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Introduction to the Theory of Nested Transactions

o Nancy Lynch
Massachusetts Institute of Technology
Cambridge, Mass.

Michael Merritt
A.T.and ‘T, Bell Laboratories
Murray Hill, New Jersey

Abstract: A new formal model is presented, for studying concurrency and resiliency propertics for nested

transactions. ‘The model is used to state and prove correctness of a well-known locking algorithm.

1. Introduction

'This paper develops the foundation for a gencral theory of nested transactions. We present a simple formal
modecl for studying concurrency and resiliency in a nested environment. This model has distinct advantages
over the many alternatives. the greatest of which is the unification of a subject replete with formalisms,
correctness conditions and proof techniques. The authors are presently engaged in an ambitious project to
recast the substantial amount of work in nested transactions within this single intuitive framework. ‘These
pages contain the pretiminary results of that project — a description of the model, and its use in stating and

proving correctness conditions for two variations of a well-known algorithm. -

The model is based on I/0 automata, a simple formalization of communicating automata. 1t is not complex
- it is casily presented in a fow pages. and casy to understand, given a minimal background in automata
thcory. Fach nested transaction and data object is modclled by a scparatc 170 automaton. ‘These automata,
the system primitives, issuc requests to and reccive replics from some scheduler, which is simply another 170
automaton. Simple syntactic constraints on the interactions of these automata cnsure, for cxample, that no
transaction requests the creation of the same child more than once. One scheduler, in this casc the "scrial
scheduler”, interacts with the transactions and objects in a particularly constrained way. ‘The "scrial
schedules” of the primitives and the scrial scheduler are the basis of our correctness conditions. Specifically,
alternative schedulers are required to cnsurc that nested transaction automata individually have local
schedules which they could have in a scrial schedule, In essence, cach scheduler must “fool” the transactions

into belicving that the system is exccuting in conjunction with the scrial scheduler.

In the past ten years, an important and substantial body of work has appearced on the design and analysis of
algorithms for implcmenting concurrency control and resiliency in  databasc transaction systems
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[EGL T RES.BG,KS.GrlaS, ctc.). Among this has been a number of results dealing with nested transactions
[RMo LiS.LIJILSWAMBBGLS.BBG. ctc.). The present work does not replace these other contributions,
but augments them by providing a unifying and mathematically tractable framework for posing and exploring
a varicty of questions. ‘This previous work uses behavioral specifications of nested transactions, focusing on
what nested transactions do, rather than what they arce. By answering the question "What is a nested

transaction?”, 170 automata provide a powerful tool for understanding and rcasoning about them,

Some unification is vitally important to further development in this ficld. ‘The plethora and complexity of
cxisting formalizations is a chalienge to the most scasoned rescarcher. More critically, it belics the argument
that nested transactions provide a clcan and intuitive tool for organizing distributed databases and more
general distributed applications. 1t is particularly important to provide an intuitive and precisc description of
nested transactions themsclves, as in typical systems, these are the components which the application

programmer must implement!

‘I'he remaindcr of this paper is organized as follows. "The 170 automaton model is described in Section 2.
‘The rest of the paper contains an extended example, which cstablishes correctness propertics for two related

lock-bascd concurrent schedulers.

Scction 3 contains simpic definitions for naming nested transactions and objects, and for specifying the
opcrations (intcractions) of these components. Simple syntactic restrictions on the orders of these operations
arc presented, and then a particular system of 170 automata is presented, describing the interactions of nested
transactions and objects with a scrial scheduler. ‘The interface between the serial scheduler and the
transactions provides a basis for the specification of correctness conditions for alternative schedulers. These
schedulers would presumably be more efficient than the scrial scheduler. ‘The strongest correctness condition,
“serial correctness,” requires that all non-access transactions sce scrial behavior at their interface with the
system. The second condition, “correctness for 'I'),," only requires that this scrial interface be maintained at
the interface of the system and the external world. ‘These interfaces also provide simple descriptions of the
cnvironment in which nested transactions can be assumed to exccute. A particutar contribution is the clear
and concisc scmantics of ABOR'T" operations which ariscs naturally from this formalization. The section

closcs with a collection of lemmas describing uscful propertics of serial systems.

Next, a lock-based concurrent system is prescnted. Scction 4 contains a description of a special type of
object, callied a "resilicnt object™, which is used in the concurrent system. Scction S describes the remainder
of the concurrent system, the "concurrent scheduler.” This concurrent scheduler includes "lock manager”

modules for all the objects; lock managers coordinate concurrent accesscs.

¥

»
2]



Rl T T I T I T IV ""‘”‘1

’gg.\‘i 2 ‘
) |

|

g . ;

:i';l Scction 6 defines a system which is closely related o the concurrent system, the "weak concurrent system.” '

,gl.: ‘I'his system prescrves serial correctness for those transactions whose ancestors do not abort (i.c - those that are

;"'"’ not "orphans™). Since the root of the. transaction tree, "Iy, has no ancestor, weak concurrent sysiems arc |

::'::.’:‘. correct for ‘T, Section 7 contains complete proofs of correctness of the concurrent and weak concurrent |

,:S:E:; sytems: concurrent systems arc serially correct, and weak concurrent systems are correct for 'I'o. The stronger i

‘E:;:g: condition is obtained for concurrent systems as a corollary to a result about weak concurrent systems.

u’,:: It is interesting that the concurrent system algorithms arc described in complete detail (essentially, in i

,5:.::'3 "pseudacode”™), yet significant formal claims about their behavior can be stated clearly and casily.  Although i

.::..:: the full presentation involves a large number of lemmas, the idcas described by the lemmas are quite simple

e and intuitive. We think it is remarkable that these interesting propertics of concurrent systems can be proved

08 with complete rigor, in full detail, in so short a development. Despite the detailed level of presentation, the

:: : undcrlying modcl is gencral enough that the results apply o a wide range of implementations.

3

A :::i ‘T'he style of the correctness proof is also noteworthy. [t is a constructive proof, in that for cach step of the

:";4.: wcak concurrent system and cach non-orphan transaction, an cxccution of the serial system is cxplicitly

1: constructed. The transaction's local "view" in the constructed cxccution is identical to that in the original

'_x_‘* wcak concurrent execution, cstablishing the correctness of the weak concurrent system. Onc may think of the

K2 wcak concurrent system as maintaining consistent, parallel "world views” within which concurrent siblings

s cxccute.  As siblings return to their parent, these paralicl worlds are "merged” to form a singie consistent

::f; view. The locking policy prevents collisions between different views at the shared data. ‘This intuition is

® : strongly supported and clarificd by the correctness proof, which constructs the paralicl vicews as different

A scrial schedules consistent with cach sibling's local history. 1.cmmas illustratc how these scrial schedules can

e be merged as siblings return or abort to their parent.

o

; a'.:: Scction 8 contains a discussion of the relationship of this work to previous results, and Scction 9 contains an

RO indication of the work that lics ahead.

S

! 2. Basic Model

b R In this section, we present the basic 170 automaton model, which is used to describe all components of our

:,"% systems. ‘This model consists of rather standard, possibly infinitc-state, nondeterministic automata that have

"' ‘ opcration names associated with their state transitions. Communication among automata is described by

,: identifying their operations. "This modcl is very similar to modcls used by Milner, Hoarc [Mi,Ho] and others.

:::,:: There are a few differences: first, we find it important to classify operations of any automaton or system of

e automata as cither “input” or "output” opcrations, of that automaton or system, and we treat these two cases

ﬁ differently. Also, we allow identification of arbitrary numbers of operations from different automata, rather
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::,' than just pairwisc identification as considered in [Mi).
L
8%
et eaop . . . . . .
' I'his paper is not intended to develop the basic model. For the general theory of 170 automata, including a
A unified treatment of finite and infinite behavior, we refer the reader o [LI]. In the present treatment of
4 concurrent transaction systems, we only prove propertics of finite behavior, so we only require a simple
ib special case of the general model.
_‘
.:{ 2.1. 170 Automata
\ . . . .
:kt All components in our systems, transactions, objects and schedulers, will be modclled by /0 automata. An
0
3‘! 170 automaton A has components states(.A), stari(A). out(A), in(A). and steps(.A). Here, stares(A) is a sct of
""‘ - . . v 2 e .
states, of which a subsct stari(A) is designated as the sct of start states. ‘The next two components are disjoint
:" scts: oul( A) is the sct of output operations, and inf A) is the sct of input operations. 'T'he union of these two
};’ scts is the sct of operations of the automaton. Finally, steps¢A) is the transition relation of A, which is a sct of
t.' triples of the form (s'.w.5), where s' and s arc states, and # is an opcration. 'This triple mcans that in state s’
X . .
s the automaton can atomically do opceration « and change to statc 5. An clement of the transition relation is
P called a step of A.
"
: ‘The output operations arc intended to model the actions that arc triggered by the automaton itsclf, while
kK the input operations model the actions that are triggered by the cnvironment of the automaton. Our
o partitioning of operations into input and output indicatcs that cach operation is only triggered in onc place.
1 . . -
-'.: We requirc the following condition.
:‘2
Y
I Input Condition: For cach input opcration # and cach statc s', there exist a state s and a step (s, #.S).
;.: I'his condition says that an 170 automaton must be prepared to reccive any input operation at any time.
N
::: "This condition makcs intuitive sensc if we think of the input operations as being triggered externally. (In this
e papcr. this condition scrves mainly as a technical convenience, but in [I'T], where infinitc behavior is
0 considered, it is critical.)
o
N
%:' An execution of A is an altcrnating scquence Sp% 1 STy of statcs and opcrations of A; the scquence may
)
K) be infinitc, but if it is finite, it ends with a state. Furthermore, Sy is in start(.1), and cach triplc (s’,#.5) which
;T occurs as a consccutive subscquence is a step of A. From any exccution, we can extract the schedule, which is
Qj the subsequence of the cxecution consisting of opcrations only. Because transitions to different states may
k have the same operation, diffcrent exccutions may have the same schedule.
b Lemma 1 If a is a schedule of 170 automaton A, then every prefix of a is a schedule of A.
\'
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%‘;':: If S is any sct of schedules (or property of schedules), then A is said o preserve S provided that the
::3:':‘: following holds. If @ = a’# is any schedule of A, where o is an output operation, and a' is in S, then a is in
L S. That is, the automaton is not the first-to violate the property described by S.
o
%{ 2.2. Composition of Automata
,:‘i;‘;g We describe systems as consisting of interacting components, ciach of which is an 170 automaton. It is
) convenient and natural to view systems as 170 automata. also. ‘Thus, we define a composition operation for
W 170 automata, to yield a new 170 automaton.
E!:', A sct of 170 automata may be composed to create a system S, if all of the output operations arc disjoint.
) (Thus. cvery output operation in ¥ will be triggered by exactly onc component.) ‘The system  is itsclf an 170
::a‘l' automaton. A state of the composed automaton is a tuple of states, onc for cach componcent, and the start
;%: states are tuples consisting of start states of the components. ‘The set of operations of . opg(¥), is cxactly the
,‘.r union of the scts of opcrations of the component automata. ‘'he sct of output operations of 3, our(d), is
,_L likewisc the union of the scts of output operations of the component automata.  Finally, the sct of input
3 > operations of 3, in(¥), is op(9) - our($), the set of operations of ¥ that arc not output operations of 3. ‘The
: .*}: output operations of a system arc intended to be exactly those that arc triggered by components of the system,
§" whilc the input operations of a system are those that are triggered by the systcm's cnvironment.
W& ‘The triple (s',#.8) is in the transition relation of ¥ if and only if for cach component automaton A, onc of the
;i;"v following two conditions holds. Fither « is an opcration of A, and the projection of the step onto A is a step
i’ ] of A, or clsc # is not an operation of A, and the states corresponding to A in the two tuples s’ and s are
2:3' identical. 'Thus, cach operation of the composed automaton is an operation of a subsct of the component
o, automata. During an opcration # of . cach of the components which has operation # carries out the
“."' operation, while the remainder stay in the same state. Again, the opcration # is an output operation of the
;:::'. composition if it is the output opecration of a component — otherwise, w is an input operation of the
W composition.l :
ey l.emma 2: The composition of 170 automata is an 170 automaton.
“ L H
; ‘The next lemma allows us to compose automata in any order. |
A J.emma 3: Up to isomorphism, compaosition of 170 automata is associative and commutative.

‘No(c that our mode! has choscn a particular convention for identifying operations of diffcrent components in a system: we simply
identify those with the same name. ‘This convention is simple, and sufTicicnt for what we do in this paper. [lowever, when this work is
extended 10 more complicated systems, it may be cxpedient to generalize the convention for identifying operations, 10 permit reusc of the
samec operation name internally (o different components. ‘This will requirc introducing a renaming operator for operations, or clse
defining compasition with respect 1o a designaled cquivalence relation on operations. We leave this for later work,
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:;;: An execution of a system is defined to be an exccution of the automaton composed of the individual
2 ¥y .
X automata of the system. If a is a schedule of a system with component A, then we denote by alA the
i"
,’C’?» subsequence of a containing all the operations of A. Clearly, a|A is a schedule of A.
o Lemma 4: 1t a’ be a schedule of a system ¥, and let @ = a’w. where o is an output opceration
.:‘: of component A. I af A is a schedule of A, then a is a schedule of S,
X}
Wiy Proof: Since alA is a schedule of A, there is an execution 8 of A with schedule alA. et 8° be
e
i,:. the execution of A consisting of all but the last step of 8. Similarly, since a’ is a schedule of 3,
SEd there is an exceution y of ¥ with schedule o', 1tis possible that A has an exccution in y which is
ot diffcrent from g7, since different exccutions may have the same schedule, But it is casy to show,
| “ by induction on the length of y, that there is another exccution y* of  in which component A has
tu:. cxccution 8°. and which is otherwise identical to y. ‘The schedule of y' is a’. Since # is not an
;' < output operation of any other component, 7 is defined from the state rcached at the end of y', so
fs::f that a = a'w is a schedule of 1.
(R .
.‘,;, 3. Serial Systems
‘4’( §
:Eé: In this paper, we define three kinds of systems:  "serial systems™ and two types of "concurrent systems”.
:.gr: Scrial systems describe scrial exccution of transactions.  Scrial systems arc defined for the purposc of
i providing a corrcctness condition for other systems:  that the schedules of the other systems should "look
}-‘.‘ like" schedules of the serial system to the transactions.  As with scrial schedules of single-level transaction
'.:-1'. systems, our scrial schedules arc too incfficient to usc in practice. Thus, we definc systems which allow
S
a concurrcncy, and which permit the abort of transactions after they have performed some work. We then
" prove that the schedules permitted by concurrent systems arc correct.
D ]
!0 M M ” - ” . ' H ” M (] ” M M ”"
3 In this scction, we define "scrial systems”. Scrial systems consist of "transactions” and "basic objects
) communicating with a "serial scheduler”. ‘I'ransactions and basic objects describe user programs and data,
respectively.  The serial scheduler controls communication between the other components, and thercby
RKN] . . .
,:‘ defines the allowable orders in which the transactions may take steps. All three types of system componcents
%)
‘::a arc modelled as 170 automata.
i
()
i
We begin by defining a structure which describes the nesting of transactions. Namcly, a system type is a
N
":: four-tuple (F'parent,0,V), where 9, the set of transaction names, is organized into a trce by the mapping !
%:': parent: T — 9, with T, as the root. In referring to this tree, we usc traditional terminology, such as child, leaf, 5
¢ L,
x';'::s least common ancestor (lca), ancestor and descendant. (A transaction is its own ancestor and descendant.) f
[ ) !
i The Icaves of this tree are called accesses. The set O denotes the sct of objects: formally, O is a partition of the
X - . . . . .
‘ sct of accesses, where cach clement of the partition contains the accesses to a particular object. Theset Vis a
kv sct of values, to be uscd as return valucs of transactions.
)
0 . . . .
. ‘The tree structurc can be thought of as a predefined naming scheme for all possible transactions that might
N
ne
Tt
2
y
Ry
P
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cver be invoked. In any particular exccution, however, only some of these transactions will actually take
steps. We imagine that the tree structure is known in advance by all components of a system. ‘The tree will, in

general, be an infinite structure,

The classical transactions of concurrency control theory (without nesting) appear in our model as the
children of a "mythical™ transaction, T, the root of the transaction trec. (In work on nested transactions, such
as ARGUS [LiS.1.11J1.SW]. the children of T arc often called “top-level” transactions.) It is very convenient
to introduce the new root transaction to model the environment in which the rest of the transaction system
runs. Transaction Iy has operations that describe the invocation and return of the classical transactions. It is
natural to rcason about 'l‘0 in much the same way as about all of the other transactions, although it is
distinguished from the other transactions by having no parent transaction. Since committing and aborting arc
opcrations which take place at the parent of cach transaction {sce below), T, can neither commit nor abort.

Thus, a commit or abort of a top-level transaction to Iy is an irreversible step.

"The internal nodes of the tree model transactions whose function is to create and manage subtransactions,
but not to access data directly. ‘The only transactions which actually access data are the leaves of the
transaction tree, and thus they are distinguished as "accesses”. 'The partition O simply identifies those

transactions which access the same object.

A scrial system of a given system type is the composition of a sct of 1/0 automata. This sct contains a
transaction for cach internal (i.c. non-Icaf, non-access) node of the transaction trec, a basic object for cach
clement of O and a scrial scheduler. ‘These automata are described below. (If X is a basic object associated
with an clement % of the partition O, and I is an access in %6, we write T € accesses(X) and say that "I is an

access to X".)

3.1. Transactions

‘This paper differs from carlier work such as [l.Ly,Go,Wcl] in that we modcl the transactions explicitly, as
170 automiata. In modeclling transactions, we consider it very important not to constrain them unnecessarily;
thus, we do not want to require that they be expressible as programs in any particular high-level programming
language. Modclling the transactions as I/0 automata allows us to state cxactly the properties that are
needed. without introducing unnccessary restrictions or complicated sernantics.

A non-access transaction T is modclled as an 170 automaton, with the following opcrations.

Input opcrations:
CREATI(T)
COMMITCI ), for 'I” € children()and v € V
ABORI(TI™), for'I" € children(T)

’I
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o Qutput opcrations:
;-,S RIEQUEST=CREATECT). for 17 € children(l)
LY . [y PN
o REQUEST—-COMMII(I ), forvE Y
, The CREATY input operation “wakes up” the transaction. ‘The REQUEST—CREATE output operation is
;: a request by ‘I 1o create a particular child transaction.2T'he COMMI'1 input operation reports to I the
?,g successful complcetion of one of its children, and returns a valuc recording the results of that child’s cxecution.
) The ABORT input opcration reports to ‘I' the unsuccessful completion of onc of its children, without
' returning any other information. We call COMMI'T(T,v), for any v, and ABOR'I(I") return operations for
) transaction 17, ‘The REQUEST—COMMI'I operation is an announcement by ‘I' that it has finished its work,
' and includes a valuc recording the results of that work.
K, It is convenient to use two scparate operations, REQUEST—CREATE and CREATE, to describe what
v takes placc when a subtransaction is activated. The REQUEST—CREATE is an operation of the
[
:. transaction’s parent, while the actual CREATE takes place at the subtransaction itsclf. In actual systems such
as ARGUS, this scparation does occur, and the distinction will be important in our results and proofs. Similar
"
» remarks hold for the REQUEST-COMMIT and COMMIT opcrations.3 We lcave the executions of
' particular transaction automata largely unspecified; the choice of which children to create, and what value to
¥ . . . . « .
3:.. rcturn, will depend on the particular implementation. For the purposes of the schedulers studied here, the
transactions (and in large part, the abjects) are "black boxes.” Nevertheless, it is convenient to assume that
j's schedules of transaction automata obey certain syntactic constraints. Thus, transaction automata are required
:: to preserve well-formedness, as defined below.
;‘:.
K]
. We recursively define well-formedness for sequences of operations of transaction T. Namcly, the empty
:‘( schedule is well-formed. Also, if @ = a'w is a sequence of operations of T, where o is a single operation,
:: then a is well-formed provided that a’ is well-formed. and the following hold.
L
',I.' o If # is CREATE(T), then
(i) there is no CREATE(T) in a'.
>, o If w is COMMIT(T",v) or ABORT(T) for a child T" of T, then
),
B -
- 2Notc that there is no provision for T to pass information to its child in this request. In a programming language. T might be
-4 permitted to pass parameter valucs (o a subtransaction. Although this may be a convenient descriptive aid. it is not necessary to include
; in it the underlying formal model. Instcad, we consider transactions that have different input parameters (o be different transactions.
3Notc that we do not include a2 REQUEST - ABOR'TI’ operation for a transaction: wc do not modei the siluation in which a transaction
o decides that its own cxisience is a mistake. Rather, we assign decisions 10 abont transactions to another component of the system, the
‘: scheduler. In practice, the scheduler must have some power Lo decide Lo abon Lransactions, as when it detects deadlocks or failures. In !
ARGUS. transactions arc permitted to request 10 abort: we regard this request simply as a “hint” to the scheduler. to restrict its allowable
e exccutions in a particular way. This operation could be made explicit. consiraining the scheduler to abort the requesting Lransaction,
~ without substantivcly changing the modcl or results.
N
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;.w’ﬁ: () REQUEST = CREATECT) appears in a” and
{.‘,;::l (ii) there is no return operation for 17 in o’
LA

. o If 7 is REQUEST = CREATE(T™) for a child '™ of T, then

. ' XA (i) there is no REQUEST—CREATE(T) in a’
;"3 (i1) there is no REQUEST—-COMMI'I(l') in a” and
A ;} (i) CREATECE) appears in a”.

