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The Large Deviation Principle for .the Sarple Average Process
and Functional Erdds-Rényi Laws

Abstract
The large deviation principle is estallished for the sample average
process. The principle is then used to obtain functional counterparts

of the Erdés-Rényi type laws of Erdds and Rényi (1970) and Shepp (1964).
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1. Introduction. Let Xy» Xgseee be i.i.d. random variables with
2

E(Xl) =0 and ¢ = E(XIZ) < o, Let P(t), t=0, denote the random polygon
where P(n) = Sn = Xl + ...t )Sq with P(0) = S0 = 0 and is linear between
the integers.

The classical functional laws examine the asymptotic behavior of segments
of the polygon originating at the origin upon various renormalizations of
the space and time axes. In particular, let Dn(t) = P(tn)/o/n and
5,(t) = P(tn)//onloglcgn/2. let J(a) = a%/2 which is the large deviation
rate (Section 2) for the normal distribution. Let I(f) = £1J (Hat if f is
absolutely contimious (f denotes the Radon-Nikodym of f) and = « if not.

Let r, = {£:1(f) <a}. Then, the invariance principles of Donsker (see

Billingsley (1968) and Strassen (1964)) state that {Dn(t):05t51}+ {W(t):0sts1}
in distribution, W () the standard Frownian Motion, and that the set of cluster
points of {Sn(t):OStsl} is T, a.s.. Here Dn(-) and Sn(-) are both viewed

as random functions on C[0,1] with the usual norm topology.

The two functional laws proved here examine the asymptotic behavior of
segments of P(t) that move off towarc infinity, i.e., moving averages. These
laws are the functional counterparts of the Frdds-Rényi (E-R) type laws of
Erdos and Rinyi (1970) and of Shepp (1964) just as the Donsker and the
Strassen Invariance Principles are the functional analogues of the central
limit theorem and the law of the iterated logarithm. Note, though, that
these E-R type functional laws are not invariance principles since the large
deviation rate of X{» which uniquely determines the distribution of X;, can
be calculated from the conclusions of these laws.
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To state these results we need the following. For m and n positive
integers and a> 0, iet A(s) = P(m+s) - P(m) and let Am,n,a(s) =
Am(s[a'llogn])/ [a'llogn] vhere [x] indicates the integer part of x. We
futher assume that the m.g.f. of X; is finite in some open interval about 0.

Let J denote the large deviation rate for Xl (see 2.30). let

I‘a‘J= {b: J(b)<a}, Thenr J

q 1s an interval [bl,bzl with -m<b1<b2<w since

E(Xl) = 0 and the m.g.f. is finite in an open interval about 0.

With B = 8y n a(l) we now state the classical E-R type laws in a
9iis

’n’a
manner that contrasts them with their fumctional coumterparts. The
Erdos-Rényi Law, as stated below, is stronger than the original statement
and is along the lines of that given in Theorem 5 of Acosta and Kuelbs (1983)

for moving averages of i.i.d. random variables taking values in a Baiach

space.
R - . J _
Shepp's Law. The set of cluster points of {An,n,a} ist,” = [bl,bz].
In particular lim Sn,a " b; and Tin Anon,a = Pp 2ese.

For a set A and, >0, let A= {b:|b-a} < for some aeA}.

The Erdos-Rényi Law. Let ¢ >0. Then with prcbability 1,

' . J .
{Am,n,a :ms<n}c (Fa )e eventually

and

ch'{A

ims
a m,n,a MR

¢ eventually.

