
AD-Rll 565 NONSEGUENTIAL COMPUTATION AND LAWS OF NRTURE(U) 1/1
MASSACHUSETTS INST OF TECH CAMRIDGE LAB FOR COMPUTER
SCIENCE P N VITANVI MAY 86 MITt'LCS/TM-36

UNCLSSIF7 NOOO14-83-K-8125F/O9/2 NL

EEEomohEEmohEI

liftII 12.2

11111.14 11111 j_6
..... -"M

.JROOPY RESOLUTION TEST CHART

'NATIONAL BUREAU OF STANDARDS- 1963-A

MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

Lfl0
LM C

MIT/LCS/TM-306

NONSEQUENTIAL COMPUTATION
AND LAWS OF NATURE

IA'UL M. B. VITANYI

L.CTE
,, AUG 2 719883

MAY 1986 . A

Thirs d-)cuuwflnt ho's bee'n approed
jol pib i r q e ' al, al: its

S i1 Trt(:INoI OGY SQUARE. CAMBRI)(;E. NI.\SSAC HUSrTTS '). 139

SECURITY CLASSIFICATION OF THIS PACE flI.,, Pal. 801 14'004

REPORT DOCUMENTATION PAGE READ IMrMUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMERN 2. GOVT ACCESSION NO, . RECIPIENTS CATALOG NUMBER

MIT/LCS/TM-306"/ I
4. TITLE (md Subfeol) S. TYPE OF REPORT & PERIOD COVERED
Nonsequentlal computation and laws of Interim research
nature. May 1986

,. PERFORMING ORG. REPORT NUMBER
MII/LCS/TM-306

7. AuTOR(*) A. CONTRACT OR GRANT NUMER(e)
Xit DARPA/DOD

Paul1 Vitanyl N00014-83-K-0125

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT TASK
AREA 4 WORK UNIT NUMBERS

MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139 __/_______

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA/DOD May 1986
1400 Wilson Boulevard IS. NUMBEROfPAGES

Arlingto-n. VA 22209 21
14. MONITORING AGENCY NAME & ADDRESS(It differmt itron Cmonlrdifu4 Office) IS. SECURITY CLASS. (of thl reitprl)

ONR/Department of the Navy
Information Systems Program Unclassified
Arlington, VA 22217 s,. SIAM

16. DISTRIBUTION STATEMENT (of this Rpert)

Approved for public release, distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abstct iflleeted In BDoc 20, it 4Dfe1t10I el neport)

Unl imited

1 SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side II necoearr ind tillfel'f br block 01Nhmb)

sequential computation, parallel computation, distributed compu-
tation VLSI, computational complexity, time, space, physics,
communication, wires, limitations, laws of nature

20. ABSTRACT (Continue mnroveo.. esde I necoomm id dlitientlitP' Mb ek li)

Traditionally, computational complexity theory deals with sequentil1
computations. In the computational models the underlying physics
is hardly accounted for. This attitude has persisted in common
models for parallel computations. Wrongly, as we shall argue,
since the laws of physics intrude forcefully when we want to obtal
realistic estimates of the performance of parallel or distributed
algorithms. First, we shall explain why it is reasonable to

DD ,FO 1473 EDTION or I NOV so is oSOLETES/N 0102-014*603 $lSECURITY CLASSIFICATION OF T"IS PAGE (Wham Deots8iJ

4Lf-UMTY CLASIICATION O T41S PAOIfIlb Do"

abstract away from the physical details in sequential computations.
Second, we show why certain common approaches in the theory of
parallel complexity do not give useful information about the
actual complexity of the parallel computation. Third, we give some
examples of the interplay between physical considerations and
actual complexity of distributed computations.

I

Accei on .Fo .

NTIS GRA&I
DTIC TAB
lUnannounced 3
justificatio

By

Distribution1 -

AvailabilitY Codss

Avail and/QW

D Special

SICURItY CLAMICAYION OF THIS5 PAGEfWhan Due4 2"W"S)

Nonsequential Computation and Laws of Nature
Paul M.B. Vitimpi

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge, Massachusetts
and

Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands

May, .198

ABSTRACT

Traditionally, computational complexity theory deals with sequential
computations. In the computational models the underlying physics is
hardly accounted for. This attitude has persisted in common models for
parallel computations. Wrongly, as we shall argue, since the laws of phy-
sics intrude forcefully when we want to obtain realistic estimates of the
performance of parallel or distributed algorithms. First, we shall explain
why it is reasonable to abstract away from the physical details in sequen-
tial computations. Second, we show why certain common approaches in
the theory of parallel complexity do not give useful information about the
actual complexity of the parallel computation. Third, we give some
examples of the interplay between physical considerations and actual
complexity of distributed computations. _'

Keywords and Phrases: sequential computation, parallel computation, dis-
tributed computation, VLSI, computational complexity, time, space, phy-
sics, communication, wires, limitations, laws of nature

Note: Invited lecture at the Aegean Workehop on Computing, VLSI Algo-
rithms and Architectures (2nd international Workshop on parallel com-
puting and VLSI), Loutraki, Greece, July 8-11, 1986.

@1986 Massachusetts Institute of Technology

This work was supported in part by the Office of Naval Research under Contraci) ,00014-85-K-
0168, by the Office of Army Research under Contrait)AAG29-84-K-0058, by the National Science
Foundation under Grant DCR-83-02391, and by the Defense Advanced Research Projects Agency
(DARPA) under Contract N00014-83-K-0125. '

-2-

1. Introduction

The earliest electronic computing engines arose as a byproduct of the Manhattan Project
in World War II. Broadly speaking, their purpose was to compute numerical solutions to
second order partial differential equations arising in connection with the design of the
atomic bomb. The machines consisted of primitive logical and memory components like
electromagnetic relays and mercury delay lines, which where wired up so as to have the
complex perform the desired computation. The architecture reflected the type of algo-
rithm to be performed, i.c., the solution of the mentioned equations by numerical grid
methods. Such algorithms suggest parallel or pipeline 1 execution, and that is exactly the
type of architecture of those first computers [Gol721. Only at the present time, in the
middle eighties, have we come full circle and see such special purpose architectures again
in the pipelined and systolic algorithms frozen in the silicon hardware of chips. Once
more, the shift is away from sequential thinking in the form of line-by-line programs of
imperative or other nature, and to representing algorithms in structures of space and
time.

