AD-R171 427 CORRECTNESS COND!TIONS FOR HIGHLV lWl"LlIDLE REPLXC TED
DATRBASES(U)> MASSACHU! S TTS INST OF TECH CAMBRIDGE LAB
FOR COMPUTER SCIENCE N _LYNCH ET AL. JUN 86
UNCLASSIFIED MIT/LCS/TR-364 NO0@14-83-K-8123

At
DHINTIRRE

oy

RS

»
i

yg)

-
/

g

l’

X

R

SR s Y

il
flig £
—— E '™ L)
i PE

122 i

B

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-A

&s.- N ""Tv"'-!‘"”'? MANESRR
“;'Hi *k

,1
Ty ,n It ,1 u“t,',‘

3

Ak

)

iy LA

:.l N

o &

OSSN
AN

A

>

CXATATAT
i)

MIT/LCS/TR-364

CORRECTNESS CONDITIONS
FOR HIGHLY AVAILABLE
REPLICATED DATABASES

Nancy Lynch
Barbara Blaustein
Michael Siegel

June 1986

research was Supported (in

part) by the Defense Advanced Research Projects
cy of the Department of Defense and was monitored by the Office of Naval
arch under contract number N00014-83-K-0125,

545 TECHNOLOGY SQUARE, CAMBR DA

CNEW LA BRI * 2 At i afa i 2k e el 8l st

PR i gt PSR

- . LTl g LR ILY AV RN R RSP Sat
INCLASSIFYFD p//}/z/ %;lq
SECURITY CLASSIFICATION OF THIS PAGE hen Dete Entered) yd

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE pErREAP INSTRUCTIONS
7. REPORT NUMBER Z. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
‘MIT/LCS/PR-364 N/A N/A
6. TITLE (and Subtitle) S TYvYPE OF REPORY & PEMIOD COVERED
"Correctness Conditions for Highly Available Interim Research
Replicated Databases" June 1986

[——————
¢ PERFORMING ORG. REPOART NUMBER

7. AUTNHOR(s) 8. CONTRACTY OR GRANT NUMBER(s)

Nancy Lynch, Barbara Blaustein and MIT/LCS/TR-364
Michael Siegel

9. PERFORMING ORGANIZATION NANE AND ADDRESS 1. PROGRAM ELEMENT PROJECT,. TASK
AREA 8 WORK UNIT NUMBERS

MIT Laboratorv for Computer Science
545 Technologyv Sq.
Cambridee, MA. 02139

11. CONTROLLING OF FICE NAME AND ADDRESS 12 _REPORY DATE
DARPA,/DOD. : June, 1986
1407 Rilson Boulevard 3 nzuasn OF PAGES

1l

Arlington, VA 22209
T4, MONITORING AGENCY NAME & ADDRESS(I! differant from Controlisng Otlice) 1S. SECURITY CL ASS. (of thia report)

ONR/Department of the Navy

Information Systems Program Unclassified
Arlington, VA 22217 TS OECL ASSIFICATION. DOWNGRADING

S T—
16. OISTRIBUTION STATEMENT (of thia keport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abeiract antered in Block 20, i difierent troem Keport;

.-
v

18. SUPPLEMENTARY NOTES

19. MYumuv‘m. on reveree side {f necossary and identity by block number)

Databases, availability, replication, distributed processing, network
partitions, nonserializable systems, integrity constraints, resource
allocation, cost bounds, fairness.

20. ABSTRACY rCantimms an roverse sfud /f necossary aud Identity Py block number)

[~ Correctness conditions are given which describe some of the properties
exhibited by highlv available distributed database systems such as the

SHARD (System for Highly Available Replicated Data) system currently being
developed at Computer Corporation of America. This svstem allows a data-
base application to continue operation in the face of communication failures,
including network partitions. A penalty is paid for this extra availability:
the usual correctness conditions, serializability of transactions and preserva{ '

DD . o0, 1473 ctornom oF 1 wov 68 15 owsoLETE UNCLASSIFIED

-
LS

A

BRI

oA
FIED RNt
AN SECURITY CLASSIPICATION OF THIS PAGE(When Data Entored) : AECALSUA
N
{ 9tion of integrity constraints, are not guaranteed. However, it is still possibl
to make interesting claims about the behavior of the system. The kinds of
claims which can be proved include bounds on the costs of violation of integrity
constraints, and fairness guarantees. In contrast to serializability's all-or-
nothing character, this work has a “continuous" flavor: small changes in

available information lead to small perturbations in correctness conditions. ?ngkﬁkﬁ
L0
¢ i

N

\]
This work is novel, because there has been very little previous success in 2R
stating interesting properties which are guaranteed by nonserializable systems.

/ .

gt
1

D I '< : [Accesalon Tar ;/-
’._‘~_ . R . —

i

i

ELECTE L ;
Jooo. - .

B T
,_if72“) -

D1st , .. .G :

T

- a

:
S S

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

Ca T4 TN v * VAW T "W - . R TR .o e e .. . s .
.-“.ﬂ'@:;&'a{' T N T A e A L VG (O T D O BTN e
y > . v \ . . " . . g - . \ ." - ~
) » Y

: W) AT 3 \:.

XA el X AL AN TR LU

AR AE T AR

0‘: ‘r-‘r".'}- ATALA TN y'r.v ~. RN ', ..3:'-"-}\u.
Y)
s -u g houhh. ey ‘\ n.\i ao.. N, 45 Al

N A I S P SR VA VI R Sk L S TR T L V. o PP Ty e fm Ny te iy . PP TN 2aa’ 1aW LoB el s al ak b)

Correctness Condit.ions for Highly Available Replicated Databases

Nancy Lynch, Massachusetts Institute of Technology
and Computer Corporation of America

Barbara Blaustcin, Computer Corporation of America

Michael Siegel, Boston University and
Computer Corporation of America

Abstract

Correctness conditions arc given which describe some of the propertics cxhibited by highly available
distributed database systems such as thc SHARD) (System for Highly Available Replicated Data) system
currently being developed at Computer Corporation of America. ‘This system allows a databasc application to
continue operation in the face of communication failurcs, including network partitions. A penalty is paid for
this cxtra availability: thc usual correctness conditions, scriaiiwbility of transactions and preservation of
integrity constraints, arc not guarantced. However, it is still possible to make interesting claims about the
behavior of the system. The kinds of claims which can be proved include bounds on the costs of violation of
integrity constraints, and fairness guarantees. In contrast to scrializability’s all-or-nothing character, this work
has a "continuous” flavor: small changes in available information lead to small perturbations in correctness

conditions.

This work is novcl, because there has been very little previous success in stating interesting propertics which
arc guarantced by nonscrializable systcms.' '

Keywords and Phrases:

Databases, availability, nonscrializable systems, intcgrity constraints, rcsource nonscrializable systems,
intcgrity constraints, resource allocation, cost bounds, fairness.

©1986 Massachusctts [nstitute of ‘I'cchnology

This work was supported by the Defense Advanced Rescarch Projects Agency of the
Department of Defense and by the Air Force Systems Command at Roine Air Development
Center under Contract No. F30602-84-C-0112. 'The views and conclusions contained in this
document are those of the authors and should not be interpreted as necessarily representing the
official policics, cither expressed or implied, of the Defense Advance Rescarch Projects Agency or
the U. S. Government. ‘The work of the first author was also supported in part by the Office of
Naval Rescarch under Contract N00014-85-K-0168, by the Office of Army Rescarch under
Contract DAAG29-84-K-0058. by the National Science Foundation under Grant DCR-83-02391,-
and by the Defense Advanced Rescarch Projects Agency (DARPA) under Contract NO0O14-83-
K-0125.

- 8
NN Y NN

' f L t— J'
>
|| . A I

NN O RTRA R gy 50 5 L2 ¥
\- -\- }\-r \-l'
L . .

\
Al SRS \ﬁ-\\s

L]
e 'v*\:.-a o ;

I P P ORI Moot i g B e g¥a gt gy gt

1. Introduction

1.1. Background

In recent years, there has been extensive rescarch on the design and theory of distributed databases. Ncarly
all of this work has been directed towards providing frameworks in which transactions can be processed
concurrcntly, while prescrving integrity constraints on the data. Many of the most important advances in
distributed processing have arisen from this work, including the development of technigues based on locking

and timestaunps, and commit protocols. ‘The work has led to clcgant system designs, as well as to a very
interesting theory.

It is apparent. however, that there is still a problem. ‘The techniques developed in distributed database
rescarch have not yet been accepted by the commercial world to the extent that rescarchers might have hoped.
In particular. airline reservation systems, banking systems and inventory control systems (applications which
motivated much of the rescarch), still do not rely on the general mechanisims developed by rescarchers. ‘The
problem may be fundamental to the general approach. ‘The mechanisms developed in rescarch guarantee
preservation of integrity constraints, but they arc inadequate for mecting stringent response time and

availability requircments. ‘lhis inadequacy secms 0 be an unavoidable result of strong requirements for
synchronization among remote nodes.

Many applications of the sort mentioned above put a high premium on availability and fast performance,
and in order to obtain these, they arc willing to sacrifice somcthing in the way of "correctness™ or “data
integrity™. ‘The rescarch community has so far been unable to provide gencral frameworks which guarantee
wcaker correctness conditions as well as good performance and availability. As a result, practical systems
development work for these applications is still bascd on ad hoc methods of concurrency control.

‘There is a need for system development work, as well as associated theory, to fill this gap. New frameworks
are nceded which guarantee good performance and availability, yet provide enough discipline on application
programming so that uscful correctness claims can be proved. When fast response time and high availability
arc required, it scoms necessary to allow violations of integrity constraints to occur. In this casc, traditional
frameworks do not allow anything intcresting to be proved about the hehavior of the system. ‘The difficult

part of the problem is to guarantece interesting and uscful cofrectness propertics, cven when integrity
constraints arc violated.

R a a RS

WW LT Ty T e e,
NNCACN, ,'),?.;\.-.>r,'¢,‘

1.2. SHARD

‘The new SHARD (System for Highuy Available Replicated Data) system under development at Computer
Corporation of Amecrica (CCA) is dcsiéncd to address the problems described above. It provides highly
available distributed data processing in the face of communication failures (including network partitions). It
docs not guarantee scrializability. nor docs it prescrve integrity constraints, but it docs guarantce many

practical and intcresting propertics of the database.

"The rcader is referred to [SBK] for a detailed description of the architecture of the SHARD system. Bricfly,
thc main idcas arc as follows. ‘The network consists of a collection of nodes, cach of which has a copy of the
complete databasc. (Full replication is a simplifying assumption we have uscd for our initial prototype; many
of our idcas sccm cxtendible to the case of partial replication, but this cxtension remains to be made.)
Replication allows transactions to be processed locally, thus reducing communication costs and delays, and

providing high availability.

After a transaction is processed at its originating node, information about the * ansaction is broadcast
reliably to all the other nodes for incorporation into the database copics at those nodes. ‘The broadcast
algorithm [G1.BKSS] cnsurcs that, barring pcrmanent communication failurcs, every node will eventually
receive information about every transaction. While the broadcast algorithm attempts to deliver information
to all sitcs in as timely a manncr as possible, communication and node failurcs can causc significant dclays.
Since nodes may continuc to initiate transactions during communications failures - indeced, they may not even
be aware that there is a failure somewhere in the nctwork - these delays mean that transactions may run
against out-of-datc databasc statcs.

When a node receives new information about a transaction, no matter when the transaction was initiated,
this information must be merged into the node’s copy of the databasc; this merging must be donce consistently
at all nodes, to maintain mutual consistency. ‘The following mechanism is used to guarantee consistent
merging. Transactions arc totally ordered by a globally-unique timestamp assignment (such as onc based on
local timestamps with node identifiers used for ticbreaking), and cach node uscs this total ordering to
determine how to merge information about different transactions. Becausc all nodes order the transactions in
the same way, they will agree on the result of merging identical scts of transactions. Also, at all times during
exccution, cach node’s copy of the databasc always reflects the coffects of all the transactions known to that
nodc, as if they were run according to the global timestamp order.

Since messages about different transactions could arrive at a single node out of timestamp order, keeping
the copy correct entails frequent undoing and redoing of transactions. ‘The SHARD system uscs an undo-
redo strategy in licu of any other inter-node concurrency control mechanism. ‘This strategy allows the nodcs

O L
£ oy i

]

Ny

'f:'.
]

o g

,.‘
. y
l' .I

A
A
I . _¢

Py
-.‘.

{ 2
20
P

L

7

‘f

-

PN AN

3 " ® a0y B T T Y R - - . P PP - - - . - - Ca ..
'f._'b_‘:\:u_'-:' .’:.".":"'._'.n_':- .:-_1.’ .‘.:"F.‘.J:"-’\J\'V‘(. IARANERAAE . Tt . «“s . - 1.\':._'-.
: Ao Loy - N L / £y o . . o

to achicve mutual consistency without relying on extra nctwork communication. ‘There are scveral
implementation idcas which reduce the amount of undoing and redoing that is actually necessary: some of
thesc arc discussed in [BK,SKS].

Problems arise with the simple scheme described so far in its interactions with the external world. Certain

transactions will trigger external actions. For cxample, in an airlinc rescrvation system, a booking transaction
might determinc that there are available scats on a flight, and might cause a passenger to be informed that he
has been assigned a scat. Although the transaction is run at different nodes, and possibly undone and redone
many times, the external action should only occur once - at the transaction’s origin node, when the transaction

is initiated.

