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Foreword

These Proceedings of the First Workshop on Formal
Specification and Verification of Ada, held at the Institute
for Defense Analyses, are composed 1in part of papers and
slides supplied by the speakers, and in part of summaries of
the talks and discussions edited from recordings made of the
Workshop.

The purpose of this initial two-and-a-half day Workshop
was to identify current issues in Ada verification and to
decide what could be done to improve current understanding
and practice of Ada software verification, =~ Since
verification impacts not only coding activities but all
development activities, it is desirable that many groups be
kept informed about the progress of these Workshops.

The chief issues raised in the introductory remarks by
Jack Kramer of IDA and Paul Cohen of the AJPO were: what are
the uses of formal verification; what verification techniques
and verification systems are available; what practical
experience is there in the use of these approaches and who
has this experience; what impact does Ada have on verificaton
(both before and during coding activities); what are the
major problems in the verification field; and what needs to
be done to overcome these problems.

Below is the list of ©presentations, which gives the
scientific program of the first two days, followed by a
summary of the discussions of the third day. Finally, a list
of participants, with their postal, telephonic, and
electronic addresses is given.
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The First Day

On Monday, March 18th, 1985, after opening addresses by
Jack Kramer and Paul Cohen, four talks were given:

A, Richard Platek (Odyssey): Towards the Formal
Verification of Ada Programs

B. David Guaspari (Odyssey): Towards Ada Verification

C. Richard Platek (Odyssey): Formal Specification

D. David Luckham (Stanford): ANNA, a Specification Language

for Ada

The second day

On the morning of Tuesday, March 19th, 1985, there were
two parallel sessions, each containing four talks:

Session on Secure Systems in Ada
Chair: Margie Zuk (MITRE)

E. Tony Brintzenhoff (SYSCON): Re~implementing ACCAT Guard
in Ada

F. Eric Anderson (TRW): Army Secure Operating Systems
G. Jim Freeman (Ford Aerospace): Trust Domains
H. LCDR Philip Myers (NAVALEX): Navy Technology and Ada
Session on Advanced Verification
Chair: Krzysztof Apt (IBM Yorktown Heights)

K. Krzysztof Apt (IBM Yorktown Heights): Reconsidering
Correctness of CSP Programs

L. Frank Oles (IBM Yorktown Heights): Thoughts on an
Ada-based Design Language

M. Norman Cohen (SofTech): Axiomatic Semantics for Ada
N. David Gries (Cornell): Teaching Programmers about Proofs
P. Discussion of papers in the session

R



In the afternmoon there were seven talks and a lively
discussion:

Session on Near Term Verification Systems
Chair: Donn Milton (VERDIX)

Q. Jim Williams (MITRE): Practical Verification Systems
R. Ryan Stansifer (ORA): Near Term Ada Verification

S. Ray Hookway (Case Western): Adapting a Modula
Verification System to Ada

T, John McHugh (RTI): Adapting the GYPSY Verification
System to Ada

U. Discussion of papers in the session
Session on Verification and Software Engineering
Chair: Norman Cohen (SofTech)
V. Norman Cohen (SofTech): Uses of Formal Verification
W. Friedrich von Henke (SRI): ANNA

X. David Luckham (Stanford): ANNA Tools

The Third Morning: General Review

The final session, on the morning of Wednesday, March
20th, began with summaries of the parallel sessions and
continued with a general discussion reviewing 1ssues raised
during the Workshop.

Richard Platek said that although the meeting had been
about all levels of verification, the first need was to sort
out the problem of specification. He emphasized the urgent
need for a specification language tailored to Ada, and called
for several proposals, in addition to ANNA, which might then
be compared. The experience of Honeywell with the SCOMP
project was discussed and attention drawn to the great
difficulty of writing abstract specifications in GYPSY.
Norman Cohen remarked that a good specification for GYPSY
would not necessarily be a good one for Ada.
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LCDR Philip Myers asked whether formal semantics and
concurrency are issues that need to be resolved before large
strides can be made in Ada verification., A. L. Brintzenhoff
mentioned his work on evaluating the role of Ada as a
communications programming language. Jack Kramer led a
discussion of the role of verification in the life cycle of
software development systems.

The special application of verification to secure
systems was then discussed. LCDR Myers said that those
developing them must show that the systems are robust enough
to defend against the "414 hackers”, and that a more secure
development environment is needed. Richard Platek said that
it was desirable for Ada verification systems to be exposed
to public criticism during the early stages of their
development, as that would help to test their soundness.,

The structure and future of the body constituting the
Ada Verification Workshop was discussed. David Luckham said
that the Workshop had a valuable role to play as a forum for
continued information exchange. Norman Cohen stressed the
need for a committee to consider not only interpretations of
the Ada Reference Manual but also revisions of the 1language.
Fridrich von Henke pointed out the lack of activities on the
more formal aspects of Ada specification and drew attention
to the working groups of Ada-Europe on Formal Semantics and
Formal Methods., 1% was suggested that the possibility of
forming a Committee on Formal Methods within SIGAda be
explored.

The success of the IBM Cleanroom project under Harlan
Mills in training some 2000 programmers in practical but
informal methods of program testing was mentioned. LCDR
Myers warned that some success stories will be needed in the
near term 1f Ada Verification tools are not to miss the Navy
boat. Richard Platek suggested that a new use for
verification might be found 1in the fact that concurrent
programs are 80 complex that verification is needed even to
write them.




The Third Morning: Preparation for the next Workshop

There was general agreement that the last several years
of effort has yielded some useful techniques. The role of
these Workshops will be to act as a mechanism for
establishing a group of experts that can assess the current
state-of-the~art, identify promising research areas, monitor
ongoing verification work, promote the use of the evolving
technology, and ensure that valuable outputs from one area
are fed 1into another area. The chief output of this group
will be recommendations to various bodies to coordinate and
sponsor certain R&D activities., It was agreed that Working
Subgroups on special topics should be established, as
follows:

SECURE SYSTEMS chaired by Margie ZUK
MITRE Corporation, Burlington Road, Bedford MA 01730;
(617) 271-7590;
MMZ@MITRE-BEDFORD

NEAR TERM VERIFICATION chaired by John McHUGH
Research Triangle Institute, Box 12194, Research
Triangle Park, NC 27709;
(919) 541-7327;
McHUGH@UTEXAS-20

FORMAL SEMANTICS AND CONCURRENCY chaired by Norman COHEN
SofTech, Inc., 705 Masons Mill Business Park,
1800 Byberry Road, Huntingdon Valley, PA 19006;
(215) 947-8880
NCOHEN@ECLB

SPECIFICATION LANGUAGES chaired by Friedrich VON HENKE
SRI International, 333 Ravenswood Avenue,
Menlo Park, CA 94025;
(415) 859-2560;
VONHENKE@SRI-CSL

VERIFICATION IN LIFE CYCLES chaired by Ann MARMOR-SQUIRES
TRW, Defense Systems Group, 2751 Prosperity Avenue,
Fairfax, VA 22031;
(703) 876-8170;
MARMOR@ISI

“OFFICIAL” CLUSTERS chaired by Richard PLATEK
Odyssey Research Associates, Inc., 408 E, State Street,
Ithaca, NY 14850;
(607) 277-2020;
RPLATEK@ECLB
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It was envisaged that these subgroups should prepare
material for the next Workshop and, where appropriate, draft
recommendations for forwarding to the relevant official
bodies after discussion at that meeting. There was some
discussion of the areas where such recommendations might be
needed, such as near-term, mid-term, and long-~term Ada
verification; the lessons learned in verification; formal
semantics for verification; and the future role of Ada
Verification Workshops.

The account ADA~VERIFY was created on USC-ECLB and will
be used as a central repository for Ada Verification
announcements, files, etc, The following general mailing
list was also established on USC-ECLB to encourage the
exchange of ideas.

Ada-VERIFICATION-LIST

Ada Verification Workshops should be held on a regular
basis. The scope of the Workshops should not be restricted
to looking at verification of Ada code, but to address
verification throughout the software life cycle. They will
also serve the purpose of providing a focal point for the
development of verification technology and a coherent set of
activities that will address current verification issues.
The Workshop can also promote increased practical wuse of
verification techniques.

The next Ada Verification Workshop will be scheduled in
the July/August timeframe for a period of two - and- one - half
days (preferably from Tuesday through Thursday). The place
of this meeting was not decided; offers of hospitality from
RTI, MITRE, and TI were received.

It was agreed that attendance at the next meeting should
be by invitation, and that it would be undesirable to 1lose
the constructive character resulting from the small size of
the present meeting. It was suggested that our existence be
advertised and requests for invitations be solicited through
ACM's Software Engineering Notes and AdalLetters and that
particular thought should be given to inviting people from
the Language Maintenance Committee, the AJPO, and the safety
community.

Plans are wunder way to organize a session at the
July/August SIGAda meeting in Minneapolis that apprise the
technical community of the role and purpose of the Workshop
series and what has been documented by that time.

The Workshop ended at noon on the third day.
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Towards the Formal Verification of Ada Programs

Richard Platek

Odyssey Research Associates, Inc.

March 18 - 20, 1985

1 Introduction

The organization of the present meeting is part of a
contractural effort between Odyssey Research Associates (ORA) and
IDA. One of the goals of this effort,-and the purpose of this
meeting, is to begin to develop a community of interest centered
around the formal specification and verification of Ada
programs. Some of the issues to be discussed are: the use of Ada
in secure systems; verification needs as perceived by the general
Ada community; near term solutions to Ada verification; the issue
of standards as they apply to formal specification/verification;
advanced theoretical verification results applied to Ada; thg
interface between verification and other software engineering

concerns.
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2 The Verification Worlds

I would like to begin by looking at the verification world
as it presently exists. I am aware of two essentially disjoint
groups focusing on formal verification. The first is the
academic community generally funded through NSF or DARPA; the
second consists of industrial contractors involved with the
building of secure systems and generally funded through the DoD
Computer Security Center. The academic verification world is
centered at Cornell, MIT, Stanford, and CMU and reports at the
annual ACM POPL (Principles of Programming Languages), the annual
IEEE FOCS (Foundations of Computer Science), and the biennial
Logic of Programs Symposium and Conference on Automated Deduction
(CADE). TheIIndustrial Verification world is centered at SRI,
SDC, UTexas, and hopefully someday ORA, and reports at the annual
DoD/NBS Computer Security Conference, the annual IEEE Symposium
on Security and Privacy, and the Verkshops, the most recent of
which (the third) was held exactly one month ago in February,
1985, Neither of these tribes, the academic and industrial, have

rallied to the banner of Ade verification and I think we should

begin by examining why.

In the academic world the mathematical paradigm of
abstraction and idealization is the principal method of

investigation. This method studies the logic of some programming

- ——
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language construct, such as iteration or concurrency, by building

a simplified model of it and then formulating properties of the

model which are sufficient to develop proof rules adequate to

capture the semantics of the simplified model. What do I mean
that the model is simplified? First, it is customary to restricc
oneself to integer and boolean types with the integers considered
to be the infinite set of mathematical integers. Second, single
programming language features are studied in isolation and the
thorny problem of the interaction of various language features is
ignored. For example, while a 1logic of pointer types (Ada's
access types) which covers allocation, deallocation, and

assignment has been developed and a logic of simple concurrency

including inter-task communication has also been developed (I'm'

thinking of Hoare's CSP) the academic literature does not address
inter-task communication using access types and " this is a
non-trivial matter. In an actual language, like Ada, all these
features are intertwined and there is a very rich type structure
including task types and dynamic task creation. Furthermore,
Ada's raising and handling of exceptions related to the
finiteness of the integers complicates the simplified academic
results which assume the mathem;tical integers. Of course, one
can not object to simplification as an approach but it is odd
that the academic community finds their theoretical results
meaningful when in truth they have very 1little relationship to

the real problem of verified software.

While the academic world 1is free to proceed in an




\

imaginative fashion, replacing hard, real problems by simpler
easier ones, the industrial world is faced (or will soon be
faced) with the actual job of producing verified running code.

The feeling there is that this problem is hard enough in simple
languages like Pascal without introducing a super-rich language
like Ada. Gypsy, for example, was designed to be an inherently
verifiable language: it eliminates side-effects by forbidding
global variables; pointers are replaced by a few dynamic type
constructors (e.g., arbitrarily 1long sequences); concurrency is
restricted to cobegin statements whose child processes can only
share buffers (FIFO queues with history sequences to support
specification/verification); etc. Although Gypsy has served as
an excellent teaching tool in the area of verification, the
bottom line is that although the Gypsy Verification Environment
effort was begun in 1975 and has been stable for a number of
years there is no fielded Gypsy software! Thus, we know nothing
about the iife-cycle of verified software -- we do not know how
user bug reports relate to the original verification effort; we
do not know to what extent modification of requirements and
maintenance force reverification, Such information would be a
useful input into the design of an Ada verification system. The
Gypsy people feel that such information should be gathered before
we plunge 1into Ada. On the other hand, Gypsy's severe
restrictions make certain kinds of applications difficult if not
impossible. For example, the absence of global variables make it

difficult to implement transaction-oriented systems like data




bases in the usual manner although it can be done using buffers.

One of the explanations of the industrial world's reluctance
to tackle Ada head-on is the fact that they are scientifically
about a decade behind the academic world. This decade-gap is an
observation not a criticism; the transformation of science into
technology is a formidable undertaking and there are not
sufficiently knowledgeable personnel in the area of program
verification to staff the industrial positions which are
arising. Gypsy, designed in 1975, 1is a good example of the
decade-gap; another is the current effort by I.P. Sharp to build
a Euclid verification system. Euclid was also designed about ten
years ago (by a blue ribbon committee) in an attempt to devise a
language which is inherently verifiable. More flexible than
Gypsy, Euclid is based on the academic results in program
verification of that era. It atteméts to control the
interactions between language features in such a way that the
simplified academic results still apply. Actually, in the course
of their work, I.P. Sharp discovered that the Euclid definition
and verification results contained errors. Furthermore, I.P.
Sharp's approach to verification is through the generation of
Verification Conditions. This approach, which separates programs
from proofs, is considered inadequate by academic researchers and

other verification paradigms, such as program transformations,

are currently predominant.

In summary, it appears that while academics produce the
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basic results which will be embodied in verification systems

their approach is to study verification in a simplified fashion

ignoring interactions of constructs. The industrial verification

people, on the other hand, feel that we should learn to walk
before we try to run. By that they mesn that we need basic
knowledge, which we don't have, about the feasibility of formal
verification and the role it plays in the software life-cycle.

Such knovledge! it is felt, can best be gathered on the basis of
inherently verifiable languages. In this way the problem of
verifiability can be separated from tﬁe question of its utility
and the embarassing fact of 1life is that we don't know the
utility of formal verification. Essentially, is it worth it? Ve
can't answer that because we don't know its cost and we don't

know its benefits.

Which brings us to Ada. The need to have a common DoD HOL

resulted in Ada which 1is an engineering compromise betwveen

contending requirements each of which have strong supporters in
certain user communities (e.g., the real-time people, the
compiler people, the systems people, etc.). While formal
verifiability was one of the originsl goals it 1lost ground to
other requirements which were felt to be more pressing. That is
not really suprising since, as I m&ntioned above, the

verification people have not yet proved their case.

Although the verification people have not yet proved their

case the possibility of wide spread use of provable, non-toy

-—
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software still retains its appeal after so many years of
expectant waiting. The explanation of the appeal is of course
the pay-off which would result from successful, industrial
verification. After all, what are the alternative assurance
criteria for secure systems, strategic systems, SDI, commercial
life-critical systems? And what really are the alternatives to
Aﬁa? Assuming the compiler and tool building programs are a
success it seems to. me that the utility of a universal standard
will dominate in all areas of computer u;aée. One has seen this
with the IBM PC and is presently seeing it with Unix. It doesn't
matter that both of these de facto standards leave much to be
desired; they simplify the world. So I believe Ada will triumph
and if the verification people wish to be relevant they ought to

try to understand the way the world actually works.

One of the Tasks in ORA's effort is to determine whether
users perceive a need for formal verification. I am not speaking
about builders of secure systems who when "Beyond Al" becomes a
reality will be forced to verify the security critical components
of their code. Instead, I am speaking about system bdbuilders who

are told about formal verification and then asked how they would

use it if it were availabdle,.

3 Questionnaire Development




Our approach to determining user needs has been to develop

‘sand circulate a questionnaire among people with experience in

programming large systems. This questionnaire is meant to find

out two things:

- What sort of system functionality is the most critical?
That is for which functions would formal verification most

increase reliability?

- Which Ada language constructs are the most heavily used?

Formal program verification is basicall& unkown and barely
used in the software development process. We did not simply ask,
"do you have a need for formal program verification?", because
that would probably have evoked no response at all. (Iu fact, in
military software development, the phrase "fofmal verification",
sometimes refers to the act of the military customer certifying
that a battery of tests has been run on the software.) Instead,
we tried to find those aspects of the software product the
developer is willing to spend the greatest amount of money to

test: this may be the surest indication of a need for formal

verification.

Correct proof rules are not known for all of Ada, but the
scope of Ada verifiablity can certainlf be increased by
research, Thus, we also set out to find out the directions in
which future research would be most wuseful, i.e., which Ads

language features not now known ¢to be verifiable do software




engineers feel are most critical?

Initially, a draft form of the questionnaire was prepared.
This draft was sent to a number of people for comments. We chose
roughly a dozen individuals whose opinion we respect, some from

the verification community, some designers of 1large software

systems, After collecting comments from these people, we
modified the questionnaire, incorporating many suggested

improvements. The modifications roughly doubled the length of

the questionnaire.
In its final form, the questionnaire divides into two parts:

1. general systems development experience

2. Ade-specific experience.

The first part asks for information about a system the
respondent has worked on, not necessarily involving Ada. The
questions pin down the type of system developed, its size,
languages and tools used, and 8 brief statement of its purpose.
The questions then try to determine how much testing effort was
or is expected to be devoted to the project, and in what specific
areas is the greatest fraction of effort devo;ed. The point is:
if a developer 1is going to spend dollars on assurance, what

critical functions, modules, or features will! be deemed the most

important to verify?

The second part asks questions about the use of Ada. Which

A-D



language constructs are currently

used, which are never expected
to be used, and vhich are avoided now because of lack of faith in

the particular compiler used.

The final form of the questionnaire is not limited to s
survey of Ada users; nevertheless, we decided to concentrate on
the Ada community for the first mailing. OQur main source of
contacts was a list of current Ada contracts compiled by Ann
Reedy and published in Ada Letters. We telephoned most of the
organizations on that 1list, both to determine the most
apprdpriate recipient of the questionnaire, and to ask

knowlegible people in the Ada community for other potential

contacts.

4 Survey Results

Questionnaires were sent to key people in the following

organizations. 18 individuals in 15 organizations have responded

to date. The 1last questionnaires were sent out Feb 22, and

responses are still arriving.

A-13
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Organization

Singer/Librascope
Singer/Librascope
Dalmo Victor Operations
Veda

Tasc

McDonnel Douglas
McDonnel Douglas
McDonnel Douglas
Ford Aerospace
General Dynamics
General Dynamics
General Dynamics
GTE

Magnavox

Harris Corp.
Sonicraft

LTS

NAV AIR

NAV AIR

Syscon

RCA

System Development Corp.
TRW

TRW

TRW

TRW

Computer Corp of America
Intermetrics
Intermetrics
Telesoft

SofTech

NYU

Florida SU

UC Irvine

Project # responses
front-end for TACFIRE X
message communication terminal X
tank sensor integration XX
generic message editing XX
ASAP
CAMP
porting ICSC Ada
convert AIS to Ada X
G-3 Maneuver Control X
TAG
decision support system X
IMF
WIS
AFATDS X
ALPC
MEECM
MEECM
F-18 operational flight program X
aircraft control & HUD X
ACCAT GUARD Ada reimplementation X
MCF RTM 0/S / ASOS X
STARS XX
STARS
prototype advanced APSE
ASOS
TDBMS
Ada DBMS
hardware description lang. analyzer X
S/370 Ada compiler X

WIS compiler

Ada/M UYK-44 retarget
Ada/Ed

Cyber 170 Ada compiler
Arcturus
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Several interesting results have emerged so far.

Many Ade systems have interfaces to other languages. The °

foreign languages were various assembly languages, FORTRAN,

and in one case, PASCAL.

Correctness and precision of floating-point computations

are not large problems for testing.

Denial-of-service problems receive relatively less testing

effort than timing constraints.

A surprisfng number of respondents had encountered
erroneous programs or programs with dincorrect order
dependence. One respondent called this question "academic
nit-picking"i'unfortunately. the fact that some Ada wusers
encounter these situations implies that it 1is not

"nit-picking™, academic or otherwise.

Absolutely no respondent uses or claims to have an urge to

use tasks passed as parameters to subprograms.
Few Ada users can make do without access types.

Many Ada users can make do without ﬁsing functions with

side-effects.,

Two-thirds of the respondents make use of recursive

subprogram calls,
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A copy of the questionnaire, with total numbers of responses

filled in, is given in the next section.

5 The Questionnaire,

I. Please answer the questions below with reference to a
specific software development project that you are or have been
engaged in. If you cannot answer from experience about a project
involving Ada, we are still interested in any experience with a

medium~ to large-scale software project.

a) Roughly, what is the size of the ) 40 KB - 60 MB
project, in bytes ?

b) To which hardware is it targetted ?

c) In what language(s) is it written ? Ada:16 FORTRAN: 2
What fraction for each ? Pascal: 1
(or give rough numbers for lines of code) assembly languages: 7

9000 - 500,000 lines total
d) Was a program development language

(PDL) used ? NO: 3 YES: 7 Ada: 4
e) Is the project a commercial product

development, DoD contract, IR&D, or DoD: 10 IR&D: 3

other ?

f) Describe briefly the goal of the project.

II. We are interested in estimating the potential needs for
formal verification in such a project. Because formal
verification is not now a common phase of software development,

we would like to gauge the most 1likely applications for formal
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verification by finding the areas to which the greatest fraction

of testing now goes. For each ares below, if it relates to the

project you described above, please indicate the relative

fraction of the testing effort devoted. Feel free to add any

other areas which consume significant testing resources.

Level of testing effort: none very some
. little
a) timing constraints -- [7] [3) (3]

verification that real-time limits
are not exceeded due to
computational complexity

b) space limitations -- [2] (5] (4]
verification that space bounds
are not exceeded due to dynamic
memory allocation, or stack
overflow as a result of nested
procedure calls or interrupt
handling, etc.

c) protection of sensitive data [5] [5) [4]
from unauthorized disclosure
d) protection of data integrity (2] (4] [6]
e) resource management [4] [7]) [5]
f) denial of service (5] (9] [3]
g) real-time external device control [10] {1] {3]
with feedback
h) fault tolerance [6] [4] [s]
i) floating-point numerical computations:
correctness and precision f11] (3] (3]
j) fixed-point or integer '6) [3) [6]

numerical computations

k) machine-dependent interfaces, [4] (3] (5]
perhaps using low-level Ada
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[2]
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1)

m)
n)

[ ”

Rl Ao

P)

q)

r)

s)
t)

parallel processing
(concurrency; tasking)

handling of external interrupts

graceful recovery from errors in
external input

graceful recovery from internal
program errors --

logical design problems, hardware
failures, etc.

independent module testing

integration of system modules,
each independently reliable

operations involving complicated
(e.g. nested) data types

portability

other -- please explain

(6]

[4]
(1]

(2]

(ol

[0]

(2]

[5]

(1]

[1]
[3]

(4]

(o}
(o]

(4]

(4]

(3]

[9]
(8]

(8l

[10]
(5]

(2]

(3]

- inter-process communication in a shared bus architecture

- mutual exclusion of processes using shared resources

(race conditions and deadlocks)
- generics - validation of the "correctness" of a generic definition

A-15
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III. The following questions are Ada-specific. We reclize

that there are now compilers in use which implement only a

portion of Ada, or which may not implement esoteric language
features in an efficient manner. Which of these Ada language
constructs do you find are heavily used, avoided because your

compiler is not adequate, or not used.at all ?

heavily don't not used
used trust & not likely
nowvw compiler to be used
a) low-level Ada: *)
address clauses [6] [2] [4]) 2
unchecked storage deallocation {4] [3] [4] 2
unchecked type conversion [s5) [3] [4] 1
b) interfaces to other languages [7] [11] [6] 1
c) generics (3] (6] [4] 2
d) recursive constructs: .
types (9] (0} [5])
subprogram calls [10] o] [5]
e) exception handling [11] [3] [0]
f) tasking, : (31 (4] (4]
including, in particular:
shared variables [2] [4] [8]
tasks passed as (0] (6] (8]
parameters to subprograms
task and entry attributes [2] [5) [7]
dynamic task creation [2] [3] [9]
g) functions with side effects 2] [0] [13]
h) global variables, except in packages [9] [0] [5]
i) limited private types [5] [1] (7] 1
j) subtypes of predefined integer types [11] [0] [2]
k) subtypes of predefined real types [7] [1] (6]
1) asccess types [10] [1) [1]
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) renaming declarstions

(*) is "not availabdle"”
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IV. In your experience, how commonly

SUPPRESS pragmas ?

ACCESS_CHECK
DISCRININANT_CHECK
INDEX_CHECK
LENGTH_CHECK
RANGE_CHECK
pIvISTON_CHECK
OVERFLOW_CHECK
ELABORATTON_CHECK
STORAGE_CHECK

V. The Ada Language

never

[9]
[9]
(8]

—
WO O WO
et bt St b Gl Bt

Reference

used are the following

rarely some often
(1] (1] [2]
(o] [2] (2]
(0] [2] [3]
(0] [2] [3]
[g] [f] [;]
SRt I £
[0} (1] [2]
(1] (1] (2]

Manual defines <certain

compiler-dependent situations in the following-way:

- Erroneous program:
violations of certain

run-time or compile-time.-

semantic

Compilers are not required to detect

rules of Ada, either at

For example, the results of

procedure calls should not depend on the method of parameter

passing, as it might if parameters are aliased. Programs

which violate these rules are called erroneous.

- Incorrect order dependence:

which different

of a given

A rule of the Ada language under

construct are to be

executed in some order that is not defined by the language

(but not executed in parallel), and execution of these parts

in a different

would

have

a different effect. The

compiler is not required to provide either a compile-time or
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run-time detection of a violation. An example would be
evaluation of the expression "f(x) + g(y)", where, due to
side-effects, the sum would depend on the order in which £

and g are evaluated.

never rarely some often
a) How often have you encountered [6] [2] [4] [2]
erroneous programs ?
b) How often have you encountered [9] [3]. (2] [o]

programs with incorrect order
dependence ?

6 Further Surveying of User Needs

In the future, we will expand the questionnaire with the

following:

- Somewhat more information about the respondent's project, to

discover correlations between the kind of project and the

use of Ada.

- A request for the respondent to indicate whether erroneous
programs or incorrect order dependence were left in the
final code, and if so, whether that was because the user of

the compiler knows the actual semantics of the compiler in

these situations.,
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- The circumstances under which suppress checks were used.

- Any suggestions for improvements aired at the March workshop

at IDA.

We expect to receive from USAF Systems Command more contacts
in the Ada world in the near future. We also intend to extend
the survey beyond the limits of the Ada user's community, and to

developers of non-military systems.

7 The Predictability Problem

The primary objection to Ada from the verification community
which I have heard is that the languagé definition does not
determine actual program execution, i.e. the language is
unpredictable and therefore not verifiable. The so-called
unpredictability is a consequence of the requirement to maximum
portability which is perhaps the main goal of a standard
language. The 1language definition does not determine those
aspects of execution which & given architecture can optimize.
For example, the order of evaluation of an expression is not
determined (just as it is not determined in Portable Standard
Lisp as contrasted with almost 8ll other Lisps). Since user
defined functions can have side effects, different orders of
expression evaluation can lead to different states and thus the

same program can execute differently under different validated




Ada compilers. If this occurs it is called an "incorrect order
dependence”™. A compiler is permitted to detect such an incorrect
order dependence (if it can, in general the’ problem is -
unsolvable) at either compile time or run time; in the latter
case a Program_Error exception can be raised and if there is an
exception handler present further execution can ensue. Thus, a
given piece of legal Ada text can give rise to a large variety of
executions. The general term for such programs is "erroneous"
but 4t 4s not clear if the types of "erroneous programs”
enumerated in the language manual exhausts all the kinds of
erroneous programs. Another example, of an erroneous program is
one in which a variable is read before it is written. The
language does not require Program_Error to be raised but permits
it. Of course a perfect example of the use of verification is to

show that a program is not erroneous.

Is non-predictability really an wultimate bar to formal
verfication as many critics have maintained? I think an approach
to an answer is suggested by the distinction usually made between
design and code verification and the realization that Ada

verification is actually a species of design verification rather

than code verification!

In design verification one proves properties of a system
from its formal specification. The formal specification, SPEC,
is really an axiomatic description of a family of systems (namely

sll those which satisfy the axiomatic specification SPEC) and the
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proof of a property Q from the formal specification, namely
SPEC => Q

is really a proof that any system in the family has property Q.
Code verification 1is a proof that a system S (given by its
program P) meets the formal specification. In this way S is
shown to have property Q. The usual understanding of this process
is that the program P uniquely determines the system S. In
actuality, an Ada program P, just 1like SPEC, determines a family
of systems, This is due to to unpredictability. In summary, an
Ada program is a specification of a family of actual object code
systems and Ada verification is a very advanced species of design

verification.

Of course, this glib description doesn't solve any problems;
it only presents a framework within which to proceed. As it
stands now a given Ada program P has too many possible object
compilations (which we will call "execution models"). This makes
it difficult to develop proof rules. Attention has been centered
on finding verifiable subsets of .Ada which will give rise to a
tractable model space for a given program. What we have found at
ORA is that such a search for a predictable subset of Ada must be
coupled with a definition of a "predictable compiler"™ which
places restrictions on the Ada compiler beyond those given in the
language manual. Actually, we have been finding that the
restrictions to be a "predictable compilef" aren't much different

from being a "reasonable compiler" since the language manual
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permits behavior that no reasonable compiler would ever exhibit
and the exotic permitted execution models thus allowed complicate

the model space and make it difficult to devise proof rules.

8 Verifiable Subsets: The Cluster Approach

As mentioned above ORA is currently examining how far
existing techniques of program verification can be adapted to the
verification of Ada programs. We have surveyed the current
literature in verification from the point of view of Ada and are

preparing an extensive annotated bibliography

As the best understood and best worked-out methods are
calculi of "Hoare triples" , {P}S{Q), thase are the techniques on

which we have concentrated. These seem to force on us the

following limitation:

executions which raise predefined exceptions be treated

like executions which fail to terminate.

That is, the triple "(P)S{Q)" is taken to mean "If P is true when
the execution of S is begun and execution of S terminates without
raising a predefined exception, then Q will be true when S
terminates.” Original research remains to be done on the raising
and handling of predefined exceptions. Those which are machine
independent {e.g., when an array index is out of bounds) are

relatively straightfoward; the machine dependeni exceptions
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(e.g., overflow) require the verification environment to contain

either explicit machine dependent constants (such as the actual

range of INTEGER) or assumptions about these contants (such as

the range of INTEGER includes the standard sixteen bit tvo's

complement signed integer range).

Our ultimate goal is to identify not "a verifiable subset”
but a number of overlapping subsets of the language, each of
which, d1individually, is reasonably tractable. We call the
"allowed subsets” clusters. The user would be required to write
any package, subprogram, etc., wholly within the restrictions
imposed by some cluster. This is our solution to the following
problem: Imagine a language with the constructs R, S, and T.
Suppose that one has in hand a usable proof system for programs
in which only R and § occur. It's quite possible that
incorporating T into the proof system would require not only the
introduction of rules for T, but also the introduction of new
complications into the rules for R and § -~ so that even the
proofs for ©programs involving only R and S become more
difficult, If there were a domain of problems in which it seemed
unlikely that construct T would be wused it would pay to
distinguish the subset (R,S) as a "verifiable" cluster with its
own simple proof system. For example; introducing aggregate
types like records and arrays complicates the logic of procedure
calls; and, more generally, handling the logic of procedure calls

requires a more detailed than ususl analysis of the assignment

statement,
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Our use of clusters is driven by the fact that Ada was not

designed as an inherently verifiable language (unlike Euclid and
Lucid)., It is extremely rich, allowing interactions between
features which surprise even Ada's designers. This is not a
criticism; .a programming 1language should be a flexible tool in
the hand of a creative system builder. The introduction of
;lusters is the recognition that Ada contains a large variety of
inherently verifiable sublanguages and that a large program

contains units from many clusters.

The cluster approach is not ad hoc since it 1s'meant to
mirror Ada's ability to hide information -- wusing it to hide
awkward combinations of constructs from the sight of one
another. Tﬁis strategy is a first crude step toward recognizing
tha; in actual programs constructs are not thrown together
arbitrarily but occur in contexts, and the allowed clusters are

meant to be abstract representations of "contexts."
Among the advantages of thus modularizing the proof system:

-- One concrete step is immediately suggested ~-- namely, to
study the requirements of individual problem domains (numerical
computation, communications, etc.) and look for useful tractable
clusters. If certain combinations of constructs that na;urally
hang together are not well-hgndled in the existing literature

such combinations are obvious candidates for research.

-- Questions of technique are not prejudged -- nothing
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requires that different clusters be attacked by the same methods,

. or by methods that can easily be integrated with one another,

-~ The system can be improved piecemeal -- one can introduce
new clusters as research makes them tractable, or alter one of
the already carved-out clusters without having to alter any of
the others. Notice that there's no reason to think that the
proper strategy for improving the system will always be that of
extending some one or more of the the allowed clusters. It might
make sense to add to the collection an additional cluster which
is a proper part of one of the allowed clus;ers -=- 1f that part
is useful and can be handled significantly more easily than its
parent, or to merge clusters if new methods of analysis are

developed.

-- More generally, cluster-building tools can be provided so
that the verification environment is user-extensible. This will
allow the user to formulate a cluster useful to him and prove the
soundness of the cluster's proof rules in terms of an abstract

mathematical model of Ada which the system would contain.

The word "construct” is used above as though one knew
precisely what it meant, and it may further suggest that
"constructs" are indivisible things whose combinations could only
be all or nothing matters. Neither suggestion 1is intended.

Consider the following, standard, example. It's meant to

illustrate two things:
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- as things are added to a language the logical rules tend to

complexify more rapidly than the language grows

- different logics can be used for different fragments of the

language,.