After the Manhattan Project had been fulfilled, computer designers quickly pro-
gressed to the idea of automating all types of computational tasks. Rather than stooping
to the chore of rewiring a new complex for every new task which came along, the idea
arose of letting the computer take over that job as well. Thus, the idea of a general pur-
pose computer entered the scene. It so happened that mathematicians like H.H.
Goldstine, J. von Neumann and A.W. Burks were well aware of A.M. Turing's brilliant
1936 paper [Tur361 in which he described an architecture for just such a hypothetical
machine:

"Computing is normally done by writing certain symbols on paper. We may suppose this
paper to be divided into squares like a child's arithmetic book. In elementary arithmetic the two-
dimensional character of the paper is sometimes used. But such use is always avoidable, and I
think that it will be agreed that the two-dimensional character of paper is no essential of compu-
tation. I assume then that the computation is carried out on one-dimensional paper, i.e., on a tape
divided into squares. I also suppose that the number of symbols which may be printed is finite."

"The behaviour of the [human] computer at any moment is determined by the symbolb he is
observing, and his 'state of mind' at that moment. We may suppose that there is a bound B to
the number of symbols or squares which the computer can observe at one moment. If he wishes
to observe more, he must use successive observations. We will also suppose that the number of
states of mind which need be taken into account is finite."

"We suppose [above] that the computation is carried out on a tape; but we avoid introduc-
ing the "state of mind" by considering a more physical and definitive counterpart of it. It is
always possible for the computer to break off from his work, to go away and forget all about it,
and later to come back and go on with it. If be does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be continued. This note is the
counterpart of "the state of mind." We will suppose that the computer works in such a desultory
manner that he never does more than one step and write the next note. Thus the state of progress
of the computation at any stage is completely determined by the note of instructions and the
symbols on the tape. That is, the state of the system may be described by a single expression
(sequence of symbols), consisting of the symbols on the tape followed by A (which we suppose not
to appear elsewhere) and then by the note of instructions. This expression may be called the

-3-

"state formula." We know that the state formula at any given stage is determined by the state
formula before the last step was made, and we assume that the relation of these two formulae is
expressible in the functional calculus. In other words, we assume that there is an axiom A which
expresses the rules governing the behaviour of the computer, in terms of the relation of the state
formula at any stage to the state formula at the preceding stage. If this is so, we can construct a
machine to write down the successive state formulae, and hence to compute the required
number."

Grasping the implied architectural concept, and improving it according to the lee-
way provided by physical law, Burks, Golds tine and von Neumann in 1946 wrote a
memorandum [Bur46J which shaped the architecture of electronic computers for the next
forty years. This memorandum was preceded by the famous 'First Draft' INeu451, where
we can clearly distinguish the serial mode of operation of the modern computer, i.e., one
instruction at a time is inspected and then executed. This is in sharp distinction to the
parallel operation of the earlier ENIAC computer in which many things where simultane-
ously being performed. To abandon all parallelism was not thought of as detrimental to
performance, since the potential speed of the electronic techniques was judged to be fast
enough. Complainants about the 'von Neumann' bottleneck (explained below), inherent
in the stored program sequential computer as we know it, should realize that the concep-
tual advantage of this scheme is what made possible the giant strides of progress: if cars
had become so much cheaper as computing power has, a car would cost less than 1 dol-
lar.

Turing's analysis of the process of computation as the sequential execution of f.
sequence of operations is so natural, that it seems as if Euclid in designing one of the
earliest known algorithms (for computing the greatest common divisor) must have had
such an architecture in mind. Now it so happens, that in sequential computation we can
ignore many physical details of the underlying computer system in analysing the compu-
tational complexity of some program. Each operation essentially consists of a sequence
of "fetch from memory," "execute operation on one or more operands in the Central
Processing Unit" and "store in memory." The CPU operations can De thought of - when

V viewed from sufficient distance - as essentially finite automata transitions which
transform input obtained by a bounded number of "fetch from memory" operations (say
2) into output in the form of "store in memory" operations (say 1). In the usual setup,
a memory register has a fixed length (say 48 bits) and both the memory acceses and
CPU operations take a fixed time (say, at most X). Therefore, a sequence of n opera-
tions takes in between nX and 4nX time. Forgetting about the X and the small con-
stants like 4, it ib usual to say that n operations take n 'time.' Note, here 'time' means
number of steps. Similarly, it is assumed that all objects manipulated fit in a single
memory location. Moreover, that each object is 'random accessible,' that is, each object
can be accessed as fast as any other. This is referred to as the 'unit cost measure.'

This scheme is sometimes refined to take into account that some items being mani-
pulated do not fit in a 48 bit register - as for instance the 123rd Mersenne prime. It is
then customary to charge the cost of manipulating the item as being linear in its length,
both in terms of storage and in terms of time for execution of an operation. This is

-4-

referred to as the 'logarithmic cost measure.' It is clear, that this time cost measure is
only a lower bound, since the actual operations performed on the items when they are
chopped up, often requires more than time linear in the length of the items. For
instance, while logarithmic cost may be reasonable for addition,.it is not reasonable for
multiplication.

