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PREFACE

The U.S. Army Engineer Waterways Experiment Station (WES) was requested
by the Air Force Office of Scientific Research (AFOSR) to provide a complete
and consistent set of laboratory mechanical properties for two soils for use
in support of AFOSR contract number F49620-80-C-008, "Fundamental Properties
of Soils for Complex Dynamic Loading," with Applied Research Associates,
Inc., Albuquerque, New Mexico. The work reported herein was funded under
AFOSR-MIPR-82-00003, Project 2307/C1 FY 82; the technical contact was
LTC John J. Allen, AFOSR/NA.

The WES project engineer for this study was Mr. B. R. Phillips of the
Geomechanics Division (GD), Structures Laboratory (SL), working under the
general direction of Mr. J. Q. Ehrgott, Chief, Operations Group, GD, and
Dr. J. G. Jackson, Jr., Chief, GD. The laboratory composition and mechanical
property tests were conducted by personnel of GD and the Instrumentation
Services Division. The laboratory classification and index tests were con-
ducted by personnel of the Soils Testing Facility, Soil Mechanics Division,
Geotechnical Laboratory. This report was prepared by Mr. Phillips and
transmitted to the sponsor in February 1983.

COL Tilford C. Creel, CE, and COL Robert C. Lee, CE, were the Commanders
and Directors of WES during this investigation. COL Allen F. Grum, USA, was
the previous Director and COL Dwayne G. Lee, CE, is the present Commander and
Director. Mr. F. R. Brown and Dr. Robert W. Whalin were the WES Technical
Directors. Mr. Bryant Mather was Chief, SL.
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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of ﬁeasurement used in this report can be converted to SI

(metric) units as follows:

Multiply By To Obtain
degrees (angle) 0.01745329 radians
feet 0.3048 metres
gallons (US liquid) 3.785412 cubic decimetres
(litres)
inches 2.54 centimetres
kips (force) 4, 448222 kilonewtons
kips (force) per 6.894757 megapascals
square inch
megatons (nuclear 4,184 petajoules
equivalent of TNT) '
pounds (force) per 6.894757 kilopascals
square inch
pounds (mass) 0.4535924 kilograms
pounds (mass) per 16.01846 kilograms per
cubic foot cubic metre
3




MECHANICAL PROPERTIES OF REID-BEDFORD MODEL SAND

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Applied Research Associates, Inc. (ARA), was funded by the Air For e
Office of Scientific Research (AFOSR) to evaluate the ability of different
mathematical constitutive models to simulate the behavior of soils subjected
to complex dynamic loadings produced by both explosive- and earthquake-
induced ground shock. To accomplish this study, ARA required a complete set
of laboratory data for two sands. A complete set of properties included
static and dynamic uniaxial strain and triaxial shear data on both dry and
fully-saturated specimens. The U. S. Army Engineer Waterways Experiment
Station (WES) was requested by AFOSR to assemble data from WES files on two
sands and to supplement the information with additional laboratory tests as
required. In January 1982, the available laboratory data on dry Reid-Bedford
Model (RB) sand and back-pressure saturated Misers Bluff (MB) sand were
reported in convenient formats for constitutive property analyses (Refer-
ence 1). Additional data obtained for MB sand and an analysis of the com-
plete set of MB sand data were reported in Reference 2., Additioral labora-
tory tests were also conducted on RB sand to complete that data set. All of
the available RB sand data were then analyzed to develop a complete and con-

sistent set of material properties for use in numerical calculations.

1.2 PURPOSE AND SCOPE

The purposes of this report are to (a) preseat the results of the
additional laboratory tests conducted on saturated specimens of RB sand
remolded to an air-dried density of approximately.l.65 g/cc and (b) document
an analysis of all the RB sand laboratory data. Results of laboratory
classification, index, and composition property tests and the mechanical
property data on saturated RB sand are presented in Chapter 2. Chapter 3

documents the analysis of all the laboratory data on RB sand and presents




representative responses. Comparisons of the representative relations for
this material undet three differeat test conditions are contained in
Chapter 4. '
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CHAPTER 2

LABORATORY TESTS

2.1 CONVENTIONAL SOIL TESTS

Samples of RB sand were split from the available supply of material and
tested to determine grain size distribution, Atterberg limits, and specific
gravity (Reference 3). Results of these tests indicated that the RB sand
used in this study was nonplastic and had a specific gravity of 2.65. The
results of grain size distribution tests are shown in Figure 2.1, Using
these data, the RB sand was classified according to the Unified Soil Classi-
fication System (Reference 4) as an SP sand.