When a transaction is rerun at a nodg, it may be necessary to undo all its eflects before redoing it starting
from a different database state. ‘This requircment is a scrious problem for transactions which trigger external
actions: it is not possiblc for the system to undo an cxternal action. Morcover, when the transaction is
redong, it might not choose to trigger the same cxternal action. In an airline reservation system, a booking
transaction might dccide to inform a passenger of an available scat when the transaction is initiated.
However, if this booking transaction is undonc and then redone from a database state in which there do not
appear to be any available scats, it would not grant the scat. ‘Thus, after the undo and redo, the database
would not record the fact that the passenger had been granted a scat, cven though the passenger has actually
been informed that a scat has been granted. ‘I'his situation produces an inconsistency between the
information in the database and the information scnt to the passenger. We would like to avoid this kind of

inconsistency.

Thus, we find it uscful to limit the interaction of transactions with the external world, by imposing some
extra structurc on the transactions. We require that all transactions be divided into two parts: a "decision”,
which may rcad data and trigger external actions, but may not modify the databasc, and an "update”, which
may rcad and write the databasc but may not trigger external actions.

‘The dcecision part of a transaction is invoked only when the transaction is initiated. 'This part of the
transaction may intcract with the uscr, giving some indication of the likcly outcome of the completed
transaction. ‘The rcsults returned by the decision determine an update, which is then broadcast to all the
nodcs to be merged into all the copics of the database. Only the update is broadcast to the other nodes. ‘The
updatc is the part of the transaction that may be undone and redone; the decision is exccuted only once.
Since the dccision involves no changes to the database, just broadcasting the update is cnough to insure
mutual consistency of the databasc copics.

e

»
~" "v'-. R LK)" v \" -

DAt IR SN IR

In the example described cartier, the decision part of the buoking transaction could read the database at the

local (initiating) node and detcrmine whether there appear to be available scats. 1F there are, the decision
would inform the requesting pass‘cngcf that he has been granted a seat, and would also cause the system o
invoke an update that writes the reservation into the database. When the update is reccived by the other
nodes, the reservation is also entered into their copics of the database. ‘Thus, cvery node would correctly

record the fact that the passenger was granted a scat.

e
=

Because of the distribution, and because of the possible need for undo and redo, the update part of the

- v
g
o-:..

A

booking transaction may cxccute many times, possibly from different database states. No matter what state it
is exccuted from, the update records the Facts that the scat was assigned and the passenger was informed of

'.

the assignment. This update records the facts correctly even if it is executed from a state from which a

T
o

booking transaction run in its entirety would not choose to grant the passenger a scat.

o

-~
o)

Because decisions are made with incomplete information about the updates of preceding transactions, it is

,
72

possible that the database could rcach an undesirable state, ¢.g. a statc in which a flight is overbooked.

o+ 3

!g" .

< 4
Ay

Howecver, users or application programmers could monitor the databasc with additional "compcnsating™

o a

transactions, which invoke appropriatc corrective actions. In this example, a transaction might check for

"t'
’

overbooking, and decide on a particular passenger to unscat. ‘The decision part of this transaction would

%

inform the passenger that his reservation has been rescinded. The update would just rocord, in the database,
the fact that the particular passenger has been unscated. Of course, applications should be designed to avoid

F 4]
%
gy

"
; -4 4
o

an cxcessive amount of compensation. ‘The correctness conditions described in this paper should help to
provide application designers with guidclines for coping with these and other problems caused by a lack of

scrializability.

A preliminary design for SHARID has been completed, and is documented in {BK.GLLBKSS, S, SBK SKS].
Also, a prototypc implcmentation is complcted.

1.3. Correctness Conditions

The SHARD system can be implemented cfficiently, and scems capable of cxpressing the kinds of
transaction behavior actually used in commercial systems. Howcver, if the system is going to be widely used,
it should be possible to make precise claims about its behavior. This paper provides a formal sctting in which
such claims can bc made, and uscs that framework to prove some interesting claims about SHARID's

behavior.

It should be clear that SHARID docs not guarantee scrializability of complete transactions. It docs
guarantce scrializability of the update parts of transactions, but that condition by itsclf docs not say very

B ARISANI AT Mo T

RN St I R N O L L C S PR R O Oy
- » LA .. . - » .
R SR O AR e ;

much. We belicve that we can say more about what is guaranteed by such a system than just what we can

conclude from its weak scrializability propertics.

We take our cuc from some of the intended applications of the system, such as airline reservations, banking,
and inventory control. ‘Ihese exemplify different kinds of resource allocation applications. In all thesc cases,
there are natural intcgrity constraints which one would want to define; these arc usually expressed as
predicates on the database states. In resource allocation applications, onc uscful integrity constraint would be
that the number of allocated resources be no greater than the number of available resources. Another would
be that the number of allocated resources be no less than the number of available resources, provided there

arc enough requests for resources. Both of these conditions are described by predicates on the database state.

However, one can go further: there is often a “cost™ associated with violations of an integrity constraint,
which can be expressed as a function of the database state. In resource allocation applications, the cost of
over-allocation might be some number which is proportional to the cxcess of the number of allocated
resources over the number of available resources. ‘The cost of unnccessary undcer-allocation might be
proportional to the minimum of the number of unsatisficd requests, and the excess of the number of available
resources over the number of allocated resources. Each of the applications listed has its own particular cost

functions, characteristic of that application. In cach casc, it is dcsirable to keep the costs as low as possible.

‘Thus. onc kind of property we would like to prove is a bound on the cost of violations of intcgrity
constraints. Results of the form "With absolute certainty, the cost remains at most ¢.” would be unreasonably
strong in our sctting, because of the uncertainty that ariscs from delays and failures. Rather, it scems much
morc appropriatc to prove results of the form "With probability p, the cost remains at most ¢.” Results of this
form would be very uscful to the application designer, since they would allow him to adjust his design in such

a way as to lower the expected cost bound.

We belicve that results of this form, are most conveniently proved in two parts: (1) conditionat results of
the form "If certain conditions hold. then the cost remains at most ¢.”, and (2) probability distribution
information describing the probability that the conditions hold. Most often, the conditions mentioned in (1)
will be parametrized, ¢.g. "When cach transaction is initially exccuted, the databasc state includes the cffects
of all but at most k of certain kinds of preceding transactions.” Similarly, the cost mentioned in the
conclusion of (1) will be parametrized. Thus, results of type (1) will usually be a class of related results, giving
cost bounds for a range of quantitatively different assumptions about system opceration. The probability
distribution information in (2) will be obtained by an independent analysis, using information such as delay
characteristics of the message system, and expected rates of transaction processing. [t should be relatively casy
to combine the information in (1) and (2) to get probabilistic statements of the kind we want. [n this paper,

. .0

AR PR
AL G 65, OGN RN

. e Y e e Y L WA W e APFON - & A v, 0
e IR s e S S AR

S A At LR AL

we do not carry out the probabilistic analysis required in (2), but instcad focus on the parametrized

conditional claims in (1).

Thus, we obtain results of the form "If cach transaction “sces” all but at most k of certain kinds of
preceding transactions, then the cost remains at most (k). Such cost bounds limit the damage which can be
caused when transactions operate with a bounded amount of missing information. The cost bounds we obtain
are, in general, intuitively natural, rather than extremely surprising; our main contribution lics in the fact that
we can actually formulate and prove the intuitive claims. Previously, no claims at all could be made when
information about any transactions was missing. We can make such claims, and our claims become stronger
(i.c. the integrity constraints are better preserved) when information is more complete (i.c. when cxecution is

closer to being scrializable). In contrast to scrializability’s all-or-nothing character, our work has a

r S

“continuous”™ flavor: small changes in availuble information lcad to small perturbations in integrity

R
o 8 &

P .".’ (A

constraints,

PG
i

[
#

The question of how the costs get defined still remains to be addressed. Assignment of costs is something

o

that must be donc by application programmers, who understand the impact of database behavior on the

g

’, I‘I
- S

organization using the system. It is likely that the cost assignment procedure will be complex and
approximate. Nevertheless, it appears to be what is currently used by organizations, implicitly, in cvaluating
the acceptability of databasc system behavior. ‘Therefore, it scems that such cost assigninents should play an

important role in cvaluating databasc behavior.

Another kind of property which is of interest for resource-allocation applications is “fairncss”. Fairncss
propertics describe conditions under which a particular request is guaranteed to be granted, or guaranteed not
to be granted. ‘They also deal with relative priority of different requests in obtaining resources. While FIFO
order might be an appropriate fairness condition in a scrializable system, weaker fairness conditions are more

appropriatc in the SHARID setting, and arc still of interest.

In this paper, we begin by providing the basic definitions and vocabulary for discussing the operation of
systems of this typc. Then, following the usual organization in traditional concurrency control theory, we
study the correctness conditions in two groups. First, we examine conditions which can be guaranteed by the

system alonc (anatogous to seriatizability). ‘I'he system docs guarantee to run transactions in some total order.

.~'

.ﬁ"
."D »

But whercas scrializability would guarantee that cach transaction has total information about the cffects of the

A
f(-

preceding transactions, the SHARD system only guarantees that cach transaction has partial information

'c," ‘f(

- -

about the preeeding transactions. Sccond, we cxamine conditions which can be guarantced by the

l

»
',',
a4

transactions (analogous to preservation of integrity constraints). ‘I'ransactions might be required not just to

.
o’

preserve integrity, but also to improve or testore integrity. These two kinds of conditions, those guaranteed

PO
“yp ¥ p™

N R R e e T N N R T T
T NP > N y . A

hek T,
. '\ - '\¢'} - o
i] b S Y Py, R, . . A A Rl

by the system and those guarantced by the transactions, can be combined to allow proof of interesting

properties (cost bounds and fairness) for a running application.

We describe our propertics and carry out our proofs in the context of a simple prototypical resource
allocation cxample. We belicve that this example contains many of the clements common to the class of
applications for which SHARI is suited. ‘The types of conditions stated and the techniques for proving their
correctness appear likely to extend to the other applications. Wherever possible, we state conditions and

describe proofs in a general way, so that they will be directly applicable to other applications.

Related work includes several other papers which weaken scrializability in various ways [FM, AM, G, B, for
cxamplc]. Other work that scems related to the SHARID approach, although in a very different context, is the

work on "virtual time” [J).

‘The rest of the paper is organized as follows. In Section 2, we describe our database model. 1n Scction 3,

we describe conditions that can be guaranteed by the system alonc. In Scction 4, we describe conditions that

can be guarantced by the transactions alonc. In Section 5, we prove some interesting cost bound and fairness

propertics for the example resource allocation system. “These propertics arc consequences of both the
conditions guarantced by the system and those guarantecd by the transactions. In Section 6, we present our

conclusions.

2. Database Model

"This section includes formal definitions of database states, integrity constraints, and transactions.

Onc goal of the SHARID design is to kecp the distribution and replication of data hidden from the
application. In particular, we attempt to aroid cxplicit mention of distribution and replication in our
correctness conditions. Our general approach is analogous to the usual approach for describing correctness of
distributed databascs [BG, for example]. In the usual approach, correctness of a distributed database requires
that the distributed databasc give the appearance of a centralized, scrial database. In our casc, the database

will not appcar to be serial, but will still appear to be centralized.

In other database rescarch, certain consistency conditions, called "integrity constraints,” arce given for the
databasc states. ‘These conditions fit into our model in two ways. ‘The most fundamental are modelled as
"well-formedness” conditions; we will require that transactions always preserve these. ‘The other consistency
conditions, which we call “integrity constraints,” represent desirable conditions, but we do not assume that
they arc preserved at all times. "I'o measure how far a database statc is from satisfying the integrity constraints,

we imposc cost measurces on the states with respect to cach constraint, where a greater cost indicates that the

AN
»
&

v

4

s

L

W

o

state is further from satisfying the constraint, One goal of SHHARD is to minimize the cost of states that arise

during an exccution,

Qur transactions arc composed of two parts, a "decision part” and an "update.” As described in the
Introduction, the decision part reads data and may interact with the external world, but docs not modify the
database. ‘The results returned by the decision part determine an update, which can rcad and write the

database, but docs not directly interact with the external world.

In addition to providing gencral definitions in this section, we also define an airline reservation example,

with four transactions. ‘This cxampic will be used throughout the rest of the paper.

2.1. States

The databasce has a sct S of possible darabase states, among which a particular initial state §g is distinguished.
‘There might be soine additional structure on the database; for example, it might be composed of a collection
of vbjects, where a state would consist of a value for cach object. In case X is an object, we let X(s) denote the

valuc of object X in databasc state s.

Among the databasc states, there may be some which fail to satisfy some fundamental consistency
conditions, and we will generally want to omit them cntirely from consideration. ‘Therefore, we designate

certain of the databasc states as well-formed. We assume that the initial state is well-formed.
FExample:

Fly-by-Night Airlines is a little-known airlinc company which has cxactly onc scheduled flight,
tlight 1. Flight 1 is scheduled to take off next Jan. 1 and will take its lucky 100 passcngers from
Boston to an idyllic resort in the Caribbean.

A databasc state consists of the following objects:

- ASSIGNED—LIST, a finite ordered list of pcople who have been notificd that they have
scats on FFlight 1, and

- WAIT = LIST, a firite ordered list of pcople who have requested scats on Flight 1, but do not
havc assigned scats.

The initial statc has both lists empty. ‘The well-formed states are those which satisfy the
fundamental consistency condition that ASSIGNED-LIST and WAIT-LIST must contain
disjoint sets of pcople.

We use the notation Al(s) as a shorthand for [ASSIGNED-1IS1(s)], the number of pcople on the
assigned list in state s; similarly, we use Wi £s) for [WAIT=LIST(s)l. We will sometimes refer to Al and WI.

