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The Large Deviation Principle for ,the Sarple Average Process
and Functional Erdds-Renyi Laws

Abstract

The large deviation principle is estallished for the sample average

process. The principle is then used to obtain functional counterparts

of the Erd6s-R~nyi type laws of flrd6s and Rgnyi (1970) and Shepp (1964).
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1. Introduction. Let X1 , X2,... be i.i.d. random variables with

E(XI) = 0 and a= (X1
2) <-. Let P(t), tz0, denote the random polygon

where P(n) = Sn = X1 + ... + Xn with P(0) = S = 0 and is linear between

the integers.

The classical functional laws examine the asymptotic behavior of segments

of the polygon originating at the origin upon various renormalizations of

the space and time axes. In particular, let Dn(t) = P(tn)/ari and
n

Sn(t) - P(tn)/Vonloen/2. Let J(a) = a2/2 which is the large deviation

rate (Section 2) for the normal distribution. Let I(f) = 1J( dt if f is

absolutely continuous (k denotes the Radon-Nikodym of f) and = - if not.

Let ra = {f:I(f) <a). Then, the invariance principles of Donsker (see

Billingsley (1968) and Strassen (1964)) state that {D (t) :0<t<l} {W(t) :O5t:5}

in distribution, 1, (-) the standard Brownian Motion, and that the set of cluster

points of {Sn(t):0<t!l) is ra a.s.. Here Dn(.) and Sn(.) are both viewed

as random functions on C[0,1] with the usual norm topology.

The two functional laws proved here examine the asymptotic behavior of

segments of P(t) that move off toward infinity, i.e., moving averages. These

laws are the functional counterparts of the Frd6s-R~nyi (E-R) type laws of

Erd6s and Rmnyi (1970) and of Shepp (1964) just as the DonsLer and the

Strassen Invariance Principles are the functional analogues of the central

limit theorem and the law of the iterated logarithn. Note, though, that

these E-R type functional laws are not invariance principles since the large

deviation rate of Xl, which uniquely determines the distribution of X1 , can

be calculated from the conclusions of these laws.
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To state these results we need the following. For m and n positive

integers and a> 0, let Ar(s) - P(m+s) - P(m) and let An,a(s) =

A,(s[a'llogn])/[a-llogn3 where Ex] indicates the integer part of x. We

futher assume that the m.g.f. of X is finite in some open interval about 0.

Let J denote the large deviation rate for X1 (see 2.10). Let

r a = {b: J(b) ,a}. Then r a is an interval [bl,b2 ] with -- <bl< b 2 <a since

E(Xl) = 0 and the m.g.f. is finite in an open interval about 0.

With Am,n,a = Am,n,a(1) we now state the classical E-R type laws in a

manner that contrasts them with their functional comterparts. The

Erdbs-R6nyi Law, as stated below, is stronger than the original statement

and is along the lines of that given in Theorem S of Acosta and Kuelbs (1983)

for moving averages of i.i.d. random variables taking values in a Baiach

space.

Shepp's Law. The set of cluster points of {An,n,a} is r = [bl,b2].

In particular lir 4 = b1 and T An,n,a = b2 a.s..n,n,a 1 l 4na
For a set A and, e >o, let A - (b-lb-al<ce for some aEA}.

The Erdbs-Renyi Law. Let e >o. Then with prcbability I,

mna :msn) c (r aJ) eeventually

and

ra Ji c [ m,n, a : m n1 6 eventually.

In particular, the set of cluster points of the triangular array {m,n, a : m!l1

is ra =C bl,b2].

Let I (.) denote the rate function for the sample average process.

This is defined in terms of J(.) in Section 3. Let ra = ra = {f:I(f) sa}
which is "compact" (Theorem 3.1, Definitions 2.1 and 2.2) and convex

(definition of I from the convexity of J).
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In Section 4 we establish the following functional counterparts of

Shepp's and of Erd~s and R6nyi's laws:

(1.1) The set of cluster points of {An,na(.)) is r a .

(1.2) Let c > o. W.ith probability 1,

(m~n,a (.) : m:n) c ra, e eventually

and

a  {Am,n,a(-)

In particular, the set of cluster points of the triangular array

{Am,n,a(-) : m : n) is ra.

Remark 1.1. Since ra is "compact", we have from (1.1) that the set

of cluster points of (A) is H(ra) and H(a na)) = supH(f) <w

n~~a fer a
for any "continuous" function H. In particular, if H(f) = f(l), then the

set of cluster points of {(n,n, a} is {f(l) : fEra) and fiii An,n, a = sup f(1)
fera

which is a restatement of Sepp's law. A sirilar rerark can be made con-

cerning the Erdbs-R6nyi law.

