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Introduction to the Theory of Nested Transactions

Nancy Lynch
Massachusetts Institute of Technology

Cambridge, Mass.

Michael Merritt
A. T. and T. hell Laboratories

Murray Hill, New Jersey

Abstract: A new fi)rmal modcl is presented, for studying concurrency and resiliency properties for nested

transactions. 'lihe model is used to state and prove corrcctness of a well-known locking algorithm.

1. Introduction
'Ihis paper dcvelops the foundation for a gencral thcory of nested transactions. We present a simple formal

modcl for studying concurrcncy and resiliency in a nested environmcnt. This modcl has distinct advantages

over thc many altcrnatives, thc greatest of which is the unification of a subject replcte with formalisms.

correctness conditions and proof techniques. T'he authors arc presently engaged in an ambitious project to

rccast the substantial amount of work in nested transactions within this single intuitive framework. These

pages contain the preliminary results of that project - a description of the model, and its use in stating and

proving correctness conditions for two variations of a well-known algorithm. -

'Thc model is based on I/O aulomala, a simple formaliz~ation of communicating automata. It is not complex

- it is easily presented in a few pages. and easy to understand, given a minimal background in automata

theory. Fach nested transaction and data object is modelled by a separate IO automaton. "hese automata,

the system pritnilives issue requests to and receive replies from some scheduler, which is simply another I/O

automaton. Simple syntactic constraints on the interactions of these automata ensure, for example, that no

transaction requests the creation of the same child more than once. One schcdulcr, in this case the "serial

scheduler", interacts with the transactions and objects in a particularly constrained way. 'Mbe "serial

schedules" of the primitives and the serial scheduler arc the basis of our correctness conditions. Specifically,

alternative schedulcrs are required to ensure that nested transaction automata individually have local

schedules which they could have in a serial schedule. In essence, each scheduler must "fool" the transactions [-

into believing that the system is executing in conjunction with the serial scheduler.

In the past ten years, an important and substantial body of work has appeared on the design and analysis of

algorithms for implementing concurrency control and resiliency in database transaction systems
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Il-GI ,T.RI .S.IlG,KS.Gr, IaS. etc.J. Among this has been a number of resulLs dealing with nested transactions

IRMoIS.I.IIJISW.AM.lIIKAI.SIIG., etc.l. The present work does not replace these other contributions.

but augments them by providing a unifying and mathematically tractible framework for posing and exploring

a variety of questions. 'Ibis previous work uses behavioral specifications of nested transactions, focusing on

what nested transactions do, rather than what they arc. Iy answering the question "What is a nested

transaction?". I/O automata provide a powerful tool for understanding and reasoning about them.

Some unification is vitally important to further development in this field. "lhc plethora and complexity of

existing flormalizations is a challenge to the most seaoncd researcher. More critically, it belics the argument

that nested transactions provide a clean and intuitive tool for organiiing distributed databases and more

general distributed applications. It is particularly important to provide an intuitive and precise description of

nested transactions themselves, as in typical systems, these are the components which the application

programmer must implcment

'The remainder of this paper is organized as follows. 'Ihe I/O automaton model is described in Section 2.

The rest of the paper contains an extended example, which establishes correctness properties for two related

lock-based concurrent schedulcrs.

Section 3 contains simple definitions for naming nested transactions and objects, and for specifying the

operations (interactions) of these components. Simple syntactic restrictions on the orders of these operations

arc presented, and then a particular system of I/O automata is presented, describing the interactions of nested

transactions and objects with a serial scheduler. 'Iic interface between the serial scheduler and the

transactions provides a basis for the specification of correctness conditions for alternative schedulers. These

schedulers would presumably be more effcient than the serial scheduler. l he strongest correctness condition,
"serial correctness," requires that all non-access transactions see serial behavior at their interface with the

system. The second condition, "correctness for '1." only requires that this serial interface be maintained at

the interface of the system and the external world. These interfaces also provide simple descriptions of the

environment in which nested transactions can be assumed to execute. A particular contribution is the clear

and concise semantics of ABORT operations which arises naturally from this formalization. The section

closes with a collection of lemmas describing useful properties of serial systems.

P Next, a lock-based concurrent system is presented. Section 4 contains a description of a special type of

object, called a "resilient object", which is used in the concurrent system. Section 5 describes the remainder

of the concurrent system, the "concurrent scheduler." Ibis concurrent scheduler includes "lock manager"

modules for all the objects: lock managers coordinate concurrent accesses

I



2

Section 6 defines a system which is closely related to the concurrent systcm, the "weak concurrent system."

Ibis syslem prccrves serial c1rrectness fior thosc transactions whose t cestors do not aboi (i.c thoe that arc

not "orphans"). Since the root of" the transaction tree'. I, has no ancestor. weak concurrent systems arc

correct I*or 1O. Section 7 contains complete prooll of correctness of the concurrent and weak concurrent

sytems: concurrent systems are serially correct, and weak concurrent systems arc correct forT 0. " e stronger

condition is obtained for concurrent systems as a corollary to a result about weak concurrent systems.

It is interesting that the concurrent system algorithms are described in complete detail (essentially, in
"pseudocode"), yet significant formal claims about their behavior can be stated clearly and easily. Although

the full presentation involves a large number of lemmas, the ideas described by the lemmas arc quite simple

and intuitive. We think it is remarkable that these interesting properties of concurrent systems can be proved

with complete rigor, in full detail, in so short a development. )espite the detailed level of presentarion, the

underlying model is general enough that the results apply t) a wide range of implementations.

lhe style of the correctness proof is also noteworthy. It is a constructive proof, in that for each step of the

weak concurrent system and each non-orphan transaction, an execution of the serial system is explicidy

constructed. "lhe transaction's local "view" in the constructed execution is identical to that in the original

weak concurrent execution, establishing the correctness of the weak concurrent system. One may think of the

weak concurrent system as maintaining consistent parallel "world views" within which concurrent siblings

execute. As siblings return to their parent, these parallel worlds are "merged" to form a single consistent
view. 'Ile locking policy prevents collisions between different views at the shared data. 'Ibis intuition is

4strongly supported and clarified by the correctness proof, which constructs the parallel views as different

serial schedules consistent with each sibling's local history. I.emmas illustrate how these serial schedules can

be merged as siblings return or abort t) their parent

Section 8 contains a discussion of the relationship of this work to previous results, and Section 9 contains an

indication of the work that lies ahead.

2. Basic Model
In this section, we present the basic I/O automaton model, which is used to describe all components of our

systems. iis model consists of rather standard, possibly infinite-state, nondeterministic automata that havc

operation names associated with their state transitions. Communication among automata is described by

identifying their operations. 'Ihis model is very similar to models used by Milner, Hoarc [Mi,Ho] and others.

There are a few differences: first, we find it important to classify operations of any automaton or system of

automata as either "input" or "output" operations. of that automaton or system, and we treat these two cases

differently. Also, we allow identification of arbitrary numbers of operations from different automata, rather

,,..
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than just pairwisc identification as considercd in [MiJ.

Ibis paper is not intended to develop the basic modcl. For the general theory of I/O automata, including a

unified treatment of finite and infinite behavior, we refcr the reader to [IT]. In the present treatment of

concurrent transaction systems. we only prove properties of" finite behavior. s) we only require a simple

special case of the general model.

2.1. I/O Automata

All components in our systems. transactions, objects and schedulcrs, will be modelled by I/0 automata. An

I/O automaton A has components staie#.(), start(A.). out(.A). in(A). and stepsA). lerc, state.s(A) is a set of

states, of which a subset starl(A) is designated as the set of start states. 'lhe next two components are disjoint

sets: out(A) is the set of output operations, and in(.A) is the set of input operations. The union of these two

sets is the set of operations of the automaton. Finally, steps(A) is the transition relation of A. which is a set of

triples of the form (s'w.s), where s' and s are states, and i is an operation. '[7his triple means that in state s'.

the automaton can atomically do operation w and change to state s. An element of the transition relation is

called a step of A.

'[he output operations are intended to model the actions that are triggered by the automaton itself, while

the input operations model the actions that are triggered by the environment of the automaton. Our

partitioning of operations into input and output indicates that each operation is only triggered in one place.

We require the following condition.

Input Condition: For each input operation w and each state s*. there exist a state s and a step (s',,s).

'his condition says that an I/0 automaton must be prepared to receive any input operation at any time.

'1bis condition makes intuitive sense if we think of the input operations as being triggered externally. (in this

paper. this condition serves mainly as a technical convenience, but in [I.'1. where infinite behavior is

considered. it is critical.)

An execution of A is an alternating sequence s0,w1. sl.u 2... of states and operations of A; the sequence may

be infinite, but if it is finite, it ends with a state. Furthermore, so is in start(.A), and each triple (s',w.s) which

occurs as a consecutive subsequence is a step of A. From any execution, we can extract the schedule, which is

the subsequence of the execution consisting of operations only. Because transitions to different states may

have the same operation. different executions may have the same schedule.
Lemma I: If a is a schedule of I/O automaton A. then every prefix of a is a schedule of. A..

%
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If S is any set of schedules (or property of schedules), then A is said to prexerme S provided that the

following holds. If a = a'w is any schedule of'A, where v is an output operation. and a' is in S. then a is in

S. That is, the automaton is not the first-to violate the property described by S.

2.2. Composition of Automata

We desribe systems as :onsisting of interacting components, each of which is an IO automaton. It is

convenient and natural to view systems as I/O automata. also. Thus, we define a composition operation Ibr

I/O automata, to yield a new 1/O automaton.

A set of IO automata may be composed to create a system if. if all of the output operations are disjoint.

('Ibus. every output operation in f will be triggered by exactly one component.) The system f is itself an IO

automaton. A state of the composed automaton is a tuplc of states, one for each component, and the start

states are tuples consisting of start states of" the components. The set of operations of f. ops#f), is exactly the

union of the sets of operations of the component automata. 'Ihe set of outpul operations of Y. out(y), is

likewise the union of the sets of output operations of the component automata. Finally, the set of input

j. .operations of .1, in(). is ups(f) - ou((T), the set of operations of I that are not output operations of .1. The

output operations of'a system arc intended to be exactly those that are triggered by components of the system,

while the input operations of a system are those that are triggered by the system's environmenL

''he triple (s',w.s) is in the transition relation of if and only if for each component automaton ,A, one of the

following two conditions holds. Either w is an operation of .4 and the projection of the step onto .A is a step

of 4. or elsc w is not an operation of .A., and the states corresponding to A in the two tuples s' and s are

identical. 'lius. each operation of the composed automaton is an operation of a subset of the component

automata. During an operation v of f. each of the components which has operation w carries out the

operation, while the remainder stay in the same state. Again. the operation w is an output operation of the

compt)sition if it is the output operation of a component - otherwise, w is an input operation of the

composition.
Lemma 2: 'The composition of I/O automata is an I/O automaton.

'he next lemma allows us to compose automata in any order.
Lemma 3: Up to isomorphism. composition of I/O automata is associative and commutative.

1Note that our model has chosen a particular convention ror identifying operations of different components in a system: we s.mply
identify those with the cme name. 'Ibis convention i simple, and sufficient for what we do in this paper. I lowcvcr, when this work is
extended to more complicated sy.stems. it may be expedient to #cncralime the convention for identifying operations, in permit reusc orthe
same operation name internally to different components. 'Ihis will require introducing a renaming operator for operations. or else

* dcining composition with respect to a designated equivalence relation on operations. We leave this for later work.

L N
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An execution of a system is defined to he an execution of the automaton composed of the individual

automata of the syslem. If a is a schedule of a system with colmponent .A, then we denote by l.A. the

suhsequence ofra containing all the operations or.A.. Clearly. alA is a schedule of.A.
Ienma 4: Let a' he a schedule of'a system 1. and let a = a'wr. where w is an output operation

ofI'componcnt .,. If aA is a schedule o 1. then a is a schedulc of 1.
lProof: Since alJA is a schedule of A. there is an execution ft ofA. with schedule al. I.et f" be

the execution ol A consisting of all but the last step ol' . Similarly. since a' is a schedule of 1.
there is an execution -y of with schedule a'. It is possible that A has an execution in y which is
difIerent front P'. since different exCcutions may have the same schedule. But it is easy to show.
by induction on the length ofy, that there is anoder execution "y' of' I in which component A has
execution P'. and which is otherwise identical to -y. "lhe sLhedule of y" is a'. Since w is not an
output operation of any other component, v is defined from the state reached at the end of y'. so
that a = a'w is a schedule of Y, I

3. Serial Systems

In this paper, we define three kinds of systems: "serial systems" and two types of "concurrent systems".

Serial systems describe serial execution of transactions. Serial systems arc defined for the purpose of

providing a correctness condition for other systems: that the schedules of the other systems should "look

like" schedules of the serial system to the transactions. As with serial schedules of single-level transaction

systems. our serial schedules are too inefficient to use in practice. Thus, we define systems which allow

concurrcncy, and which permit the abort of transactions after they have performed some work. We then

prove that the schedules permitted by concurrent systems are correct.

In this section, we define "serial systems". Serial systems consist of "transactions" and "basic objects"

communicating with a "serial scheduler". Transactions and basic objects describe user programs and data,

respectively. The serial scheduler controls communication between the other components, and thereby

defines the allowable orders in which the transactions may take steps. All three types of system components

are modelled as 1/O automata.

We begin by defining a structure which describes the nesting of transactions. Namely, a system type is a

four-tuple (,parntO,V), where :, the set of transaction names, is organized into a tree by the mapping

parent:--+ IJ with TO as the root In referring to this tree, we use traditional terminology, such as child, leaf,

least common ancestor (lea), ancestor and descendanL (A transaction is its own ancestor and descendanL)

'he leaves of this tree are called accesses. The set 0 denotes the set of objects; formally, 0 is a partition of the

set of accesses, where each element of the partition contains the accesses to a particular object. The set V is a

set of values, to be used as return values of transactions.

The tree structure can be thought of as a predefined naming scheme for all possible transactions that might

.~~~~~ ~~~~ I . " V-..-.. 7 .... %I... -.- :F ,N.-. . .-. % ..
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ever he invoked. In any particular execution, however, only somc of thcs transactions will actually take

steps. We imagine that the trce structure is known in advance by all components of asystem. Thbe trec will, in

general, be an infinite structure.

The classical transactions of concurrcncy control theory (without nesting) appear in our model as the

children of a "mythical" transaction, "0., the root of the transaction tree. (In work on nested transactions, such

as ARGUS II ,iS.I I. IJISWJ. the children ofl0 are often called "top-level" transactions.) It is very convenient

to introduce the new root transaction to model the environment in which the rest of the transaction system
runs. " iran.ction ', has operations that describe the invocation and return of the classical transactions. It is

natural to reason about T0 in much the same way as about all of the other transactions, although it is
distinguished from the other transactions by having no parent transaction. Since committing and aborting arc

operations which take place at the parent of each transaction (see below), TO can neither commit nor abort.
bus, a commit or abortof a top-level transaction to is an irreversible step.

,Ile internal nodes of the tree model transactions whose function is to create and manage subtransactions.

but not to access data directly. Thc only transactions which actually access data are the leaves of the

transaction tree, and thus they are distinguished as "accesses". "he partition 0 simply identifies those

transactions which access the same object.

A serial system of a given system type is the composition of a set of I/0 automata. 'Ibis set contains a

transaction for each internal (i.e. non-leaf, non-access) node of the transaction tree, a basic object for each
element of 0 and a serial schcduler. 'hese automata are described below. (If X is a basic object associated
with an element % of the partition 0, and T is an access in %, we write T E accesses[X) and say that "r is an

access to X".)

3.1. Transactions

'Ibis paper differs from earlier work such as [Iy,GoWel] in that we model the transactions explicitly, as
I/O autonta. In modelling transactions, we consider it very important not to constrain them unnecessarily;
thus, we do not want to require that they be expressible as programs in any particular high-level programming

language. Modelling the transactions as I/O automata allows us to state exactly the properties that are

needed, without introducing unnecessary restrictions or complicated semantics.

A non-access transaction T is modelled as an i/O automaton, with the following operations.

Input operations:
CR IATI4l)
COMM Il(l,v), for'" E children(T) and v E V
AIIORI'I"), for]l" E childrcn(r)
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Output operations:
ItIFQUI'ST-CRIFATI''r). for '" E children(T)
I.'QLIFST-COMMI'I'('I,v). for v E V

The CRIFA'II input operation "wakes up" the transaction. The RFUFSt-CRIFATI output operation is

a requst by T to create a particular child tran.uiction. 21hc COMMIT input operation reports to T the

successful completion ol'onc o" its children, and returns a value recording the results of that child's execution.

"The AIOR'I" input operation reports to T the unsuccessful completion of one of its children, without

* returning any other information. We call COMMrlf(l",v), for any v, and ABORT(lI") relurn operations for

tranoction '. 'Ic RFQU-ST-COMMIT operation is an announcement by T that it has finishcd its work.

and includes a value recording the results of that work.

It is convenient to use two separate operations, RIlQUFST-CR'ATF and CRFA'I'K, to describe what

takes place when a subtransaction is activated. 'Ibc RlQUFS'I'-CRIA'TE is an operation of the

transactio's parent. while the actual CRFA'lI' takes place at the subtransaction itself. In actual systems such

as ARGUS. this separation does occur, and the distinction will be important in our results and proofs. Similar

remarks hold for the RFQUFS'I-COMMI" and COMMrI operations.3  We leave the executions of

particular transaction automata largely unspecified; the choice of which children to create, and what value to

return, will depend on the particular implementation. For the purposes of the schedulers studied here, the

transactions (and in large part, the objects) are "black boxes." Nevertheless, it is convenient to assume that

schedules of transaction automata obey certain syntactic constraints. 'lTus, transaction automata are required

to preserve welI-formedness. as defined below.

We recursively define wdl-fornedness for sequences of operations of transaction T. Namely, the empty

schedule is well-formed. Also, if a = a'w is a sequence of operations of 'r, where v is a single operation,

then a is well-formed provided that a' is well-formed, and the following hold.

" If v is CR-ATI'), then
(i) there is no CR FA'I(T) in a'.

" If v is COMMIT(TF,v) or AIBORT') for a child'1" ofrr. then

2Notc that there is no provision for r to pas information to its child in this request. In a programming language. T might be
permitted to pass parameter values to a subtran action. Although this may be a convenient dcscriptive aid, it is not necesary to include
in it the underlying fonmal model. Instead. we consider transaction s that have different input parameters to be different transc tons.

3Notc that we do not include a Rl.QUIS- AIORT operation for a transaction: we do not model the situation in which a transaction
decides that its own existence is a mistake. Rather. we , ign decisions to abort transactions to another component or the systcm. the
schcdulcr. In practice, the schedulcr must have son power to decide to abort trans;ctions, as when it detects deadlocks or failures. In
ARGUS. transactions are permitted to request to abort: we regard this request simply as a "hint" to the qcheduler, to restrict its allowable
executions in a particular way. "Tis'operation could be made explicit. constraining the qcheduler to abort the requesting transaction,
without gibstantivcly changing the model or results.



