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Abstract

Correctness conditions are given which describe some of the properties exhibited by highly available

distributed database systems such as the SHARI) (System for Highly Available Replicated Data) system

currently being developed at Computer Corporation of America. This system allows a database application to

continue operation in the face of communication failures, including network partitions. A penalty is paid for

this extra availability: the usual correctness conditions. serializability of transactions and preservation of

integrity constraints, are not guaranteed. However, it is still possible to make interesting claims about the

behavior of the system. T'he kinds of claims which can be proved include bounds on the costs of violation of

integrity constraints, and fairness guarantees. In contrast to serializability's all-or-nothing character, this work

has a "continuous" flavor: small changes in available information lead to small perturbations in correctness

conditions.

This work is novel, because there has been very little previous success in stating interesting properties which

are guaranteed by nonscrializable systems.
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I. Introduction

I.I. Background

In rcent years. there has ben extensive research on the design and theory of distributed datahases. Nearly

all or this work has been directed towards providing frameworks in which transactions can be processed

concurrently, while preserving integrity constraints on the data. Many of the most important advances in

distributed proces'sing have arisen from this work, including the development of techniques based on locking

and timestamps. and commit protocols. Te work has led to elegant system designs, as well as to a very .-

interesting theory.

It is apparent, however, that there is still a problem. '1e techniques developed in distributed database

research have not yet been ,ccepted by tie commercial world to the extent that researchers might have hoped.

In particular. airline reservation systems% banking systems and inventory control systems (applications which

motivated much of the research), still do not rely on the general mechanisms developed by rescarchers The

problem may be fundamental to the general approach. 'lbe mechanisms developed in research guarantee

preservation of integrity constrains, but they are inadequate for meeting stringent reslx)nsc time and

availability requirements. 'Ibis inadequacy seems to be an unavoidable result of strong requirements for

synchronization among remote nodes.

Many applications of the sort mentioned above put a high premium on availability and fast performance,

and in order to obtain these, they are willing to sacrifice something in the way of "correctness" or "data

integrity". The research community has so far been unable to provide general frameworks which guarantee

weaker correctness conditions as well as good performance and availability. As a result, practicil systems

development work for these applications is still based on ad hoc methods of concurrcncy control.

There is a need for system development work, as well as assciated theory, to fill this gap. New frameworks

are needed which guarantee good performance and availability, yet provide enough discipline on application

programming so that usefi correctness claims can be proved. When fast response time and high availability

are required, it seems necessary to allow violations of integrity constraints to occur. In this case, traditional

frameworks do not allow anything interesting to be proved about the behavior of the system. 'The difficult

part of the problem is to guarantee interesting and useful correctness properties, even when integrity

constraints are violated.

NI
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3

1.2. StlARD

The new SHARI) (System for Highiy Available Replicated IData) system under development at Computer

Corporation of America (CCA) is designed to address the problems described above. It provides highly

available distributed data processing in the face of communication failures (including network partitions). It

does not guarantee scrializability. nor does it preserve integrity constraints, but it does guarantee many

practical and interesting properties of the database.

lhe reader is referred to [SBKJ for a detailed description of the architecture of the SHARI) system. Briefly. :
the main ideas are as follows. The network consists of a collection of nodes, each of which has a copy of the

complete database. (Full replication is a simplifying assumption we have used for our initial prototype, many

of our ideas seem extendible to the case of partial replication, but this extension remains to be made.)

Replication allows transactions to be processed locally, thus reducing communication costs and delays, and

providing high availability.

After a transaction is processed at its originating node, information about the • nsaction is broadcast

reliably to all the other nodes for incorporation into the database copies at those nodes. Ibe broadcast

algorithm [GI.BKSS] ensures that, barring permanent communication failures, every node will eventually

receive information about every transaction. While the broadcast algorithm attempts to deliver information

to all sites in as timely a manner as possible, communication and node failures can cause significant delays.

Since nodes may continue to initiate transactions during communications failures - indeed, they may not even

be aware that there is a failure somewhere in the network - these delays mean that transactions may run

against out-of-date database states.

When a node receives new information about a transaction, no matter when the transaction was initiated.

this information must be merged into the node's copy of the database, this merging must be done consistently

at all nodes, to maintain mutual consistency. 'ibe following mechanism is used to guarantee consistent

merging. Transactions are totally ordered by a globally-unique timestamp assignment (such as one based on

local timestamps with node identifiers used fi)r ticbreaking), and each node uses this total ordering to .

determine how to merge information about different transactions. Because all nodes order the transactions in

the same way, they will agree on the result of merging identical sets of transactions. Also, at all times during

execution, each node's copy of the database always reflects the effects of all the transactions known to that

node. as if they were run according to the global timestamp order.

Since messages about different transactions could arrive at a single node out of timestamp order, keeping

the copy correct entails frequent undoing and redoing of transactions. The SHARI) system uses an undo-

redo strategy in lieu of any other inter-node concurrency control mechanism. This strategy allows the nodes

%,. , .. ,._ . . - .. ,. . . - P
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to achieve mutual consistency without relying on extra network communication. 'lhere arc several

implementation ideas which reduce the amount of undoing and redoing that is actually necc&stry: some of

these are discussed in [I1K,SKS].

Problems arise with the simple scheme described so far in its interactions with the external world. Certain

transactions will trigger external actions. For example. in an airline reservation system, a boo)king transaction

might determine that there are available seats on a flight, and might cause a passenger to be informed that he

has been assigned a scat. Although the transaction is run at different nodes, and possibly undone and redone

many times, the external action should only occur once -at the transaction's origin node, whcn thc transaction

is initiated.

Whcn a transaction is rerun at a node, it may be necessary to undo all its ef-Lts before redoing it starting

from a diffcrcnt database state. 'lis requirement is a serious problem for transactions which trigger external "

actions: it is not possible for the system to undo an external action. Moreover, when the transaction is

redone, it might not choose to trigger the same external action. In an airline reservation system, a booking

transaction might decide to inform a passenger of an available scat when the transaction is initiated.

I lowever, if this boo)king transaction is undone and then redone from a database state in which there do not

appear to be any available seats, it would not grant the seat. 'Ihus after the undo and redo, the database

would not record the fact that the passenger had been granted a seat, even tough the passenger has actually

been informed that a scat has been granted. This situation produces an inconsistency between the

information in the database and the information sent to the passenger. We would like to avoid this kind of

inconsistency.

'hus. we find it useful to limit the interaction of transactions with the external world, by imposing some

extra structure on the transactions. We require that all transactions be divided into two parts: a "decision",

which may read data and trigger external actions, but may not modify the database, and an "update", which

may read and write the database but may not trigger external actions.

The decision part of a transaction is invoked only when the transaction is initiated. Ihis part of the

transaction may interact with the user, giving some indication of the likely outcome of the completed

transaction. 'Ilbe results returned by the decision determine an update, which is then broadcast to all the

nodes to bc merged into all the copies of the database. Only the update is broadcast to the other nodes. The

update is the part of the transaction that may be undone and redone; the decision is executed only once.

Since the decision involves no changes to the database, just broadcasting the update is enough to insure

mutual consistency of the database copies.

,0

, ~ *,*'~~*.*.* .-..* -

', U _. ,. , t.'p .. ,,. % .... %v,. ,e'" . . ., . . . . . . e.. .., .UF. .. ..,.. ... ,.., ,. .. . . . .,%



5

In thc example described earlier, dic decision part o f the b(king transaction could read thc database at the

local (initiating) node and determine whether there appear to he available sea ls. if there are, thc decision

would inform the requesting passengcr that he has been granted a seat, and would also cause the system to

invoke an update that writes the reservation into the database. When the update is received by the other

nodes, the reservation is also entered into their copies of the database. 'Ibus, every node would correctly

record the fact that the passengcr was granted a seaL

IBecausc of the distribution, and because of the possible need for undo and redo, the update part of the

boo)king transaction may execute many times, possibly from different database states. No matter what state it

is executed from, the update records the facts that the seat was assigned and the passenger was informed of

the a.signmenL 'Ibis update records the facts correctly even if it is executed from a state from which a

bo)king transaction run in its entirety would not choose to grant the passenger a seaL

Because decisions are made with incomplete information about the updates or preceding transactions, it is

possible that the database could reach an undesirable state. e.g. a state in which a flight is overbox)ked.

Iowever, users or application programmers could monitor the database with additional "compensating"

transactions, which invoke appropriate corrective actions. In this example, a transaction might check for

overtxx)king, and decide on a particular passenger k) unseat. 'Ibe decision part of this transiction would

inform the passenger that his reservation has been rescinded. The update would just record, in the database,

the fact that the particular passenger has been unseated. Of course, applications should be designed to avoid

an excessive amount of compensation. The correctness conditions described in this paper should help to

provide application designers with guidelines for coping with these and other problems caused by a lack of

serializability.

A preliminary design for SHARI) has been completed, and is documented in [IIK,GI.IIKSSS,SBK.SKS].

Also. a prototype implementation is completed.

1.3. Correctness Conditions

The SHARI) system can be implemented efficiently, and seems capable of expressing the kinds of

transaction behavior actually used in commercial systems. However. if the system is going to be widely used,

it should be possible to make precise claims about its behavior. ihis paper provides a formal setting in which

such claims can be made, and uses that framework to prove some interesting claims about SI-ARI)'s . -

behavior.

It should be clear that SHARI) does not guarantee serializability of complete transactions. It does

guarantee serializability of the update parts of transactions, but that condition by itself does not say very
'.. ,

.o ", *J



.~ .- . . . .....

6

much. We believe that we can say more about what is guaranteed by such a systcm than just what wc can

conclude from its weak scrializability properties.

We take our cue from somc of the intcnded applications of the system, such as airlinc rcscrvations, banking.

and inventory control. 'lhese exemplify different kinds of resource allocation applications. In all these cases,

there arc natural integrity constraints which one would want to define: these arc usually expressed as

predicates on the database states. In resource allocation applications, one useful integrity constraint would be
that the number of allocated resources be no grcatr than the number ofavailable resources. Anotherwould

be that the number of allocated resources be no ler than the number of available resources. providd there

arc enough request% for resources. Ik)th of these conditions arc dcscribed by predicates on the database suite.

However, one can go further: there is often a "cost" associated with violations of an integrity constraint.

which can be expressed as a function of the database state. In resource allocation applications, the cost of

ovcr-allocation might be some number which is proportional to the excess or the number of allocated

resources over the number of available resources. 'The cost of unnecessary under-allocation might be

proportional to the minimum of the number of unsatisfied requests, and the excess of the number of available

resources over the number of allocated resources. Fach of the applications listed has its own particular cost

functions, characteristic of that application. In each case, it is desirable I) keep the costs as low as possible.

'Tihus, one kind of property we would like to prove is a bound on the cost of violations of integrity
constraints. Results of the form "With absolutecertainty, the cost remains at most c." would be unreasonably,

strong in our setting, because of the uncertainty that arises from delays and failures. Rather, it seems much

more appropriate to prove results of the form "With probability p. the cost remains at most c." Results of this li
form would be very useful to the application designer, since they would allow him to adjust his design in such

a way as to lower the expected cost bound.

We believe that results of this form, arc most conveniently proved an two parts: (1) conditional results of

the form "If certain conditions hold. then the cost remains at most c.", and (2) probability distribution

information describing the probability that the conditions hold. Most often, the conditions mentioned in (1)

will be parametrized, e.g. "When each transaction is initially executed, the database state includes the cffccts

of all but at most k of certain kinds of preceding transa-ctions." Similarly, the cost mentioned in the

conclusion of(1) will be parametrized. "lbus, results of type (1) will usually be a class of related results, giving -4

cost bounds for a range of quantitatively different assumptions about system operation. ihe probability

distribution information in (2) will be obtained by an independent analysis, using information such as delay .'

characteristics of the message system, and expected rates of transaction processing. It should be relatively easy

to combine the information in (I) and (2) to get probabilistic statements of the kind we want. In this paper, '.'

- .e.-'.a%
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we do not carry out the probabilistic analysis required in (2), but instead focus on the parametrized

conditional claims in (1).

