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ABSTRACT

An atom, bounded to the surface of a crystal, absorbs photons from a strong

incident laser field and subsequently emits phonons into the solid. In this

paper we study the influence of the laser linewidth on this photon-phonon

conversion process. The appearance of coherences obscures the

interpretation of the equation of motion in terms of transition rates and

prohibits the derivation of a master equation in the transient region. The

absorbed energy from the driving field, which is assumed to be resonant with

a set of two levels only, results from the work done by the external field

on the transition dipole. In the steady state, the energy absorption from

the radiation field equals the energy emission in the phonon field. It is

shown that in this long-time limit the coherences can be expressed in terms

of the populations and hence the system is again described by a master-

like equation. Specific aspects of the finite laser bandwidth are pointed 1

out. B
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I. INTRODUCTION

Irradiation of dye-coated surfaces or adsorbed atoms on a crystal with

strong infrared laser light amounts to photon-phonon conversion reactions.

The internal vibrational modes of the molecule or the atom-surface bond

absorbs photons from the radiation field (stimulated excitation), and the

subsequent spontaneous decay (coupling to the phonon field of the crystal)

is'accompanied by a phonon emission into the solid. Additional processes

like thermal or radiative desorption and spontaneous emission of radiation

are neglibible in comparison with the thermal transitions in the adbond. In

this fashion, the resonant coupling of vibrational modes of adsorbed species

with the incident electromagnetic field provides an effective method for

heating a crystal, which itself might be transparent for the impinging

light. In this paper, we study the effect of the laser linewidth on the

adbond-mediated energy transport from a laser field into the phonon field.

The interaction of an adsorbed atom in a vibrational bond with a

harmonic crystal is commonly described by a Pauli-type master equation.
1 6

The distribution of the population over the vibrational levels is determined

by the phonon absorption and emission processes, which occur at a rate

nk(t)ak, for a transition from the initial state 1k> to the final state It>.

Here the rate constants a k depend on the temperature of the crystal and the

shape of the potential well in which the atom is bounded (apart from an

overall k,t-independent constant). The akt's gain in general contributions

from single-phonon and multiphonon processes. The population nk(t) of level

jk> follows from the master equation and the initial state at t-O, whereas

thermal relaxation to a unique steady state is inherent to the structure of

the master equation.



Incorporation of the presence of a weak driving laser-field is easily

done in a perturbative way. Stimulated absorption and emission rates

are included in the master equation as additional transitions between

optically-coupled levels. The energy absorption rate from the radiation

field is then simply the difference between the number of absorptions and

emissions per unit time, multiplied by the photon energy %wL. This approach

does not apply anymore for an intense laser field, since the appearance of

multiphoton processes prohibits such a simple interpretation of radiative

transitions.13 "1 5 In two previous papers, 16 ,17 we showed that transparent

mechanisms can be recovered, provided that we diagonalize the laser-atom

interaction first. This was accomplished by a transformation to the famous
- 18

dressed-states representation. With respect to these joint atomic and

laser states, including the interaction, the phonon relaxation processes

were understood as transitions between dressed states. Then every

transition Ik>-It>, which occurs at a rate nk(t)akt (the subscripts k,t now

refer to dressed states), corresponds to a phonon absorption from or

emission into the crystal, where the phonon energy equals the level

separation of the states 1k> and I>. Sunation over all transitions then

yields the net energy flux into the crystal.

The derivation of these energy-transport equations hinges on the

existence of a master equation for the level populations, both in the low-

intensity limit and in the dressed-state picture. This enables us to

identify the occurring transitions, the rate constants and the energies of

the involved phonons and photons. A simple balance then gives the

expression for the energy transport from the laser into the atomic bond, and

finally into the crystal. It is not so obvious that this procedure can be

employed in general. This is due to the fact that the equations for the
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populations might couple to the time evolution of the coherences, which

obscures any direct interpretation. We shall show that this problem already

emerges if a finite laser linewidth is taken into account. A more

sophisticated approach to the energy-transport problem, which does not rely

on a specific structure of the equation of motion, will be used to tackle

this apparent complication.