(i) RIQLII!ST-CRI:A''' ") appears in a" and
(ii) there is no return operation for ]" in a'.

" If"w is l.QUI-lST-CIZI'A'I'F,)'I-) for a child 'I" ofT. then
(i) there is no I:.UI'T-CI:AI'I) in a'
(ii) there is no RI.'QLIILST- COMMI'T(T) in a' and

(iii) CIlOATI:fI') appears in a'.

" If v isa IWQUI.S''-COMMIT forT, then
(i) there is no RI'QUFIS-COMMI" for Tin a* and
(ii) CRF-A''Fl'4T) appears in a'.

These restrictions arc very basic: they simply say that a transaction does not get created more than once.

does not receive repeated notification of the fates of its children, does not receive conflicting information

about the fates of its children, and does not receive information about the fate of any child whose creation it

has not requested: also, a transaction does not perform any output operations before it has been created or

after it has requested to commit. and does not request the creation of the same child more than once. Except

for these minimal conditions, there arc no restrictions on allowable transaction behavior. For example, the

modcl allows a transaction to request to commit without discovering the fate of all subtransactions whose

S..
=  creation it has requested. Also, a transaction can request creation of new subtransactions at any time. without

regard to its state of knowledge about subtransactions whose creation it has previously requested. Particular

programming languages may choose to impose additional restrictions on transaction behavior. (An example is

ARGUS. which suspends activity in transactions until subtransactions complete.) However, our results do not

require such restrictions.

The following easy lemma summarizes the properties of well-formed sequences of transaction operations.

Lemma 5: I et a be a well-formed sequence of operations of transaction T. 'l'en the following
conditions hold.

I. 'The first operation of a is a CRFA'I'r(' operation, and there are no other CREATE
operations.

2. If a REQUEST-COMMIT operation occurs in a. then there are no later output

operations in a.

3. There is at most one RFQUEST- CRFA rE(T') operation for each child ' of T, in a.

4. Every return operation in a has a preceding REQUFST-CREATE operation in a for the
same child transaction.

%,%, ,.*.".-" %



3.2. Basic Objects
Recall that I/O automata are associated with non-access transactions only. Since access transactions model

abstract operations on shared data objects. we associatc a single IO automaton with each object, rather than

(ne lr each access. The operations for each object are just the CRF.A'I and RI-QU'S'I'-COMMIT

operations f or all the corresponding access transactions. Although we give these operations the same names as

the operations of non-access transactions, it is helpful to think of* the operations of access transactions in other
terms also: a CRETI'E corresponds to an invocation of an operation on the object. while a

Rl.QUIES'I'-COMMl'I' corresponds to a response by the object to an invocation. Actually. these CRF.ATE

and RI: QUFSI-COMMI'T operations generalize the usual invocations and rcsponses in that our operations

carry with them a designation of the position of the access in the transaction tree. We depart from the

traditional notational distinction between creation of subtransactions and invocations on objects, since the

common terminology for access and non-access transactions is of great benefit in unifying the statements and

proofs of our results. 'lhus. a szsic object X is modelled as an automaton, with the following operations.

Input operations:
CRAlFI'T). for Tin acccsses(X)

Output operations:
i: RI-QUS'- COM Ml'(,v), for'T in accesscs(X)

"he CREATE operation is an invocation of an access to the object, while the RFi-QUESI-COMMIT is a

return of a value in response to such an invocation.

As with transactions, while specific objects are left largely unspecified, it is convenient to require that

schedules of basic objects satisfy certain syntactic conditions. 'llhus. each basic object is required to preserve

well-fonnedness, defined below.

Lct a be a sequence of operations of basic object X. Then an access T to X is said to be pending in a

provided that there is a CREA'I'F'l), but no RF.QUFSI-COMMI for I', in a. We define well-formedness

for sequences of operations of basic objects recursively. Namely, the empty schedule is well-formed. Also, if

a = a'w is a sequence of operations of basic object X. where w is a single operation, then a is well-formed

provided that a' is well-formed, and the following hold.

* If w is CRFArE('I'). then
(i) there is no CRA'I'FkT) in a', and
(ii) there are no pending accesses in a'.

" Ifw is REQUFSI'-COMMI'l for T. then
(i) there is no RIIQUISI'-COMMrl' for T in a', and
(ii) CREATE(I) appears in a'.

. , _ .. ' .' ."-
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'lcs restrictions simply say that the same access does not get created more than once, nor does a creation

of* a new access occur at a basic object before the previous access has completed (i.e. requested o commit):

also, a basic ohject does not respond more than once to any access, and only rcsponds to accesses that have

prcviously been created.

Thc following easy lcmma summarizes the properties of well-formcd sequcnces of basic object operations.

Lenmia 6: L.t a be a wcll-formcd sequcnce of operations of basic object X. 'lhcn a consists of
altcrnating CRAI'I and Rl-:QUFS'I'-COM M IT operations, sarting with a CRFIAF, and with
each consecutivc (CRFA'I'IRFQUIS'l'-COM M II') pair having a common transaction.

3.3. Serial Scheduler

'Ic third kind of component in a serial system is thc serial schcdulcr. Ibe serial schedulcr is also modelled

as an automaton. "lic transactions and basic objects have been specified to be any I/0 automata whose

operations and behavior satisfy simple syntactic restrictions. 'lhc serial sLhcdulcr, however, is a fully specified

automaton, particular to each system type. It runs transactions according to a depth-first traversal of the

transaction tree. 'Ie serial .schcduler can choose nondeterministically to abort any transaction after its parent

has requested its creation, as long as the transaction has not actually been created. In the context of this

scheduler, the "semantics" of an AIIORT(I') operation are that transaction T was never created. I'he

operations of the serial scheduler are as follows.

Input Operations:
RFIQUFSI-CRFFA'IXl)
RI QU IS'-COMM I'r('v)

* Output Operations:
CRAiATh(r)
COMM IT(T.v)
AIBOR'r(lI)

The RFQUFST-CRFAI'E and RFIQUFSI'-COMMIT inputs are intended to be identified with the

corresponding outputs of transaction and object automata, and correspondingly for the CRFAlF, COMMrr

and ABORT output operations. Each state s of the serial scheduler consists of four sets:

create- requested(s), created(s), commit-requcstcd(s), and returned(s). The set commit- rqucsted(s) is a

set of (transaction.value) pairs. 'The others arc sets of transactions. There is exactly one initial state, in which

the set create - requested is ('Io. and the other sets are empty.

Thc transition relation consists of exactly those triples (s'.ws) satisfying the pre- and postconditions below,

where w is the indicated operation. For brevity, we include in the postconditions only those conditions on the

state s which may change with- the operation. If a component of s is not mentioned in the postcondition. (such



as returned(s) in thc postcondition liwr Rl-'QLJI-Sl'-CRI:A'l'1(l1)), it is implicit that the sct is the same in s*
and s (that returncd(s) = returned(s), in this examnple). Note that here. ws elsewhere, wc have tried to specify

thC comptincnt as flofdcerfinistically as povsible. in order to achieve the greatest possihlc generality for (or

results.

" RiQUlESI-CR-A'l-l)
POitcondition:
create - requcstcd(s) = createc- rcqucscd(s ) U 1*1*

" R1-:QUFSI'-COMMTCI'v)
Posicondition:
commit -requested(s) = commit- requcstcd(s') U R('T.)

" CRF.ATH(I)
Precondition:
T' E create - requested(s') - createdts*)
siblings('l) flcrcatcd(s) Q returned(s )
Postconditfton:
created(s) = created(s) U in)

" COMM 1'I'Tv)
Precondition:
C(1.v) C comm it - requesteds)
TIC returned(s)
children~I) flcreate - requecsted(s) C; returned(s!)
Postcondition:
returned(s) = rcturncds U IT)

A ABORT(1'
Precondition:
T1 E cre.te - req uested(s') - created(s')
siblings(T) In created(s) C; returnedI
Postcondition:
created(s) = created(s) U ITI)
returned(s) = returned(s) U M'F

The input operations, REQUEST-CREiATE and R1FIQUFsT-commIT, simply result in the request

being recorded. A CREATE operation can only occur if a corresponding REQUEST-CREATEF has

occurred and dhe CRF.ATE has not already occurred. 'the second precondiition on the CREATE operation

says that the serial scheduler does not create a transaction until all its previously created sibling transactions

have returned. liat is. siblings are run sequentially. The precondition on the commar operation says that

the scheduler does not allow a transaction to commit to its parent until its children have returned. The

precondition on the ABORT operation says that the scheduler does not abort a transaction while there is

activity going on on behalf of any of its siblings. That is, aborted transactions are run sequentially with

respect to their siblings. ilic next lemma relates a schedule of the serial scheduler to the state which results



12

from applying that chedule.
L enia 7: Let a be a schedule of the scrial ,chedulcr. and let s b a state which can result from

applying a to the initial state. 'Ihen the following conditions arc true.

. T is in crcatc-rqustcd(s) exactly ifT = TO or a contains a RFQUFSI'-CRI'A'I'I')
operation.

2. T is in creatcd(s) exactly if a contains either a CRFAII(I) or ABORI(') operation.

3.('T.v) is in commit-rcquestd(s) exactly if a contains a RI'QUFS'-COMMI'(r.v)
operation.

4.T is in returned(s) exactly if a contains a return operation for T.

3.4. Serial Systems and Serial Schedules

In this subsection, we define serial systems precisely and provide some useful terminology for talking about

them.

'Ibe composition of transactions with basic objects and the serial scheduler for a given system type is called

a serial systent. Define the serial operations to be those operations which occur in the serial system:

RlI'.QUFSI1-CRFA'IFS. R iQUw -co MM sI. CRATES, COMMI'1S and ABORTS. Ihe schedules

of a serial system are called serial schedules 'lhc non-access transactions and basic objects are called the

system primitives. (Recall that each basic object is an automaton corresponding to a set of access transactions.

'Ihus, individual access transactions arc not considered to be primitives.)

Recall that the operations of the basic objects have the same syntax as transaction operations. It is

convenient to refcr to CR AT'I(T) and RFQUITI'-COMMI'(T), when T is an access to basic object X.

b)th as operations of transaction T and of object X. To avoid confusion, it is important to remember that

there is no transaction automaton associated with any access operation.

For any serial operation w, we define transactione(w) to be the transaction at which the operation occurs.

(For CRI'A'I'FA'I) operations and RiQUEST-COMMI' operations for T, the transaction is T, while for

RFQUFSI'-CRFATF.I) operations, and COMMI' and ABORTr operations for T, the transaction is

pareni(T).) For a sequence a of serial opcrations. transaction(a) is the set of transactions of the operations in

a.

Two sequences of serial operations, a and a'. are said to be equivalent provided that they consist of the

same operations, and alP = a'lP for each primitive P. Obviously, this yields an equivalence relation on

sequences of serial operations.
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We let arl' dcnote the subsequencc of a consisting of operations whose transaction is T, cvcn if T is an

access. (Ibis is an extension of the previous definition of ar. as acccsscs arc not componcnt automata of the

serial system.)

Ic a be a %equcncc of serial operations. We .ay that a transaction T is live in a provided that a

CRIA'II:f I'), but no COMM IT(Tv) or AIIORT('I), occurs in a. We say that transaction 'V is visible to T in a

provided that fir each ancestor 'I" ofl" which is a proper descendant of lca(T'j"), somc COMMI''(I"'.v)

occurs in a. (in particular, any ancestor ofr is visible to T in a.) For sequence a and transaction ', let

visibha.T) be the subsequcncc of a consisting of operations whose transactions are visible to T in a. ('lhcse

include access transactions '1".) We say that transaction T sees everylhing in a provided that visibl(a,'l') = a.

'Ibis is the same definition of visibility as appears. in a different model, in I.y]. Visibility captures an

intuitive notion suggested by the name: the transactions visible to a transaction T in a are those whose effects

'1 is permitted to "see" in a. If transaction '" is visible to transaction T in a, it means that descendants of T

may have passed to T information about 'I", obtained by accessing objects that were previously accessed by

descendants of 'I".

If a is a sequence of operations, not necessarily all serial, then define scrial(a) to be the subsequence of a

consisting of the serial operations. We say that T is live in a provided that it is live in scrial(a). We say that '

is visible to T in a if T is visible toT in serial(a), and define visiblc(a.l) to be visiblc(serial(a),'l). Also, T

sees everything in a provided that T sees everything in serial(a). Similarly, define transaction(a) =

transaction(serial(a)).

A sequence a of serial operations is said to be well-formed if its projection at every primitive is well-formed.

3.5. Correctness Condition
We use serial schedules as the basis of our correctess definitions. Namely, we say that a sequence of

operations is serially correct for a primitive P provided that its projection on P is identical to the projection on

P of some serial schedule. We say that any sequence of operations is serially correct if it is serially correct for

every non-access transaction. That is. a "x)ks like" a serial schedule to every non-access transaction.

In the remainder of this paper, we define two systems: concurrent systems and weak concurrent systems.

We show that schedules of concurrent systems ar serially correct, and that schedules of weak concurrent

systems are serially correct for T0.

'Ibus. we use the serial scheduler as a way of describing desirable behavior, just as serial schedules describe

''. P s'v . I ' . ,1
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desirable behavior in more classical concurrency control settings (those without nesting). 'Iben serial

correctness plays the role in our theory that serializiability plays in classical settings.

Motivation for our use of serial schedules to define correctness derives from the simple behavior of the

serial schcduler. which determines the sequencc of intcractions between the primitives. Fach transaction T is

created only after parent(T) rcquests it, no siblings of T arc created until T has returned, T is not committed

until each of its rcquestcd children has itself returncd. and T is not axbrtcd until each of it- created siblings

has returned. "Ie result is a depth-first traversal of the transaction tree, with requests flowing down and

responses flowing up. We believe this depth-first traversal to be a natural notion of correctness which

corresponds precisely to the intuition of how nested transaction systems ought to behave. Furthermore, it is a

natural generalization of serializability. the correctness condition generally chosen for classical transaction

systems.

Serial correctness is a condition which guarantees to implementors of transactions that their code will

encounter only situations which can arise in serial executions. Correctnes for TO is a natural alternative,

which guarantees only that the external world will encounter only situations which can arise in serial

executions. 'Ihis condition permits less constrained implementations, in that schedulers in such systems need

not insure that orphans see consistent data. On the other hand, in such systems the authors of transactions

must insure that their programs behave well even if they see inconsistencies. (For example, orphans that see

inconsistent data should not consume too many system resources, garble data beyond repair. dispense drugs

or initiate military hostilities.) We hope this work will provide a tool for exploring the inherent costs of

different correctness conditions such as these.

Note that our correctness conditions are defined at the transaction interface only, and do not constrain the

object interface. We believe that this makes the conditions more meaningful to users, and more likely to

suffice for a large variety of algorithms, which may use a variety of back-out, locking or version schemes to

implement objects. Previous work has focussed on correctness conditions at the object interface IEGI.T, etc.].

While we believe that object interface conditions are important. their proper role in the theory is not to serve

as the basic correctness condition. Rather, they are useful as intermediate conditions for proving correctness

of particular implementations: such conditions can be shown to be sufficient, in combination with an

appropriate scheduler, to ensure our correctness condition at the transaction interface. 'This observation is an

important unifying contribution of our work. Our current research is focussing on demonstrating the

usefulness of this approach, for a variety of object interface correctness conditions.

The serial correctness condition says that a schedule a must look like a serial schedule to each non-access

J transaction: this allows fi)r the possibility that a might look like differemi serial schedules to different non-

L am'' ~ 9=1 \ '. ni' %fVU
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access tramactions. This condition may at first seem to hc tio weak. It may secm that wc should require that

all transkctions %cc it projection o" the sfme %erial schcdule. But this strongcr condition is not .atisficd by most

of the known concurrency control algorithms. It is true that stronger conditions than ours can sometimes be

proved. but such conditions are more complicated to Statc. and it is not yet clear which such conditions arc

most interesting.

l he serial correctness condition is really not is weak as it may sem at first becaus "1O, the root transaction,

is included among the transactions to which a must appear serial. As discussed above, transaction TO0 can be

thought of as modelling the environment in which the rest of the transaction system runs. Its

RI(QUFIS'I'-CREA'IIF- operations correspond to the invocation of top-level transactions, while its COMMIT

and AIORI operations correspond to return values and external effects of those transactions. Since a's

projection on T0 must be serial. the environment of the transaction system will see only results that could arise

in a serial execution. Indeed. this is the justification (of the correctness condition for the weak concurrent

system. whose schedules arc shown to be correct fIr T , but not necessarily for any other transaction.

It is possible to use a different serial scheduler as a basis fir correctness conditions. For example, the

schcduler might delay creating one sibling until another reqursis to return, rather than until it actually returns

to the parent [We2J. Such a schcdulcr would provide les information to the parent about the actual order in

which its children are executed, and consequently provide more freedkm for concurrent schedulers to

schedule various events. Timcstamp-based systems such as (R] may support this weaker correctness

condition, rather than the one described above, but this remains to be studied.

Our approach is really a general technique for studying operating system algorithms. A simple, intuitive

and incfTfcicnt algorithm (automaton) is used to specify a "contract" between the users and implementor of

an operating system. 'Ibe user is guaranteed that applications (transactions, in our work) which arc correct

when run with the simple algorithm will also be correct when run with the actual operating system, which

presumably will be more eficienL On the other hand, the implementor also has a formal and intuitive

specification of the user interface.

3.6. Properties of Serial System

In this subsection, we prove a number of lemmas about the behavior of serial systems. 'Ihey are collected

here for rcference later in this paper and in future work. Most of the lemmas describe properties that are

quite easy to understand and believe, and the corresponding proofs arc very straightforward. In the last

paragraph of this subsection, there are some specialized lemmas that are somewhat more ditficulL These are

used in the proof of the main theorem in Section 7.

.~~~ 1' 1 1~ 1 1 q~'V'I
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3.6.1. Fundamental P'roperties of Visibility

The irst li.ew lemmras give lhindainCnL1l properties of visibility in sequences of serial operations. In this

paragraph. we do not cvcn require that the sequecescc be scheduIls of serial systems, but only that they be

sequences ol serial operations. 'Ihe prooks of these lemmas arc straightf'orward from the definitions.
Leinma 8:1 Let at he a sequence of serial operations, and 1. I" and 'I"' transactions.

1. ICET is a descendant onl'. then 1'is visible to ' in a.

2.1"I is visible to 1in a if and only if T is visible to ka(lyr) in a.

3. lf'E"' is visihlc to T in a and1'" is visible t) I'in a. thcn I"' is visible to '1 in a.