Thus, we obtain results of the firrm "If each transaction "sees" all but at most k of certain kinds of

preceding transactions, then the cost remains at most c(k)." Such cost bounds limit tie damage which can be

caused when transactions operate with a bounded amount of missing information. 'Ibe cost bounds we obtain

are, in general, intuitively natural, rather than extremely surprising; our main contribution lies in the fact that

we can actually formulate and prove the intuitive claims. Previously, no claims at all could be made when

information about any transactions was missing. We can make such claims, and our claims become stronger .4%

(i.e. the integrity constraints are better preserved) when information is more complete (i.e. when execution is

closer to being serializable). In contrast to serializability's all-or-nothing character, our work has a

"continuous" flavor: small changes in available infonation lead to small perturbations in integrity

constraints.

The question of how the costs get defined still remains to be addressed. Assignment of costs is something

that must be done by application programmers, who understand the impact of database behavior on the

organization using the system. It is likely that the cost assignment procedure will be complex and

approximate. Nevertheless. it appears to be what is currently used by organizations, implicitly, in evaluating

the acceptability of database system behavior. "lercforc, it seems that such cost assignments should play an

important role in evaluating database behavior.

Another kind of property which is of interest for resource-allocation applications is "fairness". Fairness

properties describe conditions under which a particular request is guaranteed to be granted, or guaranteed not

to be granted. 'lbey also deal with relative priority of different requests in obtaining resources. While FIFO

order might be an appropriate fairness condition in a scrializable system, weaker fairness conditions are more

appropriate in the SIIARI) setting, and are still of interest.

In this paper, we begin by providing the basic definitions and vocabulary for discussing the operation of .

systems of this type. "lhen, following the usual organization in traditional concurrency control theory, we

study the correctness conditions in two groups. First, we examine conditions which can be guaranteed by the

system alone (analogous to serializability). 'The system does guarantee to run transactions in some total order.

Rut whereas serializability would guarantee that each transaction has total information about the effects of the

preceding transactions, the SHARI) system only guarantees that each transaction has partial information

about the preceding transactions. Second, we examine conditions which can be guaranteed by the

transactions (analogous to preservation of integrity constraints). 'lransactions might be required not just to

preserve integrity, but also to improve or restore integrity. 'lhese two kinds or conditions, those guaranteed

P aA@.E~~rz '. ' , " € *_,..'..'.'" .,,r.-=. .. '....' €..'.. .-..% .'.'..' •' -- .*.-'..'.. ,•. =..' .,- .*." ; ---.. -.". "*. . --% ,,," -- .'.- - 's'-
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by the system and those guaranteed by the transactions, can be combined to allow proof of interesting

properties (cost bounds and fairness) for a running application.

Wc dcscribc our propcrtics and carry out our proofs in thecoCCntext of a simple prototypical resource

allocation example. We believe that this example contains many of the elements common to the class of

applications for which SIIARI) is suited. 'lic types of conditions stated and the techniqucs for proving their

correctness appear likely to extend to the other applications. Wherever possible. we state conditions and

describe proofs in a general way, so that they will be directly applicable to other applications.

Related work includes several other papers which weaken serializability in various ways [FM, AM, G, 1, for

example]. Other work that seems related to the SIIARI) approach, although in a very different contexr. is the

work on "virtual time" i.11.

lhe rest of the paper is organized as follows. In Section 2, we describe our database model. In Section 3,

we describe conditions that can be guaranteed by the system alone. In Section 4, we describe conditions that

can be guaranteed by the transactions alone. In Section 5, we prove some interesting cost bound and fairness

properties for the example resource allocation system. 'Ihese properties arc consequences of both the

conditions guaranteed by the system and those guaranteed by the transactions. In Section 6, we present our

conclusions.

2. Database Model
"Ibis section includes fomal definitions of database states, integrity constraints, and transactions.

One goal of the SHARI) design is to keep the distribution and replication of data hidden from the

application. In particular, we attempt to a",id explicit mention of distribution and replication in our

correctness conditions. Our general approach is analogous to the usual approach for describing correctness of

distributed databases [G. f)r examplel. In the usual approach, correctness of a distributed database requires

that the distributed database give the appearance of a centralized, serial database. In our case, the database

will not appear to be serial, but will still appear to be centralized.

In other database research, certain consistency conditions, called "integrity constraints," are given for the

database states. 'Ibesc conditions fit into our model in two ways. 'lbe most fundamental are modelled as
"wcll-formedncss" conditions: we will require that transactions always preserve these. The other consistency

conditions, which we call "integrity constraints," represent desirable conditions, but we do not assume that

they are preserved at all times. To measure how far a database state is from satisfying the integrity constraints,

we impose cost measures on the states with respect to each constraint, where a greater cost indicates that the

'a
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state is further from satisfying the constraint. One goal orSi IARI) is to minimize the cost of siatcs that arise

during an execution.

Our transactions arc composed of two parts, a "decision part" and an "update." As dscrihcd in the

Introduction, the decision part reads data and may interact with the external world, hut does not modify the

database. 'Thc results returned by the decision part determine an update, which can read and write the

database, but does not directly interact with the external world.

In addition to providing general definitions in this section, we also define an airline reservation example,

with four transactions. "lhis example will be used throughout the rest of the paper.

2.1. States
'llie database has a set S of possible dalabase states, among which a particular initial sale so is distinguished.

'licre might be some additional structure on the database; for example, it might be composed of it collection

of obj'cts, where a state would consist of a wilue for each object. In case X is an object, we let X(s) denote the

value of object X in database state s.

Among the database states, there may be some which fail to satisfy some fundamental consistency

conditions, and we will generally want to omit them entirely from consideration. Therefore, we designate

certain of the database states as well-fonned. We assume that the initial state is well-fonned.
Example:

Fly-by-Night Airlines is a little-known airline company which has exactly one scheduled flight,
Flight 1. Flight I is scheduled to take off next Jan. 1 and will take its lucky 100 passengers from
k)ston to an idyllic resort in the Caribbean. -.

A database state consists of the following objects:

- ASSIGNIFl)-IIS'I'. a finite ordered list of people who have been notified that they have
seats on Ilight 1. and

- WAIT- .IS1, a finite ordered list of people who have requested scats on Flight I. but do not
have assigned scats.

'lime initial state has both lists empty. 'lle well-formed states are those which satisfy the
fundamental consistency condition that ASSIGNEI)-I.lS' and WAIT-lAS' must contain
disjoint sets of people.

We use the notation AL(s) as a shorthand for IASSIGNEI)-I.IST(s)I, the number of people on the

assigned list in state s; similarly, we use Wl.(s) for IWAIT- L.IST(s)I. We will sometimes refer to Al. and WI.

A. "
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as if they were objects themselves: they arc similar to objects, in that they have values in cvery database state.

Ilowever. those values are always derivcd from the values of the "real" objects, ASSIGNtI)-ILIST and

WAIT- IIST.

2.2. Integrity Constraints

For us, "integrity constraints" represent desirable conditions, but we do not assume that they arc preserved

at all times. Since integrity constraints are not always preserved, we find it useful to measure how far a

database state is from satisfying the integrity constraints. In order to' do this, we impose nonncgativc real-

valued cost measures on the states with respect to each constraint, where a greater cost indicates that the state

is further from satisfying the constraint. A cost of zero indicates that the constraint is satisfied. 'the total cost

of a state is the sum of the costs associated with all the constraints. One goal of SHARI) is to minimize the

cost of states that arise during an execution.

More precisely, we assume a finite collection of integrity comstraints, indexed by the set I. Let cosi(si)

denote the cost of database state s which is attributed to a violation of integrity constraint i. "lhe cost of s,

cost(s), is then defined as ZXEIcost(Si)

We use the notation X /. Y to denote max(X-YO).

Example

In the Fly-By-Night airline reservation system, there are two integrity constraints in addition to
the wcll-formedness condition already described.

Integrity Constraint 1: Overbooking should not occur.

Formally, this says that Al. < 100. While this condition is certainly desirable, we do not
expect that it will always hold. If Flight I is ovcrtx)oked, the cost to Fly-by-Night Airlines is
approximately $900 per overbx)ked passenger. (I'bis cost covers the price of a first-class ticket on
an alternative flight, plus hotel accomodations for a week in the Caribbean.) 'Ihus. we define
cost(s, ), the cost of state s which is attributed to violating constraint 1. to be 900 (Al As)/. 100). ",

Integrity Constraint 2: Undcrbooking should not occur, if it is avoidable.

Formally, this says that either Al. > 100 or else WI. = 0. ibat is. either all the seats on Plight
1 arc assigned or else there are no waitlisted passengers. If Plight I is unnecessarily underbooked,
the cost to the airline company is approximately $300 for each waitlisted passenger who could have
been assigned a seat. (Ihis is the missed profit.) 'ius, we define cost(s,2), the cost of state s which
is attributed to violating constraint 2, to be 300 min(100 /. Al s), WI s)).

'Ihe assignment of costs to database states, for violation of particular integrity constraints, is a part of

,% eI
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application design. In practice, it might not always be obvious how to assign such costs. It is possible that the

system could help the application designers, by providing a framcwork in which the designers could

determine appropriate cost functions. Cost functions often summarize other information which the

application designers might find it easier to think about. For instance, in many interesting cases (such as the

airline reservation system), the data is numerical, and the cost functions have some simple (e.g., linear)

relationship to the data values. Perhaps patterns such as this one could be incorporated into a languagc for

describing cost assignmenL Systematizing cost assignments is a subject for future research.

2.3. Transactions

In this subsection, we describe the structure of transactions. As noted earlier, our transactions are composed

of two parts, a "decision part" and an "update". 'The decision part reads data and may intcract with the[J

external world, but does not modify the database. Ihe results returned by the decision part determine an

update. which can read and write the database, but does not directly interact with the external world.

Formally, an update is any mapping from S to S which preserves well-formedness. Let .4 denote the set of

updates. Iet 9 denote the set of external actions. A transaction 1' consists of a decision part 11 . which is a

mapping from the state set S to 4 X g(C). For any database state s, 1),1(s) is a pair consisting of the update

which is invoked when T is run from s. and the set of external actions triggered by T when T is run from s.

Where no confusion is likely, we will sometimes write l)(s) to denote just the update, ignoring the external
actions.

A transaction is designed to execute nonatomically; it "observes" some state of the database when it is

initially run. but then later it transforms other, possibly different, states. 'The observation of the database

takes place in the decision part, and the state transformation in the update part. Each of these two parts is

intended to be carried out atomically. 1be state that a transaction observes is to be thought of as embodying

partial information about past updates, such as the information known at the local site at the time the

transaction is first executed. This partial information is used to decide on the new update to be generated.

Example.

ibe airline reservation system has only four transactions: a RFQUESI' for a seat which puts
the passenger on the waiting list a CANCEL, transaction, a MOVF- UP transaction which moves
a waitlisted passenger to the assigned list. and a corresponding MOVE- DOWN transaction which
moves an assigned passenger back to the waiting list Note that we are departing slightly from the
example discussed in the Introduction: the effects of the bx)king transaction described there are
achieved by a combination of a RFiQUFsf transaction and a MOVE- UP transaction.

Thie four transactions are as follows:

"4Y*
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(I) RIiQUI-IS(P whcre P is a petin

This transaction is described by the following program.

Decision: TRUE
Action:

if 1) is not on WAIT-.IST and P is not on
ASSIGNI-I.IST'

then add P to end of WAIT-I.ST

This program is to be interpreted as follows. For any state s, the decision mapping
I)RI.uI.3t'l) triggers no external action and invokes the same update A. A operates on any state s7
by adding P to the WAIT- lIAST provided that P is not already on either the WAIT- I.IST or the
ASSIGNED- IIS'I in s. In case P is on either list in s', A does nothing. We refer to the unique
update A invoked by the RlFQUIST(P) transaction, as the request(P) update.

(2) CANCFI AP), where P is a person

'Tis is described by the following program.

Decision: TRUE
Action:

if P is on WArT--IST
then remove P from WAIl-IST

if P is on ASSIGN ED--I. ST
then remove P from ASSIGN ED--I.IST

Again, from any state s. the decision mapping always yields the same update. "iis update,
from any state s'. removes P from any list on which it happens to appear. If P is not on either list,
the update does nothing. We refer to the unique update invoked by the CANCEIAP) transaction,
as the cancel(P) update.

'le decision parts of the REQUEST and CANCEl, transactions do not perform any
interesting work: they always invoke the same update, and trigger no external actions. On the
other hand, the following two transactions have decision parts that invoke different updates in
different situations, and they sometimes trigger external actions.

