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PREFACE

oA model of a system is a simplified version of the real
system. The simplification is done by introducing a set of
assumprions that express our understanding of the system's
behavior. In the process of simplification, we omit non-dominant
effects, leaving the main features of the system. The objective
of simplification is to obtain a set that can be solved by
available tools and still maintain the main characteristics of
the real system.

The model is a tool that provides forecasts of the response
of the real system to various excitations. Thus it is essential
that the model retains those features that are the subject of
investigations.

This volume contains 7 papers dealing with models of brain
mechanics. The objective of the models is to provide a tool for
simulating the mechanical behavior of the cerebral system, as
manifested by pressure, velocity, stress and strain variations,
in response to changes in input pressures and fluxes. (;-—‘_«/~

At this stage, the models deal only with changes in fluxes
pressures, stresses and stvrains. At a later stage of
investigations, the transport, spreading and interactions with
the tigsue material of chemicals carried with the brain fluids,
will be investigated and reported.

In principle, our objective is to develop concinuum models
of brain mechanics. Such models will provide information on the
behavior at every point in space andtime of the brain domain, in
response to changes in the normal behavior in various parts of

the brain (e.g., vessel occlusions). However, at this stage




reported here, only one simplified model that investigates
deformation and stress in response to pressure variations, is of
the continuum type. All other models are of the multicompartment
type.

In a multicompartment model, the entire domain, here the
portion of space occupied by the brain, is visualized as
comprised of a number of interacting compartments. Each
compartment reprsents the lumped behavior of a certain part of
the brain that has distinet features. Fluids move from one
compartment to the next under, bressure gradients. In the
present investigations, a seven-compartment model was employed to
simulate the behavior of the various parts of the brain.

Every model contains a number of parameters that express the
excitation response characteristics of elements of the
investigated system. In order to make use of a model in specific
cases, the values of these parameters must be known. The only
way to determine these parameters is to make use of observations
in the real cerebral systen, and compare them with values
predicted by the model. The process of determining model
parameters is referred to as the inverse problem.

Accordingly, one of the papers describes how the basic
parameters of the model are estimated.

[ 4

Typically, pressures and fluxes in the brain vary in a
cyclic manner, occasionally, especially under pathologic
condivions, transient changes may take place. Accordingly, the
models presented in the various papers, simulate non-steady and
transient flow conditions. In order to enable such conditions,

compliances had to be introduced between adjacent compartments




(in addition to resistances that control the pressure flux
relations).

Resulvs of model predictions were compared with actual
observed data, whenever available.

The results of the comparisons were satisfactory and

encouraging.
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INTRODUCTION

Ever since the cerebrovascular fluid system was modelled, the rela-
tively simple compartmental representation has been favoured. MONRO, the
younger (1783), the pioneer of intracranial mechanics, characterized the
physical forces in the intracranial cavity assuming incompressibility of the
fluid; nearly incompressibility of the brain tissue, and zero motion of the
boundaries. The intradural space was regarded as bi-compartmental - brain
and blood, so that a change in either compartment had to be compensated for

by the other.

KELLIE (1824) modified this hypothesis by assuming three instead of two
compartments, namely arteries, veins and brain tissue. About the brain tissue,
Kellie said: "The brain itself, little compressible is contained within a
firm and unyielding case of bone which it exactly fills .... If these premises
be true, it does not then appear very conceivable how any portion of the circu-
lating fluid can ever be withdrawn from within the cranium, without its place
being simultaneously occupied by some equivalent or how anything new or exu-

berant can be intruded, without an equivalent displacement" (loc. cit., p. 102).

The Monro-Kellie doctrine of almost absolute rigidity, prevailed into
this century and was only relaxed in stages. The number of fluid compart-
ments was increased to six: artery (4), capillary (C), venous (V), venous
sinus (S), jugular bulb (J) and cerebrospinal fluid (F) (AGARWAL, 1971). Yet
the fluid itself remained incompressible. More recent approaches relaxed the
latter assumption and the fluid was taken as linearly compressible, namely
the change in pressure and the change in volume are proportional to each
other, and the coefficient of proportionality, the bulk modulus or its inverse

- the compliance, are constants.




The thick layer of the brain tissue between the ventricles and the sub-

‘ argchnoidal space has also undergone various stages of modelling. The buoy-
ancy theory (LIVINGSTON, 1965) regarded the tissue phase submerged in the ideal,
incompressible (Pascalian) CSF fluid to which Archimedes law applies. The

tissue itself was taken as single-phase and incompressible.

When the incompressibility assumption was abandoned, it paved way to
compressible representations for the brain tissue. Numerous experimental
studies have been conducted in the past four decades in that direction. The
results pointed at the inelasticity of the tissue or, alternatively, the non-
linearity of the compliance (RYDER et al., 1953; MILLER and GARIBI, 1972;
LUNDBERG et al., 1974; MARMAROU et al., 1975; MILLER, 1975; HAKIM et al., 1976;
LEWER ALLEN and BUNT, 1977; GRIFFITH et al., 1978; BRUCE, 1973; CHOPP and
PORTNOY, 1980). To overcome the "non-linearity" of a single coefficient, more
complex models of single-phased, multi-parameter viscoelastic materials were
introduced such as the one consisting of four viscoelastic coefficients known
as the "three-parameter solid", coupled dynamically with another elastic

element (PAMIDI and ADVANI, 1978).

In the literature on the mechanics of head impacts, the skull was ide-
alized to be a rigid sphere with an opening that simulated the foramen magnum,
and the spinal dura mater was idealized as a cylindrical membrane fitted to
the foramen magnum (LIU, 1978). The intradural content of the central nervous
system (CNS) fluid-filled continuum was regarded by some as a single-phase
incompressible fluid in a two-compartment (skull and spinal dura mater) struc-
ture; or else as a single-phase compressible elastic fluid (later, also a
viscoelastic fluid) possessing a single averaged "elastance" (strictly, a bulk
modulus - inverse of compliance) along with a shear modulus (POLLACK and
BOSHES, 1936; OMMAYA and HIRSCH, 1971; LUFGREN and ZWETNOW, 1973; GOLDSMITH,

1972; MARMAROU, 1973; KING and CHOU, 1976).
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A Here, we extend the discussion to the n-compartmental model and present
the methods how to solve it for the general non-steady state flow with con-
stant resistances and compliances. An explicit nﬁmerical solution is given

for the case n=7. It is also shown that for the slow mode, compartmental pres-
sure waves, solutions for the more simplified quasi-steady state flow are al-

ready in good agreement with some clinical measurements.
1. The Compartmental Flow Equation

By its nature, the compartmental modelling of any hydraulic system is a
lumped-parameter modeiling. Thus, the resistance to flow due to a particular
vessel type is lumped at the outflow of the compartment. Likewise, the inte-
grated change in volume of each compartment is representable as an overall com-
partmental property. Furthermore, if there is a production or a drainage of
fluid in a compartment, the source-sink function is attributed to the entire
compartment. Finally, the functional interaction between the components of a
lumped parameter model is assumed to be at the interface between adjacent com-

partments.

The general compartmental flow problem is that of the non-steady state.
Here, all parameters are functions of time and the deformability of the com-
partments is taken into account. Fluxes are composed of two terms: (i) Flow
rate of fluid as result of pressure difference (transmural) between two com-
partments, expressible as
AP

QI = 2P = & (P = pressure, R = resistance, (1)

2 = fluidance)

(ii) Flow rate from the deformational volume change which, in turn, relates 'to

the change in pressure by a functional relation of the type
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Q" - dt = C _d_t_

(C = compliance) (2)

The governing equations for the compartmental flow problem are the
balances of mass and of linear momentum. We do not consider high-speed turbu-
lent motions (vanishing of the angular momentum) and the System is assumed
isothermal and thermodynamically stable (identical vanishing of the energy
balance). Under these assumptions, the mass and linear-momentum balance con-
ditions for the n-compartmental flow model are grouped into a single matrix

equation of the type (KARNI et al., 1985)

o
al f,
&%
+
[}
1"
"
1
+
V)
w

Here, P is the n-column pressure vector, Z is the symmetric nxn fluidity
(inverse of resistivity) matrix, [ is the symmetric nxn compliance matrix, ¢
is the n-column flux vector, and S - the n-column source/sink vector which
either adds or drains out fluid from the compartmental domains. If S = 0, the
system is conserved, and equation (3) reduces to the conservation of mass,
also known as the continuity equation. The numerical solution presented here

is for a conservative system. Solutions for non-conservative systems are dis-

cussed elsewhere (SOREK et al., 1985).

In general, equation (3) is an inhomogeneous, ordinary differential
matrix equation of the first rank with respect to time (¢). It is also non-
linear, since, if homeostasis is taken into account, the sensory and endo-
crinological biofeedback contro)l mechanisms turn the coefficient matrices C

and Z functions of the dependent vector P and of the independent scalar ¢.

Thus, in the general case,
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c = g[g(t),t],- z = z[pe)t]

There are, however, some passive cases that can be approximated by the
linear problem, i.e. when ¢ and Z assume constant values. Moreover, even if
the problem is non-linear we have to pass through the linear case and pro-
ceed to the non-linear case by applying incremental perturbation techniques.

The rest of the discussion, therefore, focuses on the linear case.
The procedure for solving the linear problem is as follows:

(a) Given information about fluxes and pressures, equation (3) can be solved
to yield the resistances and compliances. This is often referred to as

parameter identification Or model calibration.
(b) When the elements of Z and ¢ have been evaluated, the pressure waves
P = P(t) or the fluxes @ = Q(t) can be determined.

(c) With the pressures and the compliances solved, information about the
volume changes and, under certain assumptions, also of the compartmental dis-

placements can be obtained.

We shall next apply this to the case of a seven-compartmental (n=7)

model that represents the intracranial cerebrovascular fluid system.

2. The Seven-Compartmental Model with Constant Resistances and Compliances

The numerical example that we chose to calculate is based on AGARWAL'S
six-compartmental model (Zloe. eit., 1971), for which no numerical results were

given, with the addition of the brain tissue (B) compartment; seven altogether

(Fig. 1).

Fig. 1
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The lumped resistances are: between the artery and capillary compart-
ments (R,.), the capillary and cerebrospinal flui& compartments (RCF), the
capillary and brain tissue compartments (RCB), the capillary and vein compart-
ments (RCV), the brain tissue and vein compartments (RBV), the cerebrospinal
fluid and brain tissue compartments (RFB), the vein and venous sinus compart-
ments (RVS), the cerebrospinal fluid and the venous sinus compartments (RFS),
and between the venous sinus and the jugular bulb compartments (RVJ); altogether
nine resistances. In the figure, the capillary compartment, likewise the R,
resistance, are divided into: the choroid.plexuses - those tufts of small
capillary vessels inside each of the four ventricles, and the capillary system

outside the ventricles. However, in the equations to follow, only the combina-

. , - - -1

tions in parallel of the resistances, namely (Rr}.) Ty (RZC) . (ﬁhc) and
' -1 -1 -1 . .

(Rév) + (Rgv) = (RCV) appear, so that the combined lumped resistances

RAC and RCV’ into and out of the capillaries, suffice for our purposes.

The resistances RCB’ Rop and RFB are identified as the lumped blood-
brain barrier; the lumped blood-cerebrospinal fluid barrier, and the lumped
cerebrospinal fluid-brain barrier, respectively. Quantitative studies of
these barriers indicate that on the gross compartmental level they assume

large values, yet they cannot be regarded infinite (DAVSON, 1960).