YA
"’l'
. f., 7

e

27"
P‘-“!If_c

[EPTRPEAS A S L RPN W g g (e gt

10

as if they were objects themselves: they are similar to objects, in that they have valucs in cvery database state.
However, thosc valucs arc always derived from the values of the "real” objects, ASSIGNED - LIST and
WAIT—LIST. '

2.2. Integrity Constraints
For us, "integrity constraints” represent desirable conditions, but we do not assume that they are preserved

at all times. Since integrity constraints arc not always preserved, we find it uscful to measure how far a
databasc state is from satisfying the integrity constraints. In order to do this, we impose nonncgative real-
valued cost measures on the states with respect to cach constraint, where a greater cost indicates that the state
is further from satisfying the constraint. A cost of zcro indicates that the constraint is satisfied. ‘The total cost
of a state is the sum of the costs associated with all the constraints. Onc goal of SHARD is to minimize the

cost of states that arisc during an cxecution.

More preciscly, we assume a finite collection of integrity constraints, indexed by the sct [Lot cos(si)
: denote the cost of database statc s which is attributed to a violation of integrity constraint i. ‘The cost of s,
cosi(s), is then defined as Z,¢ cost(s,i)

EAS
o

1‘-

-

% R

DA

We usc the notation X /. Y to denote max(X-Y.0).

&,

B

Example:

In the Fly-By-Night airline reservation system, there arc two integrity constraints in addition to
the well-formedness condition already described.

Integrity Constraint 1: Overbooking should not occur.

Formally, this says that Al. < 100. While this condition is certainly desirable, we do not
cxpect that it will always hold. If Flight 1 is overbooked, the cost to Fly-by-Night Aidines is
approximately $900 per overbooked passenger. (This cost covers the price of a first-class tickct on
an alternative flight, plus hotel accomodations for a week in the Caribbean.) Thus, we define
cost(s.1), the cost of statc s which is attributed to violating constraint 1, to be 900 (AL (s) /. 100).

Intcgrity Constraint 2: Underbooking should not occur, if it is avoidable.

Formally, this says that cithcr Al. 2> 100 or clsc WI. = 0. That is. cither all the scats on Flight
1 arc assigned or clse there are no waitlisted passengers. If Flight 1 is unnccessarily underbuoked,
the cost to the airline company is approximatcly $300 for cach waitlisted passcnger who could have
been assigned a scat. (This is the missed profit.) Thus, we define cost(s,2), the cost of state s which
is attributed to violating constraint 2, to be 300 min(100 /. Al {s), W1 (s)).

‘The assignment of costs to databasc states, for violation of particular integrity constraints, is a part of

"‘."-(
%

LA]

oy,

L}
o
»

T S s

EReY ~\v«_'1i L ik 3 v'g

n

application design. In practice, it might not always be obvious how to assign such costs. 1t is possible that the
system could help the application designers, by providing a framework in “which the designers could

dctermine appropriate cost functions. Cost functions often summarize other information which the

application designers might find it casicr to think about. For instance, in many interesting cascs (such as the
airlinc reservation system), the data is numecrical, and the cost functions have some simple (c.g.. lincar)
rclationship o the data valucs. Perhaps patterns such as this one could be incorporated into a language for
describing cost assignments. Systematizing cost assignments is a subject for future rescarch.

23. Transactions

In this subscction, we describe the structure of transactions. As noted carlicr, our transactions arc composed
of two parts, a "decision part” and an "updatc”. ‘The decision part rcads data and may interact with the
cxternal world, but does not modify the diabasc. The results returned by the decision part detcrmince an
update, which can rcad and write the databasc, but docs not dircectly interact with the external world.

Formally, an update is any mapping from S to S which preserves well-formedness. [.ct A denote the sct of
updates. l.ct 8 denote the set of external actions. A transaction ‘I’ consists of a decision part 1),. which is a
mapping from the state sct S to A X HKE). For any databasc statc s, 1), (s) is a pair consisting of the update
which is invoked when T is run from s, and the sct of external actions triggered by T when T is run from s.
Where no confusion is likcly, we will sometimes write l)..(s) to denote just the update, ignoring the external

actions.

A transaction is designed to cxecute nonatomically; it “observes” some state of the databasc when it is
initially run, but then later it transforms other, possibly different, states. The obscrvation of the database
takes place in the decision part, and the state transformation in the update part. Each of these two parts is
intended to be carried out atomically. The state that a transaction obscrves is to be thought of as cmbodying
partial information about past updatcs, such as the information known at the local site at the time the
transaction is first cxccuted. This partial information is used to decide on the new update to be generated.

[\xample:

The airlinc reservation system has only four transactions: a REQUEST for a scat which puts
the passenger on the waiting list, a CANCEL. transaction, a MOVE — UP transaction which movcs
a waitlisted passenger to the assigned list, and a corresponding MOVE—DOWN transaction which
movcs an assigned passenger back (o the waiting list. Note that we arc departing slightly from the
cxample discussed in the Introduction: the effects of the booking transaction described there are
achicved by a combination of a REQUEST transaction and a MOVE - UP transaction.

The four transactions are as follows:

' :-:_ ‘\({‘.: 'V 5(ﬁ' S‘ ".'uv.*‘\ .. \ ! K T\"- -'-‘ ‘\\-‘-1\‘.".*:.

\h.v

&)

"\\' o \\
o ~.\»‘\~a-'s—‘ CoTy A Wy A nl\ 1Y ~‘-‘|“l~

v

w

J‘

12 —_

(1) REQUEST(P), where P is a person o

‘This transaction is described by the following program.

Decision: TRUE | e
Action: Tt
if P is not on WAI'T—LIST and P is not on s
ASSIGNED—LIST :
then add P to ond of WAFI'—LIST N
! ‘i&'v
‘This program is to be interpreted as follows. For any state s, the decision mapping ::iy
Daours) triggers no cxternal action and invokes the same update A. A operates on any state s’ q:ff;
by a?ding i’ to the WATT - LIST provided that P is not already on cither the WAIT~ LIST or the f“”
ASSIGNED—LIST, ins". In casc P is on cither list in 8°, A does nothing. We refer to the unique Sl
update A invoked by the REQUEST(P) transaction, as the requesi(P’) update. :~-,,,§‘—,J
A
(2) CANCEIL(P), where P is a person é;;:
:* g
‘I'his is described by the following program. Zn‘,fe‘»tt
Decision: TRUE Gon
Action; "‘,:;;u
if Pis on WAIT—1.ST . P
then remove P from WATT—LIST e
if P is on ASSIGNED—LIST T
then remove P from ASSIGNED—LIST
' o3
Again, from any state s, the decision mapping always yiclds the same update. ‘This update, e
from any state s°, removes P from any list on which it happens to appear. If P is not on cither list, _*‘_
the updatc docs nothing. We refer to the unique updatc invoked by the CANCEIL(P) transaction, ;&;

as the cancel(P) update.

The decision parts of the REQUEST and CANCEIL. transactions do not perform any
intcresting work: they always invoke the same update, and trigger no cxternal actions. On the
other hand, the following two transactions have decision parts that invoke different updates in
different situations, and they sometimes trigger external actions.

(3) MOVE-UP et
IDccision: Al < 100 and W1.> 0 and P is the first person g‘-
on WAIT—LIST " %}
Extcrnal cvent: inform P that P is now assigned a scat AL
Action: . oo
if Pis on WAIT—LIST 4.‘1’5
m '..].l:':
[remove P from WAIT—LIST N
add P to cnd of ASSIGNED—LIST] -:‘feif‘ '
Here, the decision part, running from state s, tests to scc whether there is room on the N ‘,.
ASSIGNED - LIST and a person waiting to be assigned. I not, no action is taken. If so, the ;'ﬁjl,‘
. S ES,
Yia
LAY
Ty
A W A .'J',-.‘F:: ;:.'J:’: \}\" -, _::;':-:;;}::. ’,:’\ \:,\}:;.\:,\;,\;:;.5 s}:;.:}:;?;.s;,v;s;,uycl\\(:
"t) L -

o

W i . s p Par
O U T O A R, W 2048 o Wia X9 W 85 Xy JEN, Wy, Nl AN Y AT TR TS

" <
!
13 R
v, LR
WX
decision part sclects a particular person P (the first on the WAI'T ~LIST in state s) to be moved up :_f_:‘,—:t
from the WATT=LIST to the ASSIGNED-LIST. A mcssage is sent to P, and the update is .-:;",«;
.* paramctrized by P. From any state s, the update moves P from the waiting list to the end of the —
assigned list, provided that P is actually on the waiting list in s°. Otherwisce (i.c. if P is alrcady on T‘
the assigned list, or P is on neither list), no change occurs. We refer to the update gencrated by the ti,
MOVE— UP transaction when it sclects person P as the move— up(P) update. : §:
L
L
(4) MOVE-DOWN il
F Decision: AL > 100 and P is the fast person on "
ASSIGNED—LIST Ayt
External cvent: inform P that P is now waitlisted A
Action: e
if P is on ASSIGNED—LIST -
. then o
; [remove P from ASSIGNED—LIST b
; add P to end of WAIT—LIST] .

‘'he meaning of this transaction is symmetric with the preceding one. We refer to the update
invoked by the MOVE—~DOWN transaction when it sclects person P as the move—down(P)
update.

‘ It is clear that all the updatcs, for all four transactions, preserve well-formedncss, as required.

Note that cach of the last two transactions contains two conditionals. “The two conditionals play different e
roles. ‘T'he first conditional in cach case is used to decide which update and external actions will occur. The

: S5,
3 second is part of the cxecution of the update. Also note that the transactions arc designed to observe the .@E
f databasc statc more than once. For example, in the MOVE—DOWN transaction, the transaction looks at ,('l‘-;g

ASSIGNED— LIST in onc statc s in order to attempt to sclect a person P to move down. ‘Then whenever the TN
movc-down(P) updatc is exccuted, it looks at ASSIGNED—LIST in another state s’ to determine whether to ;‘- n
actually move P. , .‘ :'.;i
W

We consider this airline reservation system to be a prototype of a much more general class of resource o
allocation systems. it scems that practically all resource allocation systems must have operations of the four 2&'
kinds described above: operations that request resources and cancel those requcsts, as well as operations that }k'.::
allocate and decallocate the resources. ‘Those operations will behave in somewhat different ways for cach _;

application. Here, to be specific, we have madc a particular sct of choices, but we cxpect that many of the

idcas in this paper will carry over to other resource allocation systems. $:$

S0,
We introduce some additional notation which will be uscful later for describing transactions. [f the first f

component of I).l(s) is an updatc which maps statc s’ to statc s”, we will write T(s,s’) = s”. If'l(s3") = s", it ‘.‘»‘,. ‘
mcans that if T is initially run from state’s, it causcs the system to invoke an update which, if it is cver run :::;:::’
'.“::i‘;
A2
‘:::‘:"

A R
B T A e N T T4 R 2 TR Tl I R LR T D T T T T e Sy TR LA LA R T T

A A I R TR AR AKX A XA L AR T Th AR TR AU ettt AT R Ly TN X AL TaA SRS A S S . n

¥
Lk
L

HOMAASATX N

G

14

from state 8°, will produce state s™.

3. Conditions Guaranteed by the System

‘This scction describes conditions that can be guaranteed by the system alone, i.e. conditions on how the
system will run the transactions. Later, in Scction 4, we describe conditions that can be guaranteed by the
transactions alonc. ‘Then in Scction S, we combine these two kinds of conditions to prove propertics of an
application (the Fly-by-Night Airline Reservation System) running on the system.

‘This approach is roughly analogous to the usual approach in ordinary concurrency control theory. ‘There,
the scrializability condition (which can be guarantced by the system alone) is combined with the condition
that individual transactions prescrve integrity (which can be guaranteed by the transactions alonc), o
conclude that recachable databasc states all satisfy the imtegrity constraints.

The first subscction formally describes the basic guarantees made by SHARID about the way in which
transactions arc run. SHARI) guarantecs that there is some scrial order for the transactions which it runs.
‘The system does not guarantee scrializability of the transactions in this order, but it docs guarantce that cach
transaction "sccs” the result of some subscquence of the preceding transactions. While this condition is
fundamental to the scmantics of the system, it is too weak to allow proof of intcresting propertics.

‘The sccond subscction contains refincments of the basic condition. Examples of these refincments are
transitivity and some specific requirements on the subscquences of transactions scen by certain other
transactions. ‘The third subscction describes implementation issucs. It shows how SHARID and similar
systems can guarantee the conditions described in the other two subscctions,

3.1. The Prefix Subsequence Condition |

The system guarantees that there is some serial order for the transactions which it runs, and that cach
transaction "sces™ the result of some subscquence of the preceding transactions in this scrial order. We state
this condition more formally below.

if s is any sequence, we write s, to denote the ith clement of s. An execution of a sct of transaction instances,
consists of a scrial ordering T for the transaction instances, together with a sequence A of updatces, a scquence
E of sets of external actions, a sequence 9 of finite sequences of integers, and two scquences, s and t, of
databasc states. An exccution is required to satisfy the following conditions.