(3) MOVE- UP

Decision: Al. < 100 and WI. ) 0 and P is the first person
on WArr-I.IST

External event: inform P that P is now assigned a seat
Action:

if P is on WAn-LIST
then

[remove P from WA IT-LIST
add P to end of ASSIGNF )-iISI1

Here, the decision part, running from state s, tests to see whether there is room on the
ASSIGNI)- .IST' and a person waiting to be assigned. If not, no action is taken. If so. the

a -i
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decision part slects a particular person P (the first on the WAI- IlT 1r in state s) to he moved up
from the WAIT-I.IS' to the ASSIGNI'I)-I.IST. A message is sent to P. and the update is
parametrized by P. From any state s', the update moves P from the waiting list to the end of the
assigned list, provided that P is actually on the waiting list in s'. Otherwise (i.e. if P) is already on
the assigned list, or P is on neither list), no change occurs. We refer to the update generated by the
MOVE'- UP transaction when it selects person P as the move- up(P) update.

(4) MOVE- DOWN

Decision: Al. > 100 and P is the last person on
ASSIGNFID-LIST

I-xternal event: inform P that P is now waitlisted
Action:

if P is on ASSIGNiI)--I.IST
then

[remove P from ASSIGNIiI)-IIST
add P to end of WAIT-I .1I11

Thc meaning of this transaction is symmetric with dh preceding one. We refer to the update
invoked by the MOV&-XDOWN transaction when it selects person P as the move-down(P)
update.

It is clear that all the updates, for all four transactions, preserve well-formedness, as required.

Note that each of the last two transactions contains two conditionals. 'the two conditionals play different

roles. 'lhe first conditional in each case is used to decide which update and external actions will occur. 'he

second is part of the execution of the update. Also note that the transactions are designed to observe the

database state more than once. For example, in the MOVE- I)OWN transaction, the transaction looks at

ASSIGNFI)- IiST in one state s in order to attempt to select a person P to move down. 'lien whenever the

movc-down(P) update is executed, it looks at ASSIGN'I)- LIST' in another state s' to dctennine whether to

actually move P.

We consider this airline reservation system to be a prototype of a much more general class of resource

allocation systems. It seems that practically all resource allocation systems must have operations of the four

kinds described above: operations that request resources and cancel those request.s, as well as operations that

allocate and deallocate the resources. Those operations will behave in somewhat different ways for each

application. Here, to be specific, we have made a particular set of choices, but we expect that many of the

ideas in this paper will carry over to other resource allocation systems.

We introduce some additional notation which will be useful later for describing transactions. If the first

component of I).1ls) is an update which maps state s' to state s", we will write T(ss') = s". IfrT(s',s') = s", it

means that ifT is initially run from state's, it causes the system to invoke an update which, if it is ever run
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from state s, will produce state s".

3. Conditions Guaranteed by the System
Ibis section describes conditions that can be guaranteed by the system alone, i.e. conditions on how the

system will run the transactions. I tcr, in Section 4. we describe conditions that can be guaranteed by the

transactions alone. 'Ien in Section 5. we combine these two kinds of conditions to prove properties of an

application (the Mly-by-Night Airline Reservation System) running on the system.

'Ibis approach is roughly analogous to the usual approach in ordinary concurrency control theory. 'Iberc,

the scrializability condition (which can be guaranteed by the system alone) is combined with the condition

that individual transactions preserve integrity (which can be guarantecd by the transactions alone), to

conclude that reachable database states all satisd*y the integrity constraints.

"ibe first subsection formally describes the basic guarantees made by SIIARI) about the way in which

transactions are run. SHARI) guarantees that there is some serial order for the transactions which it runs.

'Ibe system does not guarantee serializability of the transactions in this order, but it does guarantee that each

transaction "sees" the result of some subsequence of the preceding transactions. While this condition is

fundamental to the semantics of the system, it is too weak to allow proof of interesting properties.

'Ihe second subsection contains refinements of the basic condition. Examples of these refinements are

transitivity and some specific requirements on the subsequences of transactions seen by certain other

transactions. 'Ihe third subsection describes implementation issues. It shows how SHARD and similar

systems can guarantee the conditions described in the other two subsections.

3.1. The Preix Subsequence Condition
'The system guarantees that there is some serial order for the transactions which it runs, and that each

transaction "sees" the result of some subsequence of the preceding transactions in this serial order. We state

this condition more formally below.

If s is any sequence, we write si to denote the ith element of s. An execution of a set of transaction instances,

consists of a serial ordering T for the transaction instances, together with a sequence A of updates, a sequence

E of sets of external actions, a sequence f of finite sequences of integers, and two sequences, s and t. of

database states. An execution is required to satisfy the following conditions.

1. For i 1. I is a subsequence of the prefix sequence (l....i-1}.

2. For i 0, ti is the state obtained by applying the sequence of updates designated by + to the
initial database states0. 'lat isL = Ai ('"A, (s0)), wherefi+ 4 ii..

k I
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3. For i > i. (Ai,K) =1

4. For i > 0. each s, is the state obtained by applying the sequence of updates A.... to s. 'at is,S , A ^i..(o)-

'Ihcse conditions mean the following. (1) says that cach transaction Ti has a corresponding subsequcncc Ij

of its prefix of preccding transactions: these arc the preceding transactions that it "sees". (2) says that cach

state 1i describes thc ciTects of thc updates ofli+ 'S prefix subsequcncc: it is the state of the database which
"1,i + "sees" when its decision part is run. (3) says that the update and external actions produced by Ti are

determined by its observed state tH.. Finally, (4) says that the states si describe the actual effect (not

nccessaurily observable by any of the transactions) of running the complete sequence of updates generated by

all transactions through Ti.

'Ihe system guarantees to simulate (in some sense which we do not specify here) executions of those

transactions which arc submitted to it. In particular, it guarantees that the external actions described by

sequence Ii are actually performed.

Wc say that the apparent state before transaction Ti+ I is ti. and that the apparent slate after transaction Ti+

is state Ti+ 1(titi). Also, the actual slate before transaction Ti+ , is %., and the actual state after transaction '+i -

is state S+ = "i+(t, .) We extend this notation to nonempty consecutive sequences of' transactions in

place of single transactions: the apparent and actual states before the sequence are just the apparent and

actual states, respectively, before the first transaction in the sequence, while the apparent and actual states

after the sequence are just the apparent and actual states, respectively, after the last transaction in the

sequence. We say that each of the s is reachable from so in the given execution. We call the state si., the

complete prefix state for Ti in the given execution.
ft.

lt I, = {i,i+ ...I be a sequence of consecutive indices. lhien cL is said to be atomnic in an execution

provided that the following hold. (a) Fach Uj, j E %i. includes each of the other transactions Uk, k E %L. k <j,

in its prefix subsequence, and (h) all transactions U., j E qj, have the same subset of the transactions with

indices less than i in their prefix subsequences. Atomicity describes the running of several consecutive

transactions without allowing new inrormation about the database to intervene.

Thc prefix subsequence condition only guarantees that each transaction sees the result of some subsequence

of its prefix. 'Ibis condition does not rule out trivial solutions, such as every tran&ction seeing the initial

database state (the result of the empty subsequence). In order to insure useful behavior, we would like the

system to allow transactions to wee prefixes which arc as large as possible. Some refinements of the prefix

subsequence condition designed to insure large prefixcs arc discusscd in the following subsection.

% % % % %
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Example

'Ihis example shows an execution of the transactions from the airline reservation system, acting
non-scrialiyably, but according to the prefix subsequence condition specified above. 'lhc left-hand
column lists the successive 'l while the right-hand column lists the corresponding A,'

T A

REQUFST(PI) rcqucst(PI) •
MOVEi-UP move--up(Pi)
RiQUFST'(lY2) request(P2)
MOVF-UP move-up(P2)

RFQUFST(PI02) requcst(P102)
MOVE-UP move-up(P102)
MOVE-)OWN move--down(PIOI)
CANCEIi4PI) cancel(PI)

This execution can be obtained by having all the requests, the first 100 MOVE-UP
transactions, and the cancellation operate seeing complete prefixes. 'lhe next two MOVE-UP
transactions operate with incomplete prefixes. 'le first sees the results of the first 99 RFQUI SIS
and MOVE- UPS, plus the REQUFSI' for Pl01, while the second sees the results or the first 99
REQUPSI'S and MOVE- UPS, plus the RFQUEST for 1P102. Since each observes a state with
only 99 people on the assigned list, each chooses to move a person up. Similarly, the
MOVE- )OWN operates with an incomplete prefix. It sees the results of the first 202
transactions only, but not the results of the two transactions involving P102. 'lhus, it sees the
assigned list with 101 people, and moves P101, the person it observes to be last, down.

Now consider the successive reachable states sr The state after the first 204 transactions, s,,
has 102 people on the assigned list in numerical order, and no one on the waiting list. After the
MOVE-I)OWN, s., has P101 on the waiting list and PIP2....PIOO,PI02 in order on the
assigned list. The final cancellation then leaves the assigned list with exactly 100 passengers:
P2,....PI00,PI02.

"lbhis execution differs from a serializable execution in at least two ways. First, there is a
reachable state (s204) for which the overxxking cost is nonzero. Second, the execution is not
entirely "fair" in that P102 requests a seat after P1I01 (and his request is processed after Pl01's),
but P102 is allowed to remain on the assigned list while P101 is moved down.

Notice that there is a danger of "thrashing" in this system. If a MOVE- UP transaction does not see a

previous request and corresponding MOVE- UP, say for person P. it may move another person Q to the

assigned list. A later MOVE- DOWN transaction might operate with a complete prefix, observe an

overbooking, and move Q down. Another MOVE-UP might then execute, seeing the movc-down(Q)

update, but still not seeing the updates missed by the previous MOVE- UP: it may then reassign Q. A later

MOVE- I)OWN might then move Q back down. and so on. 'lThis kind of thrashing is very undesirable, not "9

.7 '
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just because of its obvious incliTciency, but because of the external cffccts of the conflicting transactions.

3.2. Additional Condition-

In this subsection. we suggest some conditions which say that particular transactions must include at least

certain other transactions in their prefix subsequences. Ilie conditions presented here are meant to be

examples only, and arc not necessarily intended to hold for all SHARI)-likc systems and all transactions.

'licsc restrictions are useful in guaranteeing certain properties of execution-, as we demonstrate in Section 5.

On the other hand, they reduce system availability. System and application designers must weigh the

correctness gained by restricting the prefix subsequences against the reductions in availability.

First, we say that execution e is Iraisilive provided that the following condition holds. Iet T. '1 and 'r' be

transactions (i.e. transaction instances) occurring in c. If'r is in the prefix subsequence of' and 'r' is in the

prefix subsequence of'I", then 'I" is in the prefix subsequence of T. Transitivity is a natural requirement,

ensuring a basic sort ofconsistency among the prefixes seen by related transactions.
xample:

The execution in the previous example rails to be transitive, but for a trivial reason. Namely,
the RtFQUFSI'(PIO1) and RFiQUFSI'(PI02) transactions are assumed to execute with complete
prefixes. Since the MOVF-UP which generates move-up(PlOI) sees the cffects of
RFiQUFSI'(PIOI), transitivity would imply that this MOVF- UP should also see a complete
prefix, which is not what happens. However, note that RFQUFS' and CANCE.I.. transactions .,

have only trivial decision parts. so they would cause the same updates to be generated no matter ,

what prefix they see. "Iberefore, we can modify the execution slightly, assigning each of
RFQUI'l3I'(PI1O) and RFQUFSI'(Pi02) the prefix subsequence consisting of the first 198
transactions, without changing the updates generated. Ilhe resulting modified execution is
transitive.

Another restriction which might be useful in some cases is to require that some particular transaction T .,

must run with the complete prefix. ibis might be useful for very crucial transactions, say for an audit

transaction in a high-finance banking system: it might be desirable for audits to see the effects of all the

preceding deposit, withdrawal and transfer transactions. Although we have not done so in this paper, it

should be possible to prove strong correctness results about transactions running with complete prefixes. 'A

Requiring a complete prefix is very restrictive. There are some variants on this condition which are less

restrictive but still lead to some very useful properties. For example, we might limit the number of previous

transactions which are not visible to a particular transaction. Namely, transaction T is said to be k-complete in

execution c provided that, in e, 1' sees the results of all but at most k of the preceding transactions. The

k-completeness condition, for a particular k, does not seem to be a natural requirement to impose on an

implementation, since in general, it seems dilicult to guarantee a reliable value for k. (It might be possible to

".W
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Obtain an estimate of this value by considcring known characteristics of the message system together with the

expected rate or transaction prcessing.) However, k-completeness seems to be more useful as a hypothesis

ror conditional claims which describe the behavior of the system in different situations, thr different values or

k.