In particular, the set of cluster points of the triangular array A, p.gimsT)
| St 4
. J
Let T (+) denote the rate function for the sample average process.
This is defined in tems of J(+) in Section 2. Let r,l = r_ = (£:1(9) <a)
which is "compact" (Theorem 3.1, Definitions 2.1 and 2.2) and convex

(definition of I from the convexity of J).
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In Section 4 we establish the following functional counterparts of
Shepp's and of Frdds and Rényi's laws:
(1.1) The set of cluster points of {An,n,a(')} is T,.
(1.2) let e>o0. With probability 1,
{Am,n,a(") ims<nj c ra,e eventually
and
Ta € {Am,n,a(') imsn} .
P

In particular, the set of cluster points of the triangular array
{Am,n,a(') :msn} is r,-
Remark 1.1. Since Ty is "'compact", we have from (1.1) that the set

of cluster points of H(An) is H(ra) and Tim H(An 1 a(-)) = js:up H(f) <=
4 el
a
for any "continuous' function H. In particular, if H(f) = £(1), then the

set of cluster points of {a, , al is {f(1) : fer,} and Iim T ;up £(1)
211, »”"e el

which is a restatement of Shepp's law. A similar remark can be made con-
cerning the Erdds-Rényi law.

The original Erdos-Rényi Law, which states that lim Hax A b

2
= b1 a.s, does not seem to be a direct consequence of

,n,a
and lim H{iﬁ Am,n,a
the functional law (1.2).

Remark 1.2. The issues of what space in vhich A(-) takes its values
and with what topology have been ignored here. These will be addressed in
Sections 3 and 4.

The key to proving (1.1) and 1.2) is to establish the 'large deviation
principle" (LDP) for Xn(t) = P(nt/n). Roughly speaking, the principle says
that P(X (*)cf+df) = e ™MBys, mis provides suitable approximations for
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certain probability statements about the sample average process, X;(¢).

Once such approximations are established, the proofs of (1.1) and (1.2) auc
essentially those of Shepp and of Erdds and Rényi with modifications taken
from Acosta and Kuebb. This is done in Section 4. A review concerning the

LDP is given in Section 2 while the LDP is established for 'in(-) in Section 3.

2. The Large Deviation Principle. Let X be a topological space and F

be the Borel o-field in X. Let {Pn}be a family of probability measures on
(X,F). Here we review some general ideas regarding large deviations for {Pn}
vhile in the next section we are interested in results specifically for P ,
the probability measure induced by the sample average process X ().

The following definitions which are slight variants of Varadhan (1984)

allow us to state many large deviation results in a concise form.

Definition 2.1. A function I(:) on X is said to be a regular rate
function if

(2.1) 0<sI(Xx) s,
2.2) I(-) is lower semi-continuous (1sc) and

(2.3) for each c <=, r. = {x:I(x) sc} is compact.
For any subset A of X, define

(2.4)  I(A) = inf I(x).
XeA

Definition 2.2. The measures (Pn} satisfy the large deviation principle

(LD? or LD principle) with rate function I(-) if

2.5) I(*) is a regular rate function,

i




(2.6) for each closed set F,
Tim + log P_(F) < - I(F), and
(2.7) for each open set G,

.1
1im 0 log Pn(G) >- I{(G).

Definition 2.3. The measures P} satisfy the weak large deviation

principle (WLDP or the weak LD principle) with rate function I(-) if (2.5)

and (2.7) of Definition 2.2 together with (2.8) below are satisfied:
(2.8) for each compact seot X, Tiﬁ-ﬁ log Pn(K) s- I(X).

Definition 2.4. The measures {Pn} are large deviation tight (LD tight)

if, for each M>=, there exists a compact set K, such that

(2.9 T3 log P () - M.

The following lerma whose proof is simple and left to the reader shows

the usefulness of LD tightness.

Lerma 2.5. let {P} be LD tight and satisfy the V1DP. Then it satis-
fies the LDP.

Many interesting applications in larpe deviations occur vhen X is a
Polish space, that is a separable complete metric space. This is the setting
in Section 3. In this context, two irmportant and irmediate derivatives of
the LDP are the contraction principle and the asyrptotii expression for cer-
tain intergrals. This latter result is not used in the sequel but is stated
below for completeness. For proofs see Varadhan (1966, 1984).

