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PREFACE

A model of a system is a simplified version of the real

system. The simplification is done by introducing a set of

assumptions that express our understanding of the system's

behavior. In the process of simplification, we omit non-dominant

effects, leaving the main features of the system. The objective

of simplification is to obtain a set that can be solved by

available tools and still maintain the main characteristics of

the real system.

The model is a tool that provides forecasts of the response

of the real system to various excitations. Thus it is essential

that the model retains those features that are the subject of

investigations.

This volume contains 7 papers dealing with models of brain

mechanics. The objective of the models is to provide a tool for

simulating the mechanical behavior of the cerebral system, as

manifested by pressure, velocity, stress and strain variations,

in response to changes in input pressures and fluxes. K---

At this stage, the models deal only with changes in fluxes

pressures, stresses and strains. At a later stage of

investigations, the transport, spreading and interactions with

the tipsue material of chemicals carried with the brain fluids,

will be investigated and reported.

In principle, our objective is to develop coniinuum models

of brain mechanics. Such models will provide information on the

behavior at every point in space and time of the brain domain, in

response to changes in the normal behavior in various parts of

the brain (e.g., vessel occlusions). However, a . this stage
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reported here, only one simplified model that investigates

deformation and stress in response to pressure variations, is of

the continuum type. All other- models are of the multicompartment

type.

In a multicompartment model, the entire domain, here the

portion of space occupied by the brain, is visualized as

comprised of a number of interacting compartments. Each

compartment reprsents the lumped behavior of a certain part of

the brain that has distinct features. Fluids move from one

compartment to the next under, pressure gradients. In the

present investigations, a seven-compartment model was employed to

simulate the behavior of the various parts of the brain.

Every model contains a number of parameters that express the

excitation response characteristics of elements of the

investigated system. In order to make use of a model in specific

cases, the values of these parameters must be known. The only

way to determine these parameters is to make use of observations

in the real cerebral system, and compare them with values

predicted by the model. The process of determining model

parameters is referred to as the inverse problem.

Accordingly, one of the papers describes how the basic

parameters of the model are estimated.

Typically, pressure3 and fluxes in the brain vary in a

cyclic manner, occasionally, especially under pathologic

conditions, transient changes may take place. Accordingly, the

models presented in the various papers, simulate non-steady and

transient flow conditions. In order to enable such conditions,

compliances had to be introduced between adjacent compartments
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(in addition to resistances that control the pressure flux

relat ions).

Results of model predictions were compared with actual

observed data, whenever available.

The results of the comparisons were satisfactory and

encouraging.
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INTRODUCTION

Ever since the cerebrovascular fluid system was modelled, the rela-

tively simple compartmental representation has been favoured. MONRO, the

younger (1783), the pioneer of intracranial mechanics, characterized the

physical forces in the intracranial cavity assuming incompressibility of the

fluid; nearly incompressibility of the brain tissue, and zero motion of the

boundaries. The intradural space was regarded as bi-compartmental - brain

and blood, so that a change in either compartment had to be compensated for

by the other.

KELLIE (1824) modified this hypothesis by assuming three instead of two

compartments, namely arteries, veins and brain tissue. About the brain tissue,

Kellie said: "The brain itself, little compressible is contained within a

firm and unyielding case of bone which it exactly fills .... If these premises

be true, it does not then appear very conceivable how any portion of the circu-

lating fluid can ever be withdrawn from within the cranium, without its place

being simultaneously occupied by some equivalent or how anything new or exu-

berant can be intruded, without an equivalent displacement" (1oo. cit., p. 102).

The Monro-Kellie doctrine of almost absolute rigidity, prevailed into

this century and was only relaxed in stages. The number of fluid compart-

ments was increased to six: artery (A), capillary (C), venous (V), venous

sinus (S), jugular bulb (J) and cerebrospinal fluid (F) (AGARWAL, 1971). Yet

the fluid itself remained incompressible. More recent approaches relaxed the

latter assumption and the fluid was taken as linearly compressible, namely

the change in pressure and the change in volume are proportional to each

other, and the coefficient of proportionality, the bulk modulus or its inverse

- the compliance, are constants.

--. A -mlm m m m m m mmmm m
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The thick layer of the brain tissue between the ventricles and the sub-

arachnoidal space has also undergone various stages of modelling. The buoy-

ancy theory (LIVINGSTON, 1965) regarded the tissue phase submerged in the ideal,

incompressible (Pascalian) CSF fluid to which Archimedes law applies. The

tissue itself was taken as single-phase and incompressible.

When the incompressibility assumption was abandoned, it paved way to

compressible representations for the brain tissue. Numerous experimental

studies have been conducted in the past four decades in that direction. The

results pointed at the inelasticity of the tissue or, alternatively, the non-

linearity of the compliance (RYDER et aZ., 1953; MILLER and GARIBI, 1972;

LUNDBERG et al., 1974; MARMAROU et al., 1975; MILLER, 1975; HAKIM et al., 1976;

LEWER ALLEN and BUNT, 1977; GRIFFITH et al., 1978; BRUCE, 1978; CHOPP and

PORTNOY, 1980). To overcome the "non-linearity" of a single coefficient, more

complex models of single-phased, multi-parameter viscoelastic materials were

introduced such as the one consisting of four viscoelastic coefficients known

as the "three-parameter solid", coupled dynamically with another elastic

element (PAMIDI and ADVANI, 1978).

In the literature on the mechanics of head impacts, the skull was ide-

alized to be a rigid sphere with an opening that simulated the foramen magnum,

and the spinal dura mater was idealized as a cylindrical membrane fitted to

the foramen magnum (LIU, 1978). The intradural content of the central nervous

system (CNS) fluid-filled continuum was regarded by some as a single-phase

incompressible fluid in a two-compartment (skull and spinal dura mater) struc-

ture; or else as a single-phase compressible elastic fluid (later, also a

viscoelastic fluid) possessing a single averaged "elastance" (strictly, a bulk

modulus - inverse of compliance) along with a shear modulus (POLLACK and

BOSHES, 1936; OMMAYA and HIRSCH, 1971; LOFGREN and ZWETNOW, 1973; GOLDSMITH,

1972; MARMAROU, 1973; KING and CHOU, 1976).
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Here, we extend the discussion to the n-compartmental model and present

the methods how to solve it for the general non-steady state flow with con-

stant resistances and compliances. An explicit numerical solution is given

for the case n=7. It is also shown that for the slow mode, compartmental pres-

sure waves, solutions for the more simplified quasi-steady state flow are al-

ready in good agreement with some clinical measurements.

1. The Compartmental Flow Equation

By its nature, the compartmental modelling of any hydraulic system is a

lumped-parameter modelling. Thus, the resistance to flow due to a particular

vessel type is lumped at the outflow of the compartment. Likewise, the inte-

grated change in volume of each compartment is representable as an overall com-

partmental property. Furthermore, if there is a production or a drainage of

fluid in a compartment, the source-sink function is attributed to the entire

compartment. Finally, the functional interaction between the components of a

lumped parameter model is assumed to be at the interface between adjacent com-

partments.

The general compartmental flow problem is that of the non-steady state.

Here, all parameters are functions of time and the deformability of the com-

partments is taken into account. Fluxes are composed of two terms: (i) Flow

rate of fluid as result of pressure difference (transmural) between two com-

partments, expressible as

Q' = ZAP = (P = pressure, R = resistance, (1)

Z = fluidance)

(ii) Flow rate from the deformational volume change which, in turn, relates'to

the change in pressure by a functional relation of the type
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Q,, dV dP (C compliance) (2)-dt - TF-

The governing equations for the compartmental flow problem are the

balances of mass and of linear momentum. We do not consider high-speed turbu-

lent motions (vanishing of the angular momentum) and the system is assumed

isothermal and thermodynamically stable (identical vanishing of the energy

balance). Under these assumptions, the mass and linear-momentum balance con-

ditions for the n-compartmental flow model are grouped into a single matrix

equation of the type (KARNI et al., 1985)

dP

' + Z = Q+S (3)

Here, P is the n-column pressure vector, Z is the symmetric nxn fluidity

(inverse of resistivity) matrix, c is the symmetric nxn compliance matrix, Q

is the n-column flux vector, and S - the n-column source/sink vector which

either adds or drains out fluid from the compartmental domains. If S = 0, the

* system is conserved, and equation (3) reduces to the conservation of mass,
4also known as the continuity equation. The numerical solution presented here

is for a conservative system. Solutions for non-conservative systems are dis-

cussed elsewhere (SOREK et al., 1985).

In general, equation (3) is an inhomogeneous, ordinary differential

matrix equation of the first rank with respect to time (t). It is also non-

linear, since, if homeostasis is taken into account, the sensory and endo-

crinological biofeedback control mechanisms turn the coefficient matrices C

and z functions of the dependent vector P and of the independent scalar t.

Thus, in the general case,



C C [LPt, t] z =z [PE't', t]

There are, however, some passive cases that can be approximated by the

linear problem, i.e. when C and z assume constant values. Moreover, even if

the problem is non-linear we have to pass through the linear case and pro-

ceed to the non-linear case by applying incremental perturbation techniques.

The rest of the discussion, therefore, focuses on the linear case.

The procedure for solving the linear problem is as follows:

(a) Given information about fluxes and pressures, equation (3) can be solved

to yield the resistances and compliances. This is often referred to as

paraneter identification or model calibration.

(b) When the elements of z and C have been evaluated, the pressure waves

P= P(t) or the fluxes Q = Q(t) can be determined.

(c) With the pressures and the compliances solved, information about the

volume changes and, under certain assumptions, also of the compartmental dis-

placements can be obtained.

We shall next apply this to the case of a seven-comoartmental (n=7)

model that represents the intracranial cerebrovascular fluid system.

2. The Seven-Compartmental Model with Constant Resistances and Compliances

The numerical example that we chose to calculate is based on AGARWAL'S

six-compartmental model (loc. cit., 1971), for which no numerical results were

given, with the addition of the brain tissue (B) compartment; seven altogether

(Fig. 1).

Fig. 1
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The lumped resistances are: between the artery and capillary compart-

ments (RAC), the capillary and cerebrospinal fluid compartments (RCF), the

capillary and brain tissue compartments (RcB), the capillary and vein compart-

ments (Rcv), the brain tissue and vein compartments (RBV), the cerebrospinal

fluid and brain tissue compartments (RFB), the vein and venous sinus compart-

ments (RVS), the cerebrospinal fluid and the venous sinus compartments (RFS),

and between the venous sinus and the jugular bulb compartments (RVJ); altogether

nine resistances. In the figure, the capillary compartment, likewise the RAC

resistance, are divided into: the choroid plexuses - those tufts of small

capillary vessels inside each of the four ventricles, and the capillary system

outside the ventricles. However, in the equations to follow, only the combina-

tions in parallel of the resistances, namely (R c) + (R" (R) = C and
CACAC an-1 -1 -1

(Rbv) + (R V) = (Rcv) appear, so that the combined lumped resistances

RAC and RCV, into and out of the capillaries, suffice for our purposes.

The resistances RCB, RCF and RFB are identified as the lumped blood-

brain barrier; the lumped blood-cerebrospinal fluid barrier, and the lumped

cerebrospinal fluid-brain barrier, respectively. Quantitative studies of

these barriers indicate that on the gross compartmental level they assume

large values, yet they cannot be regarded infinite (DAVSON, 1960).