A further refinement may be made for objects not held in 'random access' memory,
but on disk or mass storage devices such as tapes. There an operation on an object may
involve swapping pieces of the object back and forth from disk to random access
memory, thus incurring a time overhead which may be orders of magnitudes greater
than the time spent on manipulating in the CPU and random access memory. Think
about the sorting or merging of huge data files. The logarithmic cost measure tries to
take such an overhead into account by charging as the cost of a memory access also the
length of the memory address. As in the case of the registers, this can be only a very
crude lower bound on the actual cost. We thus distinguish a memory hierarchy, whereI
the access times of objects stored at different levels differs orders of magnitudes.

While the physical aspects of computing devices can thus be fairly well accounted
for, the basic unit of time a transaction takes does not vary too wildly within each level
we have distinguished. It is therefore more or less justified to forget about the details
and talk only about the number of operations at each level of the memory hierarchy. As
we will see, in the realm of nonsequential computation reality can not be ignored to such
an extent.

Since in current computers the time of a basic operation in the CPU is generally far
lower than that of memory accesses, most computations are memory bound, i.e., the
time spent in accessing various levels in the memory hierarchy completely dominates the
computation time. This is popularly called the 'von Neumann' bottleneck. Are the pros-
pects any brighter in the coming era of nonsequential computation?

2. Space

In many areas of the theory of parallel computation we meet tree structured devices or
computations.

(1). For instance, 'parallel random access machines (PRAM's)' can at each point in their
computation spawn a couple of offspring PRAM's to perform some subcomputa-
tions. Broadly speaking, we can therefore imagine the computation as a binary tree
of processors. The 'time' the computation takes is then linearly related to the depth
of the tree.

(2). In [Mea8O] this idea is translated into terms of 'very large integrated circuits.' In
Chapter 8 the authors show a bold picture of a complete binary tree, and explain
that such a tree with processors in each node, is capable of solving NP-complete
problems like the 'traveling salesman problem' in linear time. This, on the grounds
that the processor at the root can send a copy of the problem instance to each of
the leaves, and each of the leaves can try one candidate solution. A simple scheme
can guarantee that each leaf tries a different solution, each solution is tried by some

- 5-

leaf, and all answers are percolated upwards to the root. If positive answers win
over negative ones in the fan in, the answer the root receives is a solution if there is
one and 'no solution' if there is none.

(3). One of the currently flourishing parts of the theory of parallel computation is 'NC-
computation.' A problem is in 'Nick's Class' if it can be solved in polylogarithmic
'time' using a polynomial number of processors. Here, 'time' means the length of
the longest chain of causally related steps.

All of the above models may say something about the parallelizability of algorithms
for certain problems. This often takes the form of distributing copies of the entire prob-
lem instance, or pieces of the problem instance, among an exponential number of proces-
sors in a linear number of steps. Or, as in NC, among a polynomial number of processors
in a polylogarithmic number of steps. The way a problem instance can be divided and
partial answers put together may give genuine insight into its parallelizability. However,
it can not give a reduction from an asymptotic exponential time best algorithm in the
sequential case to an asymptotic polynomial time algorithm in any parallel case. At
least, if by 'time' we mean time. This can be seen easily as follows. If the parallel algo-
rithm uses 2" processing elements, regardless of whether the computational model
assumes bounded fan-in and fan-out or not, it can not run in time polynomial in n,
because physical apace has us in its tyranny. Viz., if we use 2 processing elements of,
say, unit size each, then the tightest they can be packed is in a 3-dimensional sphere of
volume 2". No unit in the sphere can be closer to all other units than a distance of

radius R,

~i/3

R "
141rJ

Modulo a major advance in physics, it is impossible to transport signals over 2*" (a>O)
distance in polynomial p (n) time. In fact, the assumption of the bounded speed of light
suggests that the lower time bound on any computation using 2" processing elements is
fl(2"/ 3) outright. Or, for the case of NC computations which use n* processors, c1>0,
the lower bound on the computation time is 0l(n*/3).

The situation is worse than it appears on the face of it. Consider an architecture
such as the binary n-cube. This is the network in which the nodes are identified by n-
bit names, and there is a communication edge between two nodes if their identifiers
differ in a single bit. Call this graph C =(V ,E). Let C be embedded in 3-dimensional
Euclidean space, and let each node have unit volume. Let z be any node of C. There
are at most 2" /8 nodes within Euclidean distance R /2 of z, where R is as above.
Then, there are >7.2" /8 nodes at Euclidean distance >R /2 from z. Construct a span-
ning tree T, of in C of depth <n with node x as the root. The average Euclidean
length of a path from the root in T, is >7R /16, and therefore the average Euclidean
length of an embedded edge in a path from the root in T, is >7R /16n. This does not
give a lower bound on the average Euclidean length of an edge in T,. However, using
the symmetry of the binary n -cube we can establish that the average Euclidean length
of the edges in the 3-space embedding of C is >7R /16n. We can prove this as follows.
(The hasty reader may skip the proof by proceeding to the second column on the next
page.)

Proof. Denote a node a in C by a n-bit string aa 2 ... a,., and an edge(a,b)
between nodes a and b differing in the i th bit by:

a aoj a. .

This means that an edge has two representations. Now we can express a set I of iso-
morphic mappings of C to itself by (1) a cyclic permutation of the representation of
nodes and edges, followed by (2) complementation of the bits of the representations in a
given pattern. I.e., the isomorphism (j,cIc2 .. c,)EI maps the above edge a to

b = bj+l"'". bi-6i bj+j ... b b,-.., bj

with bi ai if c=-0 and bi= i(= complement ai) if ci =1.