The grain size distribution and specific gravity reported in Reference 1
for R3 sand are almost identical to the data in Figure 2.1. A comparison of
the gradation data is shown in Figure 2.2. The material tested previously is

essentially the same as the material used for tests reported in this chapter.

2.2 COMPOSITION PROPERTY TESTS

Prior to performing each mechanical property test, the height and
diameter of each remolded specimen were obtained. These measurements, along
with the known weight of material and the sand's specific gravity, were used
to calculate air-dried density Y4 and void ratio e (the ratio of void
volume to solid volume). Using measurements taken during the test and
assuming that the specimen was completely saturated, the wet density Yy and
water content w at the end of the back-pressure saturation phase were

calculated. These data are given for each test in Table 2.1.

2.3 MECHANICAL PROPERTY TESTS

A total of 24 consolidated-undrained and consolidated-drained mechanical
pronerty tests were performed on fully saturated specimens of remolded RB

sand to complete the laboratory data base for this material.
2.3.1 Description of Tests and Test Program

A brief description of each type of test conducted to augment the RB

sand data in Reference 1 follows:




a. The isotropic compression (IC) test subjects a cylindrically shaped
specimen to an equal all-around confining stress (after initial
effective stresses are applied) while measurements of the specimen's
height and diameter changes are made. The data are normally plotted
as pressure versus volumetric strain, the slope of which is the bulk
modulus K .

b. The triaxial compression (TX) test is conducted after a desired
initial effective stress is applied during the IC test. During a
drained test, the cell pressure and the pore pressure (and therefore
the effective stress) are held constant while vertical load is
increased and measurements of the specimen's height and diameter
changes are made. As vertical stress is applied during an undrained
TX test, the cell pressure is held constant while pore pressure (and
the resulting effective stress) is allowed to change. The data can
be plotted as principal stress difference versus axial strain, the
slope of which is Young's modulus E , or as principal stress }
difference versus principal strain difference, the slope of which is
twice the shear modulus G . The maximum principal stress differ-
ence the specimen can support or the principal stress difference at
15 percent axial strain during shear loading (whichever occurs
first) is defined as failure and describes one point on a failure
surface. The failure surface is depicted as a plot of principal
stress difference versus mean normal stress.

W

Al

c. Two types of uniaxial strain (UX) tests were conducted:

Phyondn

(1) The first (designated UX) is conducted by applying a vertical
pressure to a wafer-shaped specimen that is physically constrained |
from deflecting radially by a steel ring. Measurements are made of
the applied vertical stress and the specimen's height change. The 3
data are plotted as vertical stress versus vertical strain, the !
slope of which is the constrained modulus M . 4

(2) The second type of UX test (designated UX/Ky) is conducted by apply- 4
ing radial pressure to a specimen until a slight inward movement of
the diameter is detected. Vertical load is then applied until the f

specimen returns to its original radial position (zero radial
strain). This process is repeated throughout the test., As in the
UX test, the data are plotted as vertical stress versus vertical
strain, the slope of which is the constrained modulus M . When the
data are plotted as principal stress difference versus mean normal
stress, the slope (assuming elastic theory) is 2G/K, or in terms of
Poisson's ratio v , 3(1-2v)/1+v).

.

The test program consisted of 3 static and 2 dynamic undrained UX tests,
1 static drained UX test, 7 static consolidated-undrained IC-TX tests, 3 i
static consolidated~drained IC-TX tests, 2 undrained and 1 drained IC tests,
3 static consolidated-undrained UX/Ko tests and 2 static consolidated-drained

UK/[(o tests. All IC-TX and UX/Ko tests were performed at one of four initial

- — ——e e




effecrive stresses, i.e., nominally 0,14, 1.72, 3.45, or 6.90 MPa. Each
specimen was back-pressure saturated prior to the application of the

effective stress.
2.3.2 Test Procedures

2.3.2.1 UX Tests. Procedures to prepare static and dynamic UX test
specimens of saturated RB sand were identical. The weight of air-dried
material required to obtain a density of 1.65 g/cc was split from the supply
of RB sand. The material was then "spooned" directly into the 9.1-
centimeter-diameter and 2.3-centimeter-high specimen chamber which was three-
fourths filled with tap water. As the sand was placed into the chamber, the
water was displaced, and the resulting specimen was "almost" saturated. The
test device was assembled by placing a rubber membrane containing a footing
over the specimen and securing the top of the chamber. The footing rode
directly on the center of the specimen and was connected to a linear variable
differential transducer (LVDT) which measured vertical deflection during the
test. After assembling the test device, the specimen was fully saturated by
increasing both the external vertical stress and the internal back pressure
(maintaining an effective vertical stress of 0.69 MPa) until the vertical
stress was approximately 3.45 MPa. Once the specimen was saturated, the
static effective vertical stress was further increased to the desired level
by increasing the applied vertical stress while holding the pore pressure
constant. The drainage line was then closed for an undrained test or left
open for a drained test. Vertical stress was then increased statically or
dynamically to the desired total stress level while measurements of vertical
stress and vertical deflection were made. During an undrained test, pore
pressure measurements were also made using a hypodermic needle which extended
into the center of the specimen. Both drained and undrained tests were
conducted; dynamic tests were performed only under undrained conditions.
Test neasurements were stored on both magnetic tape and light beam oscillo-
graph for later processing and plotting.