R ,

o If w is a REQUEST — COMMIT for T, then

16%¢ (i) there is no REQUEST—-COMMIT for T'in a® and

334 H AT are i ]
,&3 (i) CREATE(T) appcars in a'.

s;kl ‘I'hese restrictions are very basic; they simply say that a transaction does not get created more than once,
" docs not receive repeated notification of the fates of its children, docs not receive conflicting information
l' ! . . . . » . . »
;::0, about the fates of its children, and does not receive information about the fate of any child whose creation it
:"g has not requested; also, a transaction docs not perform any output operations before it has been created or
K
‘,':{:0, after it has requested to commit, and does not request the creation of the same child more than once. Except
e for these minimal conditions, there are no restrictions on allowable transaction behavior.  For example, the
:: maodel allows a transaction to request to commit without discovering the fate of all subtransactions whose

-'r"; creation it has requested. Also, a transaction can request creation of new subtransactions at any time, without
s q N regard to its state of knowledge about subtransactions whose creation it has previously requested. Particular
’_‘;s . programming languages may choosc to imposc additional restrictions on transaction behavior. (An example is
’:t.. : ARGUS, which suspends activity in transactions until subtransactions complcte.) However, our results do not
o

::::0 requirc such restrictions.

R

v The following casy lemma summarizes the propertics of well-formed sequences of transaction operations.
-’\,f ; Lemma S: 1.ct a be a well-formed sequence of operations of transaction ‘1. Then the following

‘ E’f : conditions hold.
* AV

e /- . . . PR, .

By 1. The first operation of & is a CREATE(T) operation, and there are no other CREATE

Red operations.

'ﬁ::‘ 2. If a REQUEST—COMMIT operation occurs in a, then there arc no later output

. ﬂ% opcrations in a.

"

5 &d 3. There is at most onc REQUEST — CREATE(T") operation for cach child T of T, in a.

i j;_y 4, Every return operation in a has a preceding REQUEST — CREATE operation in a for the

) same child transaction.
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a\ 3.2. Basic Objects

“\;(‘;4 Recall that 170 automata arc associated with non-access transactions only. Since access transactions model
e abstract operations on shared data objects, we associate a single 170 automaton with cach object, rather than
yuly one for cach access. The operations for cach object are just the CREATE and REQUEST—COMMIT
b4

;f:: operations for all the corresponding access transactions. Although we give these operations the same names as
fz the operations of non-access transactions, it is helpful o think of the operations of access transactions in other
A
terms also.  a CREATE corresponds to an invocation of an operation on the object, while a

WU

E:‘s REQUEST —COMMIT corresponds to a response by the object to an invocation. Actually, these CREATE
‘ N and REQUEST—COMMI'I' opcrations generalize the usual invocations and responscs in that our operations
: .
:'.?:: carry with them a dcsignation of the position of the access in the transaction tree. We depart from the
[N

traditional notational distinction between creation of subtransactions and invocations on objects, since the

:"1 common terminology for access and non-access transactions is of great bencefit in unifying the statements and
tiglt
(::l' proofs of our results. ‘Thus, a busic object X is modelled as an automaton, with the following operations.

"
;g:’ Input operations:
{ CREATE(T), for T in accesses(X)

Ao
& Output opcrations:

}::f REQUEST—=COMMIT(T V), for T in accesses(X)

! ‘The CREATE operation is an invocation of an access to the object, while the REQUEST-COMMIT is a
;_"' return of a valuc in response to such an invocation.
Koy

o As with transactions, while specific objects arc left largely unspcecified, it is convenient to require that
b L% .

* schedules of basic objects satisfy certain syntactic conditions. ‘Thus, cach basic object is required to preserve
N well-formedness, defined below.
3

)

hy .

: ’ Let & be a scquence of operations of basic object X. Then an access T to X is said to be pending in a
)
N provided that there is a CREATE(T). but no REQUEST —~COMMIT for T, in @. We define well-formedness
o for scquences of operations of basic objects recursively. Namely, the cmpty schedule is well-formed. Also, if

Y

;::' a = a'w is a scquence of opcerations of basic object X, where w is a single operation, then a is well-formed
i

'g;:‘ provided that a’ is well-formed, and the following hold.
'!h'!

o If ¢ is CREATE(T), then
.;a.;.' (i) there is no CREATE(T) in a°, and
:.":- (i) there are no pending accesses in a'.
o

0 o If w is REQUEST—COMMI' for T, then

L. (i) there is no REQUEST-COMMIT for T in &', and

'ﬂ» (ii)) CREATE(T) appears in a’.

DO
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e
LFet . .. .
;::,"s I'hese restrictions simply say that the same access does not get ereated more than once, nor does a creation
¥
ff::: of a new access occur at a basic object before the previous access has completed (i.c. requested 1o commit);
Rak:
also, a basic object does not respond more than once to any access, and only responds to accesses that have
"
:n'tf previously been created.
g
::g“ I'he following casy lemma summarizes the propertics of well-formed sequences of basic object operations.
{ . - . . .
' Lemma 6: et a be a well-formed sequence of operations of basic object X. ‘Then a consists of
oy alternating CREATE and REQUEST —COMMIT operations, stirting with a CREATE, and with
,',;.:: cach consceutive (CREATE.REQUEST — COMMIT) pair having a common transaction.
yh
o
'f. ) -
I 33. Serial Scheduler
" "I'he third kind of componcent in a scrial system is the serial scheduler. ‘I'he serial scheduler is also modelled
‘l l"
K as an automaton. ‘The transactions and basic objects have been specified to be any 1/0 automata whose
)
:a ) operations and behavior satisfy simple syntactic restrictions. "The serial scheduler, however, is a fully specified
[}
hy automaton, particular to cach system type. It runs transactions according to a depth-first traversal of the
. transaction tree. ‘Vhe scrial scheduler can choose nondeterministically to abort any transaction after its parent
Be. .t
4y has requested its creation, as long as the transaction has not actually been created. In the context of this
Y
! hﬁ scheduler, the "semantics” of an ABOR'I(T) operation are that transaction T was never created. ‘The
344
% operations of the serial scheduler are as follows.
Vi Input Opcrations:
{ S REQUEST—-CREATE(T)
‘s'q ¢ REQUEST—-COMMII(T,v)
h)
D>
R Output Opcrations:
CREATE(D)
I:,‘:i COMMIT(T.v)
‘,o":‘ ABOR'I(T)
%‘.'
‘¢': v
:'.5»: The REQUEST—-CREATE and REQUEST—~COMMIT inputs arc intcnded to be identified with the
» corresponding outputs of transaction and object automata, and correspondingly for the CREATE. COMMIT
o
i.., and ABORT output operations. [FEach state s of the scrial scheduler consists of four scts:
i
N create — requested(s), created(s), commit — requested(s), and returned(s).  The sct commit—requested(s) is a
l:: *
_"! 4 sct of (transaction,valuc) pairs. "T'he others arc scts of transactions. ‘There is exactly onc initial state, in which
et the set create — requested is {15}, and the other sets are empty.
%
;g The transition relation consists of exactly those triples (s'.#.5) satisfying the pre- and postconditions below,
5 where # is the indicated operation. For brevity, we include in the postconditions only those conditions on the
1';; statc s which may change with-the operation. 1f a component of s is not mentioned in the postcondition, (such
W,
a:‘.:
‘i:’
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;:': . as returncd(s) in the postcondition for REQUUEST = CREATE(T)), it is implicit that the sctis the same in §°
a
f'}::; and s (that returned(s’) = returncds). in this example). Note that here, as clscwhere, we have tried to specify
LN |
the component as nondeterministically as possible. in order to achicve the greatest possible generality for our
r;g": results.
el ot oL
41:.. o REQUEST—CREATE(T)
f*::;: Postcondition:
" create — roquested(s) = create — requested(s’) U {1}
2ot
o o REQUEST - COMMIT(F.v)
) Postcondition:
:::::’, commit — requested(s) = commit— requested(s’) U {(1'.v)}
o CREATE(D)
A Precondition:
\ i 'I' € create — requested(s’) - created(s’)
25 siblings(1) N created(s’) C returned(s')
LN os
§ Postcondition:
N crcated(s) = created(s’) U {T}
:
N o COMMIT(I,v)
1696 Precondition:
! '_tt (I.v) € commit— requested(s’)
"’ T € returncd(s’)
Y children(T) N create — requested(s’) C returned(s’)
& Postcondition:
{is returned(s) = rewrned(s) U {T}
.\. y
}:?:3. e ABORT(T)
g Precondition:
T € create — requested(s’) - created(s’)
"c,;;. siblings(1) N created(s’) C returncd(s’)
‘:;ﬁ' Postcondition:
:!:13: created(s) = crecated(s’) U {1}
;'.:’,:. returncd(s) = rcturned(s’) U {T}
W The input operations, REQUEST—-CREATE and REQUEST—COMMIT., simply result in the request
?:: being recorded. A CREATE operation can only occur if a corrcsponding REQUEST—CREATE has
;&é’. : occurred and the CREATE has not already occurred. The second precondiition on the CREATE operation
¥,
g says that the scrial scheduler docs not create a transaction until all its previously created sibling transactions
have returned. ‘hat is, siblings are run scquentially. The precondition on the COMMIT operation says that
,‘:" the scheduler docs not allow a transaction to commit to its parent until its children have returned. The
LT
.f::' } precondition on the ABORT opcration says that the scheduler does not abort a transaction while there is
' activity going on on behalf of any of its siblings. ‘That is, aborted transactions are run scquentially with
f::i: respect to their siblings. ‘The next lemma relates a schedule of the serial scheduler to the state which results
o
4':\‘ |
:"’: |
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i
‘; from applying that schedule.
‘: Lemma 7: Let a be a schedule of the serial scheduler, and let s be a state which can result from
applying a to the initial state. ‘Then the following conditions arc true.

‘;‘,\_ 1.l is in create — requested(s) exactly if 1’ = ’I'o or a contains a REQUEST-CREATE(T)
::f; operation.
G
‘t':‘ 2. 1" is in created(s) exactly if a contains cither a CREATE(T) or ABOR'T(T) operation.
()
.y
o 3.(Tv) is in commit—requested(s) cxactly if a contains a REQUEST-COMMII(T,v)
:Q ) operation.
i:\.' 4.’ is in returned(s) cxactly if a contains a return operation for T.
)
il 3.4, Scrial Systems and Scrial Schedules
::‘: In this subscction, we define serial systems preciscly and provide some uscful terminology for talking about
:i‘r them.
B
3 The compusition of transactions with basic objects and the scrial scheduler for a given system type is called
¢
;::‘ a serial system. )efinc the serial operations to be those operations which occur in the scrial system:
: REQUEST—CREATES. REQUEST—COMMITS. CREATES, COMMITS and ABOR'TS. ‘The schedules
B0, of a scrial system are called serial schedules. ‘The non-access transactions and basic objocts are called the
o system primitives. (Recall that cach basic object is an automaton corresponding to a sct of access transactions.
"" ‘Thus, individual access transactions are not considercd to be primitives.)
K%
;: 1,
e Recall that the operations of the basic objocts have the same syntax as transaction opcrations. It is

. convenient to refer to CREATE(T) and REQUEST-COMMII(T), when T is an access to basic object X,

[}
:E:: both as operations of transaction T and of object X. To avoid confusion, it is important to remember that
14
3::, there is no transaction automaton associated with any access operation.

th

. For any scrial operation w. we define transaction(w) to be the transaction at which the opcration occurs.
,;;' (For CREATE(T) operations and REQUEST —COMMIT operations for T, the transaction is T, while for
k‘ g v . » . .
;;;:", REQUEST—~CREATE(T) operations, and COMMIT and ABORT operations for T, the transaction is
;:jf parcni(T).) For a scquence a of scrial operations, transaction(a) is the sct of transactions of the opcrations in
e a.
,‘;h“
;59 Two sequences of scrial operations, @ and a’, are said to be equivalent provided that they consist of the
‘-"

f;:: same operations, and a|P = a'|P for cach primitive P. Obviously, this yiclds an cquivalcnce relation on
. sequences of serial operations,
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We let afl’ denote the subsequence of a consisting of operations whose transaction is ‘I, even if 1" is an
access. (‘This is an extension of the previous definition of afl, as accesses are not component automata of the

scrial system.)

Let a@ be a scquence of serial operations.  We say that a transaction ‘I is live in a provided that a
CREATE(T), but no COMMIT(T,v) or ABORI(CT), occurs in a. We say that transaction ‘17 is visible to I’ in &
provided that for cach ancestor ‘17" of 1" which is a proper descendant of kca(l,17), some COMMIT(T™.v)
occurs in a. (In particular, any ancestor of ' is visible to 'I' in a.) For sequence a and transaction T, let
visibl(a. T) be the subsequence of a consisting of opcrations whose transactions arc visible to ‘1" in a. (l'hese

include access transactions '17.) We say that transaction ‘1" sees everything in a provided that visible(a, 1) = a.

‘This is the same definition of visibility as appcars. in a different modecl. in [l.y). Visibility capturcs an
intuitive notion suggested by the name: the transactions visible to a transaction ‘I’ in a arc those whose cffects
I' is permitted to "sec” in a. If transaction I is visible to transaction ‘I’ in a. it mecans that descendants of T
may havc passed to 'I' information about 'I”, obtained by accessing objects that were previously accessed by

descendants of 17,

If & is a sequence of operations, not necessarily all serial, then define scrial{a) to be the subsequence of a
consisting of the scrial operations. We say that 'I'is /ive in a provided that it is live in scrial(a). We say that T
is visible to T in a if 1" is visible to 'I' in scrial(a). and define visible(a,T) to be visible(serial(a),1). Also, T
sees everything in a provided that T sces cverything in scrial(a). Similarly, definc transaction(a) =

transaction(scrial{a)).

A sequence a of serial operations is said to be well-formed if its projection at cvery primitive is well-formed.

3.5. Correctness Condition

We usc scrial schedules as the basis of our correctness definitions. Namcly, we say that a sequence of
operations is serially correct for a primitive P’ provided that its projection on P is identical to the projection on
P of some scrial schedule. We say that any sequence of operations is serially correct if it is scrially correct for
cvery non-access transaction. That is, a "looks like” a scrial schedule to every non-acccess transaction.

In the remainder of this paper, we define two systems:  concurrent systems and weak concurrent systems.
We show that schedules of concurrent systems are scrially correct, and that schedules of weak concurrent

systems are scrially correct for 'l‘o.

‘Thus, we usc the scrial scheduler as a way of describing desirable behavior, just as serial schedules describe

e o
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iy
’.:i:g' desirable hechavior in more classical concurrency control scttings (those without nesting).  ‘T'hen scrial
178,
f::g!: correctness plays the role in our theory that serializability plays in classical scttings.
gt Motivation for our usc of serial schedules to define correctness derives from the simple behavior of the
[]
) ':. scrial scheduler, which determines the sequence of interactions between the primitives. Fach transaction 1 is
IRy p
::'fi created only after parent(’l) requests it, no siblings of ‘I are created until ‘I has returned. I is not committed
until cach of its requested children has itsclf returned. and 't is not aborted until cach of its created siblings
Wyt . . . . .
;:.::" has rcturned. ‘The result is a depth-first traversal of the wansaction tree, with requests flowing down and
, ‘ . . . . -
1::21: responses flowing up.  We belicve this depth-first traversal (o be a natural notion of correctness which
W . C . . ..
’.:c:: corresponds preciscly to the intuition of how nested transaction systems ought to behave. Furthermore, it is a
natural generalization of scrializability, the correctness condition generally chosen for classical transaction
vy
t'a0] systems.,
1]
\)
"Q. ) . . .l . . . . .
‘:,‘-;': Scrial correctness is a condition which guarantees to implementors of transactions that their code will
""' . - - . . 0 . T L) . -
a cncounter only situations which can arisc in scrial exccutions. Correctness for I0 is a natural alternative,
"
“: which guarantces only that the external world will cncounter only situations which can arisc in scrial
. cxccutions. ‘This condition permits less constrained implementations, in that schedulers in such systems need
K . . . .
t:.,' not insurc that orphans scc consistent data. On the other hand, in such systcms the authors of transactions
)‘
must insurc that their programs hchave well cven if they see inconsistencies. (For example, orphans that sce
.
,"‘u inconsistent data should not consume too many system resources, garble data beyond repair. dispense drugs
10N
3: y or initiatc military hostilitics.) We hope this work will provide a tool for exploring the inhcrent costs of
1 . .
0o, different correctness conditions such as these.
e Note that our correctness conditions arc defined at the transaction interface only, and do not constrain the
‘!"-' » . 3 - . . .
Mg object interface.  We believe that this makes the conditions more mcaningful to users, and more likely to
y . . . . . .
4'.:»‘ suffice for a large varicty of algorithms, which may usc a variety of back-out, locking or version schemes to
P
implement objects. Previous work has focussed on correctness conditions at the object interface [EGLT, ctc.).
_3;: While we believe that object interface conditions arc important. their proper role in the theory is not to serve
5 'f:: as the basic correctness condition. Rather, they are uscful as intermediate conditions for proving correctness
: ', of particular implcmentations: such conditions can be shown to be sufficient, in combination with an
i,
. appropriate scheduler, to ensure our correctness condition at the transaction interface. This obscrvation is an
Y
! important unifying contribution of our work. Our current rescarch is focussing on demonstrating the
:.::, uscfulness of this approach, for a varicty of object interface correctness conditions.
i
r.'.":
- ‘The serial correctness condition says that a schedule a must look like a scrial schedule to cach non-access
X ) . . T . . , . .
=:;.:, transaction; this allows for the possibility that a might look like different scrial scheduics to different non-
i
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access transactions. 'This condition may at first scem (o be oo weak. [t may scem that we should require that
all transactions scc a projection of the sume serial schedule. But this stronger condition is not satisficd by most
of the known concurrency control algorithims. [t is true that stronger conditions than ours can sometimes be
proved. but such conditions are more complicated to state, and it is not yet clear which such conditions are

most interesting.

‘I'he serial correctness condition is really not as weak as it may seem at first because 'I'o, the root transaction,
is included among the transactions to which a must appcar scrial, As discussed above, transaction 'l’o can be
thought of as maodclling the cnvironment in which the rest of the transaction system runs. [ts
REQUEST = CREA'TE operations correspond to the invocation of top-level transactions, while its COMMIT
and ABOR'I' opcrations correspond to return values and cxternal cffects of those transactions.  Since a’s
projection on Ty must be serial. the environment of the transaction system will sec only results that could arise
in a serial execution. Indeed, this is the justification of the correctness condition for the weak concurrent

system, whaose schedules are shown to be correct for ‘1, but not necessarily for any other transaction.
0

It is possiblc o usc a different scrial scheduler as a basis for correctness conditions.  For example, the
scheduler might delay creating onc sibling until another requests to return, rather than until it actually returns
to the parent [We2). Such a scheduler would provide less information to the parent about the actual order in
which its children arc exccuted. and consequently provide more freedom for concurrent scheduters to
schedule various cvents.  ‘Timestamp-based systems such as {R] may support this wecaker correctness
condition, rather than the onc described above, but this remains to be studied.