Consider the ensemble S of spanning trees of C, each tree isomorphic with T,
above, consisting of the n2" trees i(T,) to which T, is mapped by the n2" distinct
isomorphisms i in I. For each edge e in T, and each edge e' of C there are two dis-
tinct isomorphisms il and i2 in I such that il(e)=i2 (e)=e' . The average Euclidean
length of a path from the root in each tree i(T,)ES (iEl) is >7R /16, so the average
Euclidean length of a path from the root taken over all trees i(T)ES (iEl) is
>7R /16 as well. Let the Euclidean length of an edge e in the 3-space embedding of C
be I (e). Then, for each edge e of T,:

El(i(e) 2 E 2 '(e)

El eEE

That is, each edge in the embedded C occurs twice as the same edge of the canonical
tree T, in the form of the corresponding isomorphic edge in some tree in S. Therefore,
the average Euclidean length of the edges in trees in S, which correspond to a single
particular edge of T,, equals the average Euclidean length of an edge in E. Let P be a
path from the root in T, consisting of I P I :<n edges. Then, the average sum of the
Euclidean lengths of the edges in a path i(P) from the root in all trees i(T,) (iaE)

- - -1

-7-

equals I P I times the average Euclidean edge length in E:

E l(i(e)) 2 1 El(e)
e EPEI EE

Consequently, the average Euclidean edge length in E equals the average Euclidean
length of an edge in a path P from the root in a tree in S, and is therefore >7R /16n:

l(e) eEA El

eEE PET n2" I P
n2" - 2"

> 7R
- 16n

Since there are n 2" /2 edges in the binary n,-cube, this sums up to an amazing
total wire length eEl (e) needed in the Euclidean 3-dimensional embedding of C of

2n 7R
eEE 32

> _ . /3 7 2(4n /3) -
41/3

Many network topologies are afflicted with this problem: n-dimensional cube net-
works, fast Fourier networks, butterfly networks, shuffle-exchange networks, cube-
connected cycles networks, and so on. In fact, the arguments seem to hold for networks
with a small diameter which satisfy certain symmetry requirements. An example of a

network with small diameter which is not symmetric in this sense is the tree. The fact
that 7/8th of all paths from the root in a complete tree would have Euclidean length
>R/2 in a 3-space embedding do not imply that the average Euclidean length of an
embedded edge of the tree is larger than a constant. This is borne out by the familiar
H-tree layout [MeaS0] where the average edge length is less than 3 or 4. However, in the
recently investigated 'fat tree' architectures the wire length will dominate again. In a
complete binary fat tree of depth n and root at level 0, a node at level i +1 is connected
to a node at level i by a 'bundie' of 2' ' edges. Then, trivially, the average Euclidean
length of an edge in a path from the root equals the average Euclidean length of an edge
in the fat tree, leading to the result above.

Note. Deriving the result about the total necessary wire length for embedding the
binary n-cube, we did not make any assumptions about the volume of a wire of unit

length, or the way they are embedded in space, as is usual [U1184]. It is consistent with
the derived results that wires have zero volume, and that infinitely many wires can pass
through a unit 2-dimensional area. Such assumptions invalidate the arguments used else-
where. In contrast with other inve. tigations, the goal here is to derive lower bounds on
the total wire length irrespective of the ratio between the volume of a unit length wire

and the volume of a processing element. The lower bound on the total wire length above
is independent of this ratio, which changes with different technologies or granularity of
computing components.

.'0 ". " ,,. -. - -.. , • i

-8-F

Iterating the above reasoning, but now adding the volume of the wires to the
volume of the nodes, the greatest lower bound on the volume necessary to embed the
binary n -cube converges to a particular solution in between a total volume of f1(2 " /3)
and a total volume of, say, 0(22"I) if we charge a constant fraction of the unit volume
for a unit wire length. The lower bound fl(24" /3) ignores the fact that the added volume
of the wires pushes the nodes further apart, thus necessitating longer wires again. The
0(2 2") upper bound holds under the assumption that wires of all lengths have the same
volume per unit length (not more than a constant fraction of the unit volume of a node).
In a later section I show that the latter assumption cannot always be made.

These surprising facts are a theoretical prelude to many wiring problems currently
*starting to plague computer designers and chip designers alike. Formerly, a wire had

magical properties of transmitting data 'instantly' from one place to another (or better,
to many other places). A wire did not take room, did not dissipate heat, and did not
cost anything - at least, not enough to worry about. This was the situation when the

* number of wires was low, somewhere in the hundreds. Current designs use many millions
of wires (on chip), or posibly billions of wires (on wafers). In a computation of parallel
nature, most of the time seems to be spent on communication - transporting signals over
wires. Thus, thinking that the von Neumann bottleneck has been conquered by nonse-
quential computation, we are unaware that the Non-von Neumann bottleneck is still
waiting. The following innominate quote covers this matter admirably:

"Without me they fly they think; But when they fly I am the wings."

Another effect which becomes increasingly important is that most of the room in
the device executing the computation is taken up by the wires. Under very conservative
estimates that the unit length of a wire has a volume which is a constant fraction of
that of a component it connects, we can see above that in 3-dimensional layouts for
binary n~ -cubes, or for the other fast permutation networks, the volume of the 2" com-
ponents performing the actual computation operations is an asymptotic fastly vanishing
fraction of the volume of the wires needed for communication:

volume computing compon .ents E ,2- 3
* ~volume communication wiresEo2 /

Today it seems that a partial solution to this problem can be found in optical com-
munication, either wireless by means of lasers/infrared light or by using virtually unlim-
ited bandwidth glass fiber. But beware, even while Nature is not malicious, she is sub-
tle.