2.3.2.2 1C-TX and UX/Ko Tests. The preparation of specimens for IC~TX
and UX/K0 testing was identical, and the tests were performed in the same
test device. The required amount of air-dried material was split from the
supply of RB sand and placed into a steel remolding jacket containing a 0.06-

centimeter-thick rubber membrane. A vacuum was applied through the jacket to




pull the membrane against the jacket's sides. The sand was spooned into the
device until a dedéity of approximately 1.65 g/cc was obtained. Each speci-
men was remolded to about 5.1 centimeters in diameter by 1l.4 centimeters in
height. The membrane was then released from the jacket, attached to a top
cap and base with rubber bands, and coated with a layer of liquid synthetic
rubber to inhibit breakdown of the membrane due to the hydraulic oil con-
fining fluid.

The vertical measurement system consisted of two vertically-mounted
LVDT's positioned 180 degrees apart on top of the specimen. The radial
measurement system for the IC-TX tests was a lateral deformeter consisting of
four strain-gaged steel arms positioned equidistant around the specimen's
midheight. The radial measurement system for the UX/K° tests was a single
lateral deformeter consisting of four horizontally-mounted LVDT's positioned
at quarter points around the specimen's midheight.

After the specimen and its instrumentation were in place, the test
device was assembled, the specimen was back;pressure saturated, and one of
four initial isotropic effective stresses (0.14, 1.72, 3.45, and 6.90 MPa)
was applied to the specimen with the drainage line open. If the specimen was
to be tested in a drained condition, the test was performed immediately after
application of the effective stress. TFor undrained tests the drainage line
was closed prior to continuing the test.

After back-pressure saturation and application of the effective stress,
the IC-TX tests were loaded vertically until failure (see Section 2.3.1)
occurred. Measurements were made of vertical load, confining pressure,
movement of the piston, and vertical and radial deflection of the specimen.
During undrained IC-TX tests, pore pressure measurements were also made.

Data were recorded by a digital data acquisition system which sampled the
data channels at designated time intervals and recorded the data on a mini-
cassette tape for later processing and plotting.

Zero radial deflection for UX/Ko tests was méintained after the iso-~
tropic effective stress was applied to the specimen. Hence, some radial
deflection occurred prior to UX loading. As vertical load was applied to the
specimen during the UX/K° test, the radial deflections were constantly moni-

tored and adjusted back to zero by changing the confining pressure. The data
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obtained for these tests were the same as those obtained for IC-TX tests and

were recorded by the digital data’acquisition systen,
2.3.3 Test Data

The recorded data were related to the pretest calibration steps of the
corresponding measurement unit to calculate pressure, load, or deformation.
Using these raw data along with the specimen's height and diameter, calcula-
tions were made of appropriate stresses and strains and computer plots were
generated. For RB sand, the specimens deformed predominately as right
circular cylinders during the IC tests; hence the equations used to calculate
volumetric strain were based on this assumed shape (Reference 5). The
results of the mechanical property tests conducted on saturated RB sand
specimens are presented in Plates 1-24 and are summarized in Table 2.1 with
the composition property data.

Results of the static and dynamic UX tests are shown as plots of
vertical stress versus vertical strain in Plates 1-6. The dynamic tests are
shown with both a static and a dynamic portion. The static portion includes
the back-pressure saturation phase and application of the initial effecctive
stress; the dynamic portion is the remainder of the test.

The UX/KO tests are shown in Plates 7-11. Each plate includes plots of
(a) total mean normal stress versus volumetric strain, (b) principal stress
difference versus total mean normal stress, (c) total axial (vertical)
stress versus axial (vertical) strain, (d) principal stress difference versus
effective mean normal stress, and (e) pore pressure versus axial strain.
Each plot shows the results of the entire back-pressure saturation phase,
application of the isotropic effective stress, and UX/Ko loading.