Anothcr kind of condition which limits the amount or concurrcncy is as filows. I.et G hc a group of

transaction instances. We say that group 0 is centralized in execution e provided that, in e. each of the

transactions in G includes in its prefix subsequence all thc others from G which precede it in the complete

prefix. For example, it might be useful to centralize all the transactions which could cause the cost of a

particular integrity constraint to become nonzero (e.g. all the withdrawal transactions, in a banking system).

This strategy might be used to guarantee that this cost can never become nonzcro. Alternatively. it might be .4

useful to centralize all the transactions which affect a particular object, or a particular portion of die database.

This strategy might be used to guarantee serializable execution for those objectL or portions of the database.

If the systcm guarantees that transactions in G are centralized, it might be useful for the application

programmers and users to imagine the existence of a centralizcd "agent" for G. For instance, it might be

useful for users of the airline system to think of a single agent who manages all the MOVE- UPs and

MOVE- DOWNs, i.e. all the movement between WAIT- 1.1ST and ASSIGN ED- IIST. This abstraction

could be useful even if there is actually no such centralized agent, but rather if (using some locking strategy,

for example), the agent is implemented in a distributed way.

Some specific groupings for the airline reservation system arc discussed in detail in Section 5. along with

examples ofcorrectness conditions that result from this requirement.

"lbe final condition presupposes a notion of time. A timed execution is an execution, together with a

nonnegative real number ("real time") for each transaction instance. l'hcse real times are intended to model

the times at which die transactions are initiated. In the event that the transaction order is determined by

timestamps, these real times need not be the same as the timestamps, and in fact the real times need not even

be ordered in the same way as the transaction sequence. However, if the order of real times is monotonic, we

say that the timed execution is orderly. An execution is said to have I-boundeddelay provided that the prefix

subsequence of each transaction T includes every transaction in the prefix whose real time is at least t smaller

than Ts real time. Thus, each transaction can see the effect of every other transaction that precedes it in the

transaction ordering and is not too reccnL
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3.3. Implementation Issues

It is very natural to use the conditions described in the preceding subsections as the correctness conditions

for the distributed system described in the Introduction. Thc system is able to assign timestamps in some way

so as to determine a total ordering of the transactions. 'he transactions are initially executed at one node, and

then information about the transactions is sent to the other nodes. Ihc nodes can undo and redo actions in

order to ensure that as ncw updates are seen, each succeeding update has the cffect that it would ir executed in

a complete prefix state. "lherc arc a number of optimizations which allow the system to avoid undoing large

numbers of transactions IIIK. and optimized storage structures make this process even more efficient [SKS]. ,

'he updates only are sent around, and arc undone and redone to yield a sequential ordering. The fact that

the decision parts are not redone means that the system does not satisfy the usual notion of scrializability;

however, the system does satisfy the prefix subsequence property, i.e. that every transaction sees the effccts of

a subsequence of its prefix.

It should be clear that an appropriate distributed communication protocol could guarantee transitivity.
perhaps by piggybacking information about known transactions on messages.

Tbere are a number of ways that a system could guarantee the subsequence restrictions described in thd

previous subsection. For instance, consider entralization of the transactions in G. It is possible to force all

the transactions in G to run at the same node of a distributed system. Alternatively, a transaction in G with ..

timestamp t might have to wait till it receives messages from all nodes saying "I will issue no more G

transactmns with timestamp earlier than L" This type of concurrency control might significantly reduce

system availability. T7he probabilistic concurrency control methods of [SJ provide other techniques for

obtaining centralization.

4. Conditions Guaranteed by the Transactions '

'Ibis section describes conditions which might be guaranteed by the transactions, analogous to preservation
of integrity constraints in the usual development. We do not intend to require that all of these conditions

hold for all set of transactions; rather, we expect different conditions to be useful in different applications.

We attempt to formulate the conditions in a general way, so that they might apply to different resource

allocation applications. We describe how the conditions apply to the airline reservation system.

lie first subsection defines some conditions involving costs of database states. Update parts of transactions

arc analyzed to determine whether or not they have the potential of increasing the cost, or are guaranteed to

decrease the cost, with respect to a particular integrity constrainL
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'1i second subsection discusses conditions involving fairness, a property particularly important in

applications in which certain entities compete for access to some resource or service. We define priority

among competing entities, and prove that certain conditions ensure that transactions preserve priority.

We define an application to consist of a collection of database states, (including designation of initial and

well-formed states), their integrity constraint information (including costs), and a set of transations. "Ihc

properties we describe in this section are properties of applications.

4.1. Conditions Involving Costs

We say that an application is inilially zero cost provided that Cost(s0) = 0. hat is, all the integrity

constraints arc satisfied in the initial database state. Clearly, the airline system is initially zero cosL
r. ,i'

Another interesting property would be that a transaction T "preserves integrity", just as it is required to do

in the usual concurrency control theory. A formal statement of this property might be: "ifs is a well-formed

state with cost(s) = 0, and ifI''(ss) = s'. then cost(s) = 0." 'Ibis says that ifT runs so that it changes the same

state that it sees, then it does not cause a violation of the integrity constraints if they were previously satisfied.

(We might say that T does not cause a violation of the integrity constraints "on purpose".) In the present

setting, a more general kind of condition is appropriate, which also involves the behavior of transactions when

the costs are non7cro.

We begin by describing a very strong property of a transaction T that says that there is no possibility of r
ever causing an increase in the cost fi)r constraint i. An update A is said to be increasing for constraint i

provided that there is some well-fi)rmed s for which cost(A(s),i) > cost(si). 'iat is, the update has the

potential of increasing the cost of constraint i, although it need not actually do so in all circumstances.

Otherwise, i.e. if the update could never increase the cost of constraint i. A is said to be non-increasing for

constraint i. A transaction T is safe for constraint i provided that the following holds. Ifs is a well-formed

state and 1).1 (s) = A, then A is nonincreasing for constraint i. Otherwise, i.e. if there is some well-formed s

for which 11,(s) is increasing, then we say that T is unsafe for constraint L

It,'xample:

In the airline system, the request(P) update is nonincreasing for the overbooking constraint.
but is increasing for the underb)king constraint, since in states with fewer than 100 assigned
people, and with P not already waitlisted or assigned, this request causes an increase in cost (of
$300). 'lie cancel(P) update is also nonincreasing for the overbooking constraint, but is increasing
for the underbooking constraint, since in states with at most 100 assigned people (including P) and
sufriciently many waitlisted people, this cancellation causes an increase in cost (of $300). On the
other hand, the move-up(P) update is increasing for the overbooking constraint, since in states
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with at least 100 assigned people, this move-up caus.s an increase in cost (or $900). Ilowcvcr, it is
nonincreasing for the underbooking constraint. Finally. the movc-down(P) update is
nonincrcasing for the overbooking constraint. but is increasing for the underboo)king constraint
since in states with at most 100 assigned people. this move-down causes an increase in cost (of
$300).

Example:

'lTe only updates that arc increasing for the overbooking constraint arc those of the form
move-up(P). Since only the MOVIl- UP transaction can generate a move- up(P) update, the
other transactions are all safe for the overbooking constraint. Ilowever, the MOVF-UP
transaction is unsafe for the overbooking constraint. On the other hand, the MOVIe-UP
transaction is safe for the underbooking constraint, but the other three transactions are all unsafe
for the underbooking constraint.

A less restrictive, interesting property to consider might he intuitively described as: "Transation T does

not increase the cost of integrity constraint i on purpose." One simple formal way of stating this property is:

"Ifs is a well-formed state and if'l'(ss) = s7, then cost(s.i) _ cost(s,i)." For technical reasons, we define a

slightly stronger formulation, as follows.

We say that transaction T preserves ihe cost of constraint i provided that the following holds. If s is a

well-formed state, 'F(s,s) = s', () = A and A is increasing for constraint i,. then cost(s',i) = 0. '"hat is. ft-

decision part of a transaction T will only invoke an update part that (potentially) increases the cost of

constraint i, when the state that ' believes will exist after the update runs, will have a cost of 0 for constraint i.

It is easy to see that this condition implies the simpler formulation described above. Also, it is obvious that if

T is safe for constraint i, then it preserves constraint i.
'..

Example:

We show that all transactions preserve the cost of the overbooking constraint. Since all '
transactions except for the MOVIi- UP transaction are safe for the overbooking constraint, they
preserve the overbooking constraint. 'The MOVH- UP transaction is unsafe for the overhooking
constraint, so more argument is required in this case. "he MOVI-i- UP transaction only generates
a move-up(I )) update from a state s for which Al~s) < 100 and Wl(s) > 0. Ihen the state s'
resulting from applying the move- up(P) update to s has Al .(s') _< 100, and thus cost(s',l) = 0.

Now consider the underbooking constraint. The MOVF- UP transaction is safe for the
underbooking constraint, and hence preserves the cost of the underbooking constraint. We also
show that the MOVI- )-DOWN traniaction preserves the cost of the underbooking constraint.
'Ihe MOVF- D)WN transaction only generates an update which is increasing for the
underbooking constraint from a state s for which Al Is) > 100. Then the state s' resulting from
applying the update to s has Al 4s') _ 100, and thus cost(s',2) = 0.

P. *,P.
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On the other hand, it is easy to sec that RFQUI2ST(PI) and CANCFI .(P) transactions do not
preserve the cost of the undcrbooking constraint.

Since we are working in a setting in which integrity constraints are not always satisfied. i.e. costs may be

nonzero, another useful property of transactions might be that they actually reduce the cosL not just preserve

it. A transaction which reduces the cost for an integrity constraint can be regarded as a "compensating

transaction" for violations of that integrity constraint. One possible formulation is as follows. We say that

transaction T compensates for constraint i provided that the following holds. If s is well-formed, T(s.s) = s',

and cost(s.i) > 0, then cost(s ,i) < cost(si)..,4.'

Lemma 1: Assume that all costs arc integral. Assume that T compensates for constraint i. 'Then
for any wcll-formcd s, either cost(si) = 0, or there is some integer k > 0 such that T(ss) =s ,

T(SlS) = s2,...,T(Sk.,) = sk and cost(sk,i) = 0.

Proof: By repeated application of the definition. I

This lemma implies that if compensating transactions are run atomicaljy from any point in an execution,

using any available prefix subsequence, they will eventually result in an apparent state in which the cost of the

constraint is 0. 'Iis idea can be stated formally as follows.

Corollary 2: Assume that all costs are integral. Assume that T compensates for constraint i. Lct
e be any finite execution. %u, any subsequence of the indices of e, and t the result of the updates
indexed by u, applied to s0.

Then either cost(ti) = 0, or else there is an extension of e to another execution, by an atomic
suffix consisting of'lVs only, such that the prefix subsequence of the first Tin the suffix is %,, C is
the apparent state after the last transaction, and cost(t',i) = 0.

E:xample:

It is easy to see that the MOVFI- UP transaction compensates for the underbooking constraint :4.

and the MOVE- DOWN transaction compensates for the overbooking constraint. In fact, it is
possible to show that from any well-formed state, any atomic sequence of intermingled
MOVI-UP and MOVF-l)OWN transactions which contain sufficiently many of each will
eventually reach an apparent cost of 0 for both integrity constraints.

r. .'o

Our last property involving costs, bounds the increase in cost that can result from the execution of a

bounded number of transactions. First we say that s --k t provided that there is a sequence of updates

leading from so to s, and a subsequence of that sequence containing all but at most k of the updates, such that ,.

the result of the subsequence applied to so is L That is, state t contains all the information in state s, except ,,

possibly for the effects of at most k updates. 'lhen we say that function f bounds the cost increase for integrity

constraint i provided that the following holds. For well-formed states s and L if s t, then cost(s.i) -e

cost(ti) + 1(k). Thus, f(k) bounds the increase in the cost of integrity constraint i that can be incurred by k .,

.0i
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transactions.
Example:

In the airline reservation system, it is easy to see that 900k bounds the cost increase for the
ovcrbooking constraint, while 300k bounds the cost increase for the undcrbooking constrainL

Lemma 3: Let %L be an atomic subsequence in execution c. Let s be the actual state before %.,
and s' the actual state after %. Let t be the apparent state before cLL, and t' the apparent state after
Cu.. If s <k t, then s' <k V. l

Proof: Straightforward. I

4.2. Conditions Involving Fairness

Another property of interest in some applications, i.e. those in which certain entities compete for access to

some resource or service, is "fairncss". In order to be able to state fairness conditions, we extend our

application model to include the competing entities. In each state, we designate certain entities as "known"

(i.e. currently competing). Also, in each state, we assume that there is a partial order on the known entities

which describes priority.

