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ABSTRACT

In addition to the pole series in the singularity expansion of a

scatterer's response a *possible entire functionP contribution has been

customarily included although considerable uncertainty surrounds the
role of this response component. Entire functions are frequently found
in the responses of circuits where they represent forced components.

The results of this investigation indicate that in certain extreme

system configurations, like circuits, the forced response to a time-

limited excitation is an entire function. In certain less extreme

configurations, like most scatterers, the forced response takes the

form of a 4quasi-entire function-* which is composed of highly-damped
pole contributions. We demonstate that true entire functions themselves

can be represented by infinite pole series whose poles have become

infinitely-damped. For many scatterers two groups of poles can be

distinguished: the dominant poles and the highly-damped poles whose

contributions comprise a quasi-entire function. The numerically-derived

quasi-entire function components of a conducting sphere-capped cylinder
and a conducting loop are determined by subtracting the dominant pole
series from the total responses of these scatterers. These results

indicate that the forced response of scatterers, i.e.\the quasi-

entire function, nay find concise description in a form imilar to

extended physical optics, wherein the shadowing effects iierent in the

standard definition of physical optics are ignored.
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1 INTRODUCTIMC
Over the years since the invention of the singularity expansion

method (SEM), 1 there has been some uncertainty surrounding the identity
and role of the "possible entire function" term in the singularity ex-

pansion of a scatterer's response. The fact that the entire function

does not have a unique definition causes the role of this component to

be somewhat vague. The results presented herein represent an attempt to

grasp the meaning and utility of the entire function. The present in-

vestigation seeks to answer the following questions: (1) is an entire

function component required for the accurate representation of transient

scattering responses? (2) What is the physical significance of an
entire function component? (3) For applications such as resonance esti-

mnation and radar target identification, how can an entire function com-

ponent be represented, dealt with, or effectively used?

Entire functions are frequently found in the frequency-domain
responses of circuits where they represent forced components in the
responses. Forced components are distinguished from the unforced or
natural responses of a system in that they exist only while the system
is under excitation, whereas the unforced response may exist independ-
ently of the excitation. Although the unforced response can exist inde-
pendently, in all practical situations it is the result of soaw past (or
present) excitation. Therefore, the label "unforced" is misleading. in
fact, the forced response can be thought of as that part of the total
response which quickly damps out after the excitation is removed and the
unforced response is the remainder with little real distinction between
the two components. The recognition of-this similarity between the
forced and unforced components is crucial for understanding one facet of
the entire function's role in transient scattering.,

As is shown in Sec. 2 for the far-field response of a conducting
sphere under plane wave illumination, an entire function component is
not required. on the other hand, if the sphere is deformed through the



prolate spheroids into an infinitely thin filament, an entire function
is required. As the poles of the sphere are tracked from the sphere to
the filament, some of the poles approach the imaginary axis in the
s-plane while the rest tend to s - -~ . The poles that withdraw to
infinity give rise to an entire function whicn can be thought of as the
forced comaponent of the filament's response. In the time-domain, thisr forced component is a square-pulse function, i.e.*, a time-limited func-
tion, that is non-zero only while the incident plane wave is on the
scatterer.

In Sec. 3, the approximation of time-limited functions with sums
of highly damped exponentials is found to be theoretically feasible
although in practice such approximation encounters numerical difficul-
ties. In the frequency-domain, this type of approximation corresponds
to representing an entire function by a pole series involving poles with

large negative real parts. The practical difficulties inherent with
such a representation points out the effectiveness of the entire func-
tion as an approximation. For distributed systems, the entire function
component can be used as an approximate representation for the contribu-
tion of an infinitely large group of poles that recede to infinity in
the complex frequency plane. The forced components in the responses of
circuits are, in fact, based on such approximations. In an absolute
sense, an entire function may never be required in the responses of real
systems. In a practical sense, however, the entire function can provide
a welcome refuge from all the numerical problems posed by attempting to
represent transient responses by pole series with infinite numbers of
terms.

Such practical considerations motivate the present investigation.
Radar target identification has been suggested as a possible application
of the SmN representation wherein the poles of a radar scatterer are
used to identify it. Poles are particularly useful features for target
identification because they are invariant with aspect angle. The
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authors first became acquainted with the question of the entire function
while estimating resonances from measurements of transient scattering
from thin cylinders. We noticed that only when the early-time portions
of the back scattered returns were excluded from the resonance estima-
tion procedure (Prony's method) could consistent estimates of the reson-
ances be achieved. At the time, we speculated that the early-time data
was not composed purely of the unforced response, but also included a
forced component which could not be adequately modeled by the finite
pole series being matched to the data. The results of the present in-
vestigation confirm this initial speculation.

Because an infinite number of degrees of freedom exist in the
residues of a scatterer's pole series, there is considerable freedom in

the choice of the entire function. The residues can, in many cases, be

adjusted to absorb or produce an additional arbitrary entire function in

the representation. In Sec. 3, it is shown that the Laplace transform

of a time-limited function can be represented to any degree of accuracy
by a pole series formed from poles with large negative real parts.
Since most scatterers possess an infinite number of such poles, any

entire function resulting from an arbitrary time-limited function in the

early-time response can be expanded in those poles to any degree of
accuracy. As a result, there is usually a variety of choices for entire

function and one simply has to make a good choice.

Heyman and Felsen2 have suggested that for many types of scat-

terers, such as the sphere, pole series are not very useful in the

representation of the early-time response. Instead, they suggest that,

for many scatterers, the responses can be more efficiently represented
if groups of resonances are combined into the wavefronts and rays of the

geometrical theory of diffraction for the early-time responses, while

the SED pole series can be retained for late times if the late-time
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response is significant. Wavefronts are nothing more than entire func-
tion comonents. Specifically for the conducting sphere, Uberall and
Gaunaurd3 have shown how the scattered fields of the conducting sphere
can be split into a geometrical-optics and creeping-wave components.

The geometrical-optics component corresponds to an entire function and

the creeping waves to a pole series in the frequency domain. mathemat-

ically, this entire function has no meaning since it could be excluded

from the representation altogether. Nuerically, the inclusion of this

component accelerates the convergence of the representation. Physic-
ally, this component can be given meaningful interpretation as the re-
flection from the apex of the sphere. This choice for the entire func-

tion is, of course, one among many.