4. If T' is a descendnt ofT and 'I" is visible to 1'in a. then 'E" is visible to 'E' in a.

S. If]I" is a descendant ofn, and '" is visible to '- in a. thcn 1'is, visible to7"' in a.

6. If'E' is a proper descendant of'I'. 'E" is visible to'" in a. but 'I"' is not visible to' Tin a. then
1- is a descendant of the child of T which is an ancestor of 'I".

Lemma 9* 1 .et a and /3 be sequences of serial operations, with P a subsequence of a.

1. If transaction]'is visible to transaction 'I" in P3. then it is visible to transaction'[" in a.

2. If operation v is in visible(/3.]'). then it is in visible(a. I).

Lemmna 10: Let a. a', /3 and P3' be sequences of serial operations, and let IT and 1T be
transactions.

1. If a is equivalent to a', and 'E' is visible to I in a. then I' is visible to T in a'.

2. If a is equivalent to a'. then visiblc(a,]') is equivalent to visible(a'.)

3. If Pisequ ivalent to P'. thena - P = a - P'.

4. If a is equivalent to a'. and P3 is equivalent to P', then a - /3 is equivalent to a' - P%'

5. If/i = visible(aT). then I sees everything in /3.

6. If/i is equivalcnt to visible(a.T). then 'r sees everything in/i

7. If/P = visible(a.T) and P" is visible to T in a. then visible(/i.T) = visible(arT).

8. If P is equivalent to visible(a'l'). /3' is equivalent to visible(a,1)., and r' is visible to T in a,
then P3' is equivalent to visible(/i,1').

Lemma I1I: Let a be a sequence of serial operations, and let T and T' be transactions. Then
visible(a.'IXI" is equal to arl" if 1T is visible to 1'in a. and is equal to the empty string otrwise.

L emma 12: ILet aw be a sequence of serial operations, wherev is a single operation. Lct 'I' be a
transaction andiassume that transaction(ir) is visible to Iin aw. Assume that w is not a COMM ITI
operation. Ibnvisiblc(aw.'I) = visible(aT)w.
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3.6.2. Operations in Serial Schedules

The lemmas in this paragraph dcscrihc the kinds and ordcrs of operations that can occur in well-fiormcd

serial scheduics. In the next paragraph. we show that all serial schcdules are wcll-lfonncd, so that all these

properties actually flolow just from the Iact that the schedules arc serial.

Lemma 13: .ct a he a well-formed serial schedule, and let '[* TO he a transaction.

1. If a contains any operation with transaction T. then a contains a
REIQU I-ST- CRIATWI'I').

2. If a contains a COMMIT for T1", then a contains a RIQUST-COMMIT for T, a

CRI ' I'') and a RIiQUI'ST-CRE'ATFI'T).

3. If a contains an ABOR'I'(I). then a contains a RIFQUI'S-CRFAI''I).

Proof: Straightforward from wcll-formedness and the schedulcr preconditions. I
Lemma 14: L.et a he a wcll-formed serial schedule, and T a transaction. Assume that some

descendant ofT is in transaction(a). "Ihcn the following hold.

1. CRENAI'Fl') occurs in a.

2. IfT *T 0, then RFQUFST-CRI'ANI'FI') occurs in a.

Proof: 1. By induction on the length of a. 'ic basis is easy. Let a = a'w. where v is a single
operation, and assume that the result holds for a'. Let 'I" = transaction(w), and let T be any
ancestor of'l". We must show that CRFATF(T) occurs in a.

Because a is well-formed, CRFAE'r'I") occurs in a. If T = '". we arc done. Otherwise,

L.cmma 13 implies that RFQUFS'I-CRklI'F.'I") occurs in a. This occurs at parcn('r), which is
a descendant ofT. 'lIbc inductive hypothesis then implies that a contains a CREA'I'FI(r).

2. By part 1. and Lemma 13. 1
Iemma 15: Let a be a serial schedule, and let T be a transaction. 'hen a cannot contain both a

CRA'I'F(T) and an ABOR'I'(T) operation.
Proof: By the scheduler preconditions. I
Lemma 16: L.et a be a well-formed serial schedule, and let T be a transaction. If AIIORT(T)

occurs in a. then a contains no operations whose transactions are descendants ofT.
Proof: Assume the contrary. 'lhen Lcmma 14 implies that a CRIAI*FA(I') operation occurs in a.

But ILcmma 15 yields a contradiction. I
Lemma 17: Let a be a well-formed serial schedule, and let T * To be a transaction.

1. If a contains a RFIQUFSI'-CRIAF(r), but does not contain a return operation for T,
then parcnt('l') is live in a.

2. If T is live in a. then paren(T) is live in a.

3. If a contains a RFQUFS'I'-CREATI'fr) but does not contain a CRFA'Ii(I') or an
ABOR I'(T), then parent(') is live in a.

'S
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,'roof:

I. Wel]-formedness implies that the Rl-QUIS[-CRI-A'TII) is preceded in a by a
CRllATFparcnt(%I )). Suppose that parent(T) is not live in a. Then a return operation for
parcnWl) occurs in a. By I.cmma 15. AIORT(parent(I)) cannot appear in a. 'Ius. a

11*r COMMIT operation lbr parcnt(T) must appear in a. This COMMIT operation for
parent(T) must bc preceded by a Il:UQLJISI'-COMMIT for parenl(T). by the schcduler
preconditions. By wcll-t'ormcdness. the RIQLJSI-COMMIT for parcn(T) must follow
the RI'UISI'- CREAIIfl) operation. so that the COMM IT for parent(T) follows the
IEQLIFS'I'-CREl:A'I'I) operation. Then by de scheduler preconditions for the
COMM I operation, there must be a return operation for T in a. a contradiction.

2. Since T is live in a. CRA'IF(T) occurs in a and so I.emma 13 implies that
RFQUFST-CREATE(T)occurs in a. The result then follows from part 1.

3. Since there is no CREAT(T) in a, there can be no RI.QUST-COMMir for 1", by
wcll-formedness. 'Ihen there can be no COMMIT for "1". by the scheduler preconditions.
The result follows from part 1.

%I

Iemma 18: I t a be a well-formed serial schedule, and let T be a transaction.

1. If a contains a R1.QUFST'-CRFAT('l' ) but does not contain a return operation for T,
then any proper ancestor of T is live in a.

2. IfT is live in a. then any ancestor ofT is live in a.

3. If a contains a RI.QUFST-CREATF') but does not contain a CREATFKI) or an
AIOR'I'('I'), then any proper ancestor of'l' is live in a.

Proof: By repeated use of Lemma 17. 1

Lemma 19: Let a be a well-formed serial schedule, and let r and 'I" be transactions with " a
descendant ofI'. Assume that there is a COMM Il" operation fir ' in a.

1. If a RFQU Fsr-CREAI'(r) occurs in a. then there is a return operation forT in a.

2. If' is in transaction(a), then there is a COMM IT operation for " in a.

Proof:

1. By Imma 18.

2. Lemma 13 implies that RFQUFsT-CREATF'1) occurs in a. Part I then implies that
there is a return operation for l" in a. Since '1" is in transaction(a), Lemma 16 implies that
there cannot be an AIOR'I(F') in a. 'Ius. there is a COMMI" for'r in a.

Lemma 20: Let a be a well-formed serial schedule.
Ifa return operation for 'r is in a, then it follows all operations in a whose transaction is T.

Proof: I.emma 16 implies the result if an AIIORT(T) occurs in a. So assume that a COMMI"
for T occurs in a. TIhis must be preceded by a RFQUI-'S'-COMMIT for T, by scheduler
preconditions. Well-formcdness implies that the Rl'.QUES''-COMMIT'' is preceded by a

.. , .{,::, - ' ' '. ., - %%,.,,..,. .. b, .- : Z -'-- ... .: . , '.e"V.
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CR.ATI'rl). and is not followed hy any output operations of T. Thus. the only operations of'T
thai could follow the RI:L'QFSI'-COMMIT a retirn operations f or children ofT. I.et '" be a
child ofT for which a reLturn operation ocicurs in a. Ily scheduler preconditions. there is only one
return operation fior " in a. Ily I.emma 13. a also contains a RIQLI'ST-CIl:A'IT'j"). Since
this is an output operation oTl, it precedes the C,.LI.S-.OMM IT for T, and hence precedes
the COMM I' for T. Then he schcduler preconditions imply that the return operation for '1"
precedes the COMMI forT. I

lemma 21: ILet a he a well-formed serial schedule.
If a return operation for T is in a, then it follows all operations in a whose transactions are
descendants of'T.

Proof: Since a return operation for T occurs in a. we have T* TO .et 'I" he a descendant ofT.
and assume for the sake of obtaining a contradiction that an operation v with transction(w) = 'I"
occurs after dhc return for Tin a. Let a' be the prcfix of a preceding w.

L.cmma 16 implies the result if an ABORT('I') occurs in a. So assume that a COMMI for 1
occurs in a. By Lemma 13. a' contains a Rt(QUrS'l-CRrAtFflI") operation. 'Ihen Lemma 19
implies that a' contains a return operation for 'I". But then the well-formed schedule ,'w contains
a return for '" followed by an operation orl. which contradicts I.emma 20. I

nIemma 22: ILet a be a well-formed serial schedule. I'l' is a pending access in ajX, then "r is live
in a.

Proof: If T is a pending access in aIX. then a CRFA'lFX'I') occurs in a, but no
REOUFS'-COMMI for T occurs in a. 'I"us, by the scheduler preconditions, no COMMIT
fi)r T can occur in a. I

Iemma 23: Let a be a well-formed serial schedule, and let T and '[" be distinct transactions live
in a. 'Iben the following are true.

1. 1" and 'I" are not siblings.

2. Either T is an ancestor of'I or vice versa.

Proof:

I. Assume the contrary. Assume without loss of generality that CRFA1"Ffl) precedes
CR-A'I'I'I") in a. "lben the schedulcr preconditions for the CREA'I'F('I") operation
imply that a return operation for T occurs in a. °lbis contradicts the assumption that T is
live in a.

2. By part I and lemma 18.

3.6.3. WelI-Formedms
Now we show that all serial schedules are well-formed. It follows that all the properties proved in the

previous paragraph for well-formed serial schedules are actually true for all serial schedules. Subsequently,

we will use these properties without explicitly mentioning well-fornedness.

lemma 24: Let a be a serial schedule. 'Ihen a is well-formed.

Proof: Bly induction on the length of schedules. The base, length = 0, is trivivI Suppose that
aw is a serial schedule, and assume that a is well-formed. If v is an output of a primitive P. then
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awIP is well-formed hec 0tuse 11 preserves wcll-lormednes, and .so air is well-frinned. So assume
that w is an input to a primitive 1). It suTces to show that awll-l is well-formed. 'llere are four
cacs.

(1) v is CRI:A'1'I "-I) and T is a non-access transaction.
The schcduler preconditions insure that CRI"AIFI') does not appear in a.

(2) w is COM M II(T1 '.v) for somlc transaction T and value v.
Then w is an input it transaclion parent(T) = '1". Thc scheduler preconditions imply that a
contains a R.QUIESI-COMMIT(T,v). and so Lcmma 13 implies that a contains a
R'QUFST-CRAN'F'I). Also. the schcduler preconditions imply that no return operation for
T occurs in a.

(3)v is AIBORT(T) for .)me transaction '.
"lbcn w is an input to transaction parcnt(T) = '1". l'he scheduler preconditions imply that a
contains a Rl'QUFSI'-CREATlAT), but no return operation forT.

(4) w is CRIFA'TIi'T) and T is an access to basic object X.
Bly the scheduler preconditions, no CRFAT('If') or AIIORI'(T) appears in a. but a
RFQUI:SI'-CRFA'TF4') appears in a. Assume for the sake of deriving a contradiction that "1T is
a pending access in aIX. Then I emma 22 implies that 'I" is live in a. Also, Iemma 17 implies that
parent(T) is live in a. Then I.emma 23 implies that one of 'I or parent(I) is an ancestor of the
other: since T and 'I" arc both leaves of the transaction tree, the only possibility is that parent(l) is
a proper ancestor oft" . I .ct '1" be the sibling ofT which is an ancestor of'l1. Then I"" is live in a,
by Lemma 18. 'hbat is, there is a CRI-AIF41'), but no COMMIT for '"' in a. But this
contradicts the scheduler preconditions for w. 'tlhercforc, there isno pending access in iX. I

3.6.4. Visibility and Serial Schedules

In this paragraph, we prove interesting lemmas about visibility in serial schedules.
Lemma 25: .et a be a serial schedule, and w an operation in a. "Ihen transaction(w) is visible in

a to some transaction which is live in a.
Proof: etT = transaction(w). Since a is not empty, To is live in a. I et ' be the least ancestor

of T which is live in a. '1te proof is by induction on the distance from T" to T. If T = ". the
result is trivial. So assume that T * '1". Ten COMMI'(T) is in a. and so T is visible to parent(l)
in a. Lemma 13 implies that a contains a RE.QUFSI'-CREATFX(T) operation, which occurs at
parent('l). Then the inductive hypothesis implies that parent(T) is visible to *". 'Iben T is visible
to"r by Lemma 8. I
Lemma 26:

1. Let a be a serial schedule. T a transaction and X an objecL Then visible(a,T) X is a prefix
of alX.

2. Let a be a serial schedule, Ta transaction and P a primitive. Then visiblc(a,TflP is a prefix
of alP.

Proof: 1. Let v and qp be opcrations in aIX. with w preceding T. and F an operation in
visible(a.T). Let a' be the prefix of a preceding 9). Let '1" = transaction(T) and '" =
transaction(w). Since 40 is either a CREATE or a RFQUFST-COMMIr' for"", well-fonnedness

rX
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of a implies that 'T is live in a'4p. 'l'hus, by I emmia 23. the only live transactions in a'q) arc
ancestor% of TI. Bly I cmma 25. '1"' is visible to an ancestor ot'in a'qp. and hence in a. By
Lecmma 8. '1"' is visible to T' in a. But TI' is visiblec to TI in a. by assumption. [emma 8 then
implics that'l- is visible to]'in a, which gives the result.

2. Immediate from Le.mma I I and part 1. 1
Lenmma 27: [ct a bc at noncmpty serial schedule. [ci vr hc the last operation in a which is an

output of thc serial schedulcr. T'hen transaction(r) secs everything in a.
l'roor:I l-ct ' = transaction(w). We first show that TI is live in a. [ither vr is a CR FA'l'WI') or

else it is a return operation for a child TI of T'. In the latter case, I .emma 14 implies that
CRFA'l*'I') also occurs in a. Thlus, in either case-, CRFA'lF('l) occurs in a. Now, if a return
operation for Ioccurs in a, l.emma 21 implies that it follows w. which is impossible. 'Ihus, no
return operation for I' occurs in a. It follows that' Tis live in a.

'Ihen [emma 23 implies that the only other transactions that arc live in a must be ancestors or
descendants of]'. We claim that no proper descendants of'l'arc live in a. So assume for the sake
of obtaining a contradiction that U is a proper descendant of'l which is live in a. 'liben U is a
descendant of achild V of I, and V is live in a, by Lcmma 18. l.et a' bcthc prefix ofa preceding
w. 'lherc arc threeccases.

-& (1)1w is CRFATlFA(T).
'Iben [emma 14 yields a contradiction.

(2) v is a COMM l'l'opcration fo'l' a child of T.
'IbenT 'I* V. since '[" is not live in a. But'F and V are both live in a', which contradicts Lemma
23.

(3) v is an A BOR'('r). for child 71 of Tr.
* ~'Iben 'l" * V. since' is not live in a. But V is live in a'. But then the scheduler preconditions for

w arc not satisfied, a contradiction.

'Ibus, no descendants arc live in a. so the only transactions that arc live in a are ancestors of
TI. Now let g be any operation in a. [emma 25 implies that transaction(q)) is visible in a to some
ancestor of T, and hence to TI. I

Lemmna 28: Le~t a be a serial schedule, and T a transaction. 'l'heni visible(a,T) is a serial
schedule.

Proof Wc priceed by induction on the length of a. Tlhe basis, length 0. is trivial. Lect a = a'..
wherev is a single operation. Fix transaction '1. and let T = transaction(w). If 11 is not visible to
T in a, then visiblc(a,1') = visible(a',l') and the result is true by inductive hypothesis. So assume
that 'r is visible to 'I in a.

If w is an output operation of a primitive P. then visible(a,'l')IP is a prefix of alP, by Lemma 26,
and thus is a schedulc of P. By the inductive hypothesis, visible(aX'r) is a serial schedule. Also,
visible(a.'l) = visible(a'.TI)w by Lemma 12. 'Ilhcn 1Lcmma 4 shows that visible(a.T) is a serial
schedule.

low On the other hand, if w is an output operation of the scheduler, then L emma 27 implies that I"
sees everything in a. But sine 1 is visible to 1 in a, it follows that ''sees everything in a. 'l'hus,

ll~~~~ N, .,'III% %
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visihle(a.) = a, a serial schedule. I

3.6.5. Reordering and Combining Serial Schedules

In this paragraph, we descrihe ways in which serial shcdules can be moditied and combined to yield otherIserial schcdules. 'licse lemmas are used in the proof of the main theorem, in Section 7.
leima 29: Let a and a' be two equivalent serial schedules. II'f is a sequence of serial

operations such that all is a serial schedule, then a' is a serial schedule, and is equivalent to a#.
Proof: Equivalence is trivial. 'Ilic fact that a' 8 is a serial schcdulc follows because the

preconditions of the serial schedulcr depend only upon the presence of previous operations, not
i: .. "their order. I

T'c next lemma says that any serial schedule can be transformed by moving all the operations visible to any

particular transaction to the beginning of the schedlmlea and the result is another srial schedule. 'Ibis lemma

can be thought of as describing a kind of "canonical form" for a serial .schedule, with respect to a particular

transaction.
Iemma 30: L.et a be a serial schedule, and T any transaction. L.etfi = visiblc(a.l'). 'lhen #(a -

P) is equivalent to a and is .serial.

Proof: Let a' = P(a - P). If P is any primitive, then l.emma 26 implies that PIP is a prefix of
all'. 'Ius. a' is equivalent to a.

i, To show that a* is serial, we proceed by induction on its prefixes. Bly Lemma 28,0, is serial. so

we can use P as the basis. I.et yw be a prefix of a', where w is a serial operation in a -# and I is a
serial schedule. Ifv is an output operation of a primitive P, then 'yIP is a prefix of a'IP, = alP
by equivalence, which is a schedule of P. 'Ihen Lemma 4 shows that -yr is a serial schedule. So

assume that v is an output operation of the serial schcduler.

Let s be the state of the serial scheduler after -y. ILet I'w be the prefix of a ending in v, and let s'
be the state of the serial scheduler after y'. 1hen w is enabled in s'. We must show that v is
enabled in s. ''his suffices, by Lemma 4.

Since every operation in y' is also in y, it follows that each component set of s' is a subset of the
corresponding set of s. '1here are three cases.