The compliance elements ng indicate that an increase in volume of one
of the compartments equals the volume of the "cup" formed by the deformed mem-
brane. This volume, in turn, equals the volume displeced from the neighbouring

compartments, all within the rigid container of the skull bones.
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First, a compliance element CAB is introducgd between the artery and
the brain tissue compartments. This element represents the overall pulsatory
effect of the arteries on the brain tissue. Next, a compliance element Cop
is inserted between the choroid plexuses and the cerebrospinal fluid compart-
ment. The CSF system and the brain tissue share common boundaries - at the
ventricles and along the subarachnoidal space - which are deformable, so that
a compliance element Crp is introduced between them. Finally, as result of
the sharp drop in pressure along the cardiovascular passage, from the artery to
the jugular compartments, additional compl{ance elements CBV and Cbs are added
between the brain tissue and the venous compartments, and between the cerebro-
spinal fluid and the venous sinus compartments, respectively (there is no com-
pliance element between the sinuses and the large jugular veins because the
pressure there is very small). Altogether, the seven-compartmental model for
the cerebrospinal fluid system described above assumes five compliance ele-

ments of the type Cij'

The mechanical properties of 'resistances' and 'compliances' are
"symmetric” with respect to the interchange of direction between one compart-

ment and its neighbour. This is the outcome of the law of action and reaction.

In formulae
Rie = By Bop = FBpe ete.
CAB = CBA CCF = CFC ete.

The chart of mean pressure variations along the cerebrovascular fluid

conforms with the pressure profile of the cardiovascular system cited in the
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literature (e.q., GUYTON, 1969, Ch. 14). In the arteries, the average pres-

sure between systole and diastole is 100 mm Hg. It drops to 30 mm Hg in the

"capillaries including the choroid plexuses; 10 mm Hg in the CSF system, 9.5

mm Hg in the brain tissue, 9 mm Hg in the venous system, 8 mm Hg in the
sinuses and 1-2 mm in the large veins - jugular and spinal - leading to the
vena cava (Fig. 1). Volumes of the compartments are also recorded in the

figure as much as they are documented in the literature.

For the flux matrix @, we assume the following:

The heart pumps blood into the artery-compartment (arteries and arteri-
oles) at the rate of approximately 750 mi/min. The larger amount of blood flows
into the capillaries branching outside the cerebral ventricles, while a small
amount reaches the choroid plexuses which are the capillary zones inside the
ventricles. No definite information is available about the partition ratio be-
tween the flows through the capillary section and through the choroid plexuses.
In our scheme, the ratio of A=250:1 has been postulated, namely 747 ml/min of
biood being carried into the capillaries against 3 ml/min entering the choroid
plexuses in all the four ventricles. However, as mentioned before, only the
compound resistances Ryo and Rpys SO also the fluxes Qps Qs enter the calcula-

tions and no use is made of the ratio A later on.

The ultrafiltration of the blood at the choroid plexuses diverts a flow
of 0.3 ml/min to the CSF compartment. This is a figure extensively quoted in
the literature. From the capillaries, blood is recollected into the venous
system (venules and veins). A minute fraction escapes as interstitial fluid
to the extracellular region of the brain tissue but because of the blood-brain
barrier, it is hardly measurable in a tenth of ml/min. It is therefore marked

as 0.0 ml/min in Figure 1, likewise with the flow from the cerebrospinal fluid
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compartment to the brain tissue compartment. The venous compartment also
regains the 3.0-0.3=2.7 ml/min of blood which does not escape from the
choroid plexuses into the CSF system, thus totalling, with the flow from the
CSF system into the brain tissue, 749.7 ml/min that proceed to the venous
sinus compartment. The drainage of the CSF into the sinuses adds the 0.3 ml/
min which closes the loop flow of the CSF from the choroid plexuses to the
sinuses. The rejoining of the CSF drives the original flow of 750.0 ml/min
back to the heart through the jugular and the spinal veins. This scheme im-
plicitly assumes no gains or losses in the flow from one compartment to the

other, namely the source/sink matrix S = 0.

3. Parameter Identification of the Seven-Compartmental Model

Given the above data, the explicit expressions for the fluidity Z

matrix and the compliance C matrix are:

-7 o ]
» 0 1 0 0
0 [eca*7rat?a1) -Zcp ~Zrp ~Zpy 0
- ” - - 0
“Zac cB Cact2crt2esticr) Zer 2oy
z [2:/] -[r;.J] - (4)
0 -Zrp ~Zcr [cs*2rst ) 0 “Zps
i} -z
0 ~Zgy Zey 0 [ch*zvs*zav] Vs
0 0 0 -Zps “Zys  [Pvstirs)
— p—
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CAB "CAB 0 0

-Cup [c ) B+CFB+CBV] 0 -Cog
0 0 Cor ~Cor

¢=[e:i)-[id] -

4 -Crp ~Cep [Certcrste 78]
0 ~Cay 0 0
0 0 0 ~Cpg

The pressure P vector has the following elements

P = {pA,PB’PC,PF,PV,PS}

and the flux @ vector reads:

Q = {QA’ 0: 0: 0: 0, -QJ}

The parameter identification is performed in two stages:

I. The steady state. For constant pressures, the matrix equation to be solved

1%

BV

is the particular integral of the differential matrix equation (3), namely

(5)

(6)

(7)

(8)
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Hence, Ef and Qf indicate the average, time-independent compartmental pres-
sure and flux vectors, respectively, the values of which are given in Figure
1. For the linear problem, equation (8) is a solution of the steady state;

it is, by the uniqueness theorem, also the solution.

II. The non-steady state. Once the matrix Z is determined from the steady
state, we insert it into equation (3) rearranged to read

dp(t)
g Iz = Q(t) - g P(t) (g} 7z = const.) (3')

The solution for C depends on the availability of information about the time
dependency of both the flux vector Q(t) and of the pressure vector P(t). In
addition, the boundary conditions have to be in the form of pressure variation

with time in order to solve uniquely for the compliances.
To proceed with the numerical solution of these equations, we replace
the partial derivatives by implicit, backwards time difference quotients:

dp,(t) H‘A”(t)-PZ(t)

= = " (Pﬁ(t) 2P (tytkat)) (9)

At the same time, we express all the space derivatives at the new time,

namely at n+1. For example

n+1 +1
P, (t)-P(t) P (t)-PZ, (t)

= ete.
RAC RAC‘

The differential matrix equation now turns into a system of six sets of

algebraic equations, each having the form
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+1 +1 n+l +1 +1 n+l . .
a .y b P e B B e P BT = g = 106 (10)

For example, for the artery chamber ({=1), we have

a;=1; by=pg;s ¢p= R,

R At

c c c
g1=g;+1(;+_/4_8> o AB g AB
AC i

In this system of equations we have pressure values at times n and n+! (namely,

at times t it and t, + (n+1)At respectively), values of resistances i which

0
we already know from the inverse solution of the steady state, and the values
of the five compliances as unknowns. Given the values of pressures at times »

and (n+1), we can explicitly solve these equations for the five compliances ¢,

Ceps Cpgs Cpy» aNd Cpy
Using the data base of Figure 1, the compartmental resistances turn out to
be:
RAC = 0.0933 mmHg/ml/min
RCF = 66.67 " (Tumped blood-cerebrospinal fluid barrier)
Ry = 13,300.0 " (1umped blood-brain barrier)
RCV = 0.0280 "
Rpp 13.30 " (1umped cerebrospinal fluid-brain barrier)
RFS 7.62 "
RBV 12,77 "
RVS 0.0013 "
RSJ 0.0080 "
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To solve numerically for the compliances, the time-dependent compart-
mental pressures have to be taken from clinical measurements. For our solu-
tion, we chose those of HAMIT et aZ. (1965) discussed below. Solving equations

(10) leads to the following values:

Cag = 0.0012 ml/mmig
CC'F = 0.0357 "
CBV = 0.3?50 "
CFS' = 0.0494 "
CFB = 0.2090 "

This concludes the calibration of the seven-compartmental model of the

cerebrovascular fluid system with constant resistances and compliances.

4. The Quasi-Steady State Pressure Waves

Once the linear model has been calibrated, it is possible to obtain
solutions for the pressure waves in all the compartments.
The solution of the inhomogeneous differential matrix equation for P

in incremental form is

-1 -1
Presat) exp(-x) [E(t) - Q(t)] t L8y, (11)

Here, At = tk+1'tk denotes a time step between the frontier time level tk+1

and backtime level ty The matrix « equals

At d C-Jf (12)

R
I

fixa
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The rational expansion of exp (-«x) leads to the following formula

I-(1-8)k

in which I is the nxn unit matrix. A substitution of equations (12), (13) into

equation (11) yields

= -1 : 7 1, '/-],
Bresnt) L+ o)™ [L-c-ec][en, - 274, ]+ 27y, (14)
The coefficient 8 controls the type of solution which evolves in time.
When 6=0, we have an explicit scheme; 6=1, an implicit scheme, and 0 < 6 -~ 1 is
the mixed scheme. Thus, with the choice of 0, the pressure waves in the various

compartments can be calculated from equation (14).

Yet there is another state between the steady state and the non-steady

state. If we consider the contribution of the compliance term to be ncyligible,

dP
C

2§ = 0 (which, in effect, is the case once we insert the numerical values
25

of into equation (3')), we obtain the relation

J
Z P(t) T Qt) (15)

Equation (15) "looks" 1ike equation (8) - the condition for the steady state
flow - but, this time, neither the pressure 7 nor the flux ¢ assume constant
values; rather, each of them is a function of time. This is the jyuasi-cteady
state and the pressure waves can be calculated from a simplified formula,

namely




2]

-1 .
Presat) = L 784 (14')

HAMIT et al. (loc. cit.) performed simultaneous recordings of ECG, PCG,
arterial, brain, cisternal and venous (strictly, venous-sinus) pressure waves

in anesthesized dogs (Fig. 2b). The recorded waves were in the 6-8 cycle-per-

Fig. 2

minute (c.p.m.) range upon which the faster cardiac waves - also termed "pulse
waves" - were superimposed. In the classification of the intracranial pressure
waves, the slow ones correspond to the Lundberg B-waves (LUNDBERG ct al., loc.

eit., 1974) and the faster pulse waves to the Lundberg A-waves.

The arterial B-wave shows an almost ideal sine wave pattern varying be-
tween 110-140 mmHg. We took it as the excitation pressure wave in the artery
compartment 3A(t), at frequency 0.144 Hz or a 7 second period, and calculated,
by means of equation (14'), the rest of the compartmental pressure waves. The
computer plotting of the venous-sinus pressure wave Pa(t) shows a sine pattern
of the same frequency at amplitudes varying between 2.8 - 7.2 mmHg (Fig. 2a)

which is in excellent agreement with the P, - wave measured by HAMIT ¢t al.

The compartmental analysis also allows estimates about some kinematical
changes which take place with the pressure waves. On the lumped-compartmental
scale, the volumetric deformation of the brain tissue (/) compartment is re-

presentable by the compliance coefficient C,,. As listed above,

CFB = 0.2090 ml/mmtl;
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The pressure difference (cf.Fig. 1) Ppg = Pprlg = 0.5 muHg.  Following

HAKIM et al. (loc. eit., 1976) we assume the brain tissue to lie in a spheri-

cal layer between the inner radius of the ventricles r and the outer radius

r
of the subarachnoidal space rys the ratio of the radii to be ;Q = 4, and the
7
volume vy = 600/2m mm. Thus, the radial displacement of the ventricles is
found to be

-4
AI’,L- = 0,128 X 10 = rmm

HEIFETZ and WEISS (1981) have shown in two patients that after raising
the cerebrospinal fluid pressure by 15-20 mmHg (namely, increasing 30-40

times the value of Py cited before), measurable changes occurred on electri-

B
cal capacitance strain gauges fastened to the skull. Converting their results
to displacements, the movements of the skull in response to the pressure ele-
vation was 0.00078 mm in one case and 0.00372 mm in the other. Multiplying

the above calculated value of Api and p 5 = 0.5 mmHg by the factor 30-40, we

F
find a very good agreement with the measurements of HEIFETZ and WEISS.

A lateral skull motion of the order of a few microns was also recorded
by IVAN et al. (1983) using electrical resistance, high extension rubber
strain gauges (Peekel type 20S) placed over the skull sutures. Earlier,
FRYMAN (1971), who used spring dial gauges, recorded lateral motion of the
temporal bones in the order of 10-18 microns (u). ALLEN ¢t al. (1983), who
analyzed cine-CT scans, reported slow rhythmical deformations of the ventri-
cles - the third ventricle in particular - of the order of 0.1 - 1.0 y, in

conformity with the above data at least to the order of magnitude.