Example -~ In_a language with only scalar types a simple and
well known Hoare-style rule captures the assignment statement.
Once arrays are added that rule must be made more complex. Not
only is this well known, but it is also well known that the uses

of assignment which necessitate the new complexities are unlikely

to occur in practice.

If procedure <calls are now added certain impiicit
assumptions of the assignment axiom must be brought to light:
Namely, the assumption that variables which are syntacticallyA
distinct correspond éo disjoint areas of memory (i.e., are not
aliased). We can say this in another way: The naive rule for the
assignment assumes that syntactically distinct variables are

semantically unrelated.

The assumptions show themselves as follows: The obvious way
to infer the effects of a procedure call is to calculate what
effects execution of the procedure's body would have if carried
out on the formal parameters and then infer that it would have
corresponding effects on any actual pasrameters with which it was
called. Unfortunately, the syntactically unrelated formal

parameters of the procedure may be replaced by semantically
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related actual parameters, in which case the effects on the

actuals peed not correspond to the effects on the formals. If-

there were no procedure calls there would be no need to express

this "deeper" analysis of the assignment rule in the formal

axiomatics.

Our proposal for procedure calls is that the "ordinary"
logic of them should forbid aliasing among the actual parameters
-~ and, consequently, a naive semantics can be used to calculate
the effects of the body on the formal parameters. An
"extraordinary" procedure is one for which certain instances of
aliasing are explicitly allowed -- and in calculating the effects
of the body it is then necessary to use a more complicated logic

distinguishing locations from their contents, etc.

Here is.another commonplace example: Access types can be
used to build complicated data types such as lists, trees, etc.
If such types were encapsulated as private types in packages
which exported only the algebraic operstions suitable for
manipulating lists and trees, then the rest of the program

needn't be cognizant even of the existence of access types.

Among the conclusions of our survey:

—— Procedure calls in full generality are intractible. The
only practical remedy seems to be to restrict the possibilities
for making aliased procedure <calls (except in certain specified

instances). The difficulties in Ada go beyond the "classical"
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difficulties with aliasing ©because the parameters in Ada
procedure calls are specified functionally (as in, in out, or
out) rather than operationally (as var or val), making them

implementation-dependent. Further, the order of copy-in and

copy-out is also implementﬁtion-dependenta

-- The logic of the predefined exceptions is in general too
unstructured for us to deal with at the present time. To treat
them as though every statement were implicitly decorated with
conditional "goto's" (the "goto"™ branch being taken _ if the
exception is raised)'would be combinatorially overwvhelming.
There are just too many "goto's." Further, any single predefined
exception can be raised in-many places and one can't in general
be sure when an exception is raised where it was raised.
Therefore one can't in general know with any precision the state
of the machine at the moment the exception was raised. It is
possible, of'course, that the exception handler will take charge
and restore the machine to some determinate state, even though
the state in which it was activated is in some sense unknown.
User-defined exceptions, being fewer and more specific, are much

easier to accomodate.

The last point outlines a very important area of research
wvhich we are proposing to undertake. Although at present
applying existing techniques to the 1logic of predefined
exceptions 1is intractable the question must be faced for real

embedded syséem:. Presumably, the software must either be
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verified to recover gracefully from the raising of predefined

exceptions or not to raise them. It might be tractable to state

an entrj condition for each exception handler which is then

proved to hold before any statement which could raise that
exception or to prove that before each such statement the state

of the machine is such that the exceptionm will not be raised.
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1l Introduction

1.1 Limitations

This paper 1is the current draft of a continuing attempt to
discover and to describe, as precisely as possible, restrictions
on the wuse of Ada which will forbid the use of features or
combinations of features which are clearly beyond the capacity of
current methods of program verification, Its origins as a 1list
of do's and don't's for programmers are still evident in its
current incarnation. This draft incorporates the criticisms made
at the workshop on Ada verification held at IDA on May 18 - May
20.

We would welcome any comments, which can be addressed to
Odyssey Research Associates, 408 East State St., Ithaca, NY 14850
or, through the arpanet, to rplatek@eclb.

By a "verification" we will mean a correctness proof which
is, if not fully automated, at least machine-checkable. We limit
ourselves to considering proof techniques currently available in
the literature, of which the commonest are the logical calculi of
"Hoare-triples": assertions of the form "If condition A holds and
program P is executed [and, perhaps, further hypotheses also
hold] then condition B will result."” Our £irst approximation
added two hypotheses: that execution of P terminates (systems
that add this hypothesis are called systems for "partial
correctness™); that no predefined exceptions are raised during
execution of P.

The hypothesis that no predefined exception be raised was
criticized as being wunnecessarily restrictive. The original
opinion and the criticisms are further explained in the
discussions of -exception-handling.

The hypothesis that P terminate is the most common one to
make in axiomatizing sequential programming languages -- or, to
be more prezcise, in axiomatizing that part of programming which
consists in the computation of functions. But there 1is an
important distinction betweern constructs or modules which are
intended to terminate and those which are not. If a module is
intended to terminate then its effect is reasonably describable
by Hoare triples as an input-output relationship, and failure to
terminate is simply a mistake. A program unit which is not
intended to terminate ordinarily provides s service -~ for the
moment we'll call them "services." The design of an appropriate
language for speaking about services is a subject of active
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research. A Hoare-like strategy for specifying a service 1is to
record an invariant which holds true either at every moment of
the service's life, or at all moments except those explicitly
bracketed off. If this strategy is adopted it may then seenm
unreasonable not to follow the strategy whole hog -- making the
whole logic a 1logic of invariance. This is also a subject of
active research. We mention the problems posed by
non-terminating program units simply to take note of a difficulty
with the approaches surveyed in this paper.

One final question, which might well have come first: Just
what are we verifying -~ the 1logic of the source text or the
behavior of the compiled code? Here we're concerned not about
tne possibility of bugs in the compiler but about the variations
in behavior that can result from .optimizing compilers acting
quite legally. The discussion, in sections 2 through 4, of

initialization and undefined variables presents an example of the
difficulty.

1.2 One, Two, Many Systems

This notion of verification can be further refined, and that
is why it makes sense to us to speak in the plural of verifiable
subsets. Correctness 1is not the only goal of softwvare
engineering, and it might therefore be useful to carve out a
variety of "verifiable" subsets corresponding to a variety of
other goals (such as modifiability and portability).

One aim of Ada is to encourage the writing of software that
can be easily modified. If a verified program were revised it
would, in an 4ideal world, also be possible to modify a
verification of that program into a verification of its revised
version. Certain constructs (or certain uses of them) may well
be "rigid," meaning that they would make this difficult:
verification of the revised program would have to start from
scratch. Experience will be the final judge of which constructs
are "rigid," but there are obvious candidates (non-local
constrycts such as go to).

Another reason for choosing several "verifiable" subsets is
vell-illustrated in the literature. Imagine a language with the
constructs R, S, and T. And suppose that one has in hand a usable
proof system for programs in which only R and S occur. It's
quite possible that incorporating T into the proof system would
require us not only to add rules for T, but ‘also to complicate
the rules for R and S -- so that even the proofs for programs
involving only R and S become more difficult. For example,
introducing aggregate types like records and arrays complicates
the logic of procedure calls. More generally, handling the logic
of procedure calls requires a more detailed than usual analysis
of the assignment statement.




Dporst:® #.0s e

Odyssey Research Associlates

If there were a domain of problems (numerical algorithams,
communications systems, whatever) in which it seemed wunlikely
that construct T would be used it would pay to set aside the
subset (R,S) as a "verifiable" subset with its own simple proof
system, For example, time- or space-critical applications are
unlikely to use recursive subprograms. It's at least thinkable
that one could verify systems using large amounts of the language
by restricting each program unit to some tractable combination of °
constructs (and thereby hiding the difficult combinations from
one another). A fancy way to say this is to say that we're
hoping to pursue a strategy which is not "context free."

Among the advantages of modularizing the proof system: It
immediately suggests some concrete things to do =-- namely, to
study the requirements of individual problem domains and look for
useful tractable subsets. It doesn't prejudge any questions of

technique -- nothing requires that different subsets be attacked

by the same methods, or by methods that can easily be integrated
with one another. Finally, the system can be improved piecewise
-- one can introduce new subsets at will, or incorporate an
additional construct into an existing subset without having to
incorporate that construct into any others. .

1.3 Predictable compilers

There is not a sharp distinction between the work to be done
by a verifier and the work to be done by a8 compiler. Compilers
may use the results of verification to help optimize their
performance (for example, by suppressing certain run-time checks
that are known to be always satisfied). A user may wish to rely
on the compiler to enforce the dictates of the verifier -- for
example, to ignore the pragma suppress_checks if the verifier has
not certified this to be safe. A verifier may verify a program
relative to the assumption that certain aliased procedure calls
don't occur, or are reported if they do -- and may thereby wish
to rely on a pragma which compels the compiler to generate code
which performs the necessary checks.

As the definition of Ada 1leaves many (semantically
consequential) details to the discretion of its implementors, it
might also be useful to verify certain programs relative to a
(broad) class of compilers. We therefore begin to explore this
possibility. A relative verification would contain the proviso:

so long as the program has been compiled on a "predictable"
compiler,

Predictability might be implemented by a set of pragmas which
could be invoked to <call for certain run-time checks or
(selectively) to suppress others, etc.
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1.4 Outline

. Section 2, a laundry 1list of restrictions on Ada, is
basically an account of how to incorporate into Ada the
"classical" restrictions that are currently imposed on languages
designed with verification in mind. It proceeds construct by
construct and rules out those constructs for which no substantial
principles of verification are known. "Enown" means:
discoverable by a survey of the current (and straightforwardly
applicable) literature. It will be seen, for example, that our
restricted subset essentially limits Ada tasking to the resources
of CSP (see [Hoare, 1978],) Further, it describes the sorts of
information that must be supplied to a would-be verifier by the
writer of the program (even if writer and verifier are the same
person). In some cases we just throw up our hands.

We do not claim to have a model of the "asllowed" portion of
the language; nor that there are proof rules for arbitrary
combinations of the "allowed” constructs; nor, a fortiori to
guarantee that any program written with the "allowed™ constructs
and accompanied by the appropriate sorts of comments can indeed
be verified from the rules in the literature. All we can say is
that programs which violate these restrictions lie comfortably
within the large domain of current ignorance. Section 2 follows
the order of ARM (the Ada Reference Manual ANSI/MIL-STD-18154,
1983). By definition, it contains no surprises, although it does
point out that certain classjical problems, such as aliasing and
side-effects, are especially awkward in Ada.

Section 3 is written mainly for the non-expert: It defines
"aliasing"” and "side-effects", reviews the terminology of access
variables and access types, the text of the ARM's account of
undefined variables, etc. It " also justifies our assertion that
aliasing 1is intractable in Ada. Most of the discussion of the
peculiarities of Ada is deferred to Section 4.

Section 4 contains & discussion of program errors -~
erroneous programs” and "incorrect order dependences." Programs
which are "erroneous™ are sensitive to semantical decisions which
have deliberately been left undetermined by Ada's designers. As
different implementations will settle them in different ways the
behavior of such programs will be implementation-dependent.

Section 5 is an annotated bibliography. It cites, 1in

addition to the Ada literature, several of the standard papers in

program verification which were  found useful in preparing this
survey.

The paper concludes with an index.
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2 Rules

The section numbers and names come from ARM.

>
bl
=

Chapter 1, Introduction

No restrictions.

ARM Chapter 2, Lexical Elements

No restrictions.

ARM Chapter 3, Declarations and Types

No restrictions.

ARM 3.2.1 Object Declarations

Languages designed for the sake of verification typically
guarantee (by means of default values) that undefined variables
cannot occur. The alternative is to prove as part of the
verification that execution of a program will not result in
attempts to evaluate wundefined variables. This could be
especially difficult to ©prove in Ada when declaration and
initialization are distinct: because 1legal optimizations could
allow an error to be raised between the declaration of a variable

and its initialization even if no executable text occurs between
them, .

Ada does not allow most types to have default values, and
does not allow variables of some types (limited private types) to
be initialized by their declarations. We show, below, to what
extent the rule "initialize all variables" could be enforced.
Such a restriction would avoid a source of program errors: A
program which attempts to evaluate a scalar variable whose value
is undefined or attempts to apply a predefined operator to a
variable any of whose scalar subcomponents is undefined is

erroneous (ARM 3.2.1, 6.2). Further discussion is included in
section 4, ’

Case 1: No exceptions are raised.

- Any requirements about initializing variables must also be

applied, mutatis mutandis, to the formal out parameters of
procedures,
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- A decleration of & record type may, and therefore should,
provide default values for varisbles of that type (ARM 3.7).

- = Access variables automatically have the default value null
and therefore need no explicit initialization.

- The execution of an allocator may and therefore should
initialize the object designated by the access variable
being allocated. The distinction between this case and the
last case is as fo.lows, If type POINTER is access T, and x
is declared to be of type pointer, then an immediate attempt
to evaluate any subcomponent of x, such as x.all, will
result in a constraint error (unless the subcomponent
appears as prefix to an attribute [ARM 4.1]). The value null
is in effect an out-of-range index. After executing new(x)

‘\ the result of evaluating x.all is unpredictable, as the

value of x is now in-range, but the value of x.all is
undefined. In particular an error need not be raised.

o}

} - Variables of limited private type which are declared outside
the package creating the type can be initialized in only two
wvays: The type can be given a default value (which means
that it is implemented either as an access type or as a
record type with a default value). The package can provide
an initialization procedure, which accordingly must be
invoked immediately after a declarative part in which
variables of the type are declared. In this case we must
! 2lso insist that the variable not appear elsewhere in the .
{ declarative part in which it is declared -- otherwise it
could be a parameter in an expression used to give an
initial value to some other variable (of a type which is not
limited private). The interval between declaration and
initialization can present a problem -- errors might be
raised.

Lads 4

GO NS G, DR

- Variables of all other types can be, and therefore would be

required to be, initialized upon declaration, with the
4 following two exceptions:

{ - Variables can be attached (via address clauses) to addresses
vhich are hardware controlled and these cannot be
initialized by program declarations. Further, certain
addresses may have special significance for the operating
. system and need not be initialized by program declarations.
1 The compiler must know which addresses are "wired” -- so
1 that it will not raise program_error on the grounds that
* variables assigned to those addresses are not undefined.

- If a variable is declared in the visible part of a package,
initialized by the declaration, and altered by execution of
the package body, uses of the package by other program units
might be sensitive to the order in which program units wvere
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elaborated. (See the example in section 4, below.) A
program which 1is sensitive to the order of compilation
contains an (ARM 1.6, 10,5). This problem could be solved by
using the ELABORATE pragma to determine the order of
elaboration. An alternative to this solution is to demand
that a variable declared in the visible part of a package be
initialized in one and only one of the following two ways: .
(i) when it is declared; (ii) by the package body. This
would also require use of the ELABORATE pragma, to make sure
that there were no other program units which tried to make
use of the variahle before the package body was elaborated.

Case 2: Taking exceptions into account.

Exceptions raised during declarative parts will cause control
to be transferred out of the scope of the variables declared in
that declarative part (ARM 11.4.2). None of the variables
declared in that declarative part will 1linger as undefined
entities because all of them will cease to exist.

If initialization does not occur at declaration there is 1in
general no simple syntactical way to guarantee that it ever

occurs -- an error may intervene between declaration and
initialization even if no executable text occurs betwveen
declaration and initialization. (Reason: optimizations may

reorder computations.) See examples in section 4.
ARM 3.2.2°
No restrictions,

ARM 3.3 Types and Subtypes

Task types will be wused only as templates; access types to
task types will be forbidden. (See restrictions to 3.8 and 9.)

No restrictions,

ARM 3.5.7, 3.5.8 Floating Point Types, Operations

The difficulties in verifying floating operations, beginning
with the difficulty of stating what one means by correctness, are
well known and aren't the sorts of problem to which
"restrictions" are the appropriate response. We take as s
beginning ([Sutherland, 1984 which formalizes the following
notion of the logical correctness of an slgorithm: A program is a
logically correct representation of a mathematical function if
the values which it computes converge to the correct values of:
the function as the accuracy of the machine on which it is run
increases. If a (finite) polynomial is used to compute some
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transcendental function such as cos, the correct logical
specification of the algorithm would be that it computes that
polynomial, not that it computes cos. This proposal, equally
applicable (or inapplicable) to any programming language, was
criticized on the grounds that the model numbers of Ada are quite
carefully specified and might therefore make quantitative
analysis of Ada programs tractable.

3.5.9 - 3.8
No restrictions.
ARM 3.8 Access Types
No access types to task types.

3.2

-
< <

ARM

No restrictions.

>
cd
=

Chapter 4, Names and Expressions

>
e
=

4.1 - 4.5.1

No restrictions.

l:»
ol
=z

4.5.2, Relational Operators and Membership Tests

Warning: If A and B are array variables it is Possible that
the value of "A = B" could be true and the value of "A(2) = B(2)"
at the same time false. If the indices of A range from 1 to 5
and those of B from 2 to 6, the "=" operator asks only wvhether
the first value of A equals the first of B, etc. See also ARM
5.2.1.

ARM 4.5.3 - 4.1

No restrictions.
ARM 4.8 Allocators

If insisting on 4initializing variables: The execution of an
allocator may and therefore should initialize the object
designated by the access variable being allocated.
ARM 4.9 - 4.10

No restrictions.

ARM Chapter 5 Statements
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ARM

S.

No restrictions

ARM.5.2.1

Warning: If A and B are array variables, then after the
assignment "A := B" it could still happen that, say,
A(2) /= B(2). 1f the indices of A range from 1 to 5 and those of
B from 2 to 6 the assignment will replace the first value of A by
the first value of B, etc. See ARM 4.5.2,

ARM 5.3 - 5.4
No restrictions.
ARM 5.5 Loop Statments

Loops immediately raise the problem, mentioned im the
introduction, of intentionally non-terminating program units.
Loops which are intended to terminate are well-understood in
terms of Hoare-triples: While-loops and indexed 1loops must be
annotated by "loop invariants”™ -- conditions true every time an
iteration of the loop begins. General loops of the form "loop §;
exit when B; T" must be annotated with two invariants: one which
is true whenever control reaches the beginning of S, and another
which is true not only whenever control reaches the end of S but
also whenever it reaches the beginning of T. Loops with more than

.. one exit are handled by an easy generalization. Loops can also

be left by executing a return statement or by the raising of an
exception. These in principle present no special difficulties
and [Luckham and Polak, 1980] asserts that such use of errors in
"normal"™ circumstances has not been found to be especially
burdensome. .

We simply note that we know no generally satisfactory
strategy for specifying what it is that one wants to prove about
loops which are intended to be non-terminating. Nor is it
obvious that from a collection of pieces each of which 1is
specified by Hoare triples one can expect to assemble and verify
a loop specified in some other way (e.g., bty an invariant true
throughout the loop's lifetime).

ARM 5.6 - 5.8
No restrictions.
ARM 5.9 Goto Statements

As Ada has powerful control structures, including "return"
and "exit" statements it seems not unreasonable to say: no go
to's. [Ledgard and Singer, 1982)] argues that the construct is
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"redundant" and [Good, Young, Tripathi, 1980] that it is an
"anachronism." Notice that goto's are also 1likely to 1lead to
"rigid" programs (programs whose verifications cannot be easily
modified to apply to modifications of the program). The standard
discussion of this matter is [Knuth, 1977].

ARM Chapter 6 Subprograms

ARM 6.1 Subprogram Declarations

The body of a subprogram may not contain a declaration for
another subprogram of the same name and parameter type profile.
("Parameter type profile"™ is defined in ARM 6.6).

Tasks or objects with tasks as subcomponents may not be
passed as parameters to subprograms. This restriction is imposed
not because this is known to be intractable or to present
additional difficulties beyond those already posed by

understanding tasking, but rather because no work has been done
on the question.

Subprogram specifications must be accompanied by comments
1 which: list the global variables occuring in the subprogram; list
\ the allowed exceptions to the "no aliasing™ rule; and describe
L its effects, including side effects. (This requirement is set

out in more detail in the discussions of ARM 6.4 and ARM 6.5.
! Section 3 contains the definition of "alies.")

ARM 6.2 Formal Parameter Modes

If insisting on initializations: The formal out parameter of
a procedure must be initialized at the beginning of the procedure
body. (See section 4.)
ARM

=3

6.3 Subprogram Bodies
See 6.1, 6.2.

L

h ARM 6.4 Subprogram Calls

These restrictions concern both the suggested way to annotate

subprograms with comments and the appropriate use of subprograms
based on their annotations.

1 1. Recall the comments about ARM 6.1 - ARM 6.3.
2. No forbidden aliasing. The term "alias"™ is elaborately
defined and discussed in section 3. Experts should beware
of a subtlety: The wusual proof rules for Pascal-like

languages permit a val parameter to be aliased against a
var parameter. The Ada parameter modes in and in out,
hovever, do not quite correspond to val and var. Aliasing
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between in and in out parameters can result in erroneous
programs (see section 4).

This restriction could be enforced syntactically, by ruling
out all potential instances of aliasing. Doing so would
rule out many calls in which aliasing does not actually
occur. Alternately, the verifier could be <called on to
show that aliasing does not in fact occur. The verifier '
would reject any program for which he could not make such a
demonstration.

If syntactical enforcement is chosen, there are two ways in
which the restrictions might be relaxed:

~ The compiler could recognize a pragma ALIAS_CHECKING
which would cause it to generate code that would at
run-time raise the error ALIASING_ERROR if forbidden
aliasing were to occur.

- Subprograms which had been certified by the verifier
to meet their specifications for all calls, aliased or
not, would be exempt. This certification could, of

course, be fed back to a8 compiler called on to do
ALIAS-CHECKING.

In any case, procedure specifications must be accompanied
by comments which do the following:

- 1list the global variables of that procedure;

- describe the intended result of the procedure,
including the side-effects of a call on it
("side-effects"” are defined in this section, in the
discussion of ARM 6.5);

- describe changes or potential changes in the objects
designated bx in parameters which are access variables
("designated”™ “1Is defined in section 4 in the
discussion of access variables);

- 4indicate which instances, if any, of otherwise
forbidden aliasing are to be permitted (premissions
one would expect to find mainly in already-verified
library routines).

ARM 6.5 Function Subprograms

We urge that wunless it 1is prohibitively expensive, a
function body contain no global variables at all -~ that it
should import as parameters any non-local variables which
it uses. The ideal is that all functions should act like
"mathematical"™ functions (i.e., like the predefined
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operations) -- fully describable in terms of input and
output. If global variables there must be, then the
function specifications must be accompanied by a comment
listing them and giving an account of their role.

2. No side-effects. This means that a functioan body may not
contain:

- assignments to global variables or calls to procedures
which can change global variables;

- 1/0 operations; _

- allocators -- statements of the form "x := new T",
where x is an access variable designating objects of
type T;

- occurrences of "run-time" attributes -- attributes
whose values can change during execution (this seconds
the general restrictions which will be imposed below
on the use of attributes);

- assignments to subcomponents of access variables, or
calls to procedures which make such assignments.

These matters are elaborately discussed in the next section.

ARM Chapter 71, Packages

Whether or not one is insisting on initializations: If a
variable is initialized in the visible part of a package neither
it nor any of its subcomponents must be altered by execution of
the package body. See the discussion, above, of ARM 3.2.1. Those
comments also discuss the treatment of limited private types.

Except for its effects on the variables declared in the
package specification, execution of the package body should have
no side-effects on entities visible outside the package body.
For the meaning of "side-effects" see the discussion, above, of
ARM 6.5. If a main program uses a package which violates this
restriction and the package is a library unit (in particular, if
it is one of the parts of a program that is separately compiled)
the effect of the main program could depend on when in the
sequence of elaborations of library units that package body 1is
elaborated. This would be both a logical difficulty and a
program error. See the discussions of ARM 10.5 in this section
and the discussion of incorrect order dependences in section 4.2,
below.

Packages don't provide a problem so much as they provide an

opportunity -- to modularize systems into coherent parts. The
problem is the problem of not wasting the opportunity, which
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means finding good ways to specify packages. Any restrictions on
writing packages will be for the sake of accomodating those
techniques.

ARM Chapter 8, Visibility Rules

No restrictions
ARM Chapter 9, Tasks

What's known about tasking is rather limited, and the rules
below are no more than an indication of the kinds of limitations
that have so far been imposed to isolate tractable fragments of
the language. We have not attempted to extend or to synthesize
these systems. The bibliography (section 5) sets out in some
detail the fragment of Ada tasking treated in each of the
included papers. These papers have, of course, deliberately
stripped down the language for ease of exposition and in some
cases extensions (of the sequential part of the fragment) seem
routine.

Typical restrictions on tasking

1. Parameters passed at a rendezvous are scalars.
Liberalizing this seems routine.

2. The collection of tasks must be fixed, the tasks must begin
together, and the tasks must themselves be sequential --
i.e., they must not create further tasks by declaration or
allocation. Accordingly: a task may not be declared within
a task and there can be no access types to task types.

3. Tasks may not share memory. Accordingly: tasks may not
have global variables in common and mey not pass access
variables in a rendezvous. A warning to experts: It might
seem safe if tasks altered shared variables only by passing

as in out parameters to a third task. Such programs can
stiTT DPe erroneous. (See section 4.)

4, Entry calls must obey all the restrictions (against
aliasing) imposed on procedure calls.

5. The attributes COUNT, CALLABLE, or TERMINATED wmay not be
used. This restriction effectively prevents the programmer
from writing his own scheduler.

6. delay statements may not be used. In general, the logic of
the real-time features is not understood.

7. Certain formalisms also prohibit conditional entry calls
selective waits which contain an else clause.
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ARM Chapter 10, Program Structure and Compilation
issues

No restrictions. Section 4.2, below, discusses incorrect
order dependences that could arise among separately compiled
program units. The ELABORATE pragma could be routinely used to
eliminate any indeterminacy resulting from variant orders of
elaboration.

ARM Chapter 11, Exceptions

l. Predefined exceptions: Our original position was to treat
programs which raised redefined exceptions as "failures"
analogous to (accidentally) non-terminating programs. The reason
was not theoretical, but practical -- there seemed to be too many
potential occurrences of them. The criticism of this was also
practical: that experience with the exception-handling mechanism
of Gypsy suggested that our position was mistakenly pessimistic.
No one <claims to know how to deal with tasking exceptions. The
standard reference, [Luckham and Polak, 1980], omits tasking
exceptions altogether,

Notice that the (non-tasking) exceptions are of two kinds:
storage_error and numeric_error, which are strongly
implementation dependent; and program_error and constraint_error,
which are not. The first kind are (sometimes regrettable but)
"normal" occurrences and need not indicate that the program is
logically "incorrect,” while it seems reasonable to regard the
raising of program and constraint errors as indicators of logical
mistakes. A formal verification of a program might be expected

to generate, in passing, a proof that program and constraint
errors would not occur. .

2. Exception-handling: There seem to be three 1levels of
complexity in the way in which exceptions can be handled. In
order of increasing complexity they are:

- exceptions are handled locally and not propagated;
- exceptions are propagated, but within their scopes;
~ exceptions are propagated outside their scopes.

The most conservative simplifying restriction would be to
insist that exceptions be handled 1locally. In any event the
proof rules require the programmer to supply: an "assumption"
about the state in which the handler begins to do its work; an
"assertion" about the states in which the exception 1s raised.
Actually, the rules are more complicated -- ©because the
association of exceptions with exception-handlers is dynamic.
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3. Exceptions raised during procedure calls: If execution of
the body of a procedure call is broken off by the raising of an
exception one can't in general know the values of the actual
parameters at the moment the exception is raised -- because the
parameter-passing mechanisms are not in general determined by the
language. The rules for procedure calls (see [Luckham and Polak,
1980]) make some assumption about the parameter passing
mechanism. '

ARM 11.6, Exceptions and Optimization

[Cohen, 1985] observes that optimizing compilers which reorganize
computations present difficult problems to verifiers. Some legal
reorganizations, for example, can cause errors to be raised that
would not otherwise be raised or to alter the place at which an
error is raised. This presents a problem for verification which
can't be solved by subsetting.

ARM Chapter 12, Generic Units

No restrictions are imposed on the use of a generic X beyond
those imposed on the use of X. In a simple-minded sensé generics
present no new difficulties because one can simply attempt to
verify particular instantiations. That, of course, contradicts
the spirit of the enterprise, which is to create an off-the-shelf
template all of whose instantiations come pre-verified as a
result of one "generic" .verification. Like packages, generics

are not a burden on the verifier but, potentially, part of the
solution,

A few remarks, in keeping with the spirit of the enterprise:

Consider a case that is easy to deal with -- a generic stack
manipulator. What makes this easy is that the manipulation of
stacks is a kind of algebra, with calculational rules and
axioms. Verifying such a generic "algebra" requires a clear
setting out of what the algebra in question is.

We require of the objects being stacked nothing other than
that they be objects. We might require more -- that 1is, facts
about the operations that have been defined on them, or about
subprograms that are imported to help manipulate them. Consider
a generic sorting algorithm, which sorts with respect to some
given (imported) relation. One intends that the relation that's
imported should be some kind of ordering. The algorithm probably
won't do anything coherent unless the relation 1is transitive,
etc. The generic specification must therefore by accompanied by
comments indicating what properties the imported subprograms are
intended to have.

Accordingly, it seems that the important issue is not how to
prove things about generics -- one needs no new rules -- but how
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to specify the data structures a generic is intended to act on
and what the instantiation is or does.

ARM Chapter 13 Representation Clauses an
Tmplementation-Dependent Features

Ve have little to offer here beyond ignorance.

Warning: The ways in which information can be coded into
interrogations of the low-level attributes can be surprising and
obscure. (For example, by using the ADDRESS attribute a program
could discover whether a parameter had been passed by value or by

reference, and its behavior could be affected by that (ARM
13.7.2, paragraph 15).) For more discussion of this see section
6'

ARM 13.10 Unchecked Programming

It is  at least possible to generate an
implementation-independent proof that some application of
unchecked deallocation will not result in attempts to access
dangling pointers. One "could impose the requirement that
unchecked_deallocation not be used in the absence of such a
proof, “Unchecked _conversion, of course, is completely
implementation-dependent.

ARM Chapter 14 Input-Output

No I/0 operations in function or package bodies. (See rules
for ARM 6.5 and .ARM 7. See also sections 3 and 4, below.)

ARM Appendix A, Predefined Language attributes

Notice that both the task attributes -~ COUNT, CALLABLE, and
TERMINATED -- and the low-level attributes of chapter 13 have
been disallowed.

3 General matters

This section rehearses definitions and terminoclogy about
access types, undefined variables, aliasing, side-effects, and
subprograms -- and attempts to justify our assertion that aliased
procedure calls are intractable in Ada. As before, section
numbers of the Ada Reference Manual are prefixed by "ARM."
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3.1 access types

The point of this paragraph is to rehearse some terminology
from ARM and make a few fine distinctions which will be useful
later. Consider:

type T is array(l..2) of INTEGER;:

type POINTER is access T;

x,y : POINTER; -- x and y have default access value null;
-- attempts to evaluate x.all raise
-- constraint_error

x := nevw T'(0,0); -- x.all is Initialized to (0,0);
T'(1,1)

The terminology of ARM is: The allocator
"x := new T'(0,0)"

creates an object, and yields, for x, an access value that
designates that object. The "'(0,0)" and "re1,1)" are
initializations of x.all, and y.all, the objects designated by «x
and y. The default initialization of x is a special access value
null, which does not designate an object, The simple-minded
model of allocation is that x is assigned an address (the access
value), which is the location at which the new.object of type T
(the object designated.by x) resides. The terminology goes on:
So long as x contains the same access value it is said to
designate the same object, even though the object itself may
change. This is reflected in the two kinds of assignment
statements. Given the declarations above, the result of:

X 1= ¥ .

is that x and y designate the same object, because each
thereafter will contain the same access value (the one originally
contained by y). The result of

x.all := y.all

is that x and y designate different objects (contain different

addresses) whose components happen to be the same: they're
identical twins. The result of :

x(l) = 2
is that x designates the same object as before -- an object that

is now changed (as in, "That's the same man, but now he has a
beard"). -
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3.2 initialization
ARM 3.2.1:

- The result of an attempt to evaluate an undefined scalar
variable, or to apply a predefined operator to a variable
that has an undefined scalar subcomponent will be
unpredictable, but need not raise an error.

- The value of a scalar variable is wundefined after
elgboration of the corresponding object declaration unless
an initial value 1is assigned to the variable by an
initialization (explicitly or implicitly).

ARM 6.2:

- The value of a variable is said to be updated when an
assignment is performed to the variable, and also
(indirectly) when the variable is wused 8as an actual
parameter of a subprogram call or entry call statement that
updates its value; it is also said to be updated when one of
its subcomponents is updated.

- The value of a scalar [out] parameter that is not updated
[by a procedure call] is undefined upon return; the same

holds for the value of a scalar subcomponent other than a
discriminant.

ARM 9.10:

~ If the abnormal completion of a task takes place while the

task updates a variable, then the value of this variable is
undefined.

The reference manual carefully avoids talk about "defined" or
"undefined"” or "partially defined" aggregates. No explicit
definition is given of what it means for a scalar variable to be

defined, other than to say that a scalar variable initialized
upon declaration is defined.

3.3 sliasing

Our principal difficulties are difficulties with the
parameter-passing mechanisms of Ada -- with the fact that they
are often implementation-deépendent. This makes aliased procedure
calls even more awkward than usual, for the semantics of aliased
procedure calls will as a rule become correspondingly
implementation~-dependent. We think it will be necessary to rule
out certain aliased procedure calls, a8 we are becoming persuaded
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that, as a rule, the peculiarities of Ada make them intractable.

The rule stated below is not peculiar to Ada, except for the
caution, mentioned in section 2, that in and in out parameters
should not be aliased. The effects of Ada's underdetermined
semantics are deferred to the account of erroneous progrmas in
section 4.

3.3.1 definition of alias

Two distinct occurences of variables are aliases 'if they
refer to common areas of storage. In particular, distinct
occurences of the same variable are, trivially, aliases. (The
term "alias™ is often restricted to aliases which are distinct,
but it will be convenient here to speak more broadly.)

We first consider the case of records and arrays. Let A be
an identifier which is an array, and suppose the following
subcomponent is well-formed: A(t).NEXT(j). That is, A is an array
of records, and the objects occupying the record field NEXT are
themselves arrays. Combining the terminology of [Cartwright and
Oppen, 1981] and [Gries and Levin, 1980] we'll say that the
abstract address of the variable 'A(t).NEXT(j)' in some machine
state S is an ordered pair whose first co-ordinate is the
identifier'A' and whose second co-ordinate is the . selector

sequence <value of t, NEXT, value of j> -- where the values of t
and j are computed in state S and we may as well think of the
field-name 'NEXT' as being its own value.

