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ABSTRACT

Deconvolution in the presence of additive noise is a well known problem for which there exists

a Wiener filter which simultaneously spectrally whitens while suppressing noise. A sirrole variant of

this standard Wiener filter incorporates a parameter, p say, which is intended to allow further weight

to be given to noise suppression. We shall call such a filter a modified Wiener filter. To design such

a filter it is required to know precisely the frequency response of the spread function or wavelet, plus

the spectra of the input and additive noise.

In practice some response function is taken to be appropriate, and the modified Wiener filter

designed from it. If the design response function is thought of as one chosen from a set of allowable

response functions - a realistic practical viewpoint - then it is shown how the selection of the

design response, the chosen value of the parameter p and the noise/input power spectral ratio

effectively determine the characteristics of this set of possible wavelet response functions. This is

demonstrated for two different error criteria - (i) the minimization of the average mean-squared

error, and (ii) the minimization of the maximum mean-squared error.

It is shown how to calculate deconvolution filters which solve sub-optimal versions of (i) and

(ii), but which are robust to uncertainty in the wavelet's frequency response.
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Deconvolution by modified Wiener filtering: interpretation

for an imperfectly known wavelet

A. T. Walden

Introduction

A most important problem in reflection seismology is that of deconvolution plus filtering.
Consider fig. 1; we can write

a*

y(t) = Y h(t-k)r(k)+n(t) (1)
k-e.

where r (t) is the input, h (t) is the channel or spread function, n (t) is additive noise
(uncorrelated with the signal), and y (t) is the result. In this paper we shall work with the
discrete-time representation (1) with unit sampling interval. In reflection seismology we
would express y in discrete time as the familiar convolutional model (1) written as

y(t) = h(t)* r(t)+n(t)

where we equate r (t) with the reflection sequence, h (t) with the seismic wavelet, and
n (t) with additive (colored) noise.

We seek to design a deconvolution (or equalization) filter g (t) which satisfactorily
recovers, or estimates, r(t); see fig. 1. There are several statistical approaches to this
problem, (for a summary of other deconvolution methods see Schultz, 1985). For example,
we can carry out a "blind deconvolution" where we work only with y (t) and make some
important assumptions: (a) reflectivity whiteness and minimum-phase wavelet for standard
whitening or predictive deconvolution, or (b) reflectivity whiteness and/or sparse reflectivity
for MED-type methods. Both methods attempt to suppress the noise either explicitly or
implicitly. For (a) a "prewhitening" is applied to the Toeplitz matrix before inversion, while
for (b) the harshness of the non-linear mapping involved (see e.g., Walden, 1985) will often
provide some protection against additive noise. A second approach which is generally called
signature deconvolution assumes that the wavelet is known to a very good approximation.
This wavelet estimate could be model-based, a far-field measured response, or the result of
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other signal processing schemes. Deregowski (1971, 1978) contains excellent discussions of

signature deconvolution.

A third approach involves Wiener filtering. If the power spectrum of the input, R (0o),

and the noise, N(co), plus the frequency response of the channel (wavelet) HT(co) are all

exactly known, then the mean squared error E { (r (t) - (t))2} is minimized when the

deconvolution filter is chosen to be the Wiener filter

G (co) *H (co) R (w) (2)
IHT(0)12R(c)+N( ) (2)

where HT(co) is the complex conjugate of HT(co). Denote the class of all possible

deconvolution-filter responses by r. Then G (co) is the solution of

mine (HT, G)

where

e(H, G) = E { (r(t)-f(t))2}

= (1 / 2)f I 1 -H (co) G (o) 12 R (a)) + I G (co) 12N (co) } d (o

Multiplying top and bottom of (2) by Hr(co), and then dividing through by I HT(co) 12R (co)

gives

G (co)) I + g(o)} HT(co)]- (3)

We have added a superscript 'T' to H (co) to emphasize that HT(co) is the true response for

the realization of the system which is under investigation. Here .(co) is the noise-to-signal

ratio N (co) I { I HT(CO) 12R (co)}. The amplitude characteristic of the filter,

I HT(co) I R (co)

I HT(co)1 2 R (o) + N(co)

provides noise rejection at the frequencies where R (co) is small relative to N (co). Note that

even a perfect all-pass wavelet demands anplitude as well as phase compensation.