The compliance elements C.. indicate that an increase in volume of one
i-L

of the compartments equals the volume of the "cup" formed by the deformed mem-

brane. This volume, in turn, equals the volume displeced from the neighbouring

compartments, all within the rigid container of the skull bones.
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First, a compliance element CAB is introduced between the artery and

the brain tissue compartments. This element represents the overall pulsatory

effect of the arteries on the brain tissue. Next, a compliance element CCF

is inserted between the choroid plexuses and the cerebrospinal fluid compart-

ment. The CSF system and the brain tissue share common boundaries - at the

ventricles and along the subarachnoidal space - which are deformable, so that

a compliance element CFB is introduced between them. Finally, as result of

the sharp drop in pressure along the cardiovascular passage, from the artery to

the jugular compartments, additional compliance elements CBV and C,, are added

between the brain tissue and the venous compartments, and between the cerebro-

spinal fluid and the venous sinus compartments, respectively (there is no com-

pliance element between the sinuses and the large jugular veins because the

pressure there is very small). Altogether, the seven-compartmental model for

the cerebrospinal fluid system described above assumes five compliance ele-

ments of the type Ci.

The mechanical properties of 'resistances' and 'compliances' are

"symmetric" with respect to the interchange of direction between one compart-

ment and its neighbour. This is the outcome of the law of action and reaction.

In formulae

R AC = RCA RCF = RFC etc.

C AB = C BA C = C etc.

The chart of mean pressure variations along the cerebrovascular fluid

conforms with the pressure profile of the cardiovascular system cited in the
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literature (e.g., GUYTON, 1969, Ch. 14). In the arteries, the average pres-

sure between systole and diastole is 100 mm Hg. It drops to 30 mm Hg in the

capillaries including the choroid plexuses; 10 mm Hg in the CSF system, 9.5

mm Hg in the brain tissue, 9 mm Hg in the venous system, 8 mm Hg in the

sinuses and 1-2 mm in the large veins - jugular and spinal - leading to the

vena cava (Fig. 1). Volumes of the compartments are also recorded in the

figure as much as they are documented in the literature.

For the flux matrix Q, we assume the following:

The heart pumps blood into the artery compartment (arteries and arteri-

oles) at the rate of approximately 750 ml/min. The larger amount of blood flows

into the capillaries branching outside the cerebral ventricles, while a small

amount reaches the choroid plexuses which are the capillary zones inside the

ventricles. No definite information is available about the partition ratio be-

tween the flows through the capillary section and through the choroid plexuses.

In our scheme, the ratio of X=250:1 has been postulated, namely 747 ml/min of

blood being carried into the capillaries against 3 ml/min entering the choroid

plexuses in all the four ventricles. However, as mentioned before, only the

compound resistances RAC and RCV; so also the fluxes QC, V, enter the calcula-

tions and no use is made of the ratio X later on.

The ultrafiltration of the blood at the choroid plexuses diverts a flow

of 0.3 ml/min to the CSF compartment. This is a figure extensively quoted in

the literature. From the capillaries, blood is recollected into the venous

system (venules and veins). A minute fraction escapes as interstitial fluid

to the extracellular region of the brain tissue but because of the blood-brain

barrier, it is hardly measurable in a tenth of ml/min. It is therefore marked

as 0.0 ml/min in Figure 1, likewise with the flow from the cerebrospinal fluid
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compartment to the brain tissue compartment. The venous compartment also

regains the 3.0-0.3=2.7 ml/min of blood which does not escape from the

choroid plexuses into the CSF system, thus totalling, with the flow from the

CSF system into the brain tissue, 749.7 ml/min that proceed to the venous

sinus compartment. The drainage of the CSF into the sinuses adds the 0.3 ml/

min which closes the loop flow of the CSF from the choroid plexuses to the

sinuses. The rejoining of the CSF drives the original flow of 750.0 ml/min

back to the heart through the jugular and the spinal veins. This scheme im-

plicitly assumes no gains or losses in the flow from one compartment to the

other, namely the source/sink matrix S = 0.

3. Parameter Identification of the Seven-Compartmental Model

Given the above data, the explicit expressions for the fluidity Z

matrix and the compliance C matrix are:

z AC -ZAC 0 0

o 1 CP+zFB+ZBVI -ZcB -ZFB -ZBV 0

-ZAC - CB [AZcF+ZCB+ZCF] ZCF -zcv 0

=z-=iil7U_ (4)

0 -ZFB ZcF [zcF+ZFs+ZFB] 0 -Z r 1

o oZCv 0 CV+ZVS+ZB] Z

0 0 0 _ZFS _V [ZVStZFS]
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OAB -CAB 0 0 0 0

-CAB rCAB+CFB3+CBV] 0 -CFB -CBV0

S0 CCF -CcF 0 0

C C= i (5)
0 -CpiB -CC [CCr+CFS#CFB] 0 _CFS

o -CBV 0 0 CBV 0

o 0 0 -CFS 0 CFS

The pressure P vector has the following elements

E = {PAPBIPc PF Pv PS } (6)

and the flux Q vector reads:

_ {A' o 0, 0, 0, -Q.} (7)

The parameter identification is performed in two stages:

I. The steady state. For constant pressures, the matrix equation to be solved

is the particular integral of the differential matrix equation (3), namely

z p Q (8)
--- he
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Hence, P and Q* indicate the average, time-independent compartmental pres-

sure and flux vectors, respectively, the values of which are given in Figure

1. For the linear problem, equation (8) is a solution of the steady state;

it is, by the uniqueness theorem, also the solution.

I. The non-steady state. Once the matrix Z is determined from the steady

state, we insert it into equation (3) rearranged to read

dP(t)
C dt Q(t) - Z P(t) (C, Z = const.) (3')

The solution for C depends on the availability of information about the time

dependency of both the flux vector Q(t) and of the pressure vector P(t). In

addition, the boundary conditions have to be in the form of pressure variation

with time in order to solve uniquely for the compliances.

To proceed with the numerical solution of these equations, we replace

the partial derivatives by implicit, backwards time difference quotients:

dPA(t) P A+I (t) -PA'(t)(()

dt z At (PA(t) PA (t +kAt)) (9)

At the same time, we express all the space derivatives at the new time,

namely at n+1. For example

PA(t)-PC(t) pA (t-C+ -(t c.

Rc RA et.
RAC RAC

The differential matrix equation now turns into a system of six sets of

algebraic equations, each having the form
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aiQAl+b A+O+ic P +diFIVZ+l+e P++fiPV  = g. (i:1...6) (10)

For example, for the artery chamber (i=1), we have

b AB 1rRAC"
, __C CAB CAB

g\( AC At A At BAt

In this system of equations we have pressure values at times n and n+1 (namely,

at times to+nAt and t0 + (n+l)At respectively), values of resistances H., which

we already know from the inverse solution of the steady state, and the values

of the five compliances as unknowns. Given the values of pressures at times

and (n+l), we can explicitly solve these equations for the five compliances cA/,,

CCF, CFB, CFV. and CBV.

Using the data base of Figure 1, the compartmental resistances turn out to

be:

RAC = 0.0933 mmHg/ml/min

RCF = 66.67 " (lumped blood-cerebrospinal fluid barrier)

RCB = 13,300.0 " (lumped blood-brain barrier)

RCV = 0.0280 "

RFB 13.30 " (lumped cerebrospinal fluid-brain barrier)

RFS 7.62 "

RBV 12.77 "

RVS 0.0013 "

RSj 0.0080
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To solve numerically for the compliances, the time-dependent compart-

mental pressures have to be taken from clinical measurements. For our solu-

tion, we chose those of HAMIT et al. (1965) discussed below. Solving equations

(10) leads to the following values:

CAB = 0. 0012 mZ/'nIHg

CCF = 0.0357 "

CBV = 0.3750 "

CFS = 0.0494 "

CFB = 0.2090 "

This concludes the calibration of the seven-compartmental model of the

cerebrovascular fluid system with constant resistances and compliances.

4. The Quasi-Steady State Pressure Waves

Once the linear model has been calibrated, it is possible to obtain

solutions for the pressure waves in all the compartments.

The solution of the inhomogeneous differential matrix equation for P

in incremental form is

P(t+At) ex(K = = ~

Here, At = tk+l-tk denotes a time step between the frontier time level tk+1

and backtime level tk . The matrix K equals

K = At • C- z (12)
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The rational expansion of exp (-K) leads to the following formula

I- (1-0) K
exp(-) + O (0! O 1) (13)

in which I is the nxn unit matrix. A substitution of equations (12), (13) into

equation (11) yields

(I+ eKY 1  
1  -Ie) P + 14:(t+At) -- L I (t) - + 14

The coefficient 0 controls the type of solution which evolves in time.

When 6=0, we havy an explicit scheme; 6=1, an implicit scheme, and 0 < 0 . I is

the mixed scheme. Thus, with the choice of 0, the pressure waves in the various

compartments can be calculated from equation (14).

Yet there is another state between the steady state and the non-steady

state. If we consider the contribution of the compliance term to be nicjZigible,

A z 0 (which, in effect, is the case once we insert the numerical values

of Cij into equation (3')), we obtain the relation

Z P(t) Q(t) (15)

Equation (15) "looks" like equation (8) - the condition for the steady state

flow - but, this time, neither the pressure I' nor the flux (,, assume constant

values; rather, each of them is a function of time. This is the .i,:i- :toa d

state and the pressure waves can be calculated from a simplified formula,

namely
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-(t+At) = Z-,Q(t)  (14')

HAMIT et at. (toc. cit.) performed simultaneous recordings of ECG, PCG,

arterial, brain, cisternal and venous (strictly, venous-sinus) pressure waves

in anesthesized dogs (Fig. 2b). The recorded waves were in the 6-8 cycle-per-

Fig. 2

minute (c.p.m.) range upon which the faster cardiac waves - also termed "pulse

waves" - were superimposed. In the classification of the intracranial pressure

waves, the slow ones correspond to the Lundberg B-waves (LUNDBERG et al., Zoc.

cit., 1974) and the faster pulse waves to the Lundberg A-waves.

The arterial B-wave shows an almost ideal sine wave pattern varying be-

tween 110-140 miHg. We took it as the excitation pressure wave in the artery

compartment PA(t), at frequency 0.144 Hz or a 7 second period, and calculated,

by means of equation (14'), the rest of the compartmental pressure waves. The

computer plotting of the venous-sinus pressure wave P (t) shows a sine pattern

of the same frequency at amplitudes varying between 2.8 - 7.2 mmHg (Fig. 2a)

which is in excellent agreement with the P, - wave measured by HAMIT et alZ.

The compartmental analysis also allows estimates about some kinematical

changes which take place with the pressure waves. On the lumped-compartmental

scale, the volumetric deformation of the brain tissue (v) compartment is re-

presentable by the compliance coefficient CFB. As listed above,

C B = 0.2090 ,la!rrut/.l



The pressure difference (cf.Fig. 1) PFB = PF-B 0.5 mmHg. Following

HAKIM et al. (loc. cit., 1976) we assume the brain tissue to lie in a spheri-

cal layer between the inner radius of the ventricles r. and the outer radius
r 0

of the subarachnoidal space r ; the ratio of the radii to be y- 4, and the

volume V0 = 600/2n m. Thus, the radial displacement of the ventricles is

found to be

-4
Ari = 0.128 x 10 4 M

HEIFETZ and WEISS (1981) have shown in two patients that after raising

the cerebrospinal fluid pressure by 15-20 nmHg (namely, increasing 30-40

times the value of PFB cited before), measurable changes occurred on electri-

cal capacitance strain gauges fastened to the skull. Converting their results

to displacements, the movements of the skull in response to the pressure ele-

vation was 0.00078 mm in one case and 0.00372 mm in the other. Multiplying

the above calculated value of Ar. and PFB = 0.5 mmHg by the factor 30-40, we

find a very good agreement with the measurements of HEIFETZ and WEISS.