Let x and y be variables and let their abstract addresses be
(I1,s81) and (I2,s2), respectively. Then,

x and y are aliases in state S
if and only if
- I1 and I2 are the same identifier;

- one of the selector sequences sl, 82 is an initial segment
of the other (when both are evaluated in state S).

Further,

x and y are potential alicses
if and only if

~ there exists some state in which they are aljases.

Finally,
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- a variable is aliased or potentially aliased with an
expression if and only 1f it is aliased or potentially
alissed with any variable which occurs in the expression,

Notice that the selector sequence of the variable A (where A is
an identifier) is the empty sequence, which is an initial segment
of any other sequence.

Examples:

- @a(1).NEXT and a(i).NEXT(j) are guaranteed to be aliases in
8ll states, as are a and a(i);

- a(i) and b(i) cannot be aliases (if 'a' and 'b' are distinct
identifiers);

- a(j) and a(t) sre aliases if and only if j = t;

- a(i) and a(i+l) cannot be aliases, nor can a(i).NEXT and
a(i).LEFT.

Access variasbles are only seemingly more awkward, because the
customary notation disguises their complete analogy with the case
of records and arrays. We adopt the terminology and adapt the
notation of [Luckham and Suzuki, 1979]. Suppose that type POINTER
is declared as an access type to T and that x is & variable of
type POINTER. We introduce a new entity, T*, of a new type (type
reference class), with the following meaning: T* is a

variable-length array, whose allowed indices are the values of
the variables of type POINTER, and whose components are of type
T. In this new notation the object designated by x, denoted in
Ada by x.all, is instead denoted by T*(x). If all Ada variables
are rewritten in this new notation, then the definition of
aliasing used above carries through. Here is another example:

type T;
type POINTER is access T;

type T is
record
VALUE : integer;
LEFT : POINTER;

RIGHT : POINTER;
end record:

x,y ¢ POINTER;
In the revised notation,

- x.all becomes T*(x);
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- X.LEFT becomes T*(x).LEFT;
- x.LEFT.all becomes T*(T*(x).LEFT);
! - x.LEFT.RIGHT.LEFT becomes T*(T*(T*(x).LEFT).RIGHT).LEFT.

Notice that in the last example the selector sequence is not the
sequence <LEFT, RIGHT, LEFT> but a sequence of length two:
CT*(T*(x).LEFT).RIGHT, LEFT>. T* is, essentially, an array of
records, and its selectors can have 1length at most two ~- the
first selector being an access value and the second a
field-name.

Accordingly,
- x and y are neither aliases nor potential aliases;

- x.all and y.LEFT are poteﬂtial aliases, and will be aliases
whenever x = y -- for this translates to the assertion that

T*(x) and T#*(y).LEFT are potential aliases and aliases vhen
x-’c

- x,RIGHT and y.LEFT.all are potential aliases, and will be
aliases whenever y.LEFT = x -- for this translates to the
assertion that T*(x).RIGHT and T*(T*(y).LEFT) are aliased
just in case x = T*(y).LEFT. '

One apparent anomaly remains: Suppose that x = y. Although
an assignment to x affects neither the value of y nor the value
of any of the subcomponents of y, an assignment to x.all alters
the object designated by y. Yet the definition above says that
x.8l11 and y are not aliased -~ T*(x) is not aliased with y. The
anomaly is psychological: we tend to give x no status of its own,
thinking of it as another name for T*(x). If we thought of an
integer variable i as another name for A(i) the same seenming
anomaly would result. What this does show is that <calling
'x.all' a component of 'x' can in some circumstances be
misleading -- as misleading as calling 'A(i)' a component of 'i'.

3.3.2 the no aliasing rule

Unless explicitly permitted by a procedure's annotations,
procedure calls with aliasing of types (i) - (iii), below, must
not occur. All psrameters referred to in (i) - (iii) are actual
parameters. All expressions involving access variables are to be
understood as written out in the notation of reference classes
given sbove; and, using the notation of the examples above, if
type POINTER is declared globally to a procedure body in which T*

occurs, then the 1logical entity T* will be a global variable of
the procedure.
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(i) aliasing between parameters to a procedure call and
variables which are global to the procedure;

(ii) aliasing between in out parameters, between ou
parameters, or between any in ogut t and any Qut parameter;

(i1i) aliassing between any in out or out parameter and
an expression which is an in parameter. :

Notice that aliasing between in parameters is acceptable.
Once again we warn experts that aliasing between in and in out
parameters has been ruled out.

One can determine from the text of a procedure call whether
it potentially possesses aliasing of types (i) -~ (iii). There is
therefore a simple rule which is sufficient (but not necessary)
to ensure that no aliased procedure call occurs: forbid procedure
calls which potentially violate the rule. Note that doing so
rules out some calls in which no dangerous aliasing actually
occur.,

The other possibility is to attempt to prove that aliased
calls do not occur -- in particular, that no potential aliasing
becomes actual. A verifier would reject any program for which
this attempt failed.

To flatly rule out potentially aliased calls is awkward but
possible, since it is always possible to "preprocess" procedure
calls in a way that guarantees that forbidden aliasing will not
occur., It would then be up to the programmer to find a
preprocessing that results in a program that has the desired
effect. For example, 1if a procedure Q has two out parameters,
representing conceptually distinct values, one must begin the
preprocessing of Q(x,x) by asking why Q(x,x) i3 supposed to
result in anything meaningful.

The simplest kind of preprocessing is a reassignment: 1If
Q(x,...) 1is aliased or potentially aliased because of 1links
between the in out actual parameter x and other variables, then
one can declare a brand new variable y of the appropriate type
and replace the code "Q(x,...)" by "y :tw x; Q(y,00.); % ¢= y."
If several variables are so treated, then, of course, the order
in which the asssignments are made will matter. It is up to the
programmer to decide which of these, if any, achieves the desired
effect., One of the effects of this trick is to guarantee that
the result of the call will be equivalent to the result of a call
by copy-in/copy-out

One can sometimes guard against potentiallj aliased

veariables' becoming actual by guarding a procedure call with a
conditional:
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if x /= y then Q(a(y),a(x))

else ... something suitable

It's up to the programmer to decide what is suitable.

Notice that guarding a call with a conditional may be
insufficient if the actual paremeter a(x) is potentially aliased’
with a global variable (say, a(z)) of the procedure. Whether x =
z at the point of «call is irrelevant. What will matter is
whether the value of x at the point of call equals the value of 2
current at certain crucial moments during the execution of the
subprogram body.

3.4 subprograms

The suggested restrictions can be justified not only because
they simplify the logic of subprogram calls, but because they
make it possible £for subprograms to be used as Ada intends that
they be used -- as modules one can pull off the shelf and insert

into a program without any need to know the details of their
inner workings.

3.4.1 functions

The logic of function calls is simplified if the functions
produce no visible external effect other than their output --
that is, if they have no side-effects. The
implementation-supplied functions "+" and "*" have no
side-effects, and we rely on that: not only -on evaluation of
"x+y" returning a correct value, but also on that act of
evaluation's leaving unchanged the values of all the variables in
the program. (Note: A serious practical and logical problem
corresponds to the big difference between "f£f(x)" and "x4y" --
namely, that "f(x)" may not return a value.)

The question arises: What is a side-effect? When a function
call is made: the program counter moves, the machine's clock
ticks, storage fills up, the universe expands., Not everything in
the world remains the same. The notion of side-effect is
relative. A change is a side-effect only if there is a way in
which information about that change is in some way available to
the program and can therefore affect 1its execution. These
considerations justify the restrictions on functions.

Changes in the values of variables are visible effects:

Therefore, global variables may not be changed, either by
assignment by calling on subprograms which change them.
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An 1/0 operation, although not changing the values of any
explicit program variables, nonetheless produces a detectable
change (movement of a file pointer) -- a change detectable by the
next call to that operation.

The rule which forbids updating any (or all) ‘of the
components of an access variable closes a loophole: Such updates
are not, strictly speaking, updates of the variable, which
continues to have the same value and designate the same object.
This forbids the following sort of trick:

type POINTER is access T;
y : POINTER; ~—
function F(...) ... is
x : POINTER;
begin
X = y;
alter the object designated by x;

end F;

This, if allowed, would procduce what we'd have to count as a
side-effect, since the object designated by the global variable y
would be changed. But there is no way to alter that object
except by assignments to the dereferenced versions of x or y
(including x.all) -- i.e., assignments to subcomponents of access
variables.

Notice that the "no side-effects" rule means that the objects
designated by access parameters passed to a function will not be
changed by the csall. On the other hand, objects designated by
parameters passed to a procedure, even those passed as in
parameters, may be changed by the call.

Allocators are forbidden in function bodies because (as ARM
says) an access type implicitly brings into a being a global
variable which stands for the totality of allocated objects, and
a new statement updates that variable, "incrementing"™ it by the
addition of another object. If x is a local variable of the
function, then any object allocated to x 4is 4inaccessible after
any execution of a ¢all to the function is completed.
Nonetheless, such an allocation may leave tracks behind: It may

not be cleaned up, and could lead to a STORAGE_ERKOR (ARM 11.1,
paragraph 8). :

Notice that merely to read a non-local variable in a function
body is to allow external influence on the behavior of that
function, Calls on run-time attributes also allow outside

influences on the behavior of functions, and in ways that can be
much harder to keep track of,. ’
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3.4,2 procedures

We provide, below, a standard illustration of the sort of
awvkwardness that arises as the result of aliased procedure calls
and note the standard remedy. The discussion of erroneous
programs in section 4 will show why the standard remedy 1is not
necessarily helpful in Ada. Consider:

rocedure P(x: in out INTEGER;
REAEREEE y: in out INTEGER) is

begin
X = y+l;
end P;

We would like to be able to reason about P by enunciating a
general principle like this: If x and y are passed to P then,
after the call to P, x = y+l. Unfortunately, after the call
P(a,a) -- a syntactically legitimate, but aliased, call -- it
would seem to "follow" that a = a+l.

The logical mistake is that the demonstration of the original
principle implicitly assumed that the parameters were not aliased
against one another. The standard way to correct the mistake is
to verify two separate facts about P, one under the assumption
that its actual parameters will be unaliased and another and
another under the assumption that they're aliased. The number of
cases goes up rapidly with the number of parameters and the
analysis of any one case requires that one know: (a) the method
of parameter Dpassing; (b) the order of copy-out, should
parameters be passed out by copy.

Further discussion of aliased procedure calls is contained in
the next section (erroneous programs).

4 Erroneous Programs, Incorrect Order Dependences,

Predictable Compilers

4.1 Erroneous Programs
The term "erroneous™ is defined in ARM 1.6 as follows:

The language rules specify certain rules to be
obeyed by Ada programs, although there is no
requirement on Ada compilers to provide either a
compilation-time or a run-time detection of the
violation of such rules. The errors of this category
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are indicated by the use of the word erroneous to
qualify the execution of the corresponding constructs.
The effect of erroneous execution is unpredictable.

In effect, the compiler is allowed to make certain assumptions
about the execution of the program as a basis for generating
code, doing optimizations, etc. Presumably, the more ingenious a.
compiler is at exploiting the assumptions the more peculiar will
be its possible behavior if they are false.

The rules in question occur in sections 3.2.1, 5.2, 6.2,
9.11, 10.5 11.7, 13.5, 13.10.1, and 13.10.2 of ARM.

ARM 1.6 goes on to say that:

If a compiler is able to recognize at compilation
time that a construct is erroneous or contains an
incorrect order dependence, then the compiler is
allowed to generate, in place of the code otherwvise
generated or the construct, code that raises the
predefined exception PROGRAM_ERROR. Similarly,
compilers are allowed to generate code that checks at
run time for erroneous constructs, for incorrect order
dependences, or for Dboth. The predefine exception
PROGRAM_ERROR is raised if such a check fails.

ARM 3.2

.1 Object Declarations

An attempt to evaluate a scalar variable which is undefined
or to apply a predefined operator to a variable that has an
undefined scalar subcomponent is erroneous.

Example(i)

x, ¥y ¢ integer;
X (= y; -- erroneous, as execution of this statement

-- requires evaluation of y
x := 0;

A compiler could reject this program. It could generate code
that detects the erroneous step during execution and raises
program_error at that point. Strictly speaking, the language
manual does not even permit the inference that if the program is
run without the raising of program_erro- the program will
terminate with the value of x equal to zero.

Example(ii)

3=2¢
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type BA is array (1..10) of Boolean;
x,y ¢ BA
X = y; -- erroneous?

It is not obvious whether this-is erroneous or not. The question
comes down to the following: Does "evaluation of y" necessarily
imply evaluation of its components?

Examglegiiiz

The point of this example, taken from ARM 11.6, is that an error
can be raised between the declaration of n and its
initialization, even though no executable statement appears
between them. :

declare
n : integer;
begin
n := 0;
for J in 1 .. 10 loop
n ¢t= n + J**A(k); -- A and k are global variables
end loop;

exception
when others => PUT(n);

end;

ARM says that an implementation may evaluate A(k) before the
assignment to n, but not before the begin (as that would
associate an error in the evaluation of A(k) with a different
handler). If this evaluation raises an exception the handler
will attempt to PUT the value of an undefined variable.

ARM 5.2 Assignment Statement

An assignment to a variable which is a subcomponent and which
depends (as a subcomponent) on the discriminants of an
unconstrained record variable is erroneous if any of the
discriminants of that unconstrained object is changed by the
assignment. (A similar warning is dissued in ARM 6.2 about
producing such an effect by means of a subprogram call. See the
discussion of 6.2, below.) The definition of "depending on a
discriminant” can be found in ARM 3.7.1. It's illustrated in the
next example, '

type ANSWER(LENGTH: INTEGER: = 3) is
record
OK: STRING(1..LENGTH);
end record;

y ¢ ANSWER; -- y is an unconstrained record variable
¢ : ANSWER(2) := (OK => "no");
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function f return STRING(1l .. 3) is
begin

y i= C;

return "yes";
end function £;

y.0K := £; -- erroneous: y.0K is a subcomponent of y
—- which depends (as a subcomponent) on the
~- discriminants of the unconstrained record
-~ variable y and the assignment changes the
-- discriminant of y

Here the (one and only) component OK depends on the
discriminant LENGTH. The assignment of ¢ to y is legal and
changes the discriminant of y in the only 1legal way -- by a
complete assignment to all the components of y.

T ——

- ARM 6.2 Formal Parameter Modes
1. ARM 6.2 (paragraphs 5 and 13) says that a procedure call
} is erroneous if any of its oyt parameters is not updated by the

call. And the wupdating must be done by updating the formal out
parameter. It does not suffice to update some alias of the.
actual parameter, The only parameters which can be given default
L values are in parameters.

2., Paragraph 10 of ARM 6.2 says:

If the actual parameter of a subprogram call is a
{ subcomponent that depends on discriminants of an
unconstrained record variable, then the execution of
the «call is erroneous if the value of any of the
discriminants of the variable is changeable by this
execution.

i This sounds like the warning of 5.2, and will also, but for a

d different reason, be superfluous -- if aliasing 1is entirely
disallowed.

Procedure calls are allowed to have side-effects, but if x,A
{ is a parameter to a procedure call which affects x, that means
that the call has either called on a function that produces
| side-effects or has violated the rules against aliasing.

3. Scalar and access variables must be passed by
copy-in/copy-out. The method of parameter passing for parameters
of array, record, or task type is up to the compiler (and need

not even be the same for successive calls ¢to the same
* subprogram). In neither case is the order of copy~in or copy-out
s specified.
l
p-28




Odyssey Research Associates

The execution of a program is erroneous 1if 1its
effect depends on which mechanism is selected by the
implementation. (ARM 6.2)

The word "mechanism™ is to be understood broadly, so as to

encompass such details as the order in which parameters are
copied in or out, etc. |

ARM notes a condition sufficient to rule out such erroneous
programs -- namely, that

no actual parameter of such a type is accessible by
more than one path

-- i.,e., that there is no aliasing. So, ARM disapproves aliasing
certain parameters, and we extend that, on logical grounds, to
all parameters.

Here are socme examples of erroneous programs that result from

aliasing. Another example is given in the discussion of shared
variables (ARM 9.11).

Example (i)
Let the body of P be:

procedure P(x: inout INTEGER; y: inout INTEGER) is
egin

end P;

yi= x+1;

The result of the «call P(u,u), which violates the rule

against having linked in out parameters, is unpredictable: The
initial value of u (call it u0) is copied into both x and y.

Executing "y:= x+1" leaves u0 in x and uO+l in y. The result of

copying both x and y back into u will depend on the order in
which the copying is done.

Example (4i)
Let the body of Q be:

procedure Q(x: in out ARRAY(1l..N) of boolean) is

begin
x: = not X
"Search for an i1 such that x(i) = b(u). If one is found,
x: = not x; otherwise, skip."
end if;
end Q;
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The procedure call Q(b) is aliased since b(u) is a free
variable of Q and is linked to the actual parameter b. If b is
called by copy, then b is changed by the execution of the call.

If b is called by reference it's unchanged. Accordingly, the
program is erroneous.

Example (iii) Let R be like Q, but with the global parameter
made into an explicit in parameter:

procedure R(c: in boolean)
x: in out ARRAY(1..N) of boolean) is
begin
x: = not x
"Search for an i such that x(i) = ¢. If one is found,
= pot x; otherwise, skip."

b ¥
end if;
end Q:

In the call R(b(u),b) an in paremeter is aliased against an
in out parameter. Just as in example (ii), the call is
erroneous.

ARM 9.11 Shared Variables

A shared variable is one which occurs in more than one task.

A program which violates either of the following restrictions is
erroneous: . -

- If between two synchronization points of a task, this task
reads a shared variable whose type is a scalar or access
type, then the variable must not be updated by any other
task at any time between these two points.

- If between two synchronization points of a task, this task
updates a shared variable whose type is a scalar or access
type, then the variable must not be either read or updated
by any other task at any time between these two points.

Synchronization is defined as follows:

- Two tasks are synchronized at the start and at the end of
their rendezvous. At the start and at the end of its
activation, a task is synchronized with the task that causes
this activation. a task that has compl:ted its execution is
synchronized with any other task.

This series of definitions is poorly worded: taken literally
they seem to imply that every point in a task is between two
synchronization points (the one at the beginning of activation
and the one at completion). What is presumably intended is to
define something like a matched pair of synchronization points
and to require exclusion during the innermost matched pair
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surrounding a read or update.

The point is as follows: During a rendezvous {for example) an
implementation may keep a local copy of a shared variable and
read and write to it rather than reading or writing the shared
variable itself.

It seems worth pointing out another, perhaps surprising, way
in which shared variables can lead to erroneous programs, The
example below is boiled down from an example in [Welsh and
Lister, 1980].

type boolean_array is array(l..1) of boolean;
x: boolean_array := (1 =»> true);

task resource is
entry request(u: in out boolean_array);

end; —
task type caller;

task body resource is
begin
loop
accept request(u: in out boolean_array) do
u = not uj;.
end request;
end loop;
end resource;

task body caller is
request(x);
end caller;

callerl, caller?2 : caller;

- Suppose callerl and caller2 make their calls on resource at
roughly the same time, so that one -- let's say it's callerl --
gets accepted and the other is queued. The crucial point is that
the execution of an entry call is begun by "any evaluations
required for actual parameters in the same manner as for a
subprogram call"” -- (ARM 9.5) -- and only after that is the call
suspended to await a corresponding accept. Suppose that the
parameters are passed by copy-in/copy~out. Then the value which
caller2 is waiting to pass to resource is the value (true) and
the fact that the value of x will have been changed before
caller2's call is accepted is irrelevant. When tasks callerl and
caller? terminate the value of x will be (false). If the
parameters are passed by reference, then caller2 passes to
resource the address of x, and when caller2's call is accepted
that address contains the value (false). Accordingly the value of
x will be (true) when the caling tasks terminate, This
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dependence on the parameter passing mechanism means that the
program is erroneous.

ARM 11.7 Suppressing Checks

If checks on constraints, overflows, etc., are suppressed and
the constraints, etc., violated by an execution of the progranm, -
then that execution is erroneous. As indicated in the discussion
of exceptions, a verification is likely to accumulate in passing
enough information to show that constraint checks and checks for
program errors can be safely suppressed.

ARM 12.2 Address Clauses

An address clause resulting in overlaying an object or
program unit, or 1linking an interrupt to more than one entry is
erroneous. Whether an address clause results in overlaying an
object is entirely implementation dependent. Verifications of
programs with address clauses are non-portable. One might verify
such programs under the assumption that this error did not
eccur.,

ARM 13'12°l Unchecked Programming

Use of wunchecked deallocation can lead to dangling pointers.
An attempt to access the objects which such pointers designate is
erroneous. It is easy to show that there is no algorithm for
deciding whether a program is free of dangling pointers.

4.2 Incorrect Order Dependences

ARM says of certain steps in execution (or elaboration, or
evaluation) that they occur "in some order that is not defined by
the language"” and that constructs which depend on the order in
which those steps are executed are incorrect. This is
principally an instruction to the writers of compilers, but the
programmer can, with no outside help, produce incorrect order
dependences, by producing side-effects, either in functions or in
the bodies of packages. This is therefore another reason to
restrict constructs which cause side-effects.

[The sections of ARM that discuss and define the incorrect
order dependences: 1.6, 3.2.1, 3.5, 3.6, 4.1.2, 4.3.1, 4.3.2,
AQS] 5.2, 6.‘. 10'5.] :

Consider the following sequence of declarations:

package A is
I: integer := 1;
end A

3-32




ipetyery

Lada |

-y,

Odyssey Research Associates

package body A is
I

:= 03
end A;

€

ith A;

package B is
J: integer := A.I;

end B;

The rules for elaboration require that the specification of A
be elaborated before either the body of A or the specification of
B -- but require nothing further of the order of elaboration.
Should the specification of B be elaborated before the body of A
the value of B.J will be 1, and otherwise it will be O,

All further points about incorrect order dependences can be
made fully by looking at one further example, (ARM 3.5): When
elaborating a range constraint the simple expressions specifying
the bounds are evaluated "in some order not specified by the
language.” Let the range in question be £f(m)..g(n). Here are
two cases in which it will matter whether f(m) is evaluated first
or second:

(a) if a call to the function g alters the value of m;

(b) if the result of a call to £ can be affected by the fact
of a previous call on g.

In each case the <call on g has a side-effect. The kind of
side effect seen in example (a) has already been ruled out by the
restrictions placed on the definitions of functions. The example
in (b) is probabl ruled out in the same way -- that is, it's
ruled out.” if one fleshes (b) out to an actual example in the
obvious way: Let the value returned by £ depend on some global
variable i and let each call of g increment i by 1. But it's
possible to record the fact that g has been called without
storing anything in a variable. Here is an example:

Let T be a task with the single entry ENTER, whose sole
action consists of the following: Accept ENTER and then
terminate. Let F and G be functions with the same body:

x: INTEGER

begin
if T'TERMINATED then x := 1
else ENTER; I

- 2;

x :
end if;

return x;

o
=
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The value of F(1) - G(1) will be +1 or -1 according to
whether F(1) or G(1) is evalluated first.

4.3 "Predictable™ compilers

‘Here are some preliminary suggestions for pragmas that would
a compiler keep company with a verifier. They are mainly
gathered together from the preceding sectionms.

1. Pragmas that will identify a compilation unit as one that
has been verified, allowing the compiler to suppress certain
checks; and pragmas that will warn of occurrences of "dgngerous"
constructs which have not been certified as verified.

2. .A pragma alias_check that would generate code, where
appropriste, that would check at run~time for improperly aliased
procedure calls and raise alias_error if such a call occurred.

3. Pragmas that would restrict the compiler's ability to

raise program_error clairvoyantly. Consider the following
example:

procedure P is

El, E2: execption;
x ¢ INTEGER

function F(u:INTEGER) return INTEGER is
begin

raige El;
end F;

function G(u:INTEGER) return INTEGER is
egin
raise E2;
end G;

begin

This program terminates with the value of x equal either to O
or to 1, depending on the order of evaluation of the terms in the
expression F(2) + G(2). Since the language definition does not
specify the order of evaluation (ARM 4.5, paragraph 5) "the
construct is incorrect™ (ARM 1.9, paragrsph 9). It's not clear
whether the fact that different errors can be raised is already
erroneous, or whether the program is erroneousness only because
the errors are handled differently. Furthermore, should the
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compiler detect this fact, it may generate code which does
nothing but raise the predefined exception PROGRAM_ERROR. Notice
that this kind of incorrect construct is possible whenever
different errors can be raiseraised by different terms occurring
in the same expression. It seems likely that one still might get
intelligible predictions <£from the verifier about program
behavior, in which case we would 1like to forbid the compiler
from, in effect, rejecting the program.
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This paper sets out a system of temporal logic, a modal logic
suitable for expressing and reasoning about - certain
properties of ordinal (non-quantitative) discrete time. A
formal semantics for temporal logic is provided and a variety
of assertions are shown to be semantically valid. Execution
of concurrent sequential processes - is modelled by
interleaving the steps in their execution, and it is then
shown that many interesting properties of concurrent
computations are expressible in the notation of temporal
logic: invariance properties (stating that some condition
always holds true), eventuality properties (stating that if
condition A occurs then condition B must eventually become

true), and precedence properties (stating that one event must
precede another.

O'Donnell, M.J. "A critique of the foundations of Hoare-style
programming 1logic", Communications of the ACM, Dec. 1982,
vol. 25, no. 12, 927-935

This paper shows that the failure to demand a correct
definition of "correctness™ has filled the literature with
"proof systems" which are inconsistent outright, or are
unsound in the sense that the addition of true axioms can
make them inconsistent. On the way to true conclusions these
systems in effect indulge in a kind of trick -- intermediate
inferences which are illegitimate, and 1lead to trouble as
soon as there are enough truths available in the system to
exploit their weaknesses. The correct definition of
"correctness" is that every inference (and not merely every
theorem) lead from truths to truths.

Olderog, E.R., "Sound and complete Hoare-like <calculi based on
copy rules”, Acta Informatica 16 (1981), 161-197

A systematic treatment of procedure calls is given for a
variety of Algol-like languages, with various scope rules,
which allow procedures as parameters. The author is
primarily interested in characterizing the languages for
which his calculi will be complete. Although this is in some
sense the fullest treatment of procedure calls it does not

help solve the problems encountered in treating procedure
calls in Ada. *

Olderog, E.R., "Hoare's logic for programs with procedures --
what has been achieved?", in Logics of Programs, 1983,
Lecture Notes in Computer Science no. 164, ed. E. Clarke
and D. Kozen, Springer-Verlag, 1984
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Pneuli, A. and deRoever, W.P., "Rendesvous with Ada -- a proof

theoretical view", Proc. AdaTEC Conference on Ada, Arlington,
Va., October 1982, 129-137

An operational semantics is defined for an informally
described fragment of Ada, using interleaved execution to
model concurrent execution. It is then shown that for any

.program written in this fragment and not wusing the queue
attribute COUNT partial correctness semantics cannot
distinguish between: (a) putting entry calls into a fifo
queue, and (b) always selecting non-deterministically but
"fairly" from the waiting calls. A system of temporal 1logic
is defined for making assertions about programs over this
semantics and various proof rules are shown sound. A program
in the fragment is a block containing a fixed number of
tasks. Within tasks: there may occur no subprograms or
nexted blocks; there may be no delay statements;

selective-wait alternatives may only be accept-alternatives
or terminate.

Stanford Verification Group, "Stanford Pascal verifier user
manual®, STAN-CS-79-731, March, 1979

This report describes the use of the PASCAL verifier.
Practically all of PASCAL is handled. "Only some of the
theory [of data structures] is implemented by the simplifier
and it is up to the user to include in his rulefile rules ...
to express any required data structure axioms."

Sutherland, D., "Formal verification of mathematical software,"

NASA contract report 172407, Odyssey Research Associates,
1984

This paper presents a definition of logical correctness for
floating point computation -- the "asymptotic paradigm.”" It
says, intuitively, that a logically correct program (which
computes a mathematical function) is one whose outputs
converge more and more closely to the mathematically correct
value if it is run on more and more accurate machines. This
is formalized using non-standard models of the real line.

Wegner, P. and Smolka, S.A., "Processes, tasks, and monitors: a
comparitive study of concurrent programming primitives", IEEE

Transactions on Software Engineering, vol. SE-9, no. &,
July 1983, 446-462

As the title indicates, CSP, Ada, and monitors are compared
at work on several standard concurrent applications.

Welsh, J. and Lister, A., "A comparative study of task

communication in Ada," Software Practice and Experience,
vol. 11, 1980, 257-290

Ade is compared to CSP and Distributed Processes.
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Richard Platek: Formal Specification

As an introduction to the first of three talks on ANNA,
the creation of David Luckham and his collaborators and to date
the only specification language for ADA, let me say a few words
on formal specification.

Aside from informal comments ADA provides no way to
specify a program unit's functionality. There is obviously a
need to develop an ADA specification language so that one can
actually say what that program unit means, so it could be used by
other units. For example, a package may have two procedures aand
a named exception in the visible portion and there is no way of
telling which of the two procedures might raise that exception,
A formal specification language would be used to present the
semantic interfaces between ADA program units. The interface
would communicate to users the total effects of calling such
units. Such  effects would include the results of normal
execution, the conditions on which named exceptions are
propagated out of the unit, the conditions uvnder which predefined
ADA exceptions are handled withia the unit and the effects of
such handling, the specification of a unit's concurrency features
(for example, the conditions under which rendezvous occur and
what the effects are), and the effects of elaboration of package
initialisation.

Another use of specification is to encourage the use of
generics by providing a way of semantically restricting generic
parameters. For example, the generic parameters to a generic
sort package might include 2 user-suppled type and user-supplied
linear order over that type. At present only the type-signature
of the 1latter function can be specified. One would like to add
to this a semantic specification which states that a linear order
is needed. This is necessary for generic, re-usable proofs.
This would communicate that the specified effects of <«he

ackage's subprograms can only be expected if the user-supplied
unction is indeed a linear order.

Another use of a good specification 1language is to
encourage the use of ADA as a program development language,.
Formal specificetion would play the role of informal pseudocode.

A formal specification 1language should support formal
design verification, that 1is, proofs that a design entails

certain systes properties, and should support program
verification,




There are other uses of a good specification language,
e.g. for the generation of runtime monitors in the absence of
formal verification, and, if essentially executable, for rapid
prototyping of a system before it is actually fully encoded.

There is no way to build a 1library of packages without a.
formal specification language, because you have no way of knowing
what packages mean. My vision is of a large library of formally
specified and verified programs and means to retrieve what is
needed from that library using the formal specification of the
packages. Such a library retrieval system must have a great deal
of knowledge built into it. If I am looking for a package which
has property A and some package which has been proved correct has
property B, the retrieval mechanism should allow me to prove that
B implies A, so that I <can get the verified package out to be
able to use it.

Obviously such a language should be fully compatible with
ADA, it should use the ADA type philosophy, and ADA structuring.
It is my belief that taking existing specification languages like
INA JO or revised SPECIAL or anything like them and trying to
retrofit them to ADA is not the way to go. One should actually
develop a formal specification 1language that has the ADA
philosophy embedded in it.

I feel a standard should be chosen. Just as a standard
was chosen for an ADA programming language, a standard should be
chosen for an ADA specification language; and I would personally
recommend going through a cycle just 1like the choice of the
programming language.

I view ANNA as a very good first beginning in that
direction. I don't think it goes far enough. It has certain
restrictions to a low level that I think a specification language
should not have.

Perhaps I should introduce rather than undermine the next
speaker. I think we all owe David Luckham a great deal for
beginning this work and giving us something to chew on.
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David Luckham: ANNA, a Specification Language for ADA

ANNA is a proposal for a specification 1language, or
rather a language in which one might experiment with
specification languages. The wvork was begun by Bernd
Krieg-Brueckner and myself, and subsequent collaborators have
been 0. Owe from Oslo, who worked on the axiomatic semantics, and
Friedrich von Henke who worked on the language reference manual
and redesigned some of the finer points of the language. S.
Sankar, D. Rosenblum, R. Neff, and D. Bryan are currently
implementing various prototype tools for experimentation.

ANNA is an syntactic extension of ADA: it takes a subset
of ADA productions and adds more. The ANNA specifications appear
as formal ADA cooments. This means ANNA comments can be
processed by a standard ADA tool, which will simply ignore thenm,
and also by special ANNA tools.

All proposed ANNa tools use an extension of DIANA, and
therefore can be interfaced easily with other tools in an ADA
environment.

ANNA can be used for comparative testing. Comparative
testing means comparing the ADA code against its formal
specifications for consistency. Self-checking programs are ones
which leave the runtime checks compiled from the formal
specifications in the program permanently.

If you are going to design a specification language,
there are at least two approaches. One is the fresh start; the
other is the evolutionary approach. The fresh start has the
advantage that you do not have to put up with the quirks of the
{rogrannin% language such as those discussed inm D. Guaspari's

ecture, he evolutionary approach is to start with an existing

hifh level programming language and to extend it gradually to
allow the program to supply information that cannot be expresssed
in the programming language itself. The general philosophy has
been one of cautious extension which is why critics will say that
it does not go far enough.

There are two kinds of formal comments: virtual text and
annotations. Webster's Dictionary defines the word "virtual” as
"posaessing all of the properties but not accepted or
recognised” .

The scoping rules of ADA are spplied to formal comments

so that the formsl comments apply over regions of text; they are
not just assertions which apply at a point,

>




There are different kinds of annotations for the
different kinds of ADA constructs. Here is a reasonably complete
list:

- objects,

- types and subtypes,
- statements,

- subprograms,

- packages,

- exceptions,

- context clauses, and
- generics.,

I am going to concentrate on packages today. I'm going
to tell you just enough about the others so that you can look at
some package specifications.

Let us start very briefly with virtual text. Consider
the time-honoured example, the standard stack package with two
procedures PUSH and POP. For some reason the ADA implementers did
not want to provide a function LENGTH, but it turns out to be a
very natural concept to wuse in talking about the stack, so we

introduce it as a virtual function declaration. This virtual
function is visible in the normal ADA scope of visibility, but

only in annotations.

Now the expressions in ANNA are somevhat richer than they
are in ADA in that you have quantifiers, conditional expressions,
a few new operators and a few new attributes. Each of the
annotations is constructed from ANNA boolean expressions and some
extra reserved words.