We say that transaction T preserves priorily provided that the following condition holds. If s is a well-

formed state and ''(s.s) = s', then: (a) If P and Q are both known in s and also in s', and if P precedes Q in s,
then P precedes Q in s'. (b) If P is known in s and Q is not. and I) and Q arc both known in s', then P precedes

Q in s7.

Example:

In our example, the people are the competing entities. In any state s, the known people are
those on the WAlT- H.1ST or the ASSIGNED- 11S, in s. For P and Q known in s, we define P '

< Q to mean that either P precedes Q on the WAIT-lIST, or P precedes Q on the
ASSIGNED- I.IS'I, or else P is on the ASSIGNED- I.IST and Q is on the WAI'- i.IST. 'Iben
all of the transactions preserve priority.

A stronger property is also of interest. We say that transaction T strongly preserves priority provided that the

following condition holds. Ifs and s' are well-formed states and T(s,s') = s", then: (a) If P and Q are both

known in s' and also in s", and if P precedes Q in s'. then P precedes Q in s". (b) If P is known in s" and Q is

not, and P and Q are both known in s", then P precedes Q in s".

Example:

It is easy to see that the RFQUES'T and CANCEl. transactions strongly preserve priority, but
the MOVE- UP or MOVE-Il)OWN transactions do not. For example, consider the
MOVE-UP transaction. Assume that in state s, person P is first on the WAIT-L.IST, and that
transaction T, run from state s, generates a move-up(P) update. In state s', P is on the

"-'I.f~N
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WA IT- I1SI but is not the first person: person Q is irst. 'Then the move-up(P) action still moves
P to the end of the ASSIGNEI)- IIST, in this case moving it ahead of Q. We have ) > Q in state
s', but P < Q in state s". 'Thus. the MOVE- UP transaction is capable of changing the relative
priorities of P and Q.

Similar remarks hold for the MOVE- DOWN transaction.

5. Properties of the Airline Reservation System

Ibis section illustrates how the ideas presented in the previous sections can be used to prove interesting

properties of executions of a particular application, the I-y-by-Night Airline System. Where it is possible, we

state the results in a general way, so that they might later be applied to other examples.

Proving properties of executions of SI IAR)-like systems is far more difficult than for systems that preserve

scrializability. It is necessairy to c(,qsider how a transaction's updates will execute on arbitrary well-formed

database states. not just the database state seen by the decision part. With current techniques, it is not easy to

understand how transactions and updates will behave in all possible situations, just by examining the

transaction code. Even some of the relatively simple-sounding results in this section have proofs that are

somewhat delicate. Our hope is that more experience with examples and proofs of this sort will eventually

make the task easier.

The first subsection gives a brief discussion of some policy decisions affecting priority, that were embodied

in the application design. The second subsection proves upper bounds on the costs of database states that

could result from running the airline reservation system. All the bounds in this subsection are proved using

the assumption that transactions see the effects of all but at most k of the preceding transactions. le cost

bounds are stated in terms of this k. T'he third subsection refines the necessary conditions for obtaining these

cost bounds and sharpens the bounds. The results in this subsection require only that transactions see the

results ofcertain critical preceding transactions, rather than arbitrary transactions.

'lle rourth subsection proves results which rely on "centralization" assumptions, i.e. that some transactions

see all of the preceding transactions of a certain type. Using centralization, we prove that some integrity

constraints can never be violated. The final subsection proves some fairness properties.

5.1. Pol1Cy Decision

Transactions in every application embody certain policy decisions. This subsection contains two examples

which illustrate the policy decisions embodied in the My-by-Night System.
Example:

Suppose that two REQU SI'(P) transactions occur without an intervening CANCEIXP). oth

7111.
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RI)UI'SI'(P) transactions generate rcqucst(P) updates. At some point, it might be necessary to
determine the eflect of a sequence of updates including both of these request(P) updates. '1bcn
the second rqucst(P) would be applied to a state s which reflects the previous occurrence of the
earlier rquest(P). Thus, P might be in WAIT-I.IST(s) or ASSIGNEI)-.IST(s); in this case.
the update is defincd to have no efFecL '1he policy embodied in this dcfinition is that if a person P
is already on the WAIl-I.IST or ASSIGNEI)-I.IST, and makes a duplicate request, the new
request does not change P's original priority. Alternative policy decisions might cause the second
request to alter the priority somehow.

Example:

It is possible for two MOVE- UP transactions to occur which invoke move-up(P) updates for
the same P. without an intervening CANCEI.(P), or MOVF-I)OWN which invokes a
movc-down(P) update. 'Ibis could happen if the second MOVE- UP transaction is initiated
without the first in its prefix subsequence. At some point, it might be necessary to determine the
effect of a sequence of updates including both of these move- up(P) updates. 'Iben the second
move-up(P) would be applied to a state s which reflects the previous occurrence of the earlier ,F
request(P). "lben P could be in ASSIGNE)- I.IS1(s): in this case, the update has no efTeci 'l1e -F.
policy embodied in this definition is that if a person P is already on the ASSIGNED- 1.IT, a new
attempt to assign him a seat does not alter P's previous priority. Alternative policy decisions might
cause the second move- up(P) to alter the priority.

5.2. Cost Rounds Resulting from k-Completenes

In this subsection, we prove upper bounds on the costs of the states reachable by running the airline system.

All the bounds in this subsection are proved using the k-completeness assumption, i.e. the assumption that

transactions see the effects of all but at most k of the preceding transactions. We begin with some preliminary

lemmas.
Lemma 4: let e be an execution, and T a k-complete transaction instance in e. Let s be the

actual state before T and s the actual state after T. in e. let t be the apparent state before T and C'
the apparent state after T.

1. 'len s 5k t and s :5k t'.

2. Let i be a constraint, and assume that f bounds the cost of constraint L Then cost(si) -.
cost(ti) + Rk) and cost(s',i) cost(t',i) + ftk).

Proof. Straightforward. I

The following theorem shows that k-complete transactions that preserve the cost of a constraint are

guaranteed not to make the cost of that constraint larger, (except in the special case that the cost is very small).

Theorem 5: Let e be an execution, and T a k-complete transaction instance in e. Let i be a
constraint, and assume that f bounds the cost for constraint i. Assume that T preserves the cost of
constraint i. Lct s be the actual state before T and s' the actual state after T, in e. ihen either
cost(s',i) : cost(si) or else cost(s',i) : fqk).

Proof: let t be the apparent state before T and t the apparent state after 1. 'l'hen t' = T(t,.
Assume that T invokes action A in cxecution e, i.e. that I).1 (t) = A.

! ",,'z'
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Assumc that costs'.i) > cost(si). 'Men A is increasing for constraint i. Since T prescrves the cost
of constraint i. it follows that cos(t'.i) = 0. By Lemma 4. cos(s*,i) _ cost(t,i) + Ilk) = lRk). I

We can specialize the preceding results to obtain bounds fi)r the airline system.

Corollary 6: I et c be an execution of the airline system, and T a k-completc transaction instance
in e. ILet s be the actual slate before '' and s' the actual state after T, in e.

1. IfT is any transaction, then cithc cost(s',I) s cost(s.1)orlsecost(sI) 900k.

2. IfT is a MOVE- UP or MOVE- I)OWN transaction, then either cost(s',2) cost(s.2) or
else cost(s'.2) < 300k.

Proof.

1. By Lemma 5, the fact that all transactions preserve the overbooking constraint, and the fact
that 900k bounds the cost increase for the overbooking constraint.

2. By Lemma 5, the fact that MOVEi-UP and MOVlF- I)OWN transactions preserve the
underbooking constraint, and the fact that 300k bounds the cost increase for the
underbooking constraint.

lle previous results are enough to yield an upper bound for the overbooking cost (although not for the

underbooking cost) in all reachable states. We obtain such an upper bound for the overbooking cost as a

special case of the following more general theorem.
'Iheoren 7: Assume that the application has the property that all transactions preserve the cost

of constraint i Let e be an execution. Let f bound the cost of constraint i. Assume that all
occurrences of transactions that are.unsafe for constraint i, in e, are k-complete. Let s be any state
reachable in e. Ihcn cost(si) < Ilk).

Proof: 'lie proof is by induction on the length of e. The basis, length 0. is immediate. For the
inductive step, assume that the length of e is at least 1. and that T is the last transaction in e. Let s
be the actual state before T, and s' the actual state after T.

'Ibe inductive assumption implies that cost(si) < Ilk). If cost(s',i) < cost(si). the claim is
immediate. So assume that cost(s'.i) > cost(si); then T is unsafe for constraint i, and so T is
k-complete in e. by assumption. Then Theorem 5 implies that cost(s',i) flk), as needed. I

Our invariant upper bound on the overbooking cost follows as a corollary.
Corollary 8: Iet e be an execution of the airline system. Assume that all MOVE-UP

transactions are k-complete in e. Lets be any state reachable in e. Then cost(s,1) 900k.
Proof: By 'llcorem GI"NFRAL-INVARIANT-BOUNI), the fact that all transactions

preserve the overxx)king constraint, the fact that 900k bounds the cost increase for the
overbooking constraint, and the fact that only MOVE-UP transactions arc unsafe for the
overbooking constraint. I

We would also like to obtain an analogous invariant upper bound for the underbooking cost.
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Unfortunately, such a bound does not hold for our airline system, since it can fail in an execution where many

requests or cancellations arrive in rapid succession without sufficient intervening MOVI'- UPs. In order to

prove an upper bound on the underboking cost. it appears to be necessary to assume something about the

MOVE- UP transactions occurring sufficicntly frequently.

To be specific, we dcfinc a partition g of the indices of e into groups consisting of consecutive indices to be

a grouping ofre for constraint i provided that each group satisfies one of the following.

(a) It consists of exactly one index j. and transaction T, preserves constraint L

(b) If t is the apparent state after the group, then cost(ti) = 0.

"That is, we will consider instances of transactions that preserve the cost of constraint i individually, but we will

consider other transactions together, paying special attention to points during the execution where the

transactions believe they have reduced the cost or the constraint to 0. Of course. not every execution will have

such a grouping, but if the application contains a compensating transaction for constraint i, Lemma 2 implies

that executions with such groupings are abundant. 'lbe normal states of e, with respect to a particular

grouping, are just those states which are reachable after the groups, i.e. the actual states after the groups.

'lTe next theorem says that, if we restrict attention to normal states only, an invariant upper bound holds for

the undcrbooking constraint.
Theorem 9: .et c be an execution and 0 a grouping of e for constraint i. Assume that f bounds

the cost of constraint i. Assume that all transactions that preserve the cost of i, as well as all
transactions that occur at the ends of groups, are k-complete in e. Let s be any normal state
reachable in e. Then cost(s,i) - f(k).

Proof: By induction on the length of e. The basis, length 0, is immediate. For the inductive
step, assume that the length of e is at least 1, and that T is the last transaction in e. Let s be the
actual state before 1. and s' the actual state after T. Lect t be the apparent state before T. and t the
apparent state after T. There are only two cases that need to be considered.

if T is the last transaction in a group, then cost(t',i) = 0. Since T is k-complete, Lemma 4
implies that cost(s',i) cost(t',i) + fRk), = f(k), as needed.