Suppose now instead of merely minimizing the mean squared error E { (r (t) - p(t ))2}

we seek to minimize

:, . X 1 E { (r (t) -f()} + .2 E { (n()* g(t)) 2 } (4)

i.e., X. times the mean-squared estimation error + X2 times the mean-squared filtered

noise. The parameters X 1 and X 2 are tradeoff parameters; their relative sizes determine

how much effort is put into minimizing each component. Note X 1, X 2 Z 0. (A similar
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tradeoff exists in the Backus-Gilbert inverse formalism, see e.g., Oldenburg, 1984, p670).
Such a scheme is well-known in designing shaping filters in the presence of autocorrelated
noise, e.g., Robinson, 1980, p2 27 . As shown in the Appendix, the modified Wiener filter
resulting from the minization of (4) is

GM(w) = [{l+pgi(w)}HT()]-I1  (5)

where p = (1 + [X 2/ X 1]) is an adjustable noise control parameter. Increasing the value of

p corresponds to increasing the desire for noise minimization at the expense of spectral
whitening. If X 2 = 0, p = 1 and we recover (3), while if both mean-square components are
given equal weight, p = 2. For a chosen p there are two unknowns in (5), viz I(o), the
noise-to-signal ratio, and the frequency response of the wavelet, HT(co). In this paper we
shall assume that HT(C) is not perfectly known, but merely that the estimate of the
wavelet's frequency response, HD (co), used in the design of the deconvolution filter, has

been selected from a set of possible choices. We also assume that the ratio N (co) / R (co) -
the ratio of noise power spectrum to input power spectrum - is known. This is not a
desirable assumption, but is necessary to confine all the lack of information to the wavelet.
In practice, using only seismic data, White (1984, p1346) has explained, and illustrated, that
the noise and signal components and hence the noise-to-signal ratio ji(co) =
N (o) / { I HT(CO) 2 R (co) } can be well estimated using multiple coherence analysis.

(However, the estimation of HT(co) from the estimate of the signal IHT(co) I 2 R (co),
demands more assumptions of a dubious nature, e.g., white reflectivity, and is not
recommended.) Let us denote our good estimate of g(co) by (co). It will be shown that if
N (c)/{ I HD (o) 1 2R (co) I = g(co) say is close to j(co), then results are conveniently

expressible in terms of p, HD (co) and a(o).

It will be demonstrated how the quantities p, HD (co) and g(co) effectively determine
the characteristics of the set of possible wavelet frequency response functions. This is
demonstrated for two different error criteria: (i) the minimization of the average mean-
squared error of estimation, and (ii) the minimization of the maximum mean-squared error of

estimation.

It is also shown that if HD (co) is obtained by well-documented methods, from which
various error statistics can be formulated, then we can design deconvolution filters which

satisfy sub-optimal versions of the two error criteria above, hence giving some robustness
against uncertainty in the wavelet's frequency response.

response.'
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Minimizing average mean-squared error in theory

Suppose the optimization problem is the selection of the deconvolution filter g (t) which

minimizes the mean-squared estimation error, averaged over all possible realizations of h (t)
or equivalently the set of all possible choices for the wavelet's frequency response, H(co).
Denote this class of allowable wavelet frequency responses by )*. Similarly, denote the
class of all possible deconvolution-filter frequency responses by &. Then we seek to

min E e (H, G)} (6)

Here E. means "the expected value over all H in )," and min means "the minimum

over the class a." The solution to this minimization problem is in fact that given by Maurer
and Franks (1970), namely

E*.{ H*(wo) }
G1 (w) = H * ()) (7)EXJ{ I H (wo) 121} + [ N (wo) / R (wo)]

Comparing (2) and (7) we see that G 1 in (7) is not just the Wiener filter for the average

wavelet, since the denominator contains the term E*.{ I H (co) 12 } rather than

I Ej(H (CO) 112. Since Var .{H(o)} E *{ IH(Co)1 2 1 - IE*{H(O)} 12:
G1(o) = E,{H*(O)} / { IE),{H(Co)}I 2 + Var.{H(CO)} + [N(CO)/R(O)]} (8)

When the variation of H is very small, i.e., Var, = 0, the average wavelet is inverted.

However, if Var,*{H(o)} R (co) is comparable in size with the noise term N(C), then the

characteristics of the optimum filter will be significantly influenced by the variation.