Let {Pn} satisfy the LDP with rate function I(x). Let h be a continuous

map from X into another Polish space 'V, and let Q = Pnh'l.

A
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Contraction Principle. The measures {Q } satisfy the LDP with ratc

function

X(y) = . inf 1(x).
x:h(xX)=y

Asymptotic expression for certain integrals. Let F be a bounded real

valued continuous function on X. Then
L log [ exp OF()) AP (x) »sup [FG)-T(x) 1.

The LDP, along with the above two results, has the flavor of weak
convergence of probability measures (Theorems 2.1 and 5.1 of Billingsley,
15°8). The following lerma is the analogue of the converse part of Prohorov's
Theorem (Billingsley, 1968, Theorem 6.2) and with Lerma 2.5 shows that for
Polish spaces the LDP is equivalent to the WLDP and LD tightness. The proof
is similar to Billingsley's proof of Prohorov's Theorem and can be found in

Lynch and Sethuraman (1984).

Lerma 2.6. If (P} is a sequence of probability measures which satis-
fies the LDP, then {P_} is LD tight.

The earliest example of the LDP is when P is the probability measure
induced by the average of n i.i.d. observations. It is summarized in the
folloving theorem which is variously referred to as Crarer's Theorem and
Chernoff's Theorem.

86X

Let X}, X,, ... be i.i.d. with m.g.f. ¢(8) = Ee 1

). Let y(8) = loge(6)

denote the curmlant generating function of Xy and define
(2.10) Jy(@) = J(a) = sup {ea-y(8)}.
0

Let P denote the probability measure induced by ‘)_S\ = (Xg*...*X)/n. Then,

a




Theorem 2.7. (Cramer, 1938; Chernoff, 1952). The probability
measures {Pn} satisfy the LDP with rate function J(-).

The following results show how LD properties for marginal measures carry
over to the product measures. These are needed in the next section. The
proof of Lemma 2.8 is obvious while that of Lemma 2.9 may be found in Lynch
and Sethuraran (1984).

Let {Pni} be a sequence of probebility measures on a Polish space Xi,

1 x Pn2 be the product measure on X = Xl x Xz.

[N
]

1,2. letP =P
Lenma 2.8. If (P} is LD tight for i = 1,2, then (P,} is LD tight.

1mm2£.Imw%ﬁsmnﬁtmmemmraeﬁmﬁmI%ﬁL
i=1,2. Then {P n} satisfies the WLDP with rate function I(xl, xz) = Il(xl)
+ 1 (x,).

The following corollary follows from Lermas 2.6, 2.8 and 2.9.

Corollary 2.10. let {Pnl} be LD tight and satisfy the WLDP, i = 1,2.
1
Then Pn = Pn* b Pn2 satisfies the LDP with rate function I(x1 ,xz) =

' (x)) + 2 (x,).

3. The LDP for the Sample Average Process. Let X, Xy ove be
i.i.d. r.v.'s. We assume that the m.g.f., ¢(6), is finite in some open
interval about zero. Thus the mean is finite and we will without loss of
generality assume that E(Xl) = 0, Recall that fron (2.10) the large
deviation rate for ')(n is J(a) = sgp{ea— loge(0)}.

To state precisely the LDP for the sample average process Kn( ), where

X,(t) = P(nt)/n ve make the followins digression. We noce that J(-) is convex
with its minimm zero at zero since E(Xl) = 0. So, J(a)/a is increasing

(decreasing) ina > 0 (a<0). Let C1 = 1im J(a)/a and CZ = 1im J(-a)/a.
a a-»w

el
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Let BV[0,1] denote the space of functions which are right continucus
and of bounded variation on [0,1] endowed with the weak* topology - better
known as the topology of weak convergence or convergence in distribution
amongst statisticians and probabilists. Let C[0,1] denote the space of
continuous function on [0,1] with the usual uniform topology.