Our approach is rcally a genceral technique for studying operating system algorithms. A simple, intuitive
and incfficicnt algorithm (automaton) is used to specify a “contract™ between the users and implementor of
an operating system. ‘The uscr is guaranteed that applications (transactions, in our work) which' arc correct
when run with the simple algorithm will also be correct when run with the actual operating system, which
presumably will be more cfficient.  On the other hand, the implementor also has a formal and intuitive

specification of the user interface.

3.6. Properties of Serial Systems

In this subscction, we prove a number of lemmas about the behavior of serial systems. They are collected
here for rcference later in this paper and in future work. Most of the lemmas describe propertics that are
quitc casy to understand and belicve, and the corresponding proofs arc very straightforward. In the last
paragraph of this subscction, there arc some specialized lemmas that are somewhat more difficult. These are

used in the proof of the main thcorem in Section 7.
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3.6.1. Fundamental Propertics of Visibility
‘,. . ‘The fimst few lemmas give fundamental propertics of visibility in sequences of serial operations. In this
: paragraph, we do not even require that the sequences be schedules of serial systems, but only that they be
:.': sequences of serial operations. “The proots of these lemmas are straightforward from the definitions.
:: Lemma 8: |.ct a be a sequence of scrial operations, and ‘I, 1™ and ™ transactions.

iy
L 1. If 17 is a descendant of °I', then ‘1 is visible to 17 in a.

:,;o 2.7 is visible to T in a if and only if ‘17 is visible to ka('l'1") in a.

R

::.5' 3. 17 is visible to T" in a and ‘1" is visiblc to°'I' in a. then 1™ is visible to T in a.

hl

t,)

Ot 4. If I” is a descendant of 't and ‘1™ is visible to I’ in a, then 1™ is visible to 'I” in a.

“q\: 5. If'I” is a descendant of 1" and 'I” s visible to 17 in a, then ' is visible to T in a.

' 6. If 1" is a proper descendant of I, 17" is visible to 1”7 in a. but '™ is not visible to T in a, then
; I is a descendant of the child of ‘I which is an anccstor of 'I™.

1Y L.emma 9: |.ct @ and B8 be sequences of serial operations, with 8 a subsequence of a.
y {1 1. If transaction ‘I is visible to transaction 1" in B8, then it is visible to transaction T in a.

A

f ‘ 2. If operation w is in visible{8.I'). then it is in visible(a, T).

Py N

lemma 10: lct a, &', B and B’ be scquences of scrial uperations, and let T and T° be

Y transactions.

o
:::: l. If & is cquivalent to a’, and 'I” is visiblc to T in a, then 'T" is visible to T in a’.

,’, U

':!:: 2. If a is cquivalent to &', then visible(a,'I) is equivalent to visible(a', T).

L'.'::;' 3. If B iscquivalentto 8'. thena-B = a-8'.

o
';?‘ 4. If a is cquivalent to a’, and 8 is cquivalent to 8°, then a - 8 is equivalentto a’ - 8°.

KN

i 5.1fB = visible(a.T), then T sees everything in 8.

L] "

EE;: 6. I B is cquivalent to visible(a.T), then T sces everything in B.

E’Q 7. If B = visible(a,T) and T" is visiblc to T in a, then visible(B.T") = visibl(a,T").

l!g

e 8. If B is cquivalent to visible(a.T). 8° is cquivalent to visibie(a,17), and T is visible to T in a,
:?2‘ then B is cquivalent to visible(8,17).

f lemma 11: l.ct a be a sequence of scrial operations, and Ict T and T be transactions. Then
' visible{a, T')[1" is cqual to af 1™ if 17 is visible to 1" in a, and is cqual to the cmpty string otherwise.
’:3‘ 1.emma 12: |.ct aw be a scquence of scrial operations, where o is a single operation. Let'T'bea
- - transaction and assumc that transaction(w ) is visiblc to'l' in aw. Assume that « is not a COMMIT
& operation. ‘Then visible{aw . T) = visible(a, T')w.
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3.6.2. Operations in Serial Schedules

The lemmas in this paragraph describe the kinds and orders of operations that can occur in well-formed
scrial schedules. In the next paragraph, we show that all serial schedules are well-formed, so that all these
properties actually follow just from the fact that the schedules are serial.

Lemma 13: 1.t a be a well-formed serial schedule, and let 'l # 'I'o be a transaction,

LIf a conins any opcration with transaction I, then a contains a
REQUEST—CREATI(T).
2.If a contiins 4 COMMIT for I, then a contains a4 REQUEST-COMMIT for T, a
CREATE(T) and a REQUEST —CREATE(T).
3. If a contains an ABOR'I'(T). then a contains a REQUES T — CREATE(T).
Proof: Straightforward from well-formedness and the scheduler preconditions. 8

lLemma 14: Lot a be a well-formed serial schedule, and ‘1" a transaction.  Assume that some
descendant of T is in transaction(a). ‘Then the following hold.

. CREATE(T) occurs in a.
2.4f°F # Ty, then REQUEST - CREATE(T) occurs in a.

Proof: 1. By induction on the length of a. The basis is casy. l.ct @ = a’w. where # is a single
operation, and assume that the result holds for a’. let 1" = transaction(w), and lct ‘I’ be any
ancestor of 1. We must show that CREATE(T) occurs in a.

Because a is well-formed, CREATE(T™) occuss in a. If T = 'I”, we are done. Otherwise,
[.cmma 13 implics thut REQUEST'—= CREATE(T™) occurs in a. 'This occurs at parent('T™), which is
adescendant of T ‘The inductive hypothesis then implics that a contains a CREATE(T).

2.Bypartl.andlcmmall. 8

l.emma 15: |.ct a be a scrial schedule, and let T be a transaction. Then a cannot contain both a
CREATE(T) and an ABORT(T) operation.

Proof: By the scheduler preconditions. 8

l.emma 16: .ot a be a well-formed serial schedule, and let T be a transaction. 1 ABORT(T)
occurs in a. then a contains no operations whose transactions arc descendants of T.

Proof: Assume the contrary. ‘Then Lemma 14 implics that a CREATE(T) operation occurs in a.
But l.emma 15 yiclds a contradiction. §

Lemma 17; Let a be a well-formed serial schedule, and let T # To be a transaction.

1. If & contains a REQUEST—CREATE(T), but docs not contain a rcturn operation for T,
then parent(T) is live in a.

2. If T is live in a, then parent(T) is live in a.

3. If a contains a REQUEST—-CREATE(T) but docs not contain a CREATE(T) or an
ABORT(T), then pareny(T) is live in a.
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Proof:

I. Well-formedness implies that the REQUEST—CREATI(T) is preceded in a by a
CREATE(pareny(1). Suppose that parent() is not live in a. ‘Then a return operation for
parent(1) occurs in a. By Lemma 15, ABOR T(parent(1)) cannot appear in a. ‘Thus, a
COMMIT operation for parent(l) must appear in a. ‘This COMMIT operation for
parent(l’) must be preceded by a REQUEST—=COMMIT for pareni(1). by the scheduler
preconditions. By well-formedncess. the REQUEST -~ COMMIT for pareni(1') must follow
the REQUEST—=CREATI(T) operation, so that the COMMI'L for parent(1') follows the
REQUEST—CREATHE(T) operation.  ‘Then by the scheduler preconditions for the
COMMEIT opceration, there must be a return operation for ‘I in a. a contradiction.

RI~QUI~SI -—CRI~A'I'H('I‘) occurs in a.'I'he rcsull then follows from part 1.

3. Since there is no CREATE(T) in a, there can be no REQUEST—COMMIT for T, by
wcll-formedness. ‘Then there can be no COMMIT for T, by the scheduler preconditions.
"I'he result follows from part 1.
1
l.emma 18: | ct a be a well-formed scrial schedule, and let 1 be a transaction.

1. If & contains a REQUEST—CREATE(T) but docs not contain a return operation for T,
then any proper ancestor of 1 is live in a.

2. If T is live in a, then any ancestor of T is live in a.

3.If a contains a REQUEST-—CREATE(H) but docs not contain a CREATE(I) or an
ABORI(T). then any proper ancestor of I’ is live in a.

Proof: By rcpeated use of Lemma 17. 8

L.emma 19: l.ct a be a well-formed serial schedule, and let T and 1° be transactions with T a
descendant of 'I'. Assumc that there is a COMMI'T operation for 1’ in a.

1. Ifa REQUEST—-CREATE(T™) occurs in a, then there is a return operation for T in a.

2. If'I” is in transaction(a), then there is a COMMIT opceration for T in a.
Proof:
1. By Lemma 18.

2. L.emma 13 implics that REQUEST~—-CREATF(T") occurs in a«. Part 1 then implies that
there is a return operation for 17 in a. Since 'I” is in transaction(a). l.crnma 16 implics that
there cannot be an ABOR'T(I™) in a. ‘Thus, there isa COMMIT for T in a.

1.emma 20: I.ct & be a well-formed scrial schedule.
{f a return operation for T is in a, then it follows all operations in & whose transaction is T.

Proof: I.cmma 16 implics the result if an ABORT(T) occurs in a. So assume that a COMMIT
for ‘I occurs in a. ‘This must be preceded by a REQUEST—COMMIT for 'I', by scheduler
preconditions.  Wcll-formedness implics that the REQUEST—-COMMIT is preceded by a
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' CREATECT). and is not followed by any output operations of ‘1. ‘Thus, the only operations of ‘I’
K} that could follow the REQUEST — COMMIT arc return operations for children of 1. Let’1” be a
v: child of I’ for which a return operation occurs in a. By scheduler preconditions. there is only one
return operation for 17 in a. By Lemma 13, a also contains o REQUEST—=CREATE(CTY). Since
3 this is an output operation of 1, it precedes the REQUEST - COMMIT for 1, and henee precedes
" the COMMIT for T 'Then the scheduler preconditions imply that the return operation for 1
K precedes the COMMIY for 1. 8
k2 Lemma 212 | et a be a well-formed serial schedule.
! If a return operation for 'I' is in a. then it follows all operations in @ whose transactions are
4 descendants of I
, Proof: Since a return operation for ‘I’ occurs in a, we have 'I' # Ty Let'I” be a descendant of T,
K and assume for the sake of obtaining a contradiction that in operation o with transaction(w) = 'I°
b oceurs after the return for 't in a. 1.ct a’ be the prefix of a preceding .
+
tal
l.emma 16 implics the result if an ABOR'T(T) accurs in a. So assume that a COMMIT for T
¥ occurs in a. By Lemma 13, a’ contains a REQUEST - CREATE(I”) operation. ‘I'hen 1.emma 19 ;
implics that a’ contains a return operation for ‘17, But then the well-formed schedule a’w contains ]
L a rewurn for 1" followed by an operation of 'I°, which contradicts 1.cmma 20. § ‘
o Lemma 22: | .ct a be a well-formed serial schedule. If°T is a pending access in alX, then T is live

in a.
Proof: If 'I' is a pending access in alX. then a CREATE(T) occurs in a. but no
] REQUEST—COMMIT for T occurs in a. ‘Ihus, by the scheduler preconditions, no COMMIT

for'I'can occurin a. 8

lLemma 23: |.ct a be a well-formed serial schedule, and let ‘I and T” be distinct transactions live
in a. "Then the following are true.

h 1. T and T are not siblings.

: 2. Either ‘T is an ancestor of '™ or vice versa,

’ Proof:

;{ 1. Assume the contrary. Assumc without loss of gencrality that CREATE(T) precedes
4

s

CREATE(T") in @. ‘Then the scheduler preconditions for the CREATE(T™) operation

-

K imply that a rcturn operation for ‘I’ occurs in a. ‘This contradicts the assumption that T is
\ livein a.

2. By part 1 and l.cmma 18.

> 3.6.3. Well-Formedness
Now we show that all scrial schedules are well-formed. It follows that all the propertics proved in the

; previous paragraph for well-formed serial schedulcs are actually true for all scrial schedules.  Subsequently,
I we will usc these propertics without cxplicitly mentioning well-formedness,
by Lemma 24: |.ct a be a scrial schedule. Then a is well-formed.
‘I Proof: By induction on the length of schedules. ‘The base, length = 0, is trivia'. Suppose that

aw is a scrial schedule, and assume that a is well-formed. If # is an output of a primitive P, then
O T Cafu X ._(.
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am|P is well-formed because P preserves well-formedness, and so anr is well-formed. So assume
that # is an input to a primitive P, 1 sutices o show that az{l is well-formed. There arc four
Ci1scs.

(1) 7 is CREATECE) and ‘1" is a non-access transiaction.
The scheduler preconditions insure that CREATE(T) docs not appear in a.

W\
n‘“ (2) 7 is COMMI(I,v) for some transaction ‘I and value v.
rul. Then o is an input to transaction parent('l’) = ‘1", The scheduler preconditions imply that a
e contains a REQUEST-—COMMIT(EV). and so lLomma 13 implics that a contains a
:t.‘ REQUEST —~CREATE(T). Also, the scheduler preconditions imply that no return operation for
'}: J T occursin a.
K
W
:':{. {3) = is ABOR'T(T) for some transaction T.

Then = is an input to transaction parent(’l) = 'I”. The scheduler preconditions imply that a
::;. contains a REQUEST - CREATE(T), but no return operation for 1.
)
’,’,?. (4) 7 is CREATE(T) and 't is an access o basic object X.
: : By the scheduler preconditions. no CREATE(T) or ABORICF) appears in a, but a
v ' REQUEST—-CREATH(T) appears in a. Assumec for the sake of deriving a contradiction that ‘1™ is
o a pending access in aX. ‘Then |.emma 22 implics that 1" is live in a. Also, | .emma 17 implics that
. 'x parent(1) is live in a. Then Lemma 23 implies that one of "1™ or parent('1) is an ancestor of the
: % other: since T and 'I” are both Icaves of the transaction tree, the only possibility is that parent('l) is
bt a proper ancestor of T, Let’1™ be the sibling of 'I” which is an ancestor of 'I”. Then 'I™ is live in a,
) by l.cmma 18. ‘That is, there is a CREATE(T™), but no COMMIT for 1™ in a. But this

contradicts the scheduler preconditions for w. ‘Therefore, there is no pending access in afX. @
B e )
i, 3.6.4. Visibility and Serial Schedules
E, In this paragraph. we prove intcresting lemmas about visibility in scrial schedules.
R0 Lemma 25: |.ct a be a serial schedule, and o an opcration in a. ‘Then transaction(sr) is visible in
] "' a to some transaction which is live in a.
"! Proof: 1.ct’l’ = transaction(w). Sincc a is not cmpty, T, is live in a. L.ct'I” be the least ancestor
P of ‘I’ which is live in a. ‘The proof is by induction on the distance from I" to I. If T = I, the
o result is trivial. So assume that T # °I°. Then COMMI'T(T) is in a, and so T'is visible to parcnt(1)

L in a. l.emma 13 implics that a contains a REQUEST'— CREATE(T) operation, which occurs at
parent(l). Then the inductive hypothesis implics that parent(T) is visible to 1°. "Then T is visible
3 toT by lLemmas8. i

‘f\_u l.cmma 26:
*. ‘ 1. Let & be a scrial schedule, T a transaction and X an object. Then visible(a, T)X is a prefix
k of alX.
W 2. et a be a scrial schedule, T a transaction and P a primitive. Then visible(a. 1)]P is a prefix
3= of alP.

]
'\ Proof: 1. Lct # and ¢ be operations in a|X. with w preceding @. and ¢ an operation in
::’.o visible(a.T). l.ct &’ be the prefix of a preceding @.  Let 17 = transaction(g) and T =
transaction(w). Sincc ¢ is cither a CREA'TE or a REQUEST ~COMMIT for 1", well-formedness
i
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of a implics that 'I” is live in a’@. Thus, by I.cmma 23, the only live transactions in a'p arc
ancestors of 17 By 1 emma 25, 1™ is visible to an ancestor of 1" in a’p. and hence in a. By
Lemma 8. 1™ is visible 10 I in @. But 'I” is visible to ‘I in a. by assumption. 1.cmma 8 then
implics that "1™ is visible to I in a, which gives the result

2. Immediate from Lemma 1l and part 1. §

Lemma 27: 1.ct a be a nonempty serial schedule. L.et o bhe the last operation in a which is an
output of the serial scheduler. ‘Vhen transaction(sr) sees everything in a.

Prool: Lot 'I' = transaction(w). We first show that '1'is live in a. Fither o is a CREATE(T) or
clse it is a rcturn operation for a child T" of T. In the latter casc, L.emma 14 implics that
CREATILT) also occurs in a. ‘Thus, in cither case, CREATE(CT) occurs in a. Now, if a return
operation for 'I' occurs in a, |.cmma 21 implics that it follows w. which is impossiblc. 'Thus, no
return operation for T occurs in a. 1t follows that ' is live in a.

Then Lemma 23 implics that the only other transactions that are live in @ must be ancestors or
descendants of 1. We claim that no proper descendants of ‘I are live in a. So assume for the sake
of obtaining a contradiction that U is a proper descendant of ‘I which is live in a. ‘Then U is a
descendant of a child V of T, and V is live in &, by L.emma 18. |.ct a” be the prefix of a preceding
«. ‘T'here arc three cascs.

(1) w is CREATHE(T).
‘Then l.emma 14 yiclds a contradiction.

(2) = is a COMMIT operation for 'I”, a child of T.
Then 1™ # V, since 'I” is not live in a. But'l” and V arc both live in a’, which contradicts l.cmma

23.

(3) w is an ABORT(T), for child T" of T.
Then'I” # V, since T is not live in a. But V is live in a’. But then the scheduler preconditions for

w arc not satisficd, a contradiction.

‘Thus, no descendants are live in a. so the only transactions that arc live in a are anccstors of
T. Now lct @ be any operation in . 1.cmma 25 implics that transaction(e) is visible in a to some
ancestor of ', and hence to I, B

lemma 28: et a be a scrial schedule, and T a transaction. Then visible(a,T) is a serial
schedule.

Proof: We procecd by induction on the length of a. The basis, length 0, is trivial. l.cta = a'w,
where « is a single operation. Fix transaction 't and let T = transaction{#). If 1" is not visible to
T in a, then visible(a,'T) = visible(a®, 1), and the result is truc by inductive hypothesis. So assume
that T is visible to T in a.

If & is an output opcration of a primitive P, then visible(a, T)|P is a prefix of a|P, by .emma 26,
and thus is a schedule of P. By the inductive hypothesis, visible{a®. T) is a serial schedule. Also,
visible(a, 1) = visible(a’1)7 by Lemma 12. ‘Then Lemma 4 shows that visible(a.T) is a serial
schedule.

On the other hand, if « is an output operation of the scheduler, then f.emma 27 implics that T°
sces cverything in a. But since ‘I is visible to T in a., it follows that ‘I’ sccs cverything in a. ‘Thus,
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visible(a T) = a, a scrial schedule. §

3.6.5. Reordering and Combining Scrial Schedules
In this paragraph, we describe ways in which scrial schedules can be maodificd and combined to yicld other

serial schedules. ‘These lemmas are used in the proof of the main theorem, in Scction 7.

Lemma 29: [ct @ and a’ be two cquivalent scrial schedules.  If 8 is a sequence of scrial
operations such that aff is a serial schedule, then a’B is a serial schedule, and is cquivalent o aB.

Proofl: Equivalence is trivial. ‘The fact that a'B is a scrial schedule follows because the
preconditions of the serial scheduler depend only upon the presence of previous operations, not
their order. B

‘The next lemma says that any serial schedule can be transformed by moving all the operations visible to any
particular transaction to the beginning of the schedule, and the result is another scrial schedule. 'This lemma
can be thought of as describing a kind of "canonical form™ for a scrial schedule, with respect to a particular

transaction.
Lemma 30: [.ct a be a scrial schedule, and ' any transaction. l.ct 8 = visible(a.T). 'Then B(a -
B) is equivalent to a and is serial.
Proof: l.ct a’ = B(a - B). If P is any primitive, then I.cmma 26 implies that BIP is a prefix of
a|P. ‘Thus, a’ is cquivalent to a.

T'o show that a’ is scrial, we proceed by induction on its prefixes. By L.emma 28, B is serial, so
we can usc 8 as the basis. I.ct ym be a prefix of a’, where # is a scrial operationina- B and yis a
scrial schedule. If # is an output opceration of a primitive P, then y#|P is a prefix of a'|P, = alP
by cquivalence, which is a schedule of P. ‘Then 1.emma 4 shows that y#r is a serial schedule. So
assumc that # is an output opcration of the scrial scheduler.