The compartmental approach is a useful tool in the modelling of intra-

cranial fluid dynamics as far as the time dependency is concerned. Its major

o
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drawback is that it does not relate events to their spatial configuration
since, by definition, the lumping of the parameters is space-independent.
For the space-time modelling of brain tissue mechanics, we have to revert to
the continuum or distributed parameter modelling which, on the macroscale,
considers the brain tissue single phased possessing the averaged property of
viscoelasticity, and on the microscale, analyzes it as a multiphasic system
~ three at least - of neurons, glia and interstitial fluid. Here, much more
data is needed to calibrate the niodels and before this is reached, the con-

tinuum modelling will have to stall.

Finally, the illustrated example of the compartmental modelling here
is seven-compartimental. If, in view of additional data, a model of more com-
partments is favoured; or the choice of resistances and compliances altered,
nothing changes in the methodology described above or in the computer pro-
gramme which, anyway, was programmed for nxn matrices. The authors will be

grateful if information about other data bases be brought to their attention.
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A NON-STEADY COMPARTMENTAL FLOW MODEL OF THE CEREBROVASCULAR SYSTEM

Department of Biomedical Engineering, and Civil Engineering, Technion - i

(*)

SHAUL SOREK, JACOB BEAR and ZVI KARNI**

Israel Institute of Technology, Haifa 32000, Israel

Abstract - A lumped parameter compartmental model for the
cerebrovascular fluid system is constructed and solved for the
general linear problem of a nonsteady flow with constant re-
sistances and compliances. The model predicts the intracranial
pressure waves in the various compartments of the brain in

response to pressure changes in the vascular system.

NOMENCLATURE
sensitivity matrix () transpuse
arterial t time
deformationl flow v venous, volume
brain A fluidity matrix
compliance matrix o ratio of CSF-brain resistance
to vein-venous sinus resistance
capillary

R ratio of CSF-brain resistance

difference vector to capillary-brain resistance

cerebrospinal fluid (CSF) Y ratio of capillary-vein res-

jugular bulb istance to brain-vein resistance

() coefficien
pressure t
-1
: et
flux vector oA s
resistance 1 n-set pressure matrix

venous sinus

*In print, letters underlined once or twice - boldface type
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INTRODUCTION

This paper summarizes the first stage of a research aimed at modelling the
movement of fluids and chemicals in the cerebrovascular system. Here, we
present the solution of the non-steady flow with constant resistances and

compliances; namely, the general linear problem - in its entirety.

The lumped-parameter compartmental model of the cerebrovascular system
is the first step towards a more comprehensive modelling of the cerebral
content considered as a material continuum both on the macro and on the
micro-scales. By the compartmental approach, the intracranial content is
divided into a number of subunit compartments the behavior of each of which
is represented by a single pressure parameter and by a single fluid dis-
charge, both functions of time but not of space. The resistance to flow
due to a particular vessel type is lumped at the outflow of its compartment.
Likewise, the intergrated change in volume of each compartment of the
system is representable as an overall compartmental property and the
functional interaction between the components of the lumped parameter

system is assumed to be at the interfaces between adjacent compartments.

Monro's (1783) first model of the intracranial cavity was bi-compartmental:
brain and blood as two almost-incompressible phases. Kellie (1824),
Monro's pupil, modified this hypothesis by assuming three instead of two
material compartments, namely arteries, veins and brain tissue. The Monro-
Kellie doctrine prevailed to this century and was only relaxed in stages.
The number of fluid compartments was increased to six: arterial, capillary,
venous, venous sinus, jugular bulb and cerebrospinal (CSF) (Agarwal, 1971).
Yet, the fluid itself remained incompressible. More recent approaches relaxed
the latter assumption and the fluid was taken as linearly compressible,

namely the change in pressure and the change in volume are proportional to
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each other, and the coefficient of proportionality, the bulk modulus or its
inverse - the compliance, are constants. As to the brain tissue, in essence -
a multiphasic material continuum, the experimental results pointed at non-
linear elasticity of the tissue or, alternatively, the nonlinearity of the
compliance (Marmarou et al.,1975; Miller,1975; Hakim et al.,1976; Lewer

Allen and Bunt, 1978; Chopp and Portnoy, 1980).To overcome the "non-linearity"
of a single coefficient, more complex models of single-phased, multi-
parameter viscoelastic materials were introduced such as the one consisting
of four viscoelastic coefficients known as the "three-parameter solid",

coupled dynamically with another elastic element (Pamidi and Advani, 1978).

Our model consists of seven compartments,namely the six compartments
listed above and the brain tissue compartment (Fig.1). The lumped

resistances are:between the Artery (4) and

Fig. )

Capillary (c) compartments (RAC), the Capillary (c) and Cerebrospinal

Fluid (F) compartments (RCF), the Capillary (¢) and Brain Tissue (1)
compartments (RCB), the Capillary (¢) and Vein (v) compartments (HCV), the
Brain tissue (8) and Vein (V) compartments (HBV), The Cerebrospinal Fluid
(F) and the Brain (B) compartments (Rﬁw)' the Vein (v) and Venous Sinus (o)
compartments (RVS)’ the Cerebrospinal Fluid (F) and the Venous Sinus (5)
compartments (RFS), and between the Venous Sinus (&) and Jugular Bulb (J)
compartments (RSJ); altogether nine resistances. In the Figure, the
Capillary compartment, 1likewise the RAC resistance, are subdivided into
the chambers of: the choroid plexuses - thos2 tufts of small capillary

vessels inside each of the four cerebral ventricles, and the capillary system

outside the ventricles. However, in the equations to follow, only the
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combinations of R 4+ R" = rl and 774 pnls R appear so that the
AC AC AC cv cv cv
lumped resistances RAC and RCV , into and out of the capillary com-

partment, prevail. Nevertheless, it is justified to conserve the individual
components of R;é and Rz; because the latter relate to anatomically
distinct features through which different flows take place. We note that
the lumping is a consequence of the fact that the pressure difference

across the components is the same.

The resistances R.p , Rop and Rpp are jdentified as the blood-brain
barrier; the blood-cerebrospinal fluid barrier and the cerebrospinal
fluid-brain barrier, respectively.

The compliance elements Cij indicate that an increase in volume of one
compartment equals the volume of the cup formed by the deformed membrane.
This volume, in turn, equals the volume displaced from the neighboring

compartments, all this within the overall rigid container of the skull

(the Monro-Kellie doctrine).

In the non-steady state, the deformability of the compartments due to
the pulsatory motion of the arteries is taken into account. Thus, first,
we introduce a compliance element CAB between the artery and the brain
tissue compartments. Next, the capillary system is considered non-deformable
so we do not insert compliances between this compartment and any of its
neighbors. The choroid plexuses, however, although being capillary in
character, possess other material properties and can - and in fact, do -
convey pulsations to the CSF system (Bering (1955)) so that a compliance
element - is introduced between them. Further, the CSF system and the
brain tissue share common boundaries, at the ventricles and along the sub-
arachnoidal space, which are mechanically deformable. A compliance element

is, therefore, inserted between the two. Finally, additional
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compliance elements ¢ and ¢ are introduced, respectively, between the

BV FS
brain tissue and venous compartments, and between the CSF and venous sinus
compartments to account for possible changes in fluid accumulation

between the considered compartments, and in order to reduce the high
pressure in the cardiovascular passage. There is no compliance element
between the sinuses and the large jugular veins because the jugular
bulb is assumed rigid, with very small storage changes. Altogether,
in our presentation, we assume five compliance elements between the

cerebrovascular elements.

The mechanical properties of ‘resistances' and 'compliances' are
"symmetric" with respect to the interchange of direction between one
compartment and another. These are outcomes of the law of action and

reaction. In general formulae,

R = Y - 2
A R('A /\CF RF(,' "t

(1)
Cap = Cpa Cor = Cpe vie

Three results, obtained by running the model presented here for cases
of interest, indicate that the model, even in its present form, can
simulate certain features actually observed clinically. The first
relates to the observed displacement of the mair ventricle peripheral
boundary. By computing the value of the compliance between the F-compartment
and the Brain Tissue one, approximating the configuration of the F-
compartment to a sphere, Karni et al. (1986) showed that this displacement

is of the order of magnitude actually observed by Lewer and Bunt (1978).
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The second indication relates to the pressure variations in the
Jugular bulb. Sorek et al. (1986a), by employing the model presented
here, predict that a negative pressure appears during certain portions
of the pressure cycle in the Jugular bulb compartment. Such negative
pressure is indeed observed in reality. Also, the model predicts,

during certain portions of the cycle, zero pressure in the sinus, a fact

that is also accounted for the action of the heart.

Finally, as shown in this paper, the model predicts the excessive
accumulation of CSF in the F-compartmenf (known as Normal Pressure
Hydrocephalus), as a result of clogging of the passage between the
capillaries and the Brain Tissue compartments. Sorek et al. (1986¢)
report observing this relation and discuss the use of it in relieving

the pressure by transplanting a shunt.

COMPARTMENTAL MODEL EQUATIONS

The assumptions underiying the hydrodynamical model of the circulatory

cerebrovascular system may now be summarized as follows:

(1) Functional brain elements, represented by compartments, are character-
ized by 'mean' or 'lumped parameter' quantities, of interest to us here

are pressure and fluid flux.

(ii) The fluid is single phased, inconpressible and Newtonian. From the

physical point of view, there is no differentiation between blood and CSF.
(iii) The flow is laminar and the relation between the flow rate and

pressure drop is linear, i.e.

Q=¥ (2)
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where R is the resistance.

(iv) For the distensibility (elasticity) of the element of brain, a linear
function holds between the volume change AV and the pressure drop AP
namely

AV = CAP (3)
where the coefficient of proportionality, ¢ , is the compliance.

(v) The system is isothermal and thermodynamically stable.

The explicit continuity equations for the balance of mass for the

various compartments now read:

For the Artery (4) compartment:

p,-1
A C Jdoo
Wy = —~7—— + (* -, - FP)
A hAP YL 1 I (4)
For the Brain Tissue (R) compartment
Pt pP_-P pP_-Pr
U B F B BV d d
- + = + C (r P)+(.‘ —-—(P )+(' P)
RCB RFB RBV BA dt BV dt BF dt
(5)
For the Capillary (C) compartment
Pa-Peo _ PoPp Felg Ty .ood o,
I A T S TR AT UV 7) ”("P/-') (6)
AC CHF ‘CB ‘ov ‘
For the Cerebrospinal Fluid () compartment
P =D P.-r P.-r
N O £ ¥ d od
= + + Cpp 7 (1D + 0, Paml) 40, (1=l
Rop Rpg Rpg FB dt ' F E[t [ N1 C
(7)

— e Rt A& e o s A‘Tj
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For the Vein (V) compartment:
PPy PgPy  ByFs d
Fo Y R Wt Cwean v (8)
cv BV 75)
For the Venous Sinus (S) compartment:
Ak + s = foly +Con Lo b a1 (9)
R 3 RFS RSJ SF dt S F
For the Jugular Bulb (/) compartment:
P_-P
-}Z L/ = (J/ (]0)
S ‘

Adding (4 ) through (10), making use of (1), yields

¢ = ¢ (1)

which is a remanifestation of the Monro-Kellie doctrine.
Equations (4)-(10) can be grouped into a single matrix equation of the
form

C z+t2l=¢ (12)
where P is the pressure column vector:

p=A{p,, P, P s Ty ":;} (13)

A B d

C’
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Z is the fluidity (inverse of resistivity) matrix

and Q

2,0 0 %00 0
0 (205t 2ppt 2y ~Zen ~Zpp
“Zp0 “Zog LZgetZopttoytioy] <Ly
0 ~Zpp ~Zop (gt e pgtpp]
0 ~Zgy ~Zev 0
_0 0 0 ~Zpg
C — the symmetric compliance matrix

CAB —CAB 0 () 0
“Cap LCap*CrgtCpy] 0 ~Crp ~Cpy

0 0 Cop =C e 0

0 ‘CFB “Cop &%7‘ Fst FR] 0

0 ~Cay 0 0 Cuy
_0 0 0 ~Cpg 0
is the flux column vector

Q=1{Q ,0,0,0,-43/.}

The resistance RSS does not appear in equation (14) as it is readily

obtainable from cquation (10).