II. DRIVEN ADBOND

An atom is bounded to the surface of a harmonic-lattice crystal by

attractive electromagnetic forces. If we denote the non-degenerate

vibrational eigenstates by Jk>, we can write the Hamiltonian of the adbond

as

H a = jAwkpk (2.1)

k

in terms of the energy eigenvalues )Aw and the projectors Pk - Jk><kJ onto

the eigenstates. This system is irradiated by a laser field, with electric

component

-- -(=Lt+ *ft))

E(t) - EoReCLe (2.2)

at the position of the atom. Here E0 is the real amplitude, cL is the

normalized polarization vector (cL*'CL a 1) and *(t) is a stochastically

fluctuating phase, which broadens the laser line around its central

frequency wL. The coupling to the atomic bond is established by a dipole

interaction Har(t) - -p-E(t), with p the transition dipole-moment operator

between the eigenstates Jk>. Phonon absorption/emission is considered as a

relaxation process, and hence it is most conveniently accounted for by a

Liouville operator r, which acts on the density operator p of the adbond

VV

Sb"t D lir
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according to 19

rp - 11 akt(Pkp + pek - 2Pt<kIpIk>). (2.3)

ki

Every term kJ pertains to a transition Ik> 4 IE>, and akt is the inverse

lifetime of level Ik>, due to its spontaneous decay (wk > w,) or excitation

(wk <w.) to level IL>. Then the laser-driven and thermally-damped atomic

bond is represented by the density operator p(t), whose time evolution is

governed by the full equation of motion

iYA .- = [H ,p] + [H (t),p] - ilrp, pt = P', Trp - 1. (2.4)
dt a ar

The laser field E(t) is a stochastic process, due to its randomly

fluctuating phase, and this turns Eq. (2.4) into a stochastic differential

equation for p(t).

We will assume that only two levels Ie> (excited) and Ig> (ground) of

the bond are significantly coupled by the incident radiation. The detuning

between the optical frequency wL and the level separation w 0  we - wg > 0

of the driven transition will be indicated by

-t -W0 , (2.5)

and the coupling strength is expressed in the Rabi frequency

0 - E0I<ele.!0>1/1. (2.6)

Then the interaction Hamiltonian with the radiation field attains the form

-i(wt + 4(t))
Ha(t) - e><gle + Hermitian conjugate. (2.7)
ar

III. TRANSFORMATION AND AVERAGE

The interaction Hamiltonian H ar(t) oscillates with frequency wL and is

* stochastic through the phase 4(t). With a stochastic transformation to the



rotating frame, we can eliminate the exp(±iwLt)-dependence and facilitate

the appearance of 0(t).20'21 We define the density operator a(t) as

0(t) - ei(Lt + *(t))Pgp(t)e i(wLt + *(t))Pg (3.1)
o ~ t ) - ,p( 3 .1

which has the equation of motion
do -

i -Ho] + I(t)[P ,al - iro, (3.2)
dt doo +g~)[

where the time-independent dressed-atom Hamiltonian is explicitly

Hd - Y)iPi + )(w e + w+9+L)(Pe + Pg) - jA(pe - Pg)

i~e,g

- i G(le><gl + Ig><el). (3.3)

Now the time derivative i(t) of the phase enters the equation, and in a

multiplicative way (e.g., as j(t)o(t)). Notice that no information is lost

in the transformation, since Eq. (3.1) can be inverted.

The solution of the equation of motion (3.2) for o(t) refers to a

single realization of the process #(t), but only the average over the

stochastics of the phase have a significance. In general, this average

would depend on the details of the stochastics of 0(t), but it can be

shown22 that for Eq. (3.2) the average is quite insensitive to the precise

specification of the process, as long as the phase fluctuations represent

the broadening of a single-mode laser line. For any Markovian diffusion

process 0(t) and for the uniform random-jump process, the average of Eq.