Let s be the state of the serial scheduler after y. et y'w be the prefix of a ending in o, and let s’
be the state of the serial scheduler after y'. Then # is cnabled in s>, We must show that » is
cnabled in s. ‘This suffices, by L.emma 4.

Since every operation in y' is also in y, it follows that cach component sct of s’ is a subsct of the
corresponding st of s. ‘There arce three cascs.

(1) w is CREATE(T) for some transaction 1°.
Then transaction(e) = T, and 'I” is not visible to T in a. Then 1" € create — requested(s’) C
create — requested(s). Also, it is casy to show that 'I” € created(s). Now lct U be in siblings(T") N
created(s). If U € created(s’), then U € returned(s’) since # is cnabled in s', C rcturncd(s), as
nceded. So supposc that U € created(s’). ‘Then CREATE(U) occurs in 8, so U is visible to T in a.

Since a contains both CREATE(T") and CREATE(U). I.emma 23 implics that a must contain a
COMMIT for at lcast onc of 'I” or U. If a contains a COMMIT for U, then it occurs in 8,s0 U €
returned(s). On the other hand, if a contains a COMMI'T for T", then 'I” is visible to U in a. so
l.emma 8 implics that 'I” is visible to 'I' in &, a contradiction.

(2) @ is COMMIT(T" v) for some transaction 1™ and value v.
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Then transaction(er) is parent(l”), which is not visible 1o I in a. ‘Then (17v) is in

commit - requested(s’) € commit—requested(s).  Also, it is casy to show that ‘1" is not in
rcturned(s).  Now let U be in children(1”) N create — requested(s).  “I'hen there is a
REQUEST=CREATE(WU) in y. This REQUEST -CREATE(U) occurs at ‘17, which cannot be
visible to 1" in a since parent(’l”) is not visible to T in a. ‘Thus, the REQUEST—CREATI(U)
does not occur in B, so it oceurs in ¥y, Since # is cnabled in s, we have U € returned(s’) C
returned(s).

(3) » is ABOR'T(CT™) for some transaction 1°,
Then ransactio{w) = pareat(17), and parent(l™) is not visible 10 T in a. ‘Then I° €
create ~ requested(s’) C create — requoested(s).  Also, it is casy to show that 'I" € crcated(s). Now
let U € siblings(1") N created(s). ‘Then CREATE(U) oceurs in y. But CREATE(U) occurs at U,
and U cannot be visible to I in a since parent(U) = pareni('1”) is not visible to 'I' in a. "Therefore,
CREATE(U) does not occur in B, so it occurs in y'. ‘Then U is in siblings('1”) N created(s’) C
returncd(s’) C returncd(s). §

‘The following lemma is an casy consequence of the preceding one.

Lemma 31: et a be a schedule of serial operations, and let 'I' and 'I” be two transactions with T
visible to 'I'in a. L.t B and B’ be scrial schedules, such that 8 is equivalent to visible(a.T) and 8°
is cquivalent to visible(a, ™). ‘Then 87 = B°(B - B°) is cquivalent to 8 and scrial.

Proof: 1.ct y = visible(B8.17). "Then vy is serial by L.emma 28. 1.cmma 30 implics that y(8 - y) is
cquivalent to B and serial. L.emma 10 implics that 8 is cquivalent to y, and thus that 8-y = 8 -
B’. Then Lemma 29 implics that 87 is cquivalent to y(B - y) and scrial. ‘Thus, 8" is cquivalent to
B and scrial. 8

The next two lemmas arc used in the proof of 'Theorem 68. Each describes a way of "cutting and pasting”

two scrial schedules to yicld a new serial schedule.

Lemma 32 |.ct af COMMIT(1".u) and aB, be two scrial schedules and T, '™ and T three
transactions such that the following conditions hold:
(1)1 is achild of 1™ and 'T' is a descendant of 'I™ but not of T,
(2) 1" sces everything in af,
(3) I sees cverything in af,,
(4) a = visible(aB|1™") = vnsnblc(aﬂ 1) and
(5) no basic object has operations in bolh B,and B,.
Then aﬂ COMMIT(I .u)Bz is a scrial schcdulc
Proof: Note first that if T = T, then B, is empty and the result is trivial. So assume that T #
T, ‘Then T is a descendant of a child U of T, and U = T".

Any opcration in af | whose transaction is not a descendant of T°, must be in vnsnblc(aﬁ T by
l.emma 8. Similarly. any opcration in aﬁ whosc transaction is not a descendant of U, must bein
visible(aB,.17). ‘Thus, B, and B8, contain only operations at descendants of '1” and U, respectively.
Since T” and U are dlsuncl snblmgs, and by assumption no objccts have operations in both ﬂl and
B,. it follows that no primitive has an opcration occurring in both 8, and B,

We proceed by induction on prefixes of af,COMMIT(T"u)B,. Lect a'p be a prefix of
af ,COMMIT(1" u)g,. with a’ a scrial schcdulc and ¢ a scrial opcration. Wc¢ usc a'p =
aB, COMMI (1" u) as the basis, since aﬁ COMMIT(1" u) is a scrial schedule by assumption. So
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assume that @’ = a8, COMMIT(1".u)B" for some sequence B°. ‘There arc wo cases, depending
on whether @ is an output of a primitive or of the scrial scheduler.

Supposc that ¢ is an output operation of a primitive P. ‘Then 8, COMMIT(I".v) contains no
operations at P.'Thus, a’|P = aB’@|P. which is a prefix of aff,|P. which is a schedule of P since
af, is a scrial schedule. Thus, a’@{P is a schedule of P. The result follows by .emma 4.

So supposc @ is an output of the scrial scheduler.  ‘Then transaction(p) = V for some
descendant V of U. Let s be the state of the serial scheduler afler a°, and let s’ be the state of the
scrial scheduler aficr a@f”. ‘Then the following relationships hold between s and '

1. V € create — requested(s’) - created(s’) iff V € create — requested(s) - created(s)

2. children(V) N create — requested(s’) € returned(s’) iff children(V) N create — requested(s)
C rcturncd(s)

3. (V.v) € commit— requested(s’) iff (V.v) € commit— requcsted(s)
4.V ¢ rcturncd(s’) iff V € rcturncd(s)
5. siblings(V) N created(s’) C returncd(s’) iff siblings(V) N crcated(s) C returncd(s)

Since the operations in 8 arc all at descendants of 17, and thosc of B, arc all at descendants of
U. the first four biconditionals arc immediate from l.emma 7. If V is a proper descendant of U,
the last biconditional also follows. It remains to show that siblings(U) N crecated(s’) C returned(s®)
iff siblings(U) N crcated(s) € rcturncd(s). But any sibling of U crcated in af’ is created in a',
and the only sibling of U crecated in @’ and not af’ is 17, and T € rcturned(s). Thus, the claims
are true.

Since g is cnabled in §', the claims above imply that ¢ is also cnabled in s. ‘The result follows. §

lemma 33: lct aABOR'I(T") and aB be two scrial schedules, and let T, T and T be
transactions, such that the following conditions hold:
(1) 'V is achild of 1™ and 'I' is a descendant of T but not of T™,
(2)'I' sces everything in «f8, and
(3) a = visible(a.1™) = visible(aB.T™).
‘Then aABOR'I(I7)B is a serial schedule.

Proof: Similar to, but somcwhat simpler than, the proof of Lemma 32. i

N 4. Resilient Objects
v,
J"‘f Having stated our correctness conditions, we arc now rcady to begin describing implementations and
proving that thcy mect the requircments. ‘This scction and the next are devoted to the description of a

; concurrent system which permits the abort of transactions that have performed steps. An important
ol componcnt of a concurrent system is a new kind of object cailed a “resilicnt object,” which we introduce in
.:t::: this section. A resilient object is similar to a basic objcct, but it has the additional capability to undo
~ operations of transactions that it discovers have aborted.
':::"
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":f:; Resilient objects have no capabilitics for managing concurrency:  rather, they assume that concurrency
:%.t control is handled externally (by lock manager components of the scheduler). ‘This section defines resilient
- objects and presents some of their properties. 1t also digresses slightly from the main development by
?‘ f describing and proving correct a particular implementation of resilient objects, which arc constructed by
i ‘

- kecping multiple copies of corresponding basic objects. The resilient object manages these copics as versions
fo of the data object.  Upon fearning of an abort, the appropriate stored version is used in place of the current

\' version,

e

i:'.| .

el 4.1. Definitions

e

:::«} Resilient object R(X) mimics the behavior of basic object X, but has two additional input opcrations,

INFORM -COMMIT—=AT(X)OF(I) and INFORM—ABORT-AT(X)OF(T). for cvery transaction

St

.*’:& I. Upon recciving an INFORM - ABOR'T—A'T(X)OK(T). R(X) crascs any cffects of accesses which are
[}

::t:“ descendants of T, ‘This property is made formal as the "Resiliency Condition” below.
o

EX ~"
. R(X) has the following opcrations, which we call R(X)-operations.
W
" 2 Input Operations:
: CREATE(T), T an access to X

:..0 INFFORM — COMMIT - AT(X)OF(T)

o INFORM — ABORT - AT(X)OK(T)
;& . Output Opcrations:

$ v REQUEST-COMMITI(T,v), T an access to X

’,'g s

y In order to describe well-formedness for rosilient objects, we require a technical definition for the set of
oy
é' transactions which arc active after a sequence of R(X)-opcrations. Roughly spcaking, the transactions which
% are active arc those on whosc behalf the object has carried out some activity, but whose fate the object does
f::' not know.

l';
:;: ‘The definition is recursive on the length of the sequence of R(X) operations. Namcly, only Ty is active after
K
::::',‘ the ecmpty sequence. Let @ = Bo, where # is a single operation, and let A and B denote the scts of active
)
:::::. transactions after @ and B, respectively. If o is CREATE(T), then A = B U {T}. Ifwis a
i am REQUEST—-COMMIT for T, then A = B. If w is INFORM -COMMIT-A(X)OK(T), and if T is in B,
Sy ¥
3; then A = (B- {I'}) U {parent(T)}: if T is not in B, then A = B. If w is INFORM — ABORT — AT(X)OK(T),
E.: then A = B - descendants(T).
s

L Now we dcfine well-formedness for sequences of R(X) operations. Again, the definition is recursive.
é A Namcly, the empty schedule is well-formed. Also, if @ = a'w is a sequence of R(X)-operations, then a is
K ]
O
n:'.! ¢
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t
:: well-formed provided that a’ is well-formed, and the following hold.
)
o Ifw is CREATE(T), then
(i) there is no CREATE() in a';
. (ii) all the transactions which are active afier a” are ancestors of T,
;
o o Ifwisa REQUEST-COMMIT forT', then
: (i) there is no REQUEST—COMMIT for ' in a’, and
¢ (ii) 1" is active alicr ”.

o If w is INFORM —COMMI'T = A'T(X)OK(T’) . then
¢ (i) there is no INFORM - ABOR'T = A'T(X)OK(T) in ', and

‘, (ii) if I' is an access to X, then a REQUEST—-COMMIT for T occurs in a”.

)

:'. o If w is INFORM = ABORT = A'T(X)OK(I) , then

_ (i) there is no INFORM -~ COMMIT - AT(X)OF(T) in &'

4

Ei An immcediate consequence of these definitions is that the transactions active after any well-formed

5: sequence of R(X)-operations e arc a subset of the ancestors of a single active transaction, which we denote

) least(a).

kA

:;; For a a scquence of R(X)-operations, define undo(a) recursively as follows. Define undo(A) = A, where A

;l is thc cmpty sequence. Lot a = B, where # is a single operation. If # is a scrial operation (a CREATE or a

REQUEST—-COMMIT), then undo(a) = undo(f)e. If w is INFORM —COMMIT - AT(X)OK(T), then

é undo{a) = undo(B). If w is INFORM — ABOR'I'- AT(X)OK(T), then undo(a) is the result of climinating,

; from undo(B). all operations whosc transactions arc descendants of T. Note that undo(a) contains only serial
operations,

N let « be any scquence of R(X)opcrations, and let # bc an operation in a of the form

r INFORM - ABORT~AT(X)OF(T). ‘Ihen the scope of w in a is the subsequence y of a consisting of

' operations climinated by w.

4 Resiliency Condition

‘ﬁ Resilient object R(X) satisfies the resiliency condition if for cvery well-formed schedule a of R(X), undo(a) is

W a schedule of basic object X.
We require that resilicnt object R(X) preserve well-formedness and satisfy the resiliency condition.

The resiliency condition is the correctness condition required by the concurrent schedulers at the object
interface. The well-formedness requirement is a syntactic restriction, and the condition that undo(a) be a
schedule of basic object X expresses the required semantic relationship between the resilient object and the
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3::: ¢ basic object it incorporates. ‘The important property which must be prescrved is that the correctness condition
)
;:‘. : at the resilicnt objects, together with the behavior of the concurrent scheduler, assures correctness at the
Ny
I transaction boundarics.
e
»:;:‘;' 4.2. PProperties of Resilicnt Objects
X
s:*:r: ‘This subscction contains a collection of simple lemmas about the propertics of well-formed sequences of
’!:5e3
R(X) operations.
_:: 'u; Lemma 3M: L.ct aw be a well-formed sequence of R(X) operations, with & a single operation.
:.‘(‘ ‘The following are truc.
0
=
s::;%s 1. If w is a scrial operation, then transaction(w) is active after aw.
K
2. If'I' is an access active after a prefix of a but not after a, then ‘1 is not active after aw.
;5‘.'
BN 3. 1f w is a REQUEST—COMMIT for T then CREATE(T) is the last scrial operation in a.
‘ '- Proof:
1-""
;,;'f:'- 1. Immediate from the definition of active and well-formedness.
» S
‘,': \‘~ 2. Because ‘1" has no descendants, it can only become active when a CREATE(T) operation
?_.;r’: occurs, which can only happen once in a well-formed schedule.
B\
R 3. Supposc the last scrial operation in a is @, with ¢ # CREATE(T). Let transaction(p) =
T°. By well-formedacss, ‘U = T°. Also by well-formedacess, T is active in a, so that
ﬁ CREATE(T) must occur in a, and so precedes @. By part (1), T is active following
ol CREATE(T) and after w, and ‘1" is active following @. But T cannot be active when ¢
E' . occurs, by well-formedncss, contradicting part (2) of this lemma.
‘ »
::"l-. ] |
, l.emma 35: I.ct a be a well-formed sequence of R(X) operations. It T and T° be accesses to X, !
W with 'I' # 1", and lct # and ¢ be scrial operations with transactions ‘' and 17, respectively. If & !
L 7 precedes @ in a. then between o and g, there is cither an INFORM —ABOR'F — AT(X) for some '
-’., ancestor of I, or else there are INFORM —COMMI'T = AT(X)OK(U) operations for all ancestors
e U of ‘I which are not ancestors of 'I”, occurring in order from lowest to highest in the transaction
’ tree ordering.
o Proof: By part 3 of l.cmma 34 and well-formedncss, we may assume that ¢ = CREATE(T).
) : l.emma 34 implics that T is active immediatcly after #. By well-formedncss, before CREATE(TT)
- can occur, it must be that all transactions which are active arc ancestors of 'I”. There are only two
,‘ ways in which this can happen. One possibility is that R(X) first reccives INFORM - COMMITS
1‘.3 for all ancestors of T up to ka(l.T"), in order from lowest to highest in the transaction tree
w ordering. ‘The other possibility is that R(X) first reccives an INFORM — ABORT for an ancestor
AN of T. 1
: ":\I lemma 36: lct am be a well-formed sequence of R(X) opcrations, with & =
| .-C: INFORM = ABOR't = AT(X)OF(T). Then undo(aw) is a prefix of undo(a).
R Proof: Suppuse not. “Then there is a subsequence @y of two operations in undo(a), such that ¢
...‘._,. is in undo(aw) and @ is not. Clearly, g and ¢ arc scrial operations, transaction(e) is a descendant
[ )
e
i
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. of ‘I and transaction(¢) is not. Since @ is not in the scope of an INFORM — ABOR'T in a, by
Y l.emma 35, there is an INFORM = COMMIT between @ and ¢ tor cvery proper descendant of
.- kea(transaction(@).ransiaction(y)) that is an ancestor of transaction(e). including 1. "This
contradicts the well-formedness of aw. 1
L} Lemma 37: Let a be a well-formed sequence of R(X) operations, and et I be any transaction
& active in a. other than ‘I, “Ihen undo(a) contains an operation @ at a descendant 17 of T, which is
f followed in a by an INFORM —COMMI'|I for cvery ancestor of 17 which is a proper descendant
\ g
, of T.

PProof: ‘I'he proof is by induction on a, with a trivial basis. l.ct a = a’w, such that the lemma is
:{ truc for a” and that « is a singlc operation. Let I be a transaction active after a. ‘There are four
cascs.

Suppose # is CREATE(CT™). ‘Then undo(a) = undo(a’)w. IFF # 1™, the result is immediate by
the induction hypothesis, since 'I' is active after a’. 1f°I"' = "I, then the lemma follows, with & =

P.

-

N

4 If w is a REQUEST - COMMIT for a transaction '™, then undo{a) = undo{a’)w and the same
Y transactions arc active in a and a’. ‘Fhe result is immediate.

)

§ Suppose o is an INFORM — COMMI'I' for a transaction ‘I™". Then undo(a) = undo(a’)s. If T
\c;: is active after a', the result is immediate. If°1 is not active after a’, it follows that ‘I' = parent(1™).
o ‘T'he result is immediate from the induction hypothcsis.

Vi

1%

:: Supposc w is an INFORM — ABORT for a transaction U. Since I' is active after a. it was active

’ after a” and U is not an ancestor of ‘I, l.ct @ be the transaction of transaction ‘1™ which follows
e~ from the inductive hypothesis applicd to T and a’. Since a is well-formed and &’ contains
b INFORM —COMMI'I's for every ancestor of 1™ up to ‘I, U is not an ancestor of ‘17, 1t follows that
K @ is in undo(a) and the result holds. 8
:C l.emma 38: l.ct @ be a well-formed sequence of R(X) opcrations, and let least(a) = T. If
! undo(a) is noncmpty, then it ends in an operation of a descendant of T.