Morgan 4 and Pearson5 have suggested that the entire function is

required in addition to the pole series to accurately describe the scat-

terer' s response. The results of the present investigation do not bear

out the absolute necessity of the entire function in the responses of

scatterers but only its usefulness in the accurate and efficient repre-

sentation of the early-time response. Morgan' O entire function repre-
sents another possibly good choice for the entire function.

For many scatterers, it is possible to distinguish two groups of

poles: the highly-damped poles and the dominant poles. The contribu-
tions of the highly-damped poles can be grouped into what we will call a
"quasi-entire function" component. In Sec. 4, the quasi-entire compo-
nents of two scatterers, a condiucting cylinder and loop, are numerically
derived by subtracting the dominant pole series from the total re-
sponses. Both class 1 and class 2 coupling coefficients are used to

form the pole series which results in two definitions of the quasi-

entire function for each case, thus illustrating the non-uniqueness of

this response component. The quasi-entire function may be regarded as a

forced response component in the same spirit as the forced responses of

circuits. As the results of Sec. 4 illustrate, this forced component

resembles th xeddpyia pis46response of the scatterer.
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2 EXAMPLES AND COUNTEREXAMPLES OF REQUIRED ENTIRE FUNCTICK CCHPO-
NDTS IN TRMNSIDIE RESPONSES

To illustrate the basic issues under consideration, some simple

systems that can be analyzed by exact methods allow some preliminary

conclusions to be made. First, a circuit shown in Fig. 2.1, whose

transfer function contains both an entire function component and a reso-

nant component is considered. The transfer function of this circuit can

be written as

Vin(s)
H(S) - Vo - 1 + AI(S - Sl)- 1 + A2(s - s (2.1)

where

l,2 - M +~L j~ (R211/2

R S1L -s1  - s 2

A R __2__

2 - LS 2 -s 1

R

V. vout
In 

C'

Figure 2.1. A network whose transfer function contains an entire

function and a pole series.
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with 1/(WC) > R 2/(2L) 2 .The first term of Eq. 2.1 is a (constant)

entire function of the Laplace transform variable s - a + co) . The
presence of this term causes the output of the circuit to contain the
familiar forced component. The remaining two terms comprise a finite
pole series that constitutes the unforced or natural response of the
circuit. The entire function in this case is required for the accurate
representation of the response.

Next, consider the direct connection between input and output
formed by replacing the R element of Fig. 2.1 by a short and the L
and C elements with an open. The transfer function of this network is
H(S) - 1 and the response consists only of a forced entire-function
component. This direct connection can be thought of as transmission
line observed at low frequencies. At high frequencies, a transmission
line of length L with a voltage generator, Vin , at the input and an
open at the output as shown in Fig. 2.2 has a transfer function given by

H~)-cos(-jsL/cl 22

where c is the speed of light. The transfer function has poles,

in out

Figure 2.2. A transmission line as a network whose transfer function
can be represented exactly as an infinite pole series
alone or approximately at low frequencies by an entire
function alone.
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Sn- 2L n -,+, 2

and can be expanded into a pure pole series with an infinite number of

terms. Note that at low frequencies Eq. 2.2 can be approximated as
H(s) - 1 . It then becomes obvious that the entire function found in
circuit theory is a result of the low frequency approximations that formr the basis of circuit theory. A large number of high frequency resonant
contributions can be combined and approximately represented as an entire
function accurately within limited region of the complex-frequency
plane.

The above considerations indicate that an entire function contri-
bution may never exist in reality but is merely a convenient approximate
representation for a large number of high-frequency resonant contribu-
tions. The question to answer then becomes: how is the entire function
to be defined in specific cases? The answer to this question appears to

be that no precise or unique definition is ever possible. However, in

certain extreme system configurations, the system poles will frequently
cluster into widely separated regions of the complex plane. In such
cases, the definition of the entire function can take on a measure of
precision and uniqueness. one such extreme configuration is the infi-
nitely thin wire scatterer which is explored below. other such config-
urations are circuits of which an example has already been given. Next,

we will consider two scatterer geometries, namely the sphere and the
infinitely thin wire, which illustrate the extremes with regard to the
entire function question.

The conducting sphere is one scatterer that can be solved entirely
by analytical techniques. moreover, the poles of the sphere are found
by finding the zeros of polynomials, as is done for circuits, instead of
more complicated functions as is the case for most, if not all other
scatterers. The scattered far field of a perfectly conducting sphere in
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free space with an +x-polarized incident plane wave traveling in the +z

direction can be written as
1 '7-9

-4s exp(-JkR)~~ 2n+l1E j -RE fdn(n+ 1)
n-i

n(ka) B)1 B) sin(cos .)

In n

(kaj n(ka)J' 1 pno e) 1 P(cos B)
+ k-kah(2 llka) 1,  sin e sin (2.3)

where P; is the associated Legendre function of the first kind ofn(2)
order 1 and degree n , jn and h 2  are spherical Bessel functions

of the first and third kinds, respectively, a is the radius of the
sphere, k - W/c - -js/c is the wave number, and R is the distance to

the far field point. The deriviatives of the spherical Bessel functions

appearing in Eq. 2.3 are defined by

[kazn(ka)J' " j [XZn(X)]Ixka " Zn-l(ka) - zn(ka)

where zn denotes the Bessel function. Equation 2.3 can be converted

into a pole series plus an entire function by expanding the factors

7)+ 7,2,)j (2.4a)
kh 2 (ka) L n a I

and
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k(kajn 2(ka)J' [kat4~1)(ka)J']
kaj 2 )(ka)' + [kah (2 ) (ka)]' (2.4b)

into pole series and entire function terms where the spherical Bessel

functions are defined by

n

(1) -n-i exp(Jz) V
hn ( z Fi ai(-2jz)

imo

n

(2) n+l exp(-jz) a2
hn (Z) - j ex . ai (2jz)'i

i-0

and

(n + i)a I =i(n- )

For each n , Eqs. 2.4a and 2.4b can be expanded into a pole series plus

the entire function, [1 - exp(j2ka)]/(2k) . These entire functions can

be smmed over n to give a total entire function component in the

sphere's response. Upon examination, this component displays some
rather peculiar features, has no apparent physical interpretation, and

is regarded as a mathematical artifact.