(3.2) acquires the simple form

dn )-1[ (3.4
i do- ) - iwn - irn, (3.4)

where we have introduced the abbreviation

u(t) (3.5)
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with the slashed angle brackets denoting a stochastic average (in order to

distinguish from a quantum-mechanical average <...>). The operator W, which

accounts for the laser linewidth, equals

WI - A[P ,[P ,nj , (3.6)

where A is the half-width at half-maximum of the Lorentzian laser line.

Alternatively, we can write W as

WII = A(P 9 H + HP - 2P 9<glng>), (3.7)

which is reminiscent of the structure of the phonon-relaxation operator r

from Eq. (2.3). Just as ak, can be considered as a contribution to the

width of level 1k>, we can interpret 2A as the additional width of the

ground state, due to phase fluctuations. This can also be inferred from Eq.

(2.2), if we rewrite it as

t
-ifds(wL + i(s))

E(t) = EoRecLe 0 (3.8)

The laser frequency wL can be regarded to be shifted instantaneously by the

amount i(t), which diminishes or increases the detuning Ai L - 0o by j(t).

Effectively, this gives rise to a width 2X.

IV. MATRIX EL2IE S

Equation (3.4) is an operator equation for the density matrix n(t) of

the driven adbond. This determines the populations, abbreviated as

nk(t) = <klfl(t)Ik>, (4.1)

and the coherences <kjf(t)It>, k * L, with respect to the eigenstates jk> of

the unperturbed bond. After taking the diagonal part of Eq. (3.4), we find

for the time evolution of the populations

&M-6.&S
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dt nt - -AJl + R kak, I e,g, (4.2)

k

d e = a Im<eliig> - A + (4.3)

k
Ft nd1  - -0 Im<elnTg> - A n + kak (4.4)

dt g g s L (kg)

k

where we have introduced the total-decay constant of level 1k> by

Ak- akV (4.5)

and we have used the Hermiticity of H(t). The set (4.2) - (4.4) resembles a

master equation, but it contains the inhomogeneous term QiIm<elHlg>, and

hence it is not a closed set. The equation for the coherence between the

excited state and the ground state is readily found to be

dt= <ellg> 10(ne g H9

(A + ji(A e + A + 2X))<elfllg>. (4.6)

Eqs. (4.2) - (4.4) and (4.6), accompanied by the normalization

Ir k(t) - (4.7)

k

which is TrH(t) = 1, determine the populations TIk(t) and the coherence

<ejU(t)lg>. This generalizes the master equation for the case of an

arbitrarily strong incident field with a finite bandwidth. These are simple

linear first-order differential equations, and can be solved immediately for

any configuration of levels. Notice that the laser linewidth A only enters

in the last term on the right-hand side of Eq. (4.6), and that the coupling

of Eq. (4.6) with the set (4.2) - (4.4) is brought about by the inversion

11 - 11 , rather than by the separate populations.

eDg
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V. ABSORPTION RATE

Since the coherence <elng> enters the equations for the populations

nk " it is not so obvious which transitions occur, and at which rates.

Therefore, we have to start from more elementary principles. The absorbed

energy by the atomic bond from the external field equals the work that is

done on the dipole by the field. Hence, we can write for the absorption

rate (energy per unit time)
23

dtZ = E(t) <P(t)>, (5.1)

where p(t) is the dipole moment of the system in the Heisenberg picture.

This expression accounts for absorptions and stimulated emissions of photons

from and into the field, and the balance between these gain and loss terms

is the net energy-absorption rate dZ/dt from the radiation field into the

adbond. In the steady state, there can be no accumulation of energy in the

bond, so then dZ/dt equals the balance between the emission and absorption

rates of phonon energy into the crystal. Effectively, this is a conversion

of radiation energy into the thermal energy, or, a photon-phonon conversion

reaction, mediated by the optically-active atomic bond.