. Proof: If ' = I, the result is trivial, so assume otherwise. By the previous lemma, undo(a)
o contains an opcratlon @ at a descendant of ‘I Without loss of generality, assume that @ is the last
‘i operation in undo(a) at a descendant of I'. If any other operation # followed @ in undo(a). by
- l.emma 35 a would contain INFORM —COMMITs for every ancestor of transaction(g) up to
B Ica(transaction(p).transaction(w )). which includes T. Then 'f"is not active in a. a contradiction. #
. ) lemma 39: lct aw be a well-formed sequence of R(X) opcrations, with w =
" INFORM —=ABORT-AT(X)OF(T). If T is not an ancestor of lcast(a). then undo(aw) =

undo{a).
j Proof: Supposc that T is not an ancestor of lcast(a) and that undo(aw) # undi{(a). Then
§ undo(a) contains a scrial operation ¢ at a descendant 17 of 'I. By l.emma 38, ¢ is followed in
3 undo(a) by an opcration at a descendant of least(a). By l.emma 35, a contains an
f ’3 INFORM —COMMIT for every ancestor Icast(a) up to lca(lcast(a),17). which includes T,
ot contradicting the well-formedness of aw.
-:' We arc now able to show that the undo operator preserves well-formedness.
< Lemma 40: If a is a well-formed sequence of R(X)-operations, then undo{(a) is a well-formed
- scquence of X-operations.
&
a
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53 % Proof: 'I'he proof is by induction on the length of a. ‘The basis is trivial. Assumc a = a'w,
1{ “ where # is a single operation, and undo{a’) is o well-formed sequence of X-operations. If o is an
kﬁh INFORM-ABOR'F or INIFORM —=COMMIT, undi(a) is a prefix of undo{ea’), by |.emma 36, and
- the result is immediate.
s Q'l
;',":5‘ If w is CREATE(T), then und(a) = und{a’)w. By the well-formedness of a, CREATE(T)
:-;6. il does not appear in a’, and so not in undo{a’). llence, (i) is satisfied. ‘To sce (i), assume that
}5‘ v CREATECI) occurs in undofa’), for access 17 ‘Then lemma 35 implics that
fee INFORM —COMMIT = ATOOORCT) occurs after CREATE(T) in a. ‘Then well-formedness
R (the  precondition  for  INFORM—-COMMIT-AT(X)OI(I"))  implics that a
’m:’ REQUEST—-COMMIT for 1" occurs in a’. and wcll-formedness also implics that the
lﬁ;,i:e’ REQUEST—COMMIT for 1" follows the CREATE(T). ‘Ihercfore, the REQUEST—COMMIT
;;‘ﬁ:.:* occurs in undo{a’), and so ‘1" is not pending in undo{a’). ‘T'hus, (ii) is satisficd.
v‘ e, "
N If w is a REQUEST-COMMIT for T, then again undo(a) = undo(a’)w. and by the well-
ol formedness of a, (i) no REQUEST—-COMMIT for ‘I appears in a', and so not in undo{a’), and
;:'-::‘ (ii) 1 is active after @, and it follows that CREATE(T™) occurs in undo(a’). 8
o
R
e 4.3. Construction of a Resilicat Object
';* i In this subscction, we describe a construction of a resilient object R(X) from a basic object X.
oy
a2 . Recall that a resilient object X is distinguished from a basic object in that it has INFORM — ABORT and
’f\’ INFORM-COMMIT opcrations. a different definition of well-formedness, and satisfics the resiliency
. condition. 'Yhe resilient object R(X) is constructed from the states, transition function and opcration labcels of
o)
g the basic object X. The resilient object R(X) maintains a collection of “copices of X (i.c. remembers states of
.\:: X). onc for cach active transaction. with a particular current copy (corrcsponding to the least active
{{' transaction) to which CREATE opcrations arc sent.  When R(X) reccives an INFORM —ABORT, the
* appropriatc stored copy becomes the current copy. thereby crasing the effects of the operations in the scope of
0
K the INFORM — ABORT.
e
;.':"." The state of R(X) consists of a pair (act.map), where act is a sct of "active™ transactions, and map is a
function from act to states of basic object X. In the well-formed exccutions of R(X) (defined below), act will
J':: always be a subsct of the sct of ancestors of onc particular transaction in act, called least(act). (In case act has j
N "
:: no least member (which, again, will not arisc in exccutions with well-formed schedulcs), define lcast(act) i
: . arbitrarily.) ‘I'hc copy for lcast(act) is considered to be current. ‘The initial states of R(X) are thosc in which
P act = {'I‘o} and map(T) is an inital state of the basic object X. In the following specification of the
el
:‘:} operations of R(X), let (act’.map’) be the state of R(X) prior to the opcration, and (act.map) be the statc of
L .
:&' R(X) after the operation.
f& o CREATHK(T). T an access to X:

Postcondition:
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X
"4 =act' U {T}

‘. map(U) = map'(U) forall U € act - {1}

o map(1) = s, where (map(Icasi(act D.CREATECT).s) is in the transition relation of X

" o INFORM —ABOR'T' = AT(X)OI(T):
'j;a: Postcondition:
::: act = act’ - {descendants(1)}

.y:: map(U) = map'(U) for all U € act

"!’

o INFORM —COMMIT - AT(X)OK(CT):

v Postcondition:

3 if ' € act’ then
: ] begin

;:: act = (act’ - {'I'}) U {parent(T)}

4 map(U) = map'(U) for U € act - {parcnt(l)}

. map(parent(1)) = map’(1’)

W end

;‘5. if I' € act’ then act = act’ and map = map'

%)

Xy

h‘ e REQUEST-COMMIT(T v):

i Precondition:

-. least(act’) = T

o (map'(1).REQUEST — COMMI(T,v),s) is in the transition rclation of X

) Postcondition:

:' act = act’

% map(U) = map'(U) for all U € act - {T}

" map(T) =s

i

o Now wc prove that this implementation is a correct resilient object.

3} Lemma 41: Let a be a well-formed schedule of R(X) which can leave R(X) in statc (act,map).
i ‘Then act coincides with the sct of transactions which arc active after a.

i Proof: ‘The proof is by induction on the length of a. ‘The basis is trivial. l.cta = a'w, where w
’:: is a singlc operation. ‘Ihere arc four cascs. depending on the type of operation w. Each is
‘.: immediatc from the definition of active and the implemcntation of R(X). 1

N lemma 42: Let a be a well-formed schedule of R(X) which can leave R(X) in statc {act,map).
" Then the following conditions hold.

* * undo{a) is a schedule of basic object X which can leave X in state map(icast(act)), and

3 o if T is any transaction other than T, and aINFORM —ABORT - AT(X)OF(1")) is well-
a formed, then undo{alNFORM —ABOR'T = AT(X)OF(I™)) is a schedule of basic object X
i which can Icave X in statc map(U), where U is the least clement of act which is not a
;; descendant of T,

]

i:o Proof: First. obscrve that if T is not an ancestor of Icasi(act), and
ny aINFORM = ABORT=AT(X)OF(T") is wcll-formed, then l.emmas 41 and 39 imply that
: undo(alNFORM — ABORT - AT(X)OF(1")) = undo(a). so the sccond condition follows from

the first.
i
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‘T'he proof is by induction on the length of a. In cach casc, we prove the first condition, then the
second condition assuming that ‘17 is an ancestor of least(act). By the obscrvation above, this is
sufficicnt.

‘The basis is trivial. l.ct @ = a'w, where # is a single operation. 1.t (act’.map’) be a state of
R(X) afier &', such that ((act.ap’).w (actmap)) is a transition for R(X). 1'hcre are four cascs.

1) w = CREATE(T)
Then undo{a) = undo(a’)w. By the inductive assumption, undo(a’) is i schedule of X which can
lcave X in state map (least(act’)). By the implementation of R(X). (map'(Icast(act’)).w.map(l)) is a
transition of X, and I’ = lcast(act). ‘I'hus the first condition of the lcmma is satisficd.

T'o see that the second condition holds, note that all active transactions after a are ancestors of T,
and by wcll-formedness, arc cxactly the transactions active after a'. together with ', Let ¢ be
INFORM — ABOR'T — AT(X)OF(CI™), where I is an ancestor of 'I” other than Io and agp is well-
formed. If'I” is a proper descendant of keasi(act’), by | emma 39, undo(ag) = undo{a’), which is
a schedule of basic object X which can lcave X in statc map(least(act’))), by the inductive
hypothesis. If 17 is an ancestor of least(act’), undo(ag) = undo{a’g). the lcast clement of act
which is not a descendant of ‘17 is also the Ieast element of act” which is not a descendant of 'T™, and
the result follows by the inductive hypothesis.

2) # = REQUEST—~COMMIT(T.v)
‘Then undo(a) = undo{a’)w. By the inductive assumption, undo(a’) is a schedule of X which can |
Icave X in statc map’(lcast(act’)). By the implementation of R(X), (map'(icast(act’)).w.map(1)) is a !
transition of X, and ‘I’ = least(act). 'I'hus the first condition of the lemma is satisfied.

To sce that the second condition holds, note that the active transactions after a are all ancestors
of I. and by wcll-formcdness, arc cxactly the transactions active afier a’. lct ¢ be
INFORM = ABOR'T = AT(X)OK(T"), where ‘T is an ancestor of ‘I other than 'l'o. and ag is wcll-
formed. ‘Then undo{ag) = undo(a’g), which is a schedule of basic object X which can leave X in
state map(lcast(act’))), by the inductive hypothesis. Furthermore, the lcast clement of act which is
not a descendant of ‘17 is also the least clement of act” which is not a descendant of T°, and the
result follows by the inductive hypothesis.

3) » = INFORM —~COMMIT - AT(X)OF(T)
‘Then undo(a) = undo(a’). Also, map(icast(act)) = map(lcast(act’)), by definition of R(X). The
first condition follows.

By the dcfinition of R(X), lcast(act) is an anccstor of least(act’). Iet @ be
INFORM = ABOR'T' = AT(XYOE(T"), where 'I” is an ancestor of lcast(act) other than To. and ag is
well-formed. ‘Then a'g is well-formed, and undo(ag) = undo(a’e). Also, since ae is well-
formed, T" # T. et U and U’ be the least clements of act and act'. respectively, which are not
descendants of T,

If T € act’. or if U # pareny(T). then U = U’ and map{(U) = map'(U’). and the sccond
condition follows from the inductive hypothesis. So assume that 'I' € act’ and U = parent(T).
Then since 'I° # I, it follows that U' = 'I'. ‘Then map'(U’) = map(U), and the second condition
again follows from the inductive hypothesis.

[
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o

' ' ‘
B 4)w = INFORM - ABORT = AT(X)OK(1) |
}c; 161 is not an ancestor of least(act’). then undo{a) = undo(a’), by .emma 39, Furthermore, the ‘
o state of R(X) is not changed. alNFORM=ABORT~AT(X)—-OF(I") is well-formed only if ‘
i a INFORM = ABOR' ' = AT(X)=OF(1") is. and the active ransactions after a arc exactly those i
! active after a’. ‘The result follows.

i.'

)

al Suppose that 1" is an ancestor of leasi{act’). ‘The first condition is immediate from the inductive

i )

i,: hypothesis. Lot @ be INFORM = ABOR'T=AT(X)OE(T™). where 17 s an ancestor of least(act)

" other than 'l'n. and ag is well-formed. Since act = act’ - descendants('1), leas(act), and hence 17,

: is an ancestor of ‘I, undo(ag) = undo{a’'wg) = und(a’p). and the second condition follows as
oy well. 8

5 ‘Theorem 43: R(X) is a resilient object.
',: Proof: Wc must show that R(X) preserves well-formedness and satisfies the resiliency condition.

That R(X) satisfics the resiliency condition follows immediately from L.emma 42,

, Assumc that a is a well-formed schedule of R(X) and # is an output operation of R(X) enabled
;e afier an exccution with schedule @. We must show that aw is a well-formed sequence of R(X)-
& opcrations.

.’.

: Since w is an output, it has the form REQUEST - COMMIT(Tv) for some access ‘I' and value v.

) It (act.map) be a state of R(X) after a. such that « is cnabled in (act.map). Clearly, = is an

:: output of basic object X cnabled from statec map(lcast(act)). By 1.cmma 42, undo(a) is a schedule
> of basic object X which can lcave X in staic map(lcast(act))), so undo(a)r = undo{aw) is a
schedule of basic object X.

L)

& Since X preserves well-formedness for basic objects, and by L.emma 40 undo(a) is a well-formed

) sequence of X-operations, undo(a) ends with the operation ¢ = CREATE(T) and contains no

;{ other operations with transaction ‘I'. Let B¢ be the prefix of a cnding in @. Supposc first that a
) REQUEST—COMMIT for I' occurs in a. Since a is well-formed, @ is the only CREATE(T)
H operation in a. and by |.cmma 34, the seccond REQUEST -~ CREATE for T follows @, and by the

, definition of undo, is in undo(a) if ¢ is, a contradiction.
"
_ It remains to show that T is active after a. By l.emma 34, T is active after S@. No

4 INFORM —COMMIT for T can occur aficr ¢ in a. since by well-formedness, there is no

. REQUEST~COMMIT for T in a. Also, since ¢ is in undo(a). no INFORM —ABORT for an

- ancestor of I’ can occur after @ in a. Thus T is still active after a. §
"
k)

2 5. Concurrent Systems
; As with scrial schedules in classical scttings, our scrial schedules contain no concurrency or resiliency and
: thus are too inefficient to use in practice. Their importance is solely for defining correctncss for transaction
b systems. In this scction, we define a new kind of system called a concurrent system. "The new system consists
. of the same transactions as in a scrial system, a resilicnt object R(X) for cvery basic object X of the scrial
N system, and a concurrent scheduler.

N Concurrent systems describe computations in which transactions run concurrently and can be aborted after
%
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% they have performed some work.  ‘The concurrent scheduler has the joint responsibility of controlling
R concurrency and of sceing that the cffects of aborted transactions (and their descendants) become undone.
. Concurrent systems make use of the roll-back capabilitics of resilient objects to make sure that ABORT

o operations in concurrent sysiems have the same semantics (so far as the transactions can tell) as they do in
r,,f‘- scrial systems.

-
Y . . . . s

Concurrent systems are defined in this section. In the next section, the more permissive "weak concurrent

‘:f systems” arc defined. In Scction 7, we prove that the schedules of concurrent systems arc scrially correct, as a
‘Wb
) corollary of a weaker correctness property for the weak concurrent system.

5.1. Lock Managers

K 0 ‘The scheduler we define is called the concurrent scheduler. It is composed of scveral automata: a lock

Y
' I - manager for cvery object X, and a single concurrent controller. “I'he job of the lock managers is to insurc that
)
! :4- the associated object receives no CREATES until the lock manager has received abort or commit information
,,A for all nccessary preceding transactions. ‘This lock manager models an exclusive locking protocol derived
R from Moss® algorithm [Mo]. ‘The lock manager has the following operations.
RA
: 7 Input Operations:
N INTERNAIL — CREATECT), where T is an access to X

i INFORM = COMMI'T — AT(XYOE(T). for " any transaction

oA INFORM — ABORT — AT(X)OF(I), for T any transaction
ot Output Opcrations:
"0y CREATE(T), where T is an access to X
o "‘
Y ‘The input operations INTERNAL -CREATE, INFORM-COMMIT and INFORM-—ABORT will
| :r_ composc with corresponding output operations of the concurrent scheduler which we will construct in this
":',: subscction.  The output CREATE opcration composcs with the CREA'TE input operation of the resilient
*. object R(X). ‘The lock manager reccives and manages requecsts to access object X, using a hicrarchical locking
o0 scheme. It uscs information about the commit and abort of transactions to decide when to release locks.
:l’ ]
A
ey Fach statc s of the lock manager consists of the following threc sets of transactions: lock —holders(s).
"’ create — requested(s), and created(s). Initially, lock —holders = {'l‘o}. and the other sets arc empty. The
: opcrations work as follows.

Y
S o INTERNAL —CREATE(T)
. ‘-.j_' Postcondition:
‘o create — requested(s) = create — requested(s’) U {T}
_ ¢ INFORM —COMMIT - A'T(X)OF(T)

~
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e
‘;‘; Postcondition:
ii‘: if ‘I € lock — holders(s’) then lock — holders(s) = (lock —holdens(s’) - {1'H U {parent(']')}
Ta
- o INFORM — ABORT= A'T(X)OF(I)
: é‘t:" Postcondition:
;G.t::.: lock — holders(s) = lock —holders(s’) - descendants(1)
P NN
) TREATECT
ROt o CREATE(T)
*‘g:i" Precondition:
o ‘I' € create — requested(s’) - created(s’)
& y lock —holders(s’) C ancestors(l’)
'_‘ﬁ :2 Postcondition:
o lock —holders(s) = lock ~holders(s’) U {T'}
] created(s) = created(s’) U {1}
"‘tfl’,! Note that resilicnt object R(X) and the lock manager for X sharc the INFORM—ABORT and
;@ INFORM - COMMIT input operations. 'These compose with the output from the concurrent controller
Wy
»*, dcfined below,
e
iz
3 " Thus, the lock manager only sends a CREATE(T) operation on to the object in case all the current
;‘:‘.'; lock - holders arc ancestors of 'I. When the lock manager learns about the commit of a transaction ‘I' for
o
-{"') which it holds a lock, it relcascs the lock to ‘I"s parent. When the lock manager Icarns about the abort of a
' transaction ‘I’ for which it holds a lock, it simply rcicascs all locks held by that transaction and its descendants.
o Our model provides an cxceptionally simple and clear way of describing this important algorithm, |
R |
‘--."?j A key property of lock managers is described by the following lemma.
W lemma 44: Lot X be an object and let 1" and ‘I be accesses to X. Let U be an ancestor of T
. ,', which is not an ancestor of '1°. l.ct a be a schedule of the lock manager for X. If CREATE(T)
,‘,.::o.! precedes CREATE(T) in a, then between the two CREATE operations, there is cither an
W INFORM —COMMIT—AT(X)OF(U) operation, or clse an INFORM—ABORT-AT(X) for
3:: Z some ancestor of T.
Qi Proof: At the timc the CREATE(T) occurs, the lock manager puts T into the sct of
lock ~holders.  Before the lock manager can send in CREATECI™), it must be that all the
.;':" transactions in lock —holders arc ancestors of 1", ‘There are only two ways in which this can
e happen. One possibility is that the lock manager first reccives INFORM - COMMITS for all
: ﬁ ancestors of T up to ka(l,I"), including INFORM —~COMMIT -AT(X)OF(U). 'The other
By ! X poussibility is that the lock manager first reccives an INFORM — ABORT for an ancestor of 1. 8
1,
; _- 5.2. The Concurrent Controller
o
[ i ‘The concurrent controtler is similar to the scrial scheduler, but it allows siblings to proceed concurrently. In
"
> order to manage this properly, it intcracts with “concurrent objects” (lock managers and resilient objects)
i instcad of just basic objects. ‘The operations arc as follows,
',:
0
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Input Operations:
REQUISST~CREATHE(T)
REQUEST-COMMIT(T.Y)

Output Opcrations:
CREATE(T), T a non-access transaction
INTERNAL =CREATE(CT), T an access transaction
COMMIT(T.V)
ABOR'I(T)
INFORM —=COMMIT - AT(X)OF(T)
INFORM—=ABORT - AT(X)OK(T)

Each statc s of the concurrent controller consists of five sets:  creatc— requested(s), created(s),
commit — rcquested(s), committed(s), and aborted(s). The set commit—requested(s) is a sct of
(transaction,valuc) pairs, and the others are scts of transactions. (As before, we will occasionally write T €
commit— requested(s) for (F,v) € commit — requested(s) for some v.) All sets arc initially cmpty cxcept for

create — requested, which is {'I'o}. Define returncd(s) = committed(s) U aborted(s). 'I'hc opcrations arc as

follows.
¢ REQUEST—-CREATE(T)
Postcondition:

create ~ requested(s) = create — requested(s’) U {17}

o REQUEST-COMMI'I(T.v)
Postcondition:
commit—requested(s) = commit— requested(s’) U {(T,v)}

o CREATE(T)., T a non-acccss transaction
Precondition:
T € create — rcquested(s’) - created(s'’)
Postcondition:
created(s) = created(s’) U {T}

o INTERNAL — CREATE(T). T an access transaction
Precondition:
‘I' € create — requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) U {T}

o COMMIT(T,v)
Precondition:
(T,v) € commit— requested(s’)
T € rcturncd(s’)
children(T) N create — requested(s’) C returned(s’)
Postcondition:
committed(s) = committed(s’) U {T}
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3 Precondition:
b, " € (create-requested(s’) - created(s’)) U (commit — requested(s’) - returned(s’))
- children('1) N create — requested{s’) C returned(s’)
Q0 Postcondition:
:o,'c created(s) = created(s’) U {T}
.é::,,: aborted(s) = aborted(s’) U {1}
2 %,
,,:f'f o INFORM —COMMIT - AT(X)OK(T):
. Precondition:
" I' € committed(s'’)
ey

3 o INFORM — ABORT— AT(X)OF(1):
o Precondition:
h I € aborted(s’)

,$§ "The concurrent controfler is closcly related to the scrial scheduler. in place of the scrial scheduler's
‘n,,-' CREATE operations, the concurrent controller has two kinds of operations, CREATE opcrations and
Ja INTERNAL - CREATE opcrations. ‘I'he former is used for intcraction with non-access transactions, while
s the latter is used for interaction with access transactions. From the concurrent controller's viewpoint, the two
{'_’_‘:‘ operations arc the saume: howcever, our naming convention for operations requires us to assign them different
:f names, since thc INTERNAL—-CREATE operations arc intended to be identified with
N INTERNAL —CREATE operations of the lock managers (which also have CREATE operations, for
. intcraction with the resilient objects). ‘The precondition on the serial scheduler's CREATE operation which
‘_‘:_:; insures scrial processing of sibling transactions. docs not appear in the concurrent controller.  Thus, the
"’:‘ concurrent controller may run any number of sibling transactions concurrently, provided their parent has
X ' requested their creation. ;
. |
;:.":. The concurrent controller’s COMMIT operation is the same as the scrial scheduler's COMMIT opceration
::.E:: (cxcept for a minor difference in bookkeeping). ‘The concurrent controller's ABOR'T operation is different,
e however; in addition to aborting a transaction in the way that the scrial scheduler doces, the concurrent
controller has the additional capability to abort a transaction that has actually been created and has carricd out
\ some steps. In this particular formulation, aborts occur if the transaction was not crcated (as with the serial
Ei{' scheduler), or if the transaction has previously requested to commit, and its children have returned. 7 cgether
- with the requircments on the COMMIT operation, this condition insures that all transaction complction
e occurs bottom-up. In the weak concurrent system to be considered in Section 6, a different, "weak™,
'E; concurrent controller will be used; it differs from the concurrent controller of this section preciscly in not
..C:_' requiring ABOR'T operations to wait for their transactions (and subtransactions) to complcte.

xx The concurrent controtler also has two additional opcrations not present in the serial scheduler. ‘These
"5;
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operations allow the concurrent controller to forward necessary abort and commit information to the lock

managers ind resiticnt objects.