(1) w is CRFA''FTl) for some transaction T.
'Ihen transaction(w) = r, and 'I" is not visible to T in a. lhen T E create- rcquested(s') C

v: create- requested(s). Also, it is easy to show that 'I" ( created(s). Now let U be in siblings(T) l
created(s). If U E created(s'), then U E returned(s') since v is enabled in s'. C returned(s), asneeded. So suppose that U (created(s'). 'llcn CR|:AT(U) occurs in P, so U is visible to T in a.

Since a contains both CREATF('r) and CR-AT'l(U). Lemma 23 implies that a must contain a
COMM IT for at least one of'l" or U. If a contains a COMMIT for U, then it occurs in P, so U E
returned(s). On the other hand, if a contains a COMMIT for '", then '1" is visible to U in a. soII " lemma 8 implies that '" is visible to T in a. a contradiction.

(2) i is COMMIT(mFTv) for some transaction '1 and value v.

VV.
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'lbcn tran.action(w) is parent(l"), which is not visible to T in a. lbcn (l",v) is in
commit-requcsted(s') C commmit-requcsted(s). Also, it is easy to show that 'I is not in
returned(s). Now let U he in children(I") fl create- requesed(s). Then there is a
IQLiiST-C~ l'lIU) in y. This ltIF'LI'SI-CRATIU) occurs at I". which cannot be

visible to T in a since parcnt(I) is not visible to T in a. Thus. the RlIQUFIST-CRFI'ATl-U)
does not occur in ,. so it occurs in y'. Since w is enabled in s'. we have U E rcturned(s') C;
rcturned(s).

(3) w is A IOR'I'('I) for s)me transaction 'I".
Then tranaction(w) = parcnt('l), and parcnt('I) is not visible to T in a. 'lThen 'r E
crcatc- rcqucstcd(s') C create- requested(s). Also. it is easy to show that '1 ( created(s). Now
let LI E siblings(I") fl crcated(s). Iben CR lA'I'I'J) occurs in y. But CRlIA'l'I'(U) occurs at U,
and U cannot be visible to T in a since parent(U) = parcnt('r) is not visible to '1 in a. Therefore,
CRl'ATF4U) does not occur in 8, so it occurs in y'. Tben U is in siblings(lr) n crcated(s') C
rcturned(s') C rcturncd(s). I

'Ihc following lemma is an easy consequence of the preceding one.
eInnma 31: I et a he a schedule of serial operations, and let T and '1T be two transactions with I"

visible to T in a. ILet P and 8' be serial schedulcs, such that f8 is equivalent to visible(a.l) and 8'
is equivalent to visibl(a.l"). Then P" = #*(3 -P') is equivalent to P and serial.

Proof: I.et y = visible(,,8'). 'Then y is serial by I emma 28. ILemma 30 implies that "1(f - y) is
equivalent to P and serial. L.emma 10 implies that fl' is equivalent to y, and thus that is - Y = is -

l Iben ILemma 29 implies that f8" is equivalent to -y(f - y) and serial. Thus, P" is equivalent to
Pand serial. I

The next two lemmas arc used in the proof of'l'hcorem 68. Fach describes a way of "cutting and pasting"

two serial schedules to yield a new serial schedule.
Lemma 32: Let ap 1COMMI('l',u) and a82 be two serial schedules and T, T and 'r' three

transactions such that the following conditions hold:
(1)'1" is a child ofI"' and T is a descendant of'l" but not ofTr,
(2)"1" sees everything in a1"
(3) 'T sees everything in aP2,
(4) a = visibl(a,'l") = visiblC(a82.T") and
(5) no basic object has operations in both P 1 and ,2.
Ibcn a.8 ICOM M l'l'('l",u)P2 is a serial schedule.

Proof: Note first that if T = T". then P2 is empty and the result is trivial. So assume that T 0
T. 'l'hen T is a descendant of a child U of"r, and U 0 1'.

Any operation in ap 1 whose transaction is not a descendant ofrT, must be in visible(apl.T") by
ILemma 8. Similarly. any operation in 0P2 whose transaction is not a descendant of U. must be in
visiblc(ap,32 l"'). 'Ibus, P , and P2 contain only operations at descendants of'r and U, respectively.
Since ' and U are distinct siblings, and by assumption no objects have operations in both P, and

02- it follows that no primitive has an operation occurring in both 01 and ,.

We proceed by induction on prefixes of aP,1COMMlTlu,u)P 2. Let a'q be a prefix of
a#1COMMl'('-l,u)8 2 , with a' a serial schedule and q? a serial operation. We use n'q) =
0 1COMMI'r(T',u) as the basis, since apCOMMIT(r,u) is a serial schedule by assumption. So

. - ,
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assume that a' = a/fiCOMMI'('I',u)/i' for some sLqucncc /3'. Therc are two cases. depending
on whether 9p is an output of a primitive or of'the serial scheduler.

Stuppoc that 9p is an output opcration of a primitive 1).Then P COMMI'I'('I".v) contains no
operations at P. Thus. a'p1l1' = a3'qll. which is a prefix or a/11 ), which is a schedule of P since
a.82 is a serial schedule. Thus. a'olll is a schedulc of P. 'Ihe result f)llows by L.emma 4.

S4) supposc 9p is an output or the serial scheduler. 'llcn transaction(ip) = V for some
descendant V of U. I.et s be the suite of the scrial scheduler after a'. and let s' be the state of the
serial schcdulcr after a/'. 'Iben the following relationships hold between s and s'.

1. V E create- requested(s')- created(s') iff V E create- requested(s) - created(s)

2. children(V) fl create- requested(s') C rcturned(s') iffchildrcn(V) 1 create- requested(s)
C returned(s)

3. (Vv) E commit- rcquested(s') iff(V.v) E commit- requcsted(s)

4. V ( rcturncd(s') iff V ( returned(s)

5. siblings(V) fl creatcd(s') C rcturncd(s') iffsiblings(V) fl created(s) Q returned(s)

Since the operations in P t arc all at descendants of 'I, and those of,02 are all at descendants of
U, the first four biconditionals arc immediate from ILemma 7. If V is a proper descendant of U.
the last biconditional also follows. It remains to show that siblings(U) nl created(s') C returned(s')
iff siblings(U) n created(s) C rcturncd(s). But any sibling of U created in a/i' is created in a',
and the only sibling of U created in a' and not ai' is "]", and T E returned(s). '"Ibus. the claims
arc true.

Since p is enabled in s'. the claims above imply that 1p is also enabled in s. ilhc result follows. I

Lemma 33: Let aAIBORT(I') and ap be two serial schedules, and let 1!: 1" and T' be
transactions, such that the following conditions hold:
(1) V" is a child of' and 'I' is a descendant ofT but not ofT',
(2) 'I' sees everything in a/,, and
(3) a = visible(a'l"') = visible(ai.T).
'llen aABOR'I'(I),i is a serial schedule.

Proof: Similar to, but somewhat simpler than, the proof of Lemma 32. I

4. Resilient Objects
Having stated our correctness conditions, we are now ready to begin describing implementations and

proving that they meet the requirements. This section and the next are devoted to the description of a

concurrent system which permits the abort of transactions that have performed steps. An important

component of a concurrent system is a new kind of object called a "resilient object," which we introduce in

this section. A resilient object is similar to a basic object, but it has the additional capability to undo

operations of transactions that it discovers have aborted.

• 4." :". ,.r" , , "" "''''< " :.. . v,:) ' " "', > "" ' '
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Resilient objects have no capabilities for managing concurrency: rather. they assume that concurrency

control is handled externally (by lock manager components of the sLhcduler). 'Ibis section defines resilient

ohjects and prcsenLs %ime of" their properties. It also digrcss slightly from the main development by

describing and proving correct a particular implementation ol" resilient ohjccts. which are constructed by
keeping multiple copies of corresponding basic objects. The resilient object manages these copies as versions

of the data object. Upon learning of an abort, the appropriate stored version is used in place of the current

version.

4.1. I)eflmitions

Resilient object R(X) mimics the behavior of basic object X. but has two additional input operations.

INI'ORM-COMMrI'-AI'(X)OF('') and INFORM -ABORT-AT(X)OF(T). for every transaction

T. Upon receiving an INFORM-AIOR''-A'(X)O'('I). R(X) erases any cffects of accesses which are
dcscendants of'T. 'Ibis property is made formal as the "Resiliency Condition" below.

R(X) has the following operations. which we call R(X)-operaoions.

Input Operations:
CRI'ATF(T), T an access to X
INFORM -COMM Il'- AT(X)OF(I)
INFORM - AIOR'- AT(X)OF(T)

Output Operations:
RFQUFS''- COM M ''(T,v), 'an access to X

In order to describe wcll-formcdness for resilient objects, we require a technical definition for the set of

transactions which are aclive after a sequence of R(X)-operations. Roughly speaking, the transactions which

arc active are those on whose behalf the object has carried out some activity, but whose fate the object does

not know.

'The definition is recursive on the length of the sequence of R(X) operations. Namely, only TO is active after

the empty sequence. Let a = ,iv, where w is a single operation, and let A and B1 denote the sets of active

transactions after a and ,, respectively. If" w is CRFA'lIF(T). then A = B U {T}. If w is a

RI-QUFsr-COMMr1' for T, then A = B. If'w is INFORM-COMMI-AT(X)OW(I'), and if T is in B,

then A = (11 - {T}) U {parent(T)}; ifT is not in 1B, then A = 11. If w is INFORM-ABORT-A'(X)OF(T),

then A = B -descendants('T).

Now we define well- omiedness for sequences of R(X) operations. Again, the dcfinition is recursive.

Namely, the empty schedule is well-formed. Also, if a = a'w is a sequence of R(X)-operations, then a is

N1 %I %I,-I

A%
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welI-formed provided that a- is wIl-fionncd, and die following hold.

" if w is CREiATl'NI). then
(i) there is no CRl I:( in a%~
(ii) all thc trans.actions; which arc active aftcr a' arc ancestor% o'L.

* If w is a RIFQUESI-COMMI'l' forT then
(i) there is no RFiQUIFSI'-COMMI'I'forT in a'. and
(ii)T''is active after a'.

" If w is INFORM -COMM IT- A'I*(X)O1-*l'). then
(i) there is no I NFOR M - ABORI - ATI(X)O1'I ) in a'. and
(ii) if ' is an acccss to X. then a R FQU FS'- COM MIT for ''occurs in a'.

" I f w is I N FOR M - Ali0RT - Ar(X)F(I'). thcn
(i) there is no I NFOR M -COM MIT- ATl(X)OF(T) in a'.

An immediate consequcnce of these definitions is that thc transactions active after any wcll-fonned

sequence of R(X)-opcrations a are a subset of the ancestors of a singlc active transaction. which wc denote

tcast(a).

For a a sequcncc of R(X)-opcrations. deflne undt~a) recursively as follows. Decfine undo(A) = A, where A
is the empty sequence. Let a = Pw, where w is a singlc operation. If w is a serial operation (a CRFiA'I' or a

RFQUESIT-COMM IT). then undo(a) = undo(s). If v is INFORM -COMIM I- AT(X)OF(I'), then

undo(a) = undo(s). If.w is INFORM -AIIOR'I'-A'(X)OF('I'), then undo(a) is the result of eliminating.

from undo(.8). all operations whose transactions are descendants of 1. Note that undo(a) contains only serial

operations.

L et a be any sequence of R(X)-operations. and let w be an operation in a of thc form

INFORM -AIJORTI-AT(X)OF('). *Iben the scope of w in a is thc subsequence y of a consisting of

operations eliminated by.

Resiliency Conditin

Resilient object R(X) satisfies the resiliency condition if for every wcll-fomiecd schedulc a of R(X), undo(a) is

a schedule of basic object X.

We require that resilient object R(X) preserve well-formedness and satisfy the resiliency condition.

The resiliency condition is the correctness condition required by the concurrent schedulers at the object

interface. The well-formedness 
requirement 

is a syntactic restriction, and the condition that undo(a) be a

schedule of basic object X cxpresses the required semantic relationship between the resilient object and the
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basic object it incorporates. 'Ibe important property which must be preserved is that the correctness condition

at the resilient objects. together with the behavior of the concurrent schcdulcr, assurcs correctness at the

transaction boundaries.

4.2. IProperties of Resilient Objects

This subsection contains a collection of simple lemmas about the properties of well-formed sequences of

R(X) operations.

Lanmna 34: I.et aw be a wcfl-formed sequence of R(X) operations, with w a single operation.
"lbc following are true.

1. Ifw is a serial operation, then transaction(w) is active after aw.

2. IfT is an access active after a prefix of a but not after a, then T is not active after aw.

3. If w is a RlIQUFST'-COMM IT forT, then CRFATF(I') is the last serial operation in a.

' Proof:

1. Immediate from the definition of active and will-formedness.

2. Because T has no descendants, it can only become active when a CRFA'FI) operation
occurs, which can only happen once in a wcll-formcd schedule.

3. Suppose the last serial operation in a is qT. with q7 * CRFATE(I). Let transaction(gp) =
'I". By well-formedness, T 0 "r. AMs by well-formedness. T is active in a, so that
CRIA'I'F4I) must occur in a. and so precedes 9). By part (1), T is active following
CRFATF(T) and after w, and '" is active following 9). But T cannot be active when V
occurs, by well-fonncdncss, contradicting part (2) of this lemma.

Lemma 35: Let a be a well-formed sequence of R(X) operations. Iet T and I" be accesses to X.
with T * 1I". and let w and q) be serial operations with transactions T and 1". respectively. If V
precedes q, in a. then between w and 4p. there is either an INFORM - ABORT- AT(X) for some
ancestor of'. or else there are INFORM -COMMrI'- AT(X)OF(U) operations for all ancestors
U of T which are not ancestors of'[. occurring in order from lowest to highest in the transaction
tree ordering.

Proof: By part 3 of Lemma 34 and wcll-formcdncss. we may assume that O = CREATFT).
Lemma 34 implies that T is active immediately after w. By well-formedness, before CREArT'FO)
can occur, it must be that all transactions which are active are ancestors ofT'. There are only two
ways in which this can happen. One possibility is that R(X) first receives INFORM-COMMr['S
for all ancestors of T up to lca(T'.'r), in order from lowest to highest in the transaction tree
ordering. 'be other possibility is that R(X) first receives an INFORM-ABORT for an ancestor

. ofT'. i

ofemma 36: Let aw be a well-formed sequence of R(X) operations, with r =

INFORM - ABOR''- A'T(X)OF(I). 'l en undo(aw) is a prefix of undo(a).

Proof: Suppose not. "Tlen there is a subsequence 9q4 of two operations in undo(a). such that 4'
is in undo(aw) and q is not. Clearly, 9 and 4 are serial operations, transaction(gp) is a descendant
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of T and transaction(') is not. Since 9 is not in the %Lope ol'an INIFORM -A IIORT in a, ny
ILemma 35. there is an INIORM-COMMIT between q and , for every proper descendant of
Ica(irana..ction(qp),trans.ction(4)) that is an ancestor of transaction(g). including T. This

contradicts the well-formedncss of aw. I
Lemma 37: Iet a he a wcll-fiormcd sequence of R(X) operations. and let T be any transaction

active in a, other than T.. Then undo(a) contains an operation qp at a dcscendant'1" ofl' which is
followed in a by an INFORM-COMM Itfor every ancestor of'l" which is a proper descendant
ofT.

Proof: 'Ihc proof is by induction on a, with a trivial basis. Iet a = a'w. such that the lemma is
true for a* and that w is a single operation. Ict T be a transaction active after a. 'Ibcre are four
cases.

Suppose v is CRA'ITFI"'). "lhen undo(a) = undo(a')lw. IfnI" * "'. the result is immediate by
the induction hypothcsi% since T is active after a'. IfT = 'I"', then the lemma fillows. with w =

TP.

ifw is a RIQUFS'-COMMII' for a transaction 'I"'. then undo(a) = undo(a')w and the same
transactions arc active in a and a'. "lbe result is immediate.

Suppose w is an INFORM-COMMIT for a transaction 'I"'. 'Ihen undo(a) = undo(a')w. IfT
is active after a'. the result is immediate. IfT is not active after a', it follows that T = parent("').
lle result is immediate from the induction hypothesis.

Suppose w is an INFORM - AI1OR' for a transaction U. Since T is active after a. it was active
after a' and U is not an ancestor of T. Let q be the transaction of transaction 'I" which follows
from the inductive hypothesis applied to T and a'. Since a is wcll-formcd and a' contains
INFORM -COMM Ils for every ancestor of' up to T, U is not an ancestor of1"". It follows that
9 is in undo(a) and the result holds. I

Lemma 38: Ixct a be a wcll-formcd sequence of R(X) operations, and let Icast(a) = T. If
undo(a) is nonempty, then it ends in an operation of a descendant ofT.

Proof: If T = "1o.the result is trivial, so assume otherwise. By the previous lemma, undo(a)
contains an operation 9) at a descendant of T. Without loss of generality, assume that ip is the last
operation in undo(a) at a descendant of T. If any other operation v followed 9 in undo(a). by
[emma 35 a would contain INFORM-COMMITs fir every ancestor of transaction(9)) up to
lca(transaction(qp).transaction(w)). which includes T. 'Aben T is not active in a. a contradiction. I

Lemma 39: Let aw be a well-formed sequence of R(X) operations, with w =
INFORM-ABORT- AT(X)OF(T). If T is not an ancestor of Ieast(a). then undo(aw) =
undo(a).

Proof: Suppose that T is not an ancestor of lcast(a) and that undo(av) * undo(a). Then
undo(a) contains a serial operation y at a descendant 1' of T. By Lemma 38, ip is followed in
undo(a) by an operation at a descendant of least(a). By L.ernma 35. a contains an
INFORM-COMMIT for every ancestor least(a) up to lca(least(a),''). which includes T,
contradicting the well-fonnedness of aw.

We arc now able to show that the undo operator preserves wel-formedness.

Lemma 40: If a is a well-formed sequence of R(X)-opcrations, then undo(a) is a well-formed
sequence of X-operations.

!4
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Proof: The prool' is by induction on the Icngth o 1 a. The basis is trivial. Assume a = a'w,
where w is a single operation, and undo(a') is a well-f rned %cqucnce of' X-operations. If w is an
INIORM-AIIORT or INFORM -COM MIT. undo(a) is a prefix ol'undo(a'). by ILemma 36, and
tie result is immediate.

If w is CRFATIFI'), then undo(a) = undo(a')w. fly the well-ftormcdncss of a, CRIEATF'I')
does not appear in a'. and so no( in undo(a'). I lencc. (i) is %atisficd. To %e (ii). assume that
CRIEAI'IO'I) occurs in undo(a'). for access '1". 'lien Lemma 35 implies that
INI.'OIRM-COMMI''-A'I'(X)OF('I") occurs aftcr CRFIATIFfI") in a. Tlcn well-ftormedness
(the precondition for INIFOR M -COM M I- AT(X)OF('I")) implies that a
RI'QUIS'-COMMIT for 'I" occurs in a', and well-formcdness also implies that the
RI',QUFS'-COMMI'' 1)r 'T" flIlows the CRI'ATF'l"). 'llerefore, the Ri.FQUFS'I'-COMMI''
occurs in undo(a'). and so '1 is not pending in undo(a'). 'Ihus, (ii) is satisfied.