1. Fori 2 1,9 is a subsequence of the prefix sequence {1,....i-1}.

2.Fori2 0, t; is the statc obtained by applying the sequence of updatcs designated by ‘.‘l: 4+ to the
initial database state 8. Thatis, ¢, = Ait(...l\il(so)). where 9 o1 = iy

R S A P A A IR I e
s e Ao P ’q'-'."'..b (‘~. . AN

AR AN

. .'!.P‘y"v’.v'.v.. WA .q .-',:q.“'.l:..{.. ':":-'-A\-‘:"‘:":f':'-‘:..“ .-_- K

N
BASS

15

3 Fori 2 LAK) = Dy,).

4. Fori 2> 0, cach s, is the state obtained by applying the scquence of updates A pooofp 10 8y That is,
5, = AA ,(so)

These conditions mean the following. (1) says that cach transaction 'I‘i has a corresponding subsequence ‘3:
of its prefix of preceding transactions; these are the preceding transactions that it "sees”. (2) says that cach
state t; describes the cffects of the updates of T4 18 prefix subsequence; it is the state of the database which
T
dctermined by its observed state t.,- Finally, (4) says that the states s, describe the actual effect (not

"sces” when its decision part is run. (3) says that the updatc and cxternal actions produced by 'I‘i are

. P

necessarily observable by any of the transactions) of running the complete sequence of updates gencrated by
alt transactions through U,

‘The system guarantees o simulate (in some sense which we do not specify here) exccutions of those
) transactions which arc submitted to it. In particular, it guarantces that the cxternal actions described by

sequence E are actually performed.

We say that the apparent state before transaction T, is t. and that the apparent state after transaction L'

isstate T (t t) Also, the actual state before transaction I n S;0 and the actual state afier transaction 'I‘i ol

i+l
is state s, | = T, (4:8,). We extend this notation to mmcmply consccutive sequences of transactions in
place of singlc transactions: the apparent and actual states before the sequence are just the apparent and
actual statcs, respectively, before the first transaction in the sequence, while the apparent and actual states
after the scquence are just the apparent and actual states, respectively, after the last transaction in the
sequence. We say that cach of the s, is reachable from s0 in the given exccution. We call the state 8, the

complete prefix state for T} in the given execution.

let U = {ii+1...} bc a scquence of consecutive indices. Then U is said to be aromic in an execution
provided that the following hold. (a) Each Uj.j € Q. includes cach of the other transactions U, , k € U. k <,
in its prefix subscquence, and (b) all transactions Uj.j € AL, have the same subset of the transactions with
indices less than i in their prefix subsequences. Atomicity describes the running of several consccutive
transactions without allowing new information about the database to intcrvenc.

The prefix subscquence condition only guarantees that cach transaction sces the result of some subsequence E” "f
of its prefix. This condition does not rule out trivial solutions, such as cvery transaction seeing the initial e
databasc state (the result of the empty subsequence). In order to insure useful behavior, we would like the K '}
system to allow transactions to sce prefixes which arc as large as possible. Some refinements of the prefix ‘L '
subsequience condition designed to insurc large prefixes are discussed in the following subsection. :;t 3

¥
22

J,e;ff}‘

N f'J-.' :-r,..'. o '.- AN vrv
Y S

'\')\
n

L, SR LD n.\. .ut.’t‘i PPl .oocw.'“u

$(. .'p .'n.’ n"'

N

Example:

"This examplc shows an exccution of the transictions from the airline reservation system, acting
non-serializably, but according to the prefix subsequence condition specified above. ‘The left-hand
column lists the successive ‘I, while the right-hand column lists the corresponding A,.

T A

REQUEST(P1) request(P1) -
MOVE—UP move—up(P1)
REQUEST(12) reques(P2)
MOVE—UP move—up(P2)

REQUEST(P102) request(P102)
MOVE—UP move—up(P102)
MOVE—DOWN move—down(P101)
CANCEIL(P]) canccl(P1) :

This exccution can be obtained by having all the requests, the first 100 MOVE-UP
transactions, and the canccllation operate sccing complete prefixes. The next two MOVE—-UP
transactions opcrate with incomplete prefixes. ‘The first sees the results of the first 99 REQUESTS
and MOVE=UPS, plus the REQUES'' for P101, whilc the sccond sces the results of the first 99
REQUESTS and MOVE— UPS, plus the REQUEST for P102. Since cach obscrves a state with
only 9 pcople on the assigned list, cach chooses to move a person up. Similarly, the
MOVE—-DOWN opcrates with an incomplete prefix. It sces the results of the first 202
transactions only, but not the results of the two transactions involving P102. ‘Thus, it sces the
assigned list with 101 people, and moves P101, the person it obscrves to be last, down.

Now consider the successive reachable states s,. The state after the first 204 transactions, s,,,.
has 102 people on the assigned list, in numecrical order, and no one on the waiting list. After the
MOVE-DOWN, s... has P10l on thc waiting list and P1.P2....P100,P102 in ordcr on the
assigned list. The tzlir,\sal canccllation then Ieaves the assigned list with cxactly 100 passcngers:
P2.....P100,P102. '

This exccution differs from a serializable exccution in at least two ways. First, there is a
rcachable state (5204) for which the overbooking cost is nonzero. Second. the exccution is not
centircly "fair” in that P102 requcsts a scat after P101 (and his request is processed after P101%s),
but P102 is allowed to remain on the assigned list while P101 is moved down.

Notice that there is a danger of “thrashing” in this system. If a MOVE~ UP transaction docs not scc a
previous request and corresponding MOVE— UP, say for person P, it may move another person Q to the
assigned list, A later MOVE—DOWN transaction might opcrate with a complcte prefix, obscrve an
overbooking, and move Q down. Another MOVE—UP might then exccute, sceing the move—down(Q)
update, but still not sccing the updates missed by the previous MOVE - UP; it may then reassign Q. A later
MOVE~—-DOWN might then move Q bnci down, and so on. ‘This kind of thrashing is very undcsirable, not

T"S*"-;. LA TR N (A L0n S g U X
LIRS et . .’ ¢

[} K SRSl g 3 AT T PTEA WY

PRSI

SANCL A 2 {00

RO
>4
17 —
\“'(
-.':»
l,"\,
just becausc of its obvious incfliciency, but because of the external cffects of the conflicting transactions. s
3.2. Additional Conditions m—
. (AN
In this subscction, we suggest some conditions which say that particular transactions must includc at least .f:::f'_
certain other transactions in their prefix subsequences. ‘The conditions presented here are meant to be _:Z::{ff
cxamples only, and arc not necessarily intended to hold for all SHARD-like systems and all transactions. R
"T'hese restrictions are uscful in guarantecing certain propertics of exccutions, as we demonstrate in Scction §. (;’{;!,!
ViAS
On the other hand, they reduce system availability. System and application designers must weigh the oD
correctness gained by restricting the prefix subsequences against the reductions in availability. ' '
’ .:J}i
First, we say that exccution ¢ is fransitive provided that the following condition holds. et T, 1" and 1™ be -
transactions (i.c. transaction instances) occurring in ¢. If T is in the prefix subsequence of T and ‘1™ is in the :\"-:
ARy
prefix subsequence of ‘17, then 1™ is in the prefix subsequence of ‘T, ‘Transitivity is a natural requircment, ;*{::\
cnsuring a basic sort of consistency among the prefixes seen by related transactions. A
Example: -
\J
‘The exccution in the previous example fails to be transitive, but for a trivial reason. Namely, \:'t"
the REQUEST(P101) and REQUEST(P102) transactions arc assumed to cxecute with complete ;\.:'.;.
prefixes. Since the MOVE—UP which gencrates move—up(P101) sces the cffects of ~edd
REQUEST(P101), transitivity would imply that this MOVE— UP should also sce a complete B
prefix, which is not what happens. However, note that REQUEST and CANCEL. transactions e
have only trivial decision parts, so thcy would causc the same updates to be generated no matter 3:_-‘2'-
what prefix they sce. ‘Thercfore, we can modify the cxccution slightly, assigning cach of ,:.::;::
REQUEST(P101) and REQUEST(P102) the prefix subscquence consisting of the first 198 }-‘.:.r:
transactions, without changing the updates generated. ‘The resulting modified cxccution is Mt
transitive.)
o Y,
PN
. LA
Another restriction which might be uscful in some cases is to require that some particular transaction T N ‘
must run with the complete prefix. This might be uscful for very crucial transactions, say for an audit ;:,_
transaction in a high-financc banking system: it might be desirable for audits to sce the cffects of all the T
.
preceding deposit, withdrawal and transfer transactions. Although we have not done so in this paper, it "'-“:s
should be possible to prove strong correctness results about transactions running with complcte prefixes. Py
&
Requiring a complete prefix is very restrictive. There are some variants on this condition which are less et
restrictive but still lcad to some very uscful propertics. For cxample, we might limit the number of previous :.\ N
transactions which arc not visible to a particular transaction, Namely, transaction T is said to be k-complete in T‘l’?’f
exccution ¢ provided that, in ¢, T sccs the results of all but at most k of the preceding transactions. ‘The X '
it
k-completencss condition, for a particular k, does not sccm to be a natural requircment to imposc on an
implementation, since in gencral, it scems difficult to guarantee a reliable value for k. (It might be possible to t{:
b) A
NN
Myt ._!}
s
A
e e T e R e i o A T Aoy
F L3 2. E.‘ ‘ e .) ’ -,\ 34 - 'Iw < X "' ‘ ‘.." J'\ l‘l '.. P '.' N Ae i v " . R ‘.‘.\ ‘.‘.) S ‘ “‘-‘ p {' \n‘ l' N "‘ &'.

.
5
j#r
[
.
I
(4

%
i)
18 e
fyshey
e
obtain an cstimate of this value by considering known characteristics of the message system together with the &y '$
expected rate of transaction pmccssing.) However, k-completeness scems to be more useful as a hypothesis 'ff:""'j
for conditional claims which describe the behavior of the system in different situations, for different values of
k. :"‘§
N
Another kind of condition which limits the amount of concurrency is as follows. lLet G be a group of .“’-1‘:
transaction instances. We say that group G is centralized in cxccution ¢ provided that, in ¢, cach of the ';:
transactions in G includcs in its prefix subsequence all the others from G which precede it in the complete :‘
prefix. For example, it might be uscful to centralize all the transactions which could cause the cost of a ::'é:‘
particular intcgrity constraint to become nonzero (c.g. all the withdrawal transactions, in a banking system). faeth
Ihis strategy might be used to guarantee that this cost can never become nonzero. Alternatively, it might be ‘_
useful to centralize all the transactions which affect a particular object, or a particular portion of the databasc. ::l:
"T'his strategy might be uscd to guarantec scrializable exccution for those objects or portions of the database. i}.‘.i
If the system guarantees that transactions in G arc centralized, it might be uscful for the application hi
programmers and users to imagine the existence of a centralized "agent” for G. For instance, it might be A ":;‘
uscful for users of the airline systcm to think of a single agent who manages all the MOVE—UPs and S :
MOVE—-DOWN:, i.c. all the movement between WATT—LIST and ASSIGNED = LIST. ‘This abstraction ?'_‘@;
could be uscful even if there is actually no such centralized agent, but rather if (using some locking strategy, NOAL
for example), the agent is implemented in a distributed way. ;-:j:'.:'
HZ)’,-:Z !
Somc specific groupings for the airline reservation system are discussed in detail in Section §, along with
cxamples of correctncess conditions that result from this requirement. P
Tv-;'.
‘The final condition presupposcs a notion of time. A timed execution is an cxccution, together with a (f
nonncgative real number ("real time”) for cach transaction instance. ‘These real times are intended to modcl " j
the times at which the transactions arc initiated. In the cvent that the transaction order is determined by - -
timestamps, these real times need not be the same as the timestamps, and in fact the real times need not cven f‘:':
be ordered in the same way as the transaction sequence. However, if the order of real times is monotonic, we :" _,
say that the timed cxccution is orderly. An cxceution is said to have 1-bounded delay provided that the prefix 't“‘
subscquence of cach transaction 'I' includcs every transaction in the prefix whose real time is at least t smaller '
than Ts real time. Thus, cach transaction can sce the cffect of every other transaction that precedes it in the !"
transaction ordering and is not too recent. e a
+ .',2
h‘ .
.
i

b
R T R R R S R Rt Ok S S G S ST T G 0 JO AN R T o N T AT ST T \
FRNY. AR Ay O'-.r e)-:)‘fd TN LR STt .’.J\-\.- g A ‘.)n\)- o _..k;\- ,,_'q.‘.){cé UL AR LN SN '\p\

R TR A L N AL RTDA DO ERA S NS AR 4 AR K At & | LIRS LA, LN \)'u"inﬂ ‘n 8.1 3 AT AN 00)

W3,

LR KE O

o
SORCH O

TR

'y

ARG SENE S
WP

A

PORSUL L PR LI L P

19

3.3. Impicmentation Issues

It is very natural to use the conditions described in the preceding subsections as the correctness conditions
for the distributed system described in ihc Introduction. ‘The system is able to assign timestamps in some way
s0 as to determinc a total ordering of the transactions. 'The transactions arc initially executed at onc node, and
then information about the transactions is sent to the other nodes. The nodes can undo and redo actions in
order to ensure that as new updates are scen, cach succeeding update has the cffect that it would if executed in
a complete prefix state. ‘There are a number of optimizations which allow the system to avoid undoing large

numbers of transactions [BK], and optimized storage structurcs make this process cven more cfficient [SKS).

‘I'he updates only are sent around, and arc undonc and redonc to yicld a sequential ordering. ‘The fact that
the decision parts are not redone means that the system does not satisfy the usual notion of scrializability;
however, the system docs satisfy the prefix subscquence property, i.c. that every transaction secs the cffects of
a subsequence of its prefix.

It should be clcar that an appropriate distributed communication protocol could guarantee transitivity,
perhaps by piggybacking information about known transactions on messages.