The modified Wiener deconvolution filter with parameter p , design response HD (co)

and noise to input power ratio N (o) / R (co) has the form

GD (co) = H (o) / { I HD (co) 12 + p [N(co)/R(co)]}

= 1 / {[l+pg(co)]HD(wO)} (9)

and so has gain

IGD(o)I1 = 1H;(o)) / {IHD(o) 12 +p[N(o)/R(co)]} (10)

whereas G I has gain

1G1(o)I= IE,{H*(co)}I/{ IE,{H(o)}I2 +Var * {H((o))+[N(O)/R(co)]} (11)

We must now decide how to relate HD (co), our designed response, to the set of possible

outcomes of H (co). It seems intuitively sensible to assume I H; (o) E I E,{H*(co)}
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ebecause our choice of HD (co) almost certainly involved "averaging" using previous

experience of outcomes, and possibly other parts of the seismic section. So let us take
IHZ(co)j = IE {HW(co)}I. Then

Var {H(o))} + [N(co)/R()] = p [N(co)/R(co)]

i.e.,

Var *{H(co)} = (p-l)[N(o)/R(co)]

= (p-1)lg(o0) IHT(co)1 2

= (p-1) g(o) IHD(o)1 2  (12)

= (p-1) g(o) IHD(0))12  provided = .

Thus we see that these three quantities determine Var4.{H(o)}. Since p =1+ [2/)L1]

.3 and X I, X 2 > 0 it follows that p > 1, and hence, as is obviously required, Var* > 0. Note

that p = 1 , i.e., X 2 = 0, is equivalent to setting Var*{H (o)} = 0.

The phase of the modified Wiener filter is - OD (co) where HL (co)

= !HD(co)I e - OD(° ),whereas the phase of GI in (8) is arg (E.{H*(0)}). Thus we can

also identify

OD ()) a - arg (E K{H* (co)})

The parameter p does not enter this equation; p is only greater than I when 2 >0, and
the term weighted by X 2 in (4) is independent of phase. Thus the phase is unaffected. Note

that

arg (HL(co)) a arg (E {H*(co))

while we have chosen

IHL(o))I = IEI{H * (a)}I

To recap, we have shown that by treating the wavelet's frequency response as a random
variable, and minimizing Em,{e (H, G)} over G, we get a deconvolution filter which is

identical to the modified Wiener filter designed from p, HD (co) and N (co) / R (o), when we

set

IHL((o)l = IE *{H*(co)}I; arg(HD(o)) = arg(E{H*(wo)}) (13a)

and

Var {H(o)} = (p-l)[N(co)/R(wo)]. (13b)

A-n
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Hence p, HD (o) and [N (c) / R (co) I can, in this sense, be interpreted as defining the

characteristics of the variation of H (co), while HD (0)) alone defines its phase. Remember

that the modified Wiener filter concerns itself explicitly with the filtered noise (when p > 1 ),
through the second term in (4). The minimization of averaged mean-squared error is not
concerned explicitly with filtered noise, but merely with mean-squared estimation error. Yet

the deconvolution filters can be made equivalent using (13a) and (13b).

Minimizing average mean-squared error in practice

In practice we won't know E *{H*(co)} or Var* {H (ca)}. Suppose instead we

obtain an estimate HD (c) of HT (co) using coherence methods (White, 1980; Walden and

White, 1984). Then we know

V = Var {HD(c0)} = E {IHD(co)12} - IEIHD(w)}12

(1+2a 2 ) IHT(c)1 2 - IHT(0)1 2

2cr = 22 1nr(0) 12

where ; is the noise parameter (see e.g., Walden, 1986 for more details). We can estimate

C 2 , and replace HT(co) by HD (c) to obtain an estimate of Var {HD (co)} as

V = 2a 2 IHD(cO)1 2

We now follow White (1984) to obtain an estimate i(cw) of the noise-to-signal ratio, and

assuming g. = g determine p from

,V = (P-1) J(0O) I HD(co)1 2

(i.e., equation (12) with Var* replaced by V). Thus GD(co) in (9) may be computed.

Instead of solving (6), GD (c) will now solve

min E,1 {e (H, G)}r

where * is the class of wavelet frequency responses with mean HD (c) and variance V.
While this is not as ideal as solving (6), it is a practical approach, and should prove to be

robust to uncertainty in the wavelet's frequency response.