Here is an example of an object annotation:
m, n ¢ INTEGER; --| n <= f(m)

What it means is that in every observable state durin a
computation in this scope n must be less than or equal to f%m).
The function f is some previously defined virtual function. Now
you need to be precise about what you mean by an observable
state. During a simple statement a constraint does not have to
hold. After a simple statement completes there is an observable
state in which that constraint must then hold. Let me emphasize
that this is not an assertion but an object constraint; it holds
over the whole scope; every time m and n are updated the
constraint must be checked.
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There are two parallel definitions of formal semantics:
one is checking semantics, which tells you what you have to do to
check each of these annotations; and the other is axiomatic
semantics, which tells you what the correct rules of proof are,
to prove consistency between the text and the annotations.

Exception annotations are useful for describing the state
of affairs after an execption has been raised. Consider using a
table managing package which may raise the error TABLE_FULL. What
has happened to the items that have been inserted previously?
Can the package be used further? Other exceptions might be
raised which reveal the implementation.

When you 1look at the structure of a package you can put
annotations at various places in it. The annotations in the
visible part are visible annotations and the ones in private or
body parts are hidden. It turns out that a lot of packages can
be specified using the previous kinds of annotations, e.g. type,
subprogram, exceptions, and procedures.

Consider a string conversion package. [See slides
17-20.]) The wmain  problem is that  SHORT_INTEGER is
implementation~-dependent so you do not know how many characters
can be stuffed into a short integer. You might like to know what
PACK and UNPACK actually did, because if you call .them with
parameters that have the wrong 1lengths what is going to happen?
Will an exception be raised, will the packed string be truncated,
will some of the characters be lost? How can we annotate this
behaviour?

Probably .the first thing is to write some comments in
English. What do you do next? You might still be inept at
writing a general specification, so you might just try writing a
few test cases; you can express these cases on some inputs and
output in ANNA. I claim that by the time you have the test cases
formalised you are in a position to write the fully formal
specification.

The fully formal specification says everything you need
to know,. You can check the implementation against the
specification. )

There are two other concepts that seem to be required in

one form or another to specify all kinds of packages. The first
is ate Packages can have a memory or value and their behaviour
depends on that memory or value which we call state.

States conceptually are a new kind of value associated
with the package, and you cannot see any of their structure from
the outside. They behave just 1like a limited private type
exported by the package itself.

n-3
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There is & state type, a type of the states of the
package, and that is an attribute of the package in ANNA. Then
there are some important states, the initial state and the
current state, and these are attributes of the package, since the
current state is used so often we allow you to contract notation
and just use the package name.

The other thing that you can do is declare the package
axioms in the visible part of a package. [See slide 24.] Their
semantics is a 1little different. The normal statement (without

"axiom™ there) is just a constraint that would have to be true at
that position. If you add "axiom™ this becomes a promise to the
outside user that this is true when you use the package and it is
a constraint on the implementation in the body. Some properties
are more easily expressed in axioms and some in subprogram
annotations,

I am going to end this talk today by showing you
something that could be taken as a package specification in a
reasonable state for negotiation, the DIRECT_IO package from
Chapter 14 of the ADA Reference Manual.

Chapter 14 is an attempt to specify a standard I/0
environment for ADA., It begins with a preamble to define what a
direct access file is: really a linear sequence of elements, it
is set-theoretical and has an index. External files are machine
dependent things.

The English explanation of the DIRECT_IO facilities talks
about the concept of a new file and hopes that you understand
what a new file 1is, It talks about creating, severing and
deleting files, and it assumes you know what that means.

Following this English explanation, there then come
several paragraphs for each subprogram saying what sorts of
exceptions it propagates under what kinds of conditions, all in
English. At the end we get the ADA package specifications. So
this is a tacit admission that ADA by itself does not specify a
package for you but you have got to explain it in formal English
somehow first.

I have gone from that formal English to a formal ANNA
specification., [See slides 28-32.] We <can negotiate about its

correctness, and such negotiations are still going on in Language
Standard committees,

One of the things I can do in using this as a medium of
negotiation 1is to automate the drawing of consequences or
conclusions. It is not hard, s PROLOG program can be written to
do it. I claim that not only can we write the specifications in
ANNA but we can automate the negotiation process of asking
questions about the consequences of the specifications.
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The notation of ANNA needs improvement, but the major
omission in ANNA is tasking. It is just not practical to go into
full temporal logic: what ideas we have are not mature enough to
be presented.

"y
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* ANNA is an extension of Ada

** Machine processable specifications together with
underlying Ada text form an Anna program.

*x Anna specifications appear as (formal) Ada
comments.

Anna programs can be processed by standard Ada
tools.

Can also be processed by special Anna tools.

* All proposed Anna tools use an extension of DIANA and
can be interfaced easily with other tools in an Ada
environment.

* MOTIVATION for ANNA:
*x To permit precise machine-processable
specifications and documentation to be supplied
with an Ada program.

xx To investigate the possible applications of formal
specifications.

Specification prior to full implementation:

Checking of Designs
Rapid Prototyping

Annotation of complete Ada programs
Comparative testing (debug)
Self-Checking programs

Instrumentation (e.g. Simulations)
Formal Verification

D=7
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DESIGN APPROACHES FOR SPECIFICATION LANGUAGES:

(1) The fresh start e.g., PROLOG.

(2) Evolutionary An existing high level
programming language is
extended.

ANNA design can be applied to other Languages:

MODULA-2
VHDL (VHSIC Hardware Design Language)

Design Philosophy: Cautious extension of Ada

———————————— —————— — ——— ——— — ——— . — —— ————— —————— ———— ————— ——— o ————

* Two kinds of formal comments in Anna:

Virtual text -
Annotations -1

* Formal comments apply over regions of the program

They obey the standard Ada scope and visibility
rules.

* Different kinds of annotations apply to the different
kinds of Ada constructs:

Object annotatioas
Type or Subtype
Statement
Subprogram

Package

Exception

Context

Generic Units

* There is no assumption that Anna specifications are
"complete” - the programmer can specify what he wants
to.
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EXAMPLE OF VIRTUAL TEXT

package STACK is

-—: function LENGTH return NATURAL;

procedure PUSH (X : in ITEM);
--1 where in STACK.LENGTH < MAX,
-1 out (STACK.LENGTH = in STACK.LENGTH + 1);
procedure POP (X : out ITEM);
f end STACK;
LENGTH is used to specify PUSH. It is not an actual
operation of STACK. It is a specification concept. LENGTH

can be given a virtual body, and used to check the
correctness of PUSH at runtime.

RESTRICTION: * VIRTUAL TEXT must not change the values of
actual objects -- read only.

* VIRTUAL TEXT must not hide actual entities.

——— o ——————— — e ————— A ————————— ——— ———— " —— ————— —————— T ———————

Anna Boolean expressions are a small extension of the
Ada Boolean expressions.

Quantifiers
Conditional expressions
A few new operators, relations, and tests
A few new attributes .
* Annotations are constructed from
* Anna Boolean expressions

* Reserved Vords
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EXAMPLES OF ANNOTATIONS

Object annotation

M, N : INTEGER; --1 N < F(M);

The VALUE of M and N must satisfy the annotation in
every observable computation state in the scope of the
declaration.

Type annotation

type INTERVAL is
record
LEFT_END, RIGHT_END : REAL;
end record:;
--1 where I:INTERVAL =)
-1 I.LEFT_END <= I.RIGHT_END;

All INTERVALs must satisfy the annotation.
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* Statement annotation

if A(X) > A(Z+1l) then

Y := A(X):
A(X) := A(X+1);
A(X+1) = Y,

end if;
-—1 A(X) € A (X+1);

Simple assertion. Statement annotations may also be
given for invariants over compound statements.

o7

 ad

* Subprogram annotation

1 procedure BINARY_SEARCH (A : in ARRAY_OF_INTEGER;
3 KEY : in INTEGER:

L POSITION : out INTEGER);
--1 where ORDERED (A),

-1 out ( A(POSITION) = KEY),

J —=1 raise NOT_FOUND =)

--1 for all I in A'range => KEY = A(I);

includes: an in-annotation on A,
an out-annotation on POSITION

4 a propagation annotation for exception
4 NOT_FOUND.

‘b

1

9
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Propagation Annotations Two kinds: Strong

Veak

package TABLE_MANAGER is

end;

type ITEM is ...

procedure INSERT (NEW_ITEM : in ITEM);
procedure RETRIEVE (FIRST_ITEM : out ITEM);

TABLE_FULL : exception;
-~ raised by INSERT when table full (*)

(*) could have said "when FREE_LIST_EMPTY" !

package TABLE_MANAGER is

end;

type ITEM is ...

: function FULL return BOOLEAN;

TABLE_FULL : exception;

procedure INSERT (NEW_ITEM : in ITEM);
wvhere

in TABLE_MANAGER.FULL =) raise TABLE_FULL, (1)
raise TABLE_FULL =)

TABLE_MANAGER = in TABLE_MANAGER; (2)
procedure RETRIEVE (FIRST_ITEM : out ITEM);

(1) is a strong annotation, (2) is a weak annotation.
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*

Context Annotations

x %

Apply to program units (not just library units)

= Used to declare dependency on global variables:

A, B, C:T;

--1 limited to A;
package P is

NN -- A may occur here.
end P;

D: T;

package body D is

N -- A and D may occur here.
end P;

Used to restrict context:

with U, Vv, W;
--1 limited to U.A, V;

Package P is
ces -- ahy visible variable of V,
-- but only A from U, and

v -- no variables of W.
end P;
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* Package Annotations

** Placed in the Package:

package P is
VISIBLE annotations

private
HIDDEN annotations

end P;

package body P is
. HIDDEN annotations

end P;.

*x* The private part and body together are the HIDDEN
implementation.

** VISIBLE annotations specify the semantics of
visible types and subprograms INDEPENDENTLY of (and
prior to) any body.

s HIDDEN annotations specify the (implementation in
the) body.

* Previous kinds of annotations (types, subprograms,
exceptions) are sufficient for specifying many packages.

D-14




New concepts are required for specifying (the visible
parts of) packages:

package has a memory (STATE) QUEUES, STACKS,
SYMBOL TABLES.

package and private type define a data structure
and operations on the data (algebraic
specifications) - COMPLEX NUMBERS, LIST PROCESSING.

N=15
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Package states

From the outside, a package is viewed as an object of
some new Anna type having a state (or value).

* Anna attributes of a package:

* STATE TYPE P'TYPE
* INITIAL STATE P'INITIAL
* CURRENT STATE P'STATE, P

*e Successor states
New states of a package result from sequences of
package operationms.

Terms in Anna written as sequences

STACK [ PUSH (A): POP (Y) ] = STACK

Package axioms

* % Visible annotations,

axiom A;
b promises to the package user

. constraints on the package body

D-1€
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Example of a Symbol Table Package

type TOKEN is private;
8 : INTEGER;

package SYNTAB i

OVERFLOW, UNDEFINED : exceptionm;

--: function SIZE return INTEGER range 0 .. N;
--: function *== (SS, TT : SYNTAB°'TYPE) return BOOLEAN;

function DEFINED (S : STRING) return BOOLEAN;

procedure INSERT (S : STRING; I : TOKEN);
~-| raise OVERFLOW => in SYMTAB.SIZE = N:

function LOOKUP (S : STRING) return TOKEN:
--| raise UNDEFINED:

procedure ENTERBLOCK:

procedure LEAVEBLOCK:

axiom
forall SS : SYMTAB'TYPE: S, T : STRING; I : TOKEN =)
SYMTAB' INITIAL [LEAVEBLOCK) = SYMTAB' INITIAL,
SYMTAB' INITIAL .DEFINED (S) = FALSE,
SS [ENTERBLOCK: LEAVEBLOCK] = S8,
SS [ENTERBLOCK].DEFINED (S) = FALSE,
SS [ENTERBLOCK].LOOKUP (S) = $S.LOOKUP(S),
SS [INSERT (S, I): LEAVEBLOCK] = SS[LEAVEBLOCK],
]

SS [INSERT (S, 1)].DEFINED (T)
if s = 1 then TRUE
else SS.DEFINED (T) end if;
SS [INSERT (S, I)].LOOKUP (T) =
if s = 1 then I else 5$S.L00kuP (T) endif;

end SYMTAB;
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Ezample: Ada speci fication of a string conversion package.

package STRING_CONVERSION is
type PACKED_STRING is array (INTEGER range <>) of SHORT_INTEGER:

procedure PACK_STRING(S : STRING; BUFFER :out PACKED_STRING) :
procedure UNPACK_STRING (BUFFER : PACKED_STRING; S : out STRING):

end STRING_CONVERSION:

n-18
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Ezample: Ada speci fication of a string conversion package with comments.

package STRING_CONVERSION s
type PACKED _STRING is array (INTEGER range <>) of SHORT_INTEGER;
-- a short integer is represented as two bytes

procedure PACX_STRING(S : STRING; BUFFER :out PACKED_STRING) .
-~ packs two conseculive characlers of S in each short integer of BUFFER

procedure UNPACK_STRING (BUFFER : PACXED_STRING; § : out STRING);
-= ezpands each short integer in BUFFER into two characters and puls them

-- in S PARAMETER_LENGTH_ERROR ezception is propagated i f
-- parameter lengths don’t match.

end STRING_CONVERSION;

n-19
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Ezample: String conversion package declaration with formal test cases.

package STRING_CONVERSION is
== A short integer is represented as two byles.
type PACKED_STRING is array (INTEGER range <>) of SHORT_INTEGER;

procedure PACK_STRING(S : STRING; BUFFER :out PACKED_STRING);
-~ Assume S'FIRST = 1 and BUFFER'FIRST = 1 to simpli fy equations.
=~ Then the following are intended test cases:

--| where out (if S = °0123* then

== BUFFER(1) = CHARACTER’POS(’0°) s 258
== + CHARACTER'POS(’1’) amnd
== BUFFER(2) = CHARACTER’POS(°2°’) + 258

+ CHARACTER’POS(*3°)
-- (end iff and
== BUFFER’LENGTH = 2),
-1 out (if S = *abcde® then
-- BUFFER(1) = CHARACTER’POS(’a’) + 258
. . + CHARACTER’POS(’b’) and
-= BUFFER(2) = CHARACTER’POS(’c’) s 268
-~ + CHARACTER’PDS(’d’) and 4

-1 BUFFER(3) = CHARACTER'POS(’e’) + 258 :
-~-} Dand
--1 BUFFER’LENGTH = 3) ]

procedure UNPACK_STRING(BUFFER : PACKED_STRING; S : out STRING);
-~ Similar annotations of test cases.

== PARAMETER_LENGTH_ERROR ezception is propagated i [ parameter
~= lengths don't match.

end STRING_CONVERSION; 1
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Ezample: Anna speci fication of a string conversion package.

package STRING_CONVERSION is

~=| for all X : SHORT_INTEGER => X'SIZE = 18;

-
--1
~-1
-
-
-~
-
--1
-
-
-1
-
-
-

type PACKED_STRING is array (INTEGER range <>) of SHORT_INTEGER:

PARAMETER_LENGTH_ERROR : exception;

procedure PACK_STRING(S : STRING; BUFFER :out PACKED_STRING):
where

in BUFFER’LENGTH = (S°’LENGTH / 2) + (S'LENGTH mod 2),
in S°FIRST = 1 and in BUFFER’FIRST = 1,
out (if S’LENGTH mod 2 = 0 then
for all N : BUFFER'FIRST .. BUFFER’LAST =>
BUFFER(N) = CHARACTER'POS(S(N ¢ 2 - 1)) ¢ 258
+ CHARACTER’POS(S(N s+ 2))

else
fqr all N : BUFFER’FIRST .. BUFFER'LAST - 1 =

BUFFER(N) = CHARACTER’POS(S(N * 2 - 1)) » 258
+ CHARACTER'POS(S(N ¢ 2))
and
BUFFER (BUFFER 'LAST) = CHARACTER'POS (S(S'LAST)) #2586

end if),
raise PARAMETER_LENGTH_ERROR;

procedure UNPACK_STRING (BUFFER : PACKED_STRING: S : out STRING);
where

S’'LENGTH = BUFFER'LENGTH s« 2,
in S'FIRST = § and in BUFFER’FIRST = 1,
out (for all N : S*'RANGE =>
if N mod 2 =1 then
CHARACTER'POS(S(N)) = (BUFFER(N/2 + N mod 2) -
BUFFER(N/2 + N mod 2) rem 258) / 258
else
CHARACTER'POS(S(N)) = BUFFER(N/2+N mod 2) rem 256
end i,
raise PARAMETER_LENGTH_ERROR;

end STRING_CONVERSION:
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Ezample: TABLE_MANAGER package from the Ada Rationale

package TABLE_MANAGER is
_type ITRM Is ...
- procedure INSERT(NEW_ITEM : in ITEM);
procedure RETRIEVE(FIRST_ITEM : out ITEM): '
TABLE_FULL : exception: -- Raised by INSERT when table is full.

end TABLE_MANAGER:
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Ezample: Specification of the ezceplion propagation in the TABLE _MANAGER
package. ‘ ,
package TABLE_MANAGER is

type ITEM is ...
TABLE_FULL : exception;

--: function FULL return BOOLEAN:
procedure INSERT(NEW_ITEM : in ITEN);
-1 where

== in TABLE_MANAGER.FULL => raise TABLE FULL,
i | raise TABLE_FULL => TABLE_MANAGER = in TABLE_MANAGER:

procedure RETRIEVE(FIRST ITEM : out ITEM);

end TABLE_MANAGER;
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Ezample: Specification of the TABLE_MANAGER package.
package TABLE_MANAGER is

--1
-1
--1
--1
--1
--1

subtype DATA is STRING (1 .. 10);
type PRIORITY is range O .. 255;

type ITEM is
record
D : DATA;
P : PRIORITY;

end record;

TABLE_FULL : exception;

: funetion FULL return BOOLEAN;
: function MEMBER (X : ITEM) return BOOLEAN;

procedure INSERT(NEW_ITEM : in ITEM);
where
in TABLE_MANAGER.FULL => raise TABLE_FULL,
raise TABLE_FULL => TABLE_MANAGER = in TABLE_MANAGER,
in NEW_ITEM.PRIORITY’DEFINED,
out ( not in TABLE_MANAGER .MEMBER (NEV_ITEM) ->
TABLE_MANAGER .MEMBER (NEW_ITEM) ),
out ( in TABLE_MANAGER.MEMBER (NEW_ITEM) ->
TABLE_MANAGER = in TABLE_MANAGER ) ;

procedure RETRIEVE(FIRST_ITEN : out ITEM);

~-[ where

--1

end

out( not TABLE MANAGER.MEMBER (FIRST_ITEM) ).
out( for all X : ITEM => TABLE MANAGER.MFMBER (X) ->
X.PRIORITY >= FIRST_ITEM.PRIORITY ) ;

TABLE_MANAGER;
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Ezample: Aziomatic annolations for an integer package.

package INTEGERS is

type INTEGER is -- Implementation_defined;

=~ The prede fined operatoré:
function *=* (LEFT, RIGHT : INTEGER) return BOOLEAN:
function *+®* (LEFT, RIGHT : INTEGER) return INTEGER;

--| axiom
-=| for all A, B, N : INTEGER =>

-
-
-
-
--1
-

Amod B= (A+ N+ B) mod B,
A=(A/B) +B+ (A rem B),
(-A) /B=-(A/ D).

A/ (-B) =-(A/ D),

A rem (-B) = A rem B,

(-A) rem B = -(A rem B).

.
. .

end INTEGERS;
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PARNAS

STEP C

FAKING IT :

A RATIONAL DESIGN PROCESS
HOW AND WHY TO FAKE IT

: DESIGN and DOCUMENT MODULE INTERFACES

PRECISE INTERFACES MUST be specified for each
module.

It MUST be FORMAL and provide a black box picture
of each module.

It is written by a SENIOR DESIGNER and reviewed by
both the future implementors and programmers who
will use the module.

An INTERFACE SPECIFICATION contains Jjust enough
information for another programmer to use the
module, and NO MORE.

CONTENTS: (1) Ada Package visible part

(2) Externally-visible effects of
subprograms

(3) Timing Constraints

(4) Definition of undesired events

* Produced by a process of negotiation
* The resulting documentation is not easy
or relaxing reading
* Acts as an accurate reference manual
D-26




A PL/1 STRING MANIPULATION PACKAGE

Our first example is the specification of a package that provides operations on strings similar to the string
manipulation facilites in PL/1. These operations can all be described using the standard Ada string
operations and attributes. There are uo special concepts outside the Ada domain of etrings, so the
package should be easily understood from a quick reading of ite specification. Two virtual functions are
used to mame expressions occuring frequently in the annotations; the virtual definitions eaable us to
shorten the annotations. In fact, one of the virtual functions, SLENGTH, duplicates an actual feaction,
LENGTH, and its only used is to make some annotations 3 little clearer. The package has 3 trivial state
" it does not store any values. This example was suggested by Paul Reilly [REIL84A].

Ezample: A PL/1 string manspulation package.
package PL1_STRINGS ls

<= Virtual functions naming commonly used ezpressions.

--: function SLENGTH(STR : STRING) returm NATURAL;

==l where return LEN :@ NATURAL =>
==l (for all T : NATURAL => (I In STR'FIRST .. STR'FIRST ¢ LEN-1
-=| -> STR(I) /= ASCIT.NUL)) and STR(STR'FIRST ¢ LEN) = ASCII.NUL;

--: funection SLAST(STR : STRING) return NATURAL;
-={ where return [ : NATURAL => [ = SLENGTH(STR) ¢ STR'FIRST -1);

-= Actual subprogrema:

procedure NUL(STR : out STRING);
== Create an empty string.
-=| where out (for all I : STR'RANGE -> STR(I) = ASCII.NUL);

function IS_EMPTY(STR : im STRING) return BOOLEAN;
-~ Indicate whether or not a string ss empty '
--| where return STR(STR'FIRST) = ASCII.NUL;

funetion LENGTH(STR : In STRING) return NATURAL;
== Return the length of a string.
--| where return SLEIGTH(STR):

procedure ASSICN(TARGET : out STRING;
SOURCE : In STRING):
== Aassign Soxrce to Target

«=| where
.= out (TARCET(TARGEY ‘FIRST .. TARGET'FIRST ¢ SLENGTH(SOURCE)-1) = .
=] in- SOURCE(SOURCE'FIRST .. SLAST(SOURCE)),

-=1 out (TARGET(TARGET'FIRST + SLENGTH(SOURCE)) = ASCII.NUL),
==} SLENGTH(SOURCE) > TARGET'LENGTH => palse CONSTRAINT_ERROR;

funetion CATENATE(LEFT, RIGHT : STRING) retura STRING;
==  Return the catenation of left followed by right
«=| where return STR : STRING =>
i STR(1 .. SLENOTH(LEFT)) =
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==l LEFT(LEFT'FIRST .. SLAST(LEFT)) and
-1 STR(SLENGTH(LEFT) + 1 .. SLENGTH(LEFY) ¢ SLENGTH(RIGHT)) =
| RIGHT(RIGHT ‘FIRST .. SLAST(RIGHT));

function EQUAL(LEFT, RIGHT : STRING) return BOOLEAN;
=~ [Indicate if string LEFT matches otring RIGHT.
=~| where return SLENGTH(LEFT) = SLEMGTH(RIGHT) and then
-~ LEFT( LEFT°FIRST .. SLENGTH(LEFT)) = RIGHT( RIGHT'FIRST .. SLENGTH(RIGHT))

function INDEX(BASE_STRING, FRAGMENT : STRING) retura NATURAL;
-~ Return the ctcrtm. position in BASE STRING where FRAGMENT is Iound
-~ return @ olherwise.
-~| where return I : NATURAL =>

== 1 /= 0 and BASE_STRING(I .. I + SLENGTH(FRAGMENT) -1) =

| FRAGMENT (FRAGMENT *FIRST .. SLAST(FRAGMENT))
-~ or

ol | 1 = 0 and (for all J : BASE_STRING'FIRST ..

-1 SLAST (BASE_STRING) -SLENGTH (FRAGKENT) =>
-1 BASE_STRING(J .. J + SLENGTH(FRAGMENT) -1) /=
== FRAGMENT (FRAGMENT "FIRST .. SLAST(FRAGMENT)) );

end PL1_STRINGS;

Commentary
This specification depends only on Ada concepts ~ and quantification over constrained ranges, which is

really just a for loop test. So we sbould be able to analyse it to see if it fits our understanding of PL/1.
One way to do this is to exeeme the specifications symbolically on small test cases. Consider,

A : STRING(1 . :® (1 2> *A°, 23 °B°, 8 => ASCII.WNUL);
B : STRING( . = (1 .. 8= P, othen => ASCII.NUL);
begin

PL1_STRINGS.ASSIGN(D. A):

- B(1 .. 2) = A(L .. 2),

| 8(8) = °F°,

==| B(4) = ASCII.NUL;

end;

We can deduce that SLENGTH(A) is 2 and SLENGTH(B) is 3. But take care. This should be done
mechanically by trying each value of LEN in the specification of SLENGTH, starting at 1, 2, ... until one
is found that satisfies the quantified expression when A or B is substituted for STR. This tells us that the
call, ASSIGN(B,A), should not raise the exception. Then we can make substitutions in B, using A, ro that
the out specification of Assign is satisfied for this particular pair of parameters. The result should satisfy

the assertions. However, EQUAL(A,B) is false in this outptut state. Is that correct PL/1?

Symbolic execution of package specifications on small tests is a powerful way to check the consequences of
specifications. The results can be used to negotiate changes before implementation begins, or to see if a
package provides features seeded by some wsing program. Symbolic execution should be automated
because it is easy to make mistakes in executions by hand " indeed the same mistakes that were made in
the specification.

As discussed in Chapter 5, the specifications of units ia a package can depend oa one another in ways that
bave unforeseen consequences. The depesdencies in PL1_STRINGS are very simple. The only package
fesctions that are used ia other specifications are Sleagth (or Leagth) snd Slast. There are 20 mutually
dependest subprograms. Therefore, say implicit constraint oa the package must a comsequence of aa
individual subprogram specificatios.
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Ezample: Speci fication of the Package Direct_IO

with I0_EXCEPTIONS:
gruneric

type ELEMENT_TYPE Is private;
package DIRECT_IO ls

type FILE_TYPE is limited private;

type FILE_MODE Is (IN_FILE, INQUT_FILE, OUT_FILE);
type COUNT is range O .. implementation defined;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT'LAST;

-~ implementation concepts

~- package EXTERNAL_SYSTEM is

- type EXTERNAL_FILE is limited private;

- NO_FILE : constant EXTERNAL_FILE;

--: fuction PROPER(NAME : STRING) return BOOLEAN;

function FILE MAP(F : FILE_TYPE] return EXTERNAL_FILE;
function NAME_MAP (NAME: STRING) return EXTERNAL_FILE;

--1 where PROPER (NAME) .

--: function INACCESSIBLE(E : EXTERNAL_FILE) return BOCLEAN;
== where return (for all X : FILE_TYPE =>

E /= FILE_MAP(X) ) and
(for all X : STRING => E /= NAME_MAP(X))

--: function DISTINCT(F, F1 : FILE_TYPE) return BOOLEAN;
| where return FILE MAP(F) /= FILE_MAP(F1);
- end EXTERNAL_SYSTEM;

- use EXTERNAL_SYSTEM;
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-- Ezceplions
-- [Ezceplions have been moved up so that they are visible in the anotations./

STATUS_ERROR : exception renames I0_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames I0_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames I0_EXCEPTIONS.MAME_ERROR:;
USE_ERROR : exception renames I0_EXCEPTIONS.USE_ERROR:
DEVICE_ERROR : exception renames I0_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames I0_EXCEPTIONS.END_ERROR:
DATA_ERROR  : exception renames I0_EXCEPTIONS.DATA_ERROR:

-- [The following function declarations have been moved up and reordered
-= in order to make them properly visible in the annotations./

function IS_OPEN (FILE : in FILE TYPE) return BOOLEAN;

function MODE (FILE : In FILE_TYPE) return FILE MODE.

where
not IS_OPEN(FILE) => ralse STATUS_ERROR;

function NAME (FILE : in FILE_TYPE) returm STRING:

where
not IS_OPEN(FILE) => raise STATUS_ERROR;

function FORM (FILE : in FILE_TYPE) return STRING.

where
not IS_OPEN(FILE) => raise STATUS_ERROR;

function INDEX (FILE : in FILE_TYPE) return POSTIVE_COUNT;

where
not IS_OPEN(FILE) => raise STATUS_ERROR;

function SIZE (FILE : in FILE_TYPE) return COUNT:.

‘where
not IS_OPEN(FILE) => raise STATUS_ERROR:
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-- File management

procedure CREATE (FILE : in out FILE TYPE:
MODE : in FILE MODE := INOUT_FILE;
NAME : In STRING := °*°;
FORM : In STRING := *9);
where

IS_OPEN(FILE) => raise STATUS_ERROR,

not PROPER(NAME) => raise NAME_ERROR,

raise USE_ERROR,

out IS_OPEN(FILE),

out (INDEX(FILE) = 1),

out (MODE(FILE) = MODE),

out in INACCESSIBLE(FILE MAP(FILE)).

out FILE MAP(FILE) /= NO_FILE,

out ( FILE MAP(FILE) = NAME_MAP (NAME) ):

procedure OPEN(FILE : in out FILE_TYPE:
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING); -
where
IS_OPEN(FILE) => raise STATUS_ERROR,
not PROPER(NAME) or NAME _MAP(NAME) = NO_FILE =>

raise NAME_ERROR,

raise USE_ERROR,

out IS_OPEN(FILE),

out (INDEX(FILE) = 1),

out (MODE(FILE) = MODE),

out (FILE_MAP(FILE) = in NAME_MAP (NAME)) ;

procedure CLOSE(FILE : in out FILE_TYPE)

where
not IS _OPEN(FILE) => raise STATUS_ERROR,

out (not IS_OPEN(FILE)),
out (FILE_MAP(FILE) = NO_FILE):
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-

procedure DELETE (FILE : in out FILE_TYPE):
where
not IS_OPEN(FILE) => raise STATUS_ERROR,
raise USE_ERROR,
out (not IS_OPEN(FILE)),
out (FILE MAP(FILE) = NO_FILE),
out INACCESSIBLE(in FILE MAP(in FILE)):

procedure RESET (FILE : in out FILE _TYPE: MODE : in FILE_MODE):

where
not IS_OPEN(FILE) => raise STATUS_ERROR,

raise USE_ERROR,
out (INDEX(FILE) = 1),
out (MODE(FILE) = MODE):

procedure RESET(FILE : in out FILE_TYPE);

where
not IS_OPEN(FILE) => raise STATUS_ERROR,

out (INDEX(FILE) = 1),
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-~ Input and output operations

procedure READ(FILE : in FILE TYPE; ITEM : out ELEMENT TYPE;
FROM : POSITIVE_COUNT):

-=1 where

== not IS OPEN(FILE) => ralse STATUS_ERROR,
--1 MODE(FILE) = OUT_FILE => raise MODE_ERROR,
== FROM > SIZE(FILE) => ralse END_ERROR,

-=| raise DATA_ERROR,

~=1 out (INDEX(FILE) = FROM + 1)

procedure READ(FILE : in FILE TYPE; ITEM : out ELEMENT TYPE):

== where

- " not IS_OPEN(FILE) => raise STATUS_ERROR,

- MODE(FILE) = OUT_FILE => raise MODE_ERROR,

--1 END_OF_FILE(FILE) => raise END_ERROR,

--1 raise DATA_ERROR,

== out (INDEX(FILE) = in INDEX(FILE) + 1); 1

procedure WRITE(FILE : in FILE TYPE; ITEM : in ELEMENT TYPE;
TO : POSITIVE_COUNT) ;
== where
--1 raise USE_ERROR,
-- Raised if capacity of ezxternal file is ezceeded.
-=1 not IS_OPEN(FILE) => raise STATUS_ERROR,
== MODE(FILE) = IN_FILE => raise MODE_ERROR,
== out (INDEX(FILE) = TO + 1);

S e o gt

-

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE):
==l where
== raise USE_ERROR,
-- Raised if capacity of external file is ezceeded.

4
== not IS_OPEN(FILE) => raise STATUS_ERROR, {
-1 MODE(FILE) = IN_FILE => raise MODE_ERROR, «
--1 out (INDEX(FILE) = in INDEX(FILE) + 1), 1'

I

b

procedure SET_INPEX(FILE : in FILE TYPE; TO : in POSTIVE_COUNT); [
il where !
-1 not IS_OPEN(FILE) => raise STATUS_ERROR, :
-~ out (INDEX(FILE) = TO). i
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funection END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;
where
not IS_OPEN(FILE) => raise STATUS_ERROR,
MODE(FILE) = OUT_FILE => raise MODE_ERROR,
return (INDEX(FILE) > SIZE(FILE)).;

axiom for all § : DIRECT_IO'TYPE: F, F1 : FILE_TYPE;
INDEX, I, J : POSITIVE_COUNT; ITEM, X, Y : ELEMENT_TYPE;
NAME, FORM : STRING: MODE : FILE_MODE
=>
S[READ (F, ITEM, INDEX)] = S[SET_INDEX(F, INDEX);
READ(F, ITEM)],
S [SET_INDEX(F, INDEX):
WRITE(F, ITEM)],
S(WRITE(F1., X, INDEX)].READ’OUT(FILE =>F, ITEM =>Y, FROM =>
INDEX) .ITEM = .
if not DISTINCT(F, F1) them X
else S READ'OUT(FILE => F, ITEM => Y, FROM =>
INDEX) . INDEX
end if,
S[(WRITE(F, X, I); READ(F1, Y, J)] = if DISTINCT(F, F1) or else
I /= J then
S[READ(F1, Y, D).
WRITE(F, X, I)]

S{WRITE(F, ITEM, INDEX))

else
S[WRITE(F, X, I).
READ(F1, Y, J))
end if,
S[WRITE(F., X, INDEX) WRITE(F. Y, INDEX)] =
S(WVRITE(F. Y, INDEX)],
S[READ(F, X, I)).READ’OUT(FILE => F, ITEM => Y,
INDEX => I).ITEM =
S.READ'QUT(FILE => F, ITEM => Y, INDEX => I).ITEX;

private

-= Implementation dependent

end DIRECT_IO:
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SYMBOLIC EXECUTION: "VWhat Happens IF .