The original Erds-R6nyi Law, which states that li < am,n,a = b

and lim RA Am,na = b, a.s, does not seem to be a direct consequence of

the fimctional law (1.2).

Remark 1.2. The issues of what space in vwich A(-) takes its values

and with what topology have been ignored here. These will be addressed in

Sections 3 and 4.

The key to proving (1.1) and 1.2) is to establish the "large deviation

principle" (LDP) for Xn(t) - P(nt/n). Roughly speaking, the principle says

that P(Xn(.)¢f-df) ;" e n(f)df. This provides suitable approximations for
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certain probability statements about the sople average process,

Once such approximations are established, the proofs of (1.1) and (1.2) acO

essentially those of Shepp and of Erdbs and R6nyi with modifications taken

from Acosta and Kuebb. This is done in Section 4. A review concerning the

LDP is given in Section 2 while the LDP is established for %(.) in Section 3.

2. The Large Deviation Principle. Let X be a topological space and F

be the Borel a-field in X. Let {Pn)be a family of probability measures on

(X, F). Here we review sorm general ideas regarding large deviations for {Pn }

while in the next section we are interested in results specifically for Pn'

the probability measure induced by the sample average process Xn( . ) .

The following definitions which are slight variants of Varadhan (1984)

allow us to state many large deviation results in a concise form.

Definition 2.1. A function I(-) on X is said to be a regular rate

function if

(2.1) 0 S I(x) !,

(2.2) IC) is lower semi-continuous (Isc) and

(2.3) for each c<-, rc = {x:I(x) 'c} is compact.

For any subset A of X, define

(2.4) I(A) = inf I(x).
XcA

Definition 2.2. The measures (PnI satisfy the large deviation principle

(IMP or LD principle) with rate function I(.) if

(2.5) I(-) is a regular rate function,



(2.6) for each closed set F,

Tl- log Pn(F) _5- I(F), and

(2.7) for each open set G,

Iim -1 log Pn(G) zt- I (G) .

Definition 2.3. The measures {P } satisfy the weak, large deviation

principle (WLDP or the wvak LD principle) with rat, function I(-) if (2.5)

and (2.7) of Definition 2.2 together with (2.8) below are satisfied:

(2.8) for each compact set K, -n log (Y) . (K).

Definition 2.4. The measures {Pn } are large deviation tight (LD tight)

if, for each I > -, there exists a corpact set Y,, such that

(2.9) f log Pnt ,)

The following lermia whose proof is simple and left to the reader shows

the usefulness of LD tightness.

Lemma 2.5. Let {Pn) be LD tight and satisfy the V'DP. Then it satis-

fies the LDP.

Many interesting applications in large deviations occur when X is a

Polish space, that is a separable complete metric space. This is the setting

in Section 3. In this context, two irportant and ir'radiate derivatives of

the LDP are the contraction principle and the asyrptoti-. expression for cer-

tain intergrals. This latter result is not usid in the sequel but is stated

below for completeness. For rroofs see Varadhan (1966, 1984).

Let P,} satisfy the LDP with rate function I(x). Let h be a continuous

rap fro. X into another Polish space V, and let Qn v Pnh ' l
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Contraction Principle. The measures {Q} satisfy the UP with rate

function

K(y) = inf I(x).

x:h(x) =y

As)Mtotic expression for certain integrals. Let F be a bounded real

valued continuous function on X. The-a

I log f exp (XF(x)) dPn(x)+sup [F(x)-I(x)].

The LT)P, along with the above two results, has the flavor of weak

convergence of probability measures (Theorems 2.1 and 5.1 of Billingsley,

19'3). The following lem-a is the analogue of the converse part of Prohorov's

Theorem (Billingsley, 1968, Theorem 6.2) and with Lernma 2.5 shows that for

Polish spaces the LDP is equivalent to the VILDP and LD tightness. The proof

is similar to Billingsley's proof of Prohorov's Theorem and can be found in

Lynch and Sethuraman (1984).

Lerra 2.6. If {Pn is a sequence of probability measures which satis-

fies the LDP, then {Pn n is LD tight.

The earliest example of the LDP is when Pn is the probability measure

induced by the average of n i.i.d. observations. It is surunarized in the

follo-ring theorem which is variously referred to as Cramer's Theorem and

Chernoff' s Theorem.

