRANCE

Abstract The problem of correctness of the solutions to the distributed
tei ination problem of Prances EF] Lk addressed . Correctness criteria are
fozmalized In the custcmary framework for program correctness. A very simple
proof method in proposed and applied to show correctness of a solution to the
problem.

1. -zTrO- IzOu

This paper deals with the distributed termination problem of Francez
EV whicb has received a great deal of attention in the literature. Several
solutions to this problem or its variants have been proposed, however their
correctness has been rarely discussed. In fact, it i usually even not
ezplicitly stated what properties such a solution should satisfy.

A notable exception In this matter are papers of Dijistra. Peilen and
van Gasteren (Oral and 1opor ET] in which solutions to the problem are
systematically derived together with their correctne s proofs. On the other
hand they aze presented in a simplistic abstract setting in which for example
no distinction can be made between deadlock and termination. Also, as we shall
se in the next section, not all desired properties of a solution are
addressed there. Systematically derived solutions in the abstract setting of
C 070 are extremely helpful in understanding the final solutions presented in
CuP. Uwver, their presentation should not relieve us from providing rigorous
correctness proofs of the latter ones - an issue we address in this paper.

Clearly, it would be preferable to derive the solutions in CSP
together With their correctness proofs, perhaps by transforming accordingly
the solutions provided first in the abstract setting. Unfortunately such
techniques are not at present available.

This paper is organi sd an follow. In the next section we define the
problem and propose the correctness criteria the solutions to the problem
should satisfy. Then in section 3 we formalize those criteria in the usual
framework for program correctness and in section 4 we propose a very simple
proof method which allows to prove them. Zn section 5 we provide a simple
solution to the problem and in the next section we give a detailed proof of
Its correctness. Finally, in section section 7 we assess the proposed proof
method.
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Throughout the paper we assume from the reader knowledge of

Commnicatinq Sequential Processes (CSP in short), am defined in Hoare (HI,

and some experience in the proofs of corzectness of very simple loop free

sequent ial programe.

2. DISTRIBUTCED TERMZNATION PROBLEM

Suppose that a CSP program

P a CP1 1... .11 Pn],

where for every 1 4 1 9 n Pi t: rt rrTi E t [Si] is given. We assume that
each S1 is of the form o gi,j - Stj for a multiset ri and

1) each gi, contains an i/o command adressing Pj'

ii) none of the statements INITj , Sj, j contains an I/o command.

We may then that P is in a normal form. Suppose moreover that with
each Pl a stability condition B i , a Boolean expression involving variables of

Pi and possibly some auxiliary va-iables, is associated. By a Qlobal stability
condition we man a situation in which each process is at the main loop entry
with its stability condition Di true.

We now adopt the following two assumptions t

a) no comunication can take place between a pair of processes whose stability
conditions hold,

b) whenever deadlock takes place, the global stability condition is reached.

The distributed termination problem is the problem of transforming P
Into another program P which eventually properly terminates whenever the
global stability condition is reached.

This problem, due to Francez C?], has been extensively studied in the
literature.

We say that the global stability condition is (not) reached in a
tation of P1' itf it is (not) reached in the natural restriction of the

comutation to a coputation of P. In turn, the global stability condition is
reachd (not reached) in a comutation of P if it holds in a possible (no)
global state of the computation. We consider here partially ordered
computations in the sense of EL].

We now postulate four properties a solution P to the distributed
termiUation problm should satisfy (see Apt and Richier CAR]) a

1. Wieneaver P, properly terminates then the global stability
condition Is reacte.
2. There is no deadlock.
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3. If the global stability condition is reached then P' will
eventually properly terminate.
4. If the global stability condition is not reached then infinitely
often a statement from the original program P will be executed.

The last property excludes the situations in which the transformed
parallel program endlessly executes the added control parts dealing with
termination detection. we also postulate that the comunication graph should
not be altered.

In the abstract framework of [DFG] only the first property is proved.
Second property Is not meaningful as deadlock coincides there with
termination. In turn, satisfaction of the third property is argued informally 4
and the fourth one is not mentioned.

Solutions to the distributed termination problem are obtained by
arranging som additional comunications between the processes P. most of
them are program P' ( [P. 1...N Pn] in a normal form where for every i,
zlc~n

0 a . gi, - "" * S'i,j

a COWROL PARTi

where ... stand for some added Boolean conditions or statements not containing
i/o comnds, and CONTROL PART1 stands for a part of the loop dealing with
additional oommunications. we amsmms that no variable of the original process

Pi s s INITI i *C5:] can be altered in CONTROL PART and that all I/o commands
within COWITOL PAMkj are of new types.

We now express the introduced four properties for the case of
solutions of the above form using the customary terminology dealing with
program correctness.

3. FONLZZ&TION OF THE CORRECTNESS CRITERIA

Let p,q,i be assertions from an assertion language and let S be a
CBP program. we say that (p) S (q) holds in the sense of partial correctness
if all properly terminating Coutations of S starting in a state satisfying
p terminate in a state satisfying q. We say that (p) S (q) holds in the
sense of weak total correctness if it holds in the sense of partial correctness
and moreover no computation of S starting in a state satisfying p fails or
diverges, We sy that S Is deadlock free relative to p if in the
comqputations of S stafting in a state satisfying p no deadlock can arise.
If p a true then we simply say that P i deadlock free.

Pinally, we say that (p) S (q) holds in the sense of total
correctness if it holds in the sense of weak total correctness and mozreover S

K-4



is deadlock froe relative to p. Thus when (p) S (q) holds in the sense of

total correctness then all computations of S starting In a state satisfying

p properly terminate.

Also for CSP programs in a normal form we introduce the notion of a

global invariant I. We say that I is a global Invariant of P relatIve to p

if in all computations of P starting in a state satisfying p, I holds

whenever each process Pi is at the main loop entry. E p true then we

simply say that I is a global invariant of P.

Now, property I. simply means that
n

(.ru} P' ( A Bi) (1)
i-i

holds in the sense of partial correctness.

Property 2 means that P- is deadlock free.

Property 3 cannot be expressed by refering directly to the program
P'. Zven though It refers to the termination of PI it in not equivalent to

Its (weak) total correctness because the starting point - the global stability
condition - is not the initial one. It Is a control point which can be reached
in the course of a computation.

Nowever, In the case of P, we can still express property 3 by referinq
to the weak total correctness of a program derived from P'. Consider the
following program

COWTOL PART 0
rPF ss *[COW1TRL PART1] II...I1 P n Is *tCONTRL PFJJ.nI

We now claim that to establish property 3 it is sufficient to prove
for an appropriately chosen global invariant I of V'

a
( AA Di ) CSM0L PART (true) (2)

1-1
in the sense of total correctness.

Indeed, suppoe that in a computation of P' the global stability
n

condition is reached. Then I A A Di holds where I is a global

invariant of V°. By the assmption a) concerning the original program P no
statement frm I can be ecuted any more. Thus the part of V' that remains
to be emcuted Is equivalent to the program WIO L PART. Now, on virtue of
(2) property 3 holds.

Consider now property 4. As before we can express it only by refering
to the pr VEm CWL, PAM. Clearly property 4 holds if

K-5
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n
(Z A A B) CONTROL PAW (true) (3)

1-1

holds In the sense of weak total correctness. Indeed, (3) guarantees that in
no computation of p- the control remains from a certain moment on
indefinitely within the added control parts in came the global stability
condition Is not reached.

asuming that property 2 is already established, to show property 3 it
Is sufficient to prove (2) in the sense of weak total corrctness. Now (2) and
(3) can be combined into the formula

(I) OMoTL PAR (true) (4)

In the sense of weak total correctness.

The Idea of expressing an eventuality property of one program by a
termination property of another program also appears in Grumberg et al. (GWI2
in one of the clauses of a rule for fair termination.

4.PROP IWINOD

We now present a simple proof mthod which will allow us to handle the
properties discusse in the previous section. It can be applied to CSP
programs being In a nomal form. 3o assume that P i EP, a... U Pn ] in such a
program.

Given a guard gi, we denote by bi,j the conjunction of its Boolean
parts. We say that guards g1 ,j and gJ,i match if one contains an input
ommnd and the other an output cmmnd whose expressions are of the same
type. The notation implies that these i/o comands address each other, i.e.
they are within the texts of Pi and Pj, respectively and address Pj and
Pi, respectively.

Given two matching guards g,j and gj,i we denote by Eff(g,j ,
gji) the effect of the com.unication between their i/o commands. It is the
assignment whose left hand side is the input variable and the right hand side
the output expression.

Finally, let
TKZMTNTED a A -1 bi, j.

114in,
er i 

I

Oberve that =WINOW holds upon termination of P.

Consider now partial correctness. We propose the following proof rule:
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RUL 1 : PARTIAL CORRECTNESS

(p) INIT1 ;...; INITn (I),
(I A bi,1 A bj, 0 Eff(g, J, qjj ) -; S .j Sj. (I)

for all i,J s.t. I a rj , I a ri and gi,j, gj,i match

(p) P (I A TEMINTED)

This rule has to be used in conjunction with the Usual proof system
for pertlal correctness of nondetezministic programs (see e.g. Apt [Al]) in
ozder to be able to establish its premises. Informally, it can phrased as
follows. If I is established upon execution of all the INITi sections and is
preserved by a joint execution of each pair of branches of the main loops with
matching guards then I holds upon exit. If the premises of this rule hold
then we can also deduce that I Is a global Invariant of P relative to p.