CREATE (F, N)
OUT : FILEMAP (F) = FILEMAP (N) = E,
: ISOPEN (F);

CREATE (F', N)
OUT : FILEMAP (F) = E,
FILEMAP (F') = NAMEMAP (N) = E’,
ISOPEN (F),
ISOPEN (F'),
E=E’';

CLOSE (F)
OUT : FILEMAP (F) = NO_FILE,
FILEMAP (F') = E’,
NAMEMAP (N) = E’,
ISOPEN (F’'),
not ISOPEN (F),
E = E’';

OPEN (F, N) -
OUT : FILEMAP(F)=NAMEMAP(N)=FILEMAP(F')=E’,
ISOPEN (F'),
ISOPEN (F),
E=E’';

—— . —— — — —— —— ——— ——— ——— - t— — —— T —————— i —— —— ———————————— ——_— ——————

Anna Near Term Tools

The primary goal is to encourage use of Formal Specifications
in the development and maintenance of correct Ada programs.
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* Transformational Semantics
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EXAMPLE:

More powerful annotations can be transformed into
sets of simpler annotations (in most cases)

The simplest annotations, assertions, can be
transformed into runtime checking code.
Type annotation --> Object annotatioms
type EVEN is new INTEGER;
--1 where X : EVEN =) X mod 2 = O;

subtype POS_EVEN is EVEN;
-—1 where X : POS_EVEN =) X >= 0;

A : EVEN;
B : POS_EVEN;

type EVEN is new INTEGER;
subtype POS_EVEN is EVEN;

A : EVEN; --1 A mod 2 = O;
B : POS_EVEN; -1 Bmod 2 =0 and
--1 ( BY»=0);
D=36A
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Annotations can be transformed into executable runtime
checks

ANNA
Program
[
I - + +-———————— +
i i Annotation | Ada program | Ada I
+===> R it > | ————
| Transformer | with checks | Compiler | |
o ———— + tmm————————— + I
. v
Self
Checking
Program

Checking of consistency between <the underlying Ada
program and its formal specifications is performed
automatically at runtime.

Exceptions and diagnostics are propagated in case of an
inconsistency.

UPSHOT: Capability to run an Ada program against (in
comparison with) its formal Anna
specifications.
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APPLICATIONS

*x%x

Test and Debug

Permanent checking of crucial specifications
Security in data bases

Error situations in control systems

Comparative simulation (validation) of high
specifications of architectures

ISSUES

Implementation of Anna transformations
Testing on significant examples
OPTIMIZATION of runtime checks
DESIGN-ANNA, a language for systems design

Annotations of timing constraints

p~38
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PROJECT STATUS

Anna Language Manual -- available

Anna Overview Paper -- available
Introduction to Anna -- in progress
Rationale for Anna design -- in progress

Transformation for Runtime Testing

Initial implementation for large Anna subset

* Implementation specification
* Support Tools:
* DIANA extension
Anna parser
* Validaton suite

first tests
first experimental version

Anna Book -- 1in progress
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SOME OTHER ANNA TOOLS

*

*

Optimizer For Runtime checks,

Uses rules associated with
annotation concepts

Parallel Checker Preprocessor compiles runtime
checks for execution on
parallel processors

Specification Analyzer
Consistency of package
specifications,
Symbolic execution of

specification for question
answering.

Structure Editor Prompts for annotations
Semantic analysis
Context annotation checking

Allows deferred decisions and
tracks them.

Standard Packages
Timing Package
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Ro-Implementing AACAT Guard in Ada

Tony Brintseshoff
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Tony Brintzenhoff: Reimplementing ACCAT guard in_ADA

Brintzenhoff was involved in an effort sponsored by DCA
to evaluate Ada as a language for communications software. This
effort involved reimplementing TCP/IP and ACCAT Guard in Ada. He
talked about the reimplementation of ACCAT Guard, which also had
as a goal the evaluation of Ada as a language for developing
secure systeas,

ACCAT Guard is a trusted application for the Kernelized
Secure Operating System (KSOS) whose purpose is to connect two
hosts with different security levels on a network (ostensibly the
Arpanet) and allow controlled communication by wupgrading and
downgrading information moving between the hosts. Communication
is through the ACCAT Guard, and reclassification is controlled by
a security watch officer.

The project had three major objectives:
1. To evaluate Ada constructs for secure applications

2, To develop a 1list of restrictions on the wuse of Ada
constructs which would enhance the verifiability of secure
Ada systems

3. To develop a methodology for déveloping software in Ada

In order to provide an environment in which the ACCAT
Guard could be executed, the project also designed emulations of
the ACCAT Guard's interface to KSOS and to the Arpanet.

Brintzenhoff's group used a draft formal specification of
ACCAT Guard written in the formal specification language SPECIAL.
The aim was to translate the SPECIAL specification into an Ada
progranm,

The Ada design methodology developed for the project used
the concept of "virtual packages”. It was discovered that
developing a design at the package level offered too 1little
granularity in constructing a design, while developing the design
at the subprogram level provided too much granularity. Virtual
packages are a graphical representation of a package which
contains some detail of the units internal to the package. This
offered a medium level of granularity, as well as facilitating
stepwise refinement,

The designers attempted to translate the OFUNs of the
SPECIAL spec into Ada subprograms on a one-to-one basis, This




aim was not completely realized, in part due to inadequacies of
the SPECIAL specs. In certain places, the SPECIAL specs seemed
to have been written procedurally rather than non-procedurally,
as SPECIAL is meant to be written.

The designers felt that Ada provided an adequate degree -
of separation between the trusted and wuntrusted software,
Generics and variant records were felt to be particularly useful
in minimizing the amount of trusted code. It was estimated that
the use of generics and variant records would decrease the amount
of trusted code by roughly 4000 lines (generics were not used in
the design because the compiler used did not support them).

Problems were encountered arising from erroneous
programs.
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|

(NON-SECURITY PATH) (SECURITY PATH)
!
SYSTEM SEGMENT SPECIFICATION (A) 3
NORMAL REQUIREMENTS
TCB REQUIREMENTS
EVALUATION CRITERIA } — SECURITY POLICY
MANDATORY/DISCRETIGNARY ACCESS MODEL
SOFTWARE REQUIREMENTS Sl.’ECIFlCATlﬂN (BS5A)
HARDWARE
OPERATING SYSTEM
MAN-MACHINE INTERFACE
— o FTLS/DTLS
NON-TRUSTED SOFTWARE IDENTIFICATION (Adl/i\NNA)
TRUSTED SOFTWARE IDENTIFICATION (Ada/POU)

SOFTWARE TOP LEVEL DESIGN DOCUMENT (C5A)
VIRTUAL PACKAGE DESIGN

FILS/DILS
MACROSCOPIC DESIGN } (Ada/ANNA)

'

FmLS/DmLS
(Ada/ANNA)
v
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SOFTWARE TESTS
TCP/IP/ADCCP ACCAT GUARD
FUNCTIONALITY TESTING: FUNCTIONALITY TESTING:
TCP HIGH-LOW MAIL
MISSING SEGMENT(S) LOW-HIGH MAIL
DUPLICATE SEGMENT(S) . HIGH-LOW QUERY
SEGMENT CHECKSUM ERRORS LOW-HIGH RESPONSE

LOW-HIGH QUERY

SECURITY/PRECEDENCE VIOLATIONS HIGH-LOW RESPONSE
IP DOWNGRADE REJECTION
DATAGRAM CHECKSUM HIGH/LOW BUFFER WATERMARKS
DESTINATION-UNREACHABLE ggmﬂ g::mNGAT'UN
TIME-TO-LIVE SANITIZATION
INVALID-SUBNET-PARAMETERS ,
ADCCP

OUT-OF-CONTEXT COMMANDS
- OUT-OF-CONTEXT RESPONSES

TIMEOUTS

INVALID FRAME ERRORS

CRC ERRORS

LINE CONTROL MODULE (LCM)
TIME-OUTS (LINE DROP)
DATA ERRORS (BIT DROP)

ADA-SPECIFIC EFFICIENCY Il CRITERIA

PRAGMAS: CONTROLLED, INLINE, OPTIMIZE, PRIORITY, SHARED, SUPPRESS
TYPES/OBJECTS: DYNAMICALLY VS. STATICALLY CREATED OBJECTS
SUBPROGRAMS: EFFECTS OF EXTENSIVE ELABORATION

TASKS: REGULARITY, ACCURACY OF EVENT TIMING, INTERRUPT PROCESSING
TASK ACCESS ALTERNATIVES '

EXCEPTIONS: HANDLING, PROPAGATION, TASKING INTERACTIONS
GENERICS: EFFECTS OF DYNAMIC INSTANTIATIONS
IMPLEMENTATION-DEPENDENT FEATURES: UNCHECKED PROGRAMMING
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Eric Anderson: Army Secure Operating Systems

Eric Andersoh is the Project Manager for TRW's Army
Secure Operating System (ASOS) project. ASOS will be written in
Ada and is required to meet the DoD Computer Security Center's Al
rating.

Defining Security Subjects

Security subjects are the active entities of the system
from the point of view of security. The ASOS project had to
decide what the security subjects of ASOS are. There were two
candidates: a security subject could be an Ada program or a task
within an Ada program.

The ASOS project found that tasks within an Ada program
can communicate by means both overt (shared global variables,
rendezvous) and covert (using the same global packages, having
the same devices open to all tasks in a program). The only way
to limit this communication would be to place severe restrictions
on the use of Ada in the programs running onm ASOS. It was felt by
the ASOS designers that these restrictions were too severe, and
thus all tasks within a given program must be considered to have
the same security level, This essentially amounts to having the
security subjects be complete Ada programs, so it was decided to
define security subjects to be complete Ada programs, The
security subjects would therefore communicate, when necessary, by
a mechanism outside Ada which would be mediated by the ASOS
Security Kernel, This approach also has the advantage of
separating security issues from the Ada domanin of intertask
communication.

RSL Issues

Ada features such as tasking and exception handling,
which are classically functions of the operating system, require
extensive runtime support. The Runtime Support Library (RSL) of
the Security Kernel must be as secure as the Ada code for the
Security Kernel itself.

To solve this problem, the ASOS project developed a
layered approach in which the . applications programs running on
ASOS have an Applications RSL which makes calls to the Security
Kernel. The Security Kernel has its own £Kernel RSL, which
implements a restricted subset of the functions of the
Applications RSL. The Kernel RSL is thus intended to be small and
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verifiable.

A set of restrictions on the Kernel RSL were formulated,
which included:

1. No tasking
2, No explicit dynamic Storage allocation using NEW
3. No dynamic arrays

4. No use of Ada standard packages other than STANDARD and
SYSTEM

5. No exception handling

Under these restrictions, it turned out that there was no Kernel
RSL. It was useful, however, to have a small Kernel RSL to
propagate exceptions. Many things, such as I/0, which are
usually done for Ada programs by the RSL are not done by the RSL
for the Security Kernel, but instead are done directly by the

Security Kernel using embedded assembly.

Hardware Issues

It was necessary for the Security Kernel to have the
following hardware-related capabilities:

1. Access to privileged instructions

2. Access to specific machine addresses

3. Ability to directly address bits in memory

4, Inline capability
Direct access to memory locations was accomplished using the Ada
address and representation clauses, Access to privileged

instructions was accomplished by the use of machine language gate
routines.

Compiler Issues

The security of ASOS depends on the correct compilation
of the Security Kernel. The ASOS Project concluded that the
validation and certification procedures for Ada compilers provide
an adequate degree of assurance for ASOS.







Jim Freeman: Trust Domains

Jim Freeman presented an approach to stating system
requirements and modeling systems called Trust Domains. The
approach describes, at a high level of abstraction, the various
components of a system, how they are related structurally, and
what assumptions they make about the behavior of each other and
the system's environment. The goal of the approach is to present
a more "understandable™ view of the system, thereby providing
assurance of the system's correctness.

In the approach developed by Ford Aerospace, a system 1is
represented as a set of trust domains. The structural
relationships between domains are described by stating which
domains "inhabit"™ other domains, which domains "contain” other
domains, which domains are "associated with"™ other domains, which
domains "adjoin" other domains and which domains "adjoin" other
domains "via" a third domain. The assumptions which domains make
about other domains are stated in terms of Mconstraint
relationships™. A domain A may "receive" a constraint X "from" a
domain B, which means that A assumes that B meets constraint X,
and a domain A may "derive" a constraint X "for" a domain B,
which means that A meets constraint X with respect to B.

Examples of trust domains and relationships were given.

-Most were in graphical form, with the domains represented as

nodes and the relationships as links between nodes. One example
was given in a textual form which is processable by tools built
by Ford Aerospace. The Trust Domains approach was applied to both
WIS and the Multinet Gateway.
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Structuring Systeoms for Formal Verification
Richard 3. Neely
James W. Freeman

Ford Aerospace & Communications Corporation

This research was sponsored in part by the USAF Rome Air
Jevelopment Center under the Multinet Gateway Progcram, con-

tract number F3C602-81-C~C233.

High levels of assurance for thre security of a system are
obtained, in part, by the description of {ts trusted comput~-
ing base in terms of a forrmal <top~level specification.
Nevertheless, <the use of a single=level specification can
result in an inability to link the behavior of the trusted
computing base with the security policy of the system as a
whole. This paper discusses that disperity and presents an
approach <o structuring systems <that helps to avoid the
problem. Such structuring 1is shown to be effective in
bridging the gap between the trusted computing base itself,
and the overall systeonm.

1. INTROODUCTION

It 1is generally accepted that formal methods can be used to
increase the level of assurance that & system i{s secure. In
spite of current improved understanding of such rethods.,
concepts wused in describing the trustsorthiness of com~
ponents retain the same limitations <they have bhad for a
number of years. Only <the most sinple and monolithic of
systoems or components can be characterized by a single "top
level specification™ == yet the attempt is made to describe
even entire operating systems by such means, Additionally.,
2t the completion of the formal verification of a component,
it is often not clear that that verification provices any
increased understanding of the component and the overall
system. Finally, the trustmzorthiness of an individual com-
ponant is typically ensured only by assigning some sansi-
tivity label to it and doing an analysis based on this
assignment, rather than establishing its trustworthiness in
relation to its individual constraints and requirements.

Some work has been accomplished ir deriving security
requirements from the environment of the component itself.,
and what the component actually does, Examples of such work
include the development of <the "separetion kernel” as
deerribhad hi P..akl.. 7403 and relatad works, the modeling
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approach described by 3artels and Cinolt C1], and various
approaches being investigatad uwithin tke University of Texas
environment [41].

Further investigation and development of such concepts are
needed. We introduca the notion of a "trust domain™ as a
partial answer to that need. &2 trust cdomain encapsulates 2
component {in terms of "rule abstraction.” This 3llous a
charactorization of the component in terms of expectations
that it places on its environment and on its cen inmplementa~
tions, as well as expectations it is prepared to meet for
other domains, dpplication of the <trust domain concept
promises reduction of proof complexity, bLetter understanding
of <the formal specification and verification results, and
explicit identification ot underlying assumptions. If these
goals are realized, then an increased leval of assurance
will follow.

The remainder of this paper focuses on providing motivation
for and application of the trust demain concept. First,
some problems to be solved are characterized. Then the lim-
itations of prsvious structuring attespts to solve the prob-
lems are recounted, This is followed by a detziled descrip-
tion of ¢the concept of a <trust domain together with an
explanation of how the concept helps to solve the problenms
presented. An extended example of the use of trust domains
is provided, including an embodiment ef the example in =
trust domain represantation language. Finally, we demon-
strate the utility of the trust domain approach for formal
verification in terms of the identified prohlems, and from
this demonstration we draw several conclusions.

2. Problem Statement

Several problems related to the structuring of a2 systea for
verification are at least partially solved by the use of
trust domains. Those problems are described in <this sec-
tion,

2.1 Problem 1: Assessment of Verification Results.

Consider a moderately complex computer system whose adher=
snce (n operation to a given securfity pelicy is critical.
Suppose that the design, development, a2nd documentation of
the system follow the guidelines given in the Dol Computer
Security Center’s Jrysiaed Computer Sysiso Sxzluation Ccis
3acia (2]. One might now ask exactly uwhat was verified, and
further, how do the verification results really contribute
to the confidence that the system will not viclate the secu-
rity policy. The answer can be formulated and expressed

n=-2
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only in terms of the formal structure of the system, houw
that structure raelatas to the system environaent, and hos
the proofs relate to the system structure. Cn one hand, a
small quantity of proof output (e«ge.r "TRUE"™ or "FALSE™) s
easy to wunderstand, but not much confidence is gained from
such trivial results. On the other hand, a great deal of
output, if it 1is noet well-structured or does not relate
clearly to a well=structured system, is impossible to under-
stand well enough to be sure wkhat is proved.

At least three criteria need to be used in assessing the
specification and verification output:

1« Proofs are small or at least undersizndabls. Tha
proofs rre not just terse, but both coaplete and sim-
ple as possible.

2« The specification information and verification. results
are ¢claarly calatsed to the actual implemented system.

3« There are ygll-focmed houndacy conditigns (environmen-
tal assumptions).

The latter two criteria are directly tied to the system’s
"architectural reference points.” They allow more mezninyful
discussion of what 1is actually modeled, the underlying
hardware constraints, assumptions, other non=provac com=
ponents and code carrespondence issues. 8y an architectural
reforence point we nmean a significant aspect of 3 system
architecture that is taken as civen and so must be reflaected
by not only the system implementation, but also by the for-
2al description of the system. For example, in a systom of
netuork gateways, an architectural reference point might
include specific aspects of the geograghical separation of
the gateway nodes., Attributes of the layering of the proto-
cals might form another example. The ides of an ™"architec-

tural reference point™ 1is that it constrains the allowed
desijn space of the systenm.

2.2 Problem 2: Verifying System Specific Characteristics.

While the previous discussion sas in terms of 2 “moderately
complex™ system, distributed systeams typically possess an
especially complex structure. A noteworthy class of exanm-
ples is the class of communications systems. 1In an "ADP,"
or host, system, a case might be made to consider the inter-
face of an operating system kernel as the exclusive province
of foraal specification; but there is ro analeg in a commun=
ications environment. The software and hardware that imple~
ment network functions are structurally and conceptually far
removed from +he "evgtem interface,” i.e.s, the network

March 14, 1985
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system as seen from the "host users.”
2.3 Problem 3: Ensuring Trusteorthiness.

Many systems, in enforcing a specific set of requirements,
such as a given access contrcl scheme based on sensitivity
labels, determine propertiss and derived ragquirements that
are not directly related to the ’‘labeling requirements.
Sometines the traceability betuaeen the original and derived
requirements is weak because the derivation process has not
been well documented. Second,s some systens have wvell-
defined socurity requirements that are not given viz sonsi-
tivity labels. The result is a3 problem of truly understand-

ing and agreeing on what irystyeoribingss means in an
environment that may include but is not entirely dependent

upon sensitivity labels.
2.4 Problea 4: Domain Reusability.

In order to reduce the cost and, hopefully, techniczl risk
of <the specification and verification process, different
components that are either fidentical in function, similar
with only parametric differencass, or significantly different
while assuming or providing similar or identiczl interfaces
== gsuch different components ocught not to have to be speci-
fied and verified in a completely indepgendent manner., Some
means of reusing the formalism of these <components is
needed. This concept has been discussed and an approach,
based on 2 notion of reusable problem domain theories, has
been sugyested by Don Good [4). Additional work is needed
in this area.

3« Previous and Current Structuring Atteapts

Previous attempts to provide effective verification results
have paved the way to the current state of the art,

Although much good work has been accomplished, grevious
attempts fall short of what we feel is possible nou, It is

instructive to see in which ways this statement is true, in
terms of the three criteria presented in the discussion of
the assessmont of varification results, Although specific
examples in the following discussion refer to the Xernelizad
Secure Operating System (XSCS), and by extension to
Honeywall’s SCOMP [111, they 2re relevant to a wider spec-
trum of contemporary projects. These examples focus on the

assessment of verification results of the first identified
probles area.

r‘,—[j.
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3.1 Ceriterion 1: Proof Complexity.

Cften, verification conditions (VCs) te be proved have baen
linked <to the formal specification in a way very difficult
to trace because they sere <the result of auch syntactic
manipulatian and other processing. Further, even though the
most trivial of the VCs were weeded out early, large numbers
of proofs were still necessary. And yet, the true complex-~
ity of the results was much greater than it would seem from
the gquantity of verification results generated. A typical
location of hidden complexity was in special=purpose VC gen-
eration mechanisms., These observations were true, for exam=-
ples for the KSO0S formal verification [?])., The translation
steps from the Special languzge of the Hierarchical Design
Methodology (HOM) into VCs suitable for the Boyer=Moore
theorem rrover were rather large ones, Examination of
intermediate forms (to aid understanding of the translation
process) was possible. 3ut such exarination only added to
the complexity to be digested. The Feiertag VC generztor
L3] is indeed a very complex program, snd for the purpose of
analyzing complexity, must be included in the actual proofs
to be examined.

In addition, the body of verification results was artifi-
cially small because it was not the full system that eas
involved. In KSO0S, the kernel. interface, along with
relevant internal functionality, was the only part formally
specified and verified. VYet what the user of KSO0S depends
on for enforcing security is the XKSO03 system 2s a whecle, and
80 statements about the system as a whole are what needed
provinge. While the Unix emulator was not to be part 2f the
trusted computing tase, that fact needed to be a8 rpesyls of
the specification and proof process, not an assuspiigp of
it. Further, the Non Kernel 35ecurity Related (NXSR) portion
was part of the trusted computing base, yet sas not part of
any integrated proof process. Were the proof of XSO0S, using
the HOM=Feiertag technolojy, to be complete and integrated
into a single formal top=level specification (FTLS) 3s ordi~
narily conceived, the complexity ¢f the proof would be
increased by 3 large factor.

3.2 Criterion 2: True System Representation.

Accurate representation of the target system also fell short
in several ways. Security models were typically simple
"flow=upward” models based on 3 lattice structure of secu-~
rity classifications. However, within the system (2nd some~
times visible to at least cert2in wusers), “exceptions” or
special privileges had to bLe allowed for the sake of correct
system operation. These never fit within the model, and so
had to he eithar {~nared in specification or else allouwed to

G-5
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jenerate “"spurious,”™ unprovable VCs, which sore then
axplained away informally. 1In addition, BbBecause of dispar-
ity betwaen the structure of the specification 3snd the
inplemented code, the informal code correspondence 2rgument
in KSOS was not as convincing 3s had been hoped.

3.3 Criterion 3: Boundary Conditions.

Finally, assumptions necessarily made ty the system (but not
intanded to be proved) were dealt with quite informzlly, and
in fact often were never mentioned but made tacitly. Such
assumptions involved hardsare and other entities with which
the trusted caomputing base must interfice and on which it
deponded, as well as the initial setup of file system data
bases and correct administrative procedures. Sy bhandling
such issues informally, more unprovable V(s zere generated.
Conssquently the specification and verification results were
sometimes confusing, lacked convincing power, and misseod tha
opportunity to point out exactly wuhere certain conditions
had to be maintained externally for the system to remain
secure.

4. TOWARDS A SOLUTION

Progress has been made in each of the four identified prob-
lem areas in recent years. khat is needed still is a con-
coptual framework to aid in organizing this type of specifi-
cation and verification information. W¥hile much work
remains <to be accomplished in solving the groblems
described, we have seen initial applications of the trust
domain concapt to offer an effective step. The motivation
for the trust domain idea is provided next via a conceptual
description. After the concept is - established, details of
the structural and constraint relationships are civen to
explain how to apply the concept.

41 Trust Domain Description: Concept

A trust domain is characterized by the following 1list of
attributes:

1. It is a part of a2 system (a component) with a well~
defined functional boundary,

2« There are certain properties about its hehavier that
other domains are entitloed to expect.

3. It is entitled to expect the validity of cartain
assertions atout its environment.

(]
V-
)
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4. It may have internal (non~externzlly visible) charac-
teristics that are used to provide behavioral guaran-
tees.

The "well-definedness” attribute is essential in producing
the 1limitations on the scope of a trust domain construct to
specify what 1s actually "trusted”, A trust dowain’s
trustworthiness is established either by assumpticnsg that
may not be proved (but are clezrly identified), or else by
proofs of assertions based on the environment of the trust
domain. Note that part of a trust domzin’s environment is
typically some set of other trust domains. In thzt case.,
the juarantses of the other trust domains become part of the
snhvironmental assertions of the original trust domain. The
assertions to be proved are termed "derived constraints” or .
resultant theorems. The original trust domain is then said
to be constrained by of the other trust domains., The rela-~
tionship of the other <trust domains with the original is
spoken of as 3 gonsiraint celationship. Cther constraints
external to a <trust domain include assertions akout the
system’s environment that must be taken as given in the
development process.

CSO0=TR649 Narch 14, 193S
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The conceptual interface between tao trust domsins so
related consists of functionzl abstrzction (bLased on func~—
tional decomposition); data abstraction (based on private
and shared abstract data types); and rule abstraction (based
on constraints for function usage and interactions among
functions and the data types they govern). A trust domain
is pictured in Figure 1.

o I
e s

p AscEIvED
CONSTRAINTS

Figure 1. Trust Domain

33
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Trust domains may have not only constraint relationships.,
but also containment reélationships. Figure 2 provides an
example of trust domains sith constraint relationshigs; the
figure also serves as a bhasis for illustrating containment
relationships.
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Figure 2. Trust Domain Constraint Concept

4

4 Fijure 2 could be 3 picture of the major activities within a
simple secure systenm, The system as a3 whole is a trust
domain that contains the three trust domains shown. This
must be so0, since it is only about trust dosains that pro-
perties can be proved, and it is the system as a shole that

! mugt be proved secure. Further, the {individual <trust
1 domains of Figure 2 themselves may (usuadlly at this level,
‘ will) contain interior trust domains.

3 It is important to note that no 3 grigri distinction is made
1 between "trusted” and “"untrusted” comporents, though that
distinction falls out of the interpretation of constraint

rules. The idea is that external constraints (portrayed as
| externally applied assumptions) allow a limited scope of
activity, so that all that must be proved #bout the trust

domain itself is that, sithin that limited scope, it will

not allow a violation of the constraint rules (its derived

— —canstraintalaiseda ¢g9 enforce. Consequently, a trust domain

-9
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is "trysted” to satisfy only the derived constraints. If a
trust doamain is placed so that no expectations need to be
applied <to its behavior (it has no derived constrzints), 1t
is "trusted” to satisfy no constraints. It is then said <to
be “"untrusted”. It is this wusage in which the ternm
"untrusted” is applied and simply means a2 trust domain «ith
no resultant theorems or derived constraints. "Trustad”, of
course, means that derived constraints do exist. Note that
this implies that "trusted” is not an absolute term, hut is
relative to the content of the derived constraints == {.,e,.,
it is always in the sense of "trusted to obey what particu-=
lar rules”.

A key issue, then, in the aspplication of such 3 concept |{is
the facility to describe <the variocus sets of rules or
behavior properties of a given trust domain. The realiza-
tion of trust domains and associated constraint rules
depends on the use of certain established scftuare design
techniquas, viz.s functional ahstraction and data type’
abstraction. A given formally described set of constraints
or rules then is represented in terms of the visible func-
tions and the abstract data types.

4.2 Trust Domain Description: Structure and Constraint

The trust domain notion has been described to this point as
a structuring concept to of express desired properties and
system strycture. The previous discussion mas <o nmotivate
the <types of entities needed in a cescription of a trust
domain. The explicit means Ly which a <2trust domain |is
described is outlined now so that specific examples can be

described.
y )
A "domain” is an entity with, of necessity, <two types of
e relationships. The types of relationships ars structural
and constraint. A domain aay "adjoin™ another dormain or

"contain® or("inhabit™) another domain. These two relation~
shipss adjoin or contain, are structural. It two domains

sdjoin one another, they cannot contain one another. The
1 identification of which domains adjoin aer contain other
domains provides a topographical description of the systen,
A domain may "derive” or "receive™ from another domain.
These are constrsint relationships. Figures 3 and 4 iden-
tify and illustrate how the two types of relationthips are
identified and described (denoted). The following para-
graphs provide motivation for such a description.

—

—
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Suppose domain A adjoins domain B3 and contsins domain C (or
C inhabits d). In order to rapresent actual systoms and o
describe communications among system entities (whether
within a personal computer or among internets), dorain are
identified as either node or link. This identification 1is
called the gender of the domain. Adjoined domains amust be
of opposite gender, Figure 3 jdentifies additional rela-

tionghips among three domains that shere a3adjoin and contain
relationships. o

NOOE
DOMAIN A

Figure 3. Trust Domain Structure Relationship

First, a3 domain that inhabits another domain 1is either a
boundary or an interior domain with respect to the contain-
ing domain (C is interior to A and is, in fact, a lLoundary
domain of A). Note also that domain A, containing domain C,
"associates” C with domain 3 and C adjoins 3 "via” a. Fraom
A°s point of view C is associated with 3; frcm C°s point of
view C is adjoined to 8 via A; from 3°s point of viex C 1is
not present or in fact not visible. Thus “adjoin", "adjoin
via” and "associates” are distinct structural relationships,

-11
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Constraint relationships are now incorporzted with the
structural relationships. Figure &4 identifies ancd illus-
trates this. Note that domain A "derivas” constraints Y,
for domain B8, and "receives” constrzint X from C; doasain 3
“rneceives” constraints Y, fromn A and domain C "derives”
constraint X for A. Note also that A receives an arbitrary
constraint from 8 if and only {f 8 derives <that sade con-
straint for A. This if~and=only=if relationship provides &
redundancy to aid in the readibility of the ccnstraints.

NQOE
DOMAIN A

Figure 4. Trust Domain Constraint Relationship

The three domains can be described in terms of 32 trust
domein description language as follows:

node domain A shall
contain boundary node C;
sadjoin link 82
associate C with B;
derive for 3
constraint Y;
constraint 2,
receive from C

constraint X?
end A’

R=1?
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node domain C shall
inhabit boundary of node A’
adjoin link 8 via a’
darive for A
constraint X,
end C;

link domain 8 shall
adjoin node As
receive from A
constraint Y,
constraint 17
end 8;

It is useful to observe that although the arrous in Figure 3
illustrate the contains, adjoins and associates relation-
ships, they are not integral to the structural description.
Such arrows are redundant to the identified relationships.
The dotted arrows together wit:h the "boxes™ identified in
Figure & denote wha'® constraints are levied between which
domains. They are integral to the description.

Zxamples of domains using this description are given next.

5-13
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S. EXAMPLE: STRUCTURING A SYSTEN

This section presents an example that illustrates the previ-
ously described asgects of a trust doagin., The example is @
network system fabricated for purposes of illustration. It
includes multiple sites containing local arsz natsorks, and
inter~site (nresumably geographically extensive) <transmis-
sion. Sach site possesses a single mainframe processor
operating in multilevel secure mode and multiple c«corksta-
tionse Figure 5 shows the topography of the system,

ENVIRONMENT

Figure 5. Example System Structure
Note that all Processors and Workstations are considered <to

be "surface”™ system caomponents, outsice the system communi=-
cations element (the Interconnect)s, and <thus logically

. G-14
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outside of any site. This choice of representation has been
soen to provide a clear visw of security=relasted constraints
in ssveral actual systems deoscribed in terms of trust
domains. The level of detail aof system representation dep-
icted in Figure S might be typical of the initial structur-
ing step pertformed to provide 2 security architecturs,.

(P
(="
[ ]
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Figure 6 describes a portion of the exzmple system, intro-
ducing the constraint relationships. In f2ct Figure 6 is
representative of a second step performed in building wup &
systam security architecture. It is characterized by the
onalysis of the constraints relating the trust domains. The
assignment of suggestive names to those constraints lays the
groundwork for the addition of rigorous, mathamatically
oriented representations for each of the constraints.

ENVIRONMENT

\, INTERCONNECT .
CEl- CORRECT END POINT IDENTIFICATION
\ LD - LABELED DATA
\ LP . LABEL ASSOCIATION PRESERVATION

\ NTC - NO TRANSMISSION COMPROMISE

PM- POLICY MODEL
D’"ﬂ * PT.PROTECTED TRANSMISSION

SA - SECURE AUTHENTICATION
SO - SECURE DELIVERY
\ SE - SECURE TRANSMISSION ENCAPSULATION
\ SL - SECURE LABELING
\ SLA - SECURE LABEL ASSURANCE
\ ST - SECURE TRANSPORT
\ WEL - WELL-FORMED LABELS
UF- UPWARD EFLOW

TRANSMISSION
LINES

.

Figure 6. Example System Constraints

Seversl properties of the constraints in Figure 6§ should be
noted. A single named property is derived by the systom
"for the environment.” This property is suggestively named
"poelicy_maodel,” which is <¢the set of assertions cormprising
the model of the system security policy. Cther constraints

3-16
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hetween
nate source in the descriptions of
trusted
If these source constraints
linking all the

the

are
constraints

correct,
are

systam’s design., then the resultant

policy_model, has been verified to be valid for

mented systom,

5«1 Trust Domain Description

This subsection contains thes text of the description of

example system in terms of
language introduced in the description
straints of trust domains.

ot

node domain ENVIRONMENT shall
contain
interior node System;
receive fron Systenm
constraint policy_model;
end ENVIRONMENT,
node domain System shall
inhabit interior of node ENVIRONMENT?
contain
interior link
interior nade
interior node
derive constraint
receive
from Interconnect
constraint secure_transport;
from Processor
constraint labeled_data’
constraint upward_flow_only’;

from Workstation NO_CONSTRAINTS?
snd System;

Interconnect;
Processor multiple’
Horkstation multiple;
policy_model’

node domain Workstation shall
inhabit interior of node System’
adjoin link Interconnect’
derive NO_CONSTRAINTS?

end Workstation;

G=17
CSC=TR669

correct,
domain structuring of the system faithfully

the trust domain description

domains build upon one another, finding their ulti-
components
computing base (and further ir its implementation).

of the

and the proofs
and the trust

represents the
constraint, the
the 1imple-~-

Va

the

structural con-
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node domain Processor shall
inhabit interior of node Systen’
adjoin link Interconnect;
derive for System
constraint labeled_dats;
constraint upward_flow_only’
end Processor;

link domain Interconnect shall

inhabit interior of node System’

contain
boundary link workstation_Line multiple’
boundary link Processor_Line multiple’
interior node Site multiple’
interior link Transmission_Link multigple:?

adjoin
node Workstation/
node Processor;

associate

Workstation_Line with kWorkstation one_to_one;

Processor_Line with Processor agne_to_one;
derive
for Systen
constraint secure_transport;
for Processor
constraint well_formed_labels?
receive
from Site
constraint well_formed_labels;
constraint correct_endpoint_1ID0;
from Workstation_Line
constraint protected_transmission;
from Processor_Line
constraint protected_transmission?
from Transmission_link
constraint no_trans_comprorise’;
end Interconnect’ '

link domain Workstation_Line shall
inhabit boundary of link Interconnaect’;
adjoin
node Site’
.node Workstation via Interconnect:
derive for Interconnect
constraint protected_transmission;
end Workstation_Line;

CSO-TR669 Yarch
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link domain Processor_Line shall
inhabit boundary of link Irterconnect’
adjoin
node Site’
node Processor via Interconnect’
dorive for Interconnect
constraint protected_transmission/
ond Processor_Line;

link domain Transmission_Link shall
inhabit interior of link Interconnect’
adjoin node Site many_to_many;

. derive for Interconnect
constraint no_trans_compromise’
~receive from Site

constraint no_trans_compromise’
sand Transmission_Link’

G-19
CS0=TR66Y

Mareh 14, 158S




X

R A e e &

g i

node domain Site shall
inhabit interior of link Interconnect’
contain
boundary node kWorkstation_LAN_IF?
boundary node Processor_LAN_IF;
boundary node Gateway;
interior link Local_Area_Netwerk’
ad join
link Workstation_Line cne_to_many;
link Processor_Line’

link Transmission_Link many_to_many’
associate

Workstation LAN_IF

with Workstation_Line one_to_one;
Processor_LAN_IF

with Processor_Line one_to_one;?