A lateral skull motion of the order of a few microns was also recorded

by IVAN et al. (1983) using electrical resistance, high extension rubber

strain gauges (Peekel type 20S) placed over the skull sutures. Earlier,

FRYMAN (1971), who used spring dial gauges, recorded lateral motion of the

temporal bones in the order of 10-18 microns (p). ALLEN ct al. (1983), who

analyzed cine-CT scans, reported slow rhythmical deformations of the ventri-

cles - the third ventricle in particular - of the order of 0.1 - 1.0 p, in

conformity with the above data at least to the order of magnitude.

The compartmental approach is a useful tool in the modelling of intra-

cranial fluid dynamics as far as the time dependency is concerned. Its major
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drawback is that it does not relate events to their spatial configuration

since, by definition, the lumping of the parameters is space-independent.

For the space-time modelling of brain tissue mechanics, we have to revert to

the continuum or distributed parameter modelling which, on the macroscale,

considers the brain tissue single phased possessing the averaged property of

viscoelasticity, and on the microscale, analyzes it as a multiphasic system

- three at least - of neurons, glia and interstitial fluid. Here, much more

data is needed to calibrate the models and before this is reached, the con-

tinuum modelling will have to stall.

Finally, the illustrated example of the compartmental modelling here

is seven-compartental. If, in view of additional data, a model of more com-

partments is favoured; or the choice of resistances and compliances altered,

nothing changes in the methodology described above or in the computer pro-

gramme which, anyway, was programmed for nxn matrices. The authors will be

grateful if information about other data bases be brought to their attention.
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A NON-STEADY COMPARTMENTAL FLOW MODEL OF THE CEREBROVASCULAR SYSTEM

SHAUL SOREK, JACOB BEAR and ZVI KARNI**

Department of Biomedical Engineerinq, and Civil Engineering, Technion -

Israel Institute of Technology, Haifa 32000, Israel

Abstract - A lumped parameter compartmental model for the

cerebrovascular fluid system is constructed and solved for the

general linear problem of a nonsteady flow with constant re-

sistances and compliances. The model predicts the intracranial

pressure waves in the various compartments of the brain in

response to pressure changes in the vascular system.

NOMENCLATURE

A(*) sensitivity matrix ( ) trdnpuse

A arterial t time

8 deformationl flow V venous, volume

B brain fluidity matrix

C compliance matrix % ratio of CSF-brain resistance

to vein-venous sinus resistanceC capillary
i ratio of CSF-brain resistance

1) difference vector to capillary-brain resistance

' cerebrospinal fluid (CSF) I ratio of capillary-vein res-

S jugular bulb istance to brain-vein resistance

11 pressure coefficient

Q flux vector

H resistance II n-set pressure matrix

venous sinus

*In print, letters underlined once or twice - boldface type

**Deceased
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INTRODUCTION

This paper summarizes the first stage of a research aimed at modelling the

movement of fluids and chemicals in the cerebrovascular system. Here, we

present the solution of the non-steady flow with constant resistances and

compliances; namely, the general linear problem - in its entirety.

The lumped-parameter compartmental model of the cerebrovascular system

is the first step towards a more comprehensive modelling of the cerebral

content considered as a material continuum both on the macro and on the

micro-scales. By the compartmental approach, the intracranial content is

divided into a number of subunit compartments the behavior of each of which

is represented by a single pressure parameter and bya single fluid dis-

charge, both functions of time but not of space. The resistance to flow

due to a particular vessel type is lumped at the outflow of its compartment.

Likewise, the intergrated change in volume of each compartment of the

system is representable as an overall compartmental property and the

functional interaction between the components of the lumped parameter

system is assumed to be at the interfaces between adjacent compartments.

Monro's (1783) first model of the intracranial cavity was bi-compartmental:

brain and blood as two almost-incompressible phases. Kellie (1824),

Monro's pupil, modified this hypothesis by assuming three instead of two

material compartments, namely arteries, veins and brain tissue. The Monro-

Kellie doctrine prevailed to this century and was only relaxed in stages.

The number of fluid compartments was increased to six: arterial, capillary,

venous, venous sinus, jugular bulb and cerebrospinal (CSF) (Agarwal, 1971).

Yet, the fluid itself remained incompressible. More recent approaches relaxed

the latter assumption and the fluid was taken as linearly compressible,

namely the change in pressure and the change in volume are proportional to



32

each other, and the coefficient of proportionality, the bulk modulus or its

inverse - the compliance, are constants. As to the brain tissue, in essence -

a multiphasic material continuum, the experimental results pointed at non-

linear elasticity of the tissue or, alternatively, the nonlinearity of the

compliance (Marmarou et al.,1975; Miller,1975; Hakim et al.,
1976 ; Lewer

Allen and Bunt, 1978; Chopp and Portnoy, 1980).To overcome the "non-linearity"

of a single coefficient, more complex models of single-phased, multi-

parameter viscoelastic materials were introduced such as the one consisting

of four viscoelastic coefficients known as the "three-parameter solid",

coupled dynamically with another elastic element (Pamidi and Advani, 1978).

Our model consists of seven compartments,namely the six compartments

listed above and the brain tissue compartment (Fig.l). The lumped

resistances are:between the Artery (A) and

Fig. 1

Capillary (c) compartments (RA.), the Capillary (c) and Cerebrospinal

Fluid (F) compartments (RCF ), the Capillary (c) and Brain Tissue (i)

compartments (RCB), the Capillary (C) and Vein (v) compartments (hCV), the

Brain tissue (B) and Vein (V) compartments (I, BV). The Cerebrospinal Fluid

(F) and the Brain (B) compartments (R H), the Vein (V) and Venous Sinus (:;)

compartments (R VS), the Cerebrospinal Fluid (F) and the Venous Sinus (S)

compartments (RFS), and between the Venous Sinus (,;) and Jugular Bulb (J)

compartments (RSj); altogether nine resistances. In the Figure, the

Capillary compartment, likewise the RAC resistance, are subdivided into

the chambers of: the choroid plexuses - those tufts of small capillary

vessels inside each of the four cerebral ventricles, and the capillary system

outside the ventricles. However, in the equations to follow, only the
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combinations of R;+ R" 1= R - 1  and R'- + -r
AC AC +AC VV=CV appear so that the

lumped resistances RAC and RCV . into and out of the capillary com-

partment, prevail. Nevertheless, it is justified to conserve the individual

components of RAI and R 1 because the latter relate to anatomically

distinct features through which different flows take place. We note that

the lumping is a consequence of the fact that the pressure difference

across the components is the same.

The resistances RCB , RCF and R are identified as the blood-brain

barrier; the blood-cerebrospinal fluid barrier and the cerebrospinal

fluid-brain barrier, respectively.

The compliance elements c.. indicate that an increase in volume of one

compartment equals the volume of the cup formed by the deformed membrane.

This volume, in turn, equals the volume displaced from the neighboring

compartments, all this within the overall rigid container of the skull

(the Monro-Kellie doctrine).

In the non-steady state, the deformability of the compartments due to

the pulsatory motion of the arteries is taken into account. Thus, first,

we introduce a compliance element CAB between the artery and the brain

tissue compartments. Next, the capillary system is considered non-deformable

so we do not insert compliances between this compartment and any of its

neighbors. The choroid plexuses, however, although being capillary in

character, possess other material properties and can - and in fact, do -

convey pulsations to the CSF system (Bering (1955)) so that a compliance

element . is introduced between them. Further, the CSF system and the

brain tissue share common boundaries, at the ventricles and along the sub-

arachnoidal space, which are mechanically deformable. A compliance element

is, therefore, inserted between the two. Finally, additional
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compliance elements CBV and cFS are introduced, respectively, between the

brain tissue and venous compartments, and between the CSF and venous sinus

compartments to account for possible changes in fluid accumulation

between the considered compartments, and in order to reduce the high

pressure in the cardiovascular passage. There is no compliance element

between the sinuses and the large jugular veins because the jugular

bulb is assumed rigid, with very small storage changes. Altogether,

in our presentation, we assume five compliance elements between the

cerebrovascular elements.

The mechanical properties of 'resistances' and 'compliances' are

"symmetric" with respect to the interchange of direction between one

compartment and another. These are outcomes of the law of action and

reaction. In general formulae,

'AC = "CA CF = HP.C (1)

C AR = CHA CCF = CFC Ct

Three results, obtained by running the model presented here for cases

of interest, indicate that the model, even in its present form, can

simulate certain features actually observed clinically. The first

relates to the observed displacement of the main ventricle peripheral

boundary. By computing the value of the compliance between the F-compartment

and the Brain Tissue one, approximating the configuration of the F-

compartment to a sphere, Karni et al. (1986) showed that this displacement

is of the order of magnitude actually observed by Lewer and Bunt (1978).
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The second indication relates to the pressure variations in the

jugular bulb. Sorek et al. (1986a), by employing the model presented

here, predict that a negative pressure appears during certain portions

of the pressure cycle in the jugular bulb compartment. Such negative

pressure is indeed observed in reality. Also, the model predicts,

during certain portions of the cycle, zero pressure in the sinus, a fact

that is also accounted for the action of the heart.

Finally, as shown in this paper, the model predicts the excessive

accumulation of CSF in the F-compartment (known as Normal Pressure

Hydrocephalus), as a r-,sult ot clogginq of the passa(le between the

capillaries and the Brain Tissue compartments. Sorek et al. (1986c)

report observing this relation and discuss the use of it in relieving

the pressure by transplanting a shunt.

COMPARTMENTAL MODEL EQUATIONS

The assumptions underlying the hydrodynamical model of the circulatory

cerebrovascular system may now be summarized as follows:

(1) Functional brain elements, represented by compartments, are character-

ized by 'mean' or 'lumped parameter' quantities, of interest to us here

are pressure and fluid flux.

(ii) The fluid is single phased, inconmpressible and Newtonian. From the

physical point of view, there is no differentiation between blood and CSF.

(iii) The flow is laminar and the relation between the flow rate and

pressure drop is linear, i.e.

Al_, (2)
. IF
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where R is the resistance.

(iv) For the distensibility (elasticity) of the element of brain, a linear

function holds between the volume change AV and the pressure drop AP

namely

AV = C,.P (3)

where the coefficient of proportionality, C , is the compliance.

(v) The system is isothermal and thermodynamically stable.

The explicit continuity equations for the balance of mass for the

various compartments now read:

For the Artery (A) compartment:

PA - t'
""A + C , (4)

For the Brain Tissue (R) compartment:

PC- B P F- PB 1 B-P v dC + F = + d d C I
R + =R R B BA dt (EB-A) + C7BV dt B- V BF dt BRCB R B V

(5)

For the Capillary (C) compartment:

PA -PC Pc-PF Pc-PB Pc-Pv d-A C + .-- + C + r" (1,- ) (6)

"ACH(I h V  ('1 1 C ".'

For the Cerebrospinal Fluid (P) compartment:

-+ + CF ("F-"1)) + ',' c ( -' +
-CF RR ? FR dt (TC

(7)



37

For the Vein (V) compartment:

Pc-Pv PB-PV Pv-Ps

ICV RBV HVS Vdt V1
R1?--- + RB ---- S + 0I' (1v-P) (8)

For the Venous Sinus (S) compartment:

Pv-P5  P -Ps P-P ,
-- + F - s - P + C ( ' -P (9 )

RV + _R_ R C 0 sF t F ' (9)

For the Jugular Bulb (°J) compartment:

~' (10)

Adding (4 ) through (10), making use of (1), yields

QA = Q(1)

which is a remanifestation of the Monro-Kellie doctrine.