Although when each of the factors in Eq. 2.4 are taken individu-

ally, an entire function term must exist for each term of Eq. 2.3; this
does not indicate that the total response requires an entire function.

In Sec. 3, it is shown that the residues of a pole series with a large

mumber of deeply-imbedded poles can always be adjusted to absorb the
entire function into the pole series. Since the sphere possesses such a

set of poles, the response of the sphere should be representable to any
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degree of accuracy by a pole series alone. It is always possible,

though, to rearrange the equations so that an entire function component

is retained. In this case, the residues of the resulting pole series

are altered to account for the additional component.

Next the infinitely thin conducting wire or filament scatterer is

considered. This scatterer requires an entire function component, in

its scattered field and thus it provides a counter example to that of

the sphere. Finally, the transition from sphere through the prolate

spheroids to the filament will be explored and there the specific causes
of the difference between the sphere and the filament with regard to the

entire function will become clear.

To develop a solution for the axial currents on a filament with a
plane wave incident field, we start with an asymptotic solution obtained
for an infinitely long conducting cylinder driven by voltage across an
infinitely thin gap, given by Chen and Keller.10 This solution, which
is valid for large kiz - z'I , can be written as an admittance which,
when multiplied by the gap voltage, gives the current:

"(zz s) - 2 exp(-sjz - z'/c(2.5)
,s log(2j]z - zI/a) - log(-jr2 sa/c)

where - l o is the impedance of free space in which the cylinder
is imersed, a is the radius of the cylinder, r a 1.781 is the expo-
nential of Euler's constant, z' is the z coordinate of the gap and
z is the coordinate for the location of the current. The tilde denotes
a Laplace transformed quantity.

For very small ka , Eq. 2.5 can be written in a simpler form:

Y(zz',s) aYo exp(-sjz - z' /c) (2.6)
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~where

m - 2n" ¥o0 nlOgoa/C '

and wo  is a constant such that o°  ( a . In transient analysis, w
will vary over some range. In this case, wo is set to the middle of

this range.

Equation 2.6 is valid even for klz - z' << 1 when ka is very

small. However, in a region very close to the gap, Eq. 2.6 does not

adequately account for the logarithmic singularity in the current. Near

the gap, the current is given by
1 0

4 log kl- - zI

As ka -o 0 , this component has a vanishingly small effect compared to

the other components of current given by Eq. 2.6 and, hence, it can be

neglected.

The solutions of Eqs. 2.5 and 2.6 assume that a gap, i.e., an

opening in the metal, exists, and that the gap voltage has no variation

in # so that no +-directed currents are excited on the cylinder. Some

resolvable differences then exist between the gapless filament under

excitation by an arbitrary plane wave and the cylinder. The gap in the
cylinder can be closed without any change in the exterior fields. This
is done by defining fields of the gap-excited cylinder as scattered

fields, closing the gap with a perfect conductor, and introducing an

incident field to cancel with the electric field corresponding to the

gap voltage on the perfect conductor. It will be assumed that the +

components of the incident plane wave electric field on the cylinder's

surface and the +-directed currents produced by these components have

negligible effects on the overall response of the filament. This is a

2-7



standard thin-wire assumption which is known to produce correct results

as ka approaches zero. The +-variation of the incident field obvi-

ously becomes negligible as ka approaches zero.

Applying the inverse Laplace transform to Eq. 2.6 gives the time

domain form:

Yn(z,z',t) = Y0 6(t - Iz - zI/c) (2.7)

where 6(t) is the Dirac delta function. Equation 2.7 approaches the

exact solution away from the gap for the tim -domain current on an
infinitely long filament excited locally at z' by a delta function
incidence field. Equation 2.7 represents two current impulses traveling
in both directions away from the excitation point.

Equation 2.7 can be used to determine the currents on a filament
of finite length. The reflections of the current pulses off the ends of
a finite filament can be modeled with additional sources (infinitely
thin gaps with voltages across them) situated at the ends and defined
such that the currents at the ends are always zero. Chen and Keller10

give a detailed description of the modeling of the ends of the cylinder.
The time-domain current on a filament of length L excited by a local-
ized E-field or voltage source at z' can then be written as

Y(z,z',t) -Yo {6(ct- z + z' - 2nL) + 6(ct + z - z' - 2nL)
n-O

- 6(ct - z - z' - (2n + l)L]

- 6(ct + z + z' - (2n + l)L]u(t) (2.8)
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where u(t) is the unit step function. Equation 2.8 represents the two
current impulses traveling away from z' and recurrently reflecting off

the ends of the finite filament.

Filament currents due to an incident impulsive plane wave, as

shown in Fig. 2.3, can be found by superposition, using

I(z,t) - Ei  r Y(z,z',t + z' cos e') dz' (2.9)
-L/2

iwhere E is the z component of the incident electric field. Simi-
larly, the scattered far field can be found from

L/2
E,8(,t) 4 f I(z,t + z cos e - R) dz (2.10)

-L/2

where 0 is the scattering angle and R is the distance to the far
field. The currents and fields given by Eqs. 2.9 and 2.10 are composed

of the superposition of a number of step functions in time.

Figure 2.3. Gecumtry for scattering by filament scatterer of length L.
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Figure 2.4 illustrates the time history of the backscattered far
field produced by an infinitely thin filament of length L with impul-
sive plane wave excitation as found using Eq. 2.10. In Fig. 2.4, the
responses of a perfectly conducting sphere-capped cylinder with a
length-to-diameter ratio of 30 are provided for comparison to those of
the filament. The cylinders response's were obtained using a nent-
method solution of the electric field integral equation. Note that all
of the features, except for the damping and amplitudes, of the fila-
ment's and cylinder's responses agree well. The late-time portions of
the filament responses are completely periodic, whereas in the early-
time an aperiodicity is noted. The periodic late-time portion of the
response can be expanded in a Fourier series which is nothing more than
the pole series employing the dominant filament resonances.* However,
this series cannot model the aperiodicities in the early-time portions
of the filament responses. If the periodic late-time response is con-
tinued into the early-time and subtracted from the total response in the
early-time, the residual is a time-limited function whose Laplace trans-
form is an entire function.

In contrast to the sphere, a filament scatterer requires an entire
function component in its far field response to plane wave excitation.
W~hat is the difference between the two cases? As is shown below, some
of the sphere's poles withdraw to s - - as the sphere is deformed

through prolate spheroids toward the infinitely thin filament. it is
these large frequency poles whose contributions may be approximated
quite closely by an entire function in the manner discussed above. In

the limit as ka -+ 0 , the approximation becoms exact.