.
[uCV+qu+ZBVJ

-2

U

R
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(15)
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The matrix equation (12) comprises nine resistances and five compliances
listed in equation (1). Even for the steady state, whereby all the
derivatives with respect to time vanish identically, and cqualion (12)

reduces to

[[NS]

P=qQ (17)

we are left with the eight resistances (as R is determined separately)

SJ
against six independent balance conditivns for the various compartments of

the cerebrovascular model, excluding the jugular bulb. However, by virtue

of the Monro-Kellie doctrine which assumes an absolute rigidity of the

cranial vault, actually only five equations of the six are independent.

Thus, the redundancy of the system (17) is three, and three additional
conditions are needed to solve the set. One of them is the flux Qp= 0.3 ml/min
which can be taken as pivot value with high credibility from the literature
(Cutalar, 1968). Two more conditions have to be stipulated by physiological
data. They, however, do not assume specific values; instead they are known

to be within certain 1imits. We shall have, therefore, to accompany their
determination by a sensitivity analysis, sweeping the entire range of

variation of possible values, as discussed in the following Section.

EVALUATION OF THE FLUIDITY MATRIX

The intracranial, compartmental flow problem of the cerebrovascular
system lies in the solution of the set (12) in its entirety. This is an
inhomogeneous, first-order, ordinary differential matrix equation with
respect to time. In the previous Section, we chose to reter to the
matrices C and Z as constant, a fact that made (12) a set of linear
equations. The respective mean values were taken as these constants,
as a first approximation. However, in principle, the coefficient matrices

¢ and Z could be functions of the dependent vector parameter P which,
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in turn depend on the time, t. Thus, basically the problem is non-linear.
There are, however, some passive cases which can be approximated by the
linear problem namely, when Cand Z assume constant values. At any event,
even while dealing with the non-linear problem, we shall have to pass

through the linear case. To the latter, therefore, our attention is now

focused.

The procedure of solution of the linear case is as follows:

(a) Given information about fluxes and pressures, equation (12) can be
solved to yield values for resistances and compliances. This is often

referred to as parameter identification or model calibration.

(b) When the Riis and Cijs have been evaluated, the changes in
pressures and rates of fluid flow can be determined for variations in the

rate of fluid discharge from the heart pump and from the venous outlet.

(c) With the pressures and compliances already solved, information about
the volume changes and, under certain assumption, also of the displacements

of the compartments can be obtained.

Here, we confine the attention to the parameter identification and

proceed in two stages:

I. Tkhe steady state. For constant pressures, the governing equation is

the particular integral of (12). The matrix equation to be solved is (17).

The chart of mean pressure variations along the cerebrovascular fluid
system conforms with the pressure profile of the cardiovascular system
cited in the literature (e.g., in Guyton,1969, Ch.14). In the arteries,
the average pressure - between systole and diastole - is 100 mn Hg. It
drops to 20 mm Hg in the capillaries including the choroid plexuses;

10 mm Hg in the CSF system, 9.5 mm Hg in the brain tissue, 5 mm Hg in the
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venous system,2 mm Hg in the sinuses and 1-2 mm Hg in the larger veins -

Jugular and spinal - leading into the vena cava (Fig.1). Volumes of the
compartments are also recorded in the Figure as much as they are documented

in the literature.

Given the compartmental mean pressures P; (i=A,B,C,F,V,5,J), also

introducing the abbreviations PEJ for the difterence jn mean proocare

. . . s A L
between two adjacent interacting compartments, /ZJ [i—{j ssimitarly,

* % ‘

Wi @;-¢; represents the difference between the mean fluxes in com-
* *

partments i and Jj. Because QA‘ Q; and QF dare a-priori known, and

* *
the mean pressure values PAC’ PCY dand P (as all other mean pressures)

*
S
are also known, the following elements ot £ are immediately solved:

Qt Qf "
1 Zac = ?4— Zop = ITb‘" bgy = Fi‘ (18)
AC P Fo Pop ST

This leaves us with six elements of £ against five equations for the

remaining compartments, four of which are independent.

To account for the double redundancy, we introduce the scalar coefficients

K. 4.
" [."_}ﬁ;- '/_!i i - ) (]9)
Vs “rB
Ry 7,
% Rﬁﬁ = zﬁy oL ) (20)
Bt

Here, a indicates the ratio of the cerebrospinal fluid-brain barrier to the
vein-venous sinus resistance, whereas £ 1is the ratio of the cerebrospinal

fluid-brain barrier to the blood-brain barrier.
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Let us now examine the following cases:

(i) 0<B<=. Based on equation (20), solution of equation (17)
leads to:
* * *
ZAC=:?“>¢1r ZCF=§€" ZSJ=§“T— (21.1)
AC CF SJ
Zeg = g O (21.2)
vs~'rs A
Q *
vs = &Py Pr. “AF
1 *
Zn=——w——r-—*—(ap QA-P%. Q%) (21.4)
A S S R N
*
Z = api’s fBﬁP 1o (21.5)
v opy PR P, “ar
7. = a;rj%;-' QZF (21.6)
CB vs'rp
146 Prp
+
z, = . FB o (21.7)
8v = oPpPr " PECAF

The lower extreme value of B=0 1is noteworthy of mention. From the
definition of B (Eq. (20)), it can assume a zero value in two cases.
First, Rpp=0, indicating a complete rupture of the cerebrospinal-brain
barrier. Here, o=0 also prevails and the only consistent condition for
equation(21.3) to exist is P —Pg, which means that there is hydrodynamical
equilibrium and absolute stagnancy of flow between the CSF compartment and
the brain tissue compartment. To avoid this, the pressures at the CSF

compartment and the brain tissue compartment oucht to differ by some
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amount, P; # Pg . In the literature, it is customary to assume that

both are in the order of 10 mm Hg. In our calculaticns, we arbitrarily

used the mean values of P;=10 mm Hg and P;= 9.5 mm Hg (Fig.l) to enable

flow from the F to the B compartment.

The second possibility for the vanishing of 8 is Aop > = .
Physiologically, this means that there is a complete blockage of the blood-
brain barrier; there is no transmission of blood nutritions from the
capillaries to the interstitial fluid of the brain tissue, in short -

a total collapse of the brain. We, therefore, rule this case out.

There is, however, one more case of an admissible non-singular solution
of the hydrodynamical problem for =0 . It occurs when ZF5=1/“F =0
or, alternatively, from equation(21.4),when CF=QZ-P;B/Q;'P;S . This
(if Pp >Pb) indicates that there is no direct drainage of the CSF into the
sinuses through the arachnoidal granulations (the pacchionian bodies), the

CSF compartment considerably increases its size and the symptoms are those

of hydrocephalus.

There is little, almost no data about the physioloygical or pathological
ranges of a and B. By trial and error, however, we could assume B to
be in the range of 1/1000. This value led to results that have actually been
observed in the clinic. At the same time, the values of the compliances and
resistances obtained were found to be insensitive to the value of B, (see
Sorek et al. 1986b). To convert this into corresponding ratios of fluxes,

designated by a bar, instead of ratios of resistcnces, we have by definition,

Q Q
_ 95 - s
B = 5 o = T (22)
FB FB
so that
5 - vsvs _ Fus Frp_bus
Pes’rs  Prp Bys  Prp
P , (23)
_ P, v R b
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For our choice of 8 = 1/1000, 8 = 0.021 (cf.Fig.1). As illustrations,
Figures 2 and 3 present the computer solution of the set (21) for

R.p(a) and Rpg(a) respectively in the particular case of B = 0.021
Fig. 2, 3

(8 = 1/1000). The functional dependence of k., on « is linear,

whereas that of RF (o) is hyperbolic.

S

A general sensitivity analysis for the variation of the resistances
Rij in the present case (i) of 0 < B < « may follow the same procedure
as for case (ii) (B » =) discussed below. This was not carried out
numerically because, at a later stage, due to the vagueness of the
assumptions about B , the complete solution for the resistances Rij(“‘s)’
rather than the limited solution of Rij(“) for the above values of B,
has been obtained. The three-dimensional plottings for the compartmental
resistances Rij(a’s); later also those for the compliances Cij(”’ﬁ)’

will be reported separately.
We now turn to case:

(i) B >~ . In addition to equation (18), the remaining elements of the

matrix Z read

* *
q ¢
ZFB =0 s ZFS = % s ZV” = -,LAQE
Pps v Pyg
Zoy S e yer Ur 5 =V (20
CcV = p* A TAF ? ‘BY ~ '
PCV + YPBV BV cv

]

P
BY

Zcp = PR+ P%. P %Ur

cv By Fen
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Here, for the sake of a smoother solution, a new parameter y instead of
o has been introduced as the ratio of the resistances Ry and Rpy s

namely

vz Y (25)

Strictly, the exact value of the ratio vy , as much as those of o and

B , is not known. However, we can still pursue with the sensitivity

assessment of the 2 elements against a variation in v, P;V and rp .
Let A denote a deviation from the mean value, then
n*  _ * * 6
Avr, = AP + AP, (26)
It follows from equations (24 ),(25) that
D, = A
-z~ =-F (27)
where
0, = (82, , b2, -
(28)
* )J(-
p [y, oy, apy ]

F

are the difference vectors of the Z elements and of their arguments

respectively, and 4 is the square matrix

* -y
F.I’BV -1 -(1+|’)
%
Q * _p* % *
4= —AF o FBv o« Ty Fov Tpy
T (P apt )2 Pofov pr (et Y et Dy Y (29)
cv ¥y CB cB (R B
*
- Fev -Y -Y(1+Y{J
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The extreme case of B -~ = corresponds to a complete rupture of the
blood-brain barrier (R.p=0) causing haemorrhage to the entire brain
tissue. This is bound to change the compartmental pressure distribution
contrary to our assumption of a steady state. Use of equations (27),

(28),(29) is. therefore, confined to the onset of the occurrence only.

II. Non steady flow. An interim solution of the matrix equation (12)
for P=P(t) and @=Q(t) when the effect of ¢ 1is negligible but not
zero, has been discussed elsewhere (Karni et al., 1986). As an example,
for a given arterial excitation wave PAz'h(t) ,» the venous-sinus wave
PS(t) was calculated and checked against the measured Ps(t) wave
recorded by Hamit et al., 1965 , showing a good matching in wave form,
amplitude and frequency. In this way, after the model is calibrated

and the resistances Ekj solved, the complete evaluation of the pulse

wave vector P(t) can be obtained.

EVALUATION OF THE COMPLIANCE MATRIX

We now proceed to the complete solution of the non-steady flow problem
for the compartmental model with constant coefficients, namely the general

linear problem.
Equation (12) is rearranged to read

dp(t)
dt

[l

= Qt) -

e

P(t) = B(t) (C, Z = const.) (30)

Information scarcely exists about the time dependency of the vector Q(t)
at all compartments. We, therefore, begin with the average pressure

vector P* and the average flux vector ¢* and solve for the matrix 2 ,
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which by our assumption is now time-independent, from equation (30), namely

That describes the steady state flow discussed above. We then derive
information about the values of P(¢) and P(t) - dg%ﬁi at various

times t from clinical data of simultaneous pulse wave recordings at

the different compartments (such as from Hamit et al., loc cit.).