L.emma 45: .ot & be a schedule of the concurrent scheduler, and et s be a state which can result
from applying a to the initial state. ‘Then the following conditions arc true.

1.I"is in create — requested(s) exactly if I = 'I'O or a comains a REQUEST-CREATE(T)
opceration,

2.1f I is a non-access transaction, then I is in created(s) exactly if a contains cither a
CREATE(T) or ABOR'I(I') operation.

LIET is an access transaction, then 'V ois in crcated(s) cxactly if a contains cither an
INTERNAL = CREATE(T) or ABOR'I(T) operation.

4.(T.v) is in commit—rcquested(s) exactly if a contains a COMMIT—REQUEST(T,v)
operation,

5. (I'v) is in committed(s) exactly if a contains a COMMI'I(T',v) opcration.

6.°1'is in aborted(s) exactly if a contains an ABOR'I'(T) operation.

5.3. Concurrent Systems
‘The composition of transactions, resilient objects and the concurrent scheduler (lock managers and
concurrent controller) is the concurrent system. A schedule of the concurrent system is a concurrent schedule,

and the operations of a concurrent systcm arc concurrent operations.

A scquence a of concurrent operations is well-formed if for cvery primitive P, a|P is well-formed (using the

appropriate definition of well-formedness).

‘The main result of this paper is that cvery concurrent schedule is serially correct. ‘This will be proved as a

corollary of a stronger result, in Section 7.

5.4. Properties of Concurrent Systems
As we did for scrial schedules, we now prove some uscful basic propertics for concurrent schedules. These
lemmas describe the possible kinds and orders of opcerations that can occur in well-formed concurrent
schedules. Later, we will see that all concurrent schedules are well-formed, so these properties actually follow
just from the fact that these schedules are concurrent. Al results and proofs in this subscction are
straightforward.
1cmma 46: | .ct a be a well-formed concurrent schedule, and fet T = T, be a transaction.

1. If a contains any opcration with transaction ‘I, then a contains a CREATE(T) and a
REQUEST - CREATE(T).
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e 2. If a contains a COMMIT for 'I', then a contains a REQUEST-COMMIT for |, a
E.? CREATECT) and a REQUES T —CREATI(T).

3. If a contains an ABORT(T). then a contains a REQUEST - CREATE(T).

E L.emma 47: 1.ct a be a well-formed concurrent schedule, and ‘I a transaction. Assumce that some
3‘ descendant of 'Tis in transaction(a). ‘Then the following hold.

2

o 1. CREATE(T) occurs in a.

oty

o 2T = 'I'o, then REQUEST —CREATE(T) occuss in a.

e Lemma 48: | .ct a be a well-formed concurrent schedule, and let 1" # 'I'o be a transaction.

‘ 1. If a contains a REQUEST—CREATE(T), but does not contain a return operation for T,
K> then parent(l) is live in a.

;" 2.1f T is live in a, then pasent(']) is live in a.

1)

‘,\ 3.If a contains a REQUEST—-CREATE(T) but does not contain a CREATE(T) or
::: ABORE(T). then parent('T) is live in a.

Proof: 1. Wcll-formedness implics that the REQUEST—CREATE(T) is preceded by a

e CREATE(parent(17). Supposc that parent(T) is not live in a. Then a return operation for
~, parcnt('l) occurs in a. In casc the rcturn operation for parent(’l) is an ABOR'I{parcnt(T)),
: scheduler  preconditions  imply  that  the  CREA'TH(parent(l)) must  precede the
%y ABOR T(pareni(T)). ‘Then the scheduler preconditions for the return operation imply that the
' return for parent(l) must be preceded by a REQUEST-COMMIT for parent(T). By well-
. formedness, the REQUEST —COMMIT for parent('t’) must follow the REQUEST - CREATH(T).
P so that the return for parent('F’) must follow the REQUEST ~CREATE(T) Then the scheduler
o preconditions for the return operation imply that there must be a return operation for T in a, a
;. contradiction.
2.and 3. arcasini.cmmall. i

;: Lemma 49: 1.ct a be a well-formed concurrent schedule, and let T be a transaction.

H .

y 1. If a contains a REQUEST—CREATE(T), but docs not contain a return operation for T,
[ then all proper ancestors of T arc live in a.

) 2. If T is live in a, then any ancestor of T is live in a.

§ 3.If a contains a REQUEST—-CREATE(T) but docs not contain a CREATE(T) or
) ABORI(T), then all proper ancestors of ‘T are live in a.

- Lemma 50: 1.ct a be a well-formed concurrent schedule, and let T and ‘T° be transactions with T

a descendant of T. Assume that there is a return operation for T in a.

\ 1. if there is a REQUEST — CREATE(T') in a, then there is a return operation for T in a.

‘\

N 2. If T" is in transaction(a). then there is a return operation for T in a.

- Proof:

[
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1. By l.emma 49.

2. By l.cmma 46 and part 1.

Lemma 51: | .ct a be a well-formed concurrent schedule. [ a return operation for '1'is in a. then
it follows alt operations in a whose transaction is . -

Proofl: First consider the case where 1" is not an access. 1f no CREATE(T) occurs in a, the result
is immediate, so assume that CREATE(CT) occurs in . In case an ABOR'I(I) occurs in a,
scheduler preconditions imply that the CREATE(T) must precede the ABORT(I). ‘Then the
return operation for ‘1" must be preceded by a REQUEST~COMMIY for ‘I, by scheduler
preconditions.  Well-formedness implies that the REQUEST-—COMMIT is preceded by
CREATK(T), and is not followed by any output operations of 'I'. ‘Thus, the only serial operations
of 'I' that could follow the REQUES'T— COMMIT are return operations of children of T.

l.et T be a child of 'I' for which a return operation occurs in a. By scheduler preconditions,
there is only onc rctumn operation for T in a. By lemma 46, a also contains
REQUEST—-CREATE(T").  Since this is an output opcration of I, it precedes the
REQUEST—COMMIT for I', and hence preeedes the return operation for T, ‘Ihen the scheduler
preconditions imply that the return operation for ‘1™ precedes the return for T,

Next, consider the case where ‘I is an access. 1f no INTERNAL —CREATE(T) occurs in a, the
result is immediate, so assumc that INTERNAIL —CREATE(T) occurs in a. In case an
ABORT(T) occurs in a. scheduler preconditions imply that the INFERNAL. — CREATE(T) must
prccede the ABORI(I).  ‘Then the rcturn operation for T’ must be preceded by a
REQUEST—-COMMIT for T. and weli-formedness implics that this is in turn preceded by
CREATE(T). "Thus. no scrial operations of ‘I can follow the return operation for T. 8

Lemma 52: | .ct a be a well-formed concurrent schedule, 1f a return operation for T is in a, then
it follows all operations in & whosc transactions arc descendants of T.

Proof: Since a return operation for ‘I occurs in a, we have T # 'I‘o. l.et T" be a descendant of T,
and assumc for the sake of obtaining a contradiction that a scrial opcration « with transaction(w)
= T occurs after the return for T in a. 1.ct «’ be the prefix of a preceding w.

By l.emma 46, a’ contains a REQUEST—CREATE(T"). Then .emma 50 implics that a® must
contain a rcturn operation for ‘1. But then the well-formed schedule a'w contains a returm
operation for T" followed by an operation of ‘I”, which contradicts Lemma S1. 8

Weak concurrent systems are defined in the following section, and many of their propertics are stated and
proved. Weak concurrent systems arc obtaincd by replacing the concurrent scheduler with a more permissive
scheduler, the weak concurrent scheduler. Results in Scction 7 prove that every execution of the concurrent
system is also an cxccution of the weak concurrent system. ‘Thus, additional interesting propertics of
concurrent system behavior follow immediately from the corresponding propertics of weak concurrent system
behavior, proven in that scction,
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P 6. Weak Concurrent Systems
B
P In this section, we define "weak concurrent systems”, which arc cxactly the same as concurrent systems,
‘-'.l
. cxcept that they have a more permissive controller, the "weak concurrent controller”. ‘T'he weak concurrent
) controller reports aborts 10 a transaction’s parent while there is still activity going on in the aborted
3 :: transaction's subtrce. In this paper. weak concurrent systems are used primarily to provide an intermediate
58 . . . ..
i ' step in proving the correctness of concurrent systems:  proving a weaker condition for weak concurrent
systems allows us to infer the stronger correctness condition for concurrent systems.  However, weak
) o concurrent systems arc also of interest in themselves. In a distribuled implementation of a nested transaction
4 .G system, performance considerations may make it important for the system to allow a transaction to abort
g, without waiting for activity in the transaction’s subtrec to subside. In this casc, a weak concurrent system
might be an appropriate choice, even though the correctness conditions which they satisfy arc weaker. Weak
’."‘ concurrent systems also appears to have further technical use, for example in providing simple cxplanations of
\
: the idcas used in “orphan detection™ algorithms [HI.LMW],
e
)
L),
{. 6.1. The Weak Concurrent Controller
] In this subsection. we define the weak concurrent controller. As we have alrcady said, it is identical to the
s . . - . . . .
o concurrent controller except that it has a more permissive ABOR'T operation. For convenience, we describe
L4
o the controller here in its entirety. It has the same operations as the concurrent controller:
g
> Input Opcrations:
;:0:: REQUEST—-CREATE(T)
}-:.: REQUEST - COMMIT(T,v)
vt
ol Output Opcrations:
. CREATE(D), T a non-access transaction
;$' INTERNAL —-CREATE(T), T an access transaction
W COMMIT(I.Y)
:;,: ABORT(T)
~:,:. INFORM —COMMIT - AT(X)OF(T)
4 INFORM — ABOR'T - AT(X)OK(T)
A
j-g: Each state s of the concurrent controller consists of five sets:  create— requested(s), created(s).
;rl commit—requested(s), committed(s), and aborted(s). The set commit—rcquested(s) is a sct of
, % (transaction,valuc) pairs. and the others are scts of transactions. (As before, we will occasionally write T €
s commit—requested(s) for (T,v) € commit— requested(s) for some v.) All arc cmpty initially except for
2’4 create — requested, which is {'l'o}. Define returncd(s) = committed(s) U aborted(s). ‘The operations arc as
W '
[ follows.
152
N o REQUEST - CREATE(T)
BT, Postcondition: '
:' i
3
8
o
$.8
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e
;’,fé:": create — requested(s) = create— requested(s) U {1}
‘-’:jf_!:::‘ o REQUIST—COMMIT(L.v)
Postcondition: '
;:‘ ’l commit — requested(s) = commit— requested(s) U {(1'.v)}
V'l
:.':e'.: o CREATE(T), I a non-access transaction
'Y: Precondition:
A I € create — requested(s’) - created(s')
_ Posicondition:
i‘:::"‘?' created(s) = created(s’)U {1}
O x|
e:ﬁ;o o INTERNAIL. — CREATE(CT), T an access transaction
b Precondition:
) ‘I € create — requested(s’) - created(s”)
W Postcondition:
‘;&' created(s) = created(s’) U {1}
A
;:',::;: o COMMII(T.v)
oo Precondition:
Xt (.v) € commit— requested(s’)
e 1" € returncd(s’)
e children('I’) N create — requested(s’) € returned(s’)
¥ Postcondition:
;ﬁ.‘, committed(s) = committed(s’) U {T}
o o ABORT(T)
Ah) Precondition:
X ._'.I T € create-requested(s’) - returned(s’)
oY Postcondition:
Kty created(s) = created(s’) U {T}
aborted(s) = aborted(s') U {T}
Wy
.:':‘;:' e INFORM - COMMIT-AT(X)OF(T):
:.'.’:'. Precondition:
:::,:’ T € committed(s’)
e o INFORM - ABORT - AT(X)OF(T):
o Precondition:
1: T € aborted(s’)
nt
wy
A h Thus, the weak concurrent controller is permitted to abort any transaction that has had its crcation
FX requested, and which has not yet returned.
£ l.emma 53: L.ct a be a schedule of the concurrent scheduler, and let s be a statc which can result
! _:,, from applying a to the initial state. "Then the following conditions are true.
.
s 1.T is in creatc - requested(s) cxactly if T = To or a contains a REQUEST—CREATE(T)
— operation.
o
e
l‘:':1
I
K2
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2.10°1 is a non-access transaction, then ‘I is in created(s) exactly if a contains cither a
CREATE(T) or ABORT(E)Y operation.

3.Uf T is an access transaction, then ‘1 is in created(s) exacty if a contains cither an
INTERNAL = CREATE(T) or ABOR'T(T) operation,

4.(l'v) is in commit-—requested(s) cxactly if a contains a COMMIT - REQUESI(T,v)
operation,

S. (I'.v) is in committed(s) exactly if & contains a COMMIUT(T,v) operation.

6.’ is in aborted(s) cxactly if a contains an ABOR'I(T') operation,

6.2. Weak Concurrent Systems
The compaosition of transactions, resilient objects and the weak concurrent scheduler (lock managers and
wceak concurrent controller) is the weak concurrent system. A schedule of the weak concurrent system is a

weak concurrent schedule.

Weak concurrent systems cxhibit nice bchavior to transactions cxcept possibly to those which are
descendants of aborted transactions. Thus, we say that a transaction T is an orphan in any scquence a of
opcrations provided that an ancestor of ‘T is aborted in a. In many of the propertics we prove for weak

concurrent systems, we will have to specify that the transactions involved are not orphans.

6.3. Properties of Weak Concurrent Systems
As we did for serial and concurrent schedules, we here prove a number of uscful basic propertics for weak

concurrent schedules. As before, most of these propertics are simple to state and prove.

6.3.1. Operations in Weak Concurrent Schedules
As before, we include a collection of lemmas describing the possiblc kinds and orders of opcrations that can
occur in well-formed weak concurrent schedules. ‘These lemmas are analogous to some in Section 5, and have

similar proofs; the main difference is that we must take proper carc with orphans. As before, we go on to

show that all weak concurrent schedules are well-formed, so these propertics actually follow just from the fact

that these schedules are weak concurrent.
Lemma 84: Lot a be a well-formed weak concurrent schedule, and let T = 'l‘o be a transaction.

1. If & contains any opcration with transaction T, then a contains a CREATH(T), and a
REQUEST - CREATE(T).

2. If a contains a COMMIT for T, then a contains a REQUEST~COMMIT for T, a
CREATE(T) and a REQUEST = CREATE(T).

3. If a contains an ABOR'I(T), then a contains a REQUEST —CREATE(T).
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" |
’:: Lemma S5: | .ct a be a well-formed weak concurrent schedule, and T a transaction. Assume that }
»o: some descendant of ' is in transaction(a). ‘Then the following hold. ;
",
R 1. CREATE(T) occurs in a. -
e 21T # Ty, then REQUEST—CREATI(T) occurs in a.
- L.emma 56: | .ct a be a well-formed weak concurrent schedule, and let 1" # 'l‘ .
)
" L. If @ contains a REQUEST —~CREATI(T), but docs not contain a return operation for T,
i\ then pareni(l) is not committed in a.
0 . is live in a, then parent('T) is not committed in a.
B A -
N .
k! 3.If a contains a REQUEST—CREATE(T) but docs not contain a CREATE(T) or
‘ ABORI(T), then parent('1) is not committed in a.
;‘r Proof: 1. Supposc a COMMI'T operation for parent(1’) occurs in a. ‘Then the weak concurrent
W controller preconditions for the COMMIT operation imply that the COMMYIT for parent(’l’) must
o be preceded by a REQUEST—COMMIT for  parent(1). By wcll-formedness, the
:fq REQUEST—COMMIT for pareni('l) must follow the REQUEST—CREATI(T), so that the
‘ COMMIT for parent('1) must follow the REQUES T~ CREATE(T). ‘Then the weak concurrent
28 controller preconditions for the COMMIT operation imply that there must be a COMMIT
:} operation for 'I' in a, a contradiction.
v
1 f.: 2.and 3.arcasin 3.6.2. §
"" Lemma 57: Let a be a well-formed weak concurrent schedule, and let T be a transaction which
. is not an orphan in a.
t‘.
:':: 1. If a contains a REQUEST — CREATE(T), but docs not contain a COMMIT operation for
o ‘I, then all proper ancestors of T are live in a.
t
N 2. If T is live in a. then all proper ancestors of T are live in a.
i
,,:: 3. If a contains a REQUEST—CREATE(T) but does not contain a CREATE(T), then all
: ' proper ancestors of '’ arc live in a.
)
::' Proof: By rcpcated use of the previous lemma, well-formedness and the weak concurrent
i controllcr preconditions. 8
§ Lemma 58: [.ct a be a well-formed weak concurrent schedule, and ict T and T be transactions
) with 1" a descendant of T. Assume that ‘1" is not an orphan in a and that there is a COMMIT
: opcration for T'in a.
1)
o 1. If there is a REQUEST—-CREATE(T') in a, then there is a COMMIT operation for T in
L a.
;;o
1) 2. If T is in transaction(a), then there is a COMMIT operation for T in a.
_l‘ «
i Proof:
»
' 1. By | emma 57.
*»
3
L)
..
W

AN S S . AN A ST L L LN : I RS S R W ARl
QD : NS ‘ URRR RN -.\\&*.i’) 2 P
“ “qp“,’.}"ﬂ"’,“.&"’ ..~ O

l
:"‘ :z::", AR " Il ) 'l\"l‘g o3y, '““I\" 4




[ O - L% - Sa el i _ k& - 2 b o & 2 LRI TUNTN . mmwuw-“'u“ﬁ

&

O 4“4

e
il
;" ‘ 2. By l.omma 54 and part 1.
o .

N

o 6.3.2. Objects and Locking
[

’::4. In this paragraph, we give two simple lemmas about the behavior of the locking strategy.

‘ lemma §59: Let a be a weak concurrent schedule. 1.et X be an object, and let T and ‘1" be
|:l accesses to X. Let U be an ancestor of ‘I” which is not an ancestor of 17, Assume that CREATE(T)

precedes CREATE(T) in a.

Ly

fj',o LL'There is  cither an  INFORM-COMMIT-AT(X)OF(U). or clsc an
'.', INFORM — ABOR'T'= A'T(X) for some ancestor of 'I', occurring between CREATE(T) and
;: CREATE(T)in a.

ad

iy

2. Either CREATE(T) is precceded by a COMMIT operation for U, and by a

y REQUEST—-COMMIT operation for U, or clsc CREATE(L") is preceded by an ABORT
NS operation for some ancestor of I,

Y,

:.' Proof:

I.

{ 1. By l.cmma 44.

‘ ::: 2. By part | and the preconditions of the weak concurrent controller,

o ’

‘ 2 Lemma 60: 1.ct a be a well-formed weak concurrent schedule, and X a basic object. ‘Then the

sct of active transactions after a]R(X) is exactly the sct of lockholders in the lock manager for X
o after a.

)
K Proof: By induction on the length of a.
[)
D)
" 6.3.3. Well-Formedness
Here, we show that cvery weak concurrent schedule is well-formed. It follows that all the propertics proved
: carlicr in this scction are actually truc for all weak concurrent schedules. From now on, we will use these
i propertics without cxplicitly mentioning well-formedness.
\ l.emma 61: |.ct a be a weak concurrent schedule. Then a is well-formed.
* Proof: By induction on the length of schedules. ‘The base, length = 0, is trivial. Suppose that
aw is a weak concurrent schedule, where # is a single opcration, and assumec that a is well-
{ formed. If # is an output of a primitive P, then the result is immediate, since each primitive
' preserves well-formedness.  No INTERNAL -CREATE opcration can cause a violation. So
8 assumc that « is an input to a primitive P. It suffices to show that aw|P is well-formed. ‘There are
i six cases.
R, (1) w is CREATE(T) and T is a non-access transaction.
:: ) ‘The controller preconditions insure that CREATE(T) docs not appear in a.
. '
’
!:} (2) » is CREATE(T) and T is an access to resilient object R(X). - ;
By the lock manager preconditions, no CREATE(T) appears in a. The lock manager
5:: preconditions and |.cmma 60 imply that all the transactions which are active after a are ancestors
R
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of T.