For feBV(0,1], let £ = h1 - h2 denote the Hahn-Jordan decomposition of
f, let f denote the Radon-Nikodym derivative of its absolutely continuous
part and let h'l‘ and h denote the singular parts of h; and h,. Let
I(f) = élJ(f)dt*‘ C,h}L0,13 + C,h4[0,11 and £eBVIC,1] and = » if not, where we
adopt the convention that Q.= = 0. In particular, if Cp === CZ then
I(f) = él J(E)dt if £ absolutely continuous and » if not.

If either C1 or C, is finite (Case 1) we must view X’n(-) as taking values
in BV[0,1]. 1If C, and C, are both infinite (Case 2) we may view 'Kn(-) as
taking values in either BV[0,1] or C[0,1]. The reason we must distinguish
these two cases is that r, = {£:1(f) sa} is not a compact subset of C[0,1]

when Case 1 obtains.

Theorem 3.1. Let Pn denote the probability measure induced by Yn(-) .
Then {P,} satisfies the LDP with rate function I(-).

The proof that I(:) is a regular rate function can be foumd in Lynch
and Sethuraman (1984) for Case 1 and in Varadhan (1966) for Case 2 (c.t.
Groeneboom et al., 1979). Here we only outline the proof of the upper and
lower probability bounds in the principle.

To proof of. these bounds is screwhat technical but in reality involves
only three key ideas. First the process 'Xn( *) is approximated by a finite
dimensional random vector whose components are independent. Then Corollary
2.10 with Theorem 2,7 and the contraction principle establishes the LDP for

Y

—— s M. t—— « o B . e




the finite dimonsional process. Finally, Lemma 3.2 and Theorem 3.3, belo,
show that the approximations are suitable enough to establish the principle.
We need the following. For a partition P = {0=ty<ty<...<t =1} let
k .
3t =ty -ty and A;f = £(t;) - £(t, ]). let Ip(f) = i‘ J(a;£/8;t)85t.
Analegous to (2.5) let IP(A) = ]'1€nf Ip(f). Let A = ess inf Xy and
€A

B = ess sup X1 Note that if A is finite then J(A) = -1ogP(X1=A). A
similar statement about J(B) can be made if B is finite. Also note that J()
is contimwous on [A,B] (even if A or B is infinite) where if J(A) = =, the

‘1im J(a) = =« etc. Thus Ip(-) is continuous on [A,B]k.

a+A
Let B denote the Borel o-field in (0,11.

Lemma 3.2. I,(£) + I(f) as o(P) 4B.
Theorem 3.3. (The Minimax Theorem) if F is closed, then sgp Ip(F) = I(F).

Remark 3.4. The proof of Lemma 3.2 depends on the fact that {f,;, o (P},
where £, = E(£,(U)| o(P)) and U is uniform on [0,1], is a martingale and can
be found in Lynch and Sethuraman (1984). A proof of the minimax theorem for
Case 1 can also be found there. The proof for Case 2 is similar (c.f.

Groeneboon et al., 1979, Lemma 2.4).

Outline - lower bound. We only do the proof for Case 1. The proof for

Case 2 is similar but somewhat more complicated and may be found in Varadhan
(1966) .

Let G be an open set. If I(G) = = there is nothing to prove. So assume
that 1(G) <=, For e>0 choose £ such that I(f) <I(G) + e¢. There is a
partition P = {0=t <t;<... < t) =1} of continuity points f such that

Ny, =(gmax{Ar,g A F|~6c) (.
P,e Tkl 1 3
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Since f is continuous at t;, for all sufficiently large n, %(-)eNP':}

{nt
(—=

. 1
°{|S[nt11/“ - (f ) - £(0))] <e.|X[nt1]+1/“| <€ ‘(s[ntzfi i Srnt11+1)/n'

nt,]  [nt;] Xtnt, 41
(g - fmN] <,

<e, etc.). So for such an n, by

independence,

k-1 Sintg, )t 1 [nt
(3.1) P(R,() e N p )= T PC .