Equations (4)-(10) can be grouped into a single matrix equation of the

form

dPC *--#ZP12= Q (12)

where P is the pressure column vector:

P- -'-{PA" PB" PC" P" PP (13)
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Z is the fluidity (inverse of resistivity) matrix

ZAC 0 -ZAC 0 0 0

0 [ CB+ZFB+ZB V] -z CB -Z -Z[ V 0

I -ZAC -ZCB [ZAC+ZcF+Z+ CV] -ZC, -Z V o

0 -ZFB -ZCF [zC-+ZF'+ZFB a F3

0 -ZBV -z 0 [Zcv+Zv+Zv ]  -zvs

o 0 0 -Zps -v, [ZV+ZF;]

(14)

C - the symmetric compliance matrix

CA -C 0(})
CAB 

AB

-CAB [CAB+CFB+CBv] 0 -CFB -CBV 0

0 0 CF -CCF 0 0
4C.-[ cjj= F +C ] (15)

o -C F C CP [CC(+C7+CP. 0 C111

0 -CBV 0 0 CiV 0

0 0 0 -Cs 0 CF,

and Q is the flux column vector

Q-= [QA' 0, 0, 0 , , } (16)

The resistance RSS does not appear in equation (14) as it is readily

obtainable from equation (10).
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The matrix equation (12) comprises nine resistances and five compliances

listed in equation (1). Even for the steady state, whereby all the

derivatives with respect to time vanish identically, and et uitiui (12)

reduces to

ZJ'=Q (17)

we are left with the eight resistances (as R is determined separately)

against six independent balance conditiuns for the various compartments of

the cerebrovascular model, excluding the jugular bulb. However, by virtue

of the Monro-Kellie doctrine which assumes an absolute rigidity of the

cranial vault, actually only five equations of the six are independent.

Thus, the redundancy of the system (17) is three, and three additional

conditions are needed to solve the set. One of them is the flux QF=- 0.3 ml/min

which can be taken as pivot value with high credibility from the literature

(Cutalar, 1968). Two more conditions have to be stipulated by physiological

data. They, however, do not assume specific values; instead they are known

to be within certain limits. We shall have, therefore, to accompany their

aetermination by a sensitivity analysis, sweeping the entire range of

variation of possible values, as discussed in the following Section.

EVALUATION OF THE FLUIDITY MATRIX

The intracranial, compartmental flow problem of the cerebrovascular

system lies in the solution of the set (12) in its entirety. This is an

inhomogeneous, first-order, ordinary differential matrix equation with

respect to time. In the previous Section, we chose to reter to the

matrices C and Z ds constant, a fact that made (12) a set of linear

equations. The respective mean values were taken as these constants,

as a first approximation. However, in principle, the coefficient matrices

C and Z could be functions of the dependent vector parameter P which,
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in turn depend on the time, t. Thus, basically the problem is Inn-linear.
There are, however, some passive cases which can be approximated by the

linear problem namely, when C and z assume constant values. At any event,

even while dealing with the non-linear problem, we shall have to pass

through the linear case. To the latter, therefore, our attention is now

focused.

The procedure of solution of the linear case is as follows:

(a) Given information about fluxes and pressures, equation (12) can be

solved to yield values for resistances and compliances. This is often

referred to as parameter identification or model calibration.

(b) When the Rijs and Cijs have been evaluated, the changes in

pressures and rates of fluid flow can be determined for variations in the

rate of fluid discharge from the heart pump and from the venous outlet.

(c) With the pressures and compliances already solved, information about

the volume changes and, under certain assumption, also of the displacements

of the compartments can be obtained.

Here, we confine the attention to the parameter identification and

proceed in two stages:

I. 'Me steady state. For constant pressures, the governing equation is

the particular integral of (12). The matrix equation to be solved is (17).

The chart of mean pressure variations along the cerebrovascular fluid

system conforms with the pressure profile of the cardiovascular system

cited in the literature (e.g., in Guyton,1969, Ch.14). In the arteries,

the average pressure - between systole and diastole - is 100 ma Hg. It

drops to 20 mm Hg in the capillaries including the choroid plexuses;

10 mm Hg in the CSF system, 9.5 mm Hg in the brain tissue, 5 mm Hg in the
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venous system,2 nm Hg in the sinuses and 1-2 mm Hg in the larger veins -

jugular and spinal - leading into the vena cava (Fig.l). Volumes of the

compartments are also recorded in the Figure as much as they are documented

in the literature.

Given the compartmental mean pressures J'-. (i=A(,I'"', ), also
1.

introducing the abbreviations /-,. for the dill erl t' ii me,,n itr, ',,,,

between two adjacent interacting compartments, 4 1-IJ. ;siilarly,

j- i- represents the difference between the mean fluxes in com-

partments i and j. Beciuse QA" O* and Q* are a-priori known, and
* * * (sal te enpesrs

the mean pressure values PAC, PI anMd P* (as dll other mein pressures)

are also known, the following element,, (u t are immediately solved:

ZCF = =(18)

AC CF Si

This leaves us with six elements of z against five equations for the

remaining compartments, four of which are independent.

To account for the double redundancy, we introduce the scalar coefficients

V= U, ) (19)

R zHV'.J ZI-/ (1,0

Here, m indicates the ratio of the cerebrospinal fluid-brain barrier to the

vein-venous sinus resistance, whereas li is the ratio of the cerebrospinal

fluid-brain barrier to the blood-brain barrier.
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Let us now examine the following cases:

(i) 0 < < . Based on equation (20), solution of equation (17)

leads to:

CF SJ

Z2z (21.2)ZFB =LP o. -P;B QAF (12

VS FB

-VS - SOLPP F (21.3)

i --VS "FB-V
Z Oap *F-B 1 BF (21.4)

S +B CB (21.5)

ZCB * a (21.6)
CB=OPVS -FB'FF

z FB (21.7)BV TP" -P B -P--V A
B VS~F~V A

The lower extreme value of 8=O is noteworthy of mention. From the

definition of a (Eq. (20)), it can assume a zero value in two cases.

First, RFB=O, indicating a complete rupture of the cerebrospinal-brain

barrier. Here, obxo also prevails and the only consistent condition for

equation(21.3) to exist is P*=P*, which means that there is hydrodynamical

equilibrium and absolute stagnancy of flow between the CSF compartment and

the brain tissue compartment. To avoid this, the pressures at the CSF

compartment and the brain tissue compartment ought to differ by some

Amm (m mm ml m
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amount, P* P . In the literature, it is customary to assume that

both are in the order of 10 mm Hg. In our calculaticns, we arbitrarily

used the mean values of Pj=10 min Hg and P;= 9.5 mm Hg (Fig.1) to enable

flow from the F to the B compartment.

The second possibility for the vanishing of 8 is HCB .

Physiologically, this means that there is a complete blockage of the blood-

brain barrier; there is no transmission of blood nutritions from the

capillaries to the interstitial fluid of the brain tissue, in short -

a total collapse of the brain. We, therefore, rule this case out.

There is, however, one more case of an admissible non-singular solution

of the hydrodynamical problem for j3=O . It occurs when Z FS=IFS=O

or, alternatively, from equation(21.4),when (1Q= */Q * * • This

(if P. >PBd indicates that there is no direct drainage of the CSF into the

sinuses through the arachnoidal granulations (the pacchionian bodies), the

CSF compartment considerably increases its size and the symptoms are those

of hydrocephalus.

There is little, almost no data about the physiological or pathological

ranges of a and B. By trial and error, however, we could assume B to

be in the range of 1/1000. This value led to results that have actually been

observed in the clinic. At the same time, the values of the compliances and

resistances obtained were found to be insensitive to the value of B. (see

Sorek et al. 1986b). To convert this into corresponding ratios of fluxes,

designated by a bar, instead of ratios of resistinces, we have by definition,

QCB - QVS (22)

QFB QFB

so that
PVSZVS PVS RFB P'VS

FBFB P B RVS PPB
(23)

mCB C1 _CB PB mCB

FE PBB Y FB
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For our choice of a = 1/1000, 0.021 (cf.Fig.l). As illustrations,

Figures 2 and 3 present the computer solution of the set (21) for

R B(ci) and R FS(a) respectively in the particular case of = 0.021

Fig. 2, 3

U = 1/1000). The functional dependence of RCB on (a is linear,

whereas that of RFS() is hyperbolic.

A general sensitivity analysis for the variation of the resistances

R?.. in the present case (i) of o < < - may follow the same procedure

as for case (ii) (B - c) discussed below. This was not carried out

numerically because, at a later stage, due to the vagueness of the

assumptions about , the complete solution for the resistances Rij(a.),

rather than the limited solution of R..(ia) for the above values of 3,

has been obtained. The three-dimensional plottings for the compartmental

resistances R ij(c,); later also those for the compliances J -((xj),

will be reported separately.

We now turn to case:

(ii) (3 CO . In addition to equation (18), the remaining elements of the

matrix Z read

ZFB =0 ; ZFS =

pS p
to*Jp Zv, Z (24

'CV -P* +yp Y F W ZBV=YCV (4
CV BV

,Z Y , T~ QA
CB p* YP* P AF

CV 'm'mBV CH
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Here, for the sake of a smoother solution, a new parameter y instead of

a has been introduced as the ratio of the resistances RCV and RBV,

namely

RC
Y = RCV  (25)

RBHV

Strictly, the exact value of the ratio y , as much as those of a and

f3 , is not known. However, we can still pursue with the sensitivity

assessment of the Z elements against a variation in y, / and I-)*

Let A denote a deviation from the mean value, then

V* A* +APC (26)ACV =ABV + ACB

It follows from equations (24),(25) that

DZ = ADF (27)

where

-z [AzCV AZ CB A "BV]

(28)
D _[Ay ,AP A* ]
F CB BV

are the difference vectors of the z elements and of their arguments

respectively, and A is the square matrix

'AV

BV PV B

QAF PBV BV cv BV

(PC VY (,'C+ 'CT2

CV ~~-Y-Y 1+y
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The extreme case of B - corresponds to a complete rupture of the

blood-brain barrier (RCB-O) causing haemorrhage to the entire brain

tissue. This is bound to change the compartmental pressure distribution

contrary to our assumption of a steady state. Use of equations (27),

(28),(29) is. therefore, confined to the onset of the occurrence only.

I. Non steady flow. An interim solution of the matrix equation (12)

for P=-P(t) and Q=Q(t) when the effect of C is negligible but not

zero, has been discussed elsewhere (Karni et al., 1986). As an example,

for a given arterial excitation wave CA) , the venous-sinus wave

Ps(t) was calculated and checked against the measured Ps(t) wave

recorded by Hamit et al., 1965 , showing a good matching in wave form,

amplitude and frequency. In this way, after the model is calibrated

and the resistances R.. solved, the complete evaluation of the pulse

wave vector P(t) can be obtained.

EVALUATION OF THE COMPLIANCE MATRIX

We now proceed to the complete solution of the non-steady flow problem

for the compartmental model with constant coeffici-ents, namely the general

linear problem.

Equation (12) is rearranged to read

dP(t)
C= QCt) - Z P(t) = 13(t) (C = no,,t.) (30)

Information scarcely exists about the time dependency of the vector q(t)

at all compartments. We, therefore, begin with the average pressure

vector P* and the average flux vector Q* and solve for the matrix Z 
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which by our assumption is now time-independent, from equation (30), namely

R = Q ZP = 0

That describes the steady state flow discussed above. We then derive
dP(t)

information about the values of P(t) and P(t) t at various

times t from clinical data of simultaneous pulse wave recordings at

the different compartments (such as from Hamit et al., looc olt.).