Gateway with Transmission_Link one_to_one’?
derive

for Interconnect
constraint well_formed_labels’
constrzint correct_endpoint_ID;
for Transaission_Link
* constraint no_trans_compronise;
receive ’ .
from Local_Area_Netuwork
constraint label_assoc_preservaticn’
constraint secure_delivery’
from Workstation_LAN_1F
constraint secure_authentication;
constraint secure_labeling’
from Processor_LAN_IF
constraint secure_label_assurance’
from Gateway

constraint secure_trans_encapsulation;
end Site;

node domain Workstation_LAN_IF shall
inhabit boundary of node Site;
ad join
link Local_Area_Network:
link Workstation_Line via Site’
derive for Site )
constraint secure_authentication;
constraint secure_labeling’
end wNorkstation_LAN_IF’

G-20
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node domain Processor LAN_IF shall
inhabit boundary of node Site’
adyoin
link Local_Are2_Network:
link Processor_Line via Site;
derive for Site
constraint secure_label_assurance;
end Processor_LAN_IF’

node domain Gateway shall
inhabit boundary of node Site’
adjoin
link Local_Area_Netuwork;
link Transmission_Link via Site’
derive for Site
constraint securs_trans_encapsulation;
end Gatesay’

link domain Local_Area_Netuwork shall
inhabit interior of node Site’
adjoin .
node Workstation_LAN_IF one_to_many;
node Processor_LAN_IF;
node Gateway one_to_many’
derive for Site
constraint label_assoc_preservation’?
constraint secure_delivery;
and Local_Area_Natwork:

S«2 Selected UDetailed Examnles

The example in Fijyre 6 is complete in its identification of
major structures and constraints in terms of trust domains.
Two areas of expansion remain to be completed. The first is
the elaboration of each of the constraints to include a con-
plete nmathematical representation of the constraint. Such
representation will typically follow the standards of the
specification language into which the trust domains are to
be mappede. In general, this will involve expressions (e.g..
predicate calculus), which are in fact praiscribed by the
existing <trust domain language jrammar. The second area is
the description of the implementation requirements for the
hardevare and software interfaces so that they can be related
to the rest of structure of the system, inclucing the inter~
face of <the system itself. The following two subsections
present a limited example of the identified areas.

S«2.1 CLonslcaiot.Zlabscatign The trust domain choser for
constraint elaboration is the Processors depictesd in Figure

6 with the notation "Proc." Following is the Processor trust
domain desrrintian ~ith constraints slaborated in terms of

n=21
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predicate calculus expressions.

node domain Processor shall
inhabit interior of node System’
adjoin link Intercannect’,
derive for System
constraint labeled_data:
FORALL datum,
is_valid_label(class(datum))’
constraint uprard_flow_only:
FORALL datum.,proc,
canread(procs,datun) =>
dominates(class(proc),
class(datum))
AND canwrite(proc.datum) =>
dominates(class(datum).,
class(proc));
specify
type element, proc_subliect,
proc_object, label’
variable dztum: proc_obJject’
variable proc: proc_subject;
function is_valid_label(label):
boolean;
function class(element): labal;
function ;
canread(proc_subjectrproc_object):
boolean’

function dominates(label,label): boolean’
end Processor’ )

Note the "specify™ clause added to the domain that allous
truncated declarations of <types, variables, and functions
(also constants) to clarify the predicrte calculus expres~-
sions. With the full form of the constraints, the sugges~—
tive names are retzined; the tao parts of each constraint
thus complement each other.

5202 Safiwace-Related_Exanplg The axample of this section
has so far only been described in terms of its major system
structures, This description sill now be augmentsd by 2
selected example that relates the interface of a portion of

the trusted computing base to the rest of the system struc-
fwre.

CSO=TR659 March 14, 1985
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The damain to he so augmented is the Processor LAN interface

(Processor_LAN_IF). A pictorial description of that domain
is given in Figure 7.

HLPE . HOST LASELING PROTOCOL FUNCTION
LVC - LASEL VALIOITY CHECKER
IPF-- INTERNET PROTOCOL FUNCTION
1PC - INTER-PROCESS COMMUNICATION

HLA - HLALABEL-ASBOCIATION

NCI - INTRERPROC-COMM-INTRGRITY

CVE - CORRECT-VALIDITY-CHECX

CL) - CORRBCT-LAREL-INSERTION

SLA - SECURITY-LABEL-ASSURANCE

Figure 7. Softeuare Domains of Processor_LAN_IF

It consists of three software domains, a Host Labeling Pro-
tocol Function, a Label Validity Checkar, and an Internst
Protocol Function. These domadains communicate via a multiply
instantiated Inter=Process Coamunication link domain. As
with the previously presented portion of the example, thase
internal domains derive constraints that allow the proof of
the constraint that the Processor_LAN_IF derives for the
Site (viz., secure_label_»ssurance).

This donain, as detailed in PFicure 7, is now presented 1in
terms of the trust domain description languags.

. CSO0=TR669 . Merch 14, 1985
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node domain Processor_LAN_IF shall
inhabit boundary of node Site’?
contain
boundary node Host_Labeling_Proctocol_Fecns
boundary node Internet_Protocol_Ffcn;
interior node Label_validity_Checker;
interior link Inter_Process_Conm multiple’
adjoin .
link Local_Area_Network’
link Processor_Line via Site;
associate
Host_Libeling_Protacol_Fcn witkh Processor_Line;
Internet_Protocol_Fcn with Local_Area_Netmork;
derive for Site
constraint secure_label_assurance;
receive
from Host_Labeling_Protocol_Fcn
constraint HLP_label_association’
from Internet_Protocol_Fen
constrzint correct_label_insertion;
from Label_Validity_ Chocking
constraint correct_validity_ check;
from Inter_Process_ Coun
constraint 1ntdrproe_coun_1ntogrity;
oend Processor_LAN_IF;

node domain Host_Labeling_Protccol_Fecn shall
inhabit boundary of node Processor_LAN_IF?
adjoin
link Inter_Process_Comm one_to_one;
link Procossor Lino via Procossor LAN_IF;
derive for Procossor <EAN_IF
constraint HLP_ labol association'
end Host_Laboling_Protocol,Fcn:

node domain Internet_Protocol_Fcn shall
inhabit boundary of node Processor_LAN_IF?
adjoin
link Inter_Process_Comm one_to_one.
link Local_Area_Network via Processor_LAN_IF;
derive for Processor_LAN_IF
constraint correct_label_insertion’
ond Internet_Protocol_~Fen;

node domain Label_Validity_Checker shall
inhabit interior of node Processor_LAN_IEF;
adjoin link Inter_Process_Comm one_to_many;
derive for Processor_ LAN_IF
constraint correct_validity_check,
end Label_Validity Checker’

cew INUUT MNareh 1L.
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link domain Inter_Process_Comm shall
inhabit interior of node Processor_ LAN_IF;
adjoin
node Host_Labeling_Protocol_Fcn one_to_one’
node Internet_Protocol_Fcn one_to_one’
node Label_validity_Checksr meny_to_one’
derive for Processor_LAN_IF

constraint 1ntcrproc conn dintecrity’
end Intar_Process_Comn’

6. EMBODINENT IN SPECIFICATION LANGUAGES

The intented result of the description of 3 system security
architecture in terms of trust domains is to provide the
foundation for a well~structured formal specification of the
system wusing an established specification language. Some
thought has been given to the applicability of the trust
domain description language to be mapped to several formal
specification languages, as shown in Figure 8.

Trust Domain | HOM | Anna | Gypsy
domain jabs. machins/|package/ Iscobol
| module/ | procedure | function
{ OFUN
inhabit/ | syntactic jsyntactic |syntactic
contain | context context context
|
adjoin JEFFECTS_OF leall leall
I
realization |JILPL function|generics -
] |
instantiation| =-- generics -
presentation |external |eith/use |trom

Figure 8., Association of Trust Comain Constructs
With Formal Specification Languages

Work is currently uynder way in <the Rome Air Development
Center’s Multinet (Gateway Certification Program at Ford
Aerospace. Our work in this program includes establishing
more stronjly the amapping from trust domains to the Gypsy

language, in which the HMultinet Gateuay System is being
specified.
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7. EFFECTIVENESS OF TRUST DOMAINS

Four problems have been identified regsrding the structuring
of a systam for verification. The concept of a trust domain
is being examined and applied to each of the four gproblems
within the contex?t of Myultinet Gatewa2y and other programs.
The status and results of the investigstion with respect ¢to
each of the probless is given in the fcllowing subsections.

7.1 The Verification Result Assessment Criteria

Figures 4, 6, and 7, along with the associated descriptions
in the trust domain language, demongtrate hos the verifica-
tion result criteria are more effectively met by structuring
the system in this way. The recoeived constraints of the
most fundamental domains specifically provide the relation-
ships. to the system implementation, and to system boundary
conditions. PFurther, the shole verification (particularly
proof) process is made more comprehensible bty the subdivi-~
sion of the work into smaller pieces. For each domains, the
received constraints, along with internal constraints
obtained from formal statements about <the implementation,
are used to preave the derived constraints of the domain. If
the domains have been delineated to the right degree of
detail, then each such proof will not ke very hard tc follow
intuitively. Such decomposition of structure and proof - have
been part of some formal design approsches (e.g., (51, 6],
C7], C81), including this trust domain approach. That <this
approach allows rescomposition wusing the didentified con-
straints as 3 closure mechanism is 3 key to the effective-
ness of this approach. Hencer the domain proofs are cas-
caded on the basis of godus pgooens according to the topo-
graphic and constraint relationships identified for all the
trust domains of the system. This cascszding is the basis far
the recomposition. The resultant theorem of this cascade of
proofs, of course, is the policy model itself. It is gen-
erally accopted that a proof is made more understancable if
it is broken into smaller pieces. Further, in order for the
verification of a system to be understandahble, not only aust
the proof itself be understood, but the relationship of the
structure of the proof to the system end {ts security policy
must be clearly understood. These conditions for understan-
dability are nmet Dby the trust domair based doscription of
the system structure and related constraints,

7.2 Special System Specific Requirements: Netmork Systems

The structure of a neotwork {tself intensifies the complexity
problem. The exterior {nterface of the system trusted
software and harduwsre is specifically not the interfzce seen
by system wusers (connacted hosts)., Thus, som?» sort of

G=2%
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mapping between the interface of the trusted computing base
and 2the interface to the hosts must be provided. Also, in
order to verify the system, constraint relationships are
necsssary to go along with the structural relationships to
relate the trusted computing base interface(s) to 4the wuser
interface. We have denmonstrated that such a mapping is pro-
vided by decomposing 2 system into trust domains whose
structural and constraining relationships are exglicitly
identified. In this way, the complexity problem is effec~-
tively addressed. ’ . .

7.3 Ensuring Trustworthiness

The ability of trust domains to allow explicit charactesriza-
tion of formal requirements on system components 2lloss a
departure, when appropriate, from ensuring the <trustworthi-
ness of a component by the assignment of a3 security label ¢to
the component and limiting the component’s behavier only on
that basis. The labeling mechanism is certainly appropri-~-
ate at times; but the use of trust domzins allows a choicas
based on system analysis.

7.4 Reusadble Domains.

Based on examples generated from Multinet Gataway work, the
verification of components with the three identified kinds
of similarities stated in Problem & can be streamlined Ly
reusing similar trust domains. This is a direct application
of methods suggested by Oan Good [4]. The <three kindg of
similarities are (1) actually identical in function (pro-
vided by the trust domain "multiple” construct)’ (2) differ~
ing only parametrically (provided ¢ty <the trust domain.
"instantiation” construct); and (3) different in internal
function while providing similar or identical interfaces
(provided by the trust domain "realization" construct),

8. CONCLUSION

The trust domain concept generalizes the 4idea of trusted-
ness, encompassing the concepts of untrusted components and
components of the trusted computing base. The me#ning of
trustedness can be better described’? it is also possible to

describe trusted components thet are distributed <throughout
a systom.

One aspeet common to much of the formal specification and
verification work accomplished in past vyears is that in
order to perform a formal verification of 2 real system, the
system has had to be abLstracted to a level compatikle with
the verification method and available tocls. Current

G=217
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specification and verification methods cannot directly han-
dle many aspects of actual systems and the result has been a
single highly abstracted level. The single or "top"™ level
specification varied from system to systam. For ralatively
snall systems the necessary decree of pbstraction was not so
sovere that the designer and evaluator could naot intellectu-
ally grasp the association betseen the real system and an
abstraction of it, People have seemed . to feel comfortable
about being 2ble to handle the inherent "complexity gap" by
informal memory devices either in the designer‘s wmind or
functional descriptions written with whichever specification
language the designer felt most comfortable. Attempts have
been made to apply directly such concepts to larger or func-
tionally more ccaplex systems. ?Problems have arisen as a
consequence. Attempts to use traditicnal conceptual frame-
works to structure a systenm and to specify fornmally and ver-=
ify more complex systems have engendered an enormous "com=
plexity gap.” Such a gap became so large that {t was intsl~
lectually difficult, or even impossible, to describe a use-~
ful ralationship between a system’s abstraction and 1its
realization aon a hardwuare base. Nea2rly every methodology
developed has had, as a primary purpose, that of reducing
this gap.

Are we, with trust domains, introducing yet anothar aestho-
dology and additional layers of abstraction to address a set
of problems that an experienced systems designer or software
engineer has been facing and solving for some time? In
answer, the question should bhe asked: How well have we been
solving the probleams, particularly with respect t3 specify-
ing and verifying properties that directly aid the increased
understanding and correctness 3 system, and thereby increas-~
ing the assurance that the system operztes according to its
behavioral (e.g.,r security) policy? f

8ased on an initial assessment and current status aof sonme
oxamplas, the wuse of the trust domain concept is » con~
sistent approach for organizing the relationships among tha
functional processing requirements, <the <types of data,
architectural reference points, and most importantly, <the
constraints <that are often left unstated or implicitly
assumed in the specification and verification of a system or
a component., The concept can be incorporated into 2 formal
specification language and verification approach as is
presently being done in terms of Gypsy. The conceptual
framework can be applied consistently from a level of
specification from an "outside user” of a component teo a
description of how resources crn be allocated uwithin a2 pro-
cessor,

(;.'.
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The trust domain concept is not "yet znother methodology.”
The concept allows the identification and description of a
component and the relationships among components that are to
be resalized within the system. This overall approach, in
effect, raises the question of whether a verified systom
must be an understandable system. We anseer in the attirma-
tive.

9. ACKNOWLEDGEMENT

The authors acknosledge the insijghtful contributions of
George W, Dinolt and Peter C. Baker (both of Fard Aerospace)
that were provided during very many hours of fruitful dis-
cussion. The authers also acknowledge the decdicated support
of Michael D. Kranzin (also of Ford Aerospace) in validating
many of the ideas presented here.

10. REFERENCES

£1] Denisa E. M. Bartels, George W. Cinolt, "A Partition
dased Security Model”, WOL~TR9780, Ford Aarospace and
Communications Corporation, Palo 2lto, California, June
23, 1983.

C2] 00D Computer Security Center, [epacimest gf Defense

Icysted Comoutsc Sysiso Syaluatign Critacia, CSC-STO-
001=-83, Fort George G. Meade, Maryland, August 15,
1983,

¢3] R. J. Feiertag, "A Technicue for Proving Spescifications
are Multilevel Secure," Tech. Report C3L-109, Computer
Science Lab., SRI International, Menlo Park, Califor=-
nia, Januvary 1980.

£4] DOonald I. Goods ™"Reusable Problem Comain Theories",

: Technical Report 31, Institute for Computing Science.,

University of Texas at Austin, Austin, Texas, September
1982. :

5] Donald I. Good, "Structuring 3 System for A1 Certifica-
tion"™, 1Internal Note #145-4, Institute for Computing

Science, University of Texas at Austin, Austin, Texas,
September 1984,

C6] DOonald I. Good, Ann 2. Siebert, Lasrence M. 5Smith,
"KA1S FEU Design = Volume I", Internal Note #146-A,
Institute for Computing Science, Lniversity of Texas at
Austin, Austin, Texas, Septembaer 1784,

29

CSO-TR669  March 14, 1985

ftam .

v N ‘-——H




€7] Donald I. Good, "XAlS FEU Design - Volume II", Internal . ﬁ
Note #147-3, 1Institute for Computing Science, Univer-
sity of Texas at Austin, Austin, Texas, September 1784,

£3] C.A.R. Hoarer "Monitars: An Qperating System Structur~
ing Concept,” Coam. ACM, Vol. 17, No. 1C/s pp. £49-557,
October 1974,

[9]) Secure Minicomputer Operating System (XSCS), “Computaer ‘7
Program Development Specifications (Type B85)", wCL-
TR7932, WOL=TR7933, WOL-TR?7934, Ford Aerospace 2nd Com~
munications Corporation, Palo Alto, California,
December, 1980,

£10] John M. Rushby, "The Design and Verification of Secure
Systems.” Proc. 3th ACM Symposium on Operating System

Principles, Asilomar CA., pp 12=21, Cecenber 19231, (ACNM
Operating Systems Review, Vol. 15, No, 35).

€11] Johnathan M. Silverman, "Reflections on the Verifica-
tion of the Security of an Operating System Kernel,”

Proc. 9th ACM Symposium on Operating System Principles.,
Bretton Woodss, NeHesr ppe. 1463=154, Cctober 1983, (ACH
Operating Systems Reviesw, Vol. 17, No. S).

e e . March 14, 198¢%

- <_‘._________._._----------------




Rea.ou .:o.:-u.c:EEou /
¥ ssedsosey pioy @

G861 Yyoden 02-8i
sysfTeUy asuajsq J40J 93N1T3SUT

EPy UI UOTJeOTJTJd\ pue uorjeotljioadg Tewdoq uo doysiyJoM

uewaaJd, °M sauwep
Aq pajussaud

AT99N °9 Y .:mswmgm ‘M °r

vav OL dIHSNOILVTIY

///! - ONIANVLSYIAANN Y04 SWALSAS ONIYNIONYLS

[0 1)1




uopeiodion aeo_..co_e..EEoo

N

7 savdsosey proy @

epy 03 drysuorgeteu Y3tM Buote

nSSdUTYII0MISNIY,, quauoduiod
pue waiysfs jo suotjdruosap 4189338q doraaap of

St193sds Aueu 3qTJOS9p 03 JUITOTIINs qou s7 S114

SuWR9sAs
Xxa7dwoo sJow uy 4ynsou SpUeWSp J9sn pasesuour

pa8ueyoun wSSBUTYJJOMISNIY,, Bulqraosep sqdaouoy

douB.Nnsse paseadoutr apraouad ueo Spoyjauw fewdo,

4S0d4¥nd

uorjdiaosap nSS3UTYI0oMISNIY, 09 yoeoudde uy unuHmHszumH

-QJAN

‘WIVTO

- LOVd

- 4LON

«d31d300V

ki




uojjesodion .........u...:.!..eo

¥ saudsossy P10y @

yoeo

sut

ANITLINO

uoTsN{ouo)

SUOT309UU0D EBpYy
Jdde jo suotqeuqisniiI
ewoq 4snua] :yoeouaddy

wd 1qoad oatdwexy

yoeoudde ayy uo sndooy

ﬁ 1 so1doj doysxiaom 03 uorjejuasaad jo drysuotrjeiay

6-33




woN®10d109) SUOHEIUNWWOD)
» saudsoisy pro4 @

Bpy UO SUOT]OTJ389d JOJ ITOTYdA sapraoudd -
BPY JO 3§M) UO SUOTIOTJILS3Y

sauliopInd quiedqsuod pue Juianionuays sapraoad -
*SP3S JUBWUOJTAUD °*JTJIA BpPY P UOTIIBOTJTJS9A UIU93~BUOT]

SJUSWUOI TAUD
*JTJ3A B °Dads wcﬁamﬁxo JO uotrgedrjipouwr 03 paty jqou -
euuy pue epy o3 Juirddew -
UOTIROTJTIJ2A J0J SWa3sAs Juiuanionuals -
UOTABOTJTJI9A WJU9)—-JBIN

HOVOUddV <SJIdOL JOHSHHOM OL dIHSNOILVTIY

G-34
0




uone10di03 sucpesunwwos

¥ saudsosey pioy @

SHUIT pue sapou Se pazTJ4089180 SJUSWSTY

UoT311s0dwWOOap pue uoljoRUISqR USBM]I| UoTJoUIISIq

JUTBJIJSUOD pue ngzuosgum.onsﬁozﬁ

SLNIOd X3M

sdrysuogjerad
sutewoq 3snJj,

5=35




uo)e10d10) SUCHEUNWWOY)
‘g soudsosey prog @

U138 yaom

~,YOAVTA NYOMIAN :NOILONAOYINI WATIOMd ATdWVXI

/




}i.s..uuﬁuu@ 2 j




uoNe10d107) SUONEIUNWIWOY)
9 soudsosey piog @

S1NIVULINDD ’
03A13934

SANIYVASNGD
NI

NIVWOd LSNYL

c-38




uoe10di0) SUCHEIUNWWO)
¥ 93edsoley pioy @

G~33




uonesodio) SUOHEIUNWWO)

¥ s3udsoiey pioy @

]
NIVNOO NI

vmynoo
200N




uUo|1810d10) SUGHEIHUNWWO)

¥ ®2udsosey pioy @

{8 pus
27 juteSIBUOD
Z)A JuUTERJISUOD
Y WoJdy eAfeded
£y epou ujofpe
T1eys g uvyewop 5uyy :

. €3 pue
X JUFeIISUOD
Y J0) eAfJep
/Y YA g NuRY utofpe
2y ®pou o0 Aappunoq ) FqQeyuy
I1eYys ) ujlewop epou . NM\

{y pue
£X JUReIISUOD
J WOoJp GATEdeL
47 JuTRIISUOD
2) JIUTRIISUOD
g JO) eATIep
{9 Yigm ) ejegdosse
8 NUFT utofpe
29 spou Asepunoq urejuod
11eys y ujewop epou

NOILONQOYINI JDVNONVT NIVWOd LSNYL




§4.90 SUOHEIUNWWO)

¥ s3udsoiey pioy @

NOILISOdWODId NYOMLIN

452




3..,..3..“_“.._"..“".&““ = 79
| o \»édc: WA
| IT e

T

@ \!?.»M

NOILISOdW023d LSOH

43




\ VRIS E gymaes

_OCSC

y2
ysonbos
T Ay

20d

APSN

/ NOLLOYYISHY JSOH

G-44




. n
_ -

\ .__a..h.“,,..“_.u...“.q"..w B> txcsw ‘ /

/ . NOILOVYLSHY MNYOMLIN \




uopesodio) suoNeUNWWO)
. 7 9oudsosey proy @

k‘v"; i

[ap .Q&M
/

Udwoo xv\ﬂMPP&(MN?(S(ﬁXMs\@)\MN

Jadwoo puas ou’

Yl 99,

SLNIVYLSNOD VIA NOILNIOS -WA'TH0Hd dTdHVXT

- /

G-44




uopw10d10) SUGHENUNWWO)

9 oowdsosey pi04 @

A31119BSNaJ UuTRWOP
‘ggaUTYRJ0MIENA] BUTJINSUD

s0T9sTJ4930RURYD O1JToads-uw1sds ButhJTJdaa

§4INSd4 UOTIJBOTJTJIOA JO qUIUISSISSE

NOISNTINOD

*weTqodd

T WwaTqoad

JUER ([N

LU TqUAd

G=47




IRPSIUR SV Y T N

P

e AR et . 4 - e i A s e

Appendix H
Navy Technology and Ada

LCDR. Philip Myers
NAVALEX




a0 g

LCDR Philip Myers: Navy Technology and ADA

LCDR Myers spoke on the relationship of verification
technology to the Navy's anticipated use of Ada.

There is a need for near term “successes" to sell
verification technology to Program Managers for Navy software
development projects. Program managers need to be convinced
that spending money on verification during the development
phase of a system will minimize costs incurred in the
maintenance phase due to incorrect software. In additionm,
verification technology must be useable by a wide class of
people, rather than being limited to users with extensive
training in logic.

The Navy in particular is adopting the following
policies for Navy software systems:

1. The Navy is procuring Ada for its standard set of
processors, the AN/UYK-43, AN/UYK-44, and AYK-14.
These processors are the ones required for use by
all mission critical systems. That is the policy.

2. All Ada software will be developed and maintained
on the ALS/N. This is an "envisioned policy" (not
promulgated, but anticipated). The ALS/N is being
acquired as a Navy Tactical Embedded Resource and
would fall under the same policy as the processors.

3. There will be one set of runtime environments for
the one set of processors because the ALS/N will
have one set of standard compilers for the standard
processors.

One implication of the above policies is that if verification
technology is to be used in the development of Navy systems,
it must be used in the near term, singe systems which are
developed in the near term will not be replaced for a long
time, on the order of 20 to 45 years (the life of the ship
and its systems, including software).
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Krzysztof Apt: Reconsidering Correctness of CSP Programs

First a review of Hoare’'s communicating sequential
processes (CSP) was presented. Then a very simple proof
system for a subset of CSP was introduced. This proof system
can be used to handle simple Ada programs using a restricted
form of tasking.

First CSP programs without nested parallelism are put in
normal form. This normal form has one iteration command and
all the I/0 commands are in the guards. If the respective
branches of matching I/0 commands re-establish the invariant,
then the invariant holds for the iteration command.

In contrast to other CSP proof systems this one does not
necessitate an introduction of several auxiliary notions and
can be used directly. The proof system has been successfully
used to verify a non-trivial example.

In the ensuing discussion the following points were
brought out. The transformation to normal form is like
changing a program with GOTOs to one with one WHILE loop. A
change in size is possible, but many actual programs are
nearly in normal form. The global invariant cannot be
decomposed into invariants for the individual processes. As
a result the method is not modular. However, the individual
(sequential) processes can be specified in any high level
specification language.

This excerpt consists of sections 1 <through 4. The
complete paper will appear in: :

NATO ASI Series, Vol. F13

Logics and Models of Concurrent Systems
Ed. K. R. Apt.

Springer-Verlag Berlein Heidelberg 1985




CORRECTNESS PROOPS
or
DISTRIBUTED TERMIMATION ALGORITEMS

Krzysztot R. Apt
L.I.T.P, Université Paris 7
2, Place Jussieu, 75251 Paris, PRANCE

Abstract The problem of correctness of the solutions to the distributed
termination problem of Prancez (PF] is addressed. Correctness criterlia are
formalized in the custcmary framework for program correctness. A very simple
proof method ia proposed and applied to show correctness of a solution to the
problem.

1._INTRODUCTION

This paper deals with the distriduted termination problem of Prances
{P) which has received a great deal of attention in the literature. Several
solutions to this prodlem or its variants have been proposed, however their
correctness has been rarely discussed. In fact, it is usually even not
explicitly stated what properties such a solution should satisfy.

A notable exception in this matter are papers of Dijkstra, Peijen and
van Gasteren [DFG] and Topor [T] in which solutions to the problem are
systematically derived together with their correctness proofs. On the other
hand they are presented in a simplistic abstract setting in which for example
no distinction can be made between deadlock and termination. Also, as we shall
see in the next section, not all desired properties of a solution are
addressed there. Systematically derived solutions in the abstract setting of
(DFG] are extremely helpful in understanding the final solutions presented in
CSP. Bowever, their presentation should not relieve us from providing rigorous
correctness proofs of the latter ones - an issue we address in this paper.

Clearly, it would be preferable to derive the solutions in CSP
together with their correctness proofs, perhaps by transforming accordingly
the solutions provided first in the abstract setting. Unfortunately such
techniques are not at present available.

T™his paper is organized as follows. In the next section we define the
problem and propose the correctness criteria the solutions to the problem
should satisfy. Then in section 3 we formalize these criteria in the usual
framework for program correctness and in section 4 we propose a very simple
proof method which allows to prove them. In section 3 we provide a simple
solution to the problem and in the next section we give a detailed proof of

its correctness. Pinally, in section section 7 we assess the proposed proof
method.
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Throughout the paper we assume from the reader knowledge of
Communicating Sequential Processes (CSP in short), as defined in Hoare (H],
and some experience in the proofs of correctness of very simple loop free

sequential programs.

2. DISTRIBUTED TERMINATION PROBLEM

Suppose that a CSP program
P= (P h---W Ppl,

where for every 1 € i € n Py :: INIT; ; * [S§] is given. We assume that
each S; is of the form a gy, - Si,j for a multiset r; and
jet‘i

i) each g; 4 contains an i/o command adressing Py,
11) none of the statements INITj, 83,4 contains an i/o command.

We say then that P is in a normal form. Suppose moreover that with
each P; a stadllity condition Bj, a Boolean expression involving variables of
P; and possibly some auxiliary variables, is associated. By a global stability
condition wa mean a situation in which each process is at the main loop entry
with its stability condition B4 true.

We now adopt the following two assumptions :

a) no communication can take place between a pair of p:occsul whose stability
conditions hold,

D) whenever deadlock takes place, the global stability condition is reached.

The distributed termination problem is the problem of transforming P
into another program P°' which eventually properly terminates whenever the
global stability condition is reached.

This prodlem, AQue to Prancez [F], has been extensively studied in the
1literature.

We say that the global stability condition is (not) reached in a
computation of P' 4f it is (not) reached in the natural restriction of the
computation to a computation of P. In turn, the global stability condition is
reached (not reached) in a computation of P if it holds in a possible (no)
global state of the computation. We consider hers partially ordered
computations in the sense of (LJ).

We now postulate four properties a solution P’ to the distributed
termination prodblem should satisfy (see Apt and Richier [AR]) :

1. Whenever P' properly temminates then the global stability

condition is reached.
2. There is no deadlock.

K-3




3; If the global stability condition is reached then P*' will

eventually properly terminate.
4. If the global stability condition is not reached then infinitely

often a statement from the original program P will be executed.

The last property excludes the situations in which the transformed
parallel program endlessly exscutes the added control parts dealing with
termination detection. We also postulate that the communication graph should
not be altered.

In the abstract framework of [DFG)] only the first property is proved.
Second property is not meaningful as deadlock coincides there with
temmination. In turn, satisfaction of the third property is argued informally
and the fourth one is not mentioned.

Solutions to the distributed termination problem are obtained by
arranging some additional communications between the processes P;. Most of
them are programs P' = [P; ... Pp) in a normal form where for every i,
l€ie€n

Pi 13 INI'I‘,_:.--,
*ag... g 94,9 = +o0 2 si.j
j(l‘i
aQ CONTROL PARTy

1

where ... stand for some added Boolean conditions or statements not containing
i/0 commands, and CONTROL PART; stands for a part of the loop dealing with
additional communications. We assume that no variable of the original process
Py :3 INIT{ ; *(S4]1 can be altered in CONTROL PART; and that all i/o commands
within CONTROL PART; are of new types.

We now express the introduced four properties for the case of
solutions of the above form using the customary terminology dealing with
program correctness.

3. FORMALIZATION OF THE CORRECTNESS CRITERIA

let p,q,I be assertions from an assertion language and let S be a
CSP program. We say that (p) S {(q) holds in the sense of partial correctness
if all properly terminating computations of S starting in a state satisfying
P termminate in a state satisfying q. We say that (p) S (q) holds in the
sense of weak total correctness if it holds in the sense of partial correctness
and moreover no computation of S starting in a state satisfying p fails or
diverges. We say that S is deadi/ock free relative to p if in the
computations of S starting in a state satisfying p no deadlock can arise.
If p =true then we simply say that P is deadliock free.

Pinally, we say that (p) S (q) holds in the sense of total
correctness if it holds in the sense of weak total correctness and moreover S

K-4




is deadlock free relative to p. Thus when (p} S (q} holds in the sense of
total correctness then all computations of S starting in a state satisfying
p properly terminate.

Also for CSP programs in a normal form we introduce the notion of a
global invariant I. We say that I is a global invariant of P relative to p
if in all computations of P starting in a state satisfying p, I holds
whenever each process P; is at the main loop entry. I[f p & true then we
simply say that I is a g/obal invariant of P.

Now, property ) simply means that
n
(true} P' { A B;) (1)
i=})
holds in the sense of partial correctness.

Property 2 means that P' is deadlock free.

Property 3 cannot be expressed by refering directly to the program
P’'. Even though it refers to the termination of P' it is not equivalent to
its (weak) total correctness because the starting point - the global stability
condition - is not the initial one. It is a control point which can be reached
in the course of a computation.

Bowever, In the case of P' we can still express property 3 by refering
to the weak total correctness of a program derived from P'. Consider the

following program

CONTROL PART =
(P; ¢: *[CONTROL PART;] Hl...H Py t: *[CONTROL PART,]).

¥We now claim that to establish property 3 it is sufficient to prove
for an appropriately chosen global invariant I of P

n
(I A A By) CONTROL PART (true) (2)
i=]1

in the sense of total correctness.

indeed, suppose that in a computation of P*' the global stability
n
condition is reached. Then I A A By holds where I is a global
i=1 '
invariant of P‘. By the assumption a) concerning the original program P no
statement from P can be exscuted any more. Thus the part of P’ that remains
to be executed is equivalent to the program CONTROL PART. Now, on virtue of

{2) property 3 holds.