There are a number of ways that a system could guarantee the subsequence restrictions described in thé
previous subscction. For instance, consider centralization of the transactions in G. It is possiblc to force all
the transactions in G to run at the same node of a distributed system. Alternatively, a transaction in G with
timestamp t might have to wait till it reccives messages from all nodes saying "1 will issuc no more G
transactions with timestamp carlicr than " This type of concurrency control might significantly reduce
system availability. 'The probabilistic concurrcncy control methods of [S] provide other techniques for
obtaining contralization.

4. Conditions Guaranteed by the Transactions

‘This scction describes conditions which might be guaranteed by the transactions, analogous to prescrvation
of integrity constraints in the usual devclopment. We do not intend to require that all of these conditions
hold for all scts of transactions; rathcr, we expect different conditions to be uscful in different applications.
We attemnpt to formulate the conditions in a gencral way, so that they might apply to different resource
allocation applications. Wc describe how the conditions apply to the airline rescrvation system.

The first subscction defines some conditions involving costs of database states. Update parts of transactions
arc analyzed to determine whether or not they have the potential of increasing the cost, or are guaranteed to
decrease the cost, with respect to a particular integrity constraint.

N N AT e S T AT LA
Tany -.4-::':"-.’ SRS R N
.
3 .*, ¥

ASUNTRY
vf,’.'.".'

RO Y K
‘ R Gt Ch A A RN
U YA et " A KNy [X

,-.‘_‘.'_-.'._\..-.' LALLM ASL SR ERE Y -' -.‘_,\: A SANTLNA SR

oA

N5

P

v oo
2%
)

»
[
o)
P

Pt ot]
IR

KA
k.o

P E
)

g

'
e

r 4
J'

] | LCRE

20

S 't';
* R
\‘ » . - . . b 4
& ‘The sccond subsection discusses conditions involving fairness, a property particularly important in ..1-
,-"" applications in which ccrtain catitics compete for access W some resource or service. We dcfine priority &
i among compcting cntitics, and prove that certain conditions cnsurc that transactions preserve priority. o
]
N We define an application to consist of a collection of database states, (including designation of initial and '3
: 4 :,,w"
‘ well-formed states), their integrity constraint information (including costs), and a sct of transactions. ‘The W
‘ propertics we describe in this scction are propertics of applications. o
" 4.1. Conditions Involving Costs :
W We say that an application is initially zero cost provided that Cost(s)) = 0. ‘That is, all the integrity :
. constraints arc satisfied in the initial databasc state. Clcarly, the airline system is initially zcro cost.
X e
3 I ¢
~ Another interesting property would be that a transaction ‘I’ "prescrves integrity”, just as it is required to do ;’-;
%
» in the usuat concurrency control thcory. A formal statcment of this property might be: "If s is a well-formed
‘ state with cost(s) = 0, and if 'I'(s,s) = ", then cost(s’) = 0." ‘This says that if I runs so that it changcs the same oo
» o . . Oy
! state that it sces, then it does not cause a violation of the integrity constraints if they were previously satisfied. ;EE::‘
(W1
7; (Wce might say that T docs not causc a violation of the integrity constraints "on purposc”.) In the present "{:{‘:
i .
ﬁ setting, a more gencral kind of condition is appropriate, which also involves the behavior of transactions when ‘;ﬁ‘
the costs are nonzero. oy
~ ‘:" !
4 ':1‘
N We begin by describing a very strong property of a transaction T that says that there is no possibility of ‘T 'j
. N
¥ ever causing an increase in the cost for constraint i. An update A is said to be increasing for constraint i e
provided that there is some well-formed s for which cost(A(s).i) > cost(s,i). ‘That is, thc update has the
f potential of increasing the cost of constraint i, although it nced not actually do so in all circumstances.
q Otherwise, i.c. if the update could ncver increasc the cost of constraint i, A is said to be non-increasing for WO
}; constraint i. A transaction T is safe for constraint i provided that the following holds. If s is a well-formed L
statc and I).l(s) = A, then A is nonincreasing for constraint i. Otherwise, i.c. if there is some well-formed s X
4 e s e N
Y for which 1), (s) is increasing, then we say that T is unsqfe for constraint i. N
: %
y Example: v
In the airline system, the request(P) updatc is nonincreasing for the overbooking constraint, K ‘s
but is increasing for the underbooking constraint, since in states with fewer than 100 assigned o
) people, and with P not alrcady waitlisted or assigned, this request causcs an increase in cost (of]
S $300). ‘The cancel(P) updatc is also nonincreasing for the overbooking constraint, but is increasing 0 2
‘ for the underbooking constraint, since in states with at most 100 assigned people (including P) and AN
sufficicntly many waitlisted people, this cancellation causcs an increase in cost (of $300). On the -
¢ other hand, the move —up(P) updatc is increasing for the overbooking constraint, since in states G
(,: *'-
. Y N
' W,
! LY ¢
ALk ¢

\ € o
RS R SUCRLN

AT T L OF ALY

R N D H R R R BRI
s Y- o - Ral] ;T RTE N ,

“A

with at Icast 100 assigned people, this move-up causes an increase in cost (of $900). However, it is
nonincreasing for the underbooking constraint. Finally, the move—down(P) update is
nonincreasing for the overbooking constraint, but is incrcasing for the underbooking constraint
since in states with at most 100 assigned people. this move-down causes an incrcase in cost (of
$300).

Ixample:

The only updates that are increasing for the overbooking constraint arc those of the form
move—up(P). Since only the MOVE = UP transaction can generate a move — up{P) update, the
other transactions arc all safe for the overbooking constraint. However, the MOVE—-UP
transaction is unsafe for the overbooking constraint. On the other hand, the MOVE-UP
transaction is safe for the underbooking constraint, but the other three transactions arc all unsafe
for the underbooking constraint.

’ f‘: PN
. !

4
Ay,

A less restrictive, interesting property to consider might be intuitively desceibed as: ™l'ransaction ‘1" docs

- o -
]

not increase the cost of integrity constraint i on purpose.” Onc simple fonnal way of stating this property is:
"If s is a well-formed state and if I\(s.s) = s’, then cost(s’,i) < cost(s,i).” For technical reasons, we define 2

slightly stronger formulation, as follows.

We say that transaction T preserves the cost of constraint i provided that the following holds. If s is a

well-formed state, 1(s.s) = s’ D.i(s) = A and A is increasing for constraint i, then cost{s’.i) = 0. That is, the

decision part of a transaction T will only invoke an update part that (potentially) increascs the cost of
constraint i, when the state that T belicves will exist after the update runs, will have a cost of 0 for constraint i.
It is casy to scc that this condition implics the simpler formulation described above. Also, it is obvious that if

T is safe for constraint i, then it prescrves constraint i.

Example:

We show that all transactions prescrve the cost of the overbooking constraint. Since all
transactions cxcept for the MOVE— UP transaction arc safe for the overbooking constraint, they
preserve the overbooking constraint. ‘The MOVE— UP transaction is unsafc for the overbooking
constraint, so more argument is required in this casc. The MOVE - UP transaction only generates
a move—up(P) update from a state s for which Al(s) < 100 and Wi(s) > 0. ‘Then the state §
resulting from applying the move—up(P) update to s has Al (s") < 100, and thus cost(s’,1) = 0.

3

Now consider the underbooking constraint. The MOVE - UP transaction is safc for the
underbooking constraint, and hence preserves the cost of the underbooking constraint. We also
show that thc MOVE-DOWN transaction preserves the cost of the underbooking constraint.
The MOVE—-DOWN transaction only generates an update which is incrcasing for the
underbooking constraint from a state s for which Al (s) > 100. ‘Then the state ' resulting from
applying the update to s has Al (s’) 2> 100, and thus cosi(s',2) = 0.

" /"

Lete v Yy

»

hg
.

-.. .5‘:
D :.

NS A
~.:'.' el
LR

RO LCR I A B S AR N R
R A
Cu om N .

On the other hand, it is casy to see that REQUEST(P) and CANCEI (P) transactions do not }I:_
preserve the cost of the underbooking constraint. e 4

Since we arc working in a sctting in which integrity constraints arc not always satisficd. i.c. costs may be
nonzero, another uscful property of transactions might be that they actually reduce the cost. not just preserve

it. A transaction which reduces the cost for an integrity constraint can be regarded as a “"compensating

transaction” for violations of that integrity constraint. Onc possible formulation is as follows. We say that
transaction ‘I’ compensates for constraint i provided that the following holds. If s is well-formed, ‘1(s.s) = ',

and cost(s.i) > 0, then cost(s’.i) € cost(s.i).
l.emma 1: Assume that all costs arc integral. Assumc that ‘I' compensates for constraint i. ‘Ihen
for any well-formed s, cither cost(s.i) = 0, or there is some integer k > 0 such that '1(s.s) = Sy
T(s,.8)) = Sy 1818y) = 5 and cost(s,.i) = 0.
Proof: By repeated application of the definition. §

-, ,' :".‘I :‘{>' '1 9
*e'2's k‘l.il
“b.'w l(l. 4

s

This lemma implics that if compensating transactions arc run atomically from any point in an cxccution,

5

using any available prefix subscquence, they will eventually result in an apparent state in which the cost of the

constraint is 0. This idca can be stated formally as follows.
Corollary 2: Assume that all costs arc integral. Assume that I’ compensates for constraint i. l.ct
¢ be any finite exccution, U any subsequence of the indices of ¢, and t the result of the updates
indexed by U, applicd to s,

Then cither cost(t.i) = 0, or elsc there is an extension of ¢ to another exccution, by an atomic
suffix consisting of '1”s only, such that the prefix subscquence of the first T in the suftix is U, U is
the apparent state after the last transaction, and cost(t’,i) = 0.

Example:

It is easy to sec that the MOVE— UP transaction compensates for the underbooking constraint,
and thc MOVE—DOWN transaction compensates for the overbooking constraint. In fact, it is
possible to show that from any well-formed state, any atomic sequence of intcrmingled
MOVE—UP and MOVE—-DOWN transactions which contain sufficicntly many of cach will
cventually reach an apparent cost of 0 for both integrity constraints.

SN
e lee

- - -
LIRS
-
[]
-

v

Our last property involving costs, bounds the increasc in cost that can result from the exccution of a
bounded number of transactions. First, we say that s <, t provided that there is a sequence of updates

Icading from Spt0s. and a subscquence of that sequence containing all but at most k of the updates, such that

)
v ot]

>

h ey}
t‘:\'ﬁ ’

the result of the subscquence applicd to s, is t. That is, state t contains all the information in state s, except

hY
','l
(YR

possibly for the cffects of at most k updates. Then we say that function f bounds the cost increase for integrity
constraint i provided that the following holds. For well-formed states s and ¢, if s 5k t. then cost(s.i) <
cost(t.i) + A(k). Thus, f{k) bounds the increase in the cost of integrity constraint i that can be incurred by k

hRY

s

l

,.
XN,

s
-.:’-\

4% 5%

o) s

>,

pee 9
Nl -

g

camRA e LR .- P R N X c R e "r T E" s " e 2" A " 2" n*" M AR a8 R PO S DR P e T o

A A L L L o L T AT R T L T L e T T
. P

.........

A

e ﬂ;’ -

W e b e ¥

pA)

transactions.
Ixample:

In the airline reservation system, it is casy to sce that 900k bounds the cost increcasc for the
overbooking constraint, while 300k bounds the cost increase for the underbooking constraint.

Lemma 3: f.ct U be an atomic subsequence in exccution ¢. T.et s be the actual state before 4,
and s’ the actual state after QL. 1.ct t be the apparent state before U, and t' the apparent state after
U Ifs <, tthens' <t

Proof: Straightforward. @

4.2. Conditions Involving Fairness

Another property of interest in some applications, i.c. those in which certain entitics compete for access (0
some resource or scrvice, is "fairness”. In order to be able to state fairness conditions, we cxtend our
application modecl to include the competing cntitics. In cach statc, we designate certain entitics as "known”
(i.c. currently competing). Also, in cach state, we assume that there is a partial order on the known cntitics

which describes priority.,

We say that transaction ‘I' preserves priority provided that the following condition holds. If s is a wcll-
formed state and 'I'(s.s) = s°, then: (a) IFP and Q arc both known in s and also in s°, and if P precedes Q ins,
then P precedes Q in s’ (b) If P is known in s and Q is not, and P and Q arc both known in s°, then P precedes

Qins'.
xample:

In our cxample, the people are the compceting entitics. In any state s, the known people are
thosc on the WAIT—LIST or the ASSIGNED—LIST, ins. For P and Q known in s, we define P
< Q t mcan that cither P precedes Q on the WAIT—LIST, or P precedes Q on the
ASSIGNED~-LIST, or clsc P is on thc ASSIGNED - LIST and Q is on the WAIT—LIST. Then
all of the transactions preserve priority.

A stronger property is also of interest. We say that transaction ‘I strongly preserves priority provided that the
following condition holds. Ifs and s’ arc well-formed states and '1(s,s’) = s”, then: (a) IF P and Q are both
known in s’ and also in 5™, and if P precedes Q in §', then P precedes Q ins™. (b) IFP is known in s"and Q is
not, and P and Q arc both known in s”, then P precedes Q in s™.

Example:

It is casy to sce that the REQUEST and CANCEL. transactions strongly preserve priority, but
the MOVE-UP or MOVE—-DOWN transactions do not. For cxample, consider the
MOVE—UP transaction. Assumc that in statc s, person P is first on the WAIT—LIST, and that
transaction ‘I, run from statc s, generates a move—up(P) update. In state s', P is on the

4

WAIT=LIST but is not the first person; person Q s first. ‘Then the move-up(P) action still movcs
P to the end of the ASSIGNED - LIST, in this casc moving it ahcad of Q. We have PP > Q in state
s’, but P < Q in statc s”. ‘Thus, the MOVE—UP transaction is capablc of changing the relative
prioritics of P and Q.