3. Time

It is useful to distinguish between distributed computation and distributed control.
* Whereas the former is concerned with the distributed solution of problems for which

there also exist sequential algorithms, the latter is concerned with problems which make
no sense in terms of sequential computation. Examples of the former are parallel algo-N
rithms for matrix multiplication, fast Fourier transform, shortest path, matching.
Examples of the latter are methods for mutual exclusion and nameserver fMul851,

Lmz

distributed spanning tree, clock synchronization algorithms, Byzantine agreement, leader
election, symmetry breaking. In distributed control the notion of time plays an all-
important role.

As large multiprocessor systems communicating by message passing start to be
actually constructed, and on a geographically grander scale very large computer net-
works, synchronization problems connected with the operation of such complexes are
bound to become acute. Another problem which gets crucial for very large computer
complexes is the number of message passes. Without efficient congestion control the sys-
tem will be swamped by communication messages effectively blocking throughput.

To fix thoughts, the networks we consider are point-to-point (store- an d-forward)
communication networks described by an undirected communication graph, with the set
of nodes representing the processors of the network, and the set of links representing
bidirectional noninterfering communication channels between them. No common
memory is shared by the node- processors. Each node processes messages received from
its neighbors, performs local computations on messages and sends messages to neighbors.
All these actions take a finite time. All messages have a finite length according to the
finite amount of information they carry. Each message sent by a node to its neighbor
arrives there in a finite time. A message pass consists of the sending of a message from
one node to one of its direct neighbors. In order to make the cost measure meaningful,
when we express the complexity of some algorithm in the number of message passes, we
want to exclude unrealistically long messages. One choice is to allow messages of size
O(log n), where n is the number of nodes in the network. The time complexity of a dis-
tributed algorithm should obviously be the size of the interval between the beginning
and the end of the algorithm. As yet there seems to be no completely satisfactory gen-
eral method to compute this cost constructively, given the algorithm, for the many types
of distributed algorithms which are known. However, this is only one of many problems
associated with the concept of time in distributed systems.

Here we focus on problems resulting from lack of synchronization. These can be
dealt with using 'partially ordered' time, as in [Lam78], or by constructing algorithms
that can deal with unlimited asynchrony. The latter algorithms can surely deal with
any environment in which there is knowledge about processor speed and message
delivery time. Unlimited asynchronous models have been thoroughly investigated, as

* have purely synchronous models. Physical systems are usually somewhere in between:
* they are neither purely synchronous nor unlimited asynchronous. It is therefore an

interesting exercise to develop algorithms that do not use knowledge about the relative
progress of time in the system, yet perform superior under realistic conditions about
time. The usual logically time-independent algorithms do not assume anything about
the rate at which time flows in different locations. This is unnecessarily harsh with
respect to many problems arising in the real world. Clock drift in systems happens with
a certain smoothness, since abrupt changes are rare in nature. It seems to be worthwhile
to investigate robust algorithms such that:

0 the algorithms remain correct and terminate under any behavior of time in the sys-
tem,

- 10-

* using time, the algorithms are yet logically time-independent, only their efficiency
depends on the behavior of time,

* with increasing synchronous well-behaved time in the system the performance of
the algorithm improves ever faster,

* if the asynchrony of the system is known then the algorithm performs as well as in
the synchronous case,

" under practical assumptions about clock speeds these algorithms use less message
passes than is possible by any other known methods for the problems they solve in
asynchronous systems,

* the limitation on unlimited asynchrony such algorithms require is but a minor one
which is generally satisfied and which we term "Archimedean asynchronicity".

Now, in asynchronous distributed systems each processor has its own clock.
Although these clocks may not be synchronized, and the clocks may not indicate the
same time, there should be some proportion between the clock rates. That is, if an inter-
val of time has passed on the clock for processor A, a proportional period of time has
passed on the clock for processor B.

Definition. A distributed system is Archimedean from time tI to time t 2 if the
ratio of the time intervals between the ticks of the clocks of any pair of processors, and
the ratio between the communication delay between any adjacent pair of processors and
the time interval between the ticks of the clock of any processor, is bounded by a fixed
integer during the time interval from tl to t2. (This ratio need not be bounded a priori,

nor need it be known to the processors concerned.)

That is, in asynchronous networks the magnitudes of elapsed time should satisfy
the axiom of Archimedes. The axiom of Archimedes holds for a set of magnitudes if, for
any pair a, b of such magnitudes, there is a multiple na which exceeds b for some
natural number n. It is called Archimedes' axiom* possibly due to an application in
obtaining large numbers in The Sand-Reckoner.

We assume that the magnitudes of elapsed time, as measured, for instance, by local
clocks amongst different processors or by the clock of the same processor at different
times, as well as the magnitudes consisting of communication delays between the sending
and receiving of messages, as measured, for instance, in absolute physical time, all
together considered as a set of magnitudes of the same kind, satisfy the Archimedean
axiom. In physical reality it is always possible to replace a magnitude of elapsed time, of
any clock or communication delay, by a corresponding magnitude of elapsed absolute
physical time, thus obtaining magnitudes of the same kind. We assume a global absolute
time to calibrate the individual clocks; using relative time by having the clocks send
messages to one another yields the same effect - for the purposes at hand. If we do not

* In Sphere and Cylinder and Qusdrature of the Psrebola Archimedes formulates the postulate as follows.
"The larger of two lines, areas or solids exceeds the smaller in such a way that the difference, added to it-
self, can exceed any given individual of the type to which the two mutually compared magnitudes be-
long". The axiom appears earlier as Definition 4 in Book 5 of Euclid's Elements.