Figures 2.5 and 2.6 show selected pole loci -!or the prolate spher-
oid as it varies from the sphere to the filament scatterer. The geom-
etry of the prolate spheroid is indicated in Fig. 2.7. in cylindrical

coordinates, the equation for the spheroid is p 2/a 2 + z 2/b 2 - 1 . The

results for b/a < *were obtained with BRFD 11 which is a scattering
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Figure 2.4. Time history of backscattered far fields due to impulsive
plane wave excitation.
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fiigure 2.7. Coamtry of -prolate spheroid.
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code for general conducting bodies of revolution and is based on a

method-of-moments solution of the frequency-domain electric field inte-

gral equation. These results indicate that certain poles of the sphere,
namely those poles in the layer nearest the imaginary axis which are

associated with current modes that are constant in # , migrate to the
imaginary axis in the s-plane as the sphere is deformed continuously

through the prolate spheroids to arrive finally at the filament scat-

terer. All other poles withdraw to s - - . The periodic components

of the filament responses shown in Fig. 2.4 must be composed of pole

series of the filament which is nothing more than a Fourier series. The

early-time aperiodic component must be due to those poles that have

withdrawn to s - - . Hence, the poles that flee to infinity must give

rise to the entire function in the filament's frequency-domain response.

When the prolate spheroid is thin, but not infinitely thin, there
exists a group of poles which are deeply-imbedded in the left half of

the s-plane. These poles give rise to a quasi-entire function in the

scatterer's frequency-domain response and are distinguished from the

dominant poles which lie near the imaginary axis. For general scatterer

geometries, it should always be possible to define a quasi-entire func-

tion whenever a set of dominant poles are clearly distinguishable from

the rest. The numerically-derived quasi-entire functions of selected

thin scatterers are examined in Sec. 4.
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3 APPRIMATE REPRESETION OF TIME-LIMITED FUNCTIONS BY EXPCNN-
TIAL SUNS
In Sec. 2, we have seen that the contribution of a group of large

frequency poles is an effectively time-limited component in a scat-

terer's response which corresponds to a quasi-entire function. In this

section, the representation of actual time-limited functions by exponen-

tial series, which are the time-domain representatives of pole series,
is considered. It is found that time-limited functions can be repre-
sented to any degree of accuracy with a exponential series by including
a sufficient number of terms and that the best approximations are
obtained if poles that are deeply-imbedded in the left half of the
s-plane (Re s large and negative) are employed in the exponential
series. The fact that the pole sets of scatterers usually include many
such deeply-imbedded poles suggests that the residues of the complete
pole series for the scatterer's response can always be adjusted to
incorporate any time-limited, forced component that may exist.

First consider the approximation of the exponential entire func-
tion by a pole series. As is shown in Appendix A,

N
exp(z) a N" (zi - z)- l (3.1)

i-i

where the following conditions hold

Iz << N (3.2a)

Jzi - NJ << N for all i (3.2b)

1N fa (zi -N) << 1 (3.2c)

i-l
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Note that Eq. 3.1 can be expanded in partial fractions to form a pole

series. The z i can have any distribution, so long as the conditions

in Eqs. 3.2b and 3.2c are satisfied. Thus, in the finite complex plane,

the exponential entire function can be approximated to any degree of

accuracy by a pole series with a sufficient number of terms. Conditions
in Eqs. 3.2b and 3.2c are roughly equivalent to the constraint that
zi aN.

The Laplace transform,

b
F(s) f f(t)e-st dt , < a < b

a

of the time-limited function, f(t) , can be approximated to any degree
of accuracy by choosing N sufficiently large in the sum

F(s) = f(tk) exp(-stk)At (3.3)

k-i

where

tk - a +(k -

and

At - (b - a)/4

Here we assm that f(t) satisfies the usual conditions for the exis-

tence of the transform. Replacing z with -stk and z i with

zik - -Siktk in Eq. 3.1, and substituting into Eq. 3.3 gives
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M N

FFa f ~ (tk) AtNN '7r (zik -z)F
1  (3.4)

k-l i-l

where the Zik are chosen so that the conditions in Eqs. 3.2a to 3.2c

are satisfied. Equation 3.4 can be expanded into partial fractions to

provide a pole series for F(s) . Therefore, the following has been

shown: The Laplace transform of any time-limited function can be

approximated to any degree of accuracy over a finite region of the com-
plex plane with a pole series. The restriction to the finite region of
the complex plane is equivalent to the restriction to band-limited

cases.

If Eq. 3.4 is to be a good approximation, the sik should satisfy

Sik = -N/t k

for all i and k which is equivalent to saying that the poles should
be deeply imbedded in the left half of the s-plane. In general, scat-
terers possess an infinite number of poles that satisfy this
requirement.

The above observations indicate that, at least for bandlimited

cases, the residues or coefficients of the pole series for a scatterer's
response to an impulsive plane wave can always be adjusted to incorpo-
rate any time-limited, forced component that may exist while the inci-
dent plane wave is on the scatterer, and thus that the natural modes
form a "complete" basis for the scatterer's responses. Unfortunately,
this completeness property of the natural modes cannot be demonstrated
with absolute rigor since the above argument is based on an assumed
rough knowledge of the pole distribution in the complex frequency plane.

For general scatterers, the authors' knowledge is quite limited in this
regard.
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To more concretely explore the question of the representation of

tie-limited entire functions as discussed above, the following numeri-

cal experiment was performed. A pole series of the form

N

F(s) - Ai(i - l)1(s + N)i  (3.5)
i-1

which in the time domain is

N

f(t) - , Aiti 1- exp(-Nt) (3.6)

i-1

is fit to the pulse function u(t) - u(t - 1) in a least-squares sense

over the interval (0,-) by adjusting the Ai , as described in Appendix
B. In Eq. 3.5, F(s) has an nth order deeply-imbedded pole at

s - -N . Figure 3.1 shows the results for N - 2 , 4, and 6. This type

of approximation on an infinite interval cannot be achieved with a

Fourier series, which can only represent periodic functions, except in
the limit as the Fourier series becomes the Fourier transform. The
Fourier series is equivalent to a pole series whose poles are evenly

spaced along the imaginary axis in the s-plane. Figure 3.1 illustrates
the use of deeply-imbedded poles in a pole series for the approximation
of an aperiodic, time-limited function on the infinite interval. The

practicality of using such a representation, though, is questionable

since as the poles move deeper into the left half of the s-plane, one

encounters numrical problems. one way to avoid these problems is to

abandon the pole series and resort to the entire function representation

obtained by taking the Laplace transform of the pulse function. There-

fore, as a practical matter, pole series using deeply-imbedded poles are

abandoned in favor of other representations, one of which is the entire-

function representation.
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Figure 3.1. Approximation of pulse function by a sum of highly-damped
exponentials. The dashed lines show the pulse function.
The solid lines show the approximation.
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Figure 3.1 (Cont.)