If v is a RFQUFS'r-COMMIr for T. then again undo(a) = undo(a')w., and by the well-
formedness of a, (i) no REQUFS'I'-COMM I for T appears in a', and so not in undo(a'), and
(ii) T is active after a'. and it follows that CRIA'I'FAT I) occurs in undo(a'). I

4.3. Costruction of a Resilient Object

In this subsection, we describe a construction of a resilient object R(X) from a basic object X.

Recall that a resilient object X is distinguished from a basic object in that it has INFORM -ABORT and

INFORM-COMMIT operations. a different definition of well-formedness. and satisfies the resiliency

condition. 'he resilient object R(X) is constructed from the states, transition function and operation labels of

the basic object X. 'he resilient object R(X) maintains a collection of "copies of X" (i.e. remembers states of

X). one for each active transaction, with a particular current copy (corresponding to the least active

transaction) to which CRF.A'I'l operations are sent. When R(X) receives an INFORM-ABORT, the

appropriate stored copy beLomcs the current copy. thereby erasing the cffcts of the operations in the scope of

the INFORM - ABORT.

"Ibc state of R(X) consists of a pair (actmap). where act is a set of "active" transactions, and map is a

function from act to states of basic object X. In the well-formed executions of R(X) (defined below), act will

always be a subset of the set of ancestors of one particular transaction in act, called leas(act). (In case act has

no least member (which, again, will not arise in executions with well-formed schedules), define Ieast(act)

arbitrarily.) hc copy for leastgact) is considered to be current. The initial states of R(X) are those in which

act = {1O) and map(T 0 ) is an initial state of the basic object X. In the following specification of the

operations of R(X), let (act'.map') be the state of R(X) prior to the operation, and (actmap) be the state of

R(X) after the operation.

* CRFA'IFi'), r an access to X:
Postcondition:

'.",,,
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act = act' U IT)
map(U) map'(U) for all U E act- {TI
map(T) s. where (rnap'(lcast(act')),CIZAFlI).s) is in the transition relation of X

" INI"ORM -AIOR'I'-A'(X)OF(T):
Postcondil ion:
act = act - Idesccndants(T)[
map(U) = map'(U) fir all U E act

I N FOR M - COM M IT- AT(X)OF('I):
Postcondition:
if'l" E act' then
begin
act = (act'- ITI) U {parent(T))
map(U) = map'(U) for U E act - I parcnt('T)}
map(parcnt(l)) = map'('')
end
if T( act' then act = act' and map = map'

" RFQUFSI'- COMM rI(l'Tv):
Precondition:
icast(act) = r
(map'(I').R FQUFSI'-COMM rr(T.v).s) is in the transition relation of X
Postcondition:
act = act'
map(U) = map'(U) for all U E act - IT}
map(r) = s

Now we prove that this implementation is a correct resilient object.

Lemma 41: Let a be a well-formed schedule of R(X) which can leave R(X) in state (act,map).
"Iben act coincides with the set of transactions which are active after a.

Proof: 'lhe proof is by induction on the length of a. The basis is trivial. Let a = a'w. where v
is a single operation. There arc four cases. depending on the type of operation w. Fach is
immediate from the definition of active and the implementation of R(X). I

Lemma 42: Let a be a well-formed schedule of R(X) which can leave R(X) in state (act,map).
Then the following conditions hold.

* undo(a) is a schedule of basic object X which can leave X in state map(least(act)), and

o if 'F is any transaction other than TO, and aINFORM-AIIORT-AT(X)OF(I")) is well-
formed, then undo(aINFORM- ABORT-AT(X)OF(l')) is a schedule of basic object X
which can leave X in state map(U), where U is the least element of act which is not a
descendant of T.

Proor: First, observe that if r is not an ancestor of leas(act), and
aINFORM-ABORT-AT(X)OF('r) is well-formed, then Lemmas 41 and 39 imply that
undo(aINFORM-AI ORT-A'T(X)OF('1)) = undo(a), so the second condition follows from
the first.
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'Ibe proof is by induction on the length of a. In each casc. we prove thc firs condition, then the
second condition asuming that 'I" is an ancestor of kcat(act). By the observation above, this is
SufficienL

The basis is trivial. Lct a a'w. where w is a single opcration. Lct (act'.map') be a state of
R(X) after a', such that ((act''.,ap').w,(acLmap)) is a transition for R(X). 'hbcrc arc four cases.

1) w = CR'ATk'I')
Ilen undo(a) = undo(a')w. ly the inductive assumption, undo(a') is a schedule of X which can
leave X in statc map'(lcast(act')). ly the implementation of R(X). (map'(lcast(t')),vmap('l)) is a
transition of X. and T = leas(act). Thus thc first condition of the lcmma is satisfied.

To sec that the second condition holds, note that all active transactions after a are ancestors of'f,
and by well-formedness. arc exactly the transactions active after a'. together with T. Let P be
INFORM- AIBORT-AT(X)OF(I), where 1" is an ancestor ofT other than T.. and aqp is well-
formed. If'l" is a proper descendant of least(act'), by ILemma 39. undo(aq?) = undo(a'), which is
a schedule of basic object X which can leave X in state map(least(act'))), by the inductive
hypothesis. If T is an ancestor of least(act'). undo(ay?) = undo(a'ip), the least element of act
which is not a descendant of'" is also the least element of act' which is not a descendant of' , and
the result tIllows by the inductive hypothesis.

2) = RFQUFS'-COMMIr(T.v)
"lhen undo(a) = undo(a)w. fly the inductive assumption, und(Xa-) is a schedule of X which can
leave X in state map'(least(act')). By the implementation of R(X), (map t(ieast(act')).wmap(')) is a
transition of X. and T = lcast(act). 'Ibus the first condition of the lemma is satisfied.

To see that the second condition holds. note that the active transactions after a arc all ancestors

of T. and by well-formcdness, are exactly the transactions active after a'. Let op be
INFORM- ABORT-AI'(X)OF('r). where t is an ancestor of T other than T0. and aqp is well-
formed. Then undo(aqp) = undo(a'y), which is a schedule of basic object X which can leave X in
state map(least(act'))), by the inductive hypothesis. Furthermore, the least element of act which is
not a descendant of Tl is also the least element of act' which is not a descendant of 1". and the
result follows by the inductive hypothesis.

3)w = INFORM -COMMI-AT(X)OF(')

'Iben undo(a) = undo(a). Also. map(least(act)) = map(least(act')), by definition of R(X). The
first condition follows.

By the definition of R(X), least(act) is an ancestor of lcast(act'). Let 9) be
INFORM - AIORI'- AT(X)OF('I"). where '" is an ancestor of Icast(act) other than T0., and aip is
well-formed. 'Ien a'*V is well-formed, and undo(aqi) = undo(a'4p). Also, since aqi is well-
formed. T * T. Let U and U" be the least elements of act and act', respectively, which are not
descendants of T'.

If T 4 act'. or if U * parcnt(T). then U = U' and map(U) = map'(U'), and the second
V condition follows from the inductive hypothesis. So assume that T E act' and U = parent(T).

Then since 'r * T, it follows that U' = T. T1hen map'(U') = map(U), and the second condition
again follows from the inductive hypothesis.

%
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4)w = INIORM-AlIORT-ATXOF(T)
IFT is not an ancestor of leasact'). then undo(a) = undo(a'), by lemma 39. Furthcrmorc, the
state of' R(X) is not changed. alNl:ORM-AIK)R'I'-AI(X)-OF('l') is well-fonned only if
-aINF:ORM-AlIk)Rl'-A'I'(X)-OFr('I) is. and the active transactions after a arc exactly those
active after a'. The result follows.

Suppose that T is an ancestor of least(act). Thc first condition is immediate from the inductive
hypothesis. Let 4p he INiORM- AIK)RT-A'I(XK)F('I). where T' ;s an anccstor of Icast(act)
other than T , and ap is well-I'ormcd. Since act = act' - desendant, l), least(act). and hence".
is an ancestor ofT, undo(aq)) = undo(a 'w ) = undo(a'q), and the second condition follows as
well. I

""lcorem 43: R(X) is a resilient object.

Proof: We must show that R(X) preserves wel-formedness and satisfies the resiliency condition.
That R(X) satisfies the resiliency condition foillows immediately from lemma 42.

Assume that a is a well-formed schedule of R(X) and w is an output operation of R(X) enabled
after an execution with schedule a. We must show that aw is a well-formed sequence of R(X)-
operations.

Since w is an output, it has the form RF QUIES'-COM M l'(T,v) for some acccssT and value v.
Let (act.map) be a state of R(X) after a. such that w is enabled in (act~map). Clearly, w is an
output of basic object X enabled from state map(least(act)). By ILemma 42, undo(a) is a schedule
of basic object X which can leave X in state map(lcast(act))). so undo(a)v = undo(aw) is a
schedule of basic object X.

Since X preserves well-formedness for basic objects, and by Lemma 40 undo(a) is a wcll-formed
sequence of X-opcrations, undo(a) ends with the operation 'p = CRFIAT'F(I') and contains no
other operations with transaction T. let ,0' he the prefix of a ending in qp. Suppose first that a
REQU FST-COMM IT for T occurs in a. Since a is well-f)rmed, T is the only CRFIA'I()
operation in a. and by Lemma 34, the second RFQUFSI'-CREATF for T follows 4p, and by the
definition of undo, is in undo(a) if 'p is, a contradiction.

It remains to show that T is active after a. By Lemma 34, T is active after Pq,. No
INFORM-COMMIT for T can occur after 'p in a. since by well-formedness, there is no
RFQUFS '-COMMIT for T in a. Also. since 'p is in undo(a), no INFORM-ABORT for an
ancestor off can occur after q in a. Thbus T is still active after a. I

5. Concurrent Systems
As with serial schedules in classical settings, our serial schedules contain no concurrency or resiliency and

thus are too inefficient to use in practice. Their importance is solely for defining correctness for transaction

systems. In this section. we define a new kind of system called a concurrent systen. "he new system consists

of the same transactions as in a serial system, a resilient object R(X) for every basic object X of the serial

system, and a concurrent scheduler.

Concurrent systems describe computations in which transactions run concurrently and can be aborted after

e" " " w" " -. ,- -
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they have performed somc work. '11e concurrent scheduler has the joint responsibility of controlling

concurrency and of seeing that the cflCcL of aborted transactions (and their descendants) become undone.

Concurrent systems make use of the roll-hack capabilities of resilient objects U) make sure that AIORT

operations in concurrent systems have the same semantics (so far as the transactions can tell) as they do in

serial systems.

Concurrent systems arc defined in this section. In the next section, the more permissive "weak concurrent

systems" are defined. In Section 7. we prove that the schedules of concurrent systems are serially correct, as a

corollary of a weaker correctness property for the weak concurrent system.

5.1. Lock Managers

I'he scheduler we define is called the concurrent scheduler. It is composed of scvcral automata: a lock

manager for every object X. and a single concurrent controller. 'The job of the lock managers is to insure that

the associated object receives no CRF-A'lI'FS until the lock manager has received abort or commit information

for all necessary preceding transactions. "Whis lock manager models an exclusive locking protocol derived

from Moss* algorithm [Mol. '[he lock manager has the following operations.

Input Operations:
INTFRNAL-CRATF4T), where T is an access to X
I N FOR M - COM M IT- AT(X)OF(T). fio Tany transaction
INFORM - A BORT- Ar(X)OF(T), forT" any transaction

Output Operations:
CRFAI'FfI). where T is an access to X

" 'fliTe input operations INlI'iRNAl-CRFATRF INFORM-COMMIT and INFORM-ABORT will

compose with corresponding output operations of the concurrent scheduler which we will construct in this

subsection. The output CRFIATEI operation composes with the CREATF input operation of the resilient

object R(X). lhe lock manager receives and manages requests to access object X, using a hierarchical locking

scheme. It uses information about the commit and abort of transactions to decide when to release locks.

i lEach state s of the lock manager consists of the following three sets of transactions: lock - holders(s).

create- requested(s), and created(s). Initially, lock-holders = f"0, and the other sets are empty. The

operations work as follows.

, ..:e " INTERNAl.-CREATE(T)

Postcondition:
create - requested(s) = create - requested(s) U IT)

" INFORM - COM M IT- AT(X)OF(T)
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Postcondition:
ifl 'E Iock-holdcrs(s) then lock-holders(s) = (lock-holdcrs(s)- {'lJ) U {parcnt'l')}

" INIORM - AIORI- AT(X)OF(I)
Postcondition:
lock - holders(s) = lock - holders(s) - desccndanLs(T)

" CRIiA'I'Fxr)
Precondition:
T E create- requestcd(s') - crcated(s')
lock - holders(s) C ancstors(T)
Postcondition:
lock - holders(s) = lock - holders(s') U IT)
crcated(s) = crcatcd(s') U 1')

Note that resilient object R(X) and the lock manager for X share the INFORM-ABORT and

INFORM-COMMIT input operations. 'Ibcse compose with the output from the concurrent controller

dcfincd below.

'Ihus. the lock manager only sends a CRI-A'I'F(') operation on to the object in case all the current

lock -holders are ancestors of T. When the lock manager learns about the commit of a transaction T for

which it holds a lock, it releases the lock to 'Fs parenL When the lock manager learns about the abort of a

transaction T for which it holds a lock, it simply releases all locks held by that transaction and its descendants.

Our model provides an exceptionally simple and clear way of describing this important algorithm.

A key property of lock managers is described by the following lemma.
Lemma 44: let X be an object and let T and 'I" be accesses to X. l.et U be an ancestor of T

which is not an ancestor of 'F. Let a be a schedule of the lock manager for X. If CRFIA'rF(1)
precedes CRFA'I'i('F) in a, then between the two CRFAT-F operations, there is either an
INFORM-COMMI'T-A T(X)OF(U) operation. or else an INFORM-AIORT-A'F(X) for
some ancestor of T.

Proof: At the time the CRFA'I'F4'I) occurs, the lock manager puts 'r into the set of
lock-holders. Before the lock manager can send in CRFA'lIi(l"), it must be that all the
transactions in lock-holders arc ancestors of 'I". 'Ibere are only two ways in which this can
happen. One possibility is that the lock manager first receives INFORM -COMMI'S for all
ancestors of T up to lca('rl"), including INFORM-COMMI'-AT(X)OF(U). "Ihe other
possibility is that the lock manager first receives an INFORM - ABORT for an ancestor ofT. I

5.2. The Concurrent Controller
'The concurrent controller is similar to the serial scheduler, but it allows siblings to proceed concurrently. In

order to manage this properly, it interacts with "concurrent objects" (lock managers and resilient objects)

instead ofjust basic objects. 'le operations arc as follows.

"0
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I nput Operations:
R FQ1J I ST- CRI-iA'I )
Rl--QU FST-COMMlIT(I'.v)

Output Operations:
CR FA' -W(t').TIa non-acces.s transaction
lNIIFRNAI .- CR-.AI-X), I* an access transaction
COMM Elf Is)
A 110ORTfF)
INFORM - COM M IT-NI(X)OF(I)
INFORM - ABIORTI- A'I*(X)OF'(l)

F'ach state s of the concurrent controller consists of five sets: crcatc- rcqucsted(s), crcatcd(s).

commit - rcucstcd(s). committed(s), and aborted(s). TIhc set commit - rcqucstcd(s) is a set of

(transaction~valuc) pairs. and the others are set, of transactions. (As before, we will occasionally write 'U

commit- rcqucstcd(s) for (Tv) E commit- rcqucstcd(s) fo~r some v.) All set-. arc initially empty except for

create- rcquecsted, which is 11*01. l)efine rcturncd(s) =committed(s) Uabortcd(s). 'Ibc operations are as

follows.

- . " RFQUFS'l'-CRHA''FA4T)
Postcondition:
create - requested(s) = createc- requesttcd(s') U IT.)

* RFQUFSI'- COMM Il'Tfv)
Postcondition:
commit - requested(s) = commit - rcqucsted(s') U 1('rv)

" CRFATI'F1) I' a non-access transaction
Precondition:
1' E create - requested(s') - creatcd(s')
Postcondition:
created(s) = creatcd(s') U ITI

" INTFRNAL -CREA'W'Fk, 1Tan access transaction
Precondition:
'F create - requcsted(s') - created(s)
Postcondition:
created(s) = crcated(s') U IT)

" COMM IT(r.v)
Precondition:
(T,v) E commit - rquested(s')
1( returned(s')
children(Tr) ni create - requcsted(s') Q retumed(s')
Postcondition:
committed(s) =committed(s3) U IT)



" AIK)R''I(T)Precondition:

T E (create-reqticsted(s') -creticd(s')) U (commit- requcstcd(s') - rcturned(s'))
children(T) 11 create- requested(s') C returncd(s')
loscondition:
created(s) = creatcd(s') U {T}
abx)rtcd(s) = abortcd(s')U {''

" INF'ORM -COMM IT- AT(X)OF(T):
Precondition:
'lE committcd(s')

" INF-ORM - AOR'I'-A'I'(X)OF('I'):
Precondition:
T E abotncd(s')

'lTe concurrent controller is closely related to the serial schedulcr. In place of the serial schcdulcr's

CRIATI operations, the concurrent controller has two kinds of operations. CREATE operations and

INTERNAl.-CRIAI operations. "llic formcr is used for interaction with non-access transactions, while

the latter is used for interaction with access transactions. From the concurrent controller's viewpoinL the two

operations are the same: however, our naming convention for operations requires us to assign them different

names, since the INT'RNAL.-CRlIATE operations are intended to be identified with

INTFRNAL-CRIEA'IF operations of the lock managers (which also have CREATE operations, for

interaction with the resilient objects). ''hc precondition on the serial scheduler's CREATE operation which

insures serial processing of sibling transactions, does not appear in the concurrent controller. Thus, the

concurrent controller may run any number of sibling transactions concurrently, provided their parent has

requested their creation.

lhe concurrent controller's COMM IT operation is the same as the serial scheduler's COMM IT operation

(except for a minor difference in bookkeeping). 'he concurrent controller's AIBORT operation is different.

however: in addition to aborting a transaction in the way that the serial scheduler does, the concurrent

controller has the additional capability to abort a transaction that has actually been created and has carried out

some steps. In this particular formulation, aborts occur if the transaction was not created (as with the serial

scheduler), or if the transaction has previously requested to commit, and its children have returned. ' ,gether

with the requirements on the COMMIT operation, this condition insures that all transaction completion

occurs bottom-up. In the weak concurrent system to be considered in Section 6, a different "weak",

,' concurrent controller will be used: it differs from the concurrent controller of this section precisely in not
-',I

requiring A BORT operations to wait for their transactions (and subtransactions) to complete.