- 11 -

restrict ourselves, so to speak, to Archimedean distributed systems, then the processors
in the system may not have any sense of time. Or, they have clocks which keep purely
subjective time, so that the unit time span of each processor is unrelated to that of
another. That is, the set of time units is non-Archimedean if the length of every time
unit is not less than a finite multiple of that of any other in the absolute global time
scale. Or, the communication delays have no finite ratio among themselves or with
respect to subjective processor clocks. As a consequence:
-Any process, pausing indefinitely long with respect to the time-scale of the others,

between events like the receiving and passing of a message, and also any unbounded
communication delay, effectively aborts activities such as an election in progress. A pro-
cess can never be sure that it is the only one which considers itself elected.
-Without physical time and clocks there is no way to distinguish a failed process from

one just pausing between events.

-A user or a process can tell that a system has crashed oniy because he has been waiting
too long for a response.

Distributed systems in the sense of physically distributed computer networks com-
municate by sending signed messages and setting timers, or equivalent devices. If an ack-
nowledgemenG of safe receipt by the proper addressee is not received by the sender
before the timer goes off, the sender sends out a new copy of the message and sets a
corresponding timer. This process is repeated until either a proper acknowledgement is
received or the sender concludes that the message cannot be communicated due to
failures. Thus, clocks and timeouts are necessary attributes of real distributed systems
and non-Archimedean time in the system is intolerable outright. Whereas unlimited
asynchrony would prevent a system from functioning properly, pure synchrony in a sys-
tem cannot exist: the clocks of distinct processors drift apart in both indicated time and
running speed and have to be resynchronized by algorithms running in Archimedean
time as defined above.

We may call this concept of algorithms using physical time, instead of being oblivi-
ous to physical time, one of time-driven algorithms. The use of such algorithms would be
in the area of distributed control in synchronous or asynchronous systems. Some prob-
lems necessarily have time-driven algorithms, while the algorithms for other problems
may or may not be time-driven. For example, in algorithms for clock synchronization
and distributed spanning tree and distributed elections, the former are time-driven by
cause of their very subject matter, while the latter may be time-driven by design or not
be time-driven at all. The primary goal of an investigation into the feasibility of such
algorithms in [Vit84, Vit85] was to demonstrate the existence of competitive time-driven
algorithms with the desirable properties as mentioned. These algorithms where superior
in terms of message passes. More significantly, they performed better than allowed by
known lower bounds on the number of message passes required in asynchronous net-
works. Unfortunately, they where quite unrealistic in terms of running time. Nonethe-
less, we expect that genuinely more efficient algorithms than the unlimited asynchronous
ones exist, in between the pure synchronous and unlimited asynchronous ones.

- 12-

4. Physics

Apart from space and time, nature intrudes obstrusively in nonsequential computation in
the form of physics. We give an example from the field of VLSI taken from [Vit8s'....].

In current chips, synchronization requirements slow down the computation to a
clocked switching time, which is in the order of the delay in the longest wire. As the
minimal feature width continues to decrease into the submicron range, this delay
governs overall performance more and more. In order to obtain very high speed integra-
tion, one way to go is to obtain a propagation delay logarithmic in the length of the
wire, as in [MeaSO]. Electronic considerations show lMea82] that all wires then need to
have the same ratio between width and length, that is, the same aspect ratio. Below we
derive this fact, and show some of the consequences.

4.1. Electronics

Analysis of signal propagation delay in wires on chip requires different models in
different cases: transmission line, distributed RC and lumped RC. However, the dominat-
ing factor on a densely packed chip is that a wire is not alone, but surrounded by other
wires. This fact leads to the following analysis [Mea82, Vit85....

The time it takes a minimum transistor to drive a wire of length L, width W and
thickness H can be estimated as follows. The wire is assumed to have distance D, to
neighbouring layers and D. to other wires in the same layer. If W0 is the minimal width
of a wire in the current technology, then the minimal transistor, consisting of a wire
crosing, occupies area W 2. The total time T to drive a wire is approximated by:

T (R, +R,) C,)

where R, is the resistance of the minimum transistor, R. the resistance of the wire and

C. its capacitance.

Therefore, the total time T can be thought of as the sum of the time T4 needed to
drive a zero resistance wire of capacitance C., and the time R. C. needed to transport
the appropriate charge from a zero resistance source. Roughly, Td is the time needed to
transport the necessary charge through the bottleneck consisting of the switch (the
minimal transistor), and R. C, is the time needed to distribute the charge appropriately
over the wire w. Since the resistance of a wire is proportional to its length and inversely
proportional to its cros section we have:

- 13-

L
=w ow L (2)

where p, is the resistivity of the considered wire material. The capacitance of a wire is
inversely proportional to the distance of its neighbouring wires and layers, and propor-
tional to the area of the side facing that neighbouring layer or wire:

C -2e.. L (W- + J) (3)

where e, is a proportional constant consisting of the product of the permitivity of free
space and the dielectric constant of the insulating material (usually SiO2). Thus,

L 2 H W

-WHD fW- ,)
This suggests a signal propagation time quadratic in L. However, the resistance R, of
the minimum transistor dominates in (1) for the magnitudes of L under consideration
(smaller than, say, 1 foot). We can decrease that term by fitting a larger driver transistor
to the wire. This transistor, in its turn, must be driven by the minimal transistor. Iterat-
ing this scheme, cf rMeaB0], we obtain a sequence of transistors, of which each next one
is a factor a larger than the preceding one. The final transistor in the sequence should
be large enough to drive the wire in a sufficiently short time. (We can think of this
scheme as a sequence of switches where each switch serves to switch the next larger
switch, and the largest switch in the sequence controls the large channel through which
the charge is transported to the wire. Although the time to actually pass the appropriate
charge from source to wire can be made smaller by fitting a larger final driver transistor
to the sequence, there seems no way to get rid of the time needed to switch all transis-
tors in between the smallest transistor and the largest one.) The time to drive a driver
with capacitance C 2 by a driver with smaller capacitance C1 is given by [Mea80]:

C 2
(5)T Cl

where r is the time it takes a minimal transistor to charge the gate of another minimal
transistor. If C, is the capacitance of the minimal transistor then for a ramp of r
drivers:

. ~~ ~ • f log. ()

taking Td = r ra time to charge the wire if it had no resistance. The capacitance of
the minimum transistor is given by

w0 (7)

where D o is the thickness of the gate insulator and el is the product of the permitivity
of free space and the dielectric constant of the gate insulator. Thus we can drive a zero
resistance wire of capacitance 0, through a sequence of r drivers for fixed a in time:

- 14-

C4 l. (8)

From (1), (4) and (8) we obtain an expression for T-Td+ C.R.,. In [MeaS2] it
was observed that by keeping the derivatives, with respect to L, of the two terms Td
and C.R. balanced:

Ll'c " w H (9)

T grows logarithmic in L. Viz., by assumption of equality (10) we obtain:

T - or I In DO) +1

According to (9) we obtain logarithmic signal propagation delay by, all other things
being equal,

L(+ H D-) constant (10)

rather than by just keeping L2 proportional to WH as in [Mea82]. Keeping the
interwire distance proportional to the wire width, and the interlayer distance propor-
tional to the wire height, we observe that if W, H and L are kept in proportion a loga-
rithmic propagation delay is attained. (Note that we cannot reach this effect by keeping
the wire width the same but using very 'tall' wires or vice versa.) The aspect ratio of a
wire is the quotient of its width and length. To obtain a logarithmic signal propagation
delay we thus need the fixed constant aspect ratio following from (9) and (10) for all
wires in the layout. In designing such a high speed layout we therefore need to install
drivers to drive the long wires and to design all wires with a constant aspect ratio a >0.
Therefore, a wire of length L in such a layout has area aL 2. The area taken by the
driver is linear in the length of the wire rMea82]: the minimal transistor occupies area
W02, the next driver area W0, and so on for log.L terms for an L-length wire. The

total driver area for an L -length wire becomes W0 (L -1)/(c-1). This area is required at
the lowest silicon layer of the chip; the long interconnect wires are executed in the upper
metal layers.

The effect of having all wires in the layout with the same constant aspect ratio
spells disaster for circuits which necessarily have many long wires. This holds for trees,
but more so for fast permutation networks. However, let us look what happens for
natural wire length distributions.

4.2. Wire Length Distributions

Let f : N --l N, connected with a VLSI layout, be a wire length distribution function
which yields the number f (i) of wires of length i in the design.

Every VLSI layout must have a constant bounded fan-in and fan-out of wires for
the components (transistors). If the chip area is A, then a reasonable assumption is that
the maximal wire length on a chip does not exceed

Consequently, the amount of wires in the layout is given by

#wires= Ef(i) (12)
i-i

To achieve logarithmic propagation delay we can estimate and bound the layout
area occupied by the fattened wires as follows. Let C be the amount of area of the lay-
out occupied by non-wire components such as transistors. Assuming that C is also the
order of magnitude of the number of basic components like transistors or logic gates in
the circuit we can reason as follows. Since the wires only serve to connect components
we have C E 0(# wires) in a connected layout. The components are assumed to have at
most a limited t connections to attach wires, which we suppose to account also for the
fan-in and fan-out of the interconnect wires. Therefore C E fl(# wires) and conse-
quently C E 19(# wires). Since we are primarily interested in orders of magnitude in the
sequel, we are justified to use C interchangeably for the amount of area occupied by the
non-wire components, the number of non-wire components and the number of wires.
The maximal area occupied by the wires (and interwire distances) under (10) is bounded
by the available area:

i-1

where a is the constant quotient of width and length (the aspect ratio) of the connect
wires as required by (10). Using a simple theoretical argument and an experimental
study of actual layouts (Don8l] develops the following wire length distribution relation-
ship:

1(i) = Lci->J (1<i <L.m,,) and (14)

for a normalization constant c yet to be chosen. Here L m. is a constant related to the
size of the array (rectangular chip) and the adequacy of the placement; and X is a con-
stant characteristic of the logic. Equation (14) is derived using "Rent's Rule" which
states that the average number of terminrls per complex of C elements (in units,
modules, cards, gates etc.) is tC' where t is the number of connections per individual
element and p is the Rent constant characteristic of the logic complex. The analysis goes
by dividing a square array of cells into 4 equal square arrays recursively down until the
individual areas are the individual elements of the original logic. On each level of the
recursion the number of connections crossing boundary lines is determined using Rent's
rule. This shows that X %w 3-2p. In [Don8lj experimental results are given for some
actual layouts placed using a hierarchical placement program: layouts for high-speed
logic where p was found to be 0.75 and a layout for a hand calculator chip with
p =0.59. Let furthermore the network be connected, so the maximal amount of area
units C available to place the components is not greater than the number of wires plus

-16 -

Considering just the wire length distribution while leaving free the actual circuit
topology, placement and routing in the layouts, attaining a logarithmic signal propaga-
tion delay by changing constant wire width to constant aspect ratio for all wires in a
layout can carry a surprisingly severe penalty. This follows immediately from (11), (12),
(13) and (14), and is expressed by the theorem below. The (simple) analysis of this fact,
and the proof of the Theorem, are relegated to the Appendix.

Theorem. Let the original layout area be A and the original amount of wires in
the layout be C. For the wire length distribution f (i)= 1ci-J for l<i <VrA" and

f (i) ;0 for i > vA ", the change from constant wire width to wires with a constant
aspect ratio has the following effect.

(i) Keeping f and C the same, the area has to increase from A to exp(0(vA -)).

(ii) Keeping f and A the sime, the number of wires (c.q. components) has to decrease

from C to O(log C).

(iii) Keeping A and C the same, the wire length distribution has to change to

f' (i)= Lc' i-(2+')J for some small e>0 (l5i < AV').