Ordinarily, one may resort to other representations for the quasi-

entire function with impunity except while attempting to estimate the

resonances with techniques like Prony's method.12 For resonance estima-

tion, it may be feasible to assign a number of highly-damped poles to
account for the quasi-entire function in a constrained resonance estima-
tion procedure like the constrained version of Prony's method described
in Appendix C.
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4 MMUERICAL EXAMPLES OF THE QUJSI-MUIRE FUCTICN

In this section, the numerically-derived quasi-entire function,

which was discussed in Sec. 1, of the conducting loop (torus) and the

sphere-capped cylinder are examined. Both of these scatterers possess a

clearly distinguishable set of dominant resonances when they are suffi-

ciently thin.

The method for isolating the quasi-entire function consists of

subtracting the pole series constructed with the dominant poles from the

total response. The pole series is constructed through use of the elec-

tric field integral equation (EFIE) for a perfectly-conducting body,
which can be written as

A -
F - n x (4.1)

where j is the surface current density, i' is the incident electric
A

field, n is the outward-pointing unit vector normal to the scatterer's

surface, and r is a linear operator defined by

- Ax (jX + V.)

The magnetic vector potential, X, and electric scalar potential, ,
are defined as

ua expl-jkR) dS,X(E) - (') .

S

fVUP)e (l-kR) dS'O()- V'.z( ' ) 4'

S
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where the integrals are over the scatterer's surface, S , and
R-J - i.

The method of moments13 is applied to convert the EFIE into a set
of matrix equations. The conversion is accomplished by first expanding

the current on a set of basis functions, m(i), m - 1, ... , M , as

U(i') - V' JmT(i') (4.2)
m

Next, define an inner product

S

Finally, a set of testing functions in. m- i, ... , M is defined and

a set of equations is formed by taking the inner product of Eq. 4.1 with

each of the testing functions. Using Eq. 4.2, these equations can be
written as

M

These equations can be written in matrix form as

ZI - V

where the nth element of V is (A x l, in), the uth element of I is

J3 ,and the nth-mth elemnt of Z is (rlmin).
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Assuming only first order dominant poles, the response for the

scatterer currents may be written in the form
14'15

I(S) - r (s - S )-1v a,(S) + W(S) (4.3)

where sa are the dominant natural frequencies or poles, a are the

natural mode vectors, ia(s) are the coupling coefficients, and W is,
as it is used here, the quasi-entire function which contains contribu-
tions from all poles not included in the dominant pole set, as well as
contributions from any true entire function that may exist.

The various quantities in Eq. 4.3 can be determined in the manner

described by Baum.14 '15 The poles are found by a search procedure
(Newton's method) as the zeroes of the determinant of Z - Z(s) . That

is, the poles satisfy det(Z ) - 0 where Z- Z(sa) . The natural

mode vectors satisfy Z v a- 0 . In addition, coupling vectors, u.

are defined and satisfy uOZ, - 0 . The coupling coefficients are found

as

uTVr C(s e) T at , a-
at C9 CL

where V is the value of V at s and

Z- dZ(S)

The coupling coefficients are not uniquely defined and may assume any

mmiber of form at frequencies away from the poles. Two forms which

will be used for present purposes are the "class 1" form:
14,15
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UTV
V()(s) - exp(sa - s)t o ] t

where to is the turn-on time of the series and the "class 2" form:

( uTV(s)%(2 (s) = '2a

OL at a

The turn-on time is chosen as the time at which the impulsive planewave

first touches the scatterer.

Figures 4.1 and 4.2 show the geometries for the conducting sphere-

capped cylinder and the conducting loop scatterers. Both scatterers are

bodies of revolution (BDOs) and results were obtained with the BRFD
code 1 1 which uses a method-of-moments solution of the frequency-domain
electric field integral equation specialized for BORs. BRFD can deter-

mine the resonant poles, modes, and coupling coefficients, as well as
the current and scattered field responses. Time-domain results are
obtained by inverse Fourier transforming the frequency-domain responses.
The scatterer geometry is described by a generating contour which, when
rotated about the z-axis, sweeps through the surface of the BOR. The
surface coordinates t and * are used to define locations on the

BOR's surface where t is the arc length along the generating contour.
Surface currents are broken into t and +-directed components.

Figure 4.3 and Tables 4.1 through .. 4 define the dominant poles
for the two cylinders and two loops that are used to construct a pole
series which is then subtracted from the total response to find the
residual response which corresponds to the quasi-entire function, as

defined in Eq. 4.3. Figures 4.4 through 4.7 show both total and resid-
ual t-directed currents for the L/D - 10 cylinder for e-polarized
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Figure 4.1. Sphere-capped cylinder geometry. Arc length along generat-
ing contour is denoted as t.
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Figure 4.2. Loop (torus) geomestry.
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Figure 4.3. Dominant poles for (a) conducting sphere-capped cylinder
with (0) L/D - 10 (11) L/D - 30, and (b) conducting loopwith (0) b/a - 10 (M) b/a - 100.
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Table 4.1. Poles for sphere-capped cylinder with L/D- 10.

SkL/Cn

k Real IM&C

1 -0.1404751 0.822279

2 -0.2389305 1.760744
3 -0.3280972 2.721550
4 -0.4203163 3.68549

5 -0.5030614 4.627963

6 -0.5693341 5.567039
7 -0.6114042 6.515115

8 -0.6424545 7.497416

9 -0.6786275 8.528675

Table 4.2. Poles for sphere-capped cylinder with L/D- 30.