Let X1 , X2, ... be i.i.d. with m.g.f. *(e) = E(e ). Let ¢(8) = logo(e)

denote the cunulant generating function of X1 and define

(2.10) Jx(a) - J(a) = sup (Oa-p(e)}.

Let Pn denote the probability measure induced by Xn = (XI+'"+Xn)In" Then,
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Theorem 2.7. (Cramer, 1938; Chernoff, 1952). The probability

measures {Pn} satisfy the LDP with rate function J(.).

The following results show how LD properties for marginal measures carry

over to the product easures. These are needed in the next section. The

proof of Lema 2.8 is obvious while that of Lenna 2.9 may be fouind in Lynch

and Sethurairan (1984).

Let {Pi } be a sequence of probability measures on a Polish space X1,

i1=,2. Let2P =PlxP be the product measure on XX -- X X .

Lemia 2.8. If {Pni } is LD tight for i = 1,2, then 'Pnl is LD tight.

i i
Lema 2.9. Let {Pn I satisfy the WLDP with rate function I

i = 1,2. Then {P.1 satisfies the TIDP with rate function I(xl, x2) = I I(xl )

+ I2 (x2).

The following corollary follows from Lerras 2.6, 2.8 and 2.9.

Corollary 2.10. Let {Pn 1 } be LD tight and satisfy the IDP, i = 1,2.

2
Then Pn Pn1 x Pn satisfies the LDP with rate function I(x I x2)

I (xl) + 12 (x2 ).

3. The LDP for the Sample Average Process. Let X1, X2 ... be

i.i.d. r.v.'s. We assume that the m.g.f., O(0), is finite in some open

interval about zero. Thus the mean is finite and we iill without loss of

generality assume that E(X1 ) = 0. Recall that from (2.10) the large

deviation rate forl n is J(a) = sup{ea-logo(e)}.
0

To state precisely the LDP for the sample average process X (.), where

%n(t) = P(nt)/n we make the following digression. We note that J(-) is convex

with its mini2. zero at zero since E(Xl) = 0. So, J(a)/a is increasing

(decreasing) in a 0 (a< 0). Let C1 - lira J(a)/a and C2 a lir J(-a)/a.
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Let BV[0,1] denote the space of functions which are right continuous

and of bounded variation on [0,1] endowed with the weak* topology - better

known as the topology of weak convergence or convergence in distribution

amongst statisticians and probabilists. Let C[O,lj denote the space of

continuous function on 10,1] with the usual uniform topology.

For fcBVLO,1], let f = h1 - h2 denote the Hahn-Jordan decomposition of

f, let i denote the Padon-Nikodym derivative of its absolutely continuous

part and let h* and h* denote the singular parts of hI and h2 . Let

I(f) = J(t)dt+ ClhILO,l) + C2h*10,13 and fcBVE0,l] and if not, where we

adopt the convention that 0.o = 0. In particular, if C1  = C2 then

l(f) - J()dt if f absolutely continuous and - if not.

If either C1 or C2 is finite (Case 1) we must view In(.) as taking values

in BV[O,l]. If C1 and C2 are both infinite (Case 2) we may view Xn(-) as

taking values in either BVE0,1] or C[0,1]. The reason we must distinguish

these two cases is that ra = {f:1(f) _a) is not a compact subset of C[0,1]

when Case 1 obtains.

Theorem 3.1. Let Pn denote the probability measure induced by Xn(.)

Then {Pnl satisfies the LDP with rate function I(-).

The proof that I (.) is a regular rate function can be found in Lynch

and Sethurman (1984) for Case 1 and in Varadhan (1966) for Case 2 (c.'f.
Groeneboom et al., 1979). Here we only outline the proof of the upper and

lower probability bounds in the principle.

To proof of those bounds is sonewhat technical but in reality involves

only three key ideas. First the process %(. ) is approximated by a finite

dimensional random vector whose components are independent. Then Corollary

2.10 with Theorem 2,7 and the contraction principle establishes the LDP for
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the finite dimraional process. Finally, Lemma 3.2 and Theorem 3.3, belov,

show that the approximations are suitable enough to establish the principle.

We need the following. For a partition P = {0 = t o < t1 < ... < t k  1} let

k
Ait = ti - ti. 1 and Aif = f(ti) - f(til). Let Ip(f) = E J(Aif/Ait)A it.