Equation (30) now yields a n-set of relations for the compliances for each

time value t which is of the form

. 31
"QC -, (31)
-
Pap
"
Fe Pop
—_— = n. = n. 32
dt -~ _f_j pBV ( )
M.
Prs.
n
Pop | 5« ¢
¢ ={Cyps Cops Cppr Cpso Crpl sx1 (33)
i r” n ) v n A
s Vanlac Fac
T n, _. n., _ L
“Ac Pac™tev Tev Lo Toplon on
- s N . n _ n,,
ny = Zye Pys=Zey Tovipy Tay (34)

n, n n,
Sel PsrZys  Fys~Zrs g

" n n, ., M, _, N, _ n,
ey FartZae Facttve Pufev Teviton Termter Trs |« g




48

Applying the Gauss-Markov theorem, the ¢

values are obtained by an

assortment of the set of informations at all (n) given time observations,

namely
c-a" n i 8 (35)
[ 7. ]
L
2.
: B
T=--- (36)
4}
L lnxs
1 o4 ]
b= [1_9’ [,)" I_D] nxl (37)
n
K kp (2. % _z kp
C - - AR “Sd " SdJ "AC "ACT (38.1)
"AB noo.. 2 '
Lo PAB)
k=1
TR iz kp L Ry g oky g ko
oy For Yac Tactiov Teviier Fer e eop
C = (38.2)
cF n 4
ks 2
Lo (Pop)
k=1
n
ks k k., x,
L Ppyllys PysZoy Fovipy  Uay/
k=1 (
C = —— \383)
BV n k’ 2
(%P )
o ey
n
Yk ke .k k.
:1 PestZsg Tortys Pyt Ve
“rs e (38.4)
&g Prs?
ke k k k k k k
I) - Al - 8l - N -
o - ki e Cac Tacttys Tvstlsy Tesov Tevites Tewew Few
FB n ke 0 )
¥ 2
k=1 Ppg)
(38.5)

IPVVRENSERSSINSNIRSRSE—— -
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From the clinical measurements of Hamit ¢t al., (1965), the five
compartmental compliances listed in equation (33) have been calculated

for the values « = 1000, 8 = 1/1000. They are

CAB = 0.0155 ml/mm Hg feonst. for o,B)
Cop = 0.0364 "
Cgy = 0.3180 "
Cpg = 0.0334 " (const. Jor R )
Cpg = 0.1830 "

At a later stage, the numerical solution has been extended to include
the general case of (..=C..(a,B8). The three dimensional (. .(a,B)
J ud tJ
plottings will be reported separately. This conciudes the calibration

of the compartmenta) model for the cerebrovascular flow system.

EVALUATION OF THE COMPARTMENTAL PULSE WAVE FORMS

Within the framework of this work, which discusses the compartmental
cerebrovascular flow problem with constant resistance Hii and compliances

cij namely, the general linear problem, once the model has been calibrated,

it is possible to obtain solutions for the pressure-time variations pet)

at all the compartments.

Solution of the matrix equation (12) in incremental form is given by

Proont) = €xP(-8) [Py =271+ 277y (39)

Here, At=tk+1-tk denotes a time step between the frontier time level

t and backtime level ty - The matrix k equals

k+1

K = At-_'l,

oy
I3
—~—
Y
fen )
S
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The rational expansion of exp(-k) leads to the following formula

I - (1—6)§
)

exp(-K) = (0 <0 < 1) (41)

H~y
[P
|
!

where I is the 6x6 wunit matrix. A substitution of equation (41)

into equation (40) now reads
!

Sy gle (a2)

‘

, - -1 ,
Prespp s (L+ 007 IL-(1-00cllr -

The coefficient ©6 controls the type of solution which evolves in time.
When ©6 = 0 , we have an explicit scheme; 8 = 7 — an implicit scheme, and
0 <0 <1-—a mixed scheme. Thus, with the choice of 0 , equations
(18), (21) or (24), (38) and (42) constitute the complete solution of
the non-steady, compartmental cerebrovascular flow problem with constant
resistances and compliances. In addition, being phrased as a first-order
differential matrix equation - Eq.(12) - sufficient boundary conditions
ought to be given to enable us derive complete expressions for the
compartmental pressure waves. Unfortunately, because of lack of clinical
data, rigour has to give way to speculations from this stage onward.

He can only express the hope that the information gap will close itself

before long.
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ABSTRACT

A lumped parameter compartmental model for the non-steady
flow of the cerebrovascular fluid is constructed. The model
assumes constant resistances that relate fluid flux to pressure
gradients, and compliances between compartments that relate fluid
accumulation to rate of pressure changes. Resistences are
evaluated by using mean values of artery and cerebrospinal fluid
(CSF) fluxes and mean compartmental pressures. Compliances are
then evaluated from clinical data of simultaneous pulse wave
recordings in the different compartments. Estimate of the
average CSF compartmenial deformation, based on the compliance
between the CSF and brain tissue compartments, proves to be of

the order of magnitude of actual experimental measurements.
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INTRODUCTION

‘ The lumped-parameter compartmental model of the

3 cerebrovascular system is the first step towards the construction

of a more comprehensive model of th2 intracranial fluid system .
The compartmental approach assu@es tnat the intracranial content
may be divided into a number of units, or rcompartments, the
behavior of each of which is represented by a single value of
pressure and by values of flux exchanged with adjacent
# compartments. All these values may be time dependent, but they
k don't vary in space. The resistance to the flow from a
compartment to an adjacent one is lumped at the boundary
F between the two compartments. Likewise, the integrated change in
volume of two adjacent compartments due to the movement of their
common boundary in response to a pressure difference, is
represented as a property called compliance that is assigned to
the boundary between to two adjacent interacting compartments.
Monro's (1783) first model of the intracranial cavity was
4 bi-compartmental: Brain fluid and blood, as two almost-
| incompressible fluid phases. Kellie (1824) modified this model
4 by assuming three, instead of two, material compartments:
arteries, veins and brain tissue. The Monro-Kellie models
prevailed to this century and were modified in stages only in
recent years. The number of compartments was increased to six:
‘ ' arteries, capillaries, venous, venous sinus, jugular bulb and
cerebrospinal (CSF) (Agarwal, 1971).
Yet, in all these models, the fluid itself remained

incompressible. More recent approaches crelaxed the latter

constraint and the fluid was taken as (linearly) compressible.
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As to the brain tissue, it 1is essentially a multiphasic material
(e.g., brain tissue, blood and C3F) continuum. Experimental
results show that its behavior is inelastic or, alternatively,
that the corresponding compliance is non-linear. To overcome
the "non-linearity" of a single coefficient, the tissue is
assumed to be a rather complex, single-phase, multi-parameter
viscoelastic material e.g., one, whose constitutive relation
involves four viscoelastic coefficients. (Panidi and Advam
19178). Iln the reports of these investigations, although not
explicitly stated, the model of the intracranial content
returned to be bi-compartmental: The CSF compartment and "all
the rest", or the vascular compartment and the rest, etc. In
most cases, even for the multicompartmental model of the
cerebrovascular fluid system (e.g., Agarwal, 1971), no numerical
calculations were presented and the exposition of the subject
remained theoretical.

OQur first objective, therefore, was to develop an N-
compartmental model that can yield numerical values of the
various state variables (e.g., pressure). So far, we have
successfully achieved (Sorek et al. 1986a) this objective for
the general linear problem, assuming constant compliances and
resistances. Physiologically, the assumption of 1linearity
corresponds to passive states in which the sensory and
endocrinological biocontrol mechanisms have but little effect on
the resistances and the compliances. Basically, homeostatis is
non-linear by virtue of the feedback mechanism which senses the

deviations in the values of resistances and compliances and acts
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to restore them to normal values. Nevertheless, one must first
construct and solve a linear model and employ perturbation
techniques in order to derive solutions for the generalized non-
linear problem. Accordingly, we have first constructed and
solved a linear model that described non-steady flow in a
lumped~-parameter N-compartmental model of the cerebrovascular
fluid system with constant resistances and compliances.

The compartmental model involves a number of resistances and
compliances, the values of which must be known before the model
can be employed in predicting pressure and flux changes. In the
first paper (Sorek et al. 1986a) it was indeed assumed that the
values compliance and resistances including, as we shall see also
here, certain ratios between pairs of resistances were known.
The objective of the present paper is to present a methodology
for estimating the values of the variouis compliances and

resistances and the above mentioned ratios.

1. THE COMPARTMENTAL BALANCE EQUATION

The governing equation for the lumped-parameter
compartmental model describe the balance of mass and the balance
of linear momentum for each compartment. tssentially, each such
equation states that the temporal rate of change of either the
fluid mass, or its momentum in a compartment, is equal to the
amount 6f net influx of that quantity through the compartuental
boundaries plus che external sources. lhe mass balance of the n-
th compartment, surrounded by a numbr of compartments denoted by

m=1,2,..., can, therefore, be written in the form
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- = Z q +Q (1)

where q =(-q ) denotes the flux from compartment n to m, Qn
denotes external sources in the n-th compartment and \In is its
volume.

The flux qm can be expressed in terms of the difference
in pressure, an(=Pn—Pm) between the n and the m compartment, and
a conductance an (reciprocal of the resistance K ), in the

nm
form

— Z P
nm R nm nm

The change in volume, 4V is produced by the change in

n
the pressure differences, Aﬁm‘, in adjacent compartments, taking
into account the presence of compliances, qm , between these

cells

C AP (3)

(ITI) nm nm

Nn

Together, we obtain for the n-th compartment, a mass balance

of the form

dP

: nm
(E) Cnm dt * (E) an an n (4)

1]
L

Another compact form of this equation for ail cells

"simultaneously is

e
nln
~ 1
'Y
i~
ic

"
L

(5)
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where P(t) is the time-dependent (Nxl) pressure vector; Q(t) the
source (Nx1) flux vector, and Z and C are the (NxN) conductance

and the compliance matrices, respectively.

2. PARAMETER ESTIMATION

The compartmental balance equatioas for fluid mass, written
in the compact form of (5), involve conductivities and
compliances, expressed by the matrices 4 and C. In the present
work, these parameters are assumed to be constant.

To predict the pressure (and flux) response of the model to
externai changes, the values of the parameters C and Z must be
known. 1ln order to estimate them, we need measured values of
pressure in the various compartments at a sufficient number of
points in time.

Because ( and Z are constant, and E(c) is cyclic, by taking
a temporal average of (5), (i.e., integration over a period of

time divided by the period), we obtain,
Pz = Q (5)

where ( ) denotes a temporal rate of change, (—) denotes the
difference between adjacent compartments and p* and Q¥ denote
mean values of pressure differences and source fluxes,
respectively. We note that (6) is a quasi-steady state equation.
With known values of P* and Q*, we solve (6) for d¢ Z.
Given further information from clinical data e.g., Hamit et
al. 1965), of simultaneous pulse wave recordings P(t) and P(t)
(:dP(t)/dr), at the different compartments and at various times,

tk, k=1l,2,...K, equations (3) and (4) now yield a K-set of




63

relations for the compliances.

r 3

Q“ -z

k (7)

Tl o
o

]
[Ra~])

By the Gauss-Markov theorem, the C values are derived as an
assortment of the set of informations at all K time observations
(Sorek et al., 1986a).

This concludes, at least formally, the (inverse) process for
identifying parameters appearing in equation (5) for a N-

compartment model.

3. EVALUATION OF MODEL RiESIsTAwCes AnD COMPLIANCES
Let us determine the values of C and Z in the c¢ase of a
seven-compartment model, namely for N=T7.

Figure 1 shows the model consisting of the following compartments:

Fig. 1

arterial (A), capillary (C), cerebrospinal fluid (F), brain
tissue (B), venous (V), venous sinus (8) and the jugular bulb
(J). The (lumped) resistances are: between the artery and
capillary compartments (Ryc); the capillary and cerebrospinal
fluid compartments (RCF), the capillary and brain tissue
compartments (Rgpg), the capillary and vein compartments (RCV),
the brain tissue and vein compartments “%v)’ the cerebrospinal

fluid and brain compartments (Rgg) the vein and venous sinus

compartments (R ), the cerebrospinal fluid and the venous sinus
VS

compartments (Rps), petween the venous sinus and the jugular bulb

compartments (R”'); altogether nine resistances. In Figure 1,
v
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the capillary compartment, is divided into: the choroid plexuses
- those tufts of small capillary vessels inside each of the four
ventricles -and the capillary system outside the ventricles.
However, in the equations, only the combination in parallel of

4 " = ' 1] =
the conductances ZAC+ZAC Zy,c and ZCV+ZCV ZCV appear, Sso

that only the combined resistances Ry and R, = into and out

of the capillaries - are included in the model.

are identified as the

The resistances &m , R and RFB

CF
lumped blood-brain barrier; the lumped blood-cerebrospinal fluid

barrier, and the lumped cerebrospinal fluid - brain barrier,
respectively. .