Consider now property 4. As before we can express it only by refering
to the program CONTROL PART. Clsarly property 4 holds if

.
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n
{ TATA Bj) CONTROL PART (true} (3)
i=1

holds in the sense of weak total correctness. Indeed, (3) guarantees that in
no computation of P' the control remains from a certain moment on
indefinitely within the added control parts in case the global stability
condition is not reached.

Assuming that property 2 is already established, to show property 3 it
is sufficient to prove (2) in the sense of weak total corrctness. Now (2) and
(3) can be combined into the formula

{I) CONTROL PART {true) A (4)
in the sense of weak total correctness.

The idea of expressing an eventuality property of one program by a
termination property of another program also appears in Grumberg et al. [GFMK)
in one of the clauses of a rule for fair termination.

4.PROOP METHOD

We now present a simple proof method which will allow us to handle the
properties discussed in the previous section. It can be applied to CSP
programs being in a normal form. S0 assume that P ® (P; #...# Pn]l is such a

program.

Given a guard g, . we denote by bi.j the conjunction of its Boolean
parts. We say that guards g,, 3 and 94,1 match if one contains an input
command and the other an output cosmand whose expressions are of the same
type. The notation implies that these i/0 commands address each other, i.e.
they are within the texts of P; and Pj, respectively and address Py and
Py, respectively.

Given two matching guards g; 4 and g4,5 we denote by Eff(g; 4,
94,1) the effect of the communication between their i/o commands. It is the
assignment whose left hand side is the input variable and the right hand side
the output expression.

Pinally, let
TERMINATED « A bi,j‘
1€i€n,
jery

Observe that TERMINATED holds upon termination of P.

Consider now partial correctness. We propose the following proof rule:

K-5
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RULE 1 : PARTIAL CORRECTNESS

{p} INITy ;...; INIT, (I},
(I Aby,yADy 3} BEL(9y,5, 99,1) 5 Sy,5 1 Sy,1 (I}
for all 1,3 s.t. i e l‘j, } er; and 91,3 99,1 match

{p) P (I A TERMINATED)

This rule has to be used in conjunction with the usual proof system
for partial correctness of nondeterministic programs (see e.g. Apt (Al])) in
order to be able to establish its premises. Informally, it can phrased as
follows. If I 1is established upon execution of all the INIT; sections and is
preserved by a joint exscution of each pair of branches of the main loops with
msatching guards then I holds upon exit. If the premises of this rule hold
then we can also deduce that I 1is a global invariant of P relative to p.

Consider now weak total correctness. We adopt the following proof
rule:

RULE 2 ; WEAK TOTAL CORRECTNESS

{p) INIT; ;...; INIT, (L A t 3 0),
(T A bi.j A b'j.i Az=t At > 0) !ff(gioj,Qj'1)381'3383'1(I AOS ¢t ¢ 2)
for all 1,3} s.t. i e rj, Jer; ana 91,3 99,1 match

{P) P (I A TERMINATED)
where z 4oes not appear in P or t and t is an integer valued expression.
This rule has to be used in conjunction with the standard proof system
for total correctness of nondeterministic programs (see e.g. Apt (Al)) in order
to establish its premises. It is a usual modification of the rule concerning
partial correctness.
Pinally, consider deadlock freedom. Let
BIOCKED = A nbi.j v -ij.i s 1€4,3¢n, 1 rj, Jery, 91,3 and 94,1 match)

Obeerve that in a given state of P the formula BLOCKED holds if and
only if no communication between the processes is possible. We now propose the
following proof rule

RULE 3 : DEADLOCK FREEDOM

I 1s a global invariant of P relative to p,
I A BLOCKED - TERMINATED

P is deadlock free relative to p

The above rules will be used in conjunction with a rule of auxiliary
variadbles.

e
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et A De a set of variables of a program S. A is called the set
of auxillary variables of S if

1) all variables from A appear in S only in assigrnments,

11) no variable of S from outside of A depends on the variables
from A . In other words there does not exist an assigmment x:=t in
S such that x s A and t contains a variable from A.

Thus for example (z) 1is the only (nonempty) set of auxiliary
variables of the program

(P} 13 g1y 5 Pl x W Py 13 Py ? U s uscmavl]

We now adopt the following proof rule first introduced by Owicki and
Gries in (0Gl, 0G2].

RULE 4 : AUXILIARY VARIABLES

et A De a set of auxiliary variables of a program S, let S' Dbe
obtained from S Dy deleting all assignments to the variables in A. Then

e ]

{p) S (q)

() 8 (q)

provided q has no free variable from A.
Algo 1f S is deadlock free relative to p then so is S°'.

We shall use this rule both in the proofs of partial and of (weak)
total correctness. Also wvithout-mentioning we shall use in proofs the well-
known consequence rule which allows to strengthen the preconditions and weaken
postconditions of a program.
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Frank Oles: Thoqghts on_an ADA-based Design Language

Design languages created by those interested in prototyping
turn out too awkward to use for formal verification, and design
languages created by those interested in formal verification are
difficult to use for rapid prototyping. It was argued that the
proper course is to regard a design language as a coherent
framevork for relating three distinct sublanguages: an
implementation 1language, a specification language, and a
prototyping language. The dangers of regarding all
specifications as executable were analyzed. Desireable features
of the prototyping language and the specification language were
enumerated.

Discussion

In the discussion the advantages of different specification
languages for different purposes was emphasized. The speaker
said that set theory was chosen as the basis for prototyping
because it was familiar. Furthermore, untyped set theory as a
basis for a typed language presented no special difficulties.




Thoughts on ADA-Based
Design Languages

Frank J. Oles

Explorétory Computer Science
IBM T. J. Watson Research Center
Yorktown Heights, NY
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Those interested in FORMAL VERIFICATION create
kind of design language.

Those interested in RAPID PROTOTYPING create
another.

1s
COHERENT
RECONCILIATION
possible?
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Desirable Components in a Design Language

e An Implementation Languagé
-- An Imperative Programming Language
-- Store-Oriented Semantics
-- ADA
e A Specification Language
-- More General Semantics
-- Nonexecutable
-- ANNA annotations
e A Prototyping Language
-- An Imperative Programming Language

-~ Extension of the Implementation Language
-- Similar to ADA Virtual ADA in ANNA

03/85 (Frank J. Oles)
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Varieties of Specifications

A specification is

o strong if its set of meanings consists of a single
element, ~

o weak if its set of meanings consists of more than
one element.

It is unnatural and misleading to define weak specs in
imperative terms.

(Sometimes operational nondeterminism is confused
with weak specification.)

The strong specifications are the possibly executable
ones.

A prototyping language should make it possible to
develop strong specs easily.

03/85 (Frank J. Oles)




Executable Specifications

Should the two high-level components be combined?

1. A Specification Language
2. A Prototyping Language

Whether it can be done without making all specs for
subprograms executable is doubtful.

If only executable specs are supported, then the
software designs will suffer from overspecification.

03/85 (Frank J. Oles)




Prototyping Language Features

Should be a high-level extension of ADA
Type system of ADA

% is focused on compile-time typing.

% makes it hard to visualize sets of values for
some types, independent of storage
considerations.

Needed: a more refined type structure
¥ Value types
¥ Phrase types

03/85 (Frank J. Oles)
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Value Types'
If A and B are value types, then more value types are
SET OF A, SEQ OF A, MAP(A,B), REL(A,B).

DISJOINTUNION would be an important value type
constructor.

Introduce value types as solutions of recursive
" equations.

Any type with a definition involving arrays or access
types is NOT a value type. '

Imperative constructs needed

o FIND
o SELECTION

03/85 (Frank J. Oles)




Specification Language Features

o General enough to apply to both ADA and the
Prototyping Language. '

e Supports precondition/postcondition method of
specifying subprograms.

e Supports direct specification of implementation by
prototype, when desirable.

e Distinguishes between the specification of
user-defined value types and state-machines.

e Supports specification of types BOTH by abstract
models and by axioms.

e Has muiltiple levels of refinement BOTH for
subprograms and for packages.

e Formally incorporates examples of use in
specification of functions.

03/85 (Frank J. Oles)
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Evils of Overspecification

Overspecification: the inclusion in a software design
of conceptually unnecessary or
undesirable constraints.

Consequences of overspecification:

e Unnecessary early design errors.
o Irrelevant detail impairs understanding.

o Harder to maintain correct relationship between
spec and implementation.

o Limits reusability.

p— f- PR O S . Ve
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Appendix M
Axiomatic Semantics for Ada

Norman Cohen
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Norman Cohen: Axiomatic Semantics for ADA

The goal is to prove selected properites about ADA programs.
These properties include the implementation of algebraically
defined data abstractions, numeric properties, the absence of
unanticipated exceptions, and the absence of erroneous
execution.

Erroneousness arises because some problems are too expensive
or too complicated to be detected by the compiler. The compiler
assumes that certain rules are obeyed, and if they are not, then
the effect of further execution is unpredictable. It is valuable
to prove the absence of erroneousness. Restricting the language

can make this job easier.

A verifiable subset will forbid aliasing, changing shared
variables in tasks, unchecked conversion, and address clauses.

An ADA verifier can make use of the fact that the compiler is
a verifier for the static semantics of the languages. A DIANA
tree can be innut to both the code generation part of. the
compiler and the verifier for ADA dynamic semantics. Still an
UNambigous, Resolved, Expanded ADA Depicting All Bindings in the
Lexical Environment (UNREADABLE) is necessary for verification.
Distinct variables and subprograms are given distinct names, so
proof rules based on textual substitution are valid.

Proposed solutions to problems with implementation-dependent
behavior, optimization, and exceptions were also presented.

Discussion

In the discussion the speaker pointed out that an important
goal of ADA is portabiltity. One may place limits on compilers
(l1ike how they optimize code), but one should not tie
verification to a particular compiler. Also pointed out, was the
different approaches to dealing with erroneousness. In some
cases it is ruthlessly forbidden. In other cases, like aliasing,
there is a responsibility to prove that there is no aliasing.

M-1
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SOME OTHER ASPECTS OF “UNREADABLE”

° FUNCTION CALLS AND ALLOCATORS GIVEN TWO PARAMETERS
TO ENSURE THAT TEXT OF THE CALL OR ALLOCATOR CAN
DENOTE THE VALUE IT RETURNS

o $action_counter (IMPLICITY INCREMENTED AFTER
EACH STATEMENT AND AT CERTAIN OTHER TIMES)

[ ] . STATIC TAG (DISTINGUISHING CALLS AND ALLOCATORS
WITHIN A STATEMENT)

] EXPRESSIONS WRITTEN AS MANY TIMES AS THEY ARE
EVALUATED

) EXAMPLES :
Node:=Build_Tree(new Integer, new Integer);
Node:=
Build_Tree
(new (Saction_counter, 1) Integer,
new ($action_counter,2)integer
A,B:Calendar.Time:=Calendar.Clock;
A:Calendar.Time:=Calendar.Clock( $action_counter, 1) ;
B:Calendar.Time:=Calendar.Clock($action_counter,1);

o DEFAULTED PARAMETERS EXPLICITY SUPPLIED

o UNIFORM, EXPLICIT NOTATION:
A.all(3) (1=>x, 2=>x, 3=>x)

SOFlecH
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INCORRECT ORDER DEPENDENCE

° TYPICAL PROOF RULE IF ACTION A CONSISTS OF
SUB-ACTIONS S1, S2, and S3, PERFORMED "IN SOME
ORDER THAT IS NOT DEFINED BY THE LANGUAGE":

P{S1;52:53;1Q
P{S1;53;S2;1Q
P{S2;51;S3;1Q
P({S2;83;8S1;1Q
P{S3;81;52;1Q
P{S3;52;51;}1Q

P{AlQ

[ COMBINATORIAL EXPLOSION CAN BE AVOIDED WHEN

SUB-ACTIONS (TYPICALLY EVALUATION OF EXPRESSIONS)

HAVE NO SIDE EFFECTS

183
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IMPLEMENTATION-DEPENDENT, UNSPECIFIED

OR INDETERMINATE BEHAVIOR

° EXAMPLE: PROVE

{Standby_Cell/=null}
begin

A := new Integer'(0);
exception

when Storage_Error= >

Standby_Cell.all := 0;

A. := Standby_Cell;
end;

{A.all=0}

. THERE IS NO PORTABLE WAY TO CHARACTERIZE STATES
IN WHICH ALLOCATION WILL NOT RAISE STORAGE_ERROR
. FIRST APPROACH

] HAVE NO PROOF RULE JUSTIFYING THE CONCLUSION
THAT STORAGE_ERROR IS RAISED OR THAT IT IS NOT

° REJECTED BECAUSE THIS APPROACH IS TOO WEAK
FOR THE PROOF ABOVE

vgi373we/9 3/18/83 . . sop,'e CH
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IMPLEMENTATION-DEPENDENT, UNSPECIFIED
OR INDETERMINATE BEHAVIOR: SOLUTION

] INTRODUCE AN UNINTERPRETED LOGICAL PREDICATE,

SAY P

e INTUITIVELY, TRUTH OF P IMPLIES ALLOCATION WILL
SUCCEED

] PROOFS ASSUME NOTHING ABOUT THE VALUE OF P,
BUT THE USUAL RULES OF PREDICATE CALCULUS
APPLY

] BLOCK PRECONDITION: i
(P and True) or (not P and Standby_Cell/= null)

° THIS IS IMPLIED BY Standby_Cell/= null)

SOFlecH
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OPTIMIZATION: REASSOCIATING OPERATORS

"...FOR A SEQUENCE OF PREDEFINED OPERATORS AT THE SAME

PRECEDENCE LEVEL (AND IN THE ABSENCE OF PARENTHESES
IMPOSING A SPECIFIC ASSOCIATION), ANY ASSOCIATION OF

OPERATORS WITH OPERANDS IS ALLOWED IF [IT IS MATHEMATICALLY

EQUIVALENT]." - RM 11.6(5)

] CONSERVATIVE INTERPRETATION:
AFTER OVERLOADING HAS BEEN RESOLVED AND OPERAND
TYPES HAVE BEEN DETERMINED, THE ASSOCIATIVE LAW
MAY BE USED TO RE_ASSOCIATE SUCCESSIVE APPLICATIONS

OF AND, OR, XOR, +, &, AND *, PROVIDED THAT OPERAND
TYPES ARE UNAFFECTED :

) EXAMPLE: |1, [2:integer;
F :Some_Fixed Point_Type;

L1*F*12  => | 1*(Fl2)
F*11*2  #£>F*(11*12)

g —— S OFTeCH
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IN UNREADABLE, A+B+C+D REPRESENTED AS

SUM(<VERSION OF "+'>, A,B,C,D)

NOTHING CAN BE PROVEN ABOUT EVALUATION OF
THE EXPRESSION UNLESS IT CAN BE PROVEN FOR
ALL POSSIBLE ASSOCIATIONS

WILL COMBINATOR!AL EXPLOSION BE A PROBLEM
IN PRACTICE?

PUPPP S . Ve
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OPTIMIZATION: CODE MOTION

EXAMPLE FROM RM 11.6(10):

--A and K are global variables.
declare
N: Integer;
begin .
--Evaluation of A(K) may be moved here
N := 0; :
for J in 1..10 loop
N := N + J**A(K);
end loop;
Put (N);
exception
when others =>Put ("some error arose"); Put (N);
end;

SOLUTION:

IF SOME CONDITION IS 7O BE ASSUMED UPON ENTRY TO A

HANDLER FOR A PREDEFINED EXCEPTION, IT MUST HOLD AT
EACH “INTERMEDIATE STEP" WITHIN THE SEQUENCE OF
STATEMENTS PRECEDING A POINT WHERE THE EXCEPTION
MIGHT NORMALLY BE RAISED

INTERPRETATION:

AN "INTERMEDIATE STEP" OCCURS BETWEEN STATEMENTS
AND BETWEEN SUBEXPRESSION EVALUATIONS WITHIN A
STATEMENT

vgi375we/13 3/18/83 Y SOFrecH
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et

RAISE STATEMENTS WITHOUT

EXCEPTION NAMES

e A STATEMENT OF THE FORM
raise;
IS ONLY ALLOWED INSIDE A HANDLER, WHERE IT RERAISES
THE EXCEPTION THAT BROUGHT CONTROL TO THE HANDLER

] THIS EXCEPTION CANNOT ALWAYS BE DETERMINED STATICALLY:

when Constraint_Error | Numeric_Error =>
when others =>

] HANDLERS MAY BE NESTED

when A =>
— begin
o excéi:'tion
when B =>
<<Label>>
= l.:.e‘gin
— excé;':.tion
when C =>
begin
exception
when D => goto Label;
when E => raise;
ehd;
raise;
__end;
raise;
— &nd ;
raise;

e . = SOFecH




SOLUTION: “EXCEPTION CONTEXTS”

AN ORDERED LIST OF CURRENTLY ACTIVE EXCEPTIONS,
WITH THE "INNERMOST" ACTIVE EXCEPTION OCCURRING

FIRST

IF AN EXCEPTION WITH A HANDLER IS RAISED, THE
EXCEPTION IS APPENDED TO THE FRONT OF THE LIST
BEFORE THE HANDLER IS ENTERED

A RAISE STATEMENT WITHOUT AN EXCEPTION NAME RAISES
THE EXCEPTION AT THE FRONT OF THE LIST

UPON DEPARTURE FROM A HANDLER, THE FRONT
EXCEPTION IS REMOVED FROM THE LIST

A goto FROM A HANDLER n LEVELS DEEP TO AN OUTER
HANDLER n - k LEVELS DEEP REMOVES THE FRONT k
ITEMS FROM THE LIST

REMARKS: EVERY PROOF RULE FOR COMPOUND STATEMENTS

vgid7we/13 3/18/85

(AS WELL AS "raise;" AND "goto L;") IS IN
TERMS OF AN EXCEPTION CONTEXT.

IN PRACTICE, HANDLERS ARE ALMOST NEVER
NESTED

SOFlecH
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SUMMARY

.o THE POSSIBILITY OF ERRONEOUSNESS MUST BE CONFRONTED,
\ NOT IGNORED

k ] A VERIFIABLE SUBSET CAN BE DEFINED CONSISTING OF

BOTH STATIC AND DYNAMIC RULES AND INCLUDING MOST
OF Ada

o‘ SEMANTICS CAN BE SIMPLIFIED BY LEAVING STATIC ISSUES
{ TO A COMPILER AND PREPROCESSOR

. PROBLEMS ARISING FROM DEFINITION OF Ada:

| . ° INCORRECT ORDER DEPENDENCIES

! e _ INDETERMINATE BEHAVIOR

° ALLOWABLE OPTlMliATIONS (ASSOCIATIVE LAW,
] CODE MOTION) :

4 ] EXCEPTION CONTEXTS

Y
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Teaching Programmers About Proofs

David Gries
Cornell University
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David Gries: Teaching Programmers about Proofs

Programmers must be given simple rules. Thus an important
goal is the simplicity of proof rules. The following simple
proof rule for procedure calls, due to Alain Martin, Acta
Informatica 1984 was described and justified: .

Let p(da x; dmout y; out z) be a procedure with body S, such
that the following Hoare triple is valid:

(P} s (Q)
where we assume that in P, only x and y are free; in Q only x, vy,

and z are free, and that S doesn't change x. We are interested
in finding a suitable precondition for:

? p(a,b,c) (R}
Execution of the call P, using call by value, is equivalent to

X,y:= a,b; -- this is ordered simultaneous assignment, so that,
~- e.g8. b,b:= 6,7 is admissible

S
b,c:= y,z;

Let A be a predicate containing only x as free program
variable. Then the following rule is valid:

Q * A => R[b,c<-y,2]

{P[x,y<-a,b] * A[x<-a]) p(a,b,c) (R}
Simple examples of the use of the rule were given.

A plea was made for replacing the formal parameter/actual
parameter terminology by parameter/argument.

The same rule works for call-by-reference, if aliasing is
prohibit_ed.

The simple rule for assignments
(R{x<~e]) x:= e; {R)

has the instance

N-1




(y = Of x:= e; {y = 0},

and thus assumes that there are no side effects. There are

rules, but more complicated ones, for assignments permitting side
effects.

Discussion

The speaker maintained that good programmers do actually use
these sorts of rules, at least, unconsciously. The evidence is
mostly anecdotal, in the speaker's experience no one has shown a
loop correct, except by a variant of these methods. Teaching
these rules to all programmers promotes better awareness, more
care for details, and faster programming. Real programs, big
programs are composed of small programs. Putting small programs
together is still an unsolved problem.

n=-2




Alain J. Martin

General Proof Rule
for

Procedure Call

Acta Informatica 84

proc p ( in x;

inout y:
out 3 );
{pP) 8 {Q}
1 i 1
| ] |
only does not only
X,y change x, ¥y, 2
free x free

p(a, b, 0) (R

™3




X, ¥y :=8a, b:

b, ¢ :=y, 3;

X,y x,
P A v

{ ) , A }
a, b a, b
{ » ) { a )
{ A )
b, ¢
{ Q@ ) ¢ » { R }
y, 2
{ R )
b, o
Q N A = R
| y. s
/
/

only free vars: x

.

R=4




b, ¢
Q A A - R
y, 2
x.y x
I 4 A A } p(a, b, ¢) { R}
a, b a

(A contains as free program variables only x)

A is the adaptation.
A —




e - I~ e
g
|
proc inc (. in x; out y ) (
{ P: truve ) & { Q:y=x+1 ) ‘
{ a+1=-=3*a )
x
{ (x+1=3+*,) }
a
inc ( a, ¢ )
{ R:06 = 3*a )
o
Q A A < R
Yy=x+1 A A =-> y=3*gs
X+ 1=3¢*p
c
Q A A = R
y=x+1 ~ A\ =) ¥y =00+1
/ :
/N ‘
A:x=200 ‘
16 ﬁ
{
ol NS - — —




proc imc ( in x; out y )
{ P: true )} yi=x+1 { Q:y=x+1 }

y=x+ 1 "~ | =) c=c0 +1
x
{ truve A (x=2c¢0) }

inc ( ¢, ¢ )

{ R:0=00+1 }
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Discussion of papers on Advanced Verification

Oles was asked, why should one not want specifications to be
executable? He said that it is mainly a sociological problem.
If you tell programmers specifications are executable, they will
give up on abstraction. For example, the specification of
security is a limited property that has no functionality. An
executable specification requires saying much more.

Gries was asked to address the real-world problem of
programming well, even if not correctly. His response was that
there are no other methods so crystallized as to be teachable.

Apt was asked about the prospects of going beyond CSP to
prove correctness of ADA tasks. Apt suggested that clusteriag
might be a possibility. Since nested accepts are very awkward in
CSP looking for a normal form for ADA programs might be
profitable. On the other hand, Apt has pessimistic about dynamic
task creation. In response to another qeustion Apt said that
procedures and packages can be used if they are inside the
individual processes.-

McHugh offered his experience with verified software in
practice. First, he noted that some software verified by Gypsy
was not being used for extraneous reasons. On the other hand, an
informally hand-verified program (1000-1500 1lines of assembly
code) has been used successfully for a 1long period of time. The
IBM "cleanroom"™ method -- hand proofs about control structures
(in place of unit testing) -- has been successfully used. IBM
has trained 2000 such people and will teach this to anyone for a
fee. It is now being taught to freshmen at the University of
Maryland.

P-1




Practical Verification Systems

Jim Wiliams




e mmi e 4

Ladh i

-WM'

Jim Williams: Practical Verification Systems

The practical verification system has three goals. (1)
Soundness: a rigorous logical basis with a single, expressive
logic. (2) Performance: minimize user-supplied,

apglication-dependent proofs. (3) User-friendliness: 1language
independent, usable by the non-logician.

The major components of a verification system: the underlying
logic, theorem proving, and the user interface, should be pursued
in parallel and properly factored.

The practical verification system uses a transformational
approach, The specifications are transformed to a functional

description, then to a detailed program description, and finally
to the source code.

Already there is a PROLOG prototype. The internal 1logic is
in the final debugging stages. The theorem prover is based on
the Argonne logic machine architecture and is related to parallel
hardvare efforts. The user interface is designed to - support a
variety of languages and has been ported to SUN workstations.
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Ryan Stansifer: Near-Term ADA Verification

Modifyin existing verifications systems, e.g., . GYPSY,
AFFIRM, Stanford Pascal verifier, to be ADA verification systems
is nearly as hard as starting from scratch, since one must go
down to the level of the LISP implementation. A possible
exception 1is the PL/CV verifier which wuses a high~level
description language to define the actions of the underlying
logic engine given the particular syntax of the programming
language to be verified.

A new approach is suggested for the near term which makes use
of the Cornell synthesizer generator (Teitelbaum and Reps). The
synthesizer generator takes an attribute grammar as input and
produces as syntax-directed editor as output. By the correct
choice of attributes (Reps and Alpern) a verification system can
be made which produces a set of verification conditions (VCs)
from an ADA program. By giving these VCs to a theorem prover the
program can be checked against its specification.

To illustrate the technique here is a simplified sample of
the input to the synthesizer generator for a syntax-directed VC
generator.

S 1= x tm e
S.VC := ()
S.PreCond := subst e for x in S.PostCond

S ::= if b then A else B
S.VC := A,VC 4+ B.VC -
S.PreCond := (b => A,Precond) & ( b => B.PreCond)
A.PostCond := S.PostCond
B.PostCond := S ,PostCond

The method allows experimentation and is easily extensible to
nevw proof rules for ADA as they are developed. The system can
use any theorem prover to prove the VCs, so that existing theorem
provers can be used. DBetter theorem provers can be used later as
they become available.




Near Term ADA Verification

Modify existing systems
GYPSY, AFFIRM, SPV, PL/CV

Cornell synthesizer generator
existing software
extensible, aYXlows experimentation

current verification methodology

Cornell synthesizer (Teitelbaum and Reps)
language-based programming environments
syntax-directed editor

generalized to a synthesizer generator
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Attribute Grammars

Context free grammars with attributes attached to the symbols
Associated with each production is a semantic definition
Two kinds of attributes: synthesized and inherited

Semantic definitions define values for all synthesized
attributes of the LHS nonterminal, and all inherited
attributes for RHS symbols.

Simple WHILE languages

P = 8

s - 8§ ; S8
1 2

S =- X = @

8§ ::= 4if Db then S else S
1 2

while b inav I do S end
1




Attributes

Nonterminal P (program)

synthesized attributes:

VCs (set of verification conditions)
ProgPre (assertion)
ProgPost (assertion)

Nonterminal S (statement)
synthesized attributes:

vC (set of verification conditions)
PreCond (assertion)

inherited attributes

PostCond (assertion)

R~4
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VC Generator

s {Q1}

P.VC := S.VC
P.ProgPre := §S.PreCond

P.ProgPost := Q

s.ve := { }

S.PreCond := Substitute e for x in S.PostCond

if b then S else S
1 2

s.v¢ := S .vC + S .VC

S.PreCond :=
(b = S .PreCond) & (~-b =) § .PreCond)
1 2

S .PostCond := §S.PostCond
1

S .PostCond := S.Postdond
2

2z




Interface with TP

Particular syntax

- Cambridge prefix

Translate references

A [i] =--> ArraySelect (A, 1)

Preface of facts and definitions
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Verifying Ada* Programs

Reymond J. Hookway

Department of Compﬁm Engineering and Science
Case Western Reserve University
Cleveland, Ohio 44108

December 14, 1984

The inductive assertion technique, which has been used successfully as a basis for verifying pro-
grams written in Pascal and some of its derivatives{9,10,15,17,20], is directly applicable to a large part of
Ada. However, Ada also includes s number of ~onstructs whoee verification is not as well understood as

the verification cf constructs found in Pascal. These include packages, generic program units, tasks and
S exceptions. The following is a description of our approach to the verification of these constructs.

4 Packages

Packages in Ada can be used in a number of different ways. One way to use a package is just as the
name of a collection of data and type declarations. This kind of use poses no special verification problems
{ and can be handled using standard techniques.

The more important use of packages is their use for the implementation of abstract data types.
1 Packages can be used to support data abstraction in two ways. One of these is to associate an abstract
object with each package (or each instantizasion of a generic package). The entries to the package are
then viewed as operations on the abstract object. This constitutes one of the “standard” approaches to
<[iat.]a abstraction. Packages used in this way can be verified using the method first proposed by Hoare
11].

The other way to achieve data abstraction is to associate an abstract type with a private type which
is declared in a package specification. Ada supports this kind of abstraction by restricting the operations
that can be performed on a (limited) private type to (assignment and equality test plus) the entries to the .
package in which the type is declared. This latter approach to data abstraction is also found in Modula
J, where types can be exported from a module. Packages which contain private types can be verified using
] techniques developed at Case (Emnst and Ogden (8], Hookway [14}) for the specification and verification of
i data abstraction in Modula programs.

)

Generic Program Units

A Our approach to specifying and verifying generic program units is to allow generics to have parame-
ters which are predicates and functions of the specification language. This is an extension of the usual
{ Floyd/Hoare assertion language found in the literature. A brief description of this approach is given
below. A more detailed description is given in Ernst and Hookway [6].

Consider a generic program unit G that has a type parameter T and a procedure parameter p(x.v).
(This description is not concerned with the types of parameters or Ada syntax.) The specifications of G
depend on what p does. This can be specified by giving pre- and post-conditions for p. These assertions.
like ordinary assertions, contain predicates and functions of the specification language (and also individual

1 variables and constants). Unlike ordinary assertions, some of these predicates and functions are formal
parameters of G just like T and p.
No special techniques are required to deal with type parameters (like T in the above example). This

{ is because type parameters piay the usual role of types in verification, they assure that the program is
“well-formed”. Specifications are also required to be well formed.

Each generic program unit is required to have a precondition which may contain specification
language functions and predicates that are parasmeters to the generic. This assertion specifies the proper-
q ties of these parameters which can be assumed in verifying the body of the generic.

*Ads is s registered trademark of the U.S. Department of Defense (OUSDRE-AJPO)
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Instantiation of generic program units is handled by substituting actual parameters for formals. The
specifications of the resulting ordinary program unit (IG) are just those of the generic with formal parame-
ters replaced by actuals. This substitution removes all formal predicates and functions of the specification
language. The specifications of the instantisted program unit thus have the same form as a non-generic
program unit. Of course, it must be verified that the actuals satisfy the assumptions made about them in
the generics specifications.

Tasks

We hope to adapt the method described in Ernst and Hookway [5], and Ernst [4] to the problem of
verilying concurrent Ada programs. This method requires concurrent programs to be structured as a col-
lection of modules*s. Each module defines one or more data abstractions, and any number of processes
may be declared local to the body of the module. The purpose of these processes, called reslization
processes, is to manipulate the module’s local variables in a way that does not affect the value of the
abstract objects represented by the module. Although this is a very specific way to structure programs, it
appears that most real software can be naturally structured in this manner. This approach allows
modules to be verified separately even though the realization processes of one module execute con-
currently with those of other modules.

Modules are verified by dividing the process and the entry procedures to the module into single
mutex segments (SMSs) each of which contains at most a single critical section. The proof technique
relies on the fact that, under certain restrictions, every concurrent execution of the SMSs produces the
same resuit as some sequential execution of them. Sequential verification techniques can then be used to
prove that the SMSs have the properties required for the module to meet its specifications.

The soundness of this approach depends on the fact that shared variables are accessed only under
mutual exclusion. This is a severe restriction to place on the implementation. In order to ease this res-
triction, ownership specifications are added to modules. Ownership specifications allow shared variables to
be treated as local to a process. Ownership is dynamic. A variable may be “‘owned” by one process at a
given time and a different process at a later time. Processes are also allowed to “own” components of
structured variables. Thus, one process can *‘own” one component of an array at the same time that
another process ‘“‘owns” a different component of the same array. However, it must be verified that two
processes never ‘“‘own’’ the same object at the same time and that processes only reference objects which
they own.

The approach to verifying concurrent programs described above is the subject of active research at
Case. Significant additional effort will be required to extend this approach to apply to Ada. In particular,
the synchronization primitives used in Ada tasks are quite different from those studied by Ernst and
Hookway (5] and exception handling in multi-task programs remains to be examined. Despite these
difficuities, this appears to be a very promising approach to the verification of multi-task Ada programs.

Exceptions

Exceptions can be handled using the technique developed by Luckham (19]|. Extensions to the this
technique need to be developed to integrate exception handling with the techniques for data abstraction
discussed above,

A Prototype Verifier

We are currently in the process of implementing a verifier for an Ada subset which is roughly
equivalent to Modula. This implementation includes packages and private types. Addition of generics
and exceptions, as described above, should be straight forward. The verifier will use the Case interactive
theorem prover which is part of the Modula verifier described below.

ssModules correspoad closely to packages in Ads and processes to tasks. The exact relationship of the concepts described in
Ernst sad Hookway [§] to Ads remains to be worked out.
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A Design Environment

We feel that development of reliable software will require support of an integrated design environ-
ment. This environment should support a variety of approaches to verification from testing to theorem
proving. However, it should be based on the notion of developing designs that are consistent with precise
specifications. The environment should provide a framework for reasoning about designs. For example, it
should track arguments about why portions of the design are correct, whether the arguments are based on
test data, informal arguments, or formal (mechanical) proofs. Whatever form these arguments take, we
expect them to be based on an understanding of what is required to formally verify the design.

We plan to build a series of incrementally updatable design environments based on the above ideas.
The Ada verifier will be one component of these environments. Other components will include tools for
developing and analyzing specifications, a facility for rapid prototyping, and a programming environment.

The Case Modula Verifier

The Case Verifier is an interactive system for verifying Modula programs. The verifier consists of
two major components, a verification condition generator (veg) and an interactive theorem prover. The
source language is Modula, minus concurrent programming constructs and extended by the constructs
described in Emnst and Ogden(8] and Hookway[14] for specifying Modula programs. The vcg generates
verification conditions by symbolically executing the source program as described in Dannenberg and
Ernst(3].

The theorem prover is an interactive, natural deduction theorem prover which was developed at
Case. The design of this theorem prover is described in Ernst and Hookway(7]. The goal of this design
was to produce a small, efficient theorem prover to support our research in verification methodology.