Similar remarks hold for thc MOVE —-IDOWN transaction.

S. Properties of the Airline Reservation System

This section illustratcs how the ideas presented in the previous sections can be used to prove interesting
propertics of exccutions of a particular application, the Fly-by-Night Airlinc System. Where it is possiblc, we
statc the results in a gencral way, so that they might later be applicd to other cxamplcs.

Proving propertics of exccutions of SHHARD-like systems is far more difficult than for systems that preserve
scrializability. It is nccessary to censider how a transaction’s updates will execute on arbitrary well-formed
databasc statcs, not just the database state scen by the decision part. With current techniques, it is not casy to
understand how transactions and updates will behave in all possible situations, just by cxamining the
transaction code. Even some of the relatively simple-sounding results in this section have proofs that are
somewhat dclicate. Our hope is that more cxpcricncé with examples and proofs of this sort will cventually
make the task casier.

The first subscction gives a bricf discussion of some policy decisions aﬂ‘ccli'ng priority, that were embodied
in the application design. The sccond subscction proves upper bounds on the costs of databasc states that
could result from running the airline reservation system. Al the bounds in this subsection arc proved using
the assumption that transactions scc the cffects of all but at most k of the preceding transactions. ‘The cost
bounds arc stated in terms of this k. The third subscction refines the necessary conditions for 6btaining these
cost bounds and sharpens the bounds. The results in this subscction require only that transactions sce the
results of certain critical preceding transactions, rather than arbitrary transactions. ‘

The fourth subscction proves results which rely on "centralization™ assumptions, i.c. that some transactions
sce all of the preceding transactions of a certain type. Using centralization, we prove that some integrity
constraints can ncver be violated. ‘The final subsection proves some fairness propertics.

5.1. Policy Decisions

‘I'ransactions in cvery application embody certain policy decisions. This subscction contains two cxamples
which illustrate the policy decisions embodicd in the Fly-by-Night System.
Example:

Supposc that two REQUEST(P) transactions occur without an intervening CANCEL(P). Both

-.-\l-- \R "\ IQ*ﬂd'l .q.
\"n SIS '~ \.

o :., L ACIONIICILNLN N SN RN 00 A 0 DY,
R AN LA a"ll;!‘ l';l‘i'n AR A LRGN LA) t'l

a®

LA LNENANG

"-

> A 22
Cn e A

D
Ve

-

o) -\\
WA

“~
.-“.‘
N
: . e
! REQULEST(P) transactions generate request(P) updates. At some point, it might be necessary to :‘j’,:ﬁ
‘ determine the cffect of a sequence of updates including both of these request(P) updates. 'Then R th
the sccond request(P) would be applicd to a state s which reflects the previous occurrence of the I
. carlicr request(P). ‘Thus, P might be in WAIT~LIS1(s) or ASSIGNED—-LIST(s); in this casc, -
the update is defined to have no cffect. ‘The policy embadicd in this definition is that if a person P , e
is alrcady on the WAIT-LIST or ASSIGNED - LIST, and makes a duplicate request, the new ';t,.
request docs not change P’s original priority. Alternative policy decisions might causc the second g,
request to alter the priority somchow. -
Example: '5:2!
; . . %
: Itis possible for two MOVE— UP transactions to occur which invoke move —up(P) updates for Ko
the same P, without an intervening CANCEL(P), or MOVE-DOWN which invokes a ey
B move—down(P) update. ‘This could happen if the sccond MOVE~UP transaction is initiated &
without the first in its prefix subsequence. At some point, it might be necessary to determine the o
cffect of a scquence of updates including both of these move — up(P’) updates. ‘Then the second g
move—up(P) would be applied to a state s which reflects the previous occurrence of the carlier :'&::'
request(P?). Then P could be in ASSIGNI{I)— LIST(s); in this case, the update has no cffect. The ;2‘_.:
policy embadicd in this definition is that if a person P is alrcady on the ASSIGNED - LIST, a new ,‘}
attempt to assigh him a scat docs not alter P's previous priority. Alternative policy decisions might "
, causc the sccond move—up(P) to alter the priority. e
: | X
; 5.2. Cost Bounds Resulting from k-Completeness i
® In this subscction, we prove upper bounds on the costs of the states reachable by running the airline system. i,.
All the bounds in this subscction arc proved using the k-completeness assumption, i.c. the assumption that s
transactions sce the cffects of all but at most k of the preceding transactions. We begin with some preliminary i
: _ lemmas. 2 »
; Lemma 4: Let ¢ be an exccution, and T a k-complete transaction instance in e. Let s be the N
actual state before T and s’ the actual state after T, in ¢. L.t t be the apparent state before T and ¢ .
d the apparcnt state after I’ ‘!,;:;
: . , , ‘..'»ﬁ.,
LThens <, tand 8’ <, €. | ({r:
2. Let i be a constraint, and assumc that f bounds the cost of constraint i. Then cost(s,i) < ;’:
cost(t.i) + k) and cost(s’,i) < cost(t",i) + k). S
' . s :u
Proof: Straightforward. B : S:‘Sﬁ
i e
. '. §$:_;
The following thcorcm shows that k-complete transactions that preserve the cost of a constraint are ""
guarantced not to make the cost of that constraint larger, (cxcept in the special casc that the cost is very smhll). _
Theorem §: Let ¢ be an exccution, and T a k-complete transaction instance inc. lctibea ~.‘;
constraint, and assumc that f bounds the cost for constraint i. Assumc that ' prescrves the cost of .\; v
constraint i. Lct s be the actual state before ‘I and s’ the actual state after T, in ¢. Then cither X “
cost(s’,i) < cost(s.i) or clsc cost(s",i) < Rk).)
Proof: 1.ct t be the apparent statc before T and t' the apparcnt state after T. Then € = "I(tt). .
Assume that 'I" invokes action A in cxecution ¢, i.c. that I).l(t) = A. $::E
1
)
W
)
s

/

g\ 'y 1, .f“ 23S) 5'« z{\:.\~:':‘:.?}:‘:;~ s \’ 'h"}* ,\..N\\),ﬂ,'r {- . ~)_~,'1 ‘-“\‘"*\-P‘J'P*rf-“_*\f\q. J',' -, .,.* ',
e "‘.l-lla;.g,l;‘,l‘:\vi‘! .

PrtaN"e
R
N YOAAS

Ky '.,-, LAt K ph 4 !-‘\‘«“‘s.: ALATN AL G 1Y, WAL ALLENE

26

Assumc that cost(s,i) > cost(s,i). ‘Then A is increasing for constraint i. Since I’ preserves the cost
of constraint i, it follows that cost(t'.i) = 0. By L.emma 4, cost(s'.i) < cos(t’,i) + fik) = k). @

We can specialize the preceding results to obtain bounds for the airline system.

Corollary 6: 1.ct ¢ be an exccution of the airline system, and T a k-complete transaction instance
in ¢. l.cts be the actual state before ‘I’ and s° the actual state after I, in e.

1. If I’ is any transaction, then cithet cost(s’,1) < cost(s.1) or clsc cost(s".1) < 900k.

2. 167 is a MOVE—UP or MOVE—D)OWN transaction, then cither cost(s’,2) < cost(s,2) or
else cost(s’.2) < 300k.

Proof:

1. By 1.emma 5, the fact that all transactions preserve the overbooking constraint, and the fact
that 900k bounds the cost increase for the overbooking constraint.

2. By Lemma §, the fact that MOVE - UP and MOVE—DOWN transactions preserve the
underbooking constraint, and the fact that 300k bounds the cost incrcase for the
underbooking constraint.

‘The previous results are enough to yicld an upper bound for the overbooking cost (although not for the
underbooking cost) in all reachable states. We obtain such an upper bound for the overbooking cost as a

spcecial case of the following more general theorem,

‘Theorem 7: Assumc that the application has the property that all transactions preserve the cost
of constraint i. Let ¢ be an exccution. l.ct f bound the cost of constraint i. Assume that all
occurrcnces of transactions that arc unsafc for constraint i, in ¢, are k~complcte. Let s be any state
reachable in ¢. Then cost(s,i) < fk).

Proof: The proof is by induction on the length of ¢. The basis, length 0, is immcdiate. For the
inductive step, assumc that the length of ¢ is at least 1, and that ‘T is the last transaction in ¢. Lets
be the actual state before T, and ' the actual state after T.

The inductive assumption implics that cost(s,i) < Rk). If cost(s’.i) < cost(s,i). the claim is
immediate. So assume that cost(s'.i) > cost(s,i); then T is unsafe for constraint i, and so T is
k-complete in ¢, by assumption. Then Theorem § implics that cost(s'.i) < f{k), as nceded. 8

Our invariant upper bound on the overbooking cost follows as a corollary.

Corollary 8: Ict ¢ be an cxccution of the airline system. Assumc that all MOVE—-UP
transactions arc k-complete in ¢. et s be any state reachable in e. Then cost(s,1) < 900k,

Proof: By Thcorem GENERAL-INVARIANT-BOUND, the fact that all transactions
preserve the overbooking constraint, the fact that 900k bounds the cost increase for the
overbooking constraint, and the fact that only MOVE—UP transactions are unsafc for the
overbooking constraint. 8

We would also likc to obtain an analogous invariant upper bound for the underbooking cost.

& WP L W) _.-‘.{' O
\ '\) \",.\.‘ .‘. APy ™ \)

¥ ‘...':'.."\‘-":'\.-\.u.:.'\:-\:il':':.-‘:‘:-.' "\;:r\'i\' ."-." \‘-'.-."-\:-\:-‘\‘ > ‘\.I -.'.':\-_\‘-\-;\}N“.\‘ "-:\ .-\:-".\ MO
.]

AL ST AL R RT
\.}J RSO ‘\:ﬁ." e e R N L e e YRS WG AN
DA o X NN =% h LERT YOA R WY ‘L W N o N %X\ [W} X aN

o wr

i" ,"

.vt':v

Unfortunately, such a bound does not hold for our airline system, since it can fail in an exccution where many :g:\f
‘T_ N
requests or canccllations arrive in rapid succession without sufficient intervening MOVE—UPs. In order to RS
prove an upper bound on the undcrbodking cost, it appears to be necessary to assume somcthing about the N
o
MOVE - UP transactions occurring sufficicntly frequently, o

To be specific, we define a partition § of the indices of ¢ into groups consisting of consccutive indices to be

a grouping of ¢ for constraint i provided that cach group satisfics onc of the following. "y

(a) It consists of exactly onc index j. and transaction 'I‘j preserves constraint i ti
v,_:¥ R

(b) If tis the apparcnt state after the group, then cost(t,i) = 0. T
LN

"That is, we will consider instances of transactions that preserve the cost of constraint i individually, but we will

y

consider other transactions together, paying special attention to points during the cxecution where the

4
I d
-

_,4
s

» , -'
R B

-
-

transactions belicve they have reduced the cost of the constraint to 0. Of course, not every exccution will have

such a grouping, but if the application contains a compensating transaction for constraint i, l.emma 2 implics

d
-

that cxccutions with such groupings arc abundant. ‘The normal states of ¢, with respect to a particular
grouping, arc just thosc statcs which arc reachable after the groups, i.c. the actual statcs after the groups.

s. “!.{‘
o o
'The next theorem says that, if we restrict attention to normal states only, an invariant upper bound holds for vzfcﬁ
the underbooking constraint. : N 5
Theorem 9: 1.ct ¢ be an exccution and § a grouping of ¢ for constraint i. Assume that f bounds -
the cost of constraint i. Assumc that all transactions that preserve the cost of i, as well as all 'w}:
transactions that occur at the cnds of groups, arc k-complete in ¢. Let s be any normal state B t‘:;i
rcachablc in ¢. Then cost(s,i) < Rk). ;4‘:’;:3.
Proof: By induction on the Icngth of ¢. The basis, length 0, is immediate. For the inductive {3{5
step, assume that the Iength of ¢ is at least 1, and that T is the last transaction in ¢. Lct s be the -
actual state before T, and ' the actual state after T. L.et t be the apparent state before T, and ¢ the g

apparcnt state after I, There arc only two cascs that need to be considered.

If T is the last transaction in a group, then cost(t'i) = 0. Since T is k-complcte, .emma 4 -
implics that cost(s’,i) < cost(t’,i) + Rk), = Rk), as nceded.

Otherwise, T is a transaction that prescrves the cost of constraint i, and occurs alone in a group.
Then s is a normal state in ¢. ‘The inductive assumption implics that cost(s,i) < flk). If cost(s’.i) <
cost(s,i), the claim is immediate. So assume that cost(s’.i) > cost(s.i). ‘Then ‘Theorem § implics that
cost(s’.i) < f{k), as nceded. @

The preceding thcorem specializes immediately to our example. The REQUEST and CANCEL o s}é‘;
transactions arc the ones that do not preserve the underbooking constraint, while the MOVE — UP transaction é&,
1Y
compensates for that constraint. ‘Thus, exccutions which have groupings for the underbooking constraint can 'ft. *“'
be constructed by including a sequence of MOVE—UP fransactions immediately after cach REQUES'T and .
W
after cach CANCEL. transaction. A
S
W M
Rt
—
R,
W T a® TV @ v v, w - AL & "o g (T Q" CAC K oML - S N T S e T .’.".
o>, ?’:{';’::‘::‘::"s '?v";n'\:.\\- .-':-‘:'}.. ““’:‘ &:—.\‘ \':':::;\:‘:‘;':’:q.:\'::':‘*‘ \-.\\"‘-’:-":"-‘:‘ft‘:‘:}: q::-'.\'-’\.u‘;‘:"'.': ." . g . v’
Rl G X A7t X ORI Vo 0 SO P L A W o W ' o B vl L X o) ot W A

28

Corollary 10: L.ct ¢ be an exccution and § a grouping of ¢ for the underbooking constraint.
Assume that all MOVE—UP and MOVE—DOWN transactions, as well as all transactions that
occur at the ends of groups, are k-complete in ¢, Lot s be any normal state reachable in ¢. ‘Then
cost(s,2) < 300k.