We recall that the compliance elements, Chm, indicate that
an increase in volume of one compartment equals the volume of the
"cup"” formed by the deformed membrane. This volume, in turn,
equals the volume displaced from the neighboring compartments,
all this within the rigid container of the skull bones (the
Monro-Kellie doctrine).

In the non-steady state, which takes into account the
deformabililty of the compartments, we first introduce a
compliance element Cpy petween the artery and the brain tissue
compartments it represents the overall pulsatory effect of the
arteries on the brain tissue. Next, the capillary system is
considered: non-deformable, so that no compliance is introducted
between this compartment and any of its neighbors. The choroid
plexuses, however, although capillary in nature, possess other

material properties. Hence, they can , and in fact do, convey

pulsations to the CSF system (Bering, 1955). Accordingly, a
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compliance CC is introduced between them. Furthermore, the

F
CSF system and the brain tissue share common boundaries - at the
ventricles and along the subarachnoidal space =~ which are
deformable. A compliance element CFB is, therefore, inserted
between the two. Finally, to account for observed sharp drop in
pressure along the cardiovascular passage, additional compliances
CBV and CFS are inserted between the brain tissue and venous
compartments and between the CSF and venous sinus compartments,
respectively. Altogether, in our presentation, we assume five
compliances between adjacent elements of the cerebrovascular
fluid system.

The mechanical properties of resistances and compliances
are symmetric with respect to the change of direction between one

compartment and its neighbor, i.e, in formulae

R = R, R =R etc.
AC CA cF- FC

C_ =¢ s - te.
AB - “Ba’ Cer™ Cre ere

All Hnm's and Cnm's are positive.

We adopt the value of mean pressures along the
cerbrovascular fluid system according to the pressure profile of
the cardiovascular system cited in the literature (e.g. in
Guyton, Ch. 14, 1969). In the arteries, the average pressure -
between systole and diastole - is P: =100mmHg. It drops to
P; =30mmHg in the capillaries, including the choroid plexuses;
P; =10mmHg in the CS¥ system, P; =9.5mmHg in the brain tissue,
Pz =9mmHg in the venous system, P; =8mmidg in the sinuses and
P} =2mmHg in the larger juglar veins and in the spinal leading

into the vena cava (Fig. 1). The mean values of the injected and
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ejected fluxs at the artery and Jjugular bulb are

Q*4=Q", =750m1/min.

Altogether, nine values have to be determined. However, the
matrix equation (6) comprises only six independent balance
equations for the various compartments of the cerbrovascular
model. Thus, the redundancy of the system is three, aand three
additional conditions are needed to solve the set. One of them
is the mean flux (from choriod plexus to the CSF ventricles)

Q*F=0.3ml/min, which can be taken as pivot value with high

credibility from the literature, (Cutaler, 1968).

Thus, the Zgp yalue can be evaruated from the expression

* *
= Y, 8
QF ZCF PCF (8)

Two more conditions have to be stipulated for resistences,
based on the existing physiological data. We now introduce the

scalar coefficients.

I T T )
RVS ZFB
s S
B = R_ T Z (10)
CB FB

Here, o 1indicates the ratio of the resistance of the
cerebrosﬁinal fiuid-brain barrier to the vein-venous sinus
resistance, whe}éas g is the ratio of resistance of the
cerebrospinal fluid-brain barrier to that of the blood-brain

barrier. Thus, equations (6) to (10) allow a complete solution

for the resistences R (o,8) and compliances Cnm(ﬁ&) with the
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values of a and B. Figures 2 and 3 describe an example of the

surfaces R (o,8) and CBV(aﬁ)

respectively

Figs. 2,3

The figures demonstrate zones of o and g that generate
unacceptable values (e.g. negative 2's as in Fig. 2) of
resistances and compliances and zones of high sensitivity of the
resulting Z's and C's to small changes of a and 8. Our choice
is, therefore, to rely on « and B values that generate stable
“ Z's and C's.

There are almost no data about the physiological, or

pathological, ranges of « and g. It uwas found that when a and g

WP

are in ths range of 1/1,000 and 10,000, respectively the

resistances and compliances meet the desired aforementioned

% criteria. Hence for 8:10"> and a=10+4, equations (4) to (8)

j result in the following values

4 RpC=0.0933mmHg/ml/min. Ryg=0.0013 mmHg/ml/min.

| K =66.667mmHg/ml/min. R =7-6187mnig/ml/min.
Rev=0.028mmHg/ml/min. RSJ=O.0080mmHg/ml/min.

L R.p=13338.0mmHig/ml/min. RFB=13~338mmHg/ml/min.

Rav=3.33mmHg/ml/min.

‘&
and

1 Cav=0.3746ml/mmtg

CaB=0.0012m1/mmHg Cog=0-0494mL/mmHg

C.p=0.035Tml/mmtg CFB=C.2093ml/mmHg
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With the above value of Cpy e can now assess the average

deformatidbn of the CSF compartment. Let us assume a spherical
configuration of this compartment, with a mean diameter rp, [ts

) 4 3
voluue, VF, and surface area, SF, are given by VF L

. 2 . . s
and Sy ‘4"TF. By virtue of equation (2), we may thus express

the change in VF by

OV, = SAr, = Co P (11)

According to Hakim et al. (1970), the mean diameter of the

. . 1. 604, ‘hus, i i £ e mean
Vo compartment is rpos o7 o m. Thus, in view of th
*
pressure difference ey =0.5mmlly, the compliance value
v =0.2093ml/mmHg, and from equation (11), we obtain

B
'pz16.07%10-5° mm .

This estimate of displacement of the CSF compartment
boundaries 1s consistent with measurements done by Allen et al.
(1983) .

rinally, we wish to emphasize that the model approach
prcecsented here (see also Sorek et al., 1986b, Karni et al.,
lydv ) constitutes a methodology that ~an be implemented to

viarious compartmental schemes representing different aspects of

clinical data.
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RESISTANCE R(CV) — VS — BETA & ALPHA

INCREMENTS: INBETA=2100 INALPHA=4000
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INTRACRANIAL COMPARTMENTAL PULSE WAVE S1MULATION

Shaul Sorek, Ph.D., Jacob Bear, Ph.D. and Zvi Karni, Ph.D, D.Sc.*

Department of Biomedical Engineering and Department of Civil
Engineering, Technion - Israel Institute of Technology
Haifa, 32000, Israel

Abstract

The general solution of the linear compartmental model for
the cerebrovascular fluid system wicﬂ constant resistances and
compliances, predicts the pressure waves in the compartments in
response to an input pulse wave-arterial and/or Jjugular. Results
are shown for a seven-compartment model and for a sinusoidal
arterial pulse wave at a frequency of 1 Hz, with and without

fluid drainage from the CSF-compartment.

Keywords: Brain tissue, Compartmental model, Intracranial
pressure, Pulse wave.

®Deceased




T

74

INTRODUCTION

We chose to simulate the fluid regime in the brain by a
seven-compartment model (N=7) shown in Figure 1. It is based on
Agarwal's (1971) six~compartment model: artery (A), capillary
(C), cerebrospinal fluid (F), vein (V), venous sinus (S) and
jugular bulb (J), to which we added the brain tissue compartment
(B). The model assumes nine resistances and five compliances as
shown (Sorek et al, 1986a and b) in the figure (note that the
capillary compartment is divided into two parallel one, the
choroid plexuses inside the ceberal ventricles and the rest of
the capillary system outside the ventricles. Thus, the combined

resistances Rjc ang R., enter into the calculations).

The mean compartmental pressures are also shown on Fig. 1

P: (average between systole and diastole) =100mmHg, P: z30mmHg,

p* =10mmHg, P} =9.5mmHg, PY =9mmHg, P} =8mmHg and P} =2mmHg.

S
The mean arterial flux is Q% -750ml/min.

The intracranial, compartmental fluid flow of the
cerebravascular system, is governed by the fluid balance equation

(Sorek et al. 1986a).
ap

S 4
L3t

P o= Q (1)

It

This is an inhomogeneous, ordinary differential matrix
equation of the first rank with respect to time (t). Here, C is
the NxN matrix of the intercompartmental compliances; 4 is the
NxN matrix of the reciprocal intercompaptmental resistances, P
is the Nx1l matrix of the compartmental pressures, 3: the Nxl

matrix of the compartmental sources which add fluids to the
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intracranial domain from outside. The fluid density is assumed
constant.

Equation (1) represents here six linear balance ecquations,
one for each compartment, except the Jugular bulb, in the six

variables (P, Pes Pey Ppy Py BD.

The componenis of the Q matrix are: Qa, 0,0,0,0,,-Q where
J

Q, is the flux input to the artery and Q, is the flux outflow

from the Jugular bulb.

Equation (1) is subject to initial pressure values

£(t=0) = P, (2)

Basically, the problem is non-linear. By virtue of the
homeostatic biocontrol (sensory and endocrinological) feedback
mechanisms, the coefficient matrices C and Z can, and in fact are
functions cf the pressure vector P and of time, t. Therec are,
however, some passive cases which can be approximated by the
linear problem, namely when C and Z assume constant values.
Moreover, even if we deal with the non-linear problem, the
solution passes through the linear case. 1In what follows we will
concentrate on the solution of the linear problem, i.e., with
constant g and Z.

In what follows, we assume that the actual values of the é
and C components are known. These are obtained by solving the
appropriate parameter estimation, or inverse, problem (Sorek et
al., 1986b).

Actually, in view of the Monro-Kellie doctrine which states

that the sum of all compartmental volume changes equals zero,
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N .
1 av. = o0 (3)

Only five independent algebraic equations are represented by
().

In other words, if one compartment changes volume, it has to
be at the expense of the volume of its neighbors, all within the
cranial vault assumed to be absolutely rigid. This
intercompartmental relation is reflected in the expressions for é

and g.

~1
(@]
1
-
o
1
o

i (4)

2z = Yz =
Jzu iziJ 0

This means that we need external information on the pressure
in one of the compartments. Because the pressure artery can be
measured, (perhaps in the future by non-invasive methods), we
choose to specify it as the additional information.

In the following sections, we bring the numerical results
for the compartmental pressure waves that result from an input
arterial sine wave with and without a sink (drainage) in the
Cerebrospinal Fiuid (F) compartment. We will also discuss the

physiological and clinical significance of some of these results.

2. COMPARTMENTAL PULSE WAVE FORMS
The choice of a sine wave as the iaput function Q4 .as made
for two reasons. First, some of the obsceved pressure wave

forms are indeed close to the sine waves. Secondly, il they do
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not correspond to sine waves, but are still periodical, then by
Fourier's analysis they can be described as linear combinations
of sine waves of different frequency, but of the same
periodicity. We also choose the frequency ot 1 Hz (1 cycle per
second), as base frequency for the calculations. This frequency
is close to the cardiac frequency. In the classification of the
intracranial pressure wave forms, it corresponds to the Lundberg
A-wave (1974), also termed "pulse wave".

(5)

" .
PA = PA + PA sin (wt)

Where P} =100mmHg is the average arterial pressure,

PA:zOmmHg is the amplitude of the arterial pulse wave

between systoie and diastole, and , =21wHz, namely the period of

the wave is one second upper part of Fig. 2.

Based on the above considerations on P, (t) > the arterial

fluctuating flux was chosen

qQ, = Q: + Q; sin (wt) (6)

where Q: =750m1/min, and Q; 2125ml/min for Uswt:u and
Q; =100ml/min for m<wt<lm

Jagular bulb involves no compliance (i.e., its walls are
practically non-deformable). Hence the fluid mass balance
equation for it is

ZSJ(PS-PJ) = Q (7)
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Due to the absence of compliances in the Jagular bulb, we
assume that the pressure in it under unsteady conditions (i.e.,
in reality) is the same as under quasi steady conditions. The

latter are defined by

2P0y = o (8)

i.e., deleting the effect of cell compliances. Under quasi

steady state conditions

Qu(t) = Q(0) (9)

We take advantage of this conclusion by combining (7)

through (9) to yield the pressure, P, (L), in the Jagular bulb
compartment. Furthermore, knowing the pressure, Pl' we employ

(7) to express Qj in terms of P, and substitute this expression

into @ (t) given in (1) and solve for the pressure variations

P(t) in the non-steady case.