The verifier has been used to verify a small linking loader{14]. The loader is approximately four
hundred lines long, divided equally between specifications and code. Selected verification conditions were
proved using the theorem prover described above.
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module stacks:
define stack,push, pop, empty.

type stack = record
a : array [1..maz] of integer:
p . 0..maz:

end;

procedure push(const z : integer; var stk : stack):
begin
if stk.p = maz then error('stack over flow') end:
stk.p ;= stk.p+ 1.
stk.a(stk.p] := z;
end push;

procedure pop ...
function empty ...

end stacks;
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package stacks is
stack_over flow, stack_under flow: exeception;
type stack is limited private:;
procedure push(z : integer: stk : in out stack);
procedure pop(z : out integer; stk : in out stack):
function empty(stk : stack) return boolean;
private
maz: constant ;= 100;
type integer_vector is
array (integer range <>) of integer;
type stack is
record
a : integer_vector(l..maz);
p : tnteger range 0..maz := 0;
end record;
end stacks:

.

package body stacks is

procedure push(z : integer: stk : in out stack) is
begin

if stk.p = maz then

raise stack._over flow:;

end if:

stk.p := stk.p + 1.

stk.a(stk.p) := z;
end push;

FORFEV TSRS SNSRI P

ey S

procedure pop ...
._ function empty ...

end stacks;
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module stackmodule;

amd

define symbolstack, push, pop, empty;

abstract type symbolstack;
abstract structure as : seq of symbol:
realization structure rs : record
sa : array [1..maz] of symbol:
p: 0.maz;
av : array [0..maz] of seq of symbol end:
correspondence as = rs.av[rs.p):
invariant 0 <= rs.p <= maz & rs.av[0] = emptyseq &
foralli (1 <=i<=rs.p—
rs.av[i] = concat(mkseq(rs.sali]), rs.av[i - 1])):
initialization;
entry assertion true;
exit assertion as = emptyseq:
begin ‘
rs.p := 0; rs.av[0] := emptyseq
end initialization:
end symbolstack:

procedure push(const s : symbol; var stk : symbolstack):
entry assertion true;
exit assertion stk = concat(mkseq(s), #stk):
begin
with sa ::= stk.sa, p ::= stk.p. av ::= stk.av do
if p = maz then error('symbolstack over flow’) end:;
p:=p+1; salp]:=s:
av[p] := concat(mkseq(s),av(p - 1])
end '
end push;

procedure pop ...
function empty ...

admadoaandis] A
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with types: use types:
package stackmodule is '
stack_over flow, stack_under flow: exeception;
type symbolstack: symbolsequence
initially symbolstack’'as = emptyseq
is limited private:
procedure push(s: symbol. stk: in out symbolstack) is
exit assertion stk = concat(mkseq(s), stk'init):
end push;
procedure pop(s: out symbol; stk: in out symbolstack) is ...
function empty(stk: symbolstack) return boolean is ...
private
maz: constant := 100;
type symbolstack is
record
sa: symbol_vector(1..maz):
p : integer range 0..maz = 0:
av: auxiliary symbolsequence_véctor(0..maz) :=
(0 => emptyseq.others => emptyseq):
end record:;
correspondence
symbolstack'as = symbolstack'rs.av(symbolstack'rs.p).
invariant
0 <= symbolstack'rs.p <= maz and
symbolstack'rs.av(0) = emptyseq and
forall i (1 <=1 <= symbolstack'rs.p —
symbolstack'rs.av(i) =
concat(mkseg(symbclstack'rs.sa(i)),
symbolstack'rs.av(i - 1))):
end symbolstack:
end stackmodule;
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with types; use types:
package stacks is
stack_.over flow, stack_under flow: exeception;
type stack: pair_sequence
initially stack’as = emptyseq
is limited private; .
procedure push(s: symbol; v: integer; stk: in out stack) is
exit assertion ezists z (stk = concat(mkseq(z), stk'init) and
z.8 = s and z.v = v);
end push;
procedure pop(s: out symbol: v: out integer: stk: in out stack) is ...
procedure assign(stkl: out stack: stk2: stack) is ...
function empty(stk: stack) return boolean is ...
private
n: constant ;= 5280:
sq: array (0..n) of pair_sequence :=
(0 => emptyseq, others => emptyseq):
type stack is
record
p: integer range 0..n := 0;
end record;
correspondence stack’as = sq(stack'rs.p):
invariant 0 <= stack'rs.p <= n;
end stack:
end stacks:




package body stacks is
l: array (1..n) of integer;
sv: array (1..n) of pair;
free: integer := n:
f: array (1..n) of boolean := (others => true):

invariant-
0 <= free<=nand ....

procedure push(s: symbol; v: tnteger; stk : in out stack) is
uses I, sv, free, f. sq:
z: pair ;= (8. v);
y: integer ;= free;
begin
if free =0 then
raise stack._over flow:
end if:
sq(free) := concat(mkseq(z), sq(stk)):
f(free) := false: :
free:=[(free): sv(y) := z: l(y) := stk.p; stk.p:=y.
end push;

begin
for 7 in l'range loop alter [, sq;
maintain
forallz (1 <=z <=1~
l(z)=z-1and
sq(z) = concat(mkseg(sv(z)), sq(z - 1)) and

1(z)) and
8q(0) = emptyseq:
I(2) ;=1 -1;
8q(1) := concat(mkseq(sv(z)), sq(s — 1)):
end loop:
end stacks;
- $-10




package body stacks is
[: array (1..n) of integer;
sv: array (1..n) of patr;
free: integer .= n;
f: array (1..n) of boolean := (others => true):

invariant

0 <= free <=n and forall i (1 <=i<=n — 0<=I[(:) <=n) and
1 <= free — f(free) and
foralli (1 <=i<=nand 1<=1(1) <=n — (f(3) « f(I()))) and
foralli (1<=i<=n—

(f(3) = forall j (1 <= j <= stack'alloc — stack'r(j).p /= 1)) and

(free=1— forall 7 (1 <=7 <=n —I(j) /=1)) and

forall j (1 <=j <=n andl(j) =7 and f(5) —

forall k (1 <=k <=nand j /=k — l(k) /=1))) and

sq(0) = emptyseq and .
forall i (1 <=1 <=n — sq(t) = concat(mkseq(sv (7)), sq(I(x)))):

end stacks;
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with types:. use types:
package st: array (symbol) of integer mltlally (forall s st(s) < 0) is
procedure enter(s: symbol: v: integer) is

uses st;
exit assertion st(s) = v and forall ¢ (i /= s — st(i) = st'init(7)).
end enter: ‘
procedure lookup(s: symbol: v: out integer) is
uses st;
exit assertion v = st(s);
end lookup:
end st;

with stacks; use stacks:
package body st is
m: constant := 64.
ht: array (1..m) of stack:
cotrespondence forall s (st(s) = assoc(s, ht(hash(s)))):
procedure enter(s: symbol; v: integer) is
uses ht:
begin
push(s,v, ht(hashfn(s))):
end enter;
procedure lookup(s: symbol; v: out integer) is
uses ht:
sl: symbol; stk: stack;
begin
assign(stk, ht(hashfn(s))):
loop alter sl1, v, stk:
maintain assoc(s, ht(hash(s))) = assoc(s, stk):
if empty(stk) then v := ~1; exit; end if;

pop(sl,v, stk):
exit when s = sl;
end loop;
end lookup:;
end st;
- s-12




generic type item is private;
package stacks is
stack_over flow, stack_under flow: exeception;
type stack is private;
procedure push(z : item: stk : in out stack):
procedure pop(z : out item; stk : in out stack);
function empty(stk : stack) return boolean;
private
maz: constant := 100;
type item_vector is
array (integer range <>) of item.
type stack is
record
a . item_vector(1l..maz):
p : integer range 0..maz := 0;
end record;
end stacks:

package body stacks is

procedure push(z : item: stk : in out stack) is
begin

if stk.p = maz then

raise stack_over flow;

end if;

stk.p := stk.p + 1;

stk.a(stk.p) := z;
end push;

procedure pop ...
function empty ...

end stacks;
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generic type T is private;
with f ...;
with @ ...;
with procedure p (z : in integer: y : in out T) is
entry assertion ...; )
exit assertion forall u.v(f(z) < u and u < v — Q(z,v)):

end p; ,
require forall z.y.z (Q(z,y) and Q(y, z) — Q(z,z2)) and ...;
package G is
procedure r is
exit assertion .... —— uses f and Q
end r;
end G;
l
I
I
- S-14




Appendix T
Adapting the Gypsy Verification System to Ada

John McHugh
Research Triangle Institute

Karl Nyberg
Verdix Corporation




. ———

Adapting the Gypsy Verification System to Ada
Workshop on Formal Specification and Verificatlon of Ada
Institute for Defense Analysls
18-20 March 1985

John McHugh - Research Trlangle Institute
Karl Nyberg - Verdix Corporation

1. Introduction

DoD directive 5000.31 [DoD] requires that new mission critlcal computer programs

written for the department of defense be written In Ada! [Ada). The statutory
definition of misslon critlcal (10 USC 2315) includes security applications specifically.
Computer security has been one of the principle driving forces for appllied verification
work In recent years. These factors lead us to one of two concluslons: 1) The time is
rapldly approaching when 1t will be necessary to apply verlficatlon technlques to
programs written In Ada; or 2) DoD 5000.31 will have to be modified to exclude secure
systems. While there exlsts a well known antipathy towards Ada within parts of both
the verificatlon and the computer security communitles, 1t 1s unlikely that the DoD
pollcy towards Ada will undergo substantial change In the near future. If this Is the
case, it will be neecessary to develop an Ada verificatlon capabllity In the near future.

There are several ways In which such a capablllty could be developed. A first optlon
would be to start from scratch, using any of the formal models of program specificatlan
and verificatlon and bulld a system specifically designed to verify Ada programs. A
second option Is to 1gnore the Ada specific aspects of the problem entirely. Under the
current certification criterta of the DoDCSC, It Is not necessary to deal with the
Implementation language for a system In a formal manner, so 1t could be argued that
current systems are just as sultable (or unsultable) for Ada as for any other language.
In thls case, 1t is only necessary to provide a convincing argument for the conformance
of the Ada !mplementation code to the verlfled formal top level specification of the
system in question. Finally, 1t 1s possible to adapt an existing verification system to deal
with Ada.

The first approach 1Is possible, but would take an excesslve amount of time and
resources. Current verification systems represent Investments of ten or more man years
each, expended over perlods of five to ten years. The s2cond approach Is representative
of the practice followed for the Honeywell SCOMP, a product currently approaching Al
certification by the DoDCSC. It appears that the requirement for a convincing
argument concerning the equlvalence of the FTLS and the implementation resulted In
an extremely complex and concrete FTLS and greatly Increased the verification effort.
Being able to verlify an Ada based FTLS for an Ada based implementation should

! Ada is a registered trademark of the Ada Joint Project Office. .
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obviate these difficulties. Additionally, there Is substantial interest In systems which go
beyond the Al criteria by requiring code verification for which second approach would
not be viable, The third approach offers a chance to capture much of the Investment in
a current verificatlon system while galning experierice with the verification of Ada. We
argue for such an approach, based on the Gypsy [Good78] system, suggesting that it will
lead to a prototype code verlfication system for Ada with minimum (although not
Insubstantial by any means) effort. Takling advantage of the Ada packaging mechanlsm,
we feel that verifiled packages can functlon within a larger Ada environment, making
possible the Implementation of security kernels and the like.

The remalnder of the paper discusses some of the problems assoclated with the
verification of Ada, suggests ways In which these problems milght be addressed, and
indicates ways in which the Gypsy system could be combined with the front end of an
Ada compller and transformed Into a prototype system for the verificatlon of Ada.

2. Trouble spots in Ada

Although one of the early design objectives for Ada (In the days when It was still known
as DoD-1) was to facllitate proofs of program properties, the committee nature of the
requirements process resuited In a language which was requlred to carry a certaln
amount of the baggage of 1960s style programming languages. Among the potentlally
most troublesome of these are the presence of arbltrary control flow constructs l.e. the
“go to” statement, and unrestricted access to global variables which, in additlon to
compllcating proofs about sequential programs, render concurrent programs lntractable
under many clrcumstances. Other features of the language Include the possibllity of
side effects from function invocations, exceptions during expresslon evaluation, and the
lack of an expllcit evaluation order for the operators of an expression. These factors,
combined with the lack of a formal defilnitlon for the semantics of the language, have
lead some workers t0 despalr of verifylng any aspect of the language. Indeed, it has
been noted that glven the proper Ada context, it may be impossible to prove anything
about the value of X after the executlon of so simple a statement as

X:=1;

We malntaln that the situation I1s not quite as grim as Indlicated above. Just because a
language contalns a particular feature does not mean that all programs written In the
language wlll contaln that feature. The adverse Interaction among features of the
language, does not mean that all of them must be discarded, or that all occurrences of a
feature In a glven program are Intractable. Although the word "subset” 1s an anathema
to the Ada world, we feel that a useful set of Ada constructs and programming practices
can be deflned In such a way that reallstic and functiopal programs can written and
verifled using them. Although the task 1s substantially more difficult, because of the
extra complexity of the language, we feel that a theory of verifiable Ada can be
developed In much the same way as Boyer and Moore developed thelr FORTRAN
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[Boyers80] theory. Platek [Odyssey84] and his colleagues at Odyssey Assoclates have
recently defined an Inltlal subset of Ada which they feel Is sultable for verification. One
feature which they rule out Is the exception mechanism. We feel that the Ada exception
mechanism Is sufficlently llke the Gypsy mechanlsm so that its verification ls tractable,
and we propose to Include exceptions In our system.

Ada as currently deflned has no specification mechanism. While it Is possible to use an
external specificatlon mechanism, f.e. one In which the program and specification are
Jolned only during the verification process, we are more comfortable with an internal
mechanism, similar to that used in Gypsy. At the same time, we would llke our
verifiable code to be acceptable to a varlety of Ada translators. An extension of
Luckham's Anna notation [Luckhams84] to accommodate exception returns from routines
appears to be the most promising mechanlsm avallable at the present time, although a
speclficatlon language using the Ada PRAGMA construct cannot be ruled out.

3. A hybrid system

We propose to base our prototype Ada verificatlon system on a comblnation composed
of an existing Ada compller and an existing verification system. The Ada complier Is
the one developed and recently valldated by the Verdix corporation of McLean, Virginia,
while the verification system 1s the Gypsy Verificatlon Environment, developed at the
Unlversity of Texas. There are several reasons for the cholce of such a hybrid system.
Ada Is a large language with a complex syntax and semantics. Using an existing front
end from a valldated compller ellminates much of the effort required to Implement a
front end for the verificatlon system. It also provides a direct method for providing
executable versions of the verified programs, as well as facllitatlng systems which
contaln mixtures of verified and unverified programs. The use of a modified version of
the GVE as a back end for the Ada verificatlon system offers simllar advantages. We
feel that the Inltlal set of Ada constructs which can be verifled wlll be roughly
equivalent In power and flavor to the Gypsy language. Previous efforts to model Ada
constructs In Gypsy [Akers83|, and vice versa provide evidence for thls assumption.
Although Ada type rules are "stronger” than those for Gypsy, 1t Is possible to write
Gypsy as though It were typed llke Ada. The Gypsy exceptlon mechanism, though
somewhat more tractable than the Ada exception mechanlsm Is sultable for modeling
Ada. Most of the Ada operators are already present in Gypsy.

The proposed hybrid consists of three primary components, the Ada front end, the
Intermedlate form transliator, and the verificatlon back end. Each of these are described
briefly in the sections which follow.




4. The Ada front end

As noted above, the front end of the proposed system Is based on the parser and
semantic checker of an existing, valldated, Ada compller. The parser and semantle
checker wlill require some modifications to accept Ada with embedded specifications.
The output of the modified front end wlll consist of the compller's Internal
representation of Ada programs, extended to Include the specification constructs.
Assuming that a specification language such as Anna s chosen, these modifications
should be relatively stralght forward. The Internal representation will be captured at a
stage In the compllation process where name resolution has been performed and operator
overloading has been removed so as to simplify subsequent operatlons.

5. The intermediate form translator

The Intermedlate form translator serves a dual purpose. Its primary functlon Is to
convert the Ada compller’'s representation of a program Into a representation which can
be entered Into the verificatlon back end as though 1t were the output of the Gypsy

. parser. Its secondary functlon Is to ensure that the code to be verified conforms to the

set of constructs acceptable to the verificatlon system, l.e. that the program to be
verified is In fact written In the verifiable Ada subset. Glven that both the Ada front
end and the Gypsy back end use internal representatlons which are abstractlons of
prefix trees, the translatlon operation Is a stralghtforward, If complex, syntactic one.
The enforcement function, on the other hand, may involve substantlal semantlc
analysis. It Is hoped to slmplify both of these tasks by taking advantage of utllitles,
already present within the front end, for manlpulating the Internal form of Ada
programs.

8. The modified GVE

The output of the translation process will be a Gypsy-like representation of the Ada
code to be verifled In a form sultable for loading Into the modified GVE. Once such an
Ada database has been restored into the GVE, verification conditlons can be generated
and proved In the same way these steps are performed for Gypsy programs In current
versions of the system. To support Ada veriflcation, substantial modificatlons will be
required for a number of components of the GVE. The verification conditlon generator
wlll require modification to reflect the semantlc differences between Ada and Gypsy
statements. In a simllar fashlon, the expression simplifier will also require modification
and extension. The preflx to inflx conversion routine, used to display internal forms to
the user will be modified to use an Ada syntax. We hope*’to take advantage of the
previous work on a Gypsy to Ada transiator for much of this step. It Is hoped that the
prover will require little or no modiflcatlon. Modifications to the top-level or user
Interface to the system should be restricted to the removal of unneeded functionality
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and system components such as the optimlzer and code generators.

7. Summary and conclusions

We have proposed a prototype Ada verificatlon system based on a hybrid of an existing
compller and verificatlon system. Although such a system is not capable of supporting
verification of the entire Ada language, 1t 1s clalmed that it will support a language
comparable to those now belng verlfied and sultable for simllar programs. While the
construction of such a system involves a substantial effort, we are confldent that the
effort 1s much less than that involved In bullding a verificatlon system for Ada from
scratch. A hybrid system, such as we propose, will allow the verification communl!ty
and the growlng applicatlons community It supports to obtaln experlence with Ada
verificatlon In the near future. Such experience will provide a sound basls for future
revisions of the language to support verificatlon should thils prove necessary or deslrable.
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‘Why?

e DoD Directive 5000.31

e Ada required for mission critical
software

e 10 USC 2315

e Missiorn: critical includes security

o TCSEC

e Verification required for Al

e QED
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"How?

° Sta.rt over
e Ignore Ada

e Adapt existing tools
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Start Over

e Pro
e Language is different

e Need a second generation system

e Con
e Excessive cost and effort

e No experience with many Ada
constructs
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Ignore Ada

e Pro
e TCSEC does not require code proofs

e Design verification is easier

e Con

e Possible conflicts between code and
specifications

e The SCOMP experience

- T-11
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Adapt tools

e Pro
e Minimize effort
e Early availalkility

e Proven base nroducts

e Con
e Restricted set of constructs

e Warps Ada in particular direction
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Adapting Gypsy

e Strong intersection
o Types
e Exceptions

e Expression languages

e Aliasing and side effect semantics

e Disjoint features
e Tasks vs. cobegins
e I/0O packages vs. buffers

e Reals vs. rationals
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Trouble spots in Ada

: e See David Guaspari

4 e But take what he says with a grain
‘ of salt |
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Hybrid system

e Verdix front end

e Modified for Anna-like specifications

e Diana to Prefix translator

e Enforces verifiable intersection

e Gypsy back end
e Ada semantics where different

° Ada..syntax for interaction

FRBSNESFS S o e

- T-15




Front end

e Extensions for specifications

| e Enforcement of specification
semantics

e Issues:
e Diagnostics
¢ Diana modifications

e Detalls
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Translator

Visualized as front end extension
Checks for verifiabie subset

Convert from Diana / Ada to
Gypsy / Prefix

Produces Gypsy database

Issues:

e Incremental Methods
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Back end

e Ada syntax

e Use Gypsy —> Ada facility

e Ada semantics

Expressions — modify expression
evaluator

Statements — modify verification
condition generator

T-19




- Systern constraints

e Exceptions imply constraints on:

e Expression evaluation

e Parameter passing

e Implementation details:
e Alffect seriantics of operations

e Provide basis for proofs about
exceptions
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Appendix U

Discussion of from the Session on
Near-Term Verification Systems



Discussion of papers on Near-Term Verification Systems

The speakers were invited to offer estimates of the time
needed for completion of their proposals.

J. Williams: 2 years for the first stage; 1990 ‘ for
completion. .

R. Stansifer: 6 months for the well-understood part of
ADA.

R. Hookway: 12 months.
J. McHugh: 1 to 2 years.

The following is a8 condensed version of the discussion
that took place about formal semantics.

D. Milton:'If formal semantics equired for ADA, is it
to be the sort done for preliminary ADA? Is that the kind of
formal semantics that would be useful?

R. Platek: You do need a mathematical model against which
you prove that your proof rules are sound. You cannot use the
Reference Manual, which is written in English, to prove that a
proof rule really captures the language.

There is no doubt that to feel completely assured you
have to go by the route of an abstract model. Now what kind of
devices we will use, whether it will be denotational semantics,
or what, that is open.

LCDR Myers: Would the model stand by itself?

R. Platek: It could.

LCDR Myers: Can this community use such a thing?

D. Luckham: What was the experience with the
pseudo-denotational semantics produced for the preliminary 1979
version of ADA?

N. Cohen: Several type inconsistencies were discovered.

D. Luckham: First of all, they could not accommodate the
semantics of tasking at all, is that correct? Secondly, was

there any agreement that the formal semantics they defined was
the definition of the language?
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N. Cohen: That couldn't possibly be because it was
incomplete.

D. Luckham: One of the purposes of this formal definition
was as a guide to compiler writers. I wunderstand that no
compiler writer ever used it as a guide.

N. Cohen: In Denmark they developed a semantics for the
1978 preliminary ADA, at the last minute they updated it to 1980
ADA, and apparently behind the scenes they continued working on
it because they then used the formal definition as a basis for a
compiler system which has now been validated. Thus that compiler
was generated from the formal definition. The generation was not
wholly automatic: there was a substantial manual involvement.
There was an operational definition of tasking.

J. McHugh: I think that for such a definition to be
useful not only for this group but for the ADA community as a
whole, it will have to be judged to be the arbiter of all the
disputes about the definition of the language.

N. Cohen: Currently it is the position of the AJPO that
the Reference Manual is such a definition, but there are
omissions in the Reference Manual, and there are places where it
is vaguely worded and the ADA Board has to meet and decide on
interpretations.

D. Luckham: The formal definition produced by INRIA is
available. You can read it and ask your question of that and do
a symbolic computation to get the answer--try executing the
recurrence relations,

B. Abrams: There is a formal definition of JOVIAL: the
entire language is specified, as -an attribute grammar, in some
300 pages of BNF. When you 1look at all that, you cannot be
assured that it is correct and that there is nowhere an error.

LCDR Myers: I am hearing that the language isn't there,
that you need to formalise the semantics of this language.

Answers of both "yes" and "no" were heard.

R. PLatek: I think it has to be done right--in a way that
is usable,

The style of the INRIA manual makes it an unusable
model. There are other styles of presenting models, one of which
might turn out to be a form that is usable... What is Tusable"
is a theological question.

D. Luckham: We should standardise ADA by picking a
compiler. Minsky suggested taking the LISP interpreter as a
formal definition. It seems to me that a well-written compiler
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is a good standard. You can run it; you cannot run the formal’
definition of ADA.

R. Platek: That does not mean that some form of
mathematical model could not be run.

N. Cohen: ADA was designed as essentially several‘
dialects; There is no way to take a compiler as a definition and
to keep ADA objectives such as portability.

D. Luckham: The thing just tells you that this is an
implemention feature when you ask it a question.

N. Cohen: Well, if your standard is a compiler, it is not
going to tell you that it is implementation dependent, it will
tell you that the word size is 16 bits.

D. Luckham: No, no, no, not a compiler in the stupid
sense but a compiler designed to be a standard which can answer
questions.

R. Platek: OK, if you are proposing that as the quickest
and cheapest method, fine. That is decided. Now let us go on to
mid-term. I think it is mid-term to get a mathematical model.
Ten years.

LCDR Myers: I hear waffle, waffle, waffle. You say that
you need something along this line to do your job. Well, I think
I am going to recommend that you all get together and figure out
what it is.

An unidentified speaker: The Orange Book does not call
for code verification. It appears that the DoD is not willing to
trust design systems that are not based on a formal basis. How

comfortable are you with user systems that are not grounded in
formality ?

LCDR Myers: I would feel a 1lot better if things were
grounded in any other way than the present one. The mere process
of going through some sort of formalization is useful I'm for
improvement; there is no perfection; we want serious mid- and
near-term things,.

LCDR Myers: You want a common gruund--what should that
be?

R. Platek: The piecemeal constrdction of a theorem prover
leads to false theorems. What is needed is a model serving as a
final arbiter.

B. Abrams: Just as the Reference Manual is a mixture of

formality and examples, so a real definition would mix
mathematical and operational bits.
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K. Apt: Verification of programs and verification of
soundness of proof systems against semantics, and also writing
large programs-~I believe that all these belong,. at a certain
level of abstraction, to the same problem, namely it is how. we
manage the complexity of large tasks. I believe that people
should agree that verification of 1large progams is not a simple.
issue.

As soon as large subsets of PASCAL or ALGOL-like
languages were addressed, subtle errors emerged, such as that
found, four or five years after its publication, in Cook's proof
of the completeness of a fragment of ALGOL 60 without the use of
recursion. This story shows that at a certain level we do not
see the details: they are too formal. The error, in brief, was
that the semantics was overspecified. Similar errors can occur
in compilers. We should not therefore hope that validation of
proof systems will be any easier than verification of programs.

b; Luckham: I have no faith in the ability of theoretical
mathematicians to turn out formal semantics of any value.
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Norman Cohen: Uses of Formal Verification

There are two practical obstacles to proving ADA progams
correct. One is that of sheer scale: typical ADA applications
are hundreds of thousands of 1lines 1long. The other is that a
proof of what is commonly called "correctness" is really only a
proof of <consistency with specifications, and thus makes no
attempt to show that the specifications correctly formalise the
user's requirements. Formalisation is difficult: about half of
all software errors are ones of specification; and so this is a
serious deficiency.

We therefore concentrate on proving selected properties of
selected program components. We select those components that are
amenable to formal specification, use nonobvious algorithms,
perform especially critical functions, or are to be re-used, and
we aim, where appropriate, to establish the correctness of datsa
abstraction implementations, the absence -0of unanticipated
exceptions, the absence of erroneousness, and certain numeric
properties,

Proving the absence of erroneous execution 1is an ideal
application for verification, for proofs can work where

traditional compile-time checks are too weak and run-time checks
are too expensive.

Proving the absence of unanticipated exceptions forces the
explicit documentation of implicit assumptions, reconciles
reliability and efficiency by "certifying" uses of the suppress
pragma, allows specifications to be as simple as a list of
anticipated exceptions, and has other benefits.

Establishing the correctness of data abstractions is a
principal use for ADA's most characteristic feature, packages,
and permits the building of verified libraries of reusable,
possibly generic, components. It may be accomplished by defining
the abstract behaviour of a data type in terms of algebraic
axioms, which may be given as comments in the package
specification, perhaps in ANNA, and then proving that the
subprograms in the package body fulfil the axioms. ADA's notions
of data type encapsulation help because you know that you can
verify the desired property just by looking at the package itself
and not outside. The axioms can be used later in verifying other
components using the package that provides the data abstraction.
The ANNA out attribute provides an excellent vehicle for
accommodating procedures, and exceptions are a nice solution to a
problem that always existed in the early literature on verifying
data abstraction.

V-1
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In the case of numeric properties the prospects are not quite
so bright, but there may be some cases in which reasonable
results can be obtained. Typically because machine
approximations to real numbers do not obey the mathematical 1laws
of the field of real numbers verification efforts have ignored
them., ADA has tried to formalize the behaviour of real numbers .
using model intervals. These have two important characteristics:
they have reasonable formal properties, and they happen to be
consistent with typical machine implementations of real numbers.
Interval arithmetic, though, is too pessimistic: hardware usually
provides more precision and errors tend to average out and
cancel, while the model intervals grow wider and wider.
Unfortunately the rules of ADA do not justify any stronger method
of reasoning about real arithemtic unless you exploit personal
knowlege about the underlying representation. So on the one hand
it is hard to write portable ADA numeric software; if it can't be
proved convergent using model intervals then it may not be
convergent in all ADA implementations. On the other hand, for
those numeric algorithms where you can prove a numeric property,
you can prove portability of the numeric algorithm.
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Friedrich von Henke: ANNA

The talk discusses some finer points and design problems
of Anna.

Example 1:

(generic)
type ITEM is private;
ZERO: in ITEM;
(with) function “"+"(X,Y: ITEM) return ITEM is <);
--1 axiom
--1 for all U,V,W : ITEM =
-1 Z2ERO + V = V,
--1 U + ZERO = U,
-1 (U + V) + W=U+ (V+W);
type VECTOR is array (POSITIVE range <»>) of ITEM;

package ON_VECTORS is

function SUM (A,B: VECTOR) return VECTOR;
- where return C: VECTOR =)
-1 for all I: INTEGER range A’'RANGE =)
- C(I) = A(I) + B(I),

end ON_VECTORS:

In this example, what is being passed is something 1like a
package, or, in the terminology that Joe Goguen is using,
something like a theory or a view of a structure.




We want to have a handle on the sort of parameterization
that is possible on generic packages. One would really like
to write something like:

--1 left-zero (zero, +), right-zero (zero, +),
--1 associative (+);

to have some sort of higher order predicates; and actually we
would like to go one step further and say:

-—! monoid (ITEM, +, zero);

However, in ANNA we do not have the facility for saying that.

There are certain 1limitations imposed on ANNA, which
come from the fact that one of the basic design decisions
underlying ANNA is that ANNA should take an ADA program,
leave it basically untouched, and add to it certain things in
the form of formal comments. These formal comments are
subject to rules that are basically derivatives of the ADA
rules, and furthermore the specification constructs used in
annotations are defined as ADA entities. For example, a
function used in annotations will be defined as a virtual ADA
function. 1In that way we gain a certain expressiveness that
ADA lacks. However, this strict adherence to ADA syntax and
semantics has certain drawbacks.

There 1is a problem of consistency of annotation
illustrated by:

Example 2:

subtype SMALL_EVEN is INTEGER range 1 .. 100;
--1 where X: SMALL_EVEN =) even(X);

Here the statement "3 is SMALL_EVEN" is true in ADA and false
in ANNA; so0 we call this an ANNA error.

W=-2




Another point is the treatment of equality. The
Reference Manual says that equality can be explicitly defined
only for limited types. We were happy to follow that rule in
the design of ANNA until John Goodenough, in a note in a
recent issue of ADA Letters, showed that a way can be found
of defining equality for any given type. Designers of
annotation languages will wonder wuneasily how many other
semantic bombshells still 1lie hidden in the programming
language.

Another kind of dependence that comes up with equality
is that <from within the package you can refer to anything
that is visible, so some equality relationship that wused to
be <true suddenly may not be true. Fortunately ANNA would
supply an appropriate default axiom that suddenly pops up if
you have not thought of it.

These examples show some of the ramifications that ome
has to take into account when one tries to build up something
that looks 1like a mathematical system within the context
where you have the freedom that ADA provides.

W-3
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David Luckham: ANNA Tools

I hope you got the idea from Friedrich von Henke that it is
not very easy to design a language extension of ADA that is
fairly consistent in its semantics and allows you to express
things that you cannot say in ADA itself.

That is one of the reasons why we have no tasking
specification in ANNA at present. If you ask what you would like
to specify about ADA tasking before you try to write the tasks
themselves, you find that the first thing you would like to do 1is
to throw away the visibility rules and the 1linear elaboration of
your specifications.

The attempt to extend ADA with tasking specifications is very
much a more difficult thing than what we have done with ANNA
which is to try just the linear sequential part of the language.

By the way we do have a task specification language, called
TSL for task sequencing language, though we do not claim that it
is any more than experimental.

We are at the stage where we are able to write package
specifications and present them as a Parnas negotiation
document. Perhaps the first family of ANNA tools that we might
like to implement are things that would support this kind of
negotiating before we get into much harder things 1like
verification systems.

Our role is to encourage the use of formal specifications in
the development and maintenance of correct ADA programs.

So the first thing that you can do for at 1least a subset of
ANNA is to produce a preprocessor to a compiler, which will
accept an ANNA program, and translate the annotations into ADA
runtime checks, so that out the back end will come a kosher,
legitimate ADA program.

Things are not that simple, because of the naming and
renaming, and hiding and local scoping conventions, and the fact
that variables when declared must be constrained, and so on. You
have to bend over backwards to get a really good implemenation of
this transformation process, and it is being worked on by various
of the students currently at Stanford.

The result might be called a self-checking program. At least

it is going to raise ANNA errors, if in the course of running
there is an inconsistency between the ANNA annotations and the

X-1
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underlying ADA program. Now the ANNA annotations may of course
involve execution of virtual eode.

So now what can you use this for? You cen rum an ADA program
in comparison with its formal ANNA specification. This has some

obvious possible applications: you get a lot of runtime checks -

because the annotation mechanisms are powerful, and you can say a
lot because they are scoped. You may be able to use it for test
and debug. You may even be able to use it for permanent runtime
checks in self~checking programs.

A similar kind of thing gives you more power in a hardware
design language: it gives you comparative simulation of two
different representations of the same piece of hardware. So we
are trying to apply the same ideas to the VHDL-like language.

That is the main tool we are building. It is working quite
well and is a monument to the portability of well-written ADA
code. It also enables us to test the compilers and find bugs in
them. There are some other tools that we are also developing,
like PROLOG interpreters in ADA,

You can get comparative testing with a very simple ANNA
trick: use your old program as the specification for the new
version of your program: then do a comparison run of the new
against the old.

We would like an optimizer for the run time checks, and
certainly that optimizer has got to do a bit of reasoning,

probably of the PROLOG variety. There are preliminary papers on

how to parallelise the checking of these annotationms.

To support the Parnassian model of the development process by
negotiation and redocumentation’you would 1like to be able to
analyse your specification and to automate that analysis so you
could ask intelligent questions of the specifications.

And lastly, of course, there 1is something we haven't
addressed anywhere else at all. If we were to use ANNA for
testing, we would probably need a number of standard packages,
especially 1if we got into the testing of the timing parts of
programs. However, the ANNA checking interferes with timing.

We have not tried any full-scale verifier, we don't plan to
for a while, as wve have not yet recovered from the PASCAL
verifier. But we invite people to send one-page ADA progranms,
accompanied by descriptions of their purpose in English, to
LUCKHAM@SAIL for annotation.
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