SkL/cn

* k Real Ia

1 -0.1014181 0.8725323
2 -0.1575135 1.828658

3 -0.2035508 2.803896

4 -0.2478629 3.785218
5 -0.2912341 4.760835
6 -0.3279485 5.724434

7 -0.3504116 6.681224
8 -0.3586058 7.644284

9 -0.3629002 8.620916
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Table 4.3. Poles for loop with b/a - 10.

5kb/c

k Real n

1 -0.2404304 1.034475

2 -0.3971459 1.989159

3 -0.5232771 2.913365

4 -0.6255311 3.824480

5 -0.7108793 4.730809

6 -0.7844273 5.635828

7 -0.8495169 6.541081
8 -0.9083419 7.447382

9 -0.9624029 8.355284

Table 4.4. Poles for loop with b/a - 100.

Skb/C

k Real mag

1 -0.0958744 1.045078

2 -0.1417687 2.061150

3 -0.1777874 3.072605

4 -0.2085869 4.081876

5 -0.2358296 5.089798

6 -0.2602842 6.096767

7 -0.2823390 7.103003

8 -0.3021917 8.108644

9 -0.3199142 9.113752
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Figure 4.4. Surface currents on sphere-capped cylnder at frequency of
c/2L and an incident angle of 8 - 90 degrees.
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Figure 4.4 (Cont.)

"m

0O

(a) Total currents

Figure 4.5. Surface currents on sphere-capped cylinder at a frequency
of c/2L and an incident angle of G - 60 degrees.
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Figure 4.7. Surface currents on sphere-capped cylinder at a frequency
of c/2L and an incident angle of G - 0 degrees.
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incident plane wave from directions e - 90, 60, 30 , and 0 degrees and

* - 0 degrees at the frequency c/2L (near the first rezonant fre-

quency of the cylinder). The residual currents obtained by using both

class 1 and class 2 coupling coefficients are shown. The incident

electric field magnitude is one volt/neter. Figures 4.8 and 4.9 show

the same for frequeix.cies 2 and 3 c/2L with incident angle 9 - 90

degrees. Figure 4.10 shows +-directed currents at the frequency c/2L

and an incident angle 9 - 0 degrees. The phi-directed currents, both
total and residual, for other angles and other incident directions are

almoKst identical in magnitude to the currents shown in Fig. 4.10.

Figure 4.11 shows "extended physical optics" currents, 46so called here
because they ignore shadowing effects. That is, the extended physical

optics currents are defined by U - A~ xR over the entire surface of

the scatterer. To be true physical optics currents, those currents

between 0 - 90 and 180 degrees, as well as certain currents near the

ends of the cylinder, should be zero. Wihile the currents shown in Fig.

4.11 are for an incident angle of 9 = 900 , the magnitudes of the cur-
rents do not change with frequency or incident angle.

Several features of the currents are noteworthy. First, the mag-

nitudes of the class 2 residual currents are almost, if not entirely,
independent of both the incident angle and the frequency. second, the
residual currents show a strong resemblance to the extended physical
optics currents of Fig. 4.11 and a lesser resemblance to the true physi-
cal optics currents. Third, at an incident angle of e - 0 degrees,

the total and residual currents are virtually identical, that is, the

dominant pole contributions appear to be minimal for this angle of inci-
dence. The true physical optics currents contribute significantly more

to the far fields than do the currents of Fig. 4.11, since the currents

on the front and back sides of the cylinder tend to cancel for the lat-

ter currents. However, in spite of the resemblance between the extended
physical optics and residual currents, the contributions of the residual
and true physical optics currents to the far fields are comparable due

4-16



30-

1010

0

(a) Total currents

30--!

00

(b) Class 1 residual currents

Figure 4.8. Surface currents on sphere-capped cylinder at a frequency
of C/L and an incident angle of e - 90 degrees.
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Figure 4.9. Surface currents on sphere-capped cylinder at a frequency
of 3C/2L and an incident angle of e - 90 degrees.
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to an imbalance in the residual currents between the front and back

sides of the cylinder.

One should probably not attempt to infer too much from the resemb-
lance between residual and physical optics responses noted above since
these responses become decidedly different as the cylinder radius
approaches zero. For the filament scatterer, the physical optics

response, which varies in direct proportion with the radius, is insigni-
ficant compared to the actual response given by Eqs. 2.8 through 2.10,
which varies as 1/log ka . A refined local field solution similar to
physical optics wherein the scatterer's curvature is brought to bear may
provide a more accurate description of the residual currents.

Figure 4.12 shows the total, residual and physical optics monosta-

tic radar cross sections (RCS) as a function of frequency for the

cylinder with L/D - 10 . The RCS is defined by

a- liii 42IiI IiI 2

where ts is the scattered electric field at the observation point, Ri

is the incident electric field at the scatterer, and R is the distance

to the far field. In Fig. 4.12, the RCS is expressed in decibels rela-
tive to L2 . The incident plane wave is assumed to be linearly polar-

ized and 8-polarized. Figures 4.13 through 4.15 compare the e compo-

nents of various time-domain electric far field species. In each of

these figures, the electric field is given in units of (/ 44- R)-IEoL
where Eo  is the incident electric field magnitude. The time-domain
incident field is given by
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(a) 9 - 90 degrees of sphere-caped cylindmr with IVD -10

Figure 4.13. Comparison of total (solid line) and class 2 residual
(dashed line) electric far-field tim histories.
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Figure 4.13 (Cont.)
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Figure 4.14. Comparison of true physical optics (solid line) with class
2 residual (dashed line) electric far-field time
histories.
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Figure 4.15. Comparison of class 1 residual (solid line) with class 2
residual (dashed line) electric far-field time histories.

4-27



0610-

II

0.06 II

III,

- ! I

0-o

_o 5 10

(b) e - 60 degrees of sphere-capped cylinder with L/D - 10

080

0,4
ON I

-0-

-OA4.

(c) e - 30 degrees of sphere-capped cylinder with L/D - 10

Figure 4.15 (Cont.)

4-28 J



Ei 2 t- LE cos - sin 9)
Cto

R3/ 2

x expt-(t t - ./c 2  4.4)

where to - 0.1415L/c, tI is an arbitrarily delay selected for conven-
ience in plotting, 5 - RA, k - IRI, R is the propagation vector of
the incident plane wave, and E is the incident electric field
strength. Note that the incident field has a Gaussian-pulse time his-
tory. Figures 4.16 through 4.19 show the corresponding results for the

cylinder with L/D - 30.