We should emphasize that (9) is valid only for a quasi-

steady state. Under unsteady state conditions, QAU)= k%(tL

Once a solution for Pg(t), among other pressure values, is

obtained one may insert it into (7), which is valid also for

unsteady state, to obtain Qj(t) ynder unsteady flow conditions.

It is also possible to calculate the arterial flux by (eqs. (1), (5))

dp

=

|

* L}
QA = Z, (P -P.) + PA[ZAC81n(wt) + C

acPa~Pc ABmcos(mt)] + CAB (10)

o

t

obtained from (1), that also takes into account the compliances

in all of the compartments.
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3. EXAMPLES
A number of computer solutions were derived for cases of
interest. In all cases, the following values of resistances and

compliances were employed (Sorek et al. 1986b).

R, =0-0933mmtg/ml/min. RVS=0.0013mmHg/ml/min.
Rep =66 .667mmHg/ml/min. RFS=7-6167mmHg/ml/min.
Rey =0.028mmHg/ml/min. R&‘=0.0080mmHg/ml/min.
RCB=13338.0mmHg/ml/min. RFB=13-338mmHg/ml/min.

Ry, =3-33 mmHg/mi/min
and
VAB=0.0012m1/mmHg (FS=0.0"9uml/mmHg

CVF =0.0357ml/mmHg cwi=0.02093m1/mmHg

CBV:O.37N6ml/mmHg

EXAMPLE 1:

Given the phasic pressure PA(t)’ as expressed by eqn.
(5), and the arterial flux, QA“J , as expressed by eqn. (6), rthe
Jugular phasic pressure, P (t) and the corresponding pressures
Pc(t)’ PB(t)’ pFu) , ps(;) and pv“) were determined. The
results for Pp(t) are shown in Fig. 2. The other pressures ace
shown in Fig. 3.

It is of interest to note (in Fig. 3) the negative values
of pJ(c) during part of the cycle, as a result of the suction
action of the cardiac system. This is consistent with clinical

observations.
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Figure 4 shows the calculated Jugular outflow and arterial
inflow. As may be seen from the figure, the two fluxes are
equal to each other. The time integrated difference over half a
cycle indicates no fluid quantity stored and then released from

storage during each cycle.

EXAMPLE 2:

By introducing a shunt into the CSF ventricles (F
compartment), CSF can be drained out. We impose drainage rates
of .2, .8, l.4ml/min. Fjigyure 5 shows the resulting pressure,
PFU). As can be seen, an excessive drainage will lead to a

strong distortion of the sinusoidal wave configuration.

EXAMPLE 3:

Upon imposing a constant pressure on the brain tissue,
PB=9-5mmHg, Figure 6 shows that the pressure curve in the F-
compartment will be highly decayed. This fact emphasis the
importance of the pulsational behavior of the pressure within

each compartment of the cerebral systenm.

SUMMARY

The interaction of the various components of the
cerebrovascular fluid system is representable by a lumped-
parameter compartmental model which takes into account the
pressure and volume changes between the compartments.

Presently, only the linear problem is discussed for which
the resistances and compliances are assumed constant. The

general solution of the linear problem enables us to derive the
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non steady pressure waves in all the compartments, also with sink
(drainage) function systems.

The computer has been programmed for the general case of an
N-compartmental model. The results brought here are for a seven-
compartmental (N=7) model: arterial, capillary (including the
choroid plexuses), cerebrospinal fluid, brain-tissue, venous-
sinus and jugular bulb.

The simulation of the compartmental pressure waves is for an
input sinusoidal arterial pressure wave, also termed "pulse
wave", of 1 Hz frequency.

The linear assumptions correspond fairly wé&l to some
passive states of long-standing coma and chronic neurologic
cases. Even when the problem becomes non-linear and the feedback
effects of the bio-control mechanisms - sensory and
endocrinological - have to be incorporated into the model, the
linear solution will again be the first stage upon which the
nonlinear effects are then superimposed. We thus have at our
disposal, at least as a first step a method of "computerized
simulation" for the intracanial fluid dynamic system the use of
which, particularly in cerebral intensive care unit, is self-

evident:
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CAN N.P.H. BE CAUSED BY CEREBRAL SMALL VESSEL DISEASE?

A new look based on mathemat ical model
S. Sorek D.Sc.*, M. Feinsod M.D.** and J. Bear Ph.D.%##%

ABSTRACT

A novel mathemagical model describing the intracranial
contents as lumped interacting compartments is presented. The
model predicts pressures and fluxes as function of time in the
various compartments. Compartmental resistances and compliances
are evaluated as step functions of mean pressures and fluxes
values. According to this model, normal pressure hydrocephalus
may be the result of small vessel disease that abolishes the
pressure gradient between the capillaries and brain tissue.
Lowering the CSF pressure as by shunting, restores the required
compartmental interaction with new values for the resistances and

compliances.

Keywords: normal pressure hydrocephalus, ventrical-peritoneal
shunt ,mathematical model, intracranial pressure, compllances,
resistances, fluxes, CSF physxology, capillaries.

#Dept . of Biomedical Engineering

##Dept . of Neurosurgery

##%Dept. of Civil Engineering, Technion, Israel Institute of
Technology, Haifa, 32000, Israel
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INTRODUCTION

The clinical features of Narma. T~euw
are well known (Fisher, 1977). The mechaais )
ventricles enlarge in adult patients w. o
intracranial pressure is still speculat.ve .nwvina o
1977). Various tests were suggested in order o ar..

factory prediction which patient will tere: .- Co

procedure but no one gained yet the expected rEZOELL L

In this paper we will report a patient w.:i1i . ...

clinical course could be explained by app.::z: ..
mathematical model of inter relations between brair <<m.ci ...
(Sorek et al. 1986a).

This model may shed light on the still obscure €Ll g

NPH.
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CASE REPORT

A.K. is a 65 year old merchant started exhibiting signs of
memory loss and impaired judgement. His appearance continued to
be immaculate and small talk did not reveal his deficit. CT Scan
demonstrated enlarged ventricular system. The fourth ventricle
seemed less involved than the others CSF pressure on lumbar
puncture was 120mmH20 RHISA cisternography showed rapid entrance
of the isotope into the ventricles, it cleared only after more
than 48 hours.

A shunting procedure was suggested but the family elected to
wait. His condition slowly deteriorated, his dementia became
overt and he was confined to home. Six months later another
consultation was seeked now because of progressive ataxia.
Repeat CT revealed further enlargement of the hydrocephalus.
Only 4 months later, when the patient was confined to bed due to
severe ataxia, incontinence and speechlessness did the guardian
permit operation. CSF pressure at that time was 115mmH20-

A ventruclo-peritoneal shunt with an opening pressure of
9¢mmH20 was installed. The postoperative course was remarkable
for the rapid return of speech, memory, ambulation and
continence. A month after the operation the patiernt returned to
his business and several weeks later reported success in
complicated financial considerations and decisions. CT scan
demonstrated small, well drained ventricles.

Eight months later he started to deteriorate and within 3
weeks he was approaching his pre-operative condition. CT scan
revealed, again, enlarged ventricles (Fig. 1). Shunt malfunction

was presumed but surgical revision failed to demonstrate any
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obstruction and did not alter his condition. Only after

installment of a new shunt system with a low opening pressure

(6OmmHZO) did the patient improve. Once again, his recuperation

was remarkable; he is back in finances and doing well., CT scan

(Fig. 2) is evident for well drained ventricular system.
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DISCUSSION

In a series of recent papers (Karni et al. 1986, Sorek et
al. 1986a,b,c) a model depicting the brain as an assembly of
interacting compartments was put forward.

The model (Fig. 3) solves the distribution of pressures,
fluxes ,resistances and compliances within these compartments.

In this model we aftgmpﬁ to define each intracranial
structure as a cell. Seven such cells - arteries (A),
capillaries and choroid plexus (C), veins (V), venous sinuses,
(S), ventricular cerebrospinal fluid (F), jugular bulb (J) and
brain tissue (B) are lumped together and their interactions are
described by a series of flux balance equations (Sorek et al.
1985a). -

As an example let us consider the equation describing flux
balance for the capillary compartment.

PA-PC ] PC-PF PC-PB PC--Pv

+ +
Rac Rer CB Rev

d
+ Cop ac (PePBp) (1)

wherre

Pp= arterial pressure

= capillary pressure

Pr= CSF pressure (ventricular)

= brain tissue pressure

pV: venous pressure

Ryc= resistance to flow between arteries and capillaries

= resistance to flow between capillaries and ventricular CSF

Rcp= resistance to flow between capillaries and brain tissues
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Rey = resistance to flow between capillaries and venous
cCF = compliance factor between choroid plexus and ventricular CSF
d (p

I C'PF) = time derivative of the pressure difference between
choroid plexus and ventricular CSF

As a first approximation-the resistance and compliances were
considered as mean effective values i.e., constants. The overall
matrix of resistances and compliances were evaluated via an
inverse procedure (Sorek et al. 1986a).

Note that equation (1) describes the flux balance in steady
as well as in non steady situations. The cells may be rigid
giving a flux term expressed by pressure differences divided by
resistance or contractile yielding a flux which is the product of
compliance and time changes of pressure differences.

In the course of evaluating the resistances of the model it
was shown that a situation leading to evolution of a
'normotensive' hydrocephalus may take place.

The usual accepted mechanism for development of
hydrocephalus is defective absorption of CSF in the venous sinus.

In our mathematical model this will be expressed by RFS=m or

ZFS: 1/R__.=0 (where R is the resistance to flow between the

FS FS
ventricular CSF compartment and venous sinus compartment and

where Zps stands for the conductance between these compartments).
However it was shown (Sorek et al. 1986a) that at the same

time the resistance (R) between capillaries (C) and brain tissue

(B) attain infinite values RCB=
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In the set of equations for the solution of the model
resistances we have relations between fluxes, pressure

differences and coefficients a and B8 .

R
a = EB (2)
Rys
R
B = EEE (3)
CB

For instance the relation for Z, (conductance between

capillaries and brain tissue) and Zzps (conductance between

ventricular CSF and venous sinus) is as follows

B(Q Q)
A F
ZCB B * * * P*) (%)
a(Py-Pg) - (Pp-Py
(Po-P)Q-(Pi-P)Q,
(P~ ("o
2 - v Pg)Qp (PPl (5)

* % * % * %
(Pg=Pg) [a(Py~Pg)=(Pp-Py)]

where ( )* denotes mean effective values

Qi flux entering the arterial compartment

Q flux entering the CSF compartment = CSF generation

Qp may be described by

C F (6)




96

A solution of the set can be attained when we allow 8=0. An

accompanying condition Z“;=0 will still YiEId a possible

solution.

Thus the following mathematical equations now exists

2CB=0 (R, = = ) (7)
Zpas W ' '
FS=0 (RFS = =) (8)
I(P' _Pl _ *(P* _ i):o (9)
Qe Ty s) Q, rFg

Equation (7) is the mathematrical representation of a flow
impediment between the capillaries and the brain tissue. The
condicioq ZcB=0 may be regarded as a precondition activating the
NPH situation represented by equations (8) and (9).

Condltions expressed by equations (8) and (9) indicate
blockage of CSF transfer from the ventricles to the venous sinus.
As this conditions do not affect production of CSF by the choroid

plexus (QF=0) compartment (F) will c¢apanu. The presence of

copliances Cpp Cpgs and C . (Fig. 3) allow for the expansion

F
without increase of pressure i.e. NPH.