Thus, under suitable k-completeness assumptions, combined with assumptions about frequency of
compensating transactions, we can prove invariant upper bounds on the costs in all rcachablc states (or all
normal rcachable statcs),

‘The idcas uscd to prove the preceding results can be used to say more. Consider an exccution ¢ in which
costs become very large (because k-completencss or frequency assumptions fail). If there is cver a time during
the exccution after which good completeness and frequency propertics begin to hold, it is casy to scc that
correspondingly good upper bounds will be reestablished. For instance, we can get a result of this type for the
underbooking constraint, using the idcas of Corollary AIRLINE—BOUND-4. If we assume that the
requirced transactions are k-complete from some point on in the exccution, then (once the next compensating
group has occurred), the underbooking cost satisfics an upper bound of 300k. On the other hand, if we want
to obtain a similar result for the overbooking cost, we cannot basc it on the simple ideas of Corollary 8.
Rather, we would have to use idcas similar to those used for the underbooking cost. At some point after
k-completeness begins to hold in the exccution, we would hypothcsize a group of MOVE—-DOWNS, bringiné
the apparent overbooking cost to 0, in order to compensate for any excess overbooking cost. With such a
hypothcsis, an cventual 900k bound on the overbooking cost could be proved. We omit formal statements of
these results here.

It is possible to combine the results of Corollarics 8 and AIRLINE—BOUNID—4 to get a single invariant
upper bound on the total cost for the airline system. For cxample, we obtain the following.

Corollary 11: l.ct ¢ be an exccution and ¢ a grouping of ¢ for the underbooking constraint.
Assume that all MOVE—UP and MOVE—DOWN transactions, as well as all transactions that

occur at the ends of groups, are k-complctc in e, Let s be any normal state reachable in ¢. ‘Then
cost(s) < 900k.

Proof: Immcdiate from Comllancs 8, AIRLINE—-BOUND~—4 and the fact that cvery well-
formed state has cither cost(s,1) = O or cost(s,2) = 0.

We finish this subscction with a closcr look at the kinds of improvements that arc guarantced by
compcensating transactions. For example, it would be nice to have a lemma which says that a k-complete
transaction which compensates for constraint i, is guarantced to actually improve the cost of constraint i,

unlicss that cost is small. Unfortunatcly, this is not truc. Although the compensating transaction might “try”
to improve matters, it is possible that, because of missing information from its own prefix, it might_not
succced in doing so. For example, a MOVE—~DOWN transaction might obscrve too many pcople on the

(Y

N

L, g s U e S e e g e e 1 T A S e Nt R El D § B k . » o RALAA BALE SUB 9k AL A

29

ASSIGNED - LIST, and might thercfore invoke a move—down update. But if it happens to invoke a
movc~—down for a person who had actually cancclied in the interim, that move =down will not improve the
actual cost. '

We do know, however, that running the transaction scveral times in succession (atomically) can guarantee

actual improvement. Morc preciscly, we obtain the following.

Lemma 12: Assume that all costs arc integral. 1.ct f bound the cost of constraint i. Assume that
T compensates for constraint i. 1.ct ¢ be any finite cxecution, U any subscquence of the indices of
¢, containing all but at most k of the indices in ¢, and let s be the actual state after c.

‘Then cither cost(s,i) < (k). or clsc there is an extension of ¢ to another execution, by an atomic
suffix consisting of 'I”s only, such that the prefix subsequence of the first T in the suffix is U, s" is
the actual statc after the last transaction, and cost(s’.i) < Rk).

Proof: 1 ct t be the result of U applied to Sy Thens Sk t. By Corollary 2, cither cost(ti) = 0, or
clse there is an extension of ¢ o another exccution, by an atomic suffix consisting of '1”s only, such
that the prefix subsequence of the first ‘1" in the suffix is A, t' is the apparent state after the last
transaction, and cost(¢’,i) = 0. If cost(t,i) = 0, then since s Sk t, it follows that cost(s,i) < cost(t.i)
+ flk) = Rk), as nceded. Otherwise, l.emma 3 implics that s <, €', and so cost(s’,i) < cosy(t',i) +
k) = k), as nceded. @

‘This thcorem specializes to the airline system as follows.

Corollary 13: L.ct ¢ be any finite exccution of the airline system, U any subscquence of the
indices of ¢, containing all but at most k of the indices in ¢, and let s be the actual state after ¢.

1. Either cost(s,1) < 900k. or clsc there is an extension of ¢ to another exccution, by an atomic
suffix consisting of MOVE — DOWNSs only. such that the prefix subscquence of the first T
in the suffix is U, s is the actual statc after the last transaction, and cost(s’,1) < 900k.

2. Either cost(s.2) < 300k, or cisc there is an extension of ¢ to another cxecution, by an atomic
suffix consisting of MOVE — UPs only, such that the prefix subsequence of the first T in the
suffix is U, s’ is the actual state after the last transaction, and cosi(s’,2) < 300k.

‘Thus, the cost bounds of this subscction limit the damage that can be caused when transactions operate with
a bounded amount of missing information. As noted before, the bounds we obtain are intuitive rather than
surprising. However, we know of no way to prove these sorts of intuitive statements in carlicr frameworks.

We note that it is possible to obtain more refined versions of the results in this subscction. Generally, it is
not actually nccessary that the indicated transactions sec all but k of the cntire sct of preceding transactions.
Rather, only certain types of preceding transactions are important in cach casc, since they suffice to determine
the results of critical decisions. For instance, in Corollary 8, it is not nccessary that the MOVE— UPs be
k-complete: for example, it would suffice for them to sce all but k of the preceding MOVE~ UP and
REQUEST transactions. Wc cxaminc this issuc more closcly in the next subscction,

. Y ‘0 W g .a\ Y NN T e e _\-~-‘.-.-,
- O SN ICNN NN IO '\v""' '-""""v" NN AN AN IR -.’-.1‘-‘.\ \

J' ¢
SN A ALY TP S LA LA AR % . . A'\'Nl-

S L0 LA

5.3. More Refinced Cost Bounds

in this subsection, we reconsider some of the results of the preceding subsection. We sharpen those results
so that they only require that transactions sce the results of certain critical preceding transactions, rather than
arbitrary preceding transactions. The results in this subscction give detailed information that is specialized to
our application: thus, they are not stated in very general terms. However, it scems that the gencral approach
uscd in this subsection should extend to other applications.

We begin by proving some basic lemmas about scquences of updates. 1t is helpful to think of these results
in terms of an automaton whosc states represent (abstractions of) the global states of the database, and whose
state-transitions represent the updates. " (The decision parts of transactions arc not modelicd by this
automaton.) The sequence of updates which occur in an cxecution is modclied by a path in the automaton.
We are interested in identifying subsequences of a scquence of updates, which arc guaranteed to lead to the
same state in the automaton as docs the whole sequence. If a transaction exccutes secing only such a

subscquence as its prefix subsequence, it would be guaranteed to have accurate infonmation.

I ot A be a scquence of updates (of the Fly-by-Night airline system) and P a person. As assignment witness
for P in A is an ordered pair of updatces, (A,B), from A, satisfying the following conditions.
(a) A is a request(P) update, B is a move—up(P) updatc, and A precedes B in A
(b) There are no cancel(P) updates after A in A,
(c) There are no move—down(P) updates after BB in A

A waiting witness for P in A is cither of the following:
(1) An updatc A, from A, satisfying the following conditions.
(a) A is a request(P) update.
(b) There are no cancel(P) or move~up(P) updatcs after A in A
(2) A pair (A,B) of updatcs satisfying the following conditions.
(a) A is a request(P) update, B is a move— down(P) update, and A precedes Bin A,
(b) 'There are no cancel(P) updatcs after A in A
(c) There arc no move—up(P) updates after Bin A.

Recall that a person is known in a given state s if he is cither in ASSIGNED - LIST(s) or WAI'T - LIST(s).

Lemma 14: Let A be a sequence of updates, and s the state resulting from applying A to 5 let
P be a person,
(a) P is known in statc s cxactly if there is a request(P) update in A which is not followed by a
canccl(P) update.
(b) Pis in ASSIGNED— LIST(s) cxactly if there is an assighment witness for Pin A,
(©) Pis in WAIT = LIST(s) exactly if there is a waiting witness for P in A.

Proof: By analysis of the possible state transitions.

NN I I ACN AN 0%
R e AR T

S

LS

. "

IS -
}“c‘ e
O -

L] ?*a.‘ﬂ ' A -

x

YR
AN

31

For the next several lemmas, we usc the following notation, 1.ct A be a finite sequence of updates and et %8
be a subscquence of A, 1.ct s be the state which results from applying A to s, and let t be the state which

results from applying B to ;. ‘The next lemmas relate the states sand

Lemma 15: 1.ct P be a pesson. Assume that P is in ASSIGNED ~ LIST(s), and lct (A.B) be an
assignment witness for P in 4. Assumec that B contains both updates A and B. ‘Then P is in
ASSIGNED - LIST(0).

Proof: By definition of an assignment witness, A is a request(P) update, B is a move—up(P)
update, and A precedes B in L. Also, A contains no cancel(P) updates after A and no
move —down(P) updates after B. Now, % contains both A and B, in that order. Also, B cannot
contain any canccl()’) updates after A or move— down(P) updates afier B, since there are none in
A. Thus. (AB) is an assignment witness for P in B. f[.cmma 14 implics that P is in
ASSIGNED—-LIST(t). §

Lemma 16: Lct P be a person. Assumc that P is in WATT'=LIS1(s). Assume that at least onc of
the following holds.
(a) A is a waiting witness for in A, and 9B contains update A.
(b) (A.B) is a waiting witness for P in A and B contains both updates A and B,
Then Pis in WATI' - LIST(t).

Proof: Similar to the proof of L.emma ' T'WO. 1

The preceding two lemmas will be applied in cases where A denotes the entire sequence of updates
preceding a particular transaction I, while B denotes the subsequence of updates actually scen by T. ‘The
lemmas imply that if I sces certain of the preceding transactions, and a person P is actually on the
ASSIGNED - LIST or WAIT=LIST, then T is guaranteed to know it. On the other hand, the next scveral
lemmas dcal with the oppositc implication; they describe circumstances under which a transaction that

belicves that a person P is actually on the ASSIGNED~ LLIST or WAIT— LIS, is guaranteed to be correct.

Lemma 17: Let P be a person. Assume that 8 contains the last cancel(P) update, if any, in L. If
Pis known in t, then Pis knownin s,

Proof: Assumc P is known in t. ‘Then Lemma 14 implics that there is a request(P) update in B
which is not followed by a canccl(P) update in B. This request(P) update also occurs in A, and
there are no cancel(P) updates after the request(P) in A, since B contains the last cancel(P) update
from L. ‘Thercfore, | emma 14 implics that Pis knownins. §

[.emma 18: 1.ct P be a person. Assume that 8 contains the last move —down(P) updatc, if any,
in A, Also assume that B contains the last cancel(P) update, if any, in A. If P is in
ASSIGNED=LIST(t). then Pis in ASSIGNED - LIST(s).

Proof: Assumc that P is in ASSIGNED-LIST(t). 'Then lL.emma 14 |mphcs that there is an
assignment witness (A,B), for P in 8. ‘lThus, A is a request(P) update and B is a move—up(P)
update, A precedes B in 9B, there are no cancel(P) updates in B after A and there are no
move ~ down(P) updates in B after B. Updates A and B also appcear in A, in that order. ‘There are
no canccl(P) updates after A in A, since B contains the last canccl(P) update (if any) in A,
Similarly, there arc no move—down(P) updates after B in A. ‘Thus, (A,B) is an assigninent witness
for Pin A. Lemma 14 implics that P is in ASSIGNED-LIST(s).

Lemma 19: Let P be a person, Assume that 8 contains the last move —up(P) updatc, if any, in
A. Also assume that B contains the last cancel(P) update, if any, in A. IfP is in WAIT - LIST(1),
then Pisin WAIT - LISI(s). '

ﬁ_«*\ Iy s'z AN Ny .';\.*\.,. N, '. SNV \‘s ‘.‘-. KN \}-. 4, \‘\'\}\
o (SHIGX -\- o Ny o) iy WIS
PRI N MO A LA A WA O WL o g e SR\ P S B .q\ (o0 Y sl e o B\ o)

Y '\ ASA LN \}\“\‘v\‘ ‘;" “'\
S PRy R

\-.