" t
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Minimizing maximum mean-squared error in theory

In this case, instead of the optimization (6), we consider

min max e (HG) (14)

i.e., first we maximize the mean-squared error over the class of allowable wavelet frequency
responses, then we minimize the result over the class of all possible deconvolution-filter
frequency responses. The solution H', G' say, is a saddlepoint to the minimax "game",

satisfying

mine (H' ,G) = e (H',G') = maxe (H,G')

The problem of determining the optimum G has been studied by Moustakides and Kassam
(1985) who specified * to be the class defined by

AL(0)) < IH(co)I < AU(co)

with 0(o)) = arg {H (o)} contained in a known closed subset 0 of (- 7, x] (see fig. 2).
Moustakides and Kassam determined that the gain, I G 2(Co) I, of the optimum filter has the

form

0 if cos cJCo)} >_ 0! i.e., a o): x /2

- 2 cos {a(co)} if cos {a(o)} < 0

AL(O)+Au((0) [A2(c3) R (o)] and 2AL (0))

N (co) [Au ()) - AL (co)]
G 2(0) I = (15)

-AL(co) cos {a(co)} if cos {a(w)}<
and

A2(0) + [N (03)IR (03)] [Aj(w) R ()] 2AL (0)

N(w) [AU()-AL(w)]

Suppose O(co) is some continuous interval in (- x, x], interpreted as a set of points on the
unit circle in the complex plane, then 2(wo) is the angle subtended at the origin by the arc
on the unit circle outside 0(w), see fig. 2. If 0(03) is a single point, then a(w) = 7C. The

expression (2n - 2a(w))/2x denotes the proportion of the circle corresponding to the
bounds of the uncertain region 0; hence 1- ot(c)h is a measure of uncertainty. Note

'9
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19(m) covering more that 1800 corresponds to cos {a(a)} _> 0 and hence zero gain.

In (15) A2(Qu) R (o) is minimum signal power, so that A2 R /N(c) is a measure of the
minimum possible signal-to-noise ratio at co. Define a measure of uncertainty 8(o)) about

the channel gain characteristic at co by 8(o)) = [Au(wo)-AL(o))]/[Au(o)+AL(CO)]; then the

degree of certainty = [1-8(O)]/8() = 2AL(o))/[AU(o)-AL(O)] while the degree of

uncertainty = [Au(co)-AL(co)II[2AL(O)]. Thus we see from (15) that if the minimum

possible S/N ratio at (o is greater than the degree of certainty of channel gain

I G2(0)I = (16)
AL (Co) + Au(w)(

i.e., the deconvolution filter acts as the inverse of the average wavelet, apart from the
attenuation due to phase uncertainty. Let us compare (16) with the modified Wiener filter

gain (10):

IGD((0)I = fH(Co)I/{IHD(o)I 2 + p [N(o)/R(o))]}

In practice AL(0) and Au(w) are unknown. However, if (say, 90%) symmetric
confidence limits for I HT(w) I have been estimated, they would typically be of the form:

JHD(W)I(-Q((o)) <5 IHr(co)l <5 }HDO(lI+Q(o))

Aiii (more on this later). Equating AL(0) with IH(0) (1-Q(c)) and Au((o) with

I HD((o)l (1 +Q (o)) implies equating IHD(co) with I (AL(0)) + Au(o)).

For the gains to be equal, this requires:

-cos Ix(o) = I HD () I
IHD(O)I IHD(0) 12+p [N (O)/R (0))]

~i.e.,

-cos (0 = [1+ pN(0) ]

[ I HD (O) 12 R (o)

[l+p p(00)F1  (17)

From (15) it is a requirement that cos {a(co)} < 0. Since [ +p (o)- > 0 this will
always hold. Secondly, I cos {z(cz)} < : 1 is a necessary condition; since p 2 I and
g((o) a 0, this will be satisfied. Suppose equal weight is given to each component in (4),
i.e., I =X 2 , so that p = 2. Also assume g(co) = g(co) = 0.2, say. Then

*i
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cos {a(w)} - - 1/1.4 => a(w) = x - 0.775 giving a phase uncertainty of

S1- 2a2 = 1.55/2x, which means that O(w) has outer limits corresponding to

approximately 1.55/6.28 of 3600, i.e., about 900. The further condition in (15), that

S[A2(o) R (o)]/N(co) - 2AL(o))/[AU(o) -AL(co)] may alternatively be written
- Au(o)) 2t [{2/A2((o)}{N (o))/R (co) + 1]AL (O)

which shows the role of the noise-to-input ratio N(o)/R(co). Suppose in fact that