.. o]
- (£¢ ;"'L.) -

(nt.] X
£~ <o) x Pl <o),

e pE (L |
Since (ls='<€)+1 as n+=, by (3.1) and Theorem 2.7,
Lin 0" 1ogP(R,(Delp ) 2T, ) 2 -1p(D 2 -1(H

where the last inequality follows from Lerma 3.2 and the second to last
from the definition of IP(') .

Outline - the upper bound. Let F be a closed set. Fix a partition

P={0=1tj<t;<...<t, =1}, For simplicity assume } = 2. Note that,
from the definition of I,(+),

P(R, () eF) s PIp(%,(+)) 2 Tp(F)) -
Thus, to establishi the upper bound it suffices to show that

(3.2) ET) n’llogpap(xnm) >a) < -a.

Now the event

8
(3.3).  {IpX (-) 22} o, An




-
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where A, = {x[nt13+ 120, S[ntljzo’ Sp " S[ntll +120, and 1p(X () za}
and AZn » =y Agy denote the other possible sets resulting from the seven

other choices of the first three inequalities. For A1n’ let K be a fixed
finite positive mmber less than or equal to B. Then, since J is nommegative

and increasing in a > 0 and convex

Stne, 1°K Sn~Stnt, 101K
(3.4) P(Aln) sP(J (—-—nfi—-)tl +J ntl’tl) ) (l'tl) a) +

x[nt1]+1
Pee, 20 = Pn* G,

Since J is continuous on [A,B] and 0 <K< B it follows from Theorem
2.7, Corollary 2.10 and the contraction principle that

(3.5) T n) logP < -a.
By Markov's inequality,
-1
(3.6) n loans -tleK+ .‘L(%l > -tleK

as n-»» for every 6 for which ¥(8) <=, If B<w, then ¥(6) <= for all 6>0,
while if B=«, then K may be taken arbitrarily large. In any event (3.4)
combined with (3.5) and (3.6) and the above observation show that

Timn 'llogP(Am) <-a. This with (3.3) proves (3.2) and completes the
proof of the upper bound.

4. FPunctional E-R Laws. With the fornulation the same as in Section
3, let I (+) denote the rate function for '7&1(-) and recall the definition
of & g(*) in the Introduction. As before I, = {£:1(f) sa}.
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}l"‘or a set A, let Ae=' {g:d(f,g) <e for some f ¢ A} where these sets
are viewed as subsets of BV[0,1] (Case 1) or C[0,1] (Case 2) and d is either
the metric which induces the weak* topology (Case 1) or the umiform topology
(Case 2).
The functional analogues of Shepp's (1964) and Erdos and Rényi's laws

can be stated as follows.

Theorem 4.1. The set of cluster points of {A

n,n,a(')} is Ty

Theorem 4.2. Let e¢>0, With probability 1,

i) '{Am'n’a(-): msn} e T, . eventually
and
(ii) rp e {Am,n,a('): m<n}_.

(iii) In particular, the set of cluster points of the triangular array
{Am’n’a('-)': m<ny¥ is I,

To prove these theorems we need the following lerma.

Lemma 4.3. (i) For each e¢>0 there exists a ¢ >a for which r.cl, o

and (ii) I, equals the closure of {£:1(f) <a}.