Analogos to (2.5) let Ip(A) = inf Ip(f). Let A = ess inf X, and
feA

= ess sup Xi. Note that if A is finite then J(A) = -lofP(Xl= A). A

similar statemen about J(B) can be made if B is finite. Also note that J(.)

is cantimwus on £A.B] (even if A or B is infinite) Miere if J(A) = , the

lira J(a) - - etc. Thus Ip(.) is continuous on [A,B]k. -t

a+A

Let B denote the BoreLci-field in [0,1].

Lemma 3.2. Ip(f) + I(f) as a(P) + S.

Theorem 3.3. (The inimax Theorem) if F is closed, then sup Ip(F) = I(F).
P

Remark 3.4. The proof of Lemma 3.2 depends on the fact that {fP, a(V},

where fP = E(fp(U)I a(P)) and U is uniform on [0,1], is a martingale- and can

be found in Lynch and Sethuraman (1984). A proof of the minimax theorem for

Case I can also be found there. The proof for Case 2 is similar (c.f.

Groeneboon et al., 1979, Lemma 2.4).

Outline - lower bound. We only do the proof for Case 1. The proof for

Case 2 is similar but somewhat more coplicated and may be found in Varadhan

(1966).

Let G be an open set. If I(GC) there is nothing to prove. So assume

that I(G) <. For O choose f such that- I(f) <lI(G) + c. There is a

partition P (0- tO t 1 < ... < t, = 1) of continuity points f such "tbat

N (9: WAa Ag ^iE - ,- CA.
15k
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Since f is continuous at ti, for all sufficiently large n, (nC)cNp 3
Ent 3

D{ISEnt 1 ]/n - f( 1 ) - f(0))I < e,IX[nt) + 1/n < ., I( S[nt2l - S ntl +)/n-

[f nt2l ] ntIl ] Xnt2 ]+I
(f-n) - f(t- ) < C, n < c, etc.).So for such an n, by

independence,

.k-I S.nti+l )-Entil+l Enti~ i]
(3.1) P (.() €N p,E) 2:I P( n (f n

i=D n-(
[nt.]

n n,ii

Since Pk (iJnit < -)I as n c, by (3.1) and Theorem 2.7,

Lim n 'logP(T (,)cNp, ) 2 -Ip Np, -,p(f) *a -'(f)

where the last inequality follows from Lerra 3.2 and the second to last

from the definition of Ip(.).

Outline - the upper bound. Let F be a closed set. Fix a partition

P ='{0 = t0 <t1< ... <tk = 11. For simplicity assume 1: = 2. Note that,

from the definition of Ip(Q,

P(YnC') eF :5 PCIp(%C)) 2: IpCF)) .

Thus, to establish the upper bound it suffices to show that

(3.2) f l logP(Ip(%(.)) : a) c -a.

Now the event

8

(3.3). (IP(XnC.) z a) cu AjJl
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where Aln (XEt,] + 10, Sn , sn -SEnt + z d0, ad I3nC.)) 2a)

and A2n, ... , Ash denote the other possible sets resulting from the seven

other choices of the first three inequalities. For Aln, let K be a fixed

finite positive number less than or equal to B. Then, since J is nonnegative

and increasing in a > 0 and convex

S[ntJ+K Sn'S~nt1 l+KL(3.4) P(A ln) <5P(J ( ntI t 1 +3(= n1.t l } )- (1 -tl) 2:a) +

X[ntl+l
P6 nt I  2: =) Pn + Q.

Since J is continuous on EAB] and 0< KS B it follows from Theorem

2.7, Corollary 2.10 and the contraction principle that

(3.5S) TF n" I lOgpn s -a.

By Markov's inequality,

(3.6) nllogQn "tlK e " n -teK

as n -for every 8 for which (a) < -. If Bc -, then v () < - for all 0 > O

while if B-, then K may be taken arbitrarily large. In any event (3.4)

combined with (3.5) and (3.6) and the above observation show that

l5 n -1 logP(Aln) e -a. This with (3.3) proves (3.2) and camletes the

proof of the upper bound.

4. Fumctional E-R Laws. With the formlation the sane as in Section

3, let I (-) denote the rate function for %n(.) and recall the definition

of Amn,a() in the Introduction As before ram {f:I(f)sa).



For a set A, let A = (g:dCf,g) <c for some f £ A) where these sets•£

are viewed as subsets of BV[0,1J (Case 1) or C[0,13 (Case 2) and d is either

the metric which induces the weak* topology (Case 1) or the uniform topology

(Case 2).

The functional analogues of Shepp's (1964) and Erdis and RPnyi's laws

can be stated as follows.