We observe that in case (i) of the Theorem the wires get so long that the loga-

rithmic propagation delay turns out to yield about the same absolute time delay as in
the original wires. In case (ii) of the Theorem matters are probably as bad because the
bit capacity of the chip has been logarithmically reduced. Finally, in case (iii) of the
Theorem the subject circuit topology may not have a layout with the required wire
length distribution.

It therefore appears that only circuits for which there are layouts with wire length
distributions with relative large X, will profit from this scheme for logarithmic signal prc"-
pagation delay.

Acknowledgement.

Baruch Awerbuch, Evangelos Kranakis and Yoram Moses read the draft and gave advice on
presentation.

References

Bur46.Burks, A.W., H.H. Goldatine, and J. von Neumann, "Preliminary discussion of the logical
design of an electronic computing instrument," Report, Princeton Institute for Advanced
Study, June, 1946. (Second Edition, September 1947)

Gol72.Goldstine, H.H., The Computer: from Pascal to von Neumann, Princeton University Press,
Princeton, N.J., 1972.

Lam78.
Lamport, L., "Time, clocks, and the ordering of events in a distributed system," Commni-
cations of the Assoc. Comp. Mach., vol. 21, pp. 558-565, 1978.

MeaSO.
Mead, C. and L. Conway, Introduction to VLSI Systems, Addisson-Wesley, Reading, Mass.,
1980.

Mul85.Mullender, S.J. and P.M.B. Vitknyi, "Distributed match-making for processes in computer
networks," in Proceedings 4t Annual ACM Symposium on Principles of Distributed

- 17-

Computing, pp. 261-271, 1985.

Neu4.
Neumann, J. von, "First draft of a report on the EDVAC," Draft Report, Moore School of
Electrical Engineering, University of Pennsylvania, Philadelphia, May, 1945.

Tur36.Turing, AM., "On computable numbers with an application to the Entscheidungsprob-
lem," Proc. London Math. Sot., vol. 42, pp. 230-265, 1936. Correction, 'id, 48 pp. 544-546
(1937).

Vit84.Vitinyi, P.M.B., "Distributed elections in an Archimedean ring of processors," in Proceed-
ings 16th Annual ACM Symposium on Theory of Computing, pp. 542-547, 1984.

Vit85.Vitlnyi, P.M.B., "Time-driven algorithms for distributed control," Report CS-R8510, Cen-
tre for Mathematics and Computer Science, Amsterdam, April, 1985.

VU85.Vitinyi, P.M.B., "Area penalty for sublinear signal propagation delay on chip," in Proceed-
inga 26th Annual IEEE Symposium on Foundation# of Computer Science, 1985.

Mea82.
Mead, C. and M. Rem, "Minimum propagation delays in VLSI," IEEE J. on Solid State Cir-
cuits, vol. SC-17, pp. 773 - 775, 1982. Correction: hbid, SC-19 (1984) 162.

U1184.Ullman, J.D., Computational Aspecte of VLSI, Computer Science Press, Rockville, Mary-
land, 1984.

Don8l.
Donat, W.E., "Wire length distribution for placement of computer logic," IBM J. Res.
Develop., vol. 25, pp. 152 - 15, 1981.

Appendix

From (13) and (14) we can estimate the maximal figure for the normalization constant c. For
X- 3:

:w (A -CX3-) (15a)c a (A (3-'\)-1)

and for X=3,

2(A-C) (15b)
a log A

Consequently, for X741 & X3-3 by (12):
VT (A C X3_)X) (A w-xv)I.C f E 1(i) (lea)

a (1-X) (A(4)21

and for X=3,

C % (A-0TXA-1) (16b)
aA logA

For X=1,

IAi A-C
c <1, Ef (0 (A-1) log A (al n)

(Note: for X <I1 we obtain c < 1, resulting in fr (i)ft alo for smal i , ad C7 a small constat.)

- 18-

For comparison we give an analogous analysis under the constant wire widtL assumption.
Then equations (11) - (12) stay the same but equation (13) becomes

f (i) i Fz A-C (17)

Thus, for f(i) Lci-J (1<i<%7) and f(i) ,0 (i> ') and with A, C and c as
above we obtain the following relations. For X=1:

A-7 (18)

C ; (A-C)logA
2(%/A---1)

For X='41 & X#2:

c (2-X)(A -C (19)A (2-\)/-1

c (2-X)(A -C)(A (1-)l/l)

(I-XXA (2-\)/_ 1)

For X=2:

2(A-C) (20)log A

c 2(A-C)(v'T-1)

V- log A

(Note: for X<0 we obtain c <1.) For X >0 we have C E O(VT). Thus:

Proof of Theorem. Since we assume the circuit to be connected we have
A > A -C > A /2 in the various equations. We also assume A >> 1.

(i) Equate expression (18) for C with expression (16c) for C, with A' substituted for A in
the latter. This yields log A' E fl(V\(").

(ii) Substitute C' for C in equation (18) and express C' in terms of C by eliminating A
from the resulting equation and (16c).

(iii) Equate expression (18) for C with expression (16a) for C (expressions (16b) and (16c) con-
tradict (18)). The terms (A -C) on both sides cancel each other. Solving X yields
X = 2+(A, a) > 2 with e(A, a)--O for A --+o and a constant. Every distribution
with exponent equal or larger than this X suffices. .

a ". - j.-'1

OFrTCIAL DISTRIBUTION LIST

1985

Director 2 Copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 Copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 Copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 Copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 Copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 Copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

Dr. G. Hopper, USNR 1 Copy
NAVDAC-OOH
Department of the Navy
Washington, DC 20374

a.- V6,%f-'

- -- I

I

.' ,.~,e -.