Plates 12-14 and 15-24 show the results of the IC and IC-TX tests,
respectively. The IC data plates contain the same plots as those described
for the UX/K° tests. For the IC-TX tests, each p}a:e contains plots of
(a) total mean normal stress versus volumetric strain, (b) principal stress
difference versus total mean normal stress, (c) principal stress difference
versus both principal strain difference and axial strain, (d) principal
stress difference versus effective mean normal stress, and (e) pore pressure

versus axial strain.
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CHAPTER 3

DATA ANALYSIS AND REPRESENTATIVE PROPERTY RECOMMENDATIONS

The laboratory test results on RB sand, reported in Reference 1 and in
Chapter 2 of this report, were used to develop a consistent set of represen-
tative laboratory properties that could subsequently be used to develop
mathematical constitutive models.

Representative property recommendations include a uniaxial strain (UX)
compressibility relation, a UX stress path, a total-stress TX failure rela-
tion, and a total-stress TX stress path under three different conditions,
i.e., unconsolidated-undrained (UU) tests on dry material, consolidated-
drained (CD) tests on saturated material, and consolidated-undrained (CU)
tests on saturated material. In addition, an effective TX stress path rela-
tion and pore pressure versus axial strain relation are given to represent
the CU response of the saturated sand. All representative curves for the
saturated RB sand are shown referenced to the point at the end of back-
pressure saturation and after application of a given effective stress.

To develop these representative responses, all of the valid test data of
a given type were plotted on a single page and a representative curve was
selected based on an initial air-dried density of 1.65 g/cc and, for the
saturated specimens, initial effective stresses of 0.14, 1.72, 3.45, and 6.90
MPa. When all representative curves were available for each type of test
and condition, the curves were re-examined and adjusted (if required) so that
the complete set of representative properties was internally consistent. The
analysis results presented in this chapter constitute only one approach to
the development of representative calculational properties; other approaches

and analysis results are possible.
3.1 UX COMPRESSIBILITY

3.1.1 UU Tests on Dry Sand

The results from the static UX tests, the static UX/KO tests and the
static UX/Null test (described in Reference 1) on dry RB sand are shown in
Figure 3.1. The two UX/K° tests (TK.l and TK.2) are slightly less compressi-
ble than the remaining tests because the densities of both these specimens

were greater than those of the other test specimens. A representative
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loading relation was drawn through the center of the data. Representative
unloading relations from vertical stress levels of 17.7 and 35.4 MPa are also

shown in Figure 3.1.
3.1.2 CD Tests on Saturated Sand

The uniaxial strain portions of the static CD UX tests and the static CD
UX/Ko tests are shown in Figure 3.2, The UX tests were rezeroed at the end
of the back-pressure saturation phase and the UX/Ko tests were rezeroed at
the end of application of the effective stress. The Ux/l(o test results are
slightly more compressible than results of the UX tests. This 1is thought to
be caused by the procedure used to conduct the tests. During the UX/KO test,
only the specimen's midheight is monitored and maintained at zero radial
deflection; it is assumed that the entire length of the specimen responds
similarly. During the UX test, the radial deflection is physically
restricted by a steel ring and, therefore, uniaxial strain response along the
entire height of the specimen is insured. For this reason, the results of
the UX tests were more heavily weighted in the selection of a representative

relation than the UX/Ko tests.
3.1.3 CU Tests on Saturated Sand

Linear approximations of the static and dynamic CU UX tests and the
static CU UX/KO tests are shown in Figure 3.3 rezeroed to the point after
back-pressure saturation and application of the effective stress. The static
and dynamic UX tests group together indicating that no significant rate
effect occurs when times to peak stress are greater than 70 msec. The UX/Ko
test results show more variability and are more compressible than the UX
tests. This is believed to be due to the UX/KO tests not being under as
strict a uniaxial strain condition as the UX tests (see Section 3.1.2).
Mixture theory (Reference 6) assumes that the compressibility of individual
minerals and water can be mathematically combined to calculate the compressi-
bility of the mixture. If it is assumed that the only mineral in RB is
quartz, a quartz/water mixture with a back-pressure saturated density of
2.020 g/cc would yield a bulk modulus of 7840 MPa. Since a saturated speci-
men should have a constrained modulus approximately equal to the bulk modulus

(based on elastic theory), the calculated modulus is slightly more
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compressible than the UX test results. The representative relation was drawn
through the center of the UX tests and represents a constrained modulus of