Theorem 4.1. The set of cluster points of {n,n,a (.)) is ra -

Theorem 4.2. Let c >0 . With probability 1,

i) {m,n,a('): m < n} c- ra,c eventually

and

(ii) ra c {&m,n,a(.): :g<n)c:.

(iii) In particular, the set of cluster points of the triangular array
"Am,n,a (): mfn} is ra .

To prove these theorems we need the following lerma.

Lema 4.3. (i) For each c >0 there exists a c >a for which rc c ra,c
and (ii) ra equals the closure of {f:I(f)< a).

Proof. (i) Suppose not. Then for every c > a there exists an fccrc

with fcira,£. Fix b •a. Since rb is compact the net (fc:a<c<b) has a

subnet (fd) which converges, say, to fO , as d+a. By the lsc of I(.) it

follows that l(fo) slim l(fd)s a, and so focra. But fcjra, implies that
dfad(fo~f c for ever c which contradicts that'(fd) converges to fo.
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(ii) Fix fcr a with I(f)=a. It suffices to show that I(f) < a for 0< <L.

This is innediate since I is convex with I (0) w0 here 0 denotes the func-

tion which is identically zero. 11

Proof of Theorems 4.1 and 4.2. Fix a zo and r> 0. We first show that

(4.1) for any fera , d((&nn,a(. ) If) < r) infinitely often a.s..

Let 0= {g: d(g,f)< c}. Note that since 0 is open, a-fe0 for some

ac(0,1). By the LDP,

I_ 'log P (ncO) a>- 1(O) a -I (af).

Since I(-) is convex with I(0)=0 and ac(0,1), (af) aI(f) :ca. Thus,

(4.2) P(Ar,n,a(.) €O) >:n " L( I +O ( l ) ) .

Since zn - - - for a'c(a,l) fixed it follows fron Lerma (3.1) of Shepp (1964)

that there exists a sequence' {n(k) } with n(k+l) = n(k) [a-log n(k)] such

that En(k) " w' = -. This with (4.2) shows that XP(An(k) ,n(k) ,a ( ' ) 0) = --

Statement (4.1) follows from this and the divergent part of the Borel-Cantelli

lenm since the events (an(k),n(k),a(.)eO, k=, 2, ... are independent.

We now show that, with probability 1,

(4.3) {m,n,a(-): man)cra,e eventually.

For all sufficiently large integer k, let K- eak + l and let l(k) = K-i

if K is an integer and - [K) if not. Then, since k - [a log k] for

1(k-1) < ns l(k), AA,n,a(.) = Amil(k) ,a(.) for m sn. Thus, to prove (4.3),

it suffices to show that

(4.4) P(Am,l~k),a(.) eraI for some ms1(k)i.o.) 0.
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By Lema 4.3, (i) there exists a c> a such that rcr a,c. Thus

I(rC,) z c. So by the LDP,
a;,E:

Tii n -log P(n(.) rC,) --I(rc,) 5 -c

since ra,c is closed with rcecrcc . Thus, for k' sufficiently large,

'ra for some m5 l(k))
Ep ~ (k)a(' a,e

k's E 1Ck)e'Ck(l+0(1)). E ele(a-c)(l+0(1)),

kzk ' k 2: '1,

So (4.4) follows from the convergent part of Borel-Cantelli lemm. This

coiletes the proof of (4.3).

Since ra is closed, ra,c +ra as c+O. This with (4.1) and (4.3) completes

the proof of Theorem 4.1 and (i) of Theorem 4.2.

To prove (ii) of Theorem 4.2, let c>O. Then, by Lenmma 4.3 (ii), there

is a finite collection {£1'"" '.k} c ra such that ra c Tfi)ai=£ 1 C2

Since {fi) /2 is an open set, by the LDP,

1.i. n-11og P("n C' {fi/2 )  /2

So,

(4.5) P(ra + {"m,n,a :m n~c/2)

SP(fi(Am,n,a:Ln) /2 for some i)

kE i P~f { %, a:Mn} /2

X i-i P a n ) 2



k )(n/[a- llog n])-l 15!5 E P(Tr[a-llog nli(Fi /

k [-logn i  (n/[a-llog n])-
zE (lP CXr~- F-1n( I )C/a o ]-

1 E/2
k(.I(fi)[a-log n] (1+0(1))(n/[a log n])

i-i

i=i

where in the last inequality we used that (l-x) :. .

Since I(f i ) < a for i= i,...,k, it follows that E P(r a+[m,n,a:'Zn} /2)<

This with the covergent part of the Boarel-Cantelli lem coTpletes t he

proof.
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