Otherwise, T is a transaction that preserves the cost of constraint i, and occurs alone in a group.
Then s is a normal state in e. "1'e inductive assumption implies that cost(si) < 1(k). If cost(s',i) :5
cost(si), the claim is immediate. So assume that cost(s',i) > cost(si). "Icn 'leorem 5 implies that
cost(s'.i) : f(k). as needed. I

'The preceding theorem specialimes immediately to our example. The REQUFSI' and CANCEL

transactions are the ones that do not preserve the underbooking constraint, while the MOVE- UP transaction

compensates for that constrainL Thus, executions which have groupings for the undcrbooking constraint can

be constructed by including a sequence of MOVE- UP p'ansactions immediately after each RFQUIST and

after each CANCE, transaction.

'.,.-.
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Corollary I0: ILt e be an execution and g a grouping of e for the underbooking constraint
Assume that all MOVF- UP and MOVE- D)OWN transactions, as well as all transactions that
occur at the ends of groups. are k-complete in e. het s be any normal state reachable in c. 'Ihen
cost(s2) : 300k.

'lhus under suitable k-completeness assumptions, combined with assumptions about frequency of

compensating transactions, we can prove invariant upper bounds on the costs in all reachable states (or all

normal reachable states).

'lhe ideas used to prove the preceding results can be used to say more. Consider an execution e in which

costs become very large (because k-completeness or frequency assumptions rail). If there is ever a time during

the execution after which good completeness and frequency properties begin to hold, it is easy to see that

correspondingly good upper bounds will be reestablished. For instance, we can get a result of this type for the

underbooking constraint, using the ideas of Corollary AIRIINF-BOUNI)-4. If we assume that the .-

required transactions arc k-complete from some point on in thd execution, then (once the next compensating

group has occurred), the underbooking cost satisfies an upper bound of 300k. On the other hand, if we want

to obtain a similar result for the overbooking cost, we cannot base it on the simple ideas of Corollary 8.

Rather, we would have to use ideas similar to those used for the underbooking cost. At some point after

k-completeness begins to hold in the execution, we would hypothesize a group of MOVE- I)OWNs bringing

the apparent overtxx)king cost to 0, in order to compensate for any excess overbooking cost. With such a

hypothesis, an eventual 900k bound on the overbooking cost could be proved. We omit formal statements of

these results here.

It is possible to combine the results of Corollaries 8 and AIRILINE- BOUNI)-4 to get a single invariant

upper bound on the total cost for the airline system. For example, we obtain the following.
Corollary I1: let e be an execution and g a grouping of e for the underbooking constraint.

Assume that all MOVE- UP and MOVE- )OWN transactions, as well as all transactions that
occur at the ends of groups, are k-complete in e. Let s be any normal state reachable in e. 'Ien
cost(s) -; 900k.

Proof: Immediate from Corollaries 8, AIRLINE-IBOUND-4 and the fact that every well-
formed state has either cost(s,1) = 0 or cost(s2) = 0. I

We finish this subsection with a closer look at the kinds of improvements that arc guaranteed by

compensating transactions. For example, it would be nice to have a lemma which says that a k-complete

transaction which compensates for constraint L is guaranteed to actually improve the cost of constraint .

unless that cost is small. Unfortunately, this is not true. Although the compensating transaction might "try"

to improve matters. it is possible that, because of missing information from its own prefix, it migbt-not

succeed in doing so. For example, a MOVE- I)OWN transaction might observe too many people on the ..

,~
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ASSIGNED-ILIST, and might therefore invoke a move-down update. ut if it happens to invoke a

move-down for a person who had actually cancelled in the interim, that movc-down will not improve the

actual cost.

We do know, however, that running the transaction several times in succession (atomically) can guarantee

actual improvement. More precisely, we obtain the following.
LAemma 12: Assume that all costs are integral. ILct f bo)und the cost of constraint i. Assume that

'T compcnsates for constraint i. ILet c be any finite execution, cI, any subsequence of the indices of
e. containing all but at most k of the indices in e. and let s be the actual state after e.

'Ihen either cost(si) S Ilk), or else there is an extension or e to another execution, by an atomic
suffix consisting ofl s only, such that the prefix subsequence of the first T in the suffix is %,, s' is
the actual state after the last transaction, and cost(s',i) :5 fk).

Proof' Lct t be the result of %L applied to N. 'Ihen s <kL By Corollary 2. either cost(ti) = 0. or
else there is an extension of e to another execution, by an atomic suffix consisting of'l's only, such
that the prefix subsequence of the first T in the suffix is %,. C is the apparent state after the last
tranaction, and cost(ti) = 0. If csr(Li) = 0. then since s <k L it follows that cost(s,i) < cost(ti)
+ Ilk) = IRk), as needed. Otherwise, Lemma 3 implies that s -- t', and so cost(s',i) cost(t',i) +
Rk) = Ilk), as needed. I

"lhis theorem specializes to the airline system as follows.

Corollary 13: Let e be any finite execution of the airline system, RL any subsequence of the
indices of e, containing all but at most k of the indices in c. and let s be the actual state after e.

I. Fither cost(s,l) :5 900k. or else there is an extension of e to another execution, by an atomic
suffix consisting of MOVEi- DOWNs only. such that the prefix subsequence of the first ''
in the suffix is eL, s" is the actual state after the last transaction, and cost(s'.l) 900k.

2. Fither cost(s.2) :5 300k. or else there is an extension ore to another execution, by an atomic
suffix consisting of MOVF - UPs only, such that the prefix subsequence of the first T in the
suffix is %,1 s' is the actual slate after the last transaction, and cou(s',2) 5 300k.

Thus, the cost bounds of this subsection limit the damage that can be caused when transactions operate with

a bounded amount of missing information. As noted before, the bounds we obtain are intuitive rather than

surprising. However, we know of no way to prove these sorts of intuitive statements in earlier frameworks.

We note that it is possible to obtain more refined versions of the results in this subsection. Generally, it is

not actually necessary that the indicated transactions see all but k of the entire set of preceding transactions.

Rather, only certain types of preceding transactions are important in each case, since they suffice to determine

the results of critical decisions. For instance, in Corollary 8. it is not necessary that the MOVF - UPs be
k-complete: for example, it would suffice for them to see all but k of the preceding MOVH- UP and

RFiQUFST transactions. We examine this issue more closely in the next subsection.

,.,-..
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5.3. More Refined Cost Bounds
In this subsection, we reconsider some of the results of the preceding subsection. We sharpen those results

so that they only require that transactions see the results of certain critical preceding transactions, rather than

arbitrary preceding transactions. 'Ilic results in this subsection give detailed information that is specialized to

our application: thus, they are not stated in very general terms. However, it seems that the general approach

used in this subsection should extend to other applications.

We begin by proving some basic lemmas about sequences of updates. It is helpful to think of these results

in terms of an automaton whose states represent (abstractions of) the global states of the database, and whose

state-transitions represent the updates. (The decision parts of transactions are not modelled by this

automaton.) The sequence of updates which occur in an execution is modelled by a path in the automaton.
We arc interested in identifying subsequences of a sequence of updates, which are guaranteed to lead to the

same state in the automaton as does the whole sequence. If a transaction executes seeing only such a

subsequence as its prefix subsequence, it would be guaranteed to have accurate inronnation.

let A be a sequence of updates (of the Fly-by-Night airline system) and P a person. As assignment witness

for P in A is an ordered pair of updates. (A.B), from 4, satisfying the following conditions.

(a) A is a request(P) update. I3 is a move- up(P) update, and A precedes 11 in .
(b) 'Trce arc no cancel(P) updates after A in 4.

(c) 'hcre are no move-down(P) updates after 1) in A..

A waiting witness for P in A is either of the following:
(1) An update A, from .4, satisfying the following conditions.

(a) A is a request(P) update.
(b) 'liere are no cancel(P) or move-up(P) updates after A in A.

(2) A pair (A.B) of updates satisfying the following conditions.

(a) A is a request(P) update, 1I is a move- down(P) update, and A precedes R in ..

(b) 'liere are no cancel(P) updates after A in A.

(c) There are no move- up(P) updates after It in .A..

Recall that a person is known in a given state s if he is either in ASSIGND- LI.IST(s) or WAI'-LIST(s).
Lemma 14: Let A be a sequence of updates, and s the state resulting from applying .4 to sO. Let

P be a person.
(a) P is known in state s exactly if there is a request(P) update in .A which is not followed by a
cancel(P) update.
(b) P is in ASSIGNVIDI)- l.IST(s) exactly if there is an assignment witness for P in A.
(c) P is in WAIT- 1.IS'(s) exactly if there is a waiting witness for P in .4.

Proof: By analysis of the possible state transitions. I
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For the next several lemmas, we use the following notation. ILet .4 be a finite sequence of updates and let S-

be a subsequence of X. I Let s be die stale which results from applying A to so, and let t be the state which

results from applying % to so. he next lemmas relate the states sand L
Lemma IS: Let P be a person. Assume that 11 is in ASSIGNF)- lIST(s), and lct (A,1) be an

assignment witness for P in A. Assume that S contains both updates A and I. Then P is in
ASSIGNED- UIST(t).

Proof: By definition of an assignment witness, A is a request(P) update, !1 is a move-up(P)
update, and A precedes I in A. Also, A contains no canccl(P1) updates after A and no
move-down(P) updates after It. Now. % contains both A and B, in that order. AI), S cannot
contain any cancel(lP) updates after A or movc-down(P) updates after 11, since there arc none in
A. 'Ilbus. (A,B) is an assignment witness for P" in S. Lcmma 14 implies that P is in
ASSIGNED- L.IS7l(t). I

Lemma 16: Let P be a person. Assume that P is in WAIT- lIST(s). Assume that at least one of
die following holds.
(a) A is a waiting witness for P in A, and S contains update A.
(b) (A.1I) is a waiting witness for P in At and 1i contains both updates A and 13.
lhen 11 is in WAIT-II(t).

Proof: Similar to the proof ofrlemma TWO. I

The preceding two lemmas will be applied in cases where A denotes the entire sequence of updates

preceding a particular transaction T. while Si denotes the subsequence of updates actually seen by T. l'hc

lemmas imply that if T sees certain of the preceding transactions, and a person P is actually on die

ASSIGNI)-I-,IS'T or WAIT- LIST, then '1' is guaranteed to know it. On the other hand, the next several

lemmas deal with the opposite implication; they describe circumstances under which a transaction that

believes that a person P is actually on the ASSIGNED- LIST or WAIT- LIS, is guaranteed to be correct.
Lemlna 17: Let P be a person. Assume that S contains the last cancel(P) update, if any, in A. If

P is known in t then P is known in s.
Proof. Assume P is known in t. 'lhen Lemma 14 implies that there is a requcst(P) update in Si

which is not followed by a cancel(P) update in S. 'Ibhis request(P) update also occurs in A, and
there arc no cancel(P) updates after the requst(P) in A, since Si contains the last canccl(P) update
from A. 'licercforc, I .cmma 14 implies that P is known in s. I

Lemma 18: Let P be a person. Assume that di contains the last move-down(P) update, if any.
in A. Also assume that Si contains the last cancel(P) update, if any, in A. If P is in
ASSIGNED- IIS'(t). then P is in ASSIGNED- 1,IST(s).

Proof: Assume that P is in ASSIGNE')-iISTI(t). 'Ihen Lemma 14 implies that there is an
assignment witness (AB). for P in S. Thus. A is a rcquest(P) update and B1 is a move-up(P)
update. A precedes I in I. there are no cancel(P) updates in Si after A and there are no
move - down(P) updates in S after B. Updates A and !1 also appear in A, in that order. 'therc are
no cancel(P) updates after A in A, since S contains the last cancel(P) update (if any) in A.
Similarly, there are no move-down(P) updates after B in A. 'thus. (A,11) is an assignment witness
for P in A. Lemma 14 implies that P is in ASSIGNED- LIST(s). I

LIemma 19: l.et P be a person. Assume that 66 contains the last move-up(P) update, if any, in.
A. Also assume thati contains the last cancel(P) update, if any, in A. IfP is in WAIT-IIST(t),
then P is in WAIT- lIST(s).
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Proof: Analogous to the proof of ILemma ON E . I

Again, we can apply the preccding 'three lemmas to the case where A denotes the entire sequence of

updates preceding a particular transaction , and S denotes the sequence of updates actually seen by T. The

lemmas imply that if T sees certain of the preceding transactions, then T is guaranteed to know that a

particular P is not on the ASSIGN FD- IIST or WAI- IJS'.