8700 MPa.

3.2 UX STRESS PATH
3.2.1 UU Tests on Dry Sand

The results of two static UX/Ko tests and one static UX/Null test are
shown in Figure 3.4 as plots of principal stress difference versus mean
normal stress. The two UX/Ko tests have the same characteristic shape; the
initial behavior of the UX/Null test is slightly different from these. A
representative loading relation was selected that is initially through the
center of the data and, at higher stress levels, is more like the lower
density UK/Ko specimen (TK.l). This representative relation implies an
initial loading Poisson's ratio of 0.29 and a loading Poisson's ratio of

0.37 at a principal stress difference of 10 MPa.
3.2.2 CD Tests on Saturated Sand

A summary of the static CD UX/KO test results are shown as plots of
principal stress difference versus total mean normal stress in Figure 3.5.
The data were rezerced to the point after application of the isotropic
effective stress. Although the two tests were performed at different initial
effective stresses, the estimated dry densities at the beginning of uniaxial
strain loading were the same. The curves exhibit the same characteristic
shape. The dashed line indicates that the initial portion of test RBDK.4 was
not in a state of uniaxial strain; for this reason, the results from test
RBKD.3 were more closely ‘ollowed at lower stress levels. A representative

curve was selected which goes through the center of the data.
3.2.3 CU Tests on Saturated Sand

The results from the static CU Tests on saturated RB sand are shown in
Figure 3.6. The test data were rezeroed to the point after application of
effective stress. Each of the tests show an initially steep UX stress path
followed by a flat portion, which implies a loading Poisson's ratio of about
0.49. A thorough examination of the test results indicated that immediately
after the effective stress was applied, the drain closed, and loading begun,

the specimens behaved as though they were not completely saturated. During
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the stiff portion of the curves, no radial strain resulted from the applied
load (so no offsetiing confining pressure was needed), very little increase
in pore pressure occurred, and a large increase in vertical strain resulted
from a very small increase in vertical stress. At the "break point," the
specimen began to strain radially, the pore pressure began to increase
rapidly, and a large increase in vertical stress resulted in a small increase
in vertical strain, i.e., the specimen began to respond as though it was
saturated. Experience has shown that the air should be in solution with
water when pore pressures equal or exceed 2 MPa (the pore pressure to which
the RB specimens were saturated). In addition, B-factors (values used to
determine the degree to which a specimen is saturated; Reference 7) for each
of the tests were calculated to be greater than 0.99. Therefore, for the
purposes of this investigation, the initial portions of the UX stress path
data were ignored and a representative UX stress path was constructed with an

implied value of Poisson's ratio of 0.49.

3.3 TX FAILURE

The TX failure and TX stress-strain data were analyzed together to
develop representative TX responses of the RB sand. The TX failure data
provided an overall look at TX response and aided in identifying possible
anomalous tests. The TX gtress-strain data provided information for a
further, more detailed screening. This section of the report addresses TX
failure relations for RB sand; TX stress-strain responses are discussed in

Section 3.4.
3.3.1 UU Tests on Dry Sand

The failure points from the static TX tests on dry RB sand are shown as
circles in Figure 3.7. As discussed in Sectiom 2.3.1, failure is defined as
the maximum principal stress difference which the specimen can support or the
principal stress difference at 15 percent vertical ;train during the applica-
tion of the shearing load (whichever occurs first). For confining pressures
(Or) < 4 MPa, failure actually occurred at vertical strains of less than 15
percent. For or > 4 MPa, failure was assumed to cccur at 15 percent vertical
strain. A linear approximation to the failure points was selected as the
representative failure relation. This line has a slope of 1.10 which implies

a Coulomb friction angle of about 28 degrees.
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3.3.2 CD Tests on Saturated Sand

Failure points from the three static CD TX tests on saturated RB sand
specimens are shown as circles in Figure 3.8. These data were rezeroed at
the end of the back-pressure saturation phase. Failure points represent the
results of tests at three levels of effective stress, i.e. 0.1l4, 1.72, and
3.45 MPa. Examination of the TX stress-strain data indicated that failure in
each test occurred at less than 15 percent vertical strain. The failure data
implied a gradually softening representative failure relation which is shown
in Figure 3.8 with the representative TX stress path for each level of effec-

tive stress.
3.3.3 CU Tests on Saturated Sand

TX data from the CU tests on saturated RB sand are plotted as principal
stress difference versus effective mean normal stress in Figure 3.9. The
representative failure relation was constructed through zero and along the
apparent failure portions of the test results. The representative TX stress
path relations were selected by beginning at the target levels of effective
stress and following parallel to the closest stress path until the repre-
sentative failure relation was encountered. The stress paths continued along
the representative failure relation until the maximum principal stress
difference (as defined by the representative TX stress-strain relations) was
encountered. Unloading relations for the tests at each effective stress were
very similar. The representative unloading TX stress path relations were
drawn parallel to the unloading test results starting at the maximum prin-
cipal stress difference achievable at each level of effective stress.