Equation (30) now yields a n-set of relations for the compliances for each

time value t which is of the form

n,-r= n (31)

n.
PAB

17"
n-
n. n. (32)

dt P PRV
n.
PFS

£_ {CA4B, Ca,, CBV, 0 FS, CFBI 5xl (33)

', n ' -Z nPVc',;i SH AC A

n,,, ,Z V,1 , , _i

_Z , +Z np +Z nPvZ V nP_Z npF n 6 x I

AC AC CV CV CR CF'R

W1 17 !7 17V7"P.. .. F -z r5-z P -

Z,. iilnllilnn l J+Zn iV~ ';C OO CI Ph .
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Applying the Gauss-Markov theorem, the c values are obtained by an

assortment of the set of informations at all (n) given time observations,

namely

= (hT )-I iT B (35)

LL
2-

1 = -- (36)

jl n x

R_ ['b , n""rb] n× (37)

n
E k k z )

A k=1 nAR J SJ PA (38.1)
AB =  n .k. 2

E (kPAR)

k=l

n-kz k k - k

kIPCF (ZAC PAC-ZCV PCV-ZCF PF-Z-B CR P, (8C =l (38.2)
CCF =  k

k~~CF)
k=1

n z k, k-z ki,kz Bv(Zvs P Vs- ZCV CV-ZBV k(BV)

CBV n 2

k=l

n ki, (ZbJ k, k kl

CFS n (38.4)

k=1 PFS)

nkk k ki z i -z l kp
C k=1 FR (ZAC PAC+ZVI k-vs-sj ',';W- Cv cv- c B 111 kFB)
FB n k 2

(38.5)
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From the clinical measurements of Hamit ot al., (1965), the five

compartmental compliances listed in equation (33) have been calculated

for the values ax = 1000, 6 = 1/1000. They are

CAB = 0.0155 ml/mm Hg ,:orwt. for ,(Y,)

CCF = 0.0364

CBV = 0.3180

C = 0.0334 (con 't. j'oy' (A )

CFB = 0.1830

At a later stage, the numerical solution has been extended to include

the general case of c..=c..(ct,). The three dimensional C .(aX,()

plottings will be reported separately. This concludes the calibration

of the compartmental model for the cerebrovascular flow system.

EVALUATION OF THE COMPARTMENTAL PULSE WAVE FORMS

Within the framework of this work, which discusses the compartmental

cerebrovascular flow problem with constant resistance H.. and compliances

C ii namely, the general linear problem, once the model has been calibrated,

it is possible to obtain solutions for the pressure-time variations P(t)

at all the compartments.

Solution of the matrix equation (12) in incremental form is given by

P Q1 7 1 Q(9P(t+At) = eP(-,_) [P(t)-'_,-q+zY-(9

Here, At=tk+1- tk denotes a time step between the frontier time level

tk+1 and backtime level tk . The matrix _. equals

K = At.( 1 (40)
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The rational expansion of exp(-K) leads to the following formula

I (1-O)K
exp(-K) 0 (0 < 1) (41)

S I-K - --

where I is the 6x6 unit matrix. A substitution of equation (41)

into equation (40) now reads

L(t+At z ([ + 0K)-[[- (1-O)][t't)- _ + = -  (42)

The coefficient 0 controls the type of solution which evolves in time.

When 0 = 0 , we have an explicit scheme; 6 = I- an implicit scheme, and

0 < 0 < 1 - a mixed scheme. Thus, with the choice of 0 , equations

(18), (21) or (24), (38) and (42) constitute the complete solution of

the non-steady, compartmental cerebrovascular flow problem with constant

resistances and compliances. In addition, being phrased as a first-order

differential matrix equation - Eq.(12) - sufficient boundary conditions

ought to be given to enable us derive complete expressions for the

compartmental pressure waves. Unfortunately, because of lack of clinical

data, rigour has to give way to speculations from this stage onward.

We can only express the hope that the information gap will close itself

before long.
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ABSTRACT

A lumped parameter compartmental model for the non-steady

flow of the cerebrovascular fluid is constructed. The model

assumes constant resistances that relate fluid flux to pressure

gradients, and compliances between compartments that relate fluid

accumulation to rate of pressure changes. Resistences are

evaluated by using mean values of artery and cerebrospinal fluid

(CSF) fluxes and mean compartmental pressures. Compliances are

then evaluated from clinical data of simultaneous pulse wave

recordings in the different compartments. Estimate of the

average CSF compartmemLtal deformation, based on the compliance

between the CSF and brain tissue compartments, proves to be of

the order of magnitude of actual experimental measurements.
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INTRODUCTION

The lumped-parameter compartmental model of the

cerebrovascular system is the first step towards the construction

of a more comprehensive model of tha intracranial fluid system

The compartmental approach assumes that the intracranial content

may be divided into a number of units, or compartments, the

behavior of each of which is represented by a single value of

pressure and by values of flux exchanged with adjacent

compartments. All these values may be time dependent, but they

don't vary in space. The resistance to the flow from a

compartment to an adjacent one is lumped at the boundary

between the two compartments. Likewise, the integrated change in

volume of two adjacent compartments due to the movement of their

common boundary in response to a pressure difference, is

represented as a property called compliance that is assigned to

the boundary between to two adjacent interacting compartments.

Monro's (1783) first model of the intracranial cavity was

bi-compartmental: Brain fluid and blood, as two almost-

incompressible fluid phases. Kellie (1824) modified this model

by assuming three, instead of two, material compartments:

arteries, veins and brain tissue. 'rhe Monro-Kellie models

prevailed to this century and were modified in stages only in

recent, years. The number of compartment. was increased to six:

arteries, capillaries, venous, venous sinus, jugular bulb and

cerebrospinal (CSF) (Agarwal, 1971).

Yet, in all these models, the fluid itself remained

incompressible. More recent approaches relaxed the latter

constraint and the fluid was taken as (linearly) compressible.
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As to the brain tissue, it is essentially a multiphasic material

(e.g., brain tissue, blood and CSF) continuum. Experimental

results show that its behavior is inelastic or, alternatively,

that the corresponding compliance is non-linear. To overcome

the "non-linearity" of a single coefficient, the tissue is

assumed to be a rather complex, single-phase, multi-parameter

viscoelastic material e.g., one, whose constitutive relation

involves four viscoelastic coefficients. (Panidi and Advam

1978). In the reports of these investigations, although not

explicitly stated, the model of the intracranial content

returned to be bi-compartmental: The CSF compartment and "all

the rest", or the vascular compartment and the rest, etc. In

most cases, even for the multicompartmental model of the

cerebrovascular fluid system (e.g., Agarwal, 1971), no numerical

calculations were presented and the exposition of the subject

remained theoretical.

Our first objective, therefore, was to develop an N-

compartmental model that can yield numerical values of the

various state variables (e.g., pressure). So far, we have

successfully achieved (Sorek et al. 1986a) this objective for

the general linear- problem, assuming constant compliances and

resistances. Physiologically, the assumption of linearity

corresponds to passive states in which the sensory and

endocrinological biocontrol mechanisms have but little effect on

the resistances and the compliances. Basically, homeostatis is

non-linear by virtue of the feedback mechanism which senses the

deviations in the values of resistances and compliances and acts
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to restore them to normal values. Nevertheless, one must first

construct and solve a linear model and employ perturbation

techniques in order to derive solutions for the generalized non-

linear problem. Accordingly, we have first constructed and

solved a linear model that described non-steady flow in a

lumped-parameter N-compartmental model of the cerebrovascular

fluid system with constant resistances and compliances.

rhe compartmental model involves a number of resistances and

compliances, the values of which must be known before the model

can be employed in predicting pressure and flux changes. In the

first paper (Sorek et al. 1986a) it was indeed assumed that the

values compliance and resistances including, as we shall see also

here, certain ratios between pairs of resistances were known.

The objective of the present paper is to present a methodology

for estimating the values of the variouis compliances and

resistances and the above mentioned ratios.

1. THE COMPARTMENTAL BALANCE EQUATION

The governing equation for the lumped-parameter

compartmental model describe the balance of mass and the balance

of linear momentum for each compartment. Essentially, each such

equation states that the temporal rate of change of either the

fluid mass, or its momentum in a compartment, is equal to the

amount of net influx of that quantity through the compartmental

boundaries plus the external sources. The mass balance of the n-

th compartment, surrounded by a numbr of compartments denoted by

m=l,2,..., can, therefore, be written in the form
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dV

dt m Q
(Mn)

where qnm (-m ) denotes the flux from compartment n to m, Qn

denotes external sources in the n-th compartment and V is its
n

volume.

The flux q can be expressed in terms of the difference

in pressure, P (=P -P ) between the n and the m compartment, andnm n mn

a conductance Z (reciprocal of the resistance Ri ), in thenm nm

form

P

q = nni Z P 2
nm R nwi nmII

nm

The change in volume, AV is produced by the change in
n

the pressure differences, AP , in adjacent compartments, taking
nm

into account the presence of compliances, C , between these

cells

AV = C AP (3)

Cm) m'm nlm

Together, we obtain for the n-th compartment, a mass balance

of the form

dPC. ( n__mm + I. Z P = q 4

(i) nm dt () nm nm (

Another compact form of this equation for- ali cells

simultaneously ip

dP
C + Z = (5)

--mmmmmmm m•m•m mmmm m
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where P(t) is the time-dependent (Nxl) pressure vector; Q(t) the

source (Nxl) flux vector, and Z and C are the (NXN) conductance

and the compliance matrices, respectively.

2. PARAMrEER EST11ATION

The compartmental balance equations for fluid mass, written

in the compact form of (5), involve conductivities and

compliances, expressed by the matrices Z and C. In the present

work, these parameters are assumed to be constant.

To predict the pressure (and flux) response of the model to

externa. changes, the values of the parameters C and Z must be

known. In order to estimate them, we need measured values of

pressure in the various compartments at a sufficient number of

points in time.

Because C and Z are constant, and p(t) is cyclic, by taking

a temporal average of (5), (i.e., integration over a period of

time divided by the period), we obtain,

P Z Q (6)

where ( ) denotes a temporal rate of change, ( denotes the

difference between adjacent compartments and p* and Q* denote

mean values of pressure differences and source fluxes,

respectively. We note that (6) is a quasi-steady state equation.

With known values of P* and Q*, we sol:e (6) for 6 Z.

Given further. information from clinical data e.g., Hamit et

al. 1965), of simultaneous pulse wave recordings P(t) and P(t)

(AdP(t)/dt), at the different compartments and at various times,

tk, k=l,2,...K, equations (3) and (4) now yield a K-set of
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relations for the compliances.

-k C Qk _ k (7)
P C Q Z

By the Gauss-Markov theorem, the C values are derived as an

assortment of the set of informations at all K time observations

(Sorek et al., 198 6a).

This concludes, at least formally, the (inverse) process for

identifying parameters appearing in equation (5) for a N-

compartment model.

3. EVALUAI'ION OF MODEL lSI'AiCmS AL'D COMPLIANCES

Let us determine the values of C and Z in the case of a

seven-compartment model, namely for N=7.

Figure 1 shows the model consisting of the following compartments:

Fig. 1

arterial (A), capillary (C), cerebrospinal fluid (F), brain

tissue (B), venous (V), venous sinus (S) and the jugular bulb

(J). The (lumped) resistances are: between the artery and

capillary compartments (RAc); the capillary and cerebrospinal

fluid compartments (R F), the capillary and brain tissue

compartments (RcB), the capillary and vein compartments (R CV),

the brain tissue and vein compartments (jv ), the cerebrospinal

fluid and brain compartments (RFB), the vein and venous sithus

compartments (Rvs), the cerebrospinal fluid and the venous sinus

compartments (RFS), between the venous sinus and the jugular bulb

compartments (H.); altogether nine resistances. In Figure 1,
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the capillary compartment, is divided into: the choroid plexuses

- those tufts of small capillary vessels inside each of the four

ventricles -and the capillary system outside the ventricles.

However, in the equations, only the combination in parallel of

the conductances ZAC + ZAC ZAC and Zv appear, so

that only the combined resistances RAC and v - into and out

of the capillaries - are included in the model.