(3) w is COMMIT(T.v).
‘Then o is an input to transaction parent(l). Weak concurrent controller preconditions imply that
a contains REQUEST-COMMII(I'v), and so lemma 54 implics that a contains
REQUEST—CREATE(T). Also, weak concurrent controller preconditions insure that a docs not
contain a rcturn operation for T,

(4) 7 is ABOR'I(T).
‘Then o is an input to transaction parent('1'). Weak concurrent controller preconditions imply that
a contains a REQUEST—=CREATE(T). Weak concurrent controller preconditions insure that a
docs not contain a return operation for 1.

(5) 7 is INFORM — COMMIT - AT(X)OK(T) at resilicnt object R(X).
By the preconditions of the weak controller, a contains a COMMIT for V. If
INFORM - ABORT—=AT(X)OK(T) occurs in a. then a also contains an ABOR'T for ‘I, which
contradicts weak concurrent controller preconditions. ‘Thus, no
INIFORM = ABORT = AT(XYOK(T) occurs in a. Since a COMMIT for ' occurs in a, weak
concurrent controller preconditions imply that a REQUEST — COMMIT for ‘I also occurs in a.

(6) 7 is INFORM — ABOR'T'= A'T(X)OF(T) at resilient object R(X).
By the preconditions of the weak concurrent controller. a contains ABORI(T).  [f
INFORM = COMMIT = AT(XYOK(T) occurs in a, then a contains a COMMIT for I, which
contradicts wcak concurrent controller preconditions. ‘Thus, no
INFORM -COMMIT-AT(X)OF(I) occursina. §

6.3.4. Visibility and Weak Concurrent Schedules

‘This paragraph states and proves important propertics involving visibility in weak concurrent schedules. In
particular, thc most important result of this paragraph is Lemma 66, which relates the portion of a weak
concurrent schedule which is visible to a particular transaction, to schedules of transactions and basic objects.
‘The first lemma shows how visibility propagates among the transactions during a weak concurrent excecution.

l.cmma 62: 1.ct aw be a weak concurrent schedule, where w is a single operation.,
1. If w is CREATE(T), then visible(a®.T) = visiblo(a.parcnt(T))s.
2. If # is COMMI'T(T,v), then visibl(aw parent(T)) = visible(a, ).
3. If w is ABORT(T). then visible(aw parcnt(T)) = visible(a.parent(T))s.
4. If o is COMMIT(T,v), and 'T" is a descendant of parent(T) but not T, then visible(aw,T°) -
visible(aw,parcnt(l)) = visible{a. 1) - visible(a,T).

Proof: 1. By l.emma 55, # is the first scrial operation in aw whosc transaction is a descendant of
T, and T is not visible to parent('l'). ‘Thus any transaction other than T visible to T in aw is visible
to parent(l) in aw. ‘Then parent(T) is visible to T in aw, and by l.cmma 8,
visible(aw parent(1))wr = visible(an.T).

’
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By the definition of visibility, any transaction visible to pareni(!) in aw is visible to pareny(l’) in
a, and visible(a.parent(1)) = visible(aw.parent(1)). Substituting in the equality above, we have
the result.

2. By the dcefinition of visibility, any transaction visible o parent('l') in aw is cither visible to
parent(F) in a, or is visible to 1" in a. But any transaction visible to pareni(l) in a is visible to T in
a, so we have that any transaction visible to paren(l’) in a# is visible to ' in a, and
visible(aw parent(1)) is a subsequence of visible(a, . 1t follows immediatcly from the
definition of visibility that any transaction visible to 1 in a is visible to parent('l) in aw, so that
visible(a. 1) is a subsequence of visible(az parent(l). The result is immediate.

3. immcdiatc from the definition of visibility.

4. Clearly, visible(a.17) is a subscquence of visible(aw.17). Any operation in visible(an T") -
visible(a,'17) has a transaction which is a descendant of °I', and so is cither & or is visible to T in a,
and thus is in visibl{a. I)e. ‘Thus we have visiblc{an, 17) - visiblc(a. )y = visibl(a.T”) -
visible(a 1w, As o is not in visible(a,17), this cquals visible(a,17) - visible(a, ). By part 2,
visiblc{am parent(1)) = visible{a. 1), and the result follows by substitution in the first identity.
]

Now we prove two lemmas involving visibility and the behavior of resilient objects in weak concurrent

systems.

I.emma 63: | ct a be a weak concurrent schedule. Let R(X) be a resilicnt object, and let 1'and T
be accesses to R(X). If 17 is live and not an orphan in a and CREATE(T) occurs in a, then cither
T is wisible o T in a or cisc CREATE(l) is in the scope of an
INFORM — ABORT = AT(X)OF(U) in a|R(X).

Proof: 'I'here are two cascs.

(1) CREATE(T) precedes CREATE(T ) in a.
Assume I' is not visible to T in a. Then lemma 59 implics that there is an
INFORM — ABOR'I'— AT(X) operation for some ancestor of ‘', occurring after CREATE(T) in a.

(2) CREATHE(T) precedes CREATE(T) in &
‘Then 1.emma $9 implics that therc is cither a COMMIT or an ABORT for some ancestor of T, in
a. Since 1" is not an orphan in a. there is a COMMIT for an ancestor of 17 in a. ‘Then 1.cmma 58
implies that " is returncd in a, a contradiction. @

l.emma 64: Lect a be a weak concurrent schedule. 1.et R(X) be a resilient object, let T and T™ be
accesses 0 R(X). and Ict 'I™ be any transaction. Assume that ‘I” is not an orphan in a. If an
operation w of T precedes an operation # of T in a. # is not in the scope of an
INFORM — ABORT and T" is visible to T™" in a, then I is visible to T in a.

Proof: By well-formedness, CREATE(T) and CREATE(T") are operations in a, in that order.
l.ct a” be the prefix of a ending with CREATE(T"). ‘Then 'I” is live and not an orphan in a’. By
l.emma 63, T is visiblc to T in a’, and so in a. [.emma 8 implics that 'I'is visible to T ina. §

‘Ihe following lemma is straightforward.

Lemma 65: |.ct a be a weak concurrent schedule, and fet ‘I be a transaction which is not an
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bt ST
: orphan in a. Any transaction ‘1" visible to ‘I in a is not an orphan in a.
v x Proof: If'1™ is an ancestor of I, the resultis immediate. Otherwise, COMMI'T operations appcar
B in a for every proper descendant of lea(1,17) that is an ancestor of 'I”, By well-formedness, none

of these transactions has aborted. Since the remaining ancestors of ‘1™ are also ancestors of 'I', and
. "! M "
B the result follows. 8

AU We are now rcady to prove the key lemma of this paragraph.

DAY - .

e Lemma 66: |.ct a be a weik concurrent schedule, let ' be live and not an orphan in a, and let P
. be a resilient primitive.

]

0 A 1. If P is a transaction 17, then visible(a, 1)1 is a prefix of af 1™ and a schedule of 'I°.

.

b A

2. If P is a resilient object R(X), then visible(a, 1)|R(X) is a prefix of undo(a|R(X)) and a
schedule of basic object X.

»

B

Q Proof: 1. Immcdiatc from I.cmmuas 11 and 1.
.‘I
3\‘ 2. First, we show that any opcration in visible(a., T)|[R(X) also occurs in undo{a|R(X)). If # is in
W visibic(a, I)|R(X). it means that all ancestors of transaction(w) up 10 kea(transaction(w).I') have
st committed. By assumption, ‘I is not an orphan in a. so l.emma 65 implics that transaction(s) is
‘ 7 not an orphan in a. ‘Thus, by the preconditions of the weak concurrent controller there is no
AN INFORM = ABOR'I' for any ancestor of transaction{w) in a. ‘Thercfore, # is in undo{a|R(X)).
L.
et
'\
:'.E::. Now we consider any two operations # and #° of undo(a|R(X)). where & precedes #°. Assume
! P that @’ is in visible(a, 1)R(X). Lt 'I™ = transaction(w) and 'I" = transaction(«’). Then T is
visible to 'I' in a, and " is not an orphan in a by L.emma 65. Since # is in undo(ajR(X)), no
& INFORM = ABOR'T" occurs at R(X) for any ancestor of 1™ in a, with # in its scope. Then Lemma
‘&§ 64 implics that ‘I is visiblc to T in a. ‘Thus, w is in visibic(a. )[R(X). It follows that
222 visible(a, TYR(X) is a prefix of undo(afR(X)).
254
Rk By 1.emma 61, aJR(X) is a well-formed schedule of resilicnt object R(X). Then the resiliency
- condition implics that undo(alR(X)) is a schedule of basic object X. So by Lemma 1,
g o) visible(a, I)|R(X) is a schedulc of basic object X.
,
09
"'} Finally. we prove that, in a weak concurrent schedule, concurrently exccuting transactions access disjoint
\" ’
sets of resilient objects. !
-s: Lemma 67: Let a be a weak concurrent schedule, with transactions T and T live and not !
""_’. orphans in a. lct'I™ = ka(l,17). Let 8 = visible(a. 1) - visible(a, T™) and B° = visible{a,T") - ’
y}' visible(a,T™"). ‘Then no resilient object has operations in both 8 and 8°.
::o , Proof: The result is trivial if 1" is an ancestor of 'I” or vice versa. So assume that ka(T.T°) is
S ncither ‘T nor I°.  Let R(X) be a resilient object such that both 8 and 8° contain operations of
3 R(X). By well-formedness, we can assume without loss of gencrality that there are two accesscs to
e X (not necessarily distinct) such that # = CREATE(U) and ¢ = CREATE(V) arc in 8 and 8',
:}é respectively, and ncither U nor V s visible to lca(T. T") in a. Also, we can assume that w appcars
", in a no later than ¢.
c"‘.
. We have that U is visible to some ancestor of T in a, and V is visiblc to some ancestor of T in a,
’,
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and since 'I" and ‘1" are not orphans in a. |.emma 65 implics that no ancestor of U or V has aborted
in a. Also. ncither U nor V is visible to lca(1.17) in a, so it must be that U # V, But then o
precedes @ in a. and |.emma 59 implics that some ancestor of ‘I is committed in a. Then [.emma
57 implics that 't is returned in a. a contradiction. §

7. Simulation of Serial Systems by Concurrent Systems |

In this section, we prove the main results of this paper. that concurrent schedules are scrially correct, and |
that weak concurrent schedules are correct at 1. Both these results follow from an interesting thcorem about ‘
weak concurrent schedules, which says that the portion of any weak concurrent schedule which is visiblc to a |

live non-orphan transaction is cquivalent to (i.c. looks the samc at all primitives as) a scrial schedule.

‘The proof of this thcorem is quite interesting, as it provides considerable insight into the scheduling
algorithm. The proof shows not only that a transaction’s vicw of a weak concurrent schedule is cquivalent to
some scrial schedule, but by a recursive construction, it actually produces such a schedule. [tis interesting and
instructive to obscrve how the vicws that different transactions have of the system cxccution get passed up

and down the transaction tree. as CREATES, COMMITS and ABORTS occur.

‘Theorem 68: |.ct a be a weak concurrent schedule, and I any transaction which is live and not
an orphan in a. ‘then there is a scrial schedule 8 which is equivalent to visible(a,T).

Proof: We proceed by induction on the length of a. ‘The basis, length 0, is trivial. Fix a of
length at Ieast 1, and assume that the claim is true for all shorter weak concurrent schedules. Lot w
be the last operation of a, and let @ = a'w. Fix I which is live and not an orphan in a. We must
show that there is a scrial schedule 8 which is equivalent to visible(a, T).

If = is not a scrial operation, then visible(a®V) = visible(serial(a’),T) = visible(seral{a), 1) =
visible(a. 1), and the result is immediate by induction. So we can assumc that » is a scrial
operation. Also, if transaction(#) is not visible to 'I' in a. then visible(aT) = visible(a'.T), and
the result is again immecdiate by induction. Thus, we can assume that transaction{w) is visible to T
in «. Also,T"is not an orphan in a’.

There arc four cases.

(1) = is an output operation of a transaction or resilicnt object.
‘Then the inductive hypothesis implics the cxistence of a serial schedule 8° which is equivalent to
visible(a’,1). Let 8 = B°w. We must show that B is equivalent to visible(a, T) and scrial.

l.ct P be any primitive. Then BIP = B'w|P = visible(a'. T)w|P by inductive hypothcesis, =
visibic(a, T)|P. by LLemma 12. Thercfore, 8 is cquivalent to visible(a,T).

et # be an output of primitive P. Then BIP = visible{a,T)|P by cquivalence, which is a
schedule of P by L.emma 66. 1.cmma 4 implics that g is scrial.

(2) # is a CREATE(T) operation.
‘I'hen transaction(w) = 1", and so 17 is visible to ' in a. Then 1.cmma S5 implics that # is the first
operation whosc transaction is a descendant of 'I”. ‘Then by the dcfinition of visibility, it must be
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that 'I" = T. By Lemma 57, parenti('F) is live in a’. Since parent(1) is not an orphan, the inductive
hypothesis implies the existence of  serial schedule 8 which is equivalent w visible(a' parent(1)).
et B = B'w. We must show that 8 is cquivalent to visible(a, ) and scrial.

I.ct P be any primitive. ‘Then BIP = B'#|P. = visible(a” parent(1))w|P by inductive hypothesis,
= visible(a. 1)|P. by I.emma 62. Thus, 8 is cquivalent w visible(a. 1).

Consider any cxccution of the serial system having 8° as its operation sequence, and let s’ be the
state of the serial scheduler after 8°. We show that o is cnabled in s°. “That is, we show that 'I" €
crcate — requested(s’). that ‘1 € created(s’), and that siblings('1) M created(s’) C returncd(s).

Consider any exccution of the weak concurrent system having a as its operation scquence, and
let s be the state of the weak concurrent scheduler after a’. State s contains a componcent s, for the
weak concurrent controlicr and a component s, for the lock manager for cach object X,

If T = I, then T € create—requested(s’) by the initial conditions. 1f T # T then T €
creatc—requested(s) by the preconditions  of the concurrent  scheduler, so  a
REQUEST —CREATE(T) operation occurs in a’. ‘The REQUEST—CREATE(T) operation has
transaction parent(1), and so is in visible{a'.,parcnt(1)), and thus is in 8°. ‘thercfore, 1" €
create — requested(s’).

If 1" € created(s’), then there is cither a CREATE(Y) or an ABORT(T) operation in 87, and
hence in a”. In the former case. a would have two such operations, while in the latter case, a
would have an ABOR'T(T) followed by a CREATE(T). Both arc impossible, so 1" € created(s').

Assumc U € siblings(1) N created(s’). "then there is cither a CREATE(U) or an ABORT(U)
operation in 8°. In the latter case, U is obviously in returned(s’). So supposc CREATE(U) occurs
in B, and so in visible(a'.parcni('1)). Since CREATE(U) occurs at U, U is visible to parent(T) =
paren(U) in a': thus, COMMI'T(U.u) occurs in &', for some u. Since COMMIT(U,u) occurs at
parent('1), COMMIT(U,u) is in visible(a® pareni(1)), and so in 8°. Thus, U € returned(s’).

(3) = is a COMMIT(T",v) operation.
Then I = parent(F") = transaction(w) is visible to ‘I and not an orphan in a. Also, T is not an
orphan in a’, by L.emma 65. ‘Then since a is well-formed, 17 is live in a’, and so by Lemma §7, T
a. l.emma 58 implics that T is not a descendant of ‘1°. “Ihe inductive hypothesis yiclds two serial
schedules, B8° and 8. which arc cquivalent to visiblc(a',17) and visible(a'.T). respectively. let y
= visible(8"\T). letB, = f'-yand B, = B" - y. Wcshow that 8 = yB w8, is cquivalent to
visible(a, ') and scrial.

Lemma 28 implics that vy is a serial schedule.

Since 1" is visible to T" in a”. [.emma 10 implies that visible(a', 1™') = visible(visible(a®,1°), 1),
which is cquivalent to visible(8'.I"") = y: thus y is cquivalent to visible(a'17).  Also, since T is
visible to T in a’, L.emma 10 implics that visible(a’/1™") = visible(visible(a'.T).17"), which is
cquivalent to visible(87,17). Thus, v is also cquivalent to visible(8",1™).

5 Then by |.emma 31 (applicd with serial(a’) as the schedule a hypothesized in the lemma), v8,
‘ :
it}
B
S
gl
Ce
R AL St S $ e % \_ RN AR A Y Yy R e e/ \.-l.f.->u.$ .'»-‘\'-\ ,-.\.% LS ] q.\.\-.\~-\\ [RRY IRSAS L LRl N S LYY 1
-.4‘._’ o J',.?'.:)" '{'Pq.'.&‘\(‘ -‘_.J} } - }‘\P .(Q:}}) ', - ".'_‘-.4‘_;’\. K A ‘Ff 3 }\- ot e P‘\‘.r;‘.'\k S g ,('h_r
3 S 1T R A A A A S AR R A A R A AR AL R AR LG WG




YT YT PO O T OV VO U PO W T S AT PRTSw TR TETrwLrw - Al S kol Suslh “ Raglh i w‘v‘v‘v‘"ﬂ"""‘“ﬁ"v‘w'uF-":"'-'I"x_—
50

W

a \ and yp, arc scrial schedules which are equivalent to 87 and B, respectively.

\ >

‘{*‘ We have that visible(a. ™) = visibleta™, 17)w by T.emma 62, which is equivalent to 8°ar, which is

in turn cquivalent o B, 7. “Thatis, visible(a.17) is cquivalent to yB .

N
e Since 8" is cquivalent to visible(a'. 1) and y is cquivalent to visible(a™/1™"). by [.emma 10, 8, =
C::- B - v is equivalent to visible(a', 1) - visible(a',17"), = visible(a, 1) - visible(a. ™) by I.emma 6%.

~ Thus, B is cquivalent to visible(a, 1" X visible(a, T)-(visible(a. 17)). Since 1™ is visible to T in a,
SO by Lemma 8, it is casy to sce that the same operations appcear in this schedule as in visible(a,'1).
‘ "*: l.et P be any primitive. ‘Thea visible(a, 17))|P is a prefix of visible(a,1)|P, by 1.cmma 66. [t

:;g follows that B{P° = visible(a. 1)]P. so that g is cquivalent to visible(a, T).

o
\

o It remains to show that B is scrial. ‘This follows from Lemma 32, provided we can show that:

. (3.2) yB,m is a scrial schedule,
> (3.b) 1" sces everything in y8,.

_-sj' (3.c) I sces cverything in yB,,

T (3.d) y = visible(yg.1™) = visible(y8,.1™) and

‘5',' 1 (3.¢) no basic object has operations in both 8, and 8,.

).

(3.a) Consider any cxecution of the scrial system having ‘/Bl as its opcration scquence, and et §°
, be a state of the scrial scheduler after y8,. Wc show that o is cnabled in state s'. ‘Than is, we show

e that (I".v) € commit—requested(s’), that ‘I° € returncd(s’), and that children(1”) N

:::-'f crecate — requested(s’) € returned(s’).

Consider any cxecution of the weak concurrent system having a as its opceration sequence, and

:{: let s be the state of the weak concurrent scheduler after a’, with components s, (the weak

) j:Z- controller statc), and sy for every object X (the lock managers).

:::: Since the weak concurrent scheduler is able to perform COMMIT(T".v) in state s, it must be that
B (17.v) is in commit—requested(s ), and so it must be that ‘1 issucs a REQUEST - COMMIT(T",v)
' in a’. Since I" is visible to itsclf, and 8° is cquivalent to visible(a',17), it follows that this

| -,,-2 REQUEST—-COMMIT(T",v) opecration also occurs in 7,81. Therefore, (1°,v) is in

o commit — requested(s’).

>
A : , . , . :
WY Since a is well-formed, at most onc return operation for T° appears in a; thus, T is not in
_ returncd(s’).

o Fix U € children(T") N crcate — requested(s’). Then REQUEST — CREATE(U) is performed at
". y T" in yB8,. and hence in a’, so U € creatc—requested(s.). Since the weak concurrent scheduler is
! able to perform COMMYT(Tv) in state s, it must be (f\at U € returncd(s c). Thercfore, a return
B operation for U is performed at T, in a’. Since T is visible to itsclf, and yB, is cquivalent to

T visible(a'.T7), this implics that the return for U also occurs at T in y8,. Thercfore, U is in

i.; returned(s’).
oS
" (3.b) Immediate from L.emma 10.