The CU failure data were also plotted as principal stress difference
versus total mean normal stress (Figure 3.10). This plot shows the maximum
(von Mises) strengths which the saturated RB sand can achieve at each initial
effective stress level. For initial effective stresses of 0.14, 1.72, 3.45,
and 6.90 MPa, the limiting principal stress differences are 4.40, 6.00, 6,70,
and 7.60 MPa, respectively. The Coulomb portion of the representative total
stress failure relations in Figure 3.10 is the same as the CD TX failure

relation shown in Figure 3.8.
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3.4 TX STRESS-STRAIN
3.4.1 UU Tests on Dry Sand

Figure 3.1l shows the results of dry RB TX tests conducted at constant
confining pressures of 0.4 and 4.0 MPa. Representative TX stress-strain
relations were developed for the three target confining stresses (0.14, 1.72,
and 3.45 MPa) based on maximum principal stress differences determined from
the representative failure relation in Figure 3.7 and the shapes of the TX

test results.
3.4.2 CD Tests on Saturated Sands

The test results from CD tests on saturated sands are shown in Figure
3.12 plotted as principal stress difference versus both vertical strain and
principal strain difference. These data were rezeroed to the beginning of
application of the TX load. Representative TX stress-strain relations were
developed for each target effective stress by adjusting the test results to
agree with the maximum principal stress differences determined from the

representative failure relation shown in Figure 3.8.
3.4.3 CU Tests on Saturated Sands

Figure 3.13 shows the results of the static CU tests on saturated sand
at four initial effective stresses, i.e., 0.14, 1.72, 3.45, and 6.90 MPa.
These curves were rezeroed to the beginning of the application of the TX
load. Each of the curves has a characteristic shape that ties with the TX
stress paths in Figure 3.9. For the 0.14-MPa effective stress, the stress-
strain curve is initially stiff while its corresponding TX stress path
approaches the failure relation. The stress-strain curve then flattens
exhibiting a plastic response while its TX stress path rides on the failure
relation. As the maximum principal stress difference is approached, the
stress-strain curve begins to flatten more and then unloads. For the higher
levels of effective stress, the deviation from the initial stiff portion of
the stress-strain curve occurs at the point where the TX stress path changes
curvature near the failure relation. Representative TX stress~strain
relations were developed from the test data by adjusting for the target
density and level of effective stress. The representative TX stress-strain

relations are shown as heavy lines in Figure 3.13.
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3.5 PORE PRESSURE RESPONSE DURING TX LOADING

Figure 3.14 shows the results of the CU TX tests plotted as pore
pressure versus vertical strain. Each curve in Figure 3.14 was initialized
so that the pore pressure at the beginning of TX loading equaled zero.
Representative pore pressure versus axial strain relations (heavy lines in

Figure 3.14) were based on the target effective stresses.

3.6 SUMMARY

The analyses discussed in this chapter represent one approach to the
development of representative relations for calculational properties. Each
representative relation was compared and correlated with the others to insure
internal consistency of all the properties. Individual plots of these repre-
sentative relations for dry RB sand are shown in Figures 3.15-3.18. Plots of
the representative drained and undrained responses of saturated RB sand

are shown in Figures 3.19~3.22 and Figures ‘3.23-3.28, respectively.
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drained UX compressibility relation for saturated

RB sand.

STRAIN, PERCENT

22




T ey

Y

VERTICAL STRESS, MPa

70

60

50

40

30

20

(7) reoK.2
OLLLIE]

effective stress

Oc, MPa

0}

()

40

0.69
0.69

0.69 UX TESTS

3.48
3.48
0.16

1.73 ) UX/K, TESTS

3.49

Representative Relation

0
OGO

/ O
Vi
Y/
/
/
/4
/
4 STATIC
V /A DYNAMIC
A 1 1 J
0.2 0.4 0.6 0.8

VERTICAL STRAIN, PERCENT

1.0
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Figure 3.5 Static UX/K, test results and representative
drained UX stress path relation for saturated
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Figure 3.6 Static UX/K, test results and representative
undrained UX stress path relation for
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Figure 3.14 Static undrained TX test results and representative

pore pressure versus vertical strain relations for
saturated RB sand at initial effective stresses of
0.14, 1.72, 3.45, and 6.90 MPa.
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Figure 3.16 Representative UX stress path for dry RB sand.
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Figure 3.19 Representative drained UX compressibility for
saturated RB sard,
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Figure 3.20 Representative drained UX stress path for saturated
RB sand.
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Figure 3.23 Representative undrained UX compressibility for
RB sand.
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Figure 3.24 Representative undrained UX stress path for
saturated RB sand.
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Figure 3.28 Representative undrained TX pore pressure versus
vertical strain relations for RB sand at initial
effective stresses of 0.14, 1.72, 3.45, and 6.90
MPa.
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CHAPTER 4