N (o)/R (o) was sufficiently large that this condition was not met, but instead the minimum

possible S/N ratio at co is less than the degree of certainty of channel gain,

Au(Co) < [{2/AL((o) ){N(W)/R(co)}+ 1]AL(CO)

Then, providing cos {a(co)} < 0, the correct gain function is, (15),

- AL,(C) COS 100c)}1G2(co)I -A=)cs ~a~(18)
I A2(0) + [N (o)/R (co)]

Comparing (18) with the modified Wiener filter gain

IGD(o0) = HL(0o)1/{IHD(0)12 + p [N(o))IR(o)]}

and equating I HD (o) I with -- (AL(O) +Au(w)) as before gives this time
2

cos- IHD(co I {a (0) + [N (O)/R (co)] I,- cos { a(c)t I= D(( A
AL (co) { I HD (o)) 12 + p [N (co)/R (0)]}

C AL () + g(o)) IHD()I 1 [+p (19-InH (CO) I AL (0) J(O)(

The second term on the right is identical to that obtained in the case where the minimum

possible S/N ratio at w is greater than the degree of certainty of channel gain, eqn. (17).
Clearly cos {a(I)} is negative, since all the terms on the right in (19) are positive. What

about the necessary condition I cos {a(w)} 1 < 1? By substituting IHD (c) I

-2(AL(co)+AU(€o)) in (19) the condition is
2

1(AL (co) +AU(o))(A 2(Co) + [N (W)/R (co)]) < AL (co) { L(AL (O) +Au(€o)) 2 + p [N (Co)/R (o)]}

which can be written as

AL(co)(A(Co)- [4p -2][N(o)/R (co)]) AUt(o)(AL(co)Au(o)-2[N(w)/R (co)])
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But Au(co) > AL(CO), hence it is sufficient that

(A2(co) - [4p -2][N(C)/R (co)]) < (AL((o)Au(Ca) -2 [N(o)/R (co)])

Since A 2(CO) AL (co) Au(co), it is sufficient that

[4p -2] [N (co)/R (o)] > 2 [N (co)/R (o)]

i.e., 4p t 4

P

which is always true.

The equation (18) shows that I Gz(cn) I acts as a Wiener filter for the lowest gain. An
additional attenuation -cos {cc(co)} arises because of the phase uncertainty.

The phase for the modified Wiener filter is arg {HL (co)} = - 0D (co), while the phase
for the minimax filter is, in both cases discussed above,

v(() = 7 - P(o) (20)

(Moustakides and Kassam, 1985, eqn.8). This phase is the angle between 0 and the line
OL which splits into two halves the arc on the circle outside @(co). In order that these two

expressions for phase be the same we require

O 00) = n - 3(Co) i.e., arg {HD(o)} = 7c - [3(co) (21)

so that 0
OD (co) alone defines 3(co) (and vice versa) and thus the position of O(co) with

subtended angle 2a(co). This same phase relationship applies even in the case of a large
phase uncertainty, when I G 2(0) I = 0.

Minimizing maximum mean-squared error in practice

In practice we won't know the theoretical bounds AL(co), Au(co) or the subset 9(co) of
.' (- 7x, 7t]. However, we can readily obtain symmetric 90% confidence limits on gain and

phase for the coherence methods mentioned earlier, as AL (co) = I HD (co) I (1 - Q (co)),

Au(cO) = HD('o)l (l+Q(co)) and 6L(Wo), du(o), (see e.g., Walden, 1986 for more
details, especially the form of Q ). From fig. 2 the values 6L(co) and 6U (w) define an

estimate 6(w) of 1(co). If 6(co) covers more than half the circumference of the circle,
then the corresponding estimate of a(co) satisfies cos {a(o)} 2! 0 and hence from (15) the
gain is zero. (The equivalent modified Winer filter is arbitrary, but with p very large.)