Consider now weak total correctness. We adopt the following proof
rules

WAXE 2 s MUA TOTAL CRZTIS

(P) Em, s.. r r n (I A t 'A 0),

(I A bi,j A ji A Z-t A t A 0) Eff(gi,Ig 1 ,i);S±LSj j,i( A 0 ( t < z)
for all ij s.t. 1. rj, J e ri and g1i,, g1 ,i match

(P) P (I A TZNUN&TED)

where z does not appear in P or t and t is an integer valued expression.

This rule has to be used in conjunction with the standard proof system
for toW correctness of nonetezrinistic program (see e.g. Apt (Al]) in order
to establish its premises. It is a usual modification of the rule concerning
Partial correctnoe.

Finally, consider deadlockc freedom. Let

W3X 1A CI bi,j v 1b, , 141,14(n, 1 4 r, i o Fi, gi,j and gj,i match)

Oserve that In a given state of P the formula DWODMD holds if and
only If no comnication between the processes is possible. We now propose the
following proof rule

R=O 3 1 D09 PIUMDW

I is a global Invariant of P relative to p,
I A 3OED - TKXNITZD

P is deadlock free relative to p

The above rules will be used in conjunction with a rule of auxiliary
variables.

K-7



Let A be a set of variables of a program S. A is called the set
of auxillary variables of S if

1) all variables from A appear in S only in amsignments.
11) no variable of S from outside of A depends on the variables
from A . Zn other words there does not exist an assignment xt-t In
S such that x %d A and t contains a variable from A.

Thum for exulle (z) Is the only (nonempty) set of auxilLary
variables of the program

]Pl i X107 ; P2 1 x N P2 18 P1 ? U ; u:'-+l]

we now adopt the following proof rule first Introduced by Olicki and
GrIes In (Or1, 002].

IULV 4 # ALILZARY VARZUL9

Let A be a set of auxiliary variables of a program S. ,et S be
obtained from S by deleting all assignments to the variables in A. Then

(p) s (q) "

(p) S3 (q)

provided q hem no free variable from A.
Alo If S JIs deadlock free relative to p then so is B'.

We sha use this rule both In the proofs of partial and of (weak)
total correctness . Also without- mentioning we shall use in proofs the well-
known consequence rule which allows to strengthen the preconditions and weaken
poetconditions of a program.
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Frank Oles: Thoughts on an ADA-based Design Language

Design languages created by those interested in prototyping
turn out too awkward-to use for formal verification, and design
languages created by those interested in formal verification are
difficult to use for rapid prototyping. It was argued that the
proper course is to regard a design language as a coherent
framework for relating three distinct sublanguages: an
implementation language, a specification language, and a
prototyping language. The dangers of regarding all
specifications as executable were analyzed. Desireable features
of the prototyping language and the specification language were
enumerated.

Discussion

In the discussion the advantages of different specification
languages for different purposes was emphasized. The speaker
said that set theory was chosen as the basis for prototyping
because it was familiar. Furthermore, untyped set theory as a
basis for a typed language presented no special difficulties.

j
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Thoughts on ADA-Based
Design Languages

Frank J. Oles
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Those interested in FORMAL VERIFICATION create one
kind of design language.

Those interested in RAPID PROTOTYPING oreate
another.

Is
COHERENT

RECONCILIATION
possible?

L- 3



Desirable Components in a Design Language

* An Implementation Language

-- An Imperative Programming Language

Store-Oriented Semantics

-- ADA

e A Specification Language

-- More General Semantics

-- Nonexecutable

-- ANNA annotations

* A Prototyping Language

-- An Imperative Programming Language

-- Extension of the Implementation Language

-- Similar to ADA Virtual ADA in ANNA

03/85 (Frank J. Oles)
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Varieties of Specifications

A specification is

* strong if its set of meanings consists of a single
element,

* weak if its set of meanings consists of more than
one element.

It is unnatural and misleading to define weak specs in
imperative terms.
(Sometimes operational nondeterminism is confused
with weak specification.)

The strong specifications are the possibly ekecutable
ones.

A prototyping language should make it possible to
develop strong specs easily.

03/85 (Frank J. Oles)



Executable Specifications

Should the two high-level components be combined?

1. A Specification Language

2. A Prototyping Language

Whether it can be done without making all specs for
subprograms executable is doubtful.

If only executable specs are supported, then the
software designs will suffer from overspecification.

03/85 1Frank J. Oles)
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Prototyping Language Features

* Should be a high-level extension of ADA

* Type system of ADA

* is focused on compile-time typing.

* makes it hard to visualize sets of values for
some types, independent of storage
considerations.

* Needed: a more refined type structure

* Value types

* Phrase types

03/85 (Frank J. Oles)
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Value Types

If A and B are value types, then more value types are
SET OF A, SEQ OF A, MAP(A,B), REL(A,B).

DISJOINTUNION would be an important value type
constructor.

Introduce value types as solutions of recursive
equations.

Any type with a definition involving arrays or access
types is NOT a value type.

Imperative constructs needed

" FIND

o SELECTION

03/85 (Frank J. Oles)
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Specification Language Features

* General enough to apply to both ADA and the
Prototyping Language.

e Supports precondition/postcondition method of
specifying subprograms.

* Supports direct specification of implementation by
prototype, when desirable.

" Distinguishes between the specification of
user-defined value types and state-machines.

o Supports specification of types BOTH by abstract
models and by axioms.

* Has multiple levels of refinement BOTH for
subprograms and for packages.

" Formally incorporates examples of use in
specification of functions.

03/85 (Frank J. Oles)
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Evils of Overspecification

Overspecification: the inclusion in a software design
of conceptually unnecessary or
undesirable constraints.

Consequences of overspecification:

* Unnecessary early design errors.

o Irrelevant detail impairs understanding.

o Harder to maintain correct relationship between
spec and implementation.

o Limits reusability.

03/85 (Frank J. Oles)
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Norman Cohen: Axiomatic Semantics for ADA

The goal is to prove selected properites about ADA programs.
These properties include the implementation of algebraically
defined data abstractions, numeric properties, the absence of
unanticipated exceptions', and the absence of erroneous
execution.

Erroneousness arises because some problems are too expensive
or too complicated to be detected by the compiler. The compiler
assumes that certain rules are obeyed, and if they are not, then
the effect of further execution is unpredictable. It is valuable
to prove the absence of erroneousness. Restricting the language
can make this job easier.

A verifiable subset will forbid aliasing, changing shared
variables in tasks, unchecked conversion, and address clauses.

An ADA verifier can make use of the fact that the compiler is
a verifier for the static semantics of the languages. A DIANA
tree can be input to both the code generation part of the
compiler and the verifier for ADA dynamic semantics. Still an
UNambigous, Resolved, Expanded ADA Depicting All Bindings in the
Lexical Environment (UNREADABLE) is necessary for verification.
Distinct variables and subprograms are given distinct names, so
proof rules based on textual substitution are valid.

Proposed solutions to problems with implementation-dependent
behavior, optimization, and exceptions were also presented.

Discussion

In the discussion the speaker pointed out that an important
goal of ADA is portabiltity. One may place limits on compilers
(like how they optimize code), but one should not tie
verification to a particular compiler. Also pointed out, was the
different approaches to dealing with erroneousness. In some
cases it is ruthlessly forbidden. In other cases, like aliasing,
there is a responsibility to prove that there is no aliasing.
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SOME OTHER ASPECTS OF "UNREADABLE"

* FUNCTION CALLS AND ALLOCATORS GIVEN TWO PARAMETERS

TO ENSURE THAT TEXT OF THE CALL OR ALLOCATOR CAN

DENOTE THE VALUE IT RETURNS

0 $action counter (IMPLICITY INCREMENTED AFTER

EACH STATEMENT AND AT CERTAIN OTHER TIMES)

0 STATIC TAG (DISTINGUISHING CALLS AND ALLOCATORS

WITHIN A STATEMENT)

* EXPRESSIONS WRITTEN AS MANY TIMES AS THEY ARE

EVALUATED

* EXAMPLES:

Node:=BuildTree(new Integer, new Integer);

Node:=
Build Tree

(new ($action counter, 1) Integer,
new ($action counter, 2)lnteger

A,B : Calendar. Time: =Calendar. Clock;

A: Calendar. Time: =Calendar. Clock ( $action counter, 1);
B : Calendar. Time: =Calendar. Clock( saction-counter, 1);

* DEFAULTED PARAMETERS EXPLICITY SUPPLIED

* UNIFORM, EXPLICIT NOTATION:

A.all(3) (1=>x, 2=>x, 3=-2x)

SOF'Iec,.ug



INCORRECT ORDER DEPENDENCE

TYPICAL PROOF RULE IF ACTION A CONSISTS OF

SUB-ACTIONS SI, S2, and S3, PERFORMED "IN SOME

ORDER THAT IS NOT DEFINED BY THE LANGUACE":