Transformation of Eq. (5.1) to the Schr8dinger picture gives

dZ Tr(E(t) i (5.2)
dt - "-)dt'(.2

and with the equation of motion (2.4) for p(t), the stochastic

transformation (3.1) to the a-representation and with a = a, we obtain

dZ =9A dfe<eja(t) jg> + AQ(wL + $(t))Im<eja(t)g>. (5.3)

" dt t

*This relation reveals that the absorption rate is basically determined by

the coherence <elalg>, rather than by the populations of the levels. From a

slightly different point of view, we can interpret this as the fact that the
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occurrence of coherent transitions between states is reflected in the

presence of off-diagonal matrix elements. This is in contrast to the

incoherent thermal decay, which is goverened by a master equation for the

populations only.

The appearance of i(t) in the second term on the right-hand side of Eq.

(5.3) is not very convenient. With the aid of the equation of motion (3.2)

for a(t), we can eliminate the i(t)-term and the time derivative in the

first term simultaneously. We find

dZ
dt= -Q(A e + A ) Re<elolg> + A~wIm<elolg>. 

(5.4)

Comparison with Eq. (5.3) shows that the time differentiation of the real

part of the coherence is replaced by -I(Ae + A ), and the instantaneous

laser frequency wL + (t), which multiplies the imaginary part, is altered

into the atomic resonance frequency wo. This displays that the contribution

to dZ/dt from the real part originates from the cooperation of thermal decay

I and coherent excitation, whereas the imaginary part is pure optical, since

it persists even in the absence of the crystal. The stochastic average of

dZ/dt is now easily found. We simply replace o(t) by H(t) in Eq. (5.4).

VI. STEADY STATE

Due to the thermal relaxation, the density matrix B(t) will reach a

steady state after a time of the order of akl 1, elapsed from the instant of

preparation (for instance, the switch-on of the laser). The long-time

solution will be indicated by

fl - lim H(t). (6.1)

This f then obeys the set of equations (4.2) - (4.4) and t4.6) with the

left-hand sides set equal to zero. Taking the imaginary part of Eq. (4.6),
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we obtain

Re<elflg> Im<elf[ >. (6.2)

- (A e+ A 9) + XImefI>

This relation between the real and imaginary parts of the coherence holds

only in the steady state. Subsequently, we consider the real part of

Eq. (4.6). Application of Eq. (6.2) then yields

i(A e + A) +A
Im<ellIig> = Ir2 2 (ffg - e). (6.3)

[(A e + Ag) + X] + A

The results (6.2) and (6.3) show that the coherence can be expressed

entirely in terms of the population inversion Ie - II in this limit.e g

With (6.2) and (6.3) we can rewrite Eqs. (4.2) - (4.4) in the steady

state as

Hka - Aft, I * e,g, (6.4)
k

fIk(ak + akg) Aefe + Aggs (6.5)

k

Sffk(ak a,) - Afi Ai9

k
2 (Ae + A) + A

[J(A e (e+ -+e)X (6.6)

where the coherence <elilg> has disappeared. This set of equations only

contains populations, and it can be regarded as a master-like equation for a

coherently-driven system. Notice that the optical parameter Q only enters

via 92, which is proportional to the laser intensity. The coherence (6.2),

(6.3), however, also depends on the field amplitude Q.