Now we can prove refined versions of the results of the previous subsection. Since the notation ard details

become somewhat unwieldy, we present versions of Corollaries 6 and 13 only, and omit the others.
TIheorem 20: let e be an execution orthe airline system, and T a transaction instance in e. Let s

be the actual state before T and s' the actual state after T', in e.

I. Assume that there aire at most k persons P such that P is in ASSIGNFI)- L.IST(s) but the
prefix subsequence seen by T fails to include an assignment witness for P. 'llien either
cost(s',l) < cost(sl) or else cost(s'.1) < 900k.

2. Assume that T is it MOViE- UP or MOVF- DOWN transaction. Assume that there are at
most k persons 11 such that P is not in ASSIGNFI)- I.IST(s) but the prefix subsequence
seen by T fails to includc either the last canccl(P) or the last move-down(P) from 4. 'ITen
either cost(s',2) < cost(s,2) or else cost(s',2) 300k.

Proof: L.t t be the apparent state before T and V the apparent state after T. 'Then t = T(tt).
Assume that T invokcs action A in execution e, i.e. that l.r(t) = A.

1. Assume that cost(s',) > cost(sl). 'Tlen T is a MOVF-UP transaction, A is a move-up
update, and Al4t) < 100. For all persons P in ASSIGNFID-1.IST(s), except for the k
exceptions described in the hypothesis, l.cmma 15 implies that P is in
ASSIGNEI)-IIST(t). 'llicrefore, Al.s) < Al Xt) + k < 100 + k. It follows that Al 4s')
100 + k, and so cost(s',l) < 900k.

2. Assume that cost(s',2) > cost(s,2). Then r is a MOVE- I)OWN transaction, A is a
move-down update, and Al (t)> 100. For all persons P in ASSIGNED-.IST(t), except
for the k exceptions described in the hypothesis, Lemma 18 implies that P is in
ASSIGNED- L.IST(s). 'Iherefore, Al(s) > A(t) - k > 100 - k. It follows that Al.(s) 100
k, and so cost(s',2) _ 300k.

"lheorem 21: Let e be any finite execution of the airline system, c, any subsequence of the
indices of e. and let s be the actual state after c.

1. Assume that there are at most k persons P such that P is in ASSIGNED- I.IST(s) but 11L
fails to include an assignment witness for P.
Thcn either cost(s. 1) < 900k. or else there is an extension of c to another execution, by an
atomic suflix consisting of MOVF- I)OWNs only, such that the prefix subsequence of the
first T in the suffix is cL., s' is the actual state after the last transaction, and cost(s', 1) < 900k.

2. Assume that there are at most k persons P such that P is in WAIT- I.IST(s) but 'U fails to
include a waiting witness for P. Also assume that for all but at most k persons P, if P is not

~q
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in ASSIGNIEI)-I.IST(s), then % includes the last canccl(IP) (if !ify) from c. and R,
includes the last move-down(P) (if any) from c.
Then either cost(s.2) < 300k. or else there is an extension of c to another cxecution, by an
atomic suffix consisting of MOVF - UPs only, such that the prefix subsequence of the first
T in the suffix is cd., s' is the actual state after ie last transaction, and cost(s',2) 5 300k.

Proo: Lct t be the result of cU applied Lo s0.

I. By Corollary 2, either cost(tl) = 0, or else there is an extension of c to another execution, by
an atomic suffix consisting of MOVE- DOWNs only, such that the prefix subsequence of the first
T in the suffix is CU, such that C is the apparent state after the suffix, and cost(', I) = 0.

First assume cost(t,I) = 0. 'Tlien Al4t) 100. Let P be any person in ASSIGNI'I)-I.IST(s).
If P is not one of thc k exceptions described in the hypothcsis. then Lcmma 15 implies that P is in
ASSIGNIiI)-l.IS'I'(t). It follows that Al(s) _ Al t) + k < 100 + k. so cost(s.l) 900k, as
needed.

Second, assume that the extension exists. 'Ibcn Alt') < 100. L.et the actual state after the
suffix be s'. Let P be any person in ASSIGNII)-IIST(s'). 'Iben P is also in
ASSIGN I)- IIS'(s), since the suffix does not add anyone to the assigned list. IfP is not one of
the k exceptions described in the hypothesis, then Iemma 15 implies that P is in
ASSIGNI)-.IST(t). None of the MOVE-I)OWNs in the suffix could have generated a
move-down(P), since if one did, then 11 would not be in ASSIGNEI)-IS'(s). hlerefore, P is
in ASSIGNF'I)- LIST(t'). It follows that Al,(s) < Al4t') + k < 100 + k, socost(s',l) <5 900k.

2. By Corollary 2, either cost(t,2) = 0, or else there is an extension of e to another execution, by
an atomic suffix consisting of MOVE- UPs only, such that the prefix subsequence of the first T in
the suffix is cU, t is the apparent state after the suffix, and cost(t',2) = 0.

First assume cost(t,2) = 0. Then either Al,(t) > 100 or else Wl,(t) = 0. Let P be any person in
WAIT- ISI'(s). If P is not one of the k exceptions described in the hypothesis, then ILemma 16
implies that P is in WAIT-IS(. It follows that WI.(s) < WL,(t) + k. Lct P be any person in
ASSIGNED-I.IST(t). If P is not one of the k exceptions described in the hypothesis, then
Lemma 18 implies that P is in ASSIGNED- I.IST(s). It follows that A[4t) :5 AL(s) + k. 'hus,
either WlAs) < k or else Al(s) 2 100 -k. ''ihus, cost(s,2) < 300k.

Second, assume that the extension exists. Then citicr Al~t') e 100 or else Wilt') = 0. Let the
actual state after the suffix be s'. Lct P be any person in WAIT-I.IS'(s'). Then P is also in
WAIT- l.IST(s), since the suffix does not add anyone to the wait lisL If P is not one of the k
exceptions described in the hypothesis, then L.emma 16 implies that P is in WAIT-IJST(t).
None of the MOVE- UPs in the suffix could have generated a move- up(P), since if one did,
then P would not be in WAIT-I.SI'(s). 'lierefore, ) is in WAIl'-I.IST(t'). So Wl(s') <
WI.(t) + k.

Now let P be any person in ASSIGNEI)- LIST(t'). 'J'hen P must be known in , since otherwise
the move-ups in the suffix could not put P into ASSIGNEI-I.IST(t'). If P is in
ASSIGNEI)- I.T(t), and P is not one of the k exceptions described in the hypothesis, then
Lemma 18 implies that P is in ASSIGNI'I)-L.IST(s) and hence in ASSIGNEI)-I.IS'(s'). On
the other hand, if P is in WAIT- LIST(), and P is not one of thcsc same k exceptions, then
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Lemma 17 implies that P is known in s. Since P is in ASSIGNEI)-L.IST(t'). a move-up(P)
occurs in the suffix. lThcn P is in ASSIGNE')-I.IS'I'(s'). So Al.(s') Al(t') - k. It follows that
either WlAs') _ k or AlM s') > 100 - k. In either case, cost(s',2) < 300k.I!

It is also possible to give refined versions of Corollaries 8, 10, and 11. We omit the details.

5.4. Cost Bounds Resulting from Centralization

In this subsection, we give two results which describe conditions under which overbooking cannot occur at

all. 'llese conditions involve fairly strong centralization assumptions. 'IThc basic idea is that if all the

move -up decisions are made centrally, it should not be possible to ovcrbook. lowever, in order to prove

this result, it is necessary for us to make A)me technical restrictions involving the requests.

TIheorem 22: I.ct e be a transitive execution. Assume that the MOVE- UP transactions are
centralized in e. Assume that for each P the transactions that generates updates involving P are
centralized in e. Let s be any state reachable in c. 'Iben cost(s,I) = 0.

Proof: 'Ibe proof is by induction on the length of e. 'Ile base case, where the length of e is 0, is
easy. So assume that the length of e is at least one. Iet T be the last transaction in e. I.et t be the
apparent state before T and t' the apparent state after T. I.et s be the actual state before T, and s'
the actual suite after T. Let A be the actual sequence of updates preceding '', and let S be the
sequence whose effects are seen by T.

'Ibce inductive assumption says that cost(s,1) = 0. 'he only way that cost(s',1) can be nonzero is
ifT is a MOVE- UP transaction which generates a move-up update. 'l'hen AL(t)< 100.

We claim that ASSIGNFI)- lIST(s) C ASSIGNF1D- I.ST(t). If this is so, then AL(s) < 100,
so AlAs') __ 100 and cost(s'.1) = 0, as needed.

So fix P in ASSIGNI)-I.IST(s). "lben there is an assignment witness for P in .4. The le

move- up(P) of the pair also appears in 6. since the MOVE- UP transactions are centralized. A
The request(P) of the pair appears in the prefix seen by the move- up(P), since the transactions
generating P updates are centralized. I'berefore, the request(P) also appears in S. by transitivity.
'Thus, 9 contains the assignment witness, and Lemma 15 implies that P is in
ASSIGNI)- l.IST(t). I

'le second result of this subsection is just a minor variant of the first, with an alternative technical

restriction on the requests.

'theorem 23: Let c be a transitive execution. Assume that the MOVE-UP transactions are
centralized in e. Assume that for each P. there is at most one REQUFS'(P) transaction in c. Let s ,C,
be any state reachable in c. "lhcn cost(s,l) = 0. A

Proof: 'Ibc proof is nearly identical to the preceding one. The only difference is in the argument
that the request(P) is in the subsequence seen by the move-up(P). We know that some
requst(P) appears in the subsequence seen by the move-up(P) action, for otherwise that action
would not have been invoked. Since there is only one such rcquest(l'), the claim holds. I ..
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Of course. it would be better if we could prove the same result only assuming centralization of MOVF- UP

transactions and transitivity, and not making any assumptions about the transactions generating updates for

the same person. But this stronger statcment is not true, as is shown by the following example.

E"xample:

Consider an execution which consists of a succession of blocks of 4 transactions each,

REQUFST(PI), CANCF I,(PI). RIEIQUF lST(PI). MOVE- UP.
REiQUIST(P2), CANCEI P2), RIEQUI'ST(P2), MOVE- UP....
RIIQUI:T(I10l). CANCI-I.(I1i0), RIIQUEI'ST(PlOI), MOVE- UP.

'Ilie successive MOVE- UP transactions produce updates move-up(lI ))..., move-up(PI1).
This execution is possible if cach of the first 100 MOVI- UP transactions sees the first request in
the same block, but not the cancel or the second request. The last MOViE-UP sees all the
previous MOVE- UP's and the requests that they sec. plus the cancels. Then this last
MOVii- UP will think that tie earlier MOVii- UP's atled erroneously. and that there is really no
one on the assigned list. It will therefore decide to move P101 up. 'Ilia cost after this execution is
non zero.

Similar results to those in this section should be provable, at least in principle, for the underbooking cost.

ttowever, the centralization assumptions that appear to be needed are so strong that the results do not seem

very interesting.

5.5. Fairness

In this subsection, we consider fairness properties of the airline reservation system. As before, the results

are stated in terms of the specific example, but the techniques appear to generalize to other applications.

For this section, we make the following very strong assumption. We assume that all MOVE- UP and

MOVE- DOWN transactions are centralized: thus, there is essentially one "agent" making all decisions

about seat assignment. It remains to be seen whether this assumption can be weakened, while still permitting

proof of interesting fairness claims.

Recall the definition of passenger priority from Section 4.2: wc say P< Q. for known P and Q, to mean that * ov

either P precedes Q on the WAIT-I.IST, or P precedes Q on the ASSIGNEI)- I.IST, or else P is on the

ASSIGNEI)- ISST and Q is on the WAIT- LIST.
i lennia 24: i.et A be a sequence of updates, and let S be a subsequence of A. Let P and Q be

people. Assume that GA contains all move-up and move--down updates from .A. Also assume
that 11 contains all the request and cancel updates for P and Q, from .A.. Let s be the result of A
and t the result of f9. applied to s0. Then P < Q in t if and only if P < Q in s.