'S

"-""
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If cos {o(o))} is found to be less than zero, it is necessary to test whether the minimum

possible S/N ratio at co) is greater than the degree of certainty of channel gain, i.e., we see if

AL(o))R (Co)/N (o) 2AL(c)/{AuCc)-AL(c)}

But

AL2(co) R (w)/N (o) = (1 - Q (O))2 I HD (o) 1j2R (co)IN(o)

=(1- Q C0)))21/CWo)

As before, assuming (co) has been calculated, and gj-(co) = g(co), this gives

L (co) R (o)IN (C) = (I - Q (co)) 21(o)

Also,

2g L(CO)/{ UC -LX(CO)} = (1 -Q (co))/Q (C()
so we must determine if

O(CO) < Q(CO)(-Q( o)) (22)

Let us firstly take the case where this is true. From fig. 2 1L (o) and du (co) define 0(co)
and 26(co). Since 0(co) = arg {HD (Ca)}, the point estimate of the phase at frequency co,

is in the middle of the interval OL(C), Ou(o), the condition (21)

arg {HL(o)} = X - 0(0)

is satisfied automatically.

By replacing g(co) in (17) by J(co) and a(o) by iaco), p is defined. Hence the

equivalent modified Wiener filter is now completely specified. Instead of solving (14),
GD (co) will now solve

min max e (H, G)

where ? 2 is the class of wavelet frequency responses with bounds determined by the 90%

confidence intervals (AL(cO), AU(cO)), (L(o)), du(co)). Again, while not ideal, this

approach should prove robust to uncertainty in the wavelet's frequency response.

Of course it is not necessary to construct the modified Wiener filter to carry out this

minimization, since given ,L(o), A^U(o), L(co) and du(co) the minimax filter can be

constructed from (16) and (20). The modified Wiener filter merely provides a common
framework. Note that although the noise-to-signal ratio does not enter (16) or (20) it is
needed to verify (22).

. ... , . , a. , ,
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In the second case, when (0o) > Q (Co)(1 - Q (w)), the only change is to find the p

that solves (19) when ct(o), AL((o) and gi(co) replace a(o), AL(o) and g(ao). As

before, IHD(o)) = -(L((o) + A(w)).
2

Summary

It has been demonstrated that the modified Wiener filter for the deconvolution problem can

be made equivalent to (a) the minimum average mean-squared error filter, and (b) the

minimum maximum mean-squared error filter, if certain quantities are equated in an intuitive

way. Solving (a) and (b) requires perfect knowledge of the range of possible wavelet

frequency responses. However, equivalent sub-optimal problems can be solved where

estimated uncertainty characteristics can be calculated for the design response used. The

deconvolution filters for the equivalent sub-optimal problems to (a) and (b) may all now be

readily expressed as modified Wiener filters. Using these methods, deconvolution can be

made more robust to wavelet uncertainties.
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APPENDIX

Derivation of modification parameter p

Consider the minimization of

XI{r+ X2 E{(n(t)*g()}

Applying the orthogonality principle:

X 1E{[r()- y~-~~)-~~ + X2E{[ n(t-k)g(k)]n(j)} 0
k k=

i.e.

;L,-Ry~tj) R,,(-k-j)g(k)} + ;Lf R,.(-k-j)g(k)} = 0
k k=-us

where R,,,C) = Ejr(t)y(t-,r)}; R,./.r) = E{rQt)r(t-,)} and
R()= E{nQt)n(t-,z)}. Itisassumedthat r(t),n(t) andhence y(t) alihavemean

zero.

Substitute c = t -j:

7Lf-~yT) R,,,-k)g(k)} + )L{j R.,-~~~ = 0
k ~k =-s

Now Fourier transform throughout to obtain

)Lj-Sy~c)+yy(o)~o)j+ )X2 {Sn,(w)G(o)}j = 0

where S,, (co) is the cross-power spectrum between r (t) and y (t) , Sy,7 (a)) is the auto-
power spectrum of y (t), S .(co) is the auto-power spectrum of n (t) and G (co) is the
frequency response function of the deconvolution filter g (t). Hence

G (o) =)LISy()/ ISy()+)L2S (01

Now y (t) r (t) * h (t) + n(t), and the noise is uncorrelated with the input. Hence

Sry (co) = S, (wo)H * (wo) = R (QoH (co)

Syy(co) = Srr(o)I H(o))12 + Su(CO) R R(w) I H(o)12 + N(w)

S. (co) = N(o))



I -15-

Hence we obtin

G(co) = H*o)co/X Ho)1R(c)+XIN(o+X2N()

= H (co) R(co) /{II H (o)1 2 R() +11+(X. 2 /X 1)] N(Wo)

= H~ (o)) R(co) /IIH (o) 12 R (o) +pN (o)}

where p =+)2/l
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