With the use of Eq. (6.2), the stochastic average of the absorption

rate, Eq. (5.4), can be written as
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dZ 2x _ ) Im<eflilg>.
"L Ae+ A + 2A (6.7)

6 g

If the laser linewidth X is small in comparison with the relaxation constant

Ae + Ag, the second term in curly brackets vanishes, and the absorption rate

reduces to the %wLQIm<ejlIg>. Since %L is the energy of a laser photon,

this implies that QIm<ej[fjg> equals the number of photons per unit time,

which is converted into thermal energy. For A >> Ae + Ag, the term in curly

brackets becomes L  - w 0 . This is consistent with the fact that for a

large bandwidth the energy of a photon is no longer well-defined. Now the

radiation excites the system from lg> to le>, and subsequent thermal decay

corresponds to an effective gain of phonon energy )60. This process occurs

again at a rate QIm<efilg>.

Substitution of Eq. (6.3) into Eq. (6.7) finally yields
dZ 2X

Irtl-)"L-A^ + A + 2A
e 92  (e + A  + A

XI2 e 2&( + + (f -ft). (6.8)
((A e + A) + 2 + a2 g e

The master-like equation (6.4) (6.6), together with the normalization

(4.7), constitutes a simple set of linear algebraic equations, which is

easily solved for a particular case. This determines U - e, and therebyg e

the energy-absorption rate (6.8).

For A << Ae + A , the laser linewidth has no significance at all, since

it disappears from Eqs. (6.4) - (6.6) and Eq. (6.8). If we then take jai >>

A + Ag, we recover our previous results. 16'17  In the situation A >> A + A ,

the energy-absorption rate reduces to

dZ 2 A -). (6.9)

0 "XA2 + '2
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If the system is driven close to resonance (ACO), the prefactor is

proportional to w A, and hence the absorption is diminished by an

increasing linewidth. This can be understood from the representation (3.8)

of the laser field. The probability for a photon absorption is largest if

L :ow0, but due to j(t) * 0, Lhe optical frequency is temporarily shifted

out of resonance. This reduces the absorption. Conversely, for JAI large,

the phase fluctuations can shift wL into resonance, and thereby enhance the

absorption. From Eq. (6.9) we see that this is indeed the case, since

*dZ/dtj becomes proportional to w 0 /A2.

VI. CONCLUSIONS

We have considered the irradiation of an atom, bounded to a crystal, by

intense non-monochromatic laser light. The single-mode laser line is

broadened by stochastic phase fluctuations, which turns the equation of

motion for the density operator a(t) of the atomic bond into a stochastic

differential equation. The average over the stochastics of 4(t) was

performed in a rotating-frame representation, yielding the equation of

motion (3.4) for H(t) - $o(t)j. It appears that the laser linewidth gives

rise to an additional width 2A of the ground state. This is a consequence

of the specific form of our transformation (3.1) to the rotating frame. We

remark that other kinds of transformations 24 , which also eliminate the

exp(±iwLt) time dependence in the interaction Hamiltonian, would result in

effective widths of both Je> and Ig>.

The combination of laser-linewidth damping and thermal relaxation with

coherent excitation by an arbitrarily strong radiation field prohibits the

derivation of a master equation for the populations of the vibrational

levels. It becomes inevitable to take the coherences between the optically-

coupled states into consideration. This gives the set of equations (4.2) -

U M111 1 ' 11i 4
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(4.4) and (4.6), which can be regarded as a generalized master equation.

*Only in the long-time limit we can express the coherence <eflhIg> in the

population-difference n - fe, which implies the emergence of a genuine

master equation.

The energy absorption from the laser field by the adbond is evaluated

by calculating the work done on the dipole moment of the bond. In general,

the absorption rate is determined by the coherence <eln(t)lg> (Eq. (5.4)),

and in the steady state it can be expressed in the inversion fe fg' which

follows from the solution of the master equation. The transport of energy

from the bond to the phonon field is brought about by thermal relaxation.

This can be inferred directly from Eqs. (6.6) and (6.8). For ak, - 0 for

all k,t, we find fi = in the steady state, and hence IdZ/dtt - 0. Wee g

have shown how the overall factor changes from YL to Aw with increasing

linewidth, and we see that a finite X enhances (diminishes) the energy flux

if the detuning is large (small).
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