P(Sl;S2;S3; IQ
P(S;$3;S2; IQ
P{S2;S;S3; }Q
P(S2;S3;Sl; IQ
P{S3;S;$2; IQ
P{S3;S2;S1; }Q

P{AIQ

* COMBINATORIAL EXPLOSION CAN BE AVOIDED WHEN

SUB-ACTIONS (TYPICALLY EVALUATION OF EXPRESSIONS)

HAVE NO SIDE EFFECTS

.OFrecH.
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IMPLEMENTATION-DEPENDENT, UNSPECIFIED
OR INDETERMINATE BEHAVIOR

* EXAMPLE: PROVE

(Standby Cell/=null }
begin

A := new Intege['(O);
exception

when Strage.Error= >

StandbyCell.all 0;

end; A := StandbyCell;

(A. ali=0 I

" THERE IS NO PORTABLE WAY TO CHARACTERIZE STATES
IN WHICH ALLOCATION WILL NOT RAISE STORAGE ERROR

* FIRST APPROACH

* HAVE NO PROOF RULE JUSTIFYING THE CONCLUSION
THAT STORAGE ERROR IS RAISED OR THAT IT IS NOT

* REJECTED BECAUSE THIS APPROACH IS TOO WEAK
FOR THE PROOF ABOVE

.1OP'recl../
?'i



IMPLEMENTATION-DEPENDENT, UNSPECIFIED

OR INDETERMINATE BEHAVIOR: SOLUTION

* INTRODUCE AN UNINTERPRETED LOGICAL PREDICATE,

SAY P

* INTUITIVELY, TRUTH OF P IMPLIES ALLOCATION WILL

SUCCEED

* PROOFS ASSUME NOTHING ABOUT THE VALUE OF P,

BUT THE USUAL RULES OF PREDICATE CALCULUS

APPLY

* BLOCK PRECONDITION:

(P and True) or (not P and Standby Cell/= null)

• THIS IS IMPLIED BY Standby Ceil/= null)

M-_11



OPTIMIZATION: REASSOCIATING OPERATORS

'...FOR A SEQUENCE OF PREDEFINED OPERATORS AT THE SAME

PRECEDENCE LEVEL (AND IN THE ABSENCE OF PARENTHESES

IMPOSING A SPECIFIC ASSOCIATION), ANY ASSOCIATION OF

OPERATORS WITH OPERANDS IS ALLOWED IF (IT IS MATHEMATICALLY

EQUIVALENT]." - RM 11.6(5)

CONSERVATIVE INTERPRETATION:

AFTER OVERLOADING HAS BEEN RESOLVED AND OPERAND

TYPES HAVE BEEN DETERMINED, THE ASSOCIATIVE LAW

MAY BE USED TO REASSOCIATE SUCCESSIVE APPLICATIONS

OF AND, OR, XOR, +, 6, AND *, PROVIDED THAT OPERAND

TYPES ARE UNAFFECTED

* EXAMPLE: 11, 12:Integer;

F :SomeFixedPoint Type;

11"F*12 => 11"(FI2)

F*I1*12 *:F*(I1*12)

I
,ur..a jgau. soFec,i
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REASSOCIATING OPERATORS: SOLUTION

* IN UNREADABLE, A+B+C+D REPRESENTED AS

SUM(<VERSION OF "+">, A,B.CD)

* NOTHING CAN BE PROVEN ABOUT EVALUATION OF

THE EXPRESSION UNLESS IT CAN BE PROVEN FOR

ALL POSSIBLE ASSOCIATIONS

* WILL COMBINATORIAL EXPLOSION BE A PROBLEM

IN PRACTICE?

SOP 13



OPTIMIZATION: CODE MOTION

0 EXAMPLE FROM RM 11.6(10)-

-- A and K are global variables.

declare

N: Integer;

begin

-- Evaluation of A(K) may be moved here
N :-- 0;

forJ in I..10 loop

N := N + J**A(K);

end loop;

Put (N);

exception

when others =>Put ("some error arose"); Put (N);

end;

* SOLUTION:

IF SOME CONDITION IS TO BE ASSUMED UPON ENTRY TO A

HANDLER FOR A PREDEFINED EXCEPTION, IT MUST HOLD AT

EACH "INTERMEDIATE STEP" WITHIN THE SEQUENCE OF

STATEMENTS PRECEDING A POINT WHERE THE EXCEPTION

MIGHT NORMALLY BE RAISED

* INTERPRETATION :

AN "INTERMEDIATE STEP" OCCURS BETWEEN STATEMENTS

AND BETWEEN SUBEXPRESSION EVALUATIONS WITHIN A

STATEMENT

M- 14ecp
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RAISE STATEMENTS WITHOUT

EXCEPTION NAMES

* A STATEMENT OF THE FORM

raise;

IS ONLY ALLOWED INSIDE A HANDLER, WHERE IT RERAISES
THE EXCEPTION THAT BROUGHT CONTROL TO THE HANDLER

* THIS EXCEPTION CANNOT ALWAYS BE DETERMINED STATICALLY:

when Constraint Error I Numeric Error =>
when others =>

" HANDLERS MAY BE NESTED

when A =>

begin

exception

when B =>

<<Labe>>

begin
exc;iion

when C =>L begin
exception

when D => goto Label;

when E => raise;

end;

raise;

L end;

raise;

iend;~raise;

.,,,.., .... SOFi'ecH
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SOLUTION: "EXCEPTION CONTEXTS"

* AN ORDERED LIST OF CURRENTLY ACTIVE EXCEPTIONS,
WITH THE "INNERMOST" ACTIVE EXCEPTION OCCURRING

FI RST

* IF AN EXCEPTION WITH A HANDLER IS RAISED, THE

EXCEPTION IS APPENDED TO THE FRONT OF THE LIST

BEFORE THE HANDLER IS ENTERED

* A RAISE STATEMENT WITHOUT AN EXCEPTION NAME RAISES
THE EXCEPTION AT THE FRONT OF THE LIST

* UPON DEPARTURE FROM A HANDLER, THE FRONT

EXCEPTION IS REMOVED FROM THE LIST

* A goto FROM A HANDLER n LEVELS DEEP TO AN OUTER

HANDLER n - k LEVELS DEEP REMOVES THE FRONT k

ITEMS FROM THE LIST

REMARKS: EVERY PROOF RULE FOR COMPOUND STATEMENTS

(AS WELL AS "ralse;" AND "goto L;") IS IN

TERMS OF AN EXCEPTION CONTEXT.

IN PRACTICE, HANDLERS ARE ALMOST NEVER

NESTED

M09 16



SUMMARY

" THE POSSIBILITY OF ERRONEOUSNESS MUST BE CONFRONTED,

NOT IGNORED

* A VERIFIABLE SUBSET CAN BE DEFINED CONSISTING OF

BOTH STATIC AND DYNAMIC RULES AND INCLUDING MOST

OF Ada

* SEMANTICS CAN BE SIMPLIFIED BY LEAVING STATIC ISSUES

TO A COMPILER AND PREPROCESSOR

* PROBLEMS ARISING FROM DEFINITION OF Ada:

* INCORRECT ORDER DEPENDENCIES

* INDETERMINATE BEHAVIOR

* ALLOWABLE OPTIMIZATIONS (ASSOCIATIVE LAW,

CODE MOTION)

a EXCEPTION CONTEXTS

1-17,O 'recpq
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David Gries: Teaching Programmers about Proofs

Programmers must be given simple rules. Thus an important
goal is the simplicity of proof rules. The following simple
proof rule for procedure calls, due to Alain Martin, Acts
Infornatica 1984 was described and justified:

Let P(In x; iskout y; ot z) be a procedure with body S, such
that the following Hoare triple is valid:

(P1 S (Q)

where we assume that in P, only x and y are free; in Q only x, y,
and z are free, and that S doesn't change x. We are interested
in finding a suitable precondition for:

? p(a,b,c) (R)

Execution of the call P, using call by value, is equivalent to

x,y:- a,b; -- this is ordered simultaneous assignment, so that,
-- e.g. b,b:- 6,7 is admissible

S;

b,c:m y,z;

Let A be a predicate containing only x as free program
variable. Then the following rule is valid:

Q A A -> R[b,c<-y,z]

{Ptx,y<-a,b] A A[x<-a]) p(a,b,c) (R)

Simple examples of the use of the rule were given.

A plea was made for replacing the formal parameter/actual
parameter terminology by parameter/argument.

The same rule works for call-by-reference, if aliasing is
prohibitted.

The simple rule for assignments

(R[x<-e]) x:- e; (R)

has the instance



(y - 0) x:- e; (y - 0),

and thus assumes that there are no side effects. There are
rules, but more complicated ones, for assignments permitting side
effects.

Discussion

The speaker maintained that good programmers do actually use
these sorts of rules, at least, unconsciously. The evidence is
mostly anecdotal, in the speaker's experience no one has shown a
loop correct, except by a variant of these methods. Teaching
these rules to all programmers promotes better awareness, more
care for details, and faster programming. Real programs, big
programs are composed of small programs. Putting small programs
together is still an unsolved problem.
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Alain J. Ma~tin

General Proof Rule

for

Prooedure Call

Act& Informatioa 84

-----------------------------------------------------------
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4nout Y;
out z);
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Discussion of papers on Advanced Verification

Oles was asked, why should one not want specifications to be
executable? He said that it is mainly a sociological problem.
If you tell programmers specifications are executable, they will
give up on abstraction. For example, the specification of
security is a limited property that has no functionality. An

4executable specification requires saying much more.