The resistances "B ' CF and RFB are identified as the

lumped blood-brain barrier; the lumped blood-cerebrospinal fluid

barrier, and the lumped cerebrospinal fluid - brain barrier,

respectively.

We recall that the compliance elements, Cnm, indicate that

an increase in volume of one compartment equals the volume of the

$cup" formed by the deformed membrane. This volume, in turn,

equals the volume displaced from the neighboring compartments,

all this within the rigid container of the skull bones (the

Monro-Kellie doctrine).

In the non-steady state, which takes into account the

deformabililty of the compartments, we first introduce a

compliance element CAB between the artery and the brain tissue

compartments it represents the overall pulsatory effect of the

arteries on the brain tissue. Next, the capillary system is

considered. non-deformable, so that no compliance is introducte

between this compartment and any of its neighbors. The choroid

plexuses, however, although capillary in nature, possess other

material properties. Hence, they can , and in fact do, convey

pulsations to the CSF system (Bering, 1955). Accordingly, a
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compliance C CF is introduced between them. Furthermore, the

CSF system and the brain tissue share common boundaries - at the

ventricles and along the subarachnoidal space - which are

deformable. A compliance element CB is, therefore, inserted

between the two. Finally, to account for- observed sharp drop in

pressure along the cardiovascular passage, additional compliances

CBV and CFS are inserted between the brain tissue and venous

compartments and between the CSF and venous sinus compartments,

respectively. Altogether, in our presentation, we assume five

compliances between adjacent elements of the cerebrovascular

fluid system.

The mechanical properties of resistances and compliances

are symmetric with respect to the change of direction between one

compartment and its neighbor, i.e, in formulae

i = R , R F R etc.AC CA CF FC

CAB C BA ' CCF CFC etc

All f 's and C 's are positive.nm nm

We adopt the value of mean pressures along the

cerbrovascular fluid system according to the pressure profile of

the cardiovascular system cited in the literature (e.g. in

Guyton, Ch. 14, 1969). In the arteries, the average pressure -

between systole and diastole - is P* :!O0mmHg. It drops to
A

P* :30mmHg in the capillaries, including the choroid plexuses;
C

P* =lOmmHg in the CSF system, P* =9.5mmHg in the brain tissue,
F B

P* =9mmHg in the venous system, P* =8mmdg in the sinuses and
V

P* =2mmHg in the larger juglar veins and in the spinal leading
J

into the vena cava (Fig. 1). The mean values of the injected and
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ejected fluxs at the artery and jugular bulb are

Q*A=QJ =750ml/min.

Altogether, nine values have to be determined. However, the

matrix equation (6) comprises only six independent balance

equations for the various compartments of the cerbrovascular

model. Thus, the redundancy of the system is three, aad three

additional conditions are needed to solve the set. One of them

is the mean flux (from choriod plexus to the CSF ventricles)

Q*F=O.3ml/min, which can be taken as pivot value with high

credibility from the literature, (Cutaler, 1968).

Thus, the ZCF value can be evaiuated from the expression

* * (8)
QF 

= Z CF PCF

Two more conditions have to be stipulated for resistences,

based on the existing physiological data. We now introduce the

scalar coefficients.

R FB Z VS
RVS ZFB

RFB Z CB
RCB ZFB

Here, a indicates the ratio of the resistance of the

cerebrospinal fluid-brain barrier to the vein-venous sinus

resistance, whereas a is the ratio of resistance of the

cerebrospinal fluid-brain barrier to that of the blood-brain

barrier. Thus, equations (6) to (10) allow a complete solution

for the resistences Rm (ot, 8 ) and compliances Cm (a,a) with the

ml i nfl ii
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values of a and B. Figures 2 and 3 describe an example of the

surfaces HCV (a,a) and CV(0,
CV BV

respectively

Figs. 2,3

The figures demonstrate zones of a and 0 that generate

unacceptable values (e.g. negative Z's as in Fig. 2) of

resistances and compliances and zones of high sensitivity of the

resulting Z's and C's to small changes of a and a. Our choice

is, therefore, to rely on Lx and F values that generate stable

Zs and C's.

There are almost no data about the physiological, or

pathological, ranges of a and a. It was found that when a and B

are in the range of 1/1,000 and 10,000, respectively the

resistances and compliances meet Lhe desired aforementioned

criteria. Hence for B =10-3  and aI0 4 , equations (4) to (8)

result in the following values

RAC=O.O933mmHg/ml/min. Rvs=0.0013 mmHg/ml/min.

h,,=66.667mmHg/ml/min. R FS=7 .6187mmHg/ml/min.

RCV=0.O28mmHg/ml/min. Sj=0.OO8OmmHg/ml/min.

RCB=1333 8 .0mmHg/ml/min. R FB=13.338mmHg/ml/min.

BV=3.33mmHg/ml/min.

and

CAB=O.0012ml/mmig C Fs=0.0494ml/mmHg

CCF=0.0357ml/mmHg C FBC.2093rnl/mmHg

CBV: 0 .3746ml/mmHg
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With the above value of CF8 ' we can now assess the average

deformatibn of the CSF compartment. Let us assume a spherical

configuration of this compartment, with a mean diameter r-. its

volume, V, and surface area, S., are given by V 4 r 3r

F - 41T . dy virtue of equation (2), we may thus express

tht:I change in V F by

AVF = F B PFB (i)

According to Hakim et al. (1976), the mean diameter of the

i . 62_) m. Thus, in view of the mieanC., conp;Ar:.menL is r F  - q

I4 211pI u.;u Ie di f ference I. F 0 .5mrnlg, the compI iance vailue

=D.2093ml/mmHg, and from equation (11), we obtain

"F=16 .O7 #10-5 ram.

fhis estimate of displacement of the CSF compartment

buundaries is consistent with measuceiucnLl done by Allen et al.

( 19583).

r'inally, we wish to emphasize that the model approach

pruented here (see also Sorek et al., 1986b, Karni et al.,

1966 ) constitutes a methodology that ,an be implemented to

vIA Vous compartmental scheme., representing different aspects of

clinical data.
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RESISTANCE R(CV) -VS - BETA & ALPHA
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INTRACRANIAL COMPARTMENTAL PULSE WAVE SiMULATION

Shaul Sorek, Ph.D., Jacob Bear, Ph.D. and Zvi Karni, Ph.D, D.Sc.*

Department of Biomedical Engineering and Department of Civil
Engineering, Technion - Israel Institute of Technology

Haifa, 32000, Israel

Abstract

fhe general solution of the linear compartmental model for

the cerebrovascular fluid system with constant resistances and

compliances, predicts the pressure waves in the compartments in

response to an input pulse wave-arterial and/or jugular. Results

are shown for a seven-compartment model and for a sinusoidal

arterial pulse wave at a frequency of 1 Hz, with and without

fluid drainage from the CSF-compartment.

Keywords: Brain tissue, Compartmental model, Intracranial
pressure, Pulse wave.

*Deceased
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INTRODUCTION

We chose to simulate the fluid regime in the brain by a

seven-compartment model (N=7) shown in Figure 1. It is based on

Agarwal's (1971) six-compartment model: artery (A), capillary

(C), cerebrospinal fluid (F), vein (V), venous sinus (S) and

jugular bulb (J), to which we added the brain tissue compartment

(B). The model assumes nine resistances and five compLianccs as

shown (Sorek et al, 19 8 6a and b) in the figure (note that the

capillary compartment is divided into two parallel one, the

choroid plexuses inside the ceberal ventricles and the rest of

the capillary system outside the ventricles. Thus, the combined

resistances RAC and RCV enter into the calculation3).

The mean compartmental pressures are also shown on Fig. I

P* (average between systole and diastole) =100mmHg, Pc =30mmHg,
A

P :lOmmHg, eB =9.5mmHg, Ptr :9mmHg, P =SmmHg and P* =2mmHg.

The mean arterial flux is Q =750ml/min.

The intracranial, compartmental fluid flow of the

cerebravascular system, is governed by the fluid balance equation

(Sorek et al. 1986a).
dP

C - + Z P = Q (1)

This is an inhomogeneous, ordinary differential matrix

equation of the first rank with respect to time (t). Here, C is

the NxN matrix of the intercompartmental compliances; Z is the

NxN matrix of the reciprocal intercompartmental resistances, P

is the Nxl matrix of the compartmental pressures, Q- the Nxl

matrix of the compartmental sources which add fluids to the
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intracranial domain from outside. The fluid density is assumed

constant.

Equation (1) represents here six linear balance equations,

one for each compartment, except the Jugular bulb, in the six

variables (PA, PB' PCI PF' PV ' ) "

The components of the Q matrix are: QA, O,0,0,0,,-Q1 where

QA is the flux input to the artery and Q.) is the flux outflow

from the Jugular bulb.

Equation (1) is subject to initial pressure values

-(0=O) -o

Basically, the problem is non-linear. By virtue of the

homeostatic biocontrol (sensory and endocrinological) feedback

mechanisms, the coefficient matrices Cand Z can, and in fact are

functions of the pressure vector P and of time, t. There are,

however, some passive cases which can be approximated by the

linear problem, namely when C and Z assume constant values.

Moreover, even if we deal with the non-linear problem, the

solution passes through the linear case. In what follows we will

concentrate on the solution of the linear problem, i.e., with

constant C and Z.

in what follows, we assume that the actual value3 of' the Z

and C components are known. These are obtained by solving the

appropriate parameter estimation, or inverse, problem (Sor-ek et

al., 1986b).

Actually, in view of the Monro-Kellie doctrine which states

that the sum of all compartmental volume changes equals zero,
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N
Y A 0 ~3

n= 1

Only five independent algebraic equations are represented by

(1).

In other words, if one compartment changes volume, it has to

be at the expense of the volume of its neighbors, all within the

cranial vault assumed to be absolutely rigid. 'rh is

intercompartmental relation is reflected in the expressions for Z

and C.

iC. = C.. = (i
1J i

* 1 ij 0

This means that we need external information on the pr-essure

in one of the compartments. Because the pressure artery can be

measured, (perhaps in the future by non-invasive methods), we

choose to specify it as the additional information.

In the following sections, we bring the numerical r'esuits

for the compartmental pressure waves that result from an input

arterial sine wave with and without a sink (drainage) in the

Cerebrospinal Fluid (F) compartment. We will also discuss the

physiological and clinical significance of some of these results.

2. COMPARTMENTAL PULSE WAVE FOR~MS

The choice of a sine wave as the input function QA was made

for two reasons. First, some of the obn;erved pr:.;r wave

forms are indeed close to the sine wave.;. Secondly, if they do
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not correspond to sine waves, but are still periodical, then by

Fourier's analysis they can be described as linear combinations

of sine waves of different frequency, but of the same

periodicity. We also choose the frequency of 1 Hz (1 cycle per

second), as base frequency for the calculations. This frequency

is close to the cardiac frequency. In the classification of the

intracranial pressure wave forms, it corresponds to the Lundberg

A-wave (1974), also termed "pulse wave".

* I 5
P P + P sin (wt)
A A A

Where PA =100mmHg is the average arterial pressure,
I

PA=2mmHg is the amplitude of the arterial pulse wave

between systole and diastole, and w=2mfHz, namely the period of

the wave is one second upper part of Fig. 2.