:A_v
(-, : (3.c) Immcdiate from l.cmma 10,
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(3.d) We have that y is equivalent to both visible(8°.17") and visible(8™,17), and that YB, and
B arc cquivalent to B° and B%, respectively. By lLemma 10, y is cquivalent o bulh
vnxlblc(yﬁl ™) and vmblc(y[i2 l"') tquality follows.

(3.¢) Immediate from 1.emma 67.

(4) & is an ABOR'I(I") operation.
Then I = paren(1") = transaction(w) is visible to ‘' in a. and so is not an orphan in a. by
lL.emma 65. Then 1™ is live in a', and by 1.emma 57, 1™ is live in «’ and so in a. Since 1™ is live
and visiblc to 'I'in a, I is a descendant of 1. Since ‘I is not an orphan in a. '} is not a descendant
of 'I". "I'he inductive hypothesis yiclds two scrial schedules, 8° and 7. which arc cquivalent to
visible(a’.17) and visible(a', 1), respectively. Let B, = g - 8. We show that 8 = BwB,is
cquivalent to visible(a, ') and scrial.

By 1.emma 31, 8°8, is a scrial schedule which is equivalent to 8.

l.et P be a primitive other than 7. “Then BIP = B°8,IP = BYIP = visible(a'1)|P, =
visible(a, 1)|P by lcmma 62. Also, since 1™ is visible to ' in a, visiblc(a. 1)1 =
visible(a, I™N1™, = visible(a™ 1™)=[1™ by l.emma 62. = B8°w[1™ = B[1™. ‘Thus B is cquivalent to
visible(a,1).

It remains to show that 8 is scrial. ‘This follows from I.emma 33, provided we can show that:
(4.a) B’w is a serial schedule,
(4.5) 1" sces everything in 8°8 |, and
(4.c) B = visible(B17") = visible(8'B.T7).

(4.a) Consider any exccution of the scrial system having 8' as its operation sequence, and let s’
be a state of the scrial scheduler after 8°. We show that # is cnabled in state s'. That is, we show
that 'I" € crcatc—requested(s’), that T° € created(s'), and that siblings(T") N crecated(s’) C
returncd(s’).

Consider any cxccution of the weak concurrent system having a as its opcration scquence, and
let s be the state of the weak concurrent scheduler after a’. with components S, (the weak
controller state), and Sy for cvery object X (the lock managers).

Since the weak concurrent scheduler is able to perform ABOR'T(T) in state s, it must be that T
is in create—requested(s ). and so it must be that 1™ issucs a REQUEST—-CREATH(T) in a'.
Since I is visible to itsclf, and B’ is cquivalent to visibl(a' 7)., it follows that this
REQUEST - CREATE(T) operation also occurs in 8°. Thercfore, T is in create — requested(s’).

Since a cannot contain two ABOR'T('I™) operations, there cannot be an ABORT(T") operation in
a’, and so there cannot be one in 8°. Assumc that there is a CREATE(T") in 8°. ‘Then T is visible
o 1" in a', s0 COMMIT(I™) occurs in a’. But then a COMMIT(I™)Y and and ABORT(T") both
occur in a, which cannot occur. Therefore, there is neither an ABORT(T") nor a CREATE(T) in
B’. and so T is not in crcated(s’).

Fix U € siblings(1™) N created(s’). Then there is a CREATE(U) in 8°. But then U is visiblc to
T in a’, so that a COMMIT for U occurs in a’, and hence (because parent(U) is visible to 1™ in
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;‘::o; _
:%:' a’) a COMMIT for U occurs in B8°. ‘Therefore, U € returned(s’).
i" t X i
e (4.6) Immediate from | .cmma 10.
;,;;;" (4.c) 'The first cquality follows from l.emma 10. Clearly, 8° = visible(8', 1) is a prefix of
e visible(f8'8 117 Equality follows because any operation in g, visible to "1™ in ﬁ'ﬂl would also be
I visible to 1™ in a’, and so would be in B and not 8. 8
!" Corollary 69: Every weak concurrent schedule is scrially correct for every non-orphan non-
o aceess transaction,
;."-; Proof: I.ct a be a weak concurrent schedule. et 'I' be a non-access transaction that is not an
G & orphan in a. We must show that afl’ is a scrial schedule. Note that ‘1" is not an orphan in any
o prefix of a.
- ‘There arc three cases:
M (1) afV' is cmpty.
‘:;bp. ‘Then the result is trivial.
1t
woe
RMY; " g s
o () Tislivein a.
-t' ‘Then ‘Theorem 68 yiclds a serial schedule 8 that is cquivalent to visiblo{a,T). Thus, «fT =
) visible(a, 11" = B[I'. which sufficcs.
~
¢
L,
.;-:.: (3) 1" is a transaction which is live in some proper prefix of a.
v Since a is well-formed. a has a prefix a'w, where o is a COMMIT operation for T, «'[T = alT
and T is live in a’. 'Then ‘Theorem 68 yields a serial schedule 8 that is cquivalent to
e visible(a™ . I)[T. ‘Thus, afl' = a'[I' = visiblce(a’,/1)[I' = B[’ which suffices. §
B
’?; 4 Now. since T, cannot become an orphan (having no ancestors to abort), our first major correctness result is
kL immodiate.
1{ . Corollary 70: Every weak concurrent schedule is scrially correct for T,
o
ht
S:", Having proved correctness propertics for weak concurrent schedules, we arc now ready to prove the
]
':..' ‘ correctness of concurrent schedules.
' Lemma 71: Every concurrent execution is a weak concurrent execution.
8

! Proof: ‘Ihe proof is by induction on cxccution length, with a trivial basis. I.cta = a's'\wsbca
concurrent cxecution with (s°.#.s) a single step of the concurrent system, and assume the lemma

s holds for a’. let s’ and s_ denote the states of the concurrent controller in system states §* and s.

::'.g“ If w is any opcration other than an ABOR'I, the result is immediate, since the pre- and
_ postconditions for all other opcrations are identical in the concurrent and weak concurrent

.',:,i“ systems. Assumc that w is an ABORT(T). We must show that T € crcatc-rcqucstcd(s’c) -

:‘.;g returncd(s’ ).

5 ‘

ot:,»} Since # is cnabled in statc s’c in the concurrent controfler, 1 € (crecate-requested(s’) -

ik created(s’ ) U (commit-rcqucstcd(s‘c) - returncd(s’)). If T is in crcatc-rcquestcd(s':) .

=y crcatcd(s‘c). l.emma 45 implics that a’ contains no Ci(HA'I‘ E(T) or ABOR'I(I') operation, By
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well-formedness, @ also contains no COMMIT operation for ‘1%, and the result follows from
L.emmads. On Lhc other hand, if T'is in mmmu-rcquwud(s ) returncd(s’ ) | cmma 45 implics
Lh.u a RI QUI—SI (OMMII operation for T occurs in a’. Iiy well- lormcdncss Lhn is preceded

RI.QUI.SI - CREATE for’ l. Finally, again by | .cmma 45, the result folluws. |

Now we can prove the second major resuit of the paper.
Corollary 72: Every concurrent schedule is scrially correct.

Proof: l.ct a be a concurrent schedule. ‘then a is also a weak concurrent schedule, by f.emma
71, and is well-formed, by l.emma 61, Wc must show that a is scrially correct for cvery
transaction 'I'. ‘T'here arc three cascs:

(1) a[T is cmpty.
‘Then the result is trivial,

(2)Tislive in a.
By l.cmma 50, all of 'I"s ancestors arc live in a. so that T is not an orphan in a. Then Corollary 69
yiclds the result

(3) T is a transaction which is live in some proper prefix of a.
By 1.cmma 51, a has a prefix a’w, where o is a return operation for T, a'[T = afl and T is live in
a’. By l.emma 50, all of 'I”s ancestors arc live in ', so T is is not an orphan in a’. ‘Then Corollary
69 implics that a’ is scrially correct for ‘I, so that a is serially correct for 1. 8

For completencess, we include an analog of Theorem 68 for concurrent schedules.

‘Theorem 73: Lct a be a concurrent schedule, and T any transaction which is live in . Then
there is a scrial schedule 8 which is equivalent to visible(a,T).

Proof: |.emma 71 implics that a is a weak concurrent schedule. Since T is live in a, [.emma 50
implics that T is not an orphan in a. ‘Then Theorem 68 yiclds the result. 8

8. Discussion

In this papcr, we have presented a formal model for describing nested transaction systems and their
propertics. The model has many featurcs that we belicve make it a major contribution to the understanding
of transaction systems, and we highlight some of thesc below.

First, the entirc modecl is bascd on a very general and very simple underlying model for concurrent
computation, the 170 automaton model. The general definitions and propertics of this underlying model
provide the nccessary underpinnings for our cntire transaction modelling cffort. This modclling is very casy
to Jearn and usc, and its uscfulness extends much beyond transaction systems. Thus, it seems to us to be a

very satisfactory foundation for our work.

Our transaction system modcl permits simple, yot completely rigorous description of concurrency control
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algorithms in ways which correspond very closcly to the usual informal ways of understanding the algorithms.
‘The important components of transaction systems, the transactions, data and schedulers, are described

cexplicitly, which greatly facilitates reasoning about them.

‘There is a substantial amount of work in this arca which docs not represent all of these components
cxplicitly, but only implicitly, by propertics of their behavior [y, BBG.Go. for example). ‘There are problems
with this approach. A key ingredient that is usually absent from such implicit models is a clear notion of
“causality”, describing how particular actions (opcrations) arc triggered by other actions or states. In contrast,
our cxplicit representation of all system components as 1/0 automata makes it casy to understand cxactly
what causcs all operations to occur. When causality is important in rcasoning about algorithms, as in [Go).
implicit modcls can be cxtraordinarily difficult to use. Even in cascs where implicit models can be used, we

sce the present work as providing a formal and intuitive basis for that work.

Our modcl represents transactions as csscntially arbitrary automata, subject only to simple syntactic
constraints. ‘T'his approach is much more gencral than representing them as programs in some particular,

overly-constrained language.

‘The 170 automata model permits description of algorithms in an abstract form which is not tied to a
particular programming language or system, and which allows maximum nondctcrminism. An
implementation of an algorithm for a particular system will generally restrict the nondeterminism allowed in
our presentation, because of the nced to tailor the implementation to the requirements of a particular
cnvironment. However, since the implementation is just a restriction of the abstract algorithm, correctness
properties of the algorithm within our model will hold a fortiori for the implementation.

Formulating ncsted transaction systems as /0 automata permits precise formulation of the correctness
conditions to be satisficd by concurrency control algorithms; thosc correctness conditions can be stated at the
transaction interface, an interface which does not contain explicit information about object representation.
Because of this choice of interface, the correctness conditions can be stated in a robust way: the same
conditions can be uscful for describing the propertics of many different kinds of algorithms. some of which
manipulate the data in very diffcrent ways. Also, the correctness conditions can be described in a way that is

meaningful to a uscr of the system.

The particular correctness conditions that we describe in this paper involve scrial correctness at transaction
interfaces. We belicve that these particular correctness definitions are very interesting, and will be uscful for

describing the correctness of most of the usual algorithms studicd in the concurrency control arca. That is, the

3' samc conditions appear to be the right ones to use to describe correctness of many different kinds of
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s
;::t'l \ algorithms, including thosc that usc locking. timestamps, multiple versions, and replicated data.
B3
e The model permits rigorous correctness proofs to be carried out for concurrency control algorithms in ways
SN that follow intuitive understanding of the algorithms. For example, in this paper, we have used the model to
1 describe and show the correctness of a very important nested transaction concurrency control algorithm. Our
\“3 correctness proofs are constructive and provide considerable intuition about the workings of the algorithm,
:‘ In contrast 0 most correctness proofs for concurrent algorithms, our proofs arc not voluminous low-level
:_.‘3{ casc-analyses; rather, they consist of a large number of clear and natural lemmas about the behavior of the
‘gﬂi*‘ A algorithm. 'Thesc lemmas can be understood individually, and build upon cach other in the manner of good
E.'. " mathematics. Many of the lemmas should be reusable in extensions of this work as well.
"l‘;
o A successful model of nested transactions should contain the classical theory as a special case, in a way
,: : which is nawral and sheds somce light on that casc. We believe that our model has contributed much to the
: Y classical thcory. For example. the 170 automaton model provides a general underlying model, a missing
Wy component of the classical theory. Also, our explicit and gencral modclling of the transactions unifics the
B carlier collection of somcewhat arbitrary approaches. Our usc of the transaction interface for stating
:,; correctness conditions is also an improvement.
‘. *..:;
ROl Another contribution to the classical theory is in motivating scrializability as a correctness condition.
e Scrializability consists of two criteria: individually, cach transaction must sce a consistent state, and together,
:?a" thcy must appear to run in a scrial order. (A schedule in which cach transaction rcads and writes the initial
E‘:}? state of the databasc provides a consistent state to cach transaction, but is not scrializable.) Why is this sccond
i ordering property a part of the gencrally accepted correctness condition of the classical theory? Clearly,
;.‘, ', because of implicit nesting in the context of the transaction system. In practice, transactions perform tasks on
:"v g behalf of some external entity or entities, which may expect onc transaction to sce the results of the next. In
3 "'-?‘ the natural formulation of classical systems within the present model, the classical transactions arc children of
'*1' T,y with data accesses as their only children. The root is an cxplicit represcntation of the cxternal
it cnvironment in which the system runs. Thus, the ordering property of serializability is a natural consequence
2 of the requircment that all transactions sce scrial schedules, including Ty, It does not have to be introduced as
E§ 3 an independent requircment in need of scparate justification.
NN
s By now, there has been a large amount of systems design and algorithms work that uses or implements
._4 nested transactions. It scems likely that these idcas will form the basis of future programming languages for
:’s' h distributed computing. However, there is currently a problem with the presentation of this work. Some of
he these algorithms are presented in the context of specific systems and programming languages. Very uscful
f: i , and general idcas are too intimately connected with details of the systems to be fully appreciated, particularly
S
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for rcaders with only a passing understanding of those systems. ‘This level of detail also makes carcful

reasoning about the algorithms very difficult.

We belicve that our model has provided the necessary framewaork and some of the necessary vocabulary, for
describing this work in a clcar and unambiguous way. We are currently studying much of this work on

systems design and algorithms using our maodel, and our preliminary results indicate that it works very well.

‘Throughout the paper. we have described conncections with other people’s work as appropriate. Here, we
mention some of the particular modelling work that relates most closcly to ours, and describe the connections

in more detail.

First, the pioncering work of Bernstein and Goodman [BG. cic.] has had a strong influcnce on this work.
Quitc carly. they recognized the need for a modect for single-level transaction systems, that would have many
of the charactcristics which we have sought for nested transaction systems. ‘They have carried out extensive
rescarch on precise understanding of single-level transaction concurrency control algorithms. They have
presented formal statements of correctness conditions, in terms of scrializability of the accesses to data objects
by diffcrent transactions. They have described some concurrency control algorithms with precision, and have
proved correctness of some algorithms, using a lemma which characterizes scrializability by absence of cycles
in a certain dependency relation. ‘Their work has gone a long way toward providing precise understanding of

the work in this area.

However, the particular modcls uscd by Bernstein and Goodman have some problems which limit their
applicability. For instance, the basic correctness condition is stated in terms of the interface between the data
objects and the algorithm. ‘There arc many algorithms winch handle objects in very different ways, ¢.g. using
multiple versions, or making multiple copics in order to permit “backing out™ of opcrations. Since these
algorithms do not prescrve the specificd object interface, they would not be considered correct under the
same correctness condition. Thus, the correctness condition must be maodified. Another limitation is that the
proof technique. which involves proving absence of cycles. is a proof by contradiction; it does not give much
insight into the operation of the algorithms. For many reasons, it is not at all clcar how to extend these
frameworks to handle nesting of transactions.

Farlicr attempts in [Ly,Go,BBGLS] to modcl ncsted transactions have made significant contributions. For
cxample, [L.y] contains a languagc-indcpendent modcl, which is used to give precise correctness conditions
and a proof for a locking algorithm. Many of the idcas in that work have been uscful in providing a
vocabulary for talking about nested transactions. However, attempts to extend the model of [Ly] to handle
correctness of orphans (Go] demonstrate that it is not sufficiently expressive, Certain aspects of the model
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{: g lead to technical difficultics: for cxample, it fails to model the transactions cxplicitly, using instcad a
;:::'n specification of their behavior. Our new model builds on the strengths of the carlier work, while managing
- (we believe) o avoid its weaknesses.
i
|: : Finally, the very recent work in [BBG] proposcs another general model for nested transactions. While on
» v. the surface the modcls appear quite different, they are actually "compatible”. in that the concepts described in
e [BBG] scem to be casily definable within our model. ‘The style of the model in [BBG] is different from ours:
. o their work modecls transactions and the scheduler implicitly, for instance.  However, we belic. ¢ that their
b ﬁ; important axiomatic statcments of propertics can be described as assumptions and lemmas about behaviors of
'IS components in our modcl. Also, the partial orders which they use to model executions can actually be
il defined simply and directly in terms of our lincarly-ordered cxecutions. There are many points of agrecment:
W the use of the transaction interface for stating correctness conditions, and the use of the virtual root
! s transaction Ty, to mention two.
s
! On the other hand, the emphasis in [BRG] is on a different example than the one studicd in this paper. !
}-' They consider multiple levels of abstraction for the data, and regard transactions at any level of the
f'\ transaction tree as accesses to data at a corresponding level of abstraction. ‘This view meshes quite well with ‘
::; our model, where, for cxample, we usc the same CREATE notation for creation of a transaction and |
N invocation of an opcration on data. Their paper clarifies the concurrency control requirements for data at
et diffcrent levels, when the correctness condition is serial correctness at T, We hope and expect that it will be
o easy to restate their results as claims about our model.
i
» We note that the work in [BBG) only treats concurrency control, but does not address the very critical and
difficult issucs of resilicncy.
T
L 9. Further Work
RO This paper is an cmbarkation on a major project to formulate a unificd presentation of the most important
, algorithms for concurrency control and resilicncy, especially those for nested transactions. So far, we have
E‘ ';' defincd a general framework mecting the requirements outlined above. We have demonstrated the power of
g :' this framcwork by using it to specify two correctness conditions for nested transactions, to present two locking
‘ algorithms for implementing nested transactions, and to prove that the algorithms satisfy their respective
4 .j' requirements.
,)-’ Future extensions to this work will include treatment of many other algorithms in the same framcwork.
‘fﬁ”- Among the aigorithms we will consider arc timestamp and multiversion algorithms, algorithms which take
‘ advantage of special propertics of the transactions and objects (semantic information), algorithms for orphan
l
i
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management, and algorithms which usc replicated data objects. Although our focus so far has been on nested
transactions, we belicve that our viewpoint contributes new insight to the special case of single-level
transactions as well; thus, we will cxamine algorithms for non-nested transactions as well as nested

transactions.

We arc particularly interested in studying algorithms which give risc to live orphans, i.c. live transactions
whose ancestors have aborted [Go,Li, Wa,HM]. Our scrial correctness condition provides a formal definition
of orphan correctness - that all transactions (including orphans) "sce consistent data” [Go]. In fact, in work
currently in progress [HLLM W], we arc describing and proving correctness of several of the recently-developed
algorithms for orphan management. ‘This work now scems to be quite casy. given the foundation provided by

the present paper. In fact, some of the key results of this paper arc used as lemmas in that work.

Another dircction of interest is the explicit representation of distribution within the modecl. It is fairly
natural to modcl cach transaction and object as located at different sites, cach with a local automaton
representing the resident portion of the (distributed) scheduler. ‘These automata would communicate with
cach other in order to implement the (centralized) scheduler studied here. ‘The natural next step would be to

model failure resilience, as various componcnts losc information or fail altogether.

The rcader might have noted that our correctness conditions do not guarantce anything about the system
making progress, but only about “safety” propertics. Further work is needed to incorporate guarantecs of
progress. ‘This work is likely to be difficult, however. Only recently, in [I.T], have we achieved what we
consider to be a satisfactory understanding of the eventuality and fairness issucs for the basic 170 automaton
modcl, so that we can cven formulate the conditions we want to satisfy. But even with the ability to state such

conditions, the algorithmic issucs still scom difficult.
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