Gries was asked to address the real-world problem of
programming well, even if not correctly. His response was that
there are no other methods so crystallized as to be teachable.

Apt was asked about the prospects of going beyond CSP to
prove correctness of ADA tasks. Apt suggested that clustering
might be a possibility. Since nested accepts are very awkward in
CSP looking for a normal form for ADA programs might be
profitable. On the other hand, Apt has pessimistic about dynamic
task creation. In response to another qeustion Apt said that
procedures and packages can be used if they are inside the
individual processes.

McHugh offered his experience with verified software in
practice. First, he noted that some software verified by Gypsy
was not being used for extraneous reasons. On the other hand, an
informally hand-verified program (1000-1500 lines of assembly
code) has been used successfully for a long period of time. The
IBM "cleanroom" method -- hand proofs about control structures
(in place of unit testing) -- has been successfully used. IBM
has trained 2000 such people and will teach this to anyone for a
fee. It is now being taught to freshmen at the University of
Maryland.

P-1
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Jim Williams: Practical Verification Systems

The practical verification system has three goals. (1)
Soundness: a rigorous logical basis with a single, expressive
logic. (2) Performance: minimize user-supplied,
application-dependent proofs. (3) User-friendliness: language
independent, usable by the non-logician.

The major components of a verification system: the underlying
logic, theorem proving, and the user interface, should be pursued
in parallel and properly factored.

The practical verification system uses a transformational
approach. The specifications are transformed to a functional
description, then to a detailed program description, and finally
to the source code.

Already there is a PROLOG prototype. The internal logic is
in the final debugging stages. The theorem prover is based on
the Argonne logic machine architecture and is related to parallel
hardware efforts. The user interface is designed to support a
variety of languages and has been ported to SUN workstations.
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Ryan Stansifer: Near-Term ADA Verification

Modifying existing verifications systems, e.g., GYPSY,
AFFIRM, Stanford Pascal verifier, to be ADA verification systems
is nearly as hard as starting from scratch, since one must go
down to the level of the LISP implementation. A possible
exception is the PL/CV verifier which uses a high-level
description language to define the actions of the underlying
logic engine given the particular syntax of the programming
language to be verified.

A new approach is suggested for the near term which makes use
of the Cornell synthesizer generator (Teitelbaum and Reps). The
synthesizer generator takes an attribute grammar as input and
produces as syntax-directed editor as output. By the correct
choice of attributes (Reps and Alpern) a verification system can
be made which produces a set of verification conditions (VCs)
from an ADA program. By giving these VCs to a theorem prover the
program can be checked against its specification.

To illustrate the technique here is a simplified sample of
the input to the synrthesizer generator for a syntax-directed VC
generator.

S x: x%-e
S.VC := ()
S.PreCond :- subst e for x in S.PostCond

S::- if b then A else B
S.VC :- A.VC + B.VC
S.PreCond :- (b -> A.Precond) & (-b -> B.PreCond)
A.PostCond :- S.PostCond
B.PostCond :- S.PostCond

The method allows experimentation and is easily extensible to
new proof rules for ADA as they are developed. The system can
use any theorem prover to prove the VCs, so that existing theorem
provers can be used. Better theorem provers can be used later as
they become available.

R- 1



Near Term ADA Verification

Modify existing systems

GYPSY, AFFIRM, SPV. PL/CV

Cornell synthesizer generator

existing software

extensible, allows experimentation

current verification methodology

Cornell synthesizer (Teitelbaum and Reps)

language-based programming environments

syntax-directed editor

generalized to a synthesizer generator

R 2



Attribute Grammars

Context free grammars with attributes attached to the symbols

Associated with each production is a semantic definition

Two kinds of attributes: synthesized and inherited

Semantic definitions define values for all synthesized
attributes of the LHS nonterminal, and all inherited
attributes for RHS symbols.

Simple WHILE languages

P ::= S

S ::- S ; S
1 2

S :: x z : e *

S ::- if b then S else S
1 2

S ::- while b inv I do S end
1

R-3



Attributes

Nonterminal P (program)

synthesized attributes:

VCs (set of verification conditions)
ProgPre (assertion)
ProgPost (assertion)

Nonterminal S (statement)

synthesized attributes:

VC (set of verification conditions)
PreCond (assertion)

inherited attributes

PostCond (assertion)

R-4



VC Generator

p ::= S { Q

P.VC S.VC

P.ProgPre := S.PreCond

P.ProgPost Q

S ::= x :- e

S.VC :=

S.PreCond := Substitute e for x in S.PostCond

S ::- if b then S else S
1 2

S.VC :- S .VC + S .VC
1 2

S.PreCond :-
(b -) S .PreCond) & (-b -> S .PreCond)

1 2

S .PostCond :- S.PostCond
1

S .PostCond :- S.PostCond
2



Interface with TP

Particular syntax

e.g., Cambridge prefix

Translate references

A [i] -- > ArraySelect (A, i)

Preface of facts and definitions
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Verifying Ada* Progranms

Repomod . Hookway

Department of Computer Engineering and Science
Case Western Reserve University

Cleveland, Ohio 44106

December 14, 1984

The inductive assertion technique, which has been used successfully as a basis for verifying pro-
grams written in Pascal and some of its derivatives[9,10,15,17,20, in directly applicable to a large part of
Ada. However, Ads also includes a number of eonstructs whose verification is not as well understood as
the verification cf constructs found in Pascal. Thee include packages, generic program units, tasks and
exceptions. The following is a description of our approach to the verification of these constructs.

Packages
Packages in Ada can be used in a number of different ways. One way to use a package is just as the

name of a collection of data and type declarations. This kind of use poses no special verification problems
and can be handled using standard techniques,

The more important use of packages is their use for the implementation of abstract data types.
Packages can be used to support data abstraction in two ways. One of these is to associate an abstract
object with each package (or each instantizasion of a generic package). The entries to the package are
then viewed as operations on the abstract object. This constitutes one of the "standard" approaches to
data abstraction. Packages used in this way can be verified using the method first proposed by Hoare
[il.

The other way to achieve data abstraction is to associate an abstract type with a private type which
is declared in a package specification. Ada supports this kind of abstraction by restricting the operations
that can be performed on a (limited) private type to (assignment and equality test plus) the entries to the
package in which the type is declared. This latter approach to data abstraction is also found in Modula
where types can be exported from a module. Packages which contain private types can be verified using
techniques developed at Case (Ernst and Ogden [81, Hookway [141) for the specification and verification of
data abstraction in Modula programs.

Generic Prograim Units

Our approach to specifying and verifying generic program units is to allow generics to have parame-
ters which are predicates and functions of the specification language. This is an extension of the usual
Floyd/Hoare assertion language found in the literature. A brief descriptioa of this approach is given
below. A more detailed description is given in Ernst and Hookway [6].

Consider a generic program unit G that has a type parameter T and a procedure parameter p(x.y).
(This description is not concerned with the types of parameters or Ada syntax.) The specifications of G
depend on what p does. This can be specified by giving pre- and post-conditions for p. These assertions.
like ordinary assertions, contain predicates and functions of the specification language (and also individual
variables and constants). Unlike ordinary assertions, some of thee predicates and functions are formal
parameters of G just like T and p.

No special techniques are required to deal with type parameters (like T in the above example). This
is because type parameters play the usual role of types in verification, they assure that the program is
"well-formed". Specifications are also required to be well formed.

Each generic program unit is required to have a precondition which may contain specification
language functions and predicate that are parameters to the generic. This asertion specifies the proper-
ties of thee parameters which can be assumed in verifying the body of the generic.

*Ads is a rqistered trademark of the U.S. Department or Defene (OUSDRE.AJPO)
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Instantiation of generic program units is handled by substituting actual parameters for formals. The
specifications of the resulting ordinary program unit (IG) are just those of the generic with formal parame-
ters replaced by actuals. This substitution removes all formal predicates and functions of the specification
language. The specifications of the instantiated program unit thus have the same form as a non-generic
program unit. Of course, it must be verified that the actual. satisfy the astumptions made about them in
the generics specifications.

Tasks
We hope to adapt the method described in Ernst and Hookway [5J, and Ernst [4] to the problem of

verifying concurrent Ada programs. This method requires concurrent program to be structured as a col-
lection of modules**. Each module defines one or more data abstractions, and any number of processes
may be declared local to the body of the module. The purpose of these processes, called realization
preccsse, is to manipulate the module's local variables in a way that does not affect the value of the
abstract objects represented by the module. Although this is a very specific way to structure programs, it
appears that most real software can be naturally structured in this manner. This approach allows
modules to be verified separately even though the realization processes of one module execute con-
currently with those of other modules.

Modules are verified by dividing the process and the entry procedures to the module into single
mutex segments (SMSs) each of which contains at most a single critical section. The proof technique
relies on the fact that, under certain restrictions, every concurrent execution of the SMSs produces the
same result as some sequential execution of them. Sequential verification techniques can then be used to
prove that the SMSs have the properties required for the module to meet its specifications.