\\ +* H

[T P AR R I IR SR I UA ISP ng 1p 8e B ve Po 78 SVt vai Ve T Sy Jdg Ty ks B €.t i 1a 2's o 2"t g

0!
e
c';fn't
2 T
oo
Prool: Analogous to the proof of Lemma ONE. § ':‘s':
Again, we can apply the preceding three lemmas to the case where A denotes the entire sequence of ——
updates preceding a particular transaction ‘T, and 9B denotes the sequence of updates actually scen by I, ‘The 'y V;f':
lemmas imply that if T sces certain of the preceding transactions, then ‘I is guaranteed to know that a ;’,.
particular P is not on the ASSIGNED - LIST or WAIT-LIST. . o
Now we can prove refined versions of the results of the previous subsection. Since the notation and details s
become somewhat unwicldy, we present versions of Corollaries 6 and 13 only, and omit the others. . "
Theorem 20: 1.ct ¢ be an cxccution of the airline system, and ‘I a transaction instance in ¢, l.cts ai’
be the actual statc before I and s° the actual state after ', in ¢, — -
1. Assumc that there arc at most k persons P such that P is in ASSIGNED = LIST(s) but the :\':)
prefix subscquence seen by ‘I fails to include an assignment witness for P. ‘Then cither J-:f‘,
cost(s’,1) < cost(s,1) or clsc cos(s’,1) < 900k. :’;.*)
0
u 2. Assume that 'I'is a MOVE—UP or MOVE—~DOWN transaction. Assume that there arc at i
most k persons P such that P is not in ASSIGNED~—LIST(s) but the prefix subscquence ._
seen by ‘I fails to include cither the last cancel(P) or the last move —down(P) from A. Then Y9
cither cost(s’,2) < cosi(s,2) or clse cost(s’,2) < 300k. N
Proof: |.ct t be the apparcnt state before 1 and ¢ the apparent state after T. Then £ = T(tt). *_IQ'.“
Assumec that ‘1" invokes action A in execution ¢, i.c. that l).r(t) =A. .
1. Assumc that cost(s’,1) > cost(s,1). Then 'I' is a MOVE— UP transaction, A is a move—up g::;
update, and Al(t) < 100. For all persons P in ASSIGNED - LIST(s), except for the k -1"
cxceptions described in the hypothesis, lemma 15 implics that P is in «{\
ASSIGNED - LIST(t). 'Therefore, Al(s) < AlAt) + k<100 + k. It follows that Al (s) € mAoY
100 + k, and so cost(s’,1) < 900k. .
< ‘i
2. Assumc that cost(s’,2) > cost(s.2). ‘Then T is a MOVE—DOWN transaction, A is a s{.{‘
move —down update, and AL(t) > 100. For all persons P in ASSIGNED - LIST(t), except Pk
for the k cxceptions described in the hypothesis, L.emma 18 implies that P is in 5. Q.
ASSIGNED - LIST(s). ‘Therefore, Al(s) 2 A(t) - k > 100 - k. It follows that Al(s’) > 100 v
- k, and so cost(s’,2) < 300k. -
N
. I. ‘l
. ICH!
Theorem 21: f.ct ¢ be any finite exccution of the airline system, @ any subscquence of the ,;'."'-s.
indices of ¢, and let s be the actual state after c. AL
LN
1. Assumc that there are at most k persons P such that P is in ASSIGNED—LIST(s) but U
fails to includc an assignment witness for P.
‘Then cither cost(s.1) < 900k. or clsc there is an extension of ¢ to another exccution, by an
atomic suffix consisting of MOVIi—1DOWNs only, such that the prefix subsequence of the

first T in the suffix is U, s’ is the actual state after the last transaction, and cost(s’,1) < 900k.

2. Assumc that there arc at most k persons P such that P is in WATT - LIST(s) but QU fails to .
include a waiting witness for P. Also assume that for all but at most k persons P, if P is not o

.';__T:..'.:.‘f._'(.'.g. ;

i L S

3 .0 i # Sal fade .y 3 . L Ll VRN NN AETETY » . Ch W s

33

in ASSIGNED—-LIST(s), then Al includes the last cancel(P?) (if 2ny) from ¢, and U
includes the last move — down(P) (if any) from ¢.

‘Then cither cost(s.2) < 300k, or clse there is an extension of ¢ w another exccution, by an
atomic suffix consisting of MOVE— UPs only, such that the prefix subscquence of the first
I"in the suffix is U, §' is the actual statc after the last transaction, and cost(s’,2) < 300k.

Proof: [.ct t be the result of Qb applied w S

1. By Corollary 2, cither cost(t,1) = 0, or clsc there is an extension of ¢ to another exccution, by
an atomic suffix consisting of MOVE~— 1DOWNSs only, such that the prefix subsequence of the first
" in the suffix is U, such that U is the apparent state after the suffix, and cost(t’, 1) = 0.

First assume cost(t.1) = 0. 'Then AL{t) < 100. Let P be any person in ASSIGNED - LIS'T(s).
IfP is not onc of the k exceptions described in the hypothesis, then 1.emma 15 implics that P is in
ASSIGNED—=LISI(t). It follows that Al(s) < Al(t) + k < 100 + k, so cost(s,]) < 900k, as
needed.

Sccond, assume that the extension exists. ‘Then AL() < 100. I.ct the actual state after the
suffix bec s let P bc any person in ASSIGNED-LIST(s). ‘Then P is also in
ASSIGNED - LIST(s), since the suffix docs not add anyonc to the assigned list. 1 P is not onc of
the k cxceptions described in the hypothesis, then lemma 15 implies that P is in
ASSIGNED—-LIST(t). Nonc of thc MOVE—DOWNSs in the suffix could have gencrated a
move —down(P), since if one did, then P would not be in ASSIGNED-=LIST(s’). Thercfore, P is
in ASSIGNED - LIST(t). It follows that AlL(s) < AT(t) + k < 100 + k, socost(s’,1) < 900k.

2. By Corollary 2, cither cost(t,2) = 0, or clsc there is an extension of ¢ to another exccution, by
an atomic suffix consisting of MOVE—UPs only, such that the prefix subscquence of the first 1 in
the suffix is AU, t is the apparent state afler the suffix, and cost(t’,2) = 0.

First assume cost(t,2) = 0. Then cither AL(t) 2> 100 or clse WI(t) = 0. Let P be any person in
WAIT~LISI(s). If P is not onc of the k exceptions described in the hypothesis, then |.emma 16
implics that P is in WATT—~LIST(t). 1t follows that Wi(s) < WI(t) + k. Lect P be any person in
ASSIGNED—LIST(t). If P is not onc of the k exceptions described in the hypothesis, then
L.emina 18 implics that P is in ASSIGNED - LIST(s). It follows that AL(t) < AL(s) + k. Thus,
cither WI(s) < k or clsc Al(s) > 100 - k. 'Thus, cost(s,2) < 300k.

Second, assume that the cxtension exists. Then cither AI(t") > 100 or clse WI(t) = 0. Letthe
actual state after the suffix be s'. Let P be any person in WAI'T=LIST(s’). ‘Then Pis also in
WAIT = LIST(s), since the suffix does not add anyone to the wait list. 1f P is not onc of the k
cxceptions described in the hypothesis, then 1.emma 16 implics that P is in WAIT—LISI(t).
None of the MOYE—UPs in the suffix could have gencrated a move—up(P), since if onc did,
then P would not be in WAI'T—LIST(s"). Therefore, P is in WATT—LIST(t). So WiLs") <
WL{) + k.

Now let P be any person in ASSIGNED - LIST(t'). ‘Then P must be known in t, since otherwise
the move—ups in the suifix could not put P into ASSIGNED-LISI(). If P is in
ASSIGNED~LIS1(t), and P is not onc of the k exceptions described in the hypothesis, then
l.emma 18 implics that P is in ASSIGNED = LIST(s) and henee in ASSIGNED - LIST(sY). On
the other hand, if P is in WAUT=LIST(t), and P is not onc of these same k exceptions, then

1Y 1
&~ ..::.\.__\, .\:\:’,\' A
PREANTOFOI0 0,

AP I

S S0 R SRR R I Rl R i N Y e DR
UL SRS Nk '-‘-"}F';'-:.\' L\ RGO

O $ A GRS

{3
. 1 |."t
l.emma 17 implics that P is known in s. Since P is in ASSIGNED - LIST(t'). a move—up(P) ,.:='.',§'_
occurs in the sutfix. ‘Then Pis in ASSIGNED = LISI(s’). So Al(s’) 2 AlL(U) - k. It follows that O
cither WI{s') < k or Al {s’) > 100 - k. In cither case, cost(s’,2) < 300k. -
i,
ol
' 3 |.l ¥
ot
'a“{:’
It is also possible to give refined versions of Corollarics 8, 10, and 11. We omit the details. ey
’ﬁ
- 4
5.4. Cost Bounds Resulting from Centralization WO
In this subscction, we give two results which describe conditions under which overbooking cannot occur at Rl
all. ‘These conditions involve fairly strong centralization assumptions. ‘The basic idea is that if all the N5
movce —up decisions arc made centrally, it should not be possible to overbook. However, in order to prove dee
Ay
this result, it is nccessary for us to make some technical restrictions involving the requests. :_f-‘;
. . R AL
‘Theorem 22: l.ct ¢ be a transitive exccution, Assume that the MOVE—UP transactions are N
centralized in ¢. Assume that for cach P, the transactions that gencrates updates involving P are l'\:‘-
centralized in ¢. L.ct's be any state reachable in ¢. ‘Then cost(s, 1) = 0. Bals
Proof: 'The proof is by induction on the length of ¢. ‘The base casc, where the length of ¢ is 0, is XL
casy. So assume that the length of ¢ is at least one. et ‘I be the last transaction in ¢. Let t be the \}}:
apparent state before ‘I and ' the apparent state after ‘1. Let s be the actual state before T, and §° '\;;. X
g v . g Q8
the actual state after ‘I Let A be the actual sequence of updates preceding 1, and Ict B be the 5.;
sequence whose effects are scen by T. AR
"The inductive assumption says that cost(s,1) = 0. The only way that cost(s’,1) can be nonzcro is {\\.
if'I'is a MOVE — UP transaction which generaics a move —up update. ‘Then AL(t) < 100. -;_Z-'_:.
. oy
teey
We claim that ASSIGNED - LIST(s) € ASSIGNED—LIST(t). If this is so, then Al(s) < 100,)
so Al (s") < 100 and cost(s’.1) = 0, as nceded. T
‘b
AR
So fix P in ASSIGNED=-LIST(s). ‘Then there is an assignment witness for P in A. The oy
move—up(P) of the pair also appcars in %, sincc thc MOVE-—-UP transactions arc centralized. - ~.:\:\.
‘The request(P) of the pair appcears in the prefix scen by the move-—up(P), since the transactions * 1
generating P updates are centralized. 'Therefore, the request(P) also appears in 9B, by transitivity. '
Thus, 9B contains the assignment. witness, and lemma 15 implics that P is in .
ASSIGNED-LIST(t). k;'-‘:::
;:“_.\
. o . : . . . g
The second result of this subscction is just a minor variant of the first, with an alternative technical 9
\ 0‘ ’i
restriction on the requests.
‘Theorem 23: l.ct ¢ be a transitive exccution. Assume that the MOVE—UP transactions are D¢
centralized in . Assume that for cach P, there is at most onc REQUEST(P) transaction ine. l.cts :.‘.4:.;:
be any state reachable in ¢. ‘Then cost(s,1) = 0. 23-:;
Proof: ‘The proof is ncarly identical to the preceding one. ‘The only difference is in the argument -:—"
that the request(P) is in the subscquence scen by the move—up(P). We know that some_ —
request(P) appears in the subsequence scen by the move —up(P) action, for otherwise that action ..,'.,-:\
would not have been invoked. Since there is only onc such request(P), the claim holds. e
LAY
A
e
r- -
LI

U Rus okt St B L N OV S T S T A

O)

5 AR o

X o) - - L} LR NS .,
."?'\(\ (A ‘\“—.’1’51?':"‘!' 'l" ‘klu‘i. 3} (j\ PN "' , ' T o '-"

35 \e)

o
o’ ¥
. . . NP o

Of course, it would be better if we could prove the same result only assuming centralization of MOVE-UP i

. e

transactions and transitivity, and not making any assumptions about the transactions generating updates for XN

; the same person. But this stronger statement is not true, as is shown by the following example, G
d {:xample: L%
. :E:S.
ity

Consider an cxecution which consists of a succession of blocks of 4 transactions cach, 5‘2

8,0

REQUEST(P1), CANCEL(P]). REQUEST(P1), MOVE-UP,

' 4,
K REQUEST(P2), CANCEI (P2), REQUIEST(P2), MOVE—-UP.,..., . o
3 REQUEST(IP101), CANCEL(P101), REQUEST(P101), MOVE-UP. -','&*
) 1%

3 b

"The successive MOVE— UP transactions produce updates move —up(Pl)...., move—up(P101). -
This exccution is possible if cach of the first 100 MOVI:— UP transactions sces the first request in -—
. the same block, but not the cancel or the sccond request. ‘The last MOVE—UP sces all the $‘- Y
L previous MOVE—UP's and the requests that they sce, plus the cancels. Then this last ,sf,
MOVIE— UP will think that the carlier MOVE— UP’s acted cerroncously, and that there is really no f’f’

one on the assigned list. 1t will therefore decide to move PLO1 up. ‘The cost after this exccution is v
nonzcro. :
.

£)‘

Similar results to those in this scction should be provable, at least in principle, for the underbooking cost. [k ‘

* ‘*‘

) Howcver, the centralization assumptions that appear to be nceded ure so strong that the results do not scem 008

1 '

very interesting. AL
q.* 4
5.5. Fairness D
[N
In this subscction, we consider fairness propertics of the airline rescrvation system. As before, the results ;:e ,

- are stated in terms of the specific example, but the techniques appear to generalize to o