Proof: 'llie updates in 4 which are not included in S are only request and cancel updates for
persons other than P and Q. 'l'hese cannot affect the relative priority of P and Q. I 'V

W. VU
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'The following thcorem says that, under certain restrictions. the relative priority of two requests is

determined at the time the "agent" for MOVE- UP and MOVF- IX)WN transactions first learns about both

requests. Thbus, cxcept for an initial period of uncertainty during which the agent has not yet learned about

the requests. their relative priority is fixed. 0

''heoren 25: Let e be a transitive execution. Assume that the MOVF- UP and
MOVI'- DOWN transactions are centralized. Let P and Q be people each of whom has exactly
one RFQUEST transaction, but no CANCH. transactions, in e. L.et T be a MOVE-Ull or
MOVE-I)OWN transaction having both RFQUES'I(P) and Rl:QUFST(Q) in its prefix ,

subscquence. ILet t be the apparent state, and s the actual state, bcfre ''. If P < Q in t, then also P
< Q in s and all other actual database states occuring later in e.

Proof: First, we show that P < Q in s. ILet A be the sequence of updates preceding T, and CS the
subsequence actually seen by T. The centralization assumption implies that % contains all
move- up and move-down updates from A. The other assumptions imply that 6- contains all
the request and cancel updates for P and Q, from .A. Then ILemma 24 implies that P< Q in s.

Assume thatT" is the first transaction (T or later) after which it is false that P < Q. L.et t I be the
apparent state before T 1 and tI the apparent state after T. I.et sI be the actual state before T1 and

the actual state after ' I. 'hen P < Q in sI but not in s'. I'he only possibility is that T is ai
MOVI- UP or MOVI- DOWN transaction that causes the order of P and Q to become
interchanged; thus, Q < P in s'.

We claim that P < Q in t,. Let .A. be the sequence of updates preceding TV and let 6-8 be the

subsequence actually seen by 1. S contains all the moving updates from ,A, by the centralization
assumption. Also, It contains the requests for P and Q, since the subsequence seen by T does, T is
either equal to T1 or else is in T's subsequence, and transitivity holds. llus, applying ILemma 24,
the orderings in t and sI are the same, so P < Q in t1. 4

Now we claim that Q < P in t h Iis follows using Lemma 24, since Q < P in s,' . But if P < Q in
t, and T1 (t,t 1) = t then P < Q in t,', since all transactions preserve priority. This yields a
contradiction. I

We can interpret the preceding theorem as follows. We might imagine that at the actual flight time, next

January 1, the complete execution becomes known to the check-in attendant. "he people that he actually

allows to proceed onto the airplane are the 100 people who show up, who have the highest priority in the final

database state. (CANCFI. transactions can be run for the others, and then sufficiently many MOVI'- UP or

MOVE- DOWN transactions to cause Al. to equal 100 or Wl. to equal 0.) If P and Q had previously become

known to the "agent" for MOVE- UP and MOVE- DOWN transactions, with P < Q, and if P and Q both

show up, if Q gets onto Flight 1, then so does P.

l"xample:

Our transaction definitions can lead to the following behavior for passengers' relative priorities.
A.sumc that RIi'QUI:ST(P) precedes RI-QUi:SI(Q). but the requcst(Q) update becomes known
to the "agent" belbre the request(PI) update. 'I hen a move-- up(Q) can (c:cur, which moves Q up
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past P. Later, a move- down(Q) can occur. When this happens. our delinitions say that Q gets put
at the head of the WAIT- IIST, ahcad of P. Subsequcntly. tie moving agent can learn about the
requcst(P) also. At that point. Q ( P, so by Icorem 25, Q remains ahead of P. This happens even
though there is sufficient intormation in the system to allow for Q to be placed on the
WAI'-I.1ST after P. which is in keeping with their timestamp order for requests. hlius, th2
order obtained in the final state is determined by the order at the timc a MOVI- UP or
MOVF- I)OWN transaction first sees both requests, but is not necessarily determined by the
actual order in which the requests were initially made.

It is possible to redesign the application to respect the original request order in this situation. It
suffices to include request timestamps explicitly in the database. iach of the two lists would
always be kept sorted according to timestamp order. Thus. when the request(P) becomes known
to the agent, he would insert P ahead of Q on the waiting list. (More precisely, when the
move-down(Q) is run from a stte in which P is on die waiting list. Q is not placed at the head of
the waiting list, but rather is inserted in timestamp order, after P.)'Ibis relative position would be
maintained from then on.

'Tiheorem 25 makes a claim about relative priorities at times after a conceptual "agent" learns about two

requests. In order for this condition to be meaningful as a correctness claim, the user must have a fairly

detailed and sophisticated conceptual model of system operation, including prefix subsequences and agents.
It might also be interesting to state fairness claims which involves a less detailed conceptual model. For

example, we might want to state a condition which could be paraphrased aa follows. "if a RQUFST(P) is
made sufficiently earlier than a RI'QUEST(Q), then P must precede Q in the final state." The following

lemma can be used to infer such a property.
Lemm'a 26: I.et e be a transitive execution. Assume that the MOVE- UP and MOVE- DOWN

transactions are centralized. Let P and Q be people cach of whom has exactly one REQUEST
transaction, but no CANCFI. transactions, in e. Assume that RIIQUEST(P) precedes
ItF.QUi:S'I'(Q) in e. Further assume that any MOVE- UP or MOVE- DOWN transaction that
has lI,'IQUI'S''(Q) in its prefix also has REQUFST(P) in its prefix. Then P < Q in any actual state
reached during e in which both P and Q are known.

Proof: Assume the contrary, and let T be the first transaction in e such that Q < P in the actual
database state after ''. Let t be the apparent state before and t' the apparent state after 'I'. Let s be
the actual state before and s' the actual state after 'T. 'Ien Q < P in s' but not in s.

First. we claim that ' must be it moving transaction. lfT were a REQUIFST(P) transaction, then
the R IQUFS'I'(Q) cannot be reflected in s' since it occurs after RIIQUFST(P). All other cases can
be ruled out by similar trivial arguments. So T is a moving transaction, thus, P and Q ai2 Known
in s, so that P' < Q in s. The only possibilities are that T is a MOVE- UP transaction that moves Q
up past P, or that T is a MOVI'-I)OWN transaction that moves P down past Q. For either of
these to happen, at least one of request(P) and request(Q) must be in the prefix subsequence ofT. -

Case 1: T has both request(P) and request(Q) in its prefix subsequence.
Then both P) and Q arc known in L If P < Q in L then Theorem 25 implies that P < Q in s', a
contradiction. On the other hand, if Q < P in t then l'heorem 25 implies that Q < P in s, agaita- .
contradiction.
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Case 2: T has only requcst(P), but not requcst(Q), in its prefix subsequence.
'lhcn '' must be a MOVi- )OWN which moves 1) down past Q. Thcrcforc. Q must be in
ASSIGN I'I)- lIST(s). But in order for this to occur, there must bc s)me MOVI- UP
transaction 'I" appearing earlier than T in e, which moves Q up; clearly. request(Q) must be in the
prefix subsequence of '". T' is in the prefix subsequence of ', since the moving transactions are
centralized. Bly transitivity, request(Q) is in the prefix subsequencc ofT. This is a contradiction. I

We can use this lemma to obtain a theorem of the form we described earlier, i.e. that if REQUF'ST(P)

occurs suffliciently long before REQUi-ST'(Q) (and other suitable conditions hold), thcn 13 rctains priority

over Q. All that is needed is an additional assumption that if RF'QUISTl(P) occurs sufficiently long before

RFQUI S'I'(Q), then any MOVE- UP or MOVIE- I)OWN transaction that has request(Q) in its prefix also

has requcst(P) in its prefix.
Theorem 27: Let e be a transitive, orderly timed execution having t-bounded delay. Assume

that the MOVE- UP and MOVE- )OWN transactions arc centralized. Let 11 and Q be people
each of whom has exactly one RIQUI-Sl' transaction, but no CANCFI. transaictions, in e.

Assume that REQUiES'I(I') precedes RI"QU'S'I'(Q) by at least time L in e. 'Ilen P ( Q in any
actual state reached during e in which both P and Q are known.

Proof: The t-bounded delay assumption and orderliness imply that any MOVIi- UP or
MOVF- D)OWN that has RIi'QUI-S'I'(Q) in its prefix also has RIEQUFS'(P) in its prefix. 'Ihe
previous lemma then yields the result. I

6. Conclusions
In this paper, we have given precise correctness conditions for a highly available replicated database system

such as CCA's SHARI). First we gave basic definitions for the SHARI) database and transaction model. We

then described assumptions about how the system runs the transactions, followed by assumptions about

applications. Finally, these two types of assumptions were combined to prove some interesting properties of a

particular running application, an airline reservation system. Although the example is simple, it is illustrative

of a large class of important resource-allocation problems.

"le assumptions about how the system must run the transactions (in particular, the prefix subsequence

condition) have been described in a very general way. They embody a new model for data processing, which

is quite different from, and imposes new structure on, the traditional models used in concurrency control

theory. We expect that this model will prove very fruitful for future research and for application design.

In describing our assumptions about the airline reservation application, we have tried to be as general as

possible. The types of assumptions we have listed seem to be very appropriate for resource allocation

applications, but we do not believe that they comprise a complete set of interesting application assumptions.

It is likely that study of additional examples will yield other interesting types of assumptions as well.

V.
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'llhe particular properties proved for our application involve bounds on the costs attributable to violations of

integrity constraints, and fairness. For other resource allocation applications, similar cost bound and fairnes

results should be provable.

The system exhibits nonserializablc behavior, so that being able to prove interesting conditions is an

accomplishment. In the usual development, no guarantees at all can be proved in case information about any

preceding transaction is missing. In contrast, we can prove interesting properties even with incomplete

inf ormation. Moreover, small changes in available information lead to small changes in costs for integrity

constraints.

'Ihe analysis required to obtain some of our results has been very delicate. This is because it is necessary to

consider how updates will execute in many possible situations, not just from the database state seen by the

decision parts of their transactions. Another difficulty is that SHARI) does not impose any a priori

restrictions on the kinds and orders of transactions that are submitted and processed. The need to consider

the behavior of transactions in the presence of arbitrary preceding transactions, and arbitrary partial

knowledge about the past, makes the analysis of StARI) transactions more difficult than for ordinary

(scrializable) transactions. But this kind of analysis seems unavoidable; whether or not a formal,

mathematical analysis is carried out for a particular application, application programmers do need to consider,

at least informally, how transactions will behave in the presence of arbitrary preceding transactions and

arbitrary partial knowledge about the past. We provide aframnework for this kind of analysis, but more needs

to be done to develop appropriate styles of programming and methods of analysis.

A next step in this research should be the consideration of other example applications. Additional resource

allocation examples should be examined, such as examples from banking and inventory control. Other,

non-resource-allocation, examples should be studied. Some examples appropriate for SHARI) might involve

"distributed data structures". The highly-available distributed dictionary studied in IFM] is one example that

fits the SHARD framework, and there should be others. Also, it has been claimed that name servers such as

Grapevine [B] have interesting but nonserializable behavior; it seems likely that they can be described within

our framework. Still other appropriate examples might arise from real-time control.

For each of these examples, simple prototypes could be defined, capturing the essential behavior of the

example. Study of these prototypes should determine the appropriate properties to prove in each case. Cost

bounds and fairness should reappear, but other properties should also be of interest. It is important to look

for general methods of programming and analysis.

Other theoretical work also seems possible. For instance, we have described some interesting automaton
.
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structure in Section 5.3. 'Ibis structure could be studied and generalized. Also, it should be possible to obtain

complexity results. Particular examples of desirable application behavior could be studied individually, and

costs (e.g. amount of communication, or local storage) determined for achieving correct behavior.

On the systems design side, StlARI) itself needs to be generalized in at least two important ways. First, the

inessential full replication assumption needs to be removed. Fivcn with only partial replication, it should be

possible to continue to maintain the correctness conditions we describe in this paper, by judicious assignment

of data and transactions to nodes, (i.e. in such a way that each transaction will have copies of all the data it

requires). It should even be possible to allow some of the data which transactions read to be present in

summary form, rather than in its full detail. Second, the SHARI) work needs to be integrated with earlier

work on scrializability. It should be possible to build an application system in which certain critical

transactions run serializably, while the others run in a highly available manner. "lbc application designer

should be able to specify the modes of operation for different transactions. As the system design gets

extended, the theory also needs to be extended to incorporate dese two generalizations.

It is apparent to us that there is an interesting theory to be developed, for proving properties of

nonserializable highly available replicated database systems. We believe that this paper gives some useful

ideas on how to begin.
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