From the above results, the following observations can be made.
When the cylinder is relatively fat, the residual RCS shows a strong
resemblance to the physical optics RCS. As the cylinder becomes thin-
ner, the physical optics RCS becomes weaker relative to the residual
RCS. This last observation is consistent with the above-mentioned fact
that the physical optics response becomes insignificant in comparison to
the actual response as the cylinder radius approaches zero. Finally,
the class 2 residual time-domain responses closely resemble the aper-
iodic components in the filament responses of Sec. 2.

Figures 4.20 through 4.27 show the corresponding results for the
two loop scatterers. For the first loop, b/a - 10 and, for the
second, b/a - 100 . These results provide another example of early-
time components in transient scattering responses and tend to corrobor-
ate the above observations for the cylinder's responses. The excitation

for all the loop responses is a +-polarized plane wave incident from
various directions. The incident electric field iq always parallel to
the plane of the loop. Figures 4.21 through 4.23 and 4.25 through 4.27
show the * components of various time-domain electric far field spe-
cies. In each of these figures, the electric field is in units of
(V4--R)- 1 Eob . The time-domain incident field is given by
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Figure 4.16. Total (0), class 1 residual (a), class 2 residual (+,and

true physical optics WX RCS for sphere-capped cylinder.
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Figure 4.17. C~a~rison of total (solid line) and class 2 residual
(dashed line) electric far-field time histories.
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Figure 4.18. Comparison of true physical optics (solid line) and class
2 residual (dashed line) electric far-field time
histories.
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Figure 4.18 (Cont.)
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Figure 4.19. Comparison of class 1 residual (solid line) with class 2
residual (dashed line) electric far-field time histories.
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true physical optics X) RCS for loop with b/a - 10.
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Figure 4.21. Comparison of total (solid line) and class 2 residual
(dashed line) electric far-field time histories.
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Figure 4.22. Comparison of true physical optics (solid line) and class
2 residual (dashed line) electric far-field time
histories.
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Figure 4.23 (Cont.)

4-43



10-

jO

-10-

0 2 466

(a) b/a -100 for 9 0 degrees

0-

j-20-

~-40-

0 246
2xbf

(b) b/a -100 for 9 30 degrees

Figure 4.24. Total (0), class 1 residual (a), class 2 residual (+,and

true physical optics (X) RCS for loop.
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Figure 4.25. Comparison of total (solid line) and class 2 residual
(dashed line) electric far-field time histories.
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Figure 4.26. Comparison of true physical optics (solid line) and class
2 residual (dashed line) electric far-field time
histories.
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5 COCLUSIONS
The results of this effort indicate that, in a practical SEM re-

presentation for general scatterers, a quasi-entire function is required
in addition to a pole series constructed from the dominant resonances of

the scatterer. The quasi-entire function may be regarded as a forced

component in the sam spirit as the familiar forced components in the
responses of circuits. The forced components may find a concise

description in a form similar to the extended physical optics response
with, perhaps, refinements to account for the scatterer's curvature.
One refined physical optics solution has already been used.16,17  The
description might also assume a ray-theoretic form. 2'3

The authors cannot, unfortunately, apply the completeness argument
of Sec. 3 with absolute rigor to transient responses of general scat-
terers since we know very little about the distribution of poles in the
s-plane for general scatterers. A possible rigorous argument might be
found by proceeding from the completeness of the eigen modes and their

close, but complicated relation to the natural modes. is

It is interesting to notice that the forced components are con-

structed from poles, i.e., aspect angle independent features. However,
resolving individual pole terms within the forced components is well-
nigh impossible. Given the nature of this component, it seems doubtful
that any other aspect independent features can be found. Target identi-
fication using information within the forced response, therefore, would
alimost certainly require knowledge of the target's orientation which can
frequently be obtained from radar tracking information.

Realization of resonance-based target identification hinges on the

existence of dominant resonances and proper proce.3sing to deal with the
forced response. Ideally, information within the forced response would

also be exploited for identification. This effort has clarified the
nature of forced responses in transient scattering and has shown their

5-1



cloe, relation to the M entire function. Arad with this information,

it shm now be possible to explore procedures for exploiting both

dominant resonances and the forced response for target identification

and other applications.

4

5

J
]

5 -2 1

: - " .. ..... _ _ .. .. I



REFERENCES

1. C.E. Baum, "On the Singularity Expansion Method for the Solution
of Electromagnetic Interaction Problems," AFWL Interaction Note
88, Air Force Weapons Laboratory, December 11, 1971.

2. E. Heyman and Leopold B. Felsen, "Wavefront Interpretation of the
Singularity Expansion Method," IEEE Transactions on Antennas and
Propagation, Vol. AP-33, No. 7, July 1985, pp. 706-718.

3. H. Uberall and G.C. Gaunaurd, "Relation Between the Ringing of
Resonances and Surface Waves in Radar Scattering," IEEE Transac-
tions on Antennas and Propagation, Vol. AP-32, No. 10, October
1984, pp. 1071-1079.

4. M.A. Morgan, "Singularity Expansion Representations of Fields and
Currents in Transient Scattering," IEEE Transactions on Antennas
and Propagation, Vol. 32, No. 5, May 1984, pp. 466-473.

5. L.W. Pearson, "A Note on the Representation of Scattered Fields as
a Singularity Expansion," IEEE Transactions on Antennas and Propa-
gation, Vol. AP-32, No. 5, May 1984, pp. 520-521.

6. M.A. Morgan, "Response to Comments Regarding SEN Representations,"
IEEE Transactions on Antennas and Propagation, Vol. AP-33, No. 1,January 190b, p. 120.

7. W.R. Smythe, Static and *j2a!c Electricity, Third Edition,
McGraw-Hill, New York, 1968.

8. J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York,
1941.

9. R.F. Harrington, Tin.-Harmonic Electromagnetic Fields, McGraw-
Hill, New York, I91

10. Y.m. Chen and J.B. Keller, "Current on and Input Impedance of a
Cylindrical Antenna," Journal of Research, flattional Bureau of
Standards, Vol. 66D, No. 1, January-February 1962, pp. 15-21.