The soundness of this approach depends on the fact that shared variables are accessed only under
mutual exclusion. This is a severe restriction to place on the implementation. In order to ease this res-
triction, ownership specifications are added to modules. Ownership specifications allow shared variables to
be treated as local to a process. Ownership is dynamic. A variable may be "owned" by one process at a
given time and a different process at a later time. Processes are also allowed to "own" components of
structured variables. Thus, one process can "own" one component of an array at the same time that
another process "owns" a different component of the same array. However, it must be verified that two
processes never "own" the same object at the same time and that processes only reference objects which
they own.

The approach to verifying concurrent programs described above is the subject of active research at
Case. Significant additional effort will be required to extend this approach to apply to Ada. In particular,
the synchronization primitives used in Ada tasks are quite different from those studied by Ernst and
Hookway [5) and exception handling in multi-task programs remains to be examined. Despite these
difficulties, this appears to be a very promising approach to the verification of multi-task Ada programs.

Exceptions

Exceptions can be handled using the technique developed by Luckham (19[. Extensions to the this
technique need to be developed to integrate exception handling with the techniques for data abstraction
discussed above.

A Prototyp. Verifier
We are currently in the process of implementing a verifier for an Ada subset which is roughly

equivalent to Modula. This implementation includes packages and private types. Addition of generics
and exceptions, as described above, should be straight forward. The verifier will use the Case interactive
theorem prover which is part of the Modula verifier described below.

*Meduim correspond clsely to packngs i Ada mad procemu to tasb. The exact relationship of the concepts described in
Erans and Hookway I&I to Ads remains to be worked out.
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A Design Environment
We feel that development of reliable software will require support of an integrated design environ-

ment. This environment should support a variety of approaches to verification from testing to theorem
proving. However, it should be based on the notion of developing designs that are consistent with precise
specifications. The environment should provide a framework for reasoning about designs. For example, it
should track arguments about why portions of the design are correct, whether the arguments are based on
test data, informal arguments, or formal (mechanical) proofs. Whatever form these arguments take, we
expect them to be based on an understanding of what is required to formally verify the design.

We plan to build a series of incrementally updatable design environments based on the above ideas.
The Ada verifier will be one component of these environments. Other components will include tools for
developing and analyzing specifications, a facility for rapid prototyping, and a programming environment.

The Cam Module Verifier

The Case Verifier is an interactive system for verifying Modula programs. The verifier consists of
two major components, a verification condition generator (vcg) and an interactive theorem prover. The
source language is Modula, minus concurrent programming constructs and extended by the constructs
described in Ernst and Ogden(8] and Hookway[141 for specifying Modula programs. The vcg generates
verification conditions by symbolically executing the source program as described in Dannenberg and
Ernst[31.

The theorem prover is an interactive, natural deduction theorem prover which was developed at
Case. The design of this theorem prover is described in Ernst and Hookway(7]. The goal of this design
was to produce a small, efficient theorem prover to support our research in verification methodology.

The verifier has been used to verify a small linking loader[14. The loader is approximately four
hundred lines long, divided equally between specifications and code. Selected verification conditions were
proved using the theorem prover described above.
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module stacks:
define stack, push, pop, empty:

type stack = record
a :array [1..mazl of integer:

en:p: O..max:

procedure push(const x integer: var stk stack):
begin

if stk.p = max then error('stack over flow') end:
stk.p := stk.p +1:
8tk.atstk.pl =x

end push:

procedure pop..
function empty..

end stacks:



package stacks is
stacc.over flow. stack-.under flow: exeception:
type -stack is limited private:
procedure push(z :integer: stk : in out stack):
procedure pop(z : out integer: stk : in out -stack):
function empty(stk : stack) return boolean:

private
max: constant := 100:
type integer-.vector is

array (integer range <>) of integer:
type stack is

record
a integer -v eator (L..max):
p: integer range O..max 0:

end record;
end stacks:

package body stacks is

procedure push(z :integer: 8tk :in out stack) is
begin

if stk.p = max then
raise stack-over flow:

end if-.
stk.p := stk.p + 1:
8tk.a(stk.p) =X

end push:

procedure pop..
function empty ..

end stacks:



module stackmodule:
define symbolstacc, push, pop, empty:

abstract type symbol stack:
abstract structure as :seq of symbol:
realization structure ra : record

sa : array [1..maxJ of symbol:
p : O..ma:;,
at': array [O..max] of seq of symbol end:

correspondence as = ro.av[rs.p]:
invariant 0 <= rs.p <= max & rs.av[01 = emptyseq &

forall i(I <= i<= rs.p -
rs.av[i] = concat(mkseq(rs.sa[iJ), rs.av[i -1):

initialization:
entry assertion true:
exit assertion as = emptyseq;
begin

rs.p := 0: rs.a4O] : emptyseq
end initialization:

end symbolatacc:

procedure push(const s : symbol: var stlc : symbol-stackc):
entry assertion true:
exit assertion stk = concat(mkseq(s) , #stk):
begin

with 8a ::= stk. sa, p ::= stlc.p. at' := at Ic.av do
if p = ma: then error(*symbol stack over flow') end:
p :=p+l1: 8a[pI :e :
av[pJ := concat(mlcseq(s) , av[p - 11)

end
end push:

procedure pop..
function empty..
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with types: use types:
package staclcmodude is

stack-..over flow. atack..under flow: exeception:
type symbol stack: symbolsequence

initially symbol staclc'as = emptyseqr is limited private:
procedure push(s: symbol: stk: in out symbol stack) is

exit assertion stk = concat(mkseq(s), stk'init):.
end push;
procedure pop(e: out symbol: stk: in ou 't symbol stack) is..
function empty(stk: symbol stack) return boolean is..

private
max: constant := 100;
type symbol stack is

record
sa: symbol-vector (1.max):

p: integer range 0..max := 0:
av: auxiliary symbolsequence..vector (0. maz)

(0 => emptyseq.ot hers => emptyseq):
end record:
correspondence

symbol stack'asr = symbol stack'rs.av ( symbol stack'rs .p):
invariant

0 <= symbol atack'rs.p <= max and
symbol atack'rs.a4O) = emptyseq and
forall i (1 <= i <= symbol stack'rs.p -

symbolstack'rs.av(i) =
concat(mkseq(symbcl~stack'rTs.sa(i)),

symbol atack'rs.av(i - 1))):
end symbol stack:

end stackmodule:
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with types: use types:
package stacks is

stack-over flow. stack-.under flow: exeception:
type stack: pair-..equence

initially stack'as =emptyseq

is limited private:
procedure push(s: symbol: v: integer; stk: in out stack) is

exit assertion exists x (stk = concat(mkseq(z) , stk'init) and
z.s = s and z.v =v)

end push:
procedure pop(s: out symbol: v: out integer: stk: in out stack) is
procedure a88ign(stkl: out stack; stk2: stack) is..
function empty(stk: stack) return boolean is..

private
n: constant := 5280:
sq: array (0. .n) of pair-.sequence

(0 => empty-seq, others => emptyseq):
type stack is

record
p: integer range 0..n := 0:

end record:
correspondence stack'as = sq(stack'rs.p):
invariant 0 <= stack'rs.p <= n;

end stack:
end stacks:
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package body stackse is
1: array (1..n) of integer:
8?): array (1..n) of pair;
free: integer :=n:
f: array (1..n) of boolean (others => true):

invaria nt-
0 <= free <= n and ... :

procedure push(s: symbol: v: integer: 8tk in out stack) is
uses 1. sv. free, f. sq:
z: pair : = (s. v):
y: integer := free:

begin
if free = 0 then

raise stack-.over flow:
end if:
sq(free) concat(mlcseq(x) ,sq(stk));,

f (free) :=false:
free := (1ree): sv(y) := x: 1(y) := stk.p: stk.p y

end push:

begin
for i in P'range loop alter 1. sq:

maintain
f orall z (1 <= z <= s -

I(x) =xz- 1 and
sq(z) = concat(mkseq(sv(x)), sq(x - 1)) and
f (z)) and

sq(O) =emptyseq:

sq(i) concat(mkseq(sv(i)), sq(i - 1)):
end loop:

end stacks:
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package body stacks is
1: array (1..n) of integer:
sv: array (1..n) of pair:
free: integer := n
f: array (l..n) of boolean :=(others => true):

invariant
0O<= free <= nand forall i(1 <= i<= n -+ 0<= l(i) <= n) and
1 <= free --+ f(free) and
forall i (1 <= i <= n and 1 <= I(i) <= n --+ (f (i) +- f (I(i)))) and
forall i(1<= i<= n--+