Based on the above considerations on 1)A(t) , the arterial

fluctuating flux was chosen

Q QA + QA sin (wt) (6)

where QA =750ml/min, and Q1 z125ml/min for U:, ,t,11 and
A A

QA =100ml/min for r<wt<2T

Jagular bulb involves no compliance (i.e., its wails are

practically non-deformable). Hence the fluid ma:3: bia Lnce

equation for it is

ZSJ (PS- 9 Q (7)
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Due to the absence of compliances in the Jagular bulb, we

assume that the pressure in it under unsteady conditions (i.e.,

in reality) is the same as under quasi steady conditions. The

latter are defined by

ZP = - (8)
=(0 9(t)

i.e., deleting the effect of cell compliances. Under quasi

steady state conditions

QA(t) = QJMt 9

We take advantage of this conclusion by combining (7)
through (9) to yield the pressure, p (M) , in the Jagular bulb

compartment. Furthermore, knowing the pressure, P.i 9 we employ

(7) to express Qj in terms of Pi and substitute this expression

into Q(t) given in (1) and solve for the pressure variations

P(t) in the non-steady case.

We should emphasize that (9) is valid only for a quasi-

steady state. Under unsteady state conditions, QA(t)= (t).

Once a solution for PS(t), among other pressure values, is

obtained one may insert it into (7), which is valid also for

unsteady state, to obtain Qj(t) under unsteady flow conditions.

It is also possible to calculate the arterial flux by (eqs. (I), (5))

. f dPsS A(P P) + PA[ZAcsin(wt) + C wcos(wt)] + C (10)QA AC A- C 1 A AB ABl dt

obtained from (1), that also takes into account the compLiances

in all of the compartments.
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3. EXAMPLES

A number of computer solutions were derived for cases of

interest. In all cases, the following values of resistances and

compliances were employed (Sorek et al. 1986b).

RAC :0.0933mmHg/ml/min. zVSO.03mmHg/ml/min.

RCF:66.667mmHg/ml/min. RFS :7.6187mmHg/ml/min-

Rc:V =0.0 28mmHg/ml/min . R 0 .O080mmHg/ml/min.

R :13338.OmmHg/ml/min. R =13.338mmHg/ml/min.
CB FB

RBV =3.33 miig/ml/min

and

C AB =O .OOl2ml/mmHg :O.0494ml/mmlig

C CF =0.0357ml/mmHg (:r :O.02093ml/mmHg

C Bv =0 .3746ml/mmHg

EXAMPLE 1:

Given the phasic pressure PA(t), as expressed by eqn

(5), and the arterial flux, QA(L) , as expressed by eqn. (6), the

Jugular phasic pressure, Pj(t) and the corresponding pressures

P C(t), PB (t), P Ft) , PS( ) and P V(t were determined. The

results for PC(t) are shown in Fig. 2. The other- pressures are

shown in Fig. 3.

It is of interest to note (in Fig. 3) the negative values

of p (t) during part of the cycle, as a result of the suction

action of the cardiac system. This is consistent with clinical

observations.
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Figure 4 shows the calculated Jugular outflow and arterial

inflow. As may be seen from the figure, the two fluxes are

equal to each other. The time integrated difference over half a

cycle indicates no fluid quantity stored and then released from

storage during each cycle.

EXAMPLE 2:

By introducing a shunt into the CSF ventricles (F

compartment), CSF can be drained out. We impose drainage rates

of .2, .8, 1.4ml/min. Figure 5 shows the resultinZ pressure,

P F(t) As can be seen, an excessive drainage will lead to a

strong distortion of the sinusoidal wave configuration.

EXAMPLE 3:

Upon imposing a constant pressure on the brain tissue,

PB= 9.5mmHg, Figure 6 shows that the pressure curve in the F-

compartment will be highly decayed. This fact emphasis the

importance of the pulsational behavior of the pressure within

each compartment of the cerebral system.

SUMMARY

The interaction of the various components of the

cerebrovascular fluid system is representable by a lumped-

parameter compartmental model which takes into account the

pressure and volume changes between the compartments.

Presently, only the linear problem is discussed for which

the resistances and compliances are assumed constant. The

general solution of the linear problem enables us to derive the
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non steady pressure waves in all the compartments, also with sink

(drainage) function systems.

The computer has been programmed for the general case of an

N-compartmental model. The results brought here are for a seven-

compartmental (N=7) model: arterial, capillary (including the

choroid plexuses), cerebrospinal fluid, brain-tissue, venous-

sinus and jugular bulb.

The simulation of the compartmental pressure waves is for an

input sinusoidal arterial pressure wave, also termed "pulse

wave", of I Hz frequency.

The linear assumptions correspond fairly well to some

passive states of long-standing coma and chronic neurologic

cases. Even when the problem becomes non-linear and the feedback

effects of the bio-control mechanisms - sensory and

endocrinological - have to be incorporated into the model, the

linear solution will again be the first stage upon which the

nonlinear effects are then superimposed. We thus have at our

disposal, at least as a first step a method of "computerized

simulation" for the intracanial fluid dynamic system the use of

which, particularly in cerebral intensive care unit, is self-

evident!
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CAN N.P.H. BE CAUSED BY CEREBRAL SMALL VESSEL DISEASE?

A new look based on mathematical model

S. Sorek D.Sc.*, M. Feinsod M.D.** and J. Bear Ph.D.***

ABSTRACT

A novel mathematical model describing the intracranial

contents as lumped interacting compartments is presented. The

model predicts pressures and fluxes as function of time in the

various compartments. Compartmental resistances and compliances

are evaluated as step functions of mean pressures and fluxes

values. According to this model, normal pressure hydrocephalus

may be the result of small vessel disease that abolishes the

pressure gradient between the capillaries and brain tissue.

Lowering the CSF pressure as by shunting, restores the required

compartmental interaction with new values for the resistances and

compliances.

Keywords% normal pressure hydrocephalus, ventrical-peritoneal
shunt,mathematical model, intracranial pressure, compliances,
resistances, fluxes, CSF physiology, capillaries.
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INTRODUCTION

The clinical features of Noini. ,'ii.

are well known (Fisher, 1977). °?hc rr,,' .; , 1

ventricles enlarge in adult patient ' . .....

intracranial pressure is still speouian xvr ,:rtc.

1977). Various tests were suggested in -,roe ,

factory prediction which patient will .e...

procedure but no one gained yet the expected rez., ,

In this paper we will report a patien . ,

clinical course could be explained by ap>. . .

mathematical model of inter relations between brain '. II ...

(Sorek et al. 1986a).

This model may shed light on the still obscure ,

NPH .



CASE REPORT

A.K. is a 65 year old merchant started exhibiting signs of

memory loss and impaired judgement. His appearance continued to

be immaculate and small talk did not reveal his deficit. CT Scan

demonstrated enlarged ventricular system. The fourth ventricle

seemed less involved than the others CSF pressure on lumbar

puncture was 120mmH2 0 RHISA cisternography showed rapid entrance

of the isotope into the ventricles, it cleared only after more

than 48 hours.

A shunting procedure was suggested but the family elected to

wait. His condition slowly deteriorated, his dementia became

overt and he was confined to home. Six months later another

consultation was seeked now because of progressive ataxia.

Repeat CT revealed further enlargement of the hydrocephalus.

Only 4 months later, when the patient was confined to bed due to

severe ataxia, incontinence and speechlessness did the guardian

permit operation. CSF pressure at that time was ll5mmH2 0 .

A ventruclo-peritoneal shunt with an opening pressure of

9emmH2 0 was installed. The postoperative course was remarkable

for the rapid return of speech, memory, ambulation and

continence. A month after the operation the patient returned to

his business and several weeks later reported success in

complicated financial considerations and decisions. CT scan

demonstrated small, well drained ventricles.

Eight months later he started to deteriorate and within 3

weeks he was approaching his pre-operative condition. CT scan

revealed, again, enlarged ventricles (Fig. 1). Shunt malfunction

was presumed but surgical revision failed to demonstrate any
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obstruction and did not alter his condition. Only after

installment of a new shunt system with a low opening pressure

(60mmH2 .) did the patient improve. Once again, his recuperation

was remarkable; he is back in finances and doing well. CT scan

(Fig. 2) is evident for well drained ventricular system.
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DISCUSSION

In a series of recent papers (Karni et al. 1986, Sorek et

al. 1986a,b,c) a model depicting the brain as an assembly of

interacting compartments was put forward.

The model (Fig. 3) solves the distribution of pressures,

fluxesresistances and compliances within these compartments.

In this model we attempt to define each intracranial

structure as a cell. Seven such cells - arteries (A),

capillaries and choroid plexus (C), veins (V), venous sinuses,

(S), ventricular cerebrospinal fluid (F), jugular bulb (J) and

brain tissue (B) are lumped together and their interactions are

described by a series of flux balance equations (Sorek et al.

1985a).

As an example let us consider the equation describing flux

balance for the capillary compartment.

P A- PCF Pc-B Pc- + d
RAC RCF + RC+ RCV + CCF dt (Pc-PF) (1)

pA= arterial pressure

pC = capillary pressure

PF= CSF pressure (ventricular)

p B =brain tissue pressure

PV= venous pressure

RAC= resistance to flow between arteries and capillaries

RC= resistance to flow between capillaries and ventricular CSF

RCB= resistance to flow between capillaries and brain tissues
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RCV = resistance to flow between capillaries and venous

CCF = compliance factor between choroid plexus and ventricular CSF

d (PC-P) time derivative of the pressure difference between
H F

choroid plexus and ventricular CSF

As a first approximation 'the resistance and compliances were

considered as mean effective values i.e., constants. The overall

matrix of resistances and compliances were evaluated via an

inverse procedure (Sorek et al. 1986a).

Note that equation (1) describes the flux balance in steady

as well as in non steady situations. The cells may be rigid

giving a flux term expressed by pressure differences divided by

resistance or contractile yielding a flux which is the product of

compliance and time changes of pressure differences.

In the course of evaluating the resistances of the model it

was shown that a situation leading to evolution of a

'normotensive' hydrocephalus may take place.

The usual accepted mechanism for development of

hydrocephalus is defective absorption of CSF in the venous sinus.

In our mathematical model this will be expressed by RFS =  or

ZFS= l/R FS= (where RFS is the resistance to flow between the

ventricular CSF compartment and venous sinus compartment and

where ZFS stands for the conductance between these compartments).

However it was shown (Sorek et al. 1986a) that at the same

time the resistance (R) between capillaries (C) and brain tissue

(B) attain infinite values RCB:
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In the set of equations for the solution of the model

resistances we have relations between fluxes, pressure

differences and coefficients a and B

R
RFB (2)
RVS

RFB (3)
RCB

For instance the relation for ZCB (conductance between

capillaries and brain tissue) and ZFS (conductance between

ventricular CSF and venous sinus) is as follows

z 0 ~(QA-Q F ) (4
ZCB = , • U*) (•

C (P -P ) - (PF-P

c(P-Ps *A P -* (5)

(PF-Ps )[a(Pv-Ps)-(PF-PB)]

where ( ) denotes mean effective values

QA flux entering the arterial compartment

QF flux entering the CSF compartment 
= CSF generation

QF may be described by

Pc-PF (6)

RCF 

(6

Aib
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A solution of the set can be attained when we allow 0=0. An

accompanying condition ZFS =0 will still yield a possible

solution.

Thus the following mathematical equations now exists

ZCB=O (RCB = 0 (7)

ZFSO (R = -()FS (8)

aQF*(P* -P * )-Q *(P* - P * ) : O  (9)

F V S A F B
Equation (7) is the mathpmatical representation of a flow

impediment between the capillaries and the brain tissue. The

condition ZCB=O may be regarded as a precondition activating the

NPH situation represented by equations (8) and (9).

Conditions expressed by equations (8) and (9) indicate

blockage of CSF transfer from the ventricles to the venous sinus.

As this conditions do not affect production of CSF by the choroid

plexus (QF=0 ) compartment (F) will , The presence of

copliances CFB C and C (Fig. 3) allow for the expansion
FS CF

without increase of pressure i.e. NPH.