"lhe concurrent controller also has two additional operations not present in the serial scheduler. 'Ibcse

* . . . . . .
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operations allow the concurrent controller to forward necessary abort and commit information to the lock

managers and resilient objects.
Lemma 45: ILet a be a .chcdule of the concurrent schedulcr. and let s be a state which can result

from applying a to die initial site. Then the following conditions arc true.

9 I. T'I is in create- requested(s) exactly if T = TO or a contains a RIIQUEST-CRIEA'I'F(T)
operation.

2. If T is a non-access transaction, then T is in crcatcd(s) exactly if a contains either a
CRFA'III) or AIIORIT(I) operation.

3. If T is an access transaction, then T is in created(s) exactly if a contains either an
I NITRNAl .- CR iA'I'I-i('I) or AIIORT('I') operation.

4.('r.v) is in commit-requcstcd(s) exactly if a contains a COMMIT-RFQUiST(',v)

operation.

5. (T.v) is in committed(s) exactly if a contains a COMM IT(Tv) operation.

6. T is in abortcd(s) exactly if a contains an AIIORT(T) operation.

5.3. Concurrent Systems
'Ibe composition of transactions, resilicent objects and the concurrent scheduler (lock managers and

concurrent controller) is the concurrent sysiem. A schedule of the concurrent system is a concurrent schedule.

and the operations of a concurrent system arc concurrent operations.

A sequence a of concurrent operations is well-fonned if for every primitive P, alP is well-formed (using the

appropriate definition of well-formedness).

'Ibe main result of this paper is that every concurrent schedule is serially correcL 'Ibis will be proved as a

corollary of a stronger result, in Section 7.

5.4. Properties of Concurrent Systems
As we did for serial schedules, we now prove some useful basic properties for concurrent schedules. "Ibese

lemmas describe the possible kinds and orders of operations that can occur in well-formed concurrent

schedules. Later, we will see that all concurrent schedules are well-formed, so these properties actually follow

just from the fact that these schedules are concurrent. All results and proofs in this subsection are

straightforward.
Lemma 46: Let a be a well-formed concurrent schedule, and let T * '1O be a transaction.

1. If a contains any operation with transaction T. then a contains a CRFAI'IFI') and a
R-QU 'FST- C R -T).
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2. If a contains a COMMI fior T. then a contains a RIQIOUIST-COMMIr for "T, a
CRIFA'rFfl) and a RI-QUIEST'-CRI:AI'I:,T).

3. If a contains an AIIOR('T). thcn a contains a RII*QLIFS'I'-CRr'AT(T).

Icmnitta 47: .et a be a wcll-formed concurrent schedule. and t a transaction. Assume that some
dcscendant ofT is in tranN.-ction(a). 'Iben the following hold.

I. CR FIAT') occurs in a.

2. IfFr '1., then Rl:QUFS'IT-CRI'A'rI:I') occurs in a.

Lemma 48: I t a be a wcll-formcd concurrent schedule, and Ict TO T0 be a transaction.

I. If a contains a RIQUFSI'-CRrA'IT), hut does not contain a return operation for T.
then parcn(TI) is live in a.

2. 1f'l" is live in a, then pacn('l') is live in a.

3. If a contains a RIQUFS'I'-CRI-A'FI') but does not contain a CRFIA'1f) or
AIIORI('I'). then parcnt(') is live in a.

Proof: I. Well-formedncss implies that the R IQUFST-CRFiATF4I ") is preceded by a
CIA'lA(parcnt('r)). Suppose that parent(T) is not live in a. Thcn a return operation for
parcnt('I) occurs in a. In case the return operation for parent(T) is an ABOR'l(parcnt(T)).
.scheduler preconditions imply that the CRlEATI-Xparent(T)) must precede the
AlOR'r(parcn(T)). Iben the scheduler preconditions for the return operation imply that the
return for parenit(T) must be preceded by a RIQUFS'r-COMMIr for parent(T). Ity well-
formedness. the R I-QU FSI'- COMM IT for parent('I') must follow the RIQUFS'I'-CR iAT(FT).
so that the return for parent(T) must follow the RI-QUFSIT-CRATFArI') 'Iben the scheduler
preconditions for the return operation imply that there must be a return operation for T in a, a
contradiction.

2. and 3. arc as in Lemma 17. 1
lemma 49: ILet a be a well-formed concurrent schedule, and let T be a transaction.

1. If a contains a REQUFST-CRATF4r), but does not contain a return operation for T.
then all proper ancestors of 1arc live in a.

2. IfT is live in a, then any ancestor of T is live in a.

3. If a contains a RFQUFST-CRIA'rF() but does not contain a CRFATFr) or
AIORT(T), then all proper ancestors ofT are live in a.

Lemma 50: Let a be a well-formed concurrent schedule, and let T and P be transactions with T
a descendant ofT''. Assume that there is a return operation forT in a.

1. If there is a R-QUFST- CRI-ATF'F(T) in a. then there is a return operation forT" in a.

2. Ifn is in transaction(a). then there is a return operation fort in a.

Proof:

%~~~ % , ,Z
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I. By Lemma 49.

2. By L.mma 46 and part I.

I
lemma 51: ILet a be a well-formcd concurrent schcdulc. If a return operation for T is in a. then

it fo llows all operations in a whose transaction is T.
Proof: First consider the case where ' is not an access. If no CRFA'I''1) occurs in a, the result

is immediate, so assume that CRFAI'F4r) occurs in a. In case an AIIORT(T) occurs in a,
scheduler preconditions imply that the CRIA'ICI') must prcedc the ABORI). lThen the
rcturn operation for T must be preceded by a RfQUI:S'l'-COMMIIT for T. by schcdulcr
preconditions. Wcll-forncdnciS implies that the RFQUFS'I'-COMMI' is preceded by
CRFA'KII'), and is not followed by any output operations ot .'Thus, the only serial operations
ofT that could follow the RIFQUFS'I'-COMMIrl' arc return operations ofchildren ofT.

I.et '" be a child of' T for which a return operation occurs in a. By scheduler preconditions,
there is only one rcturn operation for 'I in a. By ILemma 46. a als) contains
RFQUFS'I'-CRIFA'I'I('I"). Since this is an output operation of T. it precedes the
RFQUFS''-COMMIT ror '", and hence precedes the return operation for T'I. len the schcdulcr
preconditions imply that the return operation for '" precedes the return for 'r.

Next, consider the case where T is an access. If no IN'I'FRNAIL-CRFF('I') occurs in a, the
result is immediate, so assume that IN'IHNAI.-CRFATtI(T) occurs in a. In case an
AIIORT(T) occurs in a, scheduler preconditions imply that the IN'I'RNAI.-CRFATF(T) must
precede the ABOR'I'(T). Then the rcturn operation for T must be preceded by a
RFQUES'I'-COMMI' for T. and wcll-formedness implies that this is in turn preceded by
C FATI'Fr). 'llius, no serial operations ofT can follow the return operation for T. I

Lemma 52: ILet a be a well-formed concurrent schedule. If a return operation for T is in a. then
it follows all operations in a whose transactions arc descendants of T.

Proof: Since a return operation for ' occurs in a. we have T* * To. Iet 'r be a descendant of'r,
and assume for the sake of obtaining a contradiction that a serial operation v with transaction(w)
= 1" occurs after the return for T in a. Let o' be the prefix of a preceding V.

By Lemma 46, a' contains a RFIQUFST-CREArF('F). Then Lemma 50 implies that " must
contain a return operation for 'T. But then the well-formed schedule a'.w contains a return
operation for '" followed by an operation offi, which contradicts Lemma 51. I

Weak concurrent systems are defined in the following section, and many of their properties are stated and

proved. Weak concurrent systems are obtained by replacing the concurrent scheduler with a more permissive

scheduler, the weak concurrent scheduler. Results in Section 7 prove that every execution of the concurrent

system is also an execution of the weak concurrent system. 'Thus, additional interesting properties of
- ,)' concurrent system behavior follow immediately from the corresponding properties of weak concurrent system

V behavior, proven in that section.

'I%
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6. Weak Concurrent Systems
In this section. we define "weak concurrent systems", which are exactly the same as concurrent systems,

except that they have a more permissive controller. the "weak concurrent controller". "The weak concurrent

controllcr reports aborts to a transaction's parent while there is still activity going on in the aborted

trans.action's subtrcc. In this paper. weak concurrent systems are usCd primarily to provide an intermediate

step in proving the correctness of concurrent systems: proving a weaker condition for weak concurrent

systems allows us to infer the stronger correctness condition for concurrent systems. However. weak

, concurrent systems are also of interest in themselves. In a distributed implementation of a nested transaction

*, system. pertbrmance considerations may make it important for the system to allow a transaction to abort

without waiting for activity in the transaction's subtree to subside. In this case, a weak concurrent system

might be an appropriate choice, even though the correctness conditions which they satisfy are weaker. Weak

concurrent systems also appears to have further technical use, for example in providing simple explanations of

the ideas used in "orphan detection" algorithms [HI.M W].

6.1. The Weak Concurrent Controller
In this subsection, we define the weak concurrent controller. As we have already said, it is identical to the

concurrent controller except that it has a more permissive AIORT operation. For convenience, we describe

the controller here in its entirety. It has the same operations as the concurrent controller:

Input Operations:
R FQU FST'I- CRFATE(T)
R EQU FSI- COM M ITfl',v)

Output Operations:
CRIiA'I'F(I). T a non-access transaction
I NTFR N Al. - CR FATET), T an access transaction
COMM IT(r.v)
ABtORT(T)

INFORM -COMMIT- A(X)OF(I)
INIFORM - AlBORT- AT(X)OF()

Each state s of the concurrent controller consists of five sets: create-requested(s), created(s),

commit- requested(s), committed(s), and aborted(s). The set commit- requested(s) is a set of

(transactionvaluc) pairs. and the others are sets of transactions. (As before, we will occasionally write T E

commit-requested(s) for (Tv) E commit-requested(s) for some v.) All are empty initially except for

create-requested, which is {T01. Define returned(s) = committed(s) U aborted(s). The operations are as
follows.

* R EQUFST- CR EA'I'FI'I)
Postcondition:

N' % .% ''
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create - rcqucsted(s) = creae- rcquc~tcd(s') U ITl'

" Rf-iQUI-:S'I*-COMM II'(.v)
Postcondition:
commit - rcquestcd(s) = commit - rcqucsled(s') U I('I',v)l

" CRI:AIX.). 1'a flof-aCCCSS transaction
Precondition:
T E createc- reqticstcd(s*) -crcatcd(s')
IPosLcondition:
crcatcd(s) = crcatcd(s') U fTJ

* I NTER NAI1 - CR IFAT'I' ), '1'an access transaction
Precondition:
TF E create- rcqluescd(s') - crcated(s')
Postcondition:
crcatcd(s) = crcatcd(s') U fITI

* COMM lIT(T.v)
Precondition:
(*I'v) E commit- rcquestcd(s')
T ( rcturncd(s')
childrcn( I) nl create- rcqustcd(s*) Q rcturncd(s')
Postcondition:
committcd(s) = committcd(s) U III

" AIIORT(T)
Precondition:
Fr E creatc-requestcd(s') - returncd(s')
Postcondition:
created(s) =crcatcd(s) U (1'j
aborted(s) =abortcd(s ) U IT)

* INFORM -COMM IT- AT'(X)OF(]'):
Precondition:
T E committcd(s')

" INFORM - ABORT- ATr(X)OF(T):
Precondition:
T E aborted(s)

Thus. the weak concurrent controller is permitted to abort any transaction that has had its creation

requested. and which has not yet returned.
Lemma 53: I ct a be a schedulc of the concurrent scheduler, and let s be a state which can result

from applying a to thc initial state. 'Ibcn the folIlowing conditions are true.

LT'! is in create- requested(s) exactly if 1T T. or a contains a RFiQU~isr-CREN'r(T)
operation.
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2. If T is a non-access transaction. then T is in created(s) exactly if a contains either a
CRI-'AI'F(T) or AIIORT(T) operation.

3. If T is an access transaction, then T is in crcatcd(s) exactly if a contains either an
INTIiRNAI ,- CIlFA'I'lF T) or A I10R'I'('I') operation.

4.(I'.v) is in commit-requcsted(s) exactly if a contains a COMMIT-Rl-QUFSI'I'.v)
operation.

5. (T.v) is in committcd(s) exactly if a contains a COMMIT(T,v) operation.

6. T is in abortcd(s) exactly if a contains an A IOR I'(T) operation.

6.2. Weak Concurrent Systems
"he composition of transactions, resilient objects and the weak concurrent scheduler (lock managers and

weak concurrent controller) is the weak concurrent system. A schedule of the weak concurrent system is a

weak concurrent schedule.

Weak concurrent systems exhibit nice behavior to transactions except possibly to those which are

descendants of aborted transactions. 'hus, we say that a transaction T is an orphan in any sequence a of

operations provided that an ancestor of T is aborted in a. In many of the properties we prove for weak

concurrent systems, we will have to specify that the transactions involved arc not orphans.

6.3. Properties of Weak Concurrent System

As we did for serial and concurrent schedules, we here prove a number of useful basic properties for weak

concurrent schedules. As before, most of these properties are simple to state and prove.

6.3.1. Operations in Weak Concurrent Schedules

As beforc, we include a collection of lemmas describing the possible kinds and orders of operations that can

occur in well-formed weak concurrent schedules. 'hese lemmas are analogous to some in Section 5. and have

similar proofs: the main difference is that we must take proper care with orphans. As before, we go on to

show that all weak concurrent schedules are well-formed, so these properties actually follow just from the fact

that these schedules are weak concurrent.

Lemma 54: Let a be a well-formed weak concurrent schedule, and let T * To be a transaction.

1. If" a contains any operation with transaction T, then a contains a CRFA'I*-iT). and a
REQUEST-CR EA[E([).

2. If a contains a COMMIT for "r, then a contains a RFQUFSI'-COMMIT for T. a
CRI-ATF4T) and a RIEQUFST- CREAFI(T).

3. If a contains an AIIOR(T). then a contains a RI-QUFS'I'-CRFIAI'E(T).

%. " ' " - , ," -. . - - ",' ' ." , , r% " ' 5 , ,'
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Lenmna 55: ILet a be a wcll-formed weak concurrent schcdule, and Ta transaction. Assume that
some descendant ofT is in transaction(a). Then the following hold.

1. CRiFA'I'(I) occurs in a.

2. IfT* Tl. then RliQUFST-CRAIFl[') occurs in a.

LIemma 56: Iet a be a wcll-formed weak concurrent schedule. and lctc * l'ro 0

I. If a contains a RiFQUlSI'-CRIATI'l), hut does not contain a return operation for T,
then parent(T) is not committed in a.

2. IfT is live in a. then parcnt(T) is not committed in a.

3. If a contains a RlQLIFS'I'-CREATI'T) but does not contain a CREA'FI') or
A BORT(T). then parent(T) is not committed in a.

Proof: I. Suppose a COMMIT operation for parent(T) occurs in a. llen the weak concurrent
controller preconditions for the COM M IT operation imply that the COM M IT for parcnt(') must
be preceded by a RI-QUIS'-COMMIT for parent(T). By wcll-formedness. the
RFQUFS'-COMMIT for parent(T) must follow the R:QUiST-CRFATI:I). so that the
COMMIT for parent(T) must follow the RIIQUFSIT-CRFATI41). Then the weak concurrent

.. controller preconditions for the COMMIT operation imply that there must be a COMMIr
operation for T in a. a contradiction.

2. and 3. are as in 3.6.2. I
Lemma 57: ILet a be a well-formed weak concurrent schedule, and let T be a transaction which

is not an orphan in a.

1. If a contains a RFQUFSI'- CRFAT'(I'(). but does not contain a COMMIT operation for
T, then all proper ancestors ofT are live in a.

2. If T is live in a. then all proper ancestors ofT are live in a.

3. If a contains a RFQUST-CREATrFXI') but does not contain a CRE.AI'F), then all
proper ancestors ofT arc five in a.

Proof: By repeated use of the previous lemma, well-formedness and the weak concurrent
controller preconditions. I

Lemma 58: iet a be a well-formcd weak concurrent schedule, and let T and T" be transactions
with 'I" a descendant of T. Assume that 1 is not an orphan in a and that there is a COMMIT
operation for T in a.

1. If there is a RFQUFST-CREATFE(i) in a. then there is a COMMIT operation for T in
a.

* 2. If Ir is in transaction(a), then there is a CommITr operation for T in a.

Proof:

1. By Lemma 57.

4,--- "0-
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2. Ily L.emma 54 and part 1.

6.3.2. Objects and Locking
In this paragraph, we give two simple lemmas about the behavior of the locking strategy.

nimma 59: l.ct a be a weak concurrent schedule. L.e X be an object, and let T and 'I" be
accesses to X. Lct U be an ancestor ofT which is not an ancestor of]'. Assume that CRIATl-I')
precedes CRI'AFAT) in a.

1. 'lcrc is either an INFORM-COMMIT-AT(X)OF(U). or else an
INFORM - ABORT- AT(X) for some ancestor ofT, occurring between CRFATF(T) and
CRFATK(l") in a.

2. Fithcr CRFA'IF() is preceded by a COMMIT operation for U. and by a
REQUISI-COMMIT operation for U. or else CRlA'I'('I") is preceded by an ABORT
operation for some ancestor ofT.

Proof:

I. ly emma 44.

2. By part I and the preconditions of the weak concurrent controller.
' I

Lemma 60: Let a be a well-fi)rmcd weak concurrent schedule. and X a basic object. lhen the
set of active transactions after aIR(X) is exacdy the set of lockholdcrs in the lock manager for X
after a.

Proof: By induction on the length of a. I

6.3.3. Well-Formedmss
Here, we show that every weak concurrent schedule is well-formed. It follows that all the properties proved

earlier in this section are actually true for all weak concurrent schedules. From now on. we will use these

properties without explicitly mentioning well-formedncss.

Lemma 61: Let a be a weak concurrent schedule. Then a is well-formed.

Proof: By induction on the length of schedules. "lbe base, length = 0. is trivial. Suppose that
aw is a weak concurrent schedule, where v is a single operation, and assume that a is well-
formed. If w is an output of a primitive P, then the result is immediate, since each primitive
preserves well-formedness. No INTFRNAL-CRFATh operation can cause a violation. So
assume that v is an input to a primitive P. It suffices to show that airlP is well-formed. 'Iere are
six cases.

(1) w is CR FATFT) and T is a non-access transaction.
The controller preconditions insure that CRFA(TI) does not appear in a.

(2) v is CREATF'') and "1" is an access to resilient object R(X).
fly the lock manager preconditions, no CRFA'rF4'I) appears in a. 'Tihe lock manager
preconditions and Lemma 60 imply that all the transactions which are active after a are ancestors
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i ofTI.