(f (i) f forall j (1 <= j <= stack' alloc --+ gtack'r(j).p /= i)) and
(free =i --+ f orail j (1 <= j <= n --+ 1(j) /= i)) and
f orall j (1 <= j <= n and 1(j) =i and f (j) ---

forall k (1 <= k <= n and i=k --+ 1(k) /= i))) and
sq(O) =emptyiseq and
forail i (1 <= i <= n -~sq(i) =concat(mkseq(sv(i)), sq(I(i)))):

end stacks:
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with types: use types:
package at: array (symbol) of integer initially (forall a at(s) < 0) is

procedure enter(s: -symbol: v: integer) is
uses at:
exit assertion st(s) =v and forall i (i /= s.9 st(i) =st'init(i)):

end enter:
procedure lookup(s: symbol: v: out integer) is

uses at: 4
exit assertion v = t(s):

end loolcup:
end at;

with stacks: use stacks;
package body at is

m: constant := 64:
ht: array (l..m) of stack:
correspondence f orall a (at(s) = aasoc(s, ht(hash(a)))):
procedure enter(s: symbol; v: integer) is

uses lht:
begin

push(s, v, ht(hashf n(s))):
end enter:
procedure looktsp(s: symbol: v: out integer) is

uses lht:
al: symbol: atk: stack:

begin
assign(stk, ht(haahfn(s))):
loop alter .1. v. stk:

maintain assoc(s, Ft(hash(a))) = assoc(s, atk):
if empty(atk) then v -1: exit: end if:
pop(sl, v, stk):
exit when a = sl:

end loop:
end lookup:

end at:



generic type item is private:
package stacks is

stack-..over flow, staclc.under flow: exeception:
type stack is private:
procedure push(z item; stk :in out stack):
procedure pop(x out item: stk :in out stack):
function empty(stk :stack) return boolean:

private
max: constant := 100;
type item-.vector is

array (integer range <>) of item:

record
a :item-vector (1..max):
p :integer range 0..max := 0;

end record:
end stacks:

package body stacks is

procedure push(x : item: stk : in out stack) is
begin

if stk.p =max then
raise stack-over flow:

end if:
stk.p :=stk.p + 1;
stk.a(stk.p):=;

end push-,

procedure pop..
function empty..

end stacks-,
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generic type T is private:
with f ...:
with Q .
with procedure p (z in integer: y in out T) is

entry assertion ... ;
exit assertion forall u.v(f(z) < u and u < v -Q(x,v)):

end p;
require forall z.y.z (Q(z,y) and Q(y,,z) -- Q(z,z)) and ...;

package G is
procedure r is

exit assertion .. : -- uses f and Q
end r:

end G;

I
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Adapting the Gypsy Verification System to Ada
Workshop on Formal Specification and Verification of Ada

Institute for Defense Analysis
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1. Introduction

DoD directive 5000.31 [DoD] requires that new mission critical computer programs
written for the department of defense be written In Ada' [Ada]. The statutory
definition of mission critical (10 USC 2315) includes security applications specifically.
Computer security has been one of the principle driving forces for applied verification
work In recent years. These factors lead us to one of two conclusions: 1) The time Is
rapidly approaching when it will be necessary to apply verification techniques to
programs written in Ada; or 2) DoD 5000.31 will have to be modified to exclude secure
systems. While there exists a well known antipathy towards Ada within parts of both
the verification and the computer security communities, It is unlikely that the DoD
policy towards Ada will undergo substantial change in the near future. If this Is the
case, It will be necessary to develop an Ada verification capability In the near future.

There are several ways In which such a capability could be developed. A first option
would be to start from scratch, using any of the formal models of program speclficatlan
and verification and build a system specifically designed to verify Ada programs. A
second option is to ignore the Ada specific aspects of the problem entirely. Under the
current certification criteria of the DoDCSC, It Is not necessary to deal with the
Implementation language for a system In a formal manner, so It could be argued that
current systems are just as suitable (or unsuitable) for Ada as for any other language.
In this case, It Is only necessary to provide a convincing argument for the conformance
of the Ada Implementation code to the verified formal top level specification of the
system In question. Finally, It is possible to adapt an existing verification system to deal
with Ada.

The first approach is possible, but would take an excessive amount of time and
resources. Current verification systems represent investments of ten or more man years
each, expended over periods of five to ten years. The stcond approach Is representative
of the practice followed for the Honeywell SCOMP, a product currently approaching Al
certification by the DoDCSC. It appears that the requirement for a convincing
argument concerning the equivalence of the FTLS and the implementation resulted In
an extremely complex and concrete FTLS and greatly increased the verification effort.
Being able to verify an Ada based FTLS for an Ada based implementation should

Ada is a registered trademark of the Ada Joint Project Office.
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obviate these difficultles. Additionally, there Is substantial interest in systems which go
beyond the Al cr!mria by requiring code verification for which second approach would
not be viable. The third approach offers a chance to capture much of the Investment in

a current verification system while gaining experience with the verification of Ada. We

argue for such an approach, based on the Gypsy [Good78] system, suggesting that It will
lead to a prototype code verification system for Ada with minimum (although not
insubstantial by any means) effort. Taking advantage of the Ada packaging mechanism,
we feel that verified packages can function within a larger Ada environment, making
possible the Implementation of security kernels and the like.

The remainder of the paper discusses some of the problems associated with the
verification of Ada, suggests ways in which these problems might be addressed, and
indicates ways In which the Gypsy system could be combined with the front end of an
Ada compiler and transformed into a prototype system for the verification of Ada.

2. Trouble spots in Ada

Although one of the early design objectives for Ada (in the days when it was still known
as DoD-1) was to facilitate proofs of program properties, the committee nature of the
requirements process resulted In a language which was required to carry a certain
amount of the baggage of 1906s style programming languages. Among the potentially
most troublesome of these are the presence of arbitrary control flow constructs i.e. the
"go to- statement, and unrestricted access to global variables which, in addition to
complicating proofs about sequential programs, render concurrent programs intractable
under many circumstances. Other features of the language Include the possibility of
side effects from function Invocations, exceptions during expression evaluation, and the
lack of an explicit evaluation order for the operators of an expression. These factors,
combined with the lack of a formal definition for the semantics of the language, have
lead some workers to despair of verifying any aspect of the language. Indeed, It has
been noted that given the proper Ada context, It may be Impossible to prove anything
about the value of X after the execution of so simple a statement as

X := 1;

We maintain that the situation Is not quite as grim as Indicated above. Just because a
language contains a particular feature does not mean that all programs written In the
language will contain that feature. The adverse Interaction among features of the
language, does not mean that all of them must be discarded, or that all occurrences of a
feature In a given program are Intractable. Although the word "subset" Is an anathema
to the Ada world, we feel that a useful set of Ada constructs and programming practices
can be defined In such a way that realistic and functional programs can written and
verified using them. Although the task Is substantially more difficult, because of the
extra complexity of the language, we feel that a theory of verifiable Ada can be
developed In much the same way as Boyer and Moore developed their FORTRAN
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[Boyer80] theory. Platek [OdysseyS4] and his colleagues at Odyssey Associates have
recently defined an initial subset of Ada which they feel Is suitable for verification. One
feature which they rule out Is the exception mechanism. We feel that the Ada exception
mechanism is sufficiently like the Gypsy mechanism so that its verification Is tractable,
and we propose to include exceptions in our system.

Ada as currently defined has no specification mechanism. While It is possible to use an
external specification mechanism, i.e. one In which the program and specification are
Joined only during the verification process, we are more comfortable with an internal
mechanism, similar to that used in Gypsy. At the same time, we would like our
verifiable code to be acceptable to a variety of Ada translators. An extension of
Luckham's Anna notation [Luckham84] to accommodate exception returns from routines
appears to be the most promising mechanism available at the present time, although a
specification language using the Ada PRAGMA construct cannot be ruled out.

3. A hybrid system

We propose to base our prototype Ada verification system on a combination composed
of an existing Ada compiler and an existing verification system. The Ada compiler Is
the one developed and recently validated by the Verdix corporation of McLean. Virginia,
while the verification system Is the Gypsy Verification Environment, developed at the
University of Texas. There are several reasons for the choice of such a hybrid system.
Ada Is a large language with a complex syntax and semantics. Using an existing front
end from a validated compiler eliminates much of the effort required to Implement a
front end for the verification system. It also provides a direct method for providing
executable versions of the verified programs, as well as facilitating systems which
contain mixtures of verified and unverified programs. The use of a modified version of
the GVE as a back end for the Ada verification system offers similar advantages. We
feel that the Initial set of Ada constructs which can be verified will be roughly
equivalent In power and flavor to the Gypsy language. Previous efforts to model Ada
constructs in Gypsy [Akers83], and vice versa provide evidence for this assumption.
Although Ada type rules are "stronger" than those for Gypsy, it is possible to write
Gypsy as though It were typed like Ada. The Gypsy exception mechanism, though
somewhat more tractable than the Ada exception mechanism Is suitable for modeling
Ada. Most of the Ada operators are already present in Gypsy.

The proposed hybrid consists of three primary components, the Ada front end, the
Intermediate form translator, and the verification back end. Each of these are described
briefly In the sections which follow.
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4. The Ada front end

As noted above, the front end of the proposed system is based on the parser and
semantic checker of an existing, validated, Ada compiler. The parser and semantic
checker will require some modifications to accept Ada with embedded specifications.
The output of the modified front end will consist of the compiler's Internal
representation of Ada programs, extended to Include the specification constructs.
Assuming that a specification language such as Anna Is chosen, these modifications
should be relatively straight forward. The internal representation will be captured at a
stage In the compilation process where name resolution has been performed and operator
overloading has been removed so as to simplif subsequent operations.