11. J.R. Auton, "BRFD-An SEN Scattering Code for General Bodies of
Revolution," General Research Corporation, Santa Barbara, CA (in
preparation).

Ref.-1



12. M.L. VanBlaricum and R. Mittra, "A Technique for Extracting the
Poles and Residues of a System Directly From its Transient
Response," IEEE Transactions on Antennas and Propagation, Vol.
AP-23, November 1975, pp. 777-781. ]

13. R.F. Harrington, Field Computation by Moment Methods, McMillan,
New York, 1968.

14. C.E. Baum, "Emerging Technology for Transient and Broad-Band
Analysis and Synthesis of Antennas and Scatterers," Proceedings of
the IEEE, Vol. 64, No. 11, November 1974, pp. 1596-131F.

15. C.E. Baum, "The Singularity Expansion Method," Chapter 3 of
Transient Electromanetic Fields, L.B. Felsen (Ed.), Springer-
Verlag, New York, 1976.

16. B. Foo, S.K. Chaudhuri, and W. Boerner, "A High Frequency Inverse
Scattering Model to Recover the Specular Point Curvature From
Polarimetric Scattering Matrix Data," IEEE Transactions on
Antennas and Propagation, Vol. AP-32, No. 11, November 1984, pp.
1174-1178.

17. C.L. Bennett, A.M. Auckenthaler, R.S. Smith, and J.D. DeLorenzo,
"Space-Time Integral Equation Approach to Large Body Scattering
Problems," Sperry Research Center, Sudbury, MA, Final Report on
Contract F30602-71-C-0162, AD 763794, May 1973.

18. C.E. Baum, "On the Eigernude Expansion Method for Electromagnetic
Scattering and Antenna Problems, Part I: Some Basic Relations for
Eigenmode Expansions, and their Relation to the Singularity Expan-
sion," AFWL Interaction Note 229, Air Force Weapons Laboratory,
January 13, 1975.

19. M.L. VanBlaricum, Techniques for Extracting the CMlex Resonances
of a System Directly from its Transient Response, Ph.D. Disserta-
tion, December 1975, University of Illinois, Department of Elec-
trical Engineering.

Ref.-2



APPEN4DIX A
POLE SERIES REPRESETATIOtNS OF AN EXPON4ENTIAL

Here it is shown that

exp(z) - PN(Z) (A.1)

where

N
PN(Z) - exp(y) 7r N(zi - Z )  (A.2)

i-i

and

N
"- N  1j (z- N) (A.3)

i-i

Taking the logarithm of Eq. A.2 gives

N Z -ZN r 2  z 2log PN - y log . + Fz 0[ N (A. 4)

If Iz << N and Izi - NJ << N for all i , then Eq. A.4 becomes

log PN a z

which is equivalent to Eq. A.1. If, in addition,

A-1
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APPENDIX B

APPROXIMATION OF A PULSE FUNCTION

The pulse function g(t) - u(t) - u(t - 1) , where u(t) is the

unit step function, is to be approximated by

N
f(t) - i At i-1 exp(-Nt)

i-I

on the interval (o,-). The approximation criterion is the integrated

square error:

" 2

E [g - , Aiti-1 exp(-Nt)2 dt

Setting the partial derivatives of E with respect to each Ai  to zero
provides the system of equations,

N

Fj - AiEij j - i, ... , N (B.1)
i-i

which can be solved for the Ai that minimize E In Eq. B.1,

1

Fj f f t - 1 exp(-Nt) dt,

0
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i

-f tli-2 ez(-2Nt) dt
0

s and aRi &oe valuated analytically.I

Iim
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APPENDIX C
METHODS FOR CONSTRAINING PRONY'S ALGORITHM

In the implementation of Prony's method, an nth order polynomial

is solved for its roots. The order of the polynomial, N , is the num-
ber of poles being sought in the transient data. If the coefficients of

the polynomial are denoted as a then the polynomial can be expressed
as per Ref. 19, as

1 2 .1a0 + a1zl + a2Z2 + .. + aNZN W C1

where aN  is usually set equal to unity. The N roots, Zi , are

defined as

Z- e (C.2)

with si being the poles sought, and at being the time step size used

in the analysis.

If the value of one or more of the poles is known-that is, we
know some of the Zi -then the Zi can be substituted into Eq. CA.

For example, if si or Zi  is known, then Eq. C.A can be written as

2 .N+ i + a + ... + 0 (C.3)

The N + 1 polynomial coefficients a are solved for in Prony's

method by solution of the difference equation

C-i
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N-1

-, apIp,- -  , k - 0, 1 ... , y- 1, y M N- N (C.4)

p-0

The Ip+K and IN+K are the samples of the transient signal being ana-
lyzed and M is the total number of sanples being used. The value of
N uot be at least equal to 2N to give N sets of equations in the

N unknowns . However, if the value of a pole is known, then one of

the N equations can be Eq. C.3 and N - 1 equations of the form of
Eq. C.4 can be written.

If L poles are known a priori, the L equations of the form of
Eq. C.3 can be written as

N-1

p-0

and X- N- N - L equations can be written in the form of Eq. C.4 as

N-1

F ap p+K - IK+N k - 0 1 ..., - y- M - N - L (C.6)
p-0

Hence, there are still y - N - N total equations to solve for the N
values of up , however, the system is constrained by the knowledge of
the location of L poles. As is usually done in Prony's method, if
n - 2N , then the set of equations is inverted and solved. If M > 2N
then a pseudo-inverse procedure is used.

Using the matrix notation of Ref. 19, if M - 2N and L poles
are known, then we solve the equation

I
C- ,-



AB - C (C.7)

uwere A is a square matrix defined as

1 1 1N-1

12 2 2

1 21

Uff--L -L N-L+l ... L2

and B and C are vectors def ined. as

2
B- (C.8b)

L -Jc Z! (C.8c)

'N

IN1



If M > 2N and L poles are known, then the solution takes on a

pseudo-inverse or least-squares form as

AMAB - AiC (C.9)

where AT  is the transpose of the matrix A and A is now a rectangu-

lar matrix of the form

z ... z2N- l

2 N-1

A 1 ZL ZL L (C.10a)
1 0 Il 12 *. IN

{ ii 12 13 IN

INL 1M-N-L ... IN-L-2

00 ZN

ZN
B - (C.lOb)

C - (C.lOc)
L

I N

II
1N-1-Lj

C-4
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