Proof. (i) Suppose not. Then for every c>a there exists an f.er.
with £ gr. ,e. Fix b>a. Since I, is compact the net {f.:a<c<b} has a
subnet {f4} which converges, say, to fys as dva. By the 1sc of I(-) it
follows that I(fy) s ‘11?: I(fg) sa, and so foel,. But £ 4r, _ implies that
d(£y,£.) > ¢ for every c which contradicts that {£3) converges to f,.
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(ii) Fix ft:l‘a with I(f) =a. It suffices to show that I(af) <o for O<a<1,
This is immediate since I is convex with I(0) =0, vwherc 0 denotes the func-

tion which is identically zero. ||

Proof of Theorems 4.1 and 4.2, Fix a20 and ¢>0. Ve first show that

(4.1) for any fer,, d((a

n.n.al")»f) <€) infinitely often a.s..
e

Let 0= {g: d(g,f) <e}. Note that since 0 is open, a-fe0 for some
«c(0,1). By the LDP,

1in n"Mlog P(X c0) 2- 1(0) 2 -1(af).
Since I(-) is convex with I(0) =0 and «e(0,1), I(of) <aI(f) <ca. Thus,
4.2) Play g o(+)e0) 2n ¢ (10D,

Since m'1=~, for a'e(a,1) fixed it follows from Lerma (3.1) of Shepp (1964)
that there exists a sequence {n(k)} with n(k+1) =n(k) + [a-llog n(k) ] such
]
t -a =ow, 3 3 . . = o,
that in(k) This with (4.2) shows that }:P(An(k) n(K) ,a( )e0)
Statement (4.1) follows from this and the divergent part of the Borel-Cantelli
lerma since the events {An(k) Y .a(-)eO}, k=1, 2, ... are independent.
We now show that, with probability 1,

(4.3) {Am,n,a(°): msn}czra'e eventually.

For all sufficiently large integer k, let ngakﬂ and let 1(k) = K-1
if K is an integer and = [K] if not. Then, since k = ta"l1og k1 for
1(k-1) <ns1(k), ‘\n,n.a(') = Am,l(k) .a(') for msn. Thus, to prove (4.3),
it suffices to show that

(4.4) P(4y, 10Ky, 0"y, ¢ FOT SOme m21(K)i.0.) =0,
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By Lemma 4.3, (i) there exists a c>a such that rccra’e- Thus
I(I‘: s) zc. So by the LDP,

.

—— -1 C - C -
1im n “log PG{A(-)eI‘a’e) < I(ra,e) <-c

>

since T is closed with 1< «cr ©, Thus, for k' sufficiently large,
a,c d,e C

k:.k]'?(Am’l(k} ,a(')er:,e for some m< 1(k))

<5 l(k)e":k(l*o(l))= ; ele(@0)+0M), .
2k kX!

J So (4.4) follows from the convergent part of Borel-Cantelli lemma. This
completes the proof of (4.3).
Since Ta is closed, ra’eu'a as e+0. This with (4.1) and (4.3) completes
the proof of Theorem 4.1 and (i) of Theorem 4.2.
To prove (ii) of Theorem 4.2, let ¢>0. Then, by Lemma 4.3 (ii), there

is a finite collection {fl,...,fk} €T, such that s ciE'iIfi) 5/2.

Since {f;}  is an open set, by the LDP,
€/2

. -1 :
limn “log P(X_ ¢ {fi}e/z) 2 -I({fi}e'/z) 2 -I(£;).

4.5) P(ra & {Am,n’a:msn}elz)

s P(fiZ{Am.n’a:msn}e/Z for some i)

k
sifip (£34{0y p qim<n}, /2)

Liogni41, £=0, 1,...msn}_ )

k .
sifip(fit Ay n,q'm=4Lla 1,
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k
s & P(X

: (n/ [a'llog n])-1
i=i la l10g n}# ) 2)

k -1

= - (n/{a"‘log n])-1

i:i:i(1 P(X[,-t1ognjifile ; 2)) 1

S_lz?. (1-e‘1(fi) fa 110z n (1+o(1))(n/ [a “log n])
1=l

kK _(-I(£)a™) (140(1))/a 10g
< z .Z ’
1=1

where in the last inequality we used that (1-x) <X,
Since I(f;) <a for i=i,...,k, it follows that & P(I‘a#{Am’n’a:msn}e/zk ®,

This with the convergent part of the Borel-Cantelli lemma completes the

proof.
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