COMPARISONS AND CONCLUSIONS

In the past, comparisons of the behavior of sands in a dry condition and
the behavior of the same material in a saturated condition were based on
laboratory tests conducted at relatively low stress levels, i.e., a few
tenths of a megapascal. Reference 2, documented representative relations for
MISERS BLUFF sand at effective stresses of 0.14, 1.72, and 3.45 MPa. In
Chapter 3 of this report, these same representative relations were presented
for RB sand under three different conditions, i.e., UU tests on dry sand
(UD), CD tests on saturated sand (DS), and CU tests on saturated sand (US).
These data offer an opportunity to examine the response of RB sand at higher

stress levels than normally obtained in conventional testing laboratories.

4.1 UX RELATIONS

Figure 4.1 shows a comparison of the répresentative UX compressibility
relations for each of the three test conditions. The UD and DS relations
have similar shapes at stress levels above 10 MPa; however, the UD curve is
more compressible primarily because of its softer response at low stress
levels (<10 MPa). The US curve, as expected, is highly incompressible and
correspouds to a constrained modulus of 3700 MPa. The representative UX
stress paths for the three test conditions are shown in Figure 4.2. The UD
and DS paths are almost identical. The slope of the US path is extremely

small and has an implied value of Poission's ratio of 0.49.

4.2 TX RELATIONS

Figure 4.3 shows a plot of the representative TX principal stress
difference versus vertical strain curves for the three initial effective and
total confining stresses. The UD curves represent confining stresses of
0.14, 1.72, and 3.45. Representative curves for the DS and US tests are for
initial effective stresses of 0.14, 1.72, and 3.45 MPa and 0.14, 1.72, 3.45,
and 6.90 MPa respectively. A comparison of the DS and UD stress-strain
relations at given stress levels of effective/total confining stress indi-
cates that curve shapes and strains at failure are the same. However, DS

failure strengths are higher than those for the UD condition except at

49
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o, = oé = 0.14 MPa where the DS and UD failure strengths are the same. The
shapes and maximum principal stress differences of the US curves are related
to the point at which the effective failure relation is encountered and the
von Mises limiting strength for each level of effective stress, as discussed
in Section 3.4.3.

A summary of the total-stress failure relations for the UD, DS, and US
conditions are presented in Figure 4.4, The UD and DS relations diverge as
principal stress difference increases. The Coulomb portion of the US rela-
tion is identical to that of the DS relation up to the point where the von

Mises limit for each effective stress is reached.
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Figure 4.2 Comparison of the representative UX stress path for
dry RB sand with the representative drained and
undrained UX stress paths for saturated RB sand.
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Figure 4.3 Comparison of the representative TX stress-strain relations
for dry RB sand with the representative drained and
undrained TX stress-strain relations for saturated MB sand.
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Wet density: 2.834 gm/cec
Water content: 22.2 pct
Dry density: 1.6683 gm/ce
Votd ratios a.59

PRESSURES AT END OF BPS, MPa
Confining pressure: 2.24
Pors pressure: 2.83

8.“_, L

8.8 ) i i . i L i |
8.8 1.8 2.8 3.0 4.0 5.9 6.@
AXIAL STRAIN, PCT

QB.BL

20,0k

PORE PRESSURE, MPa
8
[
-

—_—
2.0 1.2 2.8 3.8 ¢.8 3.8 6.2
AXIAL STRAIN, PCT

PLATE 13



ey

c

N [*] » ("] [
s & & § S
] o [ ] a «Q
1 1 4 L

...
o
®
T

MEAN NORMAL STRESS, MPa

0.0 2.2 4.8 6.0 0.0 102.012.8
VOLUMETRIC STRRIN, PCT

- -
[ n
o Q
| 4 1

@
]
T

»
.
]

1 1 L 1 )
2.2 12.0 20.2 30.0 40.2 30.0 ¢8.8
MEAN NORMAL STRESS, MPa

PRINCIPAL. STRESS DIFFERENCE, MPa
[
o
0T T

[
.
[

el

L]
Q
T

PRINCIPAL STRESS DIFFERENCE, MPa

") i L 1 N DR 1
9.8 4.8 9.9 12.016.2 20.8 24,0
Eftective MEAN NORMAL STRESS, MPs

PLATE 14
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TEST RBIC.3

Density se remoldeds 1.834 gwioo

COMPOSITION PROPERTIES RT END OF BPS
et dansitys 2.820 gw/co
Weter contents 23.8 pot
Dry density: 1.843 gw/co
Void ratto:s 2.61