(3) v is COMM I(T.v).
Then v is an input to tran&iction parent(l'). Weak concurrent controller preconditions imply that
a contains RI-QUI:ST-COMMI'I'T.v). and so Lemma 54 implies that a contains
,IRIQUIlSI'-CI(I Ai': 'I'). Also, wcak concurrcntcontrollcr preconditions insure that a does not

contain a return operation for T.

(4) , is AIIORT('I').
Then v is an input to transaction parent(T). Weak concurrent controller preconditions imply that
a contains a IQUF-S'-CIA I ). Weak concurrent controller preconditions insure that a
does not contain a return operation for T.

(5) v is INFORM - COMM IT- AT(X)OF(') at resilient object R(X).
By the preconditions of the weak controller, a contains a COMMIT for T. If
INFORM-AIIORI'-A'r(X)OI'(T) occurs in a. then a also contains an ABORT for I'. which
contradicts weak concurrent controller preconditions. 'Thus, no
INFORM-AIOR'I'-A'(X)OF('I') occurs in a. Since a COMMIT for T occurs in a, weak
concurrent controller preconditions imply that a RFQUFS''-COMMIrr for T also occurs in a.

(6) v is INFORM - AIBORT- A'I'(X)OF('T') at resilient object R(X).
',V'. By the preconditions of the weak concurrent controller. a contains ABOR'r('I). If
,-. INFORM-COMMIT'1-A T(X)OF(T) occurs in a. then a contains a COMMIT for ', which

contradicts weak concurrent controller preconditions. 'hus no
INFORM -COMM IT- A'T(X)OF('') occurs in a. I

63.4. Visibility and Weak Concurrent Schedules

'I is paragraph states and proves important properties involving visibility in weak concurrent schedules. In

particular, the most important result of this paragraph is Lemma 66, which relates the portion of a weak

concurrent schedule which is visible to a particular transaction, to schedules of transactions and basic objects.

'Ibe first lemma shows how visibility propagates among the transactions during a weak concurrent execution.

Lemma 62: let aw be a weak concurrent schedule, where w is a single operation.

1. If w is CREATF(T), then visible(a w,T) = visiblc(aparcnt(T).

2. If w is COMM I(Tv), then visiblc(aw,parcnt(T)) = visiblc(a,'I)w.

3. If w is ABORT(T). then visiblc(awparcnt(T)) = visiblc(aparent(T))u.

4. If v is COMMlr(rv), and "! is a descendant of parcnt(T) but not 'r, then visible(aw,T') -
visible(aw.parent(T)) = visible(a.]")- visiblc(a,T).

Proof: 1. By ILemma 55, w is the first serial operation in aw whose transaction is a descendant of
T. and T is not visible to parcntl'[). 'Ibus any transaction other than 'I' visible to T in asw is visible
to parcnt('l) in aw. 'hen parent(T) is visible to T in aw, and by l.emma 8,
visiblc(aw,parcnt(T))w = visible(aw'.T).
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By the definition of visibility, any transaction visible to parent(T) in am is visible to parent(T) in
a, and visiblc(a.parent('l)) = visiblc(aw.parent(l)). Substituting in the equality above, we have
the resulL

2. By the definition of visibility. any transaction visible to parent(T) in am is either visible to
parent(T) in a, or is visible to T in a. Ilut any transaction visible to parent(T) in a is visible to T in
a. so we have that any transaction visible to parent(T) in amr is visible to T in a, and
visible(awparent('l)) is a subsequence of visiblc(aT)w. It fillows immediately from the
definition of visibility that any transaction visible to T in a is visibIc to parcnt(T) in a. so that
visibl(a.'l') is a subsequence of visible(aw.parent(l). Thc result is immediate.

3. Immediate from the definition of visibility.

4. Clearly. visiblc(a,T') is a subsequence of visible(aw,'l'). Any operation in visibl(awT') -
visiblc(a.'l) has a transaction which is a descendant ofT, and so is either w or is visible to T in a,
and thus is in visiblc(a.T)w. Thus we have visiblc(aw,'l") - visible(al')w = visiblc(aT) -
visihh'(a.'l)w. As w is not in visiblc(a.'lX), this equals visible(a:,T) - visible(ajr). By part 2,
visiblc(awparent('l)) = visible(a,'l)w. and the result follows by substitution in the first identity.
I

Now we prove two lemmas involving visibility and the behavior of resilient objects in weak concurrent

systems.
Lemma 63: .et a be a weak concurrent schcdule. Let R(X) be a resilient object, and let '' and '[

be accesses to R(X). If'l" is live and not an orphan in a and CREATFA'I') occurs in a, then either
T is visible to "T in a, or else CRFATF(T) is in the scope of an
INFORM -ABORI- AT(X)OF(U) in aiR(X).

Proof: Thcre arc two cases.

(1) CRFA'I'IX) precedes CREATFAT) in a.
Assume T is not visible to T" in a. ihen Lemma 59 implies that there is an
INFORM - ABORT- AT(X) operation for some ancestor ofT. occurring after CRFAT'F(T) in a.

(2) CR F'.f) precedes CR FATFcl) in a
2Then Lemma 59 implies that there is either a COMMIT or an ABORT for some ancestor ofT', in

a. Since 'l is not an orphan in a. there is a COMMIT for an ancestor of'" in a. Then ILemma 58
implies that " is retrned in a. a contradiction. I

Lemma 64: Let a be a weak concurrent schedule. I et R(X) be a resilient object, let T and T" be
accesses to R(X). and let 'I"' be any transaction. Assume that 'I" is not an orphan in a. If an
operation w of T precedes an operation w, of r in a. w is not in the scope of an
INFORM - ABORT and 'I" is visible to '" in a. then ' is visible toT" in a.

Proof: Ily well-formedness, CREAIFTI) and CREA'rxI) are operations in a. in that order.
Let a' be the prefix of a ending with CRIEA'I'FAI"). Then 'I" is live and not an orphan in a'. By
Lemma 63.T is visible to r in a'. and so in a. ILemma 8 implies that T is visible toT'l' in a. I

'The following lemma is straightfirward.

lemma 65: Let a bC a weak concurrent schedule, and let T be a transction which is not an

J, N - r 'e- ' .:. '" p..
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orphan in a. Any transaction 'I visible to T in a is not an orphan in a.

Proof: Ifl is an ancestor or], the result is immediate. Otherwise, COMM IT operations appear
in a for every proper descendant of Ica(l''l") that is an ancestor of-T'. Ily well- fonncdness, none
of these transactions has aborted. Since the remaining ancestors of' are also ancestors ofT. and
the result follows. I

We arc now ready to prove the key lemma of this paragraph.

Iemma 66: ILet a he a weak concurrent schcdule, let T be live and not an orphan in a, and let P
be a resilient primitive.

1. If P is a transaction ', then visible(a,T)'I is a prefix of arl- and a schedule of.'l.

2. If P is a resilient object R(X), then visiblc(a,'l')IR(X) is a prefix of undo(aIR(X)) and a
schedule of basic object X.

Proof: 1. Immediate from Iemmas 1 1 and 1.

2. First, we show that any operation in visible(a,T)IR(X) also occurs in undo(aiR(X)). Ifw is in
visiblc(a,')IR(X), it means that all ancestors of transaction(w) up to Ica(transation(w),'l') have
committed. ly assumption, T is not an orphan in a, so Lemma 65 implies that transaction(w) is
not an orphan in a. 'Ius, by the preconditions of the weak concurrent controller there is no
INFORM- ABORT for any ancestor of transaction(w) in a. 'Iberefore, v is in undo(aiR(X)).

Now we consider any two operations w and ,r of undo(aR(X)). where precedes w'. Assume
that w* is in visible(a,T)lR(X). Let '1"' = transaction(w) and 'I" = transaction('). Then 17 is
visible to T in a, and I" is not an orphan in a by i.emma 65. Since w is in undo(aiR(X)), no
INFORM - ABORT occurs at R(X) fir any ancestor of.'" in a, with , in its scope. Then Lemma
64 implies that '"' is visible to T in a. 'hus, w is in visible(aT)R(X). It follows that
visible(a.T)IR(X) is a prefix of undo(aIR(X)).

By ILemma 61, aIR(X) is a well-formed schedule of resilient object R(X). Then the resiliency
condition implies that undo(aIR(X)) is a schedule of basic object X. So by Lemma 1,
visible(aT)R(X) is a schedule of basic object X. I

Finally, we prove that, in a weak concurrent schedule, concurrently executing transactions access disjoint

sets of resilient objects.

Lemma 67: Let a be a weak concurrent schedule, with transactions T and r live and not
orphans in a. Lct 'r = Ica(TJr). Let /8 = visible(a.T) - visible(a,'r,) and 8' = visible(a,T') -
visible(a,'"). Then no resilient object has operations in both P and P'.

Proof: The result is trivial if T is an ancestor of "1* or vice versa. So assume that lca(TT') is
neither T nor I". Let R(X) be a resilient object such that both 8 and P' contain operations of
R(X). By well-formedness. we can assume without loss of generality that there are two accesses to
X (not necessarily distinct) such that w = CRiA'I'F4U) and qp = CRATE(V) are in P and P'.
respectively, and neither U nor V is visible to Ica(TT) in a. Also, we can assume that w appears
in a no later than 4p.

We have that U is visible to some ancestor of T in a, and V is visible to some ancestor of r in a,

V %.
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and since T and 'I" arc not orphans in a. I.cmma 65 implies that no ancestor of U or V has aborted
in a. Also. neither U nor V is visible to Ica(Tl") in a, so it must he that U * V. But then w
precedes 4p in a. and I.emma 59 implies that some ancestor oft' is committed in a. 'lhcn Lcmma
57 implies that T is returned in a. a contradiction. I

7. Simulation or Serial Systems by Concurrent Systems

In this section, we prove the main results of this paper, that concurrent schedules arc serially correct, and

that weak concurrent schedules are correct at To. Ioth these results follow from an interesting theorem about

weak concurrent schedules. which says that the portion of any weak concurrent schedule which is visible to a

live non-orphan transaction is equivalent to (i.e. looks the same at all primitives as) a serial schedule.

'lie proof of this theorem is quite interesting, as it provides considerable insight into the scheduling

algorithm. "The proof shows not only that a transaction's view of a weak concurrent schedule is equivalent to

some serial schedule, but by a recursive construction, it actually produces such a schedule. It is interesting and

instructive to observe how the views that different transactions have of the system execution get passed up

and down the transaction tree, as CREATFS, COMM ITS and AIOR'S occur.

'lheorem 68: I.et a be a weak concurrent schedule, and 'T any transaction which is live and not
an orphan in a. 'Then there is a serial schedule/3 which is equivalent to visiblc(a,'j).

Proof: We proceed by induction on the length of a. The basis, length 0. is trivial. Fix a of
length at least 1, and assume that the claim is true for all shorter weak concurrent schedules. Let w
be the last operation of a, and let a = a'w. Fix T which is live and not an orphan in a. We must
show that there is a serial schedule ,t which is equivalent to visible(a,T).

If w is not a serial operation, then visible(a','l') = visible(serial(a'),T) = visibic(serial(a),T) =
visiblc(aT), and the result is immediate by induction. So we can assume that w is a serial
operation. Also, if transaction(w) is not visible to T in a, then visiblc(aT) = visible(a',T.) and
the result is again immediate by induction. Thus, we can assume that transaction(w) is visible to T
in a. Also, T is not an orphan in a'.

Thcre arc four cases.

(1)w is an output operation of a transaction or resilient object.
Then the inductive hypothesis implies the existence of a serial schedule ,8' which is equivalent to
visiblc(a',T). Let P3 = fw. We must show that ,8 is equivalent to visiblc(a,T) and serial.

Let P be any primitive. Then PIP = P' uIP = visiblc(a',T)wIP by inductive hypothesis. =
visibic(aT)IP, by Lemma 12. Therefore,/3 is equivalent to visible(a,[).

lct w be an output of primitive P. Then PIP = visible(a,Tr)IP by equivalence, which is a
schedule of P by Lcmma 66. I.cmma 4 implies that /3 is serial.

(2) v is a CR FATI-('f) operation.
'hen transaction(w) = '", and so '" is visible to T in a. Then .emma 55 implies that w is the first
operation whose transaction is a descendant of'l". 'Iben by the definition of visibility, it must be
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that 1" = T. By ILemma 57. parent(T) is live in a'. Since parent(T) is not an orphan, the inductive
hypothesis implies the existence of i serial s6hedule P8' which is equivalent to visibl,(a'.parent('l')).
I.ct P - /',r. We must show that ,P is equivalent to visible(a.T) and serial.

I.t 1) he any primitive. Then fill) = P8'wlP. = visihle(a'.parent('lT)}IlP by inductive hypothesis,
= visihle(a.l')lP, by I.emma 62. 'Ibus. P3 is equivalent to visiblc(al').

Consider any execution of the serial system having ft' as its operation sequence, and let s" be the
state of the serial scheduler aftcr P3'. We show that r is enabled in s'. That is. we show that T E
create-rcquested(s), that] T creatcd(s'). and that sibling'l') f created(s') C returned(s').

Consider any execution of the weak concurrent system having a as its operation sequence, and
let s be the state of the weak concurrent scheduler aflter a'. State s contains a component sc for the
weak concurrent controller and a component sx for the lock manager for each object X.

CIf ' '1"., then T E crcate-requcsted(s') by the initial conditions. IfT # T0 then T E
create - requested(sc) by the preconditions of the concurrent scheduler, so a
R FQUI'SI'-CRFATFXI') operation occurs in a'. 'Ihe REQUES'-CREATIF'') operation has
transaction parent(T). and so is in visible(a',paren('l)), and thus is in P3'. Therefore. T E
create - req ucsted(s').

IfT E created(s'). then there is either a CRFIATFXI') or an ABORI(''T) operation in P,"' and
hence in a'. In the former case, a would have two such operations, while in the latter case, a
would have an AIIORT(') followed by a CR-A'I'F('I). Ikoth are impossible. so T crcated(s').

Assume U E siblingsoT) n crcated(s7). T'hen there is either a CRIiATF4U) or an ABORT(U)
operation in P3'. In the latter case. U is obviously in rctumed(s'). So suppose CREA'I-F(U) occurs
in P', and so in visiblc(a',parcnt(T)). Since CRFA'I(U) occurs at U, U is visible to parent(T) =
parent(U) in a': thus, COMMIT(Uu) occurs in a'. for some u. Since COMMIT(U,u) occurs at
parent(T), COMMI'T(U,u) is in visible(a',parcnit(T)), and so in P3'. Ius. U E rcturned(s').

(3) w is a COMM IT('I,v) operation.
'Iben '1"' = parent('lT) = transaction(w) ;s visible to T and not an orphan in a. Also. r is not an
orphan in a', by Lemma 65. 'hen since a is well-formed "1" is live in a'. and so by Lemma 57, F'
is live in a' and so in a. Since 1"' is live and visible to . r is an ancestor of F'. Since r is live in
a. Lemma 58 implies that T is not a descendant of'I". 'Ibe inductive hypothesis yields two serial
schedules. .8' and P3". which arc equivalent to visiblc(a',T) and visible(a'.'r). respectively. Let 7
= visiblc(/3",T"). Let = P3' - y and P, = 3" - y. We show that / = y/,31 IT/ 2 is equivalent to
visiblc(a,T) and serial.

Lemma 28 implies that y is a serial schedule.

Since T' is visible to r in a'. Lemma 10 implies that visiblc(a',T") = visible(visiblc(a',),71').
which is equivalent to visiblc(/"l') = y: thus y is equivalent to visiblc(a'1 "). Also, since 1" is
visible to T in a, Lemma 10 implies that visiblc(a','I) = visiblc(visiblc(',T),'I"), which is~~equivalent to visibic(/F','l). "ihus, y is also equivalent to visiblc(P-8"').

'l'hen by Lemma 31 (applied with scrial(a') as the schedule a hypothesized in the lemma), y/31

equivalent to" .3 -. 1 . . %. I' %,, - I %also eq uivalentto vi i.,e(/3,.V
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and Afl are scrial schedules which arc equivalent it P1' and P.", respctuively.

V. We have that visibl(a.XI') = visihlc(a',T')w by I ecrnmna 62. which is equivalent to fl'ir. which is
in tur equivalent t) yfl~w. T[hat is, visihke(a.'l"') is cqui~alcnt toy) iv

* ' Since fl- is equivalent to visiblc(a'.1I) and y is equivalent to visihle~a'I"'). by I cmma 10 -

- Y is equiivalent to visiblc(a'T) - visiblcla'I"'). = visible~a.T) - visible(a,TI") hy Lecmma 6i -

IhUS, ft is equivalent to visibila.I'**visihlc(a'I'H-visiblc(a.'I-)). Sincc 'I" is visible to 1'in a,
hy ILemma 8. it is easy to seC that the same operations appear in this schcdule as in visiblc(aTI).
Lct P he any primitivc. TIhen visihlc(ajI"))IP is a prefix of' visibIc(a)lP, hy Lecmma 66. It
follo~ws that fill' = visible(aI)jP, so) that P3 is equivalent to visihle(a.'l').

It remains to show that P is serial. 'Ihis follows from Le~mma 32, provided we can show that:
(3.a) yf I is at serial schedule.
(3.h) 'I" sees everything in y,
(3.c) 'I' sees everything in 72
(3.d)y =visible('yp,'' = visihl(YP2 .I' and
(3.c) no basi object has operations in both Pand P

(3.a) Consider any execution of the serial system having y.8, as its operation sequence, and let s*
be astate olthcserial scheduler after yfi. We show tha't 7r is enabled in state s'. 'Iban is, we show
that 0"F.v) E commit- rcqucsted(s'). that 'I" If returncd(s'), and that children('I") n'
create - requecsted(s ) CZ returncd(s).

Consider any execution of the weak concurrent system having a as its operation sequence, and
let s be the state of the weak concurrent scheduler after a', with components sc (the weak
controller state), and s~ for every object X (the lock managers).

Since the weak concurrent scheduler is able to perform COMM r''X"v) in state s. it must be that
('l".v) is in commit- requested(%~), and so it must be that 'I" issues a REiQUFST-COM M Ir(r"v)
in a'. Since 'I" is visible to itself, and 0' is equivalent to visible(a','F), it follows that this

.PIS RFQUFS'l'- COMM I('I"Xv) operation also occurs in yfp1. 'hcrcforc, (1",v) is in

commit - requestcd(s').

Since a is wcll-formcd. at most one return operation for r' appears in a-, thus, rI is not in
returncd(ir).

Fix U E children(T) flcrcate-rquested(s'). 'I'hen RFQUFST-CREATF(U) is performed at
'I" in yp131 and hence in a', so U E create - requested(s ). Since the weak concurrent scheduler is
able to perform COMM l'I,v) in state s, it must be L~it U E returned(sc). 'Thcrefore, a return
operation for U is performed at I", in a'. Since 'r is visible to itself, and yfi is equivalent to

4, visible(a',T'), this implies that the return for U also occurs at 'I" in ' lP1. Tecfore, U is in
returncd(s').