Thus, in a situation where the flow from capillaries to brain
tissue is impaired as may be the case arteriosclerotic
cerebrovascular disease and especially in small vessel disease in
the aged, a2 NPH may develop.

In order to overcome the NPH situation one has to interfere
with the balance as stated in equation {9). By lowering the CSF

pressure Pp j e, shunting procedure, the previous conductivities

may change in a step fashion accommodating the new mean pressures

(4]
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and fluxes as indicated by equations (4) and (5). Note that
according to equation (9) such step changes may also take place

when changing other factors e.g. PV, ps’ ete. Thus removal of
CSF will also yield a change in capillary to brain tissue
transfer which may explain the improvement in neurological
functions after shunting. It was shown that CSF drainage in
hydrocephalic patients in-c'r;ease regional cerebral blood flow
(Symon and Hingzpeter, 1977). If the small vessel disease
continues, equation (9) may again prevail and a further decrease
in CSF pressure is necessary in order to accomodate for the new

resistances and complainces as could be the case in our patient.
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FIG.

1

ENLARGED LATERAL VENTRICLES INSPITE OF A PATENT
MEDIUM PRESSURE VENTRICULO PERITONEAL SHUNT.

FIG.

2

WELL DRAINED VENTRICLES AFTER INSTALLMENT
OF LOW PRESSURE V-P SHUNT.
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A SIMPLE CONTINUUM MODEL OF BRAIN TISSUE DEFORMATION

by

S..Sorek®*, J. Bear®® and Z. Karni¥###

ABSTRACT

The continuum approach is employed for modelling the
distribution of deformation and stress within the brain tissue
visualized as the domain between two concentric ellipsoids having
the same axes. Phasic pressures in the Jugular Bulb and CSF
ventricles, estimated by a compartmental model, provide the
conditions on the outer and inner boundaries, respectively. The
simulation yields phasic stress and deformation which are

consistent with clinical observations.

Keywords: brain tissue, CSF ventricles, jugular bulb, Hook's
law, compartmental phasic pressures

®Dept. of Biomedical Engineering
#8Dept. of Civil Engineering

$#8Deceased
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INTRODUCTION

Changes in pressure in both the jagular bulb and in CSF
ventricles, produce sStress variations, accompanied by
deformation, within the brain tissue. Our objective in this paper
is to obtain estimates of stress and deformation distribution
within the brain. To achieve this goal, a simplified continuum
model of the brain is introduced and investigated.

In the literature on the biomechanics of heart impacts,
much use of spherical and oblate spheroidal coordinates is made.
The skull is idealized as a rigid sphere with an opening that
stimulates the foramen magnum, while the spinal dura mater is
idealized as a cylindrical membrane fitted to the foramen magnum
(Liu, 1978). The intradural content of the central nervous
system (CNS) fluid-filled continuum is regarded by some as a
single-phase, quasistatic incompressible fluid in a two
compartment (skull and spinal dura-mater) structure, or as a
single-phase compressible elastic fluid possessing a single
"averaged"” bulk modulus and a sheer modulus (Pollack and Boshes,
1936; Ommaya and Hirsch, 1971; Lofgren and Zwetnow, 1973;
Goldsmith, 1972; Marmarou, 1973; King and Chou, 1970). Hakim et
al. (1976) stipulated the case of static equilibrium to find the
stress in the brain tissue, regarding the cranial vault as a
hollow sphere with ventricles in the middle. The inner and outer
boundary conditions were the pressure value of C3F in the
ventricles and at the subarachnoidal space.

Apart from the spherical models, other curvilinear
mappings were suggested such as a truncated shell of revolution

(Schumacher, 1978).
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Our present attempt is to revive Leonardo da Vinchi's
idea, based on his anatomical sketches (Fig. la) (cf. Russel,
1959), and consider the domain between two ellipsoids, the inner
ventricular ependyma and the outer pia mater, as an approximate
geometry of the .cranial vault.

The brain tissue is assumed to be a homogeneous and
isotropic, single-phased material.

In an earlier work, Sorek et al. (1986a,b,c,), simulated
the cerebrovascular flow regime in a compartmental model cerebral
system (Fig. 2). They derived the non-steady phasic pressure and
flux waves associated with the artery (A), capillary and choroid
plexus (C), CSF ventricles (F), veins (V), brain tissue (B),
venous sinus (S), and jugular bulb (J). Here we will use the
phasic pressures in the CSF ventricles and in jugular bulb
obtained in that study as an inner and outer boundary conditions
respectively, imposed on the considered brain tissue domain.

Clinical data show that the material conmprising of this
organ is deformable. However, it is not strictly elastic, since
under external stresses, it exhibits also the delayed property of
viscosity (Pamidi, 1976). Nevertheless, as a first
approximation, we choose here an elastic stress-strain

constitutive relation for this material.
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ASSUMPTIONS
The following assumptions underline the constructing of

the model simulating stress and deformation of the brain tissue:
1. The brain tissue configuration is approximated as a shell
between two prolated spheroidal bodies (Fig. 1lb). Its inner (CSF
venttricles) and outer surfaces are obtained by rotating
ellipses about their common major axes. The relatioun between a
cartesian system (X,Y,Z) and the prolate spheroidal coordinate (¢,

n,y) system is given by

)E = a sinh(f) sin (n) cos (¥) (1.1)

y = a sinh(g) sin (n) sin () (1.2)

z = a cosh(f) cos (n) (1.3)
where, £>0, O<n<m; U<y<2m . The associated scale coefficients

(hg’hn’ hq) are expressed by

“2 - b2 = a® [ sinh¥E) + sin’(n)] (2.1)
hi = a% sinh%(€) sin® n (2.2)

2. The equations of the outer and inner ellipsoids are given
respectively by E= g,=const. and £ = £, = const.
3. The brain tissue material 1is assumed isotropic, homogeneous

and elastic, obeying Hook's Law, which can be expressed by

1+
€ s =—=0

4 E (3)

_u
15 T E %ij

where v = Poisson's ratio, EzYoung's Modulus, 3 jKronecker
delta, €jj=strain tensor, 9jj=stress tensor and 9kgk=diagonal

stress tensor.
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4. The inner and outer boundaries are loaded by spatially

uniform pressures in the CSF ventricles and in the jugular bulb,
respectively.

5. At each point within the considered domain, we can determine
the radius of curvature of the ellipsoid €&=const. passing
through that ﬁoinc. We then assume that deformations are mainly
along the radius of curvature. Also it is assumed that the organ
is undergoing small deformations. The compatible relation between

strain and deformation is expressed by

1
eij *2- (ui,j+uj,i) (u)

where u, is the deformation in the i direction and uij is the

k]

derivative of uy with respect to the j coordinate.
5. Bending moments and shear forces are neglected because of the
symmetries involved in the assumed configuration.

6. Body forces (e.g., due to gravity) are neglected.

We may now write the force balance equation in the (¢,n,p)
coordinate system. Note that the prevailing stresses are normal

to the surface, o which is balanced by the components of the

gg '’
longitudinal stress, onn , and the latitudinal stress Oww_
FORCE BALANCE EQUATION

Let us first evaluate the length of the mean semimajor
and semiminor axes of the CSF ventricles visualized as a prolate
spheroidal. Let aj,yj and cj denote the semi-axes of the Jagular

bulb and ag bF, cF denote those of the CSF ventricles. For

the outer surface, we introduce the estimates. aJ=9cm.; bJ=60m;
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CJ=3cm.(i.e” a volume of approximately 680ml.).

The volume of the CSF ventricles is taken as

\IF=1‘50cm.3 i.e.,

- 4 -
Ve = 3 vagbee 150 (5)

We now assume that the inner and outer prolate spheroids

are similar. This means that
b = 2¢ (6)

(7)

Hence, by virtue of equations (5), (6) and (7) we obtain

aF=5.UCm. bF=3.6cm. cF=1.8cm.

As was stated above, the deformation is a function ¢f
the 11 coordinate only. Any volume element (Fig. 3), is
subject to radial FEE’ longitudinal ﬁm and latitudinal FW
forces. The lengths of the volume element edges are hgdg'h d ,

nn

nd hd .
and Myl
By writing a force balance along the radius of curvature, we

obtain the resultant in that direction in the form.

dy dn, _
zrw sin (3F) + zrm\ sin (2) cn~"EE (8)

For small angles dy<<l and dn<<l an equivalent

form of (8), written in terms of stresses is
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0

b)) - " Ity T (9)

3 (Ggghyfin) = oyyhehy
One may obtain (9) by replacing the forces in (8) by stresses
multiplied by.the appropriate areas.

Equation (9) is subject to the following conditions on the

external (g= EJ) and internal (& = EF) surfaces.

O, = -P at £ = ¢ (10.1)

OEE = —PJ atb £ = gJ (lO -2)

We note that because of symmetry, the resultants in the
other two directions vanish .

Recalling the assumption that the displacement u, is normal
to the & =constant surface (i.e., u=u(f)) and that these

displacements are very small, we now stipulate the condition
u=o at £ =0 (11)

In view of equations (1),(25, (4) and (11), we obtain

. du N
e = qF (12)
w
o Pgern)™ M) | (1edusae)(ern)?og?
nn g2 (13)

L4
I hgpydn

22%; (:—2—«1)
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n

({ [hvv(c*u)'hw(e)m’

o 1rdu/dE)(E+u)-£ _u
; 2

e =

v

Uaal

L
[ b ..d¥
o V(&)

(14)

We will relate strain to stress by Hook's constitutive law

(equation (3)). By virtue of equations (3) and (l2)-(l4), we

therefore obtain

u 1
T E (o 4y (Oge*Ong)

Equating equations (16) and (17), we obtain

12 nn EE

where
A = 1+2p
2+p
= B
B Zem

Substituting equation (18) into (9) yields,

do
- ¢ —88
o C qE + Do

nn EE

where

PO .
h ¢Ahn

(18)

(19.1)

(19.2)

(20)

(21.1)
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d
a—c- (hwhn)—Bh
hc(hw*Ahn)

Chn

(21.2)

Differentiating (16) with respect to £ , equating the result to

(15), substituting (18) and (20), we obtain

dzo

do
£€ (13 - 5.
M dgz + K 3E + NOEE 0 ] (22)
where
M = C¢ (23.1)
dcC 1+2p
K = EEE’T,,E"’D‘T%; (23.2)
« g9, Le2p ) 2ep
Wer bt P Y (23.3)

We then solve equation (22) together with boundary
conditions (10), for Teg =0£€(§). With the calculated e ,
we evaluate ﬂm ’ OW' and v as functions of & , using
equations (20), (18) and (17) respectively. All calculations are

done numerically.
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IMPLEMENTATION
Employing equations (1), with the values a,b, and ¢ of
the semi-axis, of the inner and outer surfaces, we calculate
EEO.HSH, Qf0.689 and U%={]=26.5°, atny=m;=9C°. We then
impose the phasit pressures PF and g , evaluated by Sorek et al.
(1986), using compartmental modeiling, as boundary conditions
(equations (10)) to calculate phasic variations of stressess and
deformation as distributed along .
Figure 4 depicts the mean distribution of stressess e On
mwwand deformation u due to mean pressures PF=10mmHg and
PJ=2mmHg. Note that compression stress in o result in tension

£E
in the longitudinal , ﬂm » and latitudinal , o , Stresses,

(27
Also note the hyperbolic characteristic for deformation and
stresses, demonstrating a decay in intensity from the CSF
ventricles surface to the outer brain tissue surface. Figures 5
and 6 show Opg and u surfaces as functions of time and
location, depicting the pulsational nature of stresses and
deformation. The range of deformation as described by figure 6
is consistent with reported clinical observation (Allen et al.

1983).

CONCLUSION

A continuum model was developed and employed to simulate
stress and deformation in an elastic ellipsoidal shaped brain
tissue. The results of a compartmental model were employed to
account for phasic pressures used as boundary conditions in the
model presented herewith. Although the model is basically a 1-D

and simplified results, are consistent with clinical
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observations. Modifications such as the use of a non-elastic

. 3 i f
stress-strain constitutive law, may yield better predictions 0

stress and deformation distribution in time and space.
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