PRESSURES AT END OF BPS, MPas
Canftning presceure: 2.34
Pore pressure? 2.18
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TAT ~TX_TEST R LT
TEST RBTX1
Denstty se remolded: 1.647 gm/cc
COMPOSITION PROPERTIES RT END OF BPS
Het denetitys 2.833 gma/cc
Hater ocontent: 22.3 pot
Dry deneity:s 1.662 gm/cc
Votd ratios a.59
PRESSURES AT END OF BPS, MPas
Confining pressure: 2.356
Pore presesurs! 2.19
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STATIC IC-TX TEST RESULTS

s.er TEST RBTX.Z2
- i Density as remclded: 1.834 gm/cc
ol
i. COMPOSITION PROPERTIES RT END OF BPS
@ Wet density: 2.032 gmrce
g 4.0}- Water content: 22.7 pet
= Dry dengity: 1.655 gmscc
[ Votid ratio: 2.62
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STATIC IC-TX TEST RESULTS

TEST RBTX.3

Dansity as remolded: 1.632 gwvac

COMPOSITION PROPERTIES AT END OF BPS
et deneity: 2.822 gw/os
Hater ocontent: 23.2 pot
Dry density: 1.841 gw/ee
Void rcating 2.682

PRESSURES AT END OF BPS, MPa
Confinting pressures 2.22
Pars prassure: 2.18
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.2~ TEST RBTX.4

Dengity as remolded: !.653 gm. cc

L
COMPOSITION PROPERTIES AT END OF BPS
L Het denstity: 2.236 gmscc
4.0' Hater content: 22.1% pce
Ory density: 1.667 gmrcc
Void ratto: 2.50

MEAN NORMARL. STRESS, MPa
!

3.eb
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! Pore pressuret 2.29
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MEAN NORMAL STRESS, MPs

PRINCIPAL. STRESS DIFFERENCE, MPa

STATIC IC-TX TEST RESULTS

&.@ r TEST RBTX.5
L Denetfty as remo'deds 1.628 gm/co
5.2
COMPOSITION PROPERTIES AT END CF BPS
Het densizy: 2.219 gmce
4.0 Hater ocontent: 23.4 pet
Ory denetty; 1.63? gwmrec
3.8 | Void ratto: 8.62
| I l PRESSURES AT N OF BPS, MPa
2.@ t Confining pressure:; 2.22
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PLATE 20

STATIC IC-TX TEST RESULTS

TEST RBTX.6

Denetty ae remolded:

1.643 gwm/co

COMPOSITION PROPERTIES RT END OF BPS

Het density:
Hater content:
Ory density:
Void ratio:

PRESSURES AT END OF

Confintng pressures
Pore pressure:
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STATIC IC-TX Teo7 RESLU_TS

12.@ TEST RBTX.V
- Denstzy se remo!ded: !.634 gmroc
S18.8} v ~
COMPOSITION PROPERTIES AT END OF BPS
8' L Wet density: 2.024 gace
£ e.0 Water content: 23.! pot
zx Dry density:s 1.645 gmscc
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STATIC IC-TX TEST RESULTS

TEST RBTX.B

Denetty ae remolded: (.626 gm/cc

COMPOSITION PROPERTIES AT END OF BPS

Het denestty: 2.821 gwm/co

Hater content: 23.2 get
Ory density: 1.642 gm/cc
Void ratio: e.682

PRESSURES AT END OF BPS, MPa
Confintng precsuret 2.41

Pore pressure:! 2.1?7
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STATIC IC-TX TEST RESULTS

TEST RBTX.S

Density as remolded: 1.637

COMPOSITION PROPERTIES AT END OF BPS
Het density: 2.823 gmsce

PRESSURES AT END OF

Hater content: 22.9

gm/cc

pot

Dry denesity: 1.646 gm/cc

Vatd ratiol a.688

Confintng preseurs: 2.22
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PORE PRESSURE, MPa

Pore pressure: 2.12
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STATIC IC-TX TEST RESULTS

TEST RBTX.18

Deneity ae remolded:

1.666 gwroc

COMPOSITION PROPERTIES AT END OF BPS

Het density!
Hater content:
Dry donsityt
Vaid ratio:l

PRESSURES AT END OF
Conftning pressure:
Pore pressure:
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