5. The intermediate form translator

The Intermediate form translator serves a dual purpose. Its primary function Is to
convert the Ada compiler's representation of a program into a representation which can
be entered Into the verification back end as though it were the output of the Gypsy
parser. Its secondary function Is to ensure that the code to be verified conforms to the
set of constructs acceptable to the verification system, I.e. that the program to be
verified Is In fact written in the verifiable Ada subset. Given that both the Ada front
end and the Gypsy back end use Internal representations which are abstractions of
prefix trees, the translation operation is a straightforward, If complex, syntactic one.
The enforcement function, on the other hand, may Involve substantial semantic
analysis. It Is hoped to simplify both of these tasks by taking advantage of utilities,
already present within the front end, for manipulating the internal form of Ada
programs.

6. The modified GVE

The output of the translation process will be a Gypsy-like representation of the Ada
code to be verified In a form suitable for loading Into the modified GVE. Once such an
Ada database has been restored Into the GVE, verification conditions can be generated
and proved In the same way these steps are performed for Gypsy programs In current
versions of the system, To support Ada verification, substantial modifications will be
required for a number of components of the GVE. The ,eriftcatlon condition generator
will require modification to reflect the semantic differences between Ada and Gypsy
statements. In a similar fashion, the expression simplifier will also require modification
and extension. The prefix to infix conversion routine, used to display internal forms to
the user will be modified to use an Ada syntax. We hope' to take advantage of the
previous work on a Gypsy to Ada translator for much of this step. It is hoped that the
prover will require little or no modification. Modifications to the top-level or user
Interface to the system should be restricted to the removal of unneeded functionality
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and system components such as the optimizer and code generators.

7. Summary and conclusions

We have proposed a prototype Ada verification system based on a hybrid of an existing

compiler and verification system. Although such a system Is not capable of supporting
verification of the entire Ada language, It Is claimed that It will support a language
comparable to those now being verified and suitable for similar programs. While the
construction of such a system involves a substantial effort, we are confident that the
effort Is much less than that Involved In building a verification system for Ada from

scratch. A hybrid system, such as we propose, will allow the verification community
and the growing applications community It supports to obtain experience with Ada
verification In the near future. Such experience will provide a sound basis for future

revisions of the language to support verification should this prove necessary or desirable.
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I
I

.Why? I
I

* DoD Directive 5000.31

e Ada required for mission critical
software

o 10 USC 2315

* Mission critical includes security

* TCSEC

* Verification required for Al

o QED
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How?

o Start over

o Ignore Ada

.P Adapt existing tools
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Start Over

* Pro

* Language is different

e Need a second generation system

* Con

* Excessive cost and effort

* No experience with many Ada
constructs
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Ignore Ada

" Pro

" TCSEC does not require code proofs

" Design verification is easier

" Con

e Possible conflicts between code and
specifications

o The SCOMP experience

-o T-11



Adapt tools

* Pro

* Minimize effort

e Early availatility

* Proven base products

$ Con

e Restricted set of constructs

* Warps Ada in particular direction
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Adapting Gypsy

o Strong intersection

e Types

e Exceptions

* Expression languages

* Aliasing and side effect semantics

o Disjoint features

" Tasks vs. cobegins

" I/O packages vs. buffers

* Reals vs. rationals
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Trouble spots in Ada

*See.David Guaspari

*But take what he says with a grain
of salt
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Hybrid system

* Verdix. front end

e Modified for Anna-like specifications

* Diana to Prefix translator

e Enforces verifiable intersection

* Gypsy back end

e Ada semantics where different

* Ada syntax for interaction
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Front end

e Extensions for specifications

* Enforcement of specification
semantics

* Issues:

* Diagnostics

* Diana modifications

* Details
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Translator

* Visualized as front end extension

* Checks for verifiabte subset

* Convert from Diana / Ada to
Gypsy / Prefix

* Produces Gypsy database

o Issues:
4

e Incremental Methods

1
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Back end

* Ada syntax

e Use Gypsy-> Ada facility

* Ada semantics

e Expressions - modify expression
evaluator

* Statements - modify verification
condition generator
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System constraints

* Exceptions imply constraints on:

" Expression evaluation

" Parameter passing

* Implementation details:

" Affect ser iantics of operations

" Provide basis for proofs about
exceptions
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Discussion of papers on Near-Term Verification Systems

The speakers were invited to offer estimates of the time
needed for completion of their proposals.

J. Williams: 2 years for the first stage; 1990 for
completion.

R. Stansifer: 6 months for the well-understood part of
ADA.

R. Hookway: 12 months.

J. McHugh: 1 to 2 years.

The following is a condensed version of the discussion
that took place about formal semantics.

D. Milton: If formal semantics equired for ADA, is it
to be the sort done for preliminary ADA? Is that the kind of
formal semantics that would be useful?

R. Platek: You do need a mathematical model against which
you prove that your proof rules are sound. You cannot use the
Reference Manual, which is written in English, to prove that a
proof rule really captures the language.

There is no doubt that to feel completely assured you
have to go by the route of an abstract model. Now what kind of
devices we will use, whether it will be denotational semantics,
or what, that is open.

LCDR Myers: Would the model stand by itself?

R. Platek: It could.

LCDR Myers: Can this community use such a thing?

D. Luckham: What was the experience with the
pseudo-denotational semantics produced for the preliminary 1979
version of ADA?

N. Cohen: Several type inconsistencies were discovered.

D. Luckham: First of all, they could not accommodate the
semantics of tasking at all, is that correct? Secondly, was
there any agreement that the formal semantics they defined was
the definition of the language?
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N. Cohen: That couldn't possibly be because it was
incomplete.

D. Luckham: One of the purposes of this formal definition
was as a guide to compiler writers. I understand that no
compiler writer ever used it as a guide.

N. Cohen: In Denmark they developed a semantics for the
1978 preliminary ADA, at the last minute they updated it to 1980
ADA, and apparently behind the scenes they continued working on
it because they then used the formal definition as a basis for a
compiler system which has now been validated. Thus that compiler

was generated from the formal definition. The generation was not
wholly automatic: there was a substantial manual involvement.
There was an operational definition of tasking.

J. McHugh: I think that for such a definition to be
useful not only for this group but for the ADA community as a
whole, it will have to be judged to be the arbiter of all the
disputes about the definition of the language.

N. Cohen: Currently it is the position of the AJPO that
the Reference Manual is such a definition, but there are
omissions in the Reference Manual, and there are places where it
is vaguely worded and the ADA Board has to meet and decide on
interpretations.

D. Luckham: The formal definition produced by INRIA is
available. You can read it and ask your question of that and do
a symbolic computation to get the answer--try executing the
recurrence relations.

B. Abrams: There is a formal definition of JOVIAL: the
entire language is specified, as an attribute grammar, in some
300 pages of BNF. When you look at all that, you cannot be
assured that it is correct and that there is nowhere an error.

LCDR Myers: I am hearing that the language isn't there,

that you need to formalise the semantics of this language.

Answers of both "yes" and "no" were heard.

R. PLatek: I think it has to be done right--in a way that
is usable.

The style of the INRIA manual makes it an unusable
model. There are other styles of presenting models, one of which
might turn out to be a form that is usable... What is "usable"
is a theological question.

D. Luckham: We should standardise ADA by picking a
compiler. Minsky suggested taking the LISP interpreter as a
formal definition. It seems to me that a well-written compiler
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is a good standard. You can run it; you cannot run the formal'
definition of ADA.

R. Platek: That does not mean that some form of
mathematical model could not be run.

N. Cohen: ADA was designed as essentially several
dialects; There is no way to take a compiler as a definition and
to keep ADA objectives such as portability.

D. Luckham: The thing just tells you that this is an
implemention feature when you ask it a question.

N. Cohen: Well, if your standard is a compiler, it is not
going to tell you that it is implementation dependent, it will
tell you that the word size is 16 bits.

D. Luckham: No, no, no, not a compiler in the stupid
sense but a compiler designed to be a standard which can answer
questions.

R. Platek: OK, if you are proposing that as the quickest
and cheapest method, fine. That is decided. Now let us go on to
mid-term. I think it is mid-term to get a mathematical model.
Ten years.

LCDR Myers: I hear waffle, waffle, waffle. You say that
you need something along this line to do your job. Well, I think
I am going to recommend that you all get together and figure out
what it is.

An unidentified speaker: The Orange Book does not call
for code verification. It appears that the DoD is not willing to
trust design systems that are not based on a formal basis. How
comfortable are you with user systems that are not grounded in
formality ?

LCDR Myers: I would feel a lot better if things were
grounded in any other way than the present one. The mere process
of going through some sort of formalization is useful I'm for
improvement; there is no perfection; we want serious mid- and
near-term things.

LCDR Myers: You want a common grvund--what should that
be?

R. Platek: The piecemeal construction of a theorem prover
leads to false theorems. What is needed is a model serving as a
final arbiter.

B. Abrams: Just as the Reference Manual is a mixture of
formality and examples, so a real definition would mix
mathematical and operational bits.
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K. Apt: Verification of programs and verification of
soundness of proof systems against semantics, and also writing
large programs--I believe that all these belong,. at a certain
level of abstraction, to the same problem, namely it is how we
manage the complexity of large tasks. I believe that people
should agree that verification of large progams is not a simple
issue.

As soon as large subsets of PASCAL or ALGOL-like
languages were addressed, subtle errors emerged, such as that
found, four or five years after its publication, in Cook's proof
of the completeness of a fragment of ALGOL 60 without the use of
recursion. This story shows that at a certain level we do not
see the details: they are too formal. The error, in brief, was 4
that the semantics was overspecified. Similar errors can occur
in compilers. We should not therefore hope that validation of
proof systems will be any easier than verification of programs.