Thus, in a situation where the flow from capillaries to brain

tissue is impaired as may be the case arteriosclerotic

cerebrovascular disease and especially in small vessel disease in

the aged, a NPH may develop.

In order to overcome the NPH situation one has to interfere

with the balance as stated in equation (9). By lowering the CSF

pressure PF i.e. shunting procedure, the previous conductivities

may change in a step fashion accommodating the new mean pressures

Abg
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and fluxes as indicated by equations (4) and (5). Note that

according to equation (9) such step changes may also take place

when changing other factors e.g. PV, PS, etc. Thus removal of

CSF will also yield a change in capillary to brain tissue

transfer which may explain the improvement in neurological

functions after shunting. It was shown that CSF drainage in

hydrocephalic patients increase regional cerebral blood flow

(Symon and Hingzpeter, 1977). If the small vessel disease

continues, equation (9) may again prevail and a further decrease

in CSF pressure is necessary in order to accomodate for the new

resistances and complainces as could be the case in our patient.
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FIG. 1 ENLARGED LATERAL VENTRICLES INSPITE OF A PATENT
MEDIUM PRESSURE VENTRICULO PERITONEAL SHUNT.

FIG. 2 WELL DRAINED VENTRICLES AFTER INSTALLMENT
OF LOW PRESSURE V-P SHUNT.
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A SIMPLE CONTINUUM MODEL OF BRAIN TISSUE DEFORMATION

by

S..Sorek*, J. Bear** and Z. Karni***

ABSTRACT

The continuum approach is employed for modelling the

distribution of deformation and stress within the brain tissue

visualized as the domain between two concentric ellipsoids having

the same axes. Phasic pressures in the Jugular Bulb and CSF

ventricles, estimated by a compartmental model, provide the

conditions on the outer and inner boundaries, respectively. The

simulation yields phasic stress and deformation which are

consistent with clinical observations.

Keywords: brain tissue, CSF ventricles, jugular- bulb, Hook's
law, compartmental phasic pressures
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INTRODUCTION

Changes in pressure in both the jagular bulb and in CSF

ventricles, produce stress variations, accompanied by

deformation, within the brain tissue. Our objective in this paper

is to obtain estimates of stress and deformation distribution

within the brain. To achieve this goal, a simplified continuum

model of the brain is introduced and investigated.

In the literature on the biomechanics of heart impacts,

much use of spherical and oblate spheroidal coordinates is made.

The skull is idealized as a rigid sphere with an opening that

stimulates the foramen magnum, while the spinal dura mater is

idealized as a cylindrical membrane fitted to the foramen magnum

(Liu, 1978). The intradural content of the central nervous

system (CNS) fluid-filled continuum is regarded by some as a

single-phase, quasistatic incompressible fluid in a two

compartment (skull and spinal dura-mater) structure, or as a

single-phase compressible elastic fluid possessing a single

"averaged" bulk modulus and a sheer modulus (Pollack and Boshes,

1936; Ommaya and Hirsch, 1971; Lofgren and Zwetnow, 1973;

Goldsmith, 1972; Marmarou, 1973; King and Chou, 1976). Hakim et

al. (1976) stipulated the case of static equilibrium to find the

stress in the brain tissue, regarding the cranial vault as a

hollow sphere with ventricles in the middle. The inner and outer-

boundary conditions were the pressure value of CSF in the

ventricles and at the subarachnoidal space.

Apart from the spherical models, other curvilinear

mappings were suggested such as a truncated shell of revolution

(Schumacher, 1978).

.. . .. .. .. . . . .... .. . . . .. .. . .. ..&
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Our present attempt is to revive Leonardo da Vinchi's

idea, based on his anatomical sketches (Fig. la) (cf. Russel,

1959), and consider the domain between two ellipsoids, the inner

ventricular ependyma and the outer pia mater, as an approximate

geometry of the .cranial vault.

The brain tissue is assumed to be a homogeneous and

isotropic, single-phased material.

In an earlier work, Sorek et al. (1986a,b,c,), simulated

the cerebrovascular flow regime in a compartmental model cerebral

system (Fig. 2). They derived the non-steady phasic pressure and

flux waves associated with the artery (A), capillary and choroid

plexus (C), CSF ventricles (F), veins (V), brain tissue (B),

venous sinus (S), and jugular bulb (J). Here we will use the

phasic pressures in the CSF ventricles and in jugular bulb

obtained in that study as an inner and outer boundary conditions

respectively, imposed on the considered brain tissue domain.

Clinical data show that the material comprising of this

organ is deformable. However, it is not strictly elastic, since

under external stresses, it exhibits also the delayed property of

viscosity (Pamidi, 1976). Nevertheless, as a fi rst

approximation, we choose here an elastic stress-strain

constitutive relation for this material.
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ASSUMPTIONS

The following assumptions underline the constructing of

the model simulating stress and deformation of the brain tissue:

1. The brain tissue configuration is approximated as a shell

between two prolated spheroidal bodies (Fig. ib). Its inner (CSF

venttricles) and outer surfaces are obtained by rotating

ellipses about their common major axes. The relation between a

cartesian system (X,Y,Z) and the prolate spheroidal coordinate (C,

n,) system is given by

x = a sinh(E) sin (W) cos (W) (1.1)

y = a sinh(E) sin (n) sin ( ) (1.2)

z = a cosh() cos (n) (1.3)

where, >0, O<n_<r; 0<I<2T The associated scale coefficients

(h,h n, h ,) are expressed by

2 2 2 2 2
h = h2 = a I sinh () + sin ()j (2.1)

2 2 2 2
h = a sinh (E) sin n (2.2)

2. The equations of the outer and inner ellipsoids are given

respectively by E= E,0 =const. and E = 1 = const.

3. The brain tissue material is assumed isotropic, homogeneous

and elastic, obeying Hook's Law, which can be expressed by

E = +P (I - P- 6  a (3)iJ E ij E ij kk

where P Poisson's ratio, E=Young's Modulus, 6ij=Kronecker

delta, Eij=strain tensor, Oij=stress tensor and 0 kk~diagonal

stress tensor.
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4. The inner and outer boundaries are loaded by spatially

uniform pressures in the CSF ventricles and in the jugular bulb,

respectively.

5. At each point within the considered domain, we can determine

the radius of curvature of the ellipsoid &=const. passing

through that point. We then assume that deformations are mainly

along the radius of curvature. Also it is assumed that the organ

is undergoing small deformations. The compatible relation between

strain and deformation is expressed by

C = .1 (.i *u. (4)
Eij 2 i,j ],

where u. is the deformation in the i direction and u. is the

derivative of ui with respect to the j coordinate.

5. Bending moments and shear forces are neglected because of the

symmetries involved in the assumed configuration.

6. Body forces (e.g., due to gravity) are neglected.

We may now write the force balance equation in the ( ,r,')

coordinate system. Note that the prevailing stresses are normal

to the surface, o , which is balanced by the components of the

longitudinal stress, n , and the latitudinal stress .

FORCE BALANCE EQUATION

Let us first evaluate the length of the mean semimajor

and semiminor axes of the CSF ventricles visualized as a prolate

spheroidal. Let aj, 5  and cJ denote the semi-axes of the Jagular

bulb and aF, b F' cF denote those of the CSF ventricles. For

the outer surface, we introduce the estimates. a =9cm.; b j=6cm.;

.Aft
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CJ =3cm. (i.e., a volume of approximately 680m.).

The volume of the CSF ventricles is taken as

V F:150cm. 3 , i.e.,

V -iabC = 150 (5)

We now assume that the inner and outer prolate spheroids

are similar. This means that

b = 2c F  (6)

aF  3c F  (7)

Hence, by virtue of equations (5), (6) and (7) we obtain

a F:5 .4cm. b :3.6cm. CF= 1.8cm.

As was stated above, the deformation is a function of

the C coordinate only. Any volume element (Fig. 3), is

subject to radial F, , longitudinal F and latitudinal F

forces. The lengths of the volume element edges are hEdV h n d,

and h *d .

By writing a force balance along the radius of curvature, we

obtain the resultant in that direction in the form.

2F sin (4) + 2F sin 42 ) - dF (8)2 nn(-- 2

For small angles d*'<1 and dq<< an equivalent

form of (8), written in terms of stresses is

. , L.._ m .,.-Ak d
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d- ( h hn) - h Eh - nn h 0 hC = 0

One may obtain (9) by replacing the forces in (8) by stresses

multiplied by.the appropriate areas.

Equation (9) is subject to the following conditions on the

external (k= EJ) and internal C = F ) surfaces.

a -P at E :F (10.1)

o -pc J a L (10.2)

We note that because of symmetry, the resultants in the

other two directions vanish

Recalling the assumption that the displacement u, is normal

to the = =constant surface (i.e., u=u(E)) and that these

displacements are very small, we now stipulate the condition

U:O at E =0 (11)

In view of equations (1),(2), (4) and (11), we obtain

du (12)

o0 [nU+u)- hn(d (1+du/dE)2(C+u)2-E'

fh di2 (13)f hn( dn

0

u du

(-A 1
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f [h 4(+u)-h W) ]d4
= o = 1+du/dE)(E+u)-E U (14)

f h ci*
0

We will relate strain to stress by Hook's constitutive law

(equation (3)). By virtue of equations (3) and (12)-(14), we

therefore obtain

du 1 ([ +0 )] (15)

2u -_(G +0 ] (16)
E E in P

U = 1 [a _(o +a A (17)

Equating equations (16) and (17), we obtain

o * = Ao + Bo (18)
rnn

where

A = +21 (19.1)
2+p

B = -P (19.2)
2+ iJ

Substituting equation (18) into (9) yields,

a a C do + Do (20)

where

h
._a (21.1)Ah
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D - C l' h*hn ) -h h
h (h h) ( 21 .2)

Differentiating (16) with respect to E , equating the result to

(15), substituting (18) and (20), we obtain

d2°

M CE + K E + Wo = 0 (Z)

where

M C 3.1)

K dC+ 1 2 
(3. D_

dD !_4mD 2 _+
W C - + P 2 (23.3)

We then solve equation (22) together with boundary

conditions (10), for a E = ()E . With the calculated EE ,

we evaluate o , C and u as functions of E , using

equations (20), (18) and (17) respectively. All calculations are

done numerically.
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IMPLEMENTATION

Employing equations (1), with the values a,b, and c of

the semi-axis, of the inner and outer surfaces, we calculate

=0.454, c,:0.689 and F=0j :26.50, atnF =jn90O. We then

impose the phasic pressures PF and p , evaluated by Sorek et al.

(1986), using compartmental modelling, as boundary conditions

(equations (10)) to calculate phasic variations of stressess and

deformation as distributed along

Figure 4 depicts the mean distribution of stressess o ' 0

to$ 0and deformation u due to mean pressures PF=lOmmiig and

P=2mmHg. Note that compression stress in a result in tension

in the longitudinal , ann , and latitudinal , a , stresses.

Also note the hyperbolic characteristic for deformation and

stresses, demonstrating a decay in intensity from the CSF

ventricles surface to the outer brain tissue surface. Figures 5

and 6 show a , and u surfaces as functions of time and

location, depicting the pulsational nature of stresses and

deformation. The range of deformation as described by figure 6

is consistent with reported clinical observation (Alien et al.

1983).

CONCLUSION

A continuum model was developed and employed to simulate

stress and deformation in an elastic ellipsoidal shaped brain

tissue. The results of a compartmental model were employed to

account for phasic pressures used as boundary conditions in the

model presented herewith. Although the model is basically a I-D

and simplified results, are consistent with clinical

$Ah
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observations. Modifications such as the use of 
a non-elastic

stress-strain constitutive law, may yield bette- predictions of

stress and deformation distribution 
in time and space.
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