(3.b) Immediate from Lemma 10.

* (3.c) Immediate from Lecmma 10.
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(d) We have that -y is equivalent to both visiblc(ftl'"') and visible(ft",'), and that yfi and
yfl, are equivalent to P' and P-, respectively. ly l.emma 10, -Y is cquivalent to both
visiblc( yi l') and visiblc(yP2,'l"'). luality folows.

(3.c) Immediate from L.emma 67.

(4) r is an A IORT('If) operation.
Then '"' = parent(T') = transction(w) is visible to T in a. and so) is not an orphan in a. by
Lemma 65. 'lhcn 'F is live in a'. and by L.cmma 57. 'F" is live in a' and s) in a. Since '" is live
and visiblc to T in a, T is a descendant of'l". Since T is not an orphan in a. T is not a descendant
of'I. 'lbc inductive hypothesis yields two serial schedules, ft' and P*'. which arc equivalent to
visiblc(a'.') and visible(a''). respectively. [ct P, = ,8" -P'. We show that fi = fi'wfll is
equivalent to visible(a') and serial.

By I.emma 31. 8',! is a serial schedule which is equivalent to ,3".

lct P be a primitive other than 'I"'. Then ,8IP = P/*, 1iP = PIP = visibl(a'J)P, =
visiblc(a,'l')P by L.emma 62. Also, since 'I"' is visible to T in a. visibil(a.')rl" =
visible(a.'I")rI"', = visible(a'.'i*)*rl" by Lemma 62. = ,8'wl'l- = pr-'. 'lbus,8 is equivalent to
visible(a&l').

It remains to show that P3 is serial. 'his follows from Lemma 33. provided we can show that:
(4.a) 'wi is a serial schedule,
(4.b) 'I' sees everything in /3'P , and
(4.c) /3' = visiblc(fl','F') = visible(f8' 1,Tl").

(4.a) Consider any execution of the serial system having P3' as its operation sequence, and let s'
be a state of the serial scheduler after P3'. We show that w is enabled in state s'. That is, we show
that 'I" E create-requested(s'), that " ( created(s'), and that siblings('r) C' created(s') C
returned(s').

Consider any execution of the weak concurrent system having a as its operation sequence, and
let s be the state of the weak concurrent scheduler after a', with components sc (the weak
controller slate), and sx for every object X (the lock managers).

Since the weak concurrent scheduler is able to perform ABORT('I") in state s. it must be that "
is in create-requestcd(s), and so it must be that '"' issues a RFQUFiS'I'-CRFA'TIF(1') in a'.Since 'I"' is visible to itself, and P3' is equivalent to visible(a'.'l"), it follows that this

R I-QU FSI'- CRF-A''('F) operation also occurs in P3'. 'hercf)re, ' is in create- requested(s').

4' Since a cannot contain two ABOR'I'(') operations. there cannot be an ABOR1'(I") operation in
a', and so there cannot be one in P3'. Assume that there is a CRIA'F-() in /3'. 'len Tr is visible
to 'I"' in a', so COMM I'I' ) occurs in a'. But then a COMMI T('F) and and AlBORT(I") both
occur in a. which cannot occur. 'l'herefore. there is neither an ABORT('r) nor a CRFA'F(") in
/3', and so '" is not in created(s').

Fix U E siblings(F) n creatcd(s'). 1hen there is a CRRA'FXU) in P3'. But then U is visible to
T" in a', so that a COMM IT for U occurs in a', and hence (because parent(U) is visible to '1" in

p
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a') a COMM IT for U occurs inl P'. 'lhcreforc, U E returncd(s').

(4.b5) Immediate from Lecmma 10.

(4.c) Ilhc first equality follows from Le~mma 10. Clearly. P3' =visihlc(/3'.'l"*) is a prefix of
vishl~f'fl.1') kuality follows hccausc any operation in Pvisible to I in fi',would also be

visible to T" in a', and so would be in 3' and not/31. I
Corollary 69: Every weak concurrent schedule is serially correct for every non-orphan non-

xcess transaction.
Proof: I cet a be a weak concurrent schedule. Let TI be a non-access transaction that is not an

orphan in a. Wc must show that art is a serial schedule. Note that '1 is not an orphan in any
prefix of a.

'l'hre arc three cases:

(i) arr is empty.
'then thc result is trivia.

(2)T'I is live in a.
'Then 'lieorem 68 yields a serial schedule /3 that is equivalent to visible(a.Tl). Thus, alT
visibt(a.ITNT = Pr". which suffices.

A- (3) MT is a transaction which is live in some proper prefix of a.
Since a is well-formed. a has a prcfix a't, where w is a COMM rioperation forT a'I'aT =anl'
and T1 is live in a'. 'Ihen 'Iheorem 68 yields a serial schedule P3 that is equivalent to

* ~~visiblea,IrI'. 'thus, art' = avrl = visibi(a'f,'l = prrl. which suffices. I

Now, since TO cannot become an orphan (having no ancestors to abort), our first major correctness result is
immediate.

Corollary 70: Every weak concurrent schedule is serially correct for T0.

Having proved correctness properties for weak concurrent schedules, we are now ready to prove the

correctness of concurrent schedules.
Ilemma 71: Every concurrent cxecution is a weak concurrent execution.
Proof* 'lhc proof is by induction on execution length, with a trivial basis. I ct a = a',s',u',s be a

concurrent execution with (s',w~s) a single step of the concurrent system, and assume the lemma
* holds for a'. Let s'c and sc denote the states of the concurrent controller in system states s' and sL

if w' is any operation other than an ABIORTl, the result is immediate, since the pre- and
postconditions for all other operations arc identical in the concurrent and weak concurrent
systems. Assume that w is an AiIOR'l(T), We must show that TI E create-requested(s'd) -
returned(s'd.

Since v' is enabled in state s'c in the concurrent controller, TI E (create- requested(s')-
created(s'c)) U (conwmit-requested(s'c) - returncd(s' )). if 'r' is in create-requested(s')5
crcated(s'd)' L em ma 45 implies that a' contains no CkEATI'4t) or AIIOR'l('l) operation. c y
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well- formedncss, a' al4 contains no COMMIT operation for T, and the result follows from
Lemma 45. On the other hand. if T is in cominit-requestcd(s'c) - returned(s'), I .emma 45 implies
that a II',QLIIS'I-COMMIT operation for T occurs in a*. By wcll-fnnedncss, this is preceded
by a CRI-AlFAI') opera ion. and by the concurrent controllcr precondition, this is preceded by a
RIQUI'ST-CRI'AIEI for T. Finally, again by I .mma 45, the result follows. I

Now we can prove the second major result of the paper.

Corollary 72: tIvery concurrent Lhedule is serially correct.
Proof: Let a be a concurrent schedule. Then a is also a weak concurrent schedule, by Lemma

71, and is well-formed, by Lemma 61. We must show that a is serially correct for every
transaction 'I. "lhcrc are three cases:

(h) ar is empty.

Then the result is trivial.

(2)Tis live in a.
fly Lemma 50, all of'lIs ancestors arc live in a. so that T is not an orphan in a. lhcn Corollary 69
yields the result.

(3) T is a transaction which is live in some proper prefix of a.
fly Lemma 51. a has a prefix a's', where w is a return operation fiorT. a'rF = arl and T is live in
a'. Bly Iemma 50. all of'l's ancestors are live in a'. soTis is not an orphan in a'. 'Iben Corollary
69 implies that a' is serially correct fIr T. so that a is serially correct for T. I

For completeness. we include an analog ofTheorem 68 for concurrent schedules.

Theorem 73: ILet a be a concurrent schedule, and 'r any transaction which is live in a. Then
there is a serial schedule P which is equivalent to visible(aT).

Proof: Lemma 71 implies that a is a weak concurrent schedule. Since T is live in a. Lemma 50
implies that ' is not an orphan in a. "lhen 'Tbeorem 68 yields the result. I

8. Discussion
In this paper, we have presented a formal model for describing nested transaction systems and their

properties. The model has many features that we believe make it a major contribution to the understanding

of transaction systems, and we highlight some of these below.

First, the entire model is based on a very general and very simple underlying model for concurrent

computation, the I/O automaton model. The general definitions and properties of this underlying model

provide the necessary underpinnings for our entire transaction modelling effort. This modelling is very easy

to learn and use. and its usefulness extends much beyond transaction systems. Thus, it seems to us to be a

very satisfactory foundation for our work.

Our transaction system model permits simple. yet completely rigorous description of concurrency control

,''€..'- ~ '' "
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algorithms in ways which correspond very closely to the usual informal ways of understanding the algorithms.

Te important components of transaction systems, the transactions, data and schedulcrs. are described

explicitly, which greatly facilitates reasoning about them.

There is a substantial amount of work in this area which does not represent all of these components

explicitly, but only implicitly, by properties of their behavior I.y,IlllO.Go. for exampleJ. There are problems

with this approach. A key ingredient that is usually absent from such implicit models is a clear notion of
"causality", describing how particular actions (operations) arc triggered by other actions or states. In contrast.

our explicit representation of all system components as I/0 automata makes it easy to understand exactly

what causes all operations to occur. When causality is important in reasoning about algorithms, as in [Gol.

implicit models can be extraordinarily difficult to use. Even in cases where implicit models can be used, we

see the present work as providing a formal and intuitive basis for that work.

Our model represents transactions as essentially arbitrary automata, subject only to simple syntactic

constraints. 'Ibis approach is much more general than representing them as programs in some particular.

overly-constrained language.

The 1/0 automata model permits description of algorithms in an abstract form which is not tied to a

particular programming language or system, and which allows maximum nondeterminism. An

implementation of an algorithm for a particular system will generally restrict the nondetcrminism allowed in

our presentation, because of the need to tailor the implementation to the requirements of a particular
N! environment. However, since the implementation is just a restriction of the abstract algorithm, correctness

properties of the algorithm within our model will hold afortiori for the implementation.

Formulating nested transaction systems as i/0 automata permits precise formulation of the correctness

conditions to be satisfied by concurrency control algorithms: those correctness conditions can be stated at the

transaction interface, an interface which does not contain explicit information about object representation.

Because of this choice of interface, the correctness conditions can be stated in a robust way: the same

conditions can be useful for describing the properties of many different kinds of algorithms, some of which

manipulate the data in very different ways. Also, the correctness conditions can be described in a way that is

meaningful to a user of the system.

"he particular correctness conditions that we describe in this paper involve serial correctness at transaction

interfaces. We believe that these particular correctness definitions arc very interesting, and will be useful for

describing the correctness of most of the usual algorithms studied in the concurrency control area. 1"hat is. the

same conditions appear to be the right ones to use to describe correctness of many different kinds of

...............................I
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algorithms. including those that use locking, timcstamps, multiple versions, and replicated data.

'Ibc model permits rigorous correctness proofs to be carried out for concurrency control algorithms in ways

that follow intuitive understanding of the algorithms. For example, in this paper, we have used thc model to

describe and show the correctness of a very important nested transaction concurrcncy control algorithm. Our

correctness proofs are constructive and provide considerablc intuition about the workings of the algorithm.

In contrast to most correctness proofs for concurrent algorithms, our proofs are not voluminous low-level

case-analyses: rather, they consist of a large number of clear and natural lemmas about the behavior of the

algorithm. 'Ihese lemmas can be understood individually, and build upon each other in the manner of good

mathematics. Many of the lemmas should be reusable in extensions of this work as well.

A successful model of nested transactions should contain the classical theory as a special case, in a way

which is natural and sheds some light on that cas. We believe that our model has contributed much to the

classical theory. For example. the I/0 automaton model provides a general underlying model, a missing

component of the classical theory. Also, our explicit and general modelling of the transactions unifics the

earlier collection of somewhat arbitrary approaches. Our use of the transaction interface for stating

correctness conditions is also an improvemenL

Another contribution to the classical theory is in motivating serialiiability as a correctness condition.

Serializability consists of two criteria: individually, each transaction must see a consistent state, and together.

they must appear to run in a serial order. (A schedule in which each transaction reads and writes the initial

state of the database provides a consistent state to each transaction, but is not serializable.) Why is this second

ordering property a part of the generally accepted correctness condition of the classical theory? Clearly,

because of implicit nesting in the context of the transaction system. In practice, transactions perform tasks on

behalf of some external entity or entities, which may expect one transaction to see the results of the next. In

the natural formulation of classical systems within the present model, the classical transactions are children of

TO. with data accesses as their only children. 1lhe root is an explicit representation of the external

environment in which the system runs. "ius, the ordering property of serializability is a natural consequence

*of the requirement that all transactions see serial schedules, including T0. It does not have to be introduced as

an independent requirement in need of separate justification.

By now. there has been a large amount of systems design and algorithms work that uses or implements

nested transactions. It seems likely that these ideas will form the basis of future programming languages for

distributed computing. However, there is currently a problem with the presentation of this work. Some of

these algorithms are presented in the context of specific systems and programming languages. Very useful

and general ideas are too intimately connected with details of the systems to be fully appreciated, particularly

- 11111W 114, .~ **' ~ ~ -
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for readers with only a passing understanding of those systems. 'Ibis level of dctail also makes careful

reasoning about the algorithms very difficult.

We believe that our model has provided the neccssary framcwork and some of the necessary vocabulary, for

describing this work in a clear and unambiguous way. We are currently studying much of this work on

systems design and algorithms using our model, and our preliminary results indicate that it works very well.

l~Throughout the paper. we have described connections with other people's work as appropriate. Here. we

mention some of the particular modelling work that relates most closely to ours, and describe the connections

in more detail.

First, the pioneering work of Bernstein and G(x)dman 111G. ec.] has had a strong influence on this work.

Quite early, they recognized the need for a model ror single-level transaction systems, that would have many
of the characteristics which we have sought for nested transaction systems. "lbcy have carried out extensive

research on precise understanding of single-level transaction concurrency control algorithms. Thcy have

presented formal statements of correctness conditions, in terms of serializability of the accesses to data objects

by different transactions. Thcy have described some concurrency control algorithms with precision, and have

proved corrctness of some algorithms. using a lemma which characterizcs serialiability by absence of cycles

in a certain dependency relation. Their work has gone a long way toward providing precise understanding of

the work in this area.

However, the particular models used by Bernstein and Goodman have some problems which limit their

applicability. For instance, the basic correctness condition is stated in terms of the interface between the data

objects and the algorithm. lhere arc many algorithms which handle objects in very different ways, e.g. using

multiple versions. or making multiple copies in order to permit "backing out" of operations. Since these

algorithms do not preserve the specified object interface, they would not be considered correct under the

same correctness condition. Thus, the correctness condition must be modified. Another limitation is that the

* proof technique, which involves proving absence of cycles, is a proof by contradiction: it does not give much

insight into the operation of the algorithms. For many reasons, it is not at all clear how to extend these

frameworks to handle nesting of transactions.

Earlier attempts in (Ly.Gol300LSJ to model nested transactions have made significant contributions. For

example, [LyJ contains a language-independent model, which is used to give precise correctness conditions

and a proof for a locking algorithm. Many of the ideas in that work have been useful in providing a

vocabulary for talking about nested transactions. However, attempts to extend the model of [Ly] to handle

correctness of orphans (Go] demonstrate that it is not sufficiently expressive. Certain aspects of the model
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lead to technical difficulties: for example, it fails to model the transactions cxplicitly. using instcad a

specification of their behavior. Our new model builds on the strengths of the earlier work, while managing

(we believe) to avoid its weaknesses.

Finally. the very recent work in 1BI1G] proposes another general model for nested transactions. While on

the surface the models appear quite different, they are actually "compatible". in that the concepts described in

[1BG] seem to be easily definable within our model. 'lhc style of the model in Jl1lGJ is different frn ours:

their work models transactions and the scheduler implicitly, for instance. However, we belie c that their

important axiomatic statements of properties can be described as assumptions and lemmas about behaviors of

components in our model. Also, the partial orders which they use to model exccutkns can actually be

defined simply and directly in terms of our lincarly-ordered executions. Ibcre are many points of aginement:

the use of the transaction interface for stating correctness conditions, and the use of the virtual root

transaction "1o. to mention two.

On the other hand, the emphasis in [BBG1 is on a different example than the one studied in this paper.

They consider multiple levels of abstraction for the data. and regard transactions at any level of the

transaction tree as accesses to data at a corresponding level of abstraction. "This view meshes quite well with

"'-I.'. our model, where, for example, we use the same CRFATF notation for creation of a transaction and

invocation of an operation on data. Their paper clarifies the concurrency control requirements for data at

different levels, when the correctness condition is serial correctness at TO. We hope and expect that it will be

easy to restate their results as claims about our model.

We note that the work in [l1BGJ only treats concurrency control, but does not address the very critical and

difficult issues of resiliency.

9. Further Work
Ibis paper is an embarkation on a major project to formulate a unified presentation of the most important

algorithms for concurrency control and resiliency, especially those for nested transactions, So far, we have

defined a general framework meeting the requirements outlined above. We have demonstrated the power of

this framework by using it to specify two correctness conditions for nested transactions, to present two locking

algorithms for implementing nested transactions, and to prove that the algorithms satisfy their rspective

requirements.

Future extensions to this work will include treatment of many other algorithms in the same framework.

Among the algorithms we will consider are timestamp and multiversion algorithms, algorithms which take

advantage of special properties of the transactions and objects (semantic information), algorithms for orphan
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managemcnL and algorithms which use replicated data objects. Although our focus so far has been on nested

transactions. we believe that our viewpoint contributes new insight to the special case of singlc-levcl

transactions as well: thus. we will examine algorithms for non-ncsted transactions as well as nested

transactions.

We are particularly interested in studying algorithms which give rise to live orphans, i.e. live transactions

whose ancestors have aborted JGoI.i,WaJIMJ. Our serial correctness condition provides a formal definition

of orphan correctness - that all transactions (including orphans) "see consistent data" (Go]. In fact, in work

currently in progress IH IM W]. we arc describing and proving correctness of several of the rcccntly-dcvelopcd

algorithms for orphan management. 'lbis work now seems to be quite easy, given the foundation provided by

the present paper. In fact, some of the key results of this paper are used as lemmas in that work.

Another direction of interest is the explicit representation of distribution within the model. It is fairly

natural to model each transaction and object as located at different sites, each with a local automaton

representing the resident portion of the (distributed) scheduler. These automata would communicate with

, each other in order to implement the (centralized) schcduler studied here. The natural next step would be to

model failure resilience, as various components lose information or fail altogether.

The reader might have noted that our correctness conditions do not guarantee anything about the system

making progress, but only about "safety" properties. Further work is needed to incorporate guarantees of

progress. 'Ibis work is likely to be difficult, however. Only recently, in [.1. have we achieved what we

consider to be a satisfactory understanding of the eventuality and fairness issues for the basic I/O automaton

model, so that we can even formulate the conditions we want to satisfy. But even with the ability to state such

conditions, the algorithmic issues still seem difficult.
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