D. Luckham: I have no faith in the ability of theoretical
mathematicians to turn out formal semantics of any value.

I
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Norman Cohen: Uses of Formal Verification

There are two practical obstacles to proving ADA progams
correct. One is that of sheer scale: typical ADA applications
are hundreds of thousands of lines long. The other is that a
proof of what is commonly called "correctness" is really only a
proof of consistency with specifications, and thus makes no
attempt to show that the specifications correctly formalise the
user's requirements. Formalisation is difficult: about half of
all software errors are ones of specification; and so this is a
serious deficiency.

We therefore concentrate on proving selected properties of
selected program components. We select those components that are
amenable to formal specification, use nonobvious algorithms,
perform especially critical functions, or are to be re-used, and
we aim, where appropriate, to establish the correctness of data
abstraction implementations, the absence of unanticipated
exceptions, the absence of erroneousness, and certain numeric
properties.

Proving the absence of erroneous execution is an ideal
application for verification, for proofs can work where
traditional compile-time checks are too weak and run-time checks
are too expensive.

Proving the absence of unanticipated exceptions forces the
explicit documentation of implicit assumptions, reconciles
reliability and efficiency by "certifying" uses of the suppress
pragma, allows specifications to be as simple as a list of
anticipated exceptions, and has other benefits.

Establishing the correctness of data abstractions is a
principal use for ADA's most characteristic feature, packages,
and permits the building of verified libraries of reusable,
possibly generic, components. It may be accomplished by defining
the abstract behaviour of a data type in terms of algebraic
axioms, which may be given as comments in the package
specification, perhaps in ANNA, and then proving that the
subprograms in the package body fulfil the axioms. ADA's notions
of data type encapsulation help because you know that you can
verify the desired property just by looking at the package itself
and not outside. The axioms can be used later in verifying other
components using the package that provides the data abstraction.
The ANNA out attribute provides an excellent vehicle for
accommodating procedures, and exceptions are a nice solution to a
problem that always existed in the early literature on verifying
data abstraction.
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In the case of numeric properties the prospects are not quite
so bright, but there may be some cases in which reasonable
results can be obtained. Typically because machine
approximations to real numbers do not obey the mathematical laws
of the field of real numbers verification efforts have ignored
them. ADA has tried to formalize the behaviour of real numbers
using model intervals. These have two important characteristics:
they have reasonable formal properties, and they happen to be
consistent with typical machine implementations of real numbers.
Interval arithmetic, though, is too pessimistic: hardware usually
provides more precision and errors tend to average out and
cancel, while the model intervals grow wider and wider.
Unfortunately the rules of ADA do not justify any stronger method
of reasoning about real arithemtic unless you exploit personal
knowlege about the underlying representation. So on the one hand
it is hard to write portable ADA numeric software; if it can't be
proved convergent using model intervals then it may not be
convergent in all ADA implementations. On the other hand, for
those numeric algorithms where you can prove a numeric property,
you can prove portability of the numeric algorithm.
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Friedrich von Henke: ANNA

The talk discusses some finer points and design problems
of Anna.

Example 1:

(generic)
type ITEM is private;
ZERO: in ITEM;
(with) function "+"(X,Y: ITEM) return ITEM is <);

--I axiom
--j for all UVW : ITEM =>

ZERO + V = V.
--I U+ ZERO = U,
-- I (U + V) + W = U + (V + W);

type VECTOR is array (POSITIVE range O) of ITEM;

package ON-VECTORS is

function SUM (A,B: VECTOR) return VECTOR;
--I where return C: VECTOR ->
-- I for all I: INTEGER range A'RANGE ->
-- I C(I) = A(I) + B(I),
-- I . . ;

end ONVECTORS;

In this example, what is being passed is something like a
package, or, in the terminology that Joe Goguen is using,
something like a theory or a view of a structure.
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We want to have a handle on the sort of parameterization
that is possible on generic packages. One would really like
to write something like:

-- I left-zero (zero, +), right-zero (zero, +),
-- I associative (+);

to have some sort of higher order predicates; and actually we
would like to go one step further and say:

-- I monoid (ITEM, +, zero);

However, in ANNA we do not have the facility for saying that.

There are certain limitations imposed on ANNA, which
come from the fact that one of the basic design decisions
underlying ANNA is that ANNA should take an ADA program,
leave it basically untouched, and add to it certain things in
the form of formal comments. These formal comments are
subject to rules that are basically derivatives of the ADA
rules, and furthermore the specification constructs used in
annotations are defined as ADA entities. For example, a
function used in annotations will be defined as a virtual ADA
function. In that way we gain a certain expressiveness that
ADA lacks. However, this strict adherence to ADA syntax and
semantics has certain drawbacks.

There is a problem of consistency of annotation
illustrated by:

Example 2:

subtype SMALLEVEN is INTEGER range 1 .. 100;
--I where X: SMALL-EVEN -) even(X);

Here the statement "3 is SMALLEVEN" is true in ADA and false
in ANNA; so we call this an ANNA error.

w-2



Another point is the treatment of equality. The
Reference Manual says that equality can be explicitly defined
only for limited types. We were happy to follow that rule in
the design of ANNA until John Goodenough, in a note in a
recent issue of ADA Letters, showed that a way can be found
of defining equality for any given type, Designers of
annotation languages will wonder uneasily how many other
semantic bombshells still lie hidden in the programming
language.

Another kind of dependence that comes up with equality
is that from within the package you can refer to anything
that is visible, so some equality relationship that used to
be true suddenly may not be true. Fortunately ANNA would
supply an appropriate default axiom that suddenly pops up if
you have not thought of it.

These examples show some of the ramifications that one
has to take into account when one tries to build up something
that looks like a mathematical system within the context
where you have the freedom that ADA provides.
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David Luckham: ANNA Tools

I hope you got the idea from Friedrich von Henke that it is
not very easy to design a language extension of ADA that is
fairly consistent in its semantics and allows you to express
things that you cannot say in ADA itself.

That is one of the reasons why we have no tasking
specification in ANNA at present. If you ask what you would like
to specify about ADA tasking before you try to write the tasks
themselves, you find that the'first thing you would like to do is
to throw away the visibility rules and the linear elaboration of
your specifications.

The attempt to extend ADA with tasking specifications is very
much a more difficult thing than what we have done with ANNA
which is to try just the linear sequential part of the language.

By the way we do have a task specification language, called
TSL for task sequencing language, though we do not claim that it
is any more than experimental.

We are at the stage where we are able to write package

specifications and present them as a Parnas negotiation
document. Perhaps the first family of ANNA tools that we might
like to implement are things that would support this kind of
negotiating before we get into much harder things like
verification systems.

Our role is to encourage the use of formal specifications in

the development and maintenance of correct ADA programs.

So the first thing that you can do for at least a subset of
ANNA is to produce a preprocessor to a compiler, which will
accept an ANNA program, and translate the annotations into ADA
runtime checks, so that out the back end will come a kosher,
legitimate ADA program.

Things are not that simple, because of the naming and
renaming, and hiding and local scoping conventions, and the fact
that variables when declared must be constrained, and so on. You
have to bend over backwards to get a really good implemenation of
this transformation process, and it is being worked on by various
of the students currently at Stanford.

The result might be called a self-checking program. At least
it is going to raise ANNA errors, if in the course of running
there is an inconsistency between the ANNA annotations and the



I
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underlying ADA program. Now the ANNA annotations may of course
involve execution of virtual code.

So now what can you use this for? You can run an ADA program
in comparison with its formal ANNA specification. This has some
obvious posaible applications: you get a lot of runtime checks
because the annotation mechanisms are powerful, and you can say a
lot because they are scoped. You may be able to use it for test
and debug. You may even be able to use it for permanent runtime
checks in self-checking programs.

A similar kind of thing gives you more power in a hardware
design language: it gives you comparative simulation of two
different representations of the same piece of hardware. So we
are trying to apply the same ideas to the VHDL-like language.

That is the main tool we are building. It is working quite
well and is a monument to the portability of well-written ADA
code. It also enables us to test the compilers and find bugs in
them. There are some other tools that we are also developing,
like PROLOG interpreters in ADA.

You can get comparative testing with a very simple ANNA
trick: use your old program as the specification for the new
version of your program: then do a comparison run of the new
against the old.

We would like an optimizer for the run time checks, and
certainly that optimizer has got to do a bit of reasoning,
probably of the PROLOG variety. There are preliminary papers on
how to parallelise the checking of these annotations.

To support the Parnassian model of the development process by
negotiation and redocumentation you would like to be able to
analyse your specification and to automate that analysis so you
could ask intelligent questions of the specifications.

And lastly, of course, there is something we haven't
addressed anywhere else at all. If we were to use ANNA for
testing, we would probably need a number of standard packages,
especially if we got into the testing of the timing parts of
programs. However, the ANNA checking interferes with timing.

We have not tried any full-scale verifier, we don't plan to
for a while, as we have not yet recovered from the PASCAL
verifier. But we invite people to send one-page ADA programs,
accompanied by descriptions of their purpose in English, to
LUCKHAM@SAIL for annotation.
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