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Abstract

How the dispersiveness of the mixing distribution carries over to the
mixed model. is qualified in terms of generalized convex functions. These
ideas are extensions of those in Shaked (1980) and Schweder (1982). A
representation akin to the one for dilations is also given for balayages
defined in terms of these generalized convex functions.
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1. Introduction. In certain statistical problems, one typically has in
aind a family (!'9: 0 ¢ 6) of models (distributions) for the observations.

As sometimes happens, though, the observed data may be "more dispersed” than
might be expected of the above family. This could suggest that a "mixed
model” may be a more appropriate fit since mixing introduces more dispersion
intc the model. ’

In this paper we qualify just how "dispersiveness" in the mixing distribu-
tion carries over to the mixed model for certain types of models. This extends
the work of Shaked (1980) and of Schweder (1982). More specifically (and
ignoring obvious measure theoretic technicalities), for a mixing distribution

A on O, let F\ = J Fo d\ denote the mixed model. Wwhen the models,
!‘e, 0¢0O, arise from a family of densities (fe: 0 ¢ 6] with respect to a

o-finite measure m, fx - f fe d\ will denote the mixed density with respect

to m. Note that fe = f when &, is the mixing distribution degenerate

) ©

(]
at o.

Shaked (1980) investigated two types of dispersiveness for one parameter
exponential families. One type was in terms of sign changes and the other in

terms of dilations. (A distribution G is said to be a dilation of another
distribution F, written G >dl‘, if [ cdF < | cdG for all convex c.) Shaked
showed that fx—fe, has two sign changes and the order is +, -, + when )\
satisfies the first "moment” condition [ S(e)dx(e) - G(e*) where ;(9) -

[ xfg(x)dm(x). He also showed that if (@) is linear in @ and vy Y g

d P———

then rFr > P,.
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Schweder (1982) further investigated this second type of dispersiveness

d d
and showed that ry>rx whenever vy > A if and only if the family

{rez 0 ¢ 6) is convexly parameterized. That is, cze) = { c(x)dFe(x) is convex
whenever ¢ is convex.
The above two types of dispersiveness might be considered first order

notions of dispersiveness. The sign change since if)‘ is compared to fe*

which arises from the degenerating mixing distribution 89* ; the dilation
since v g A if and only if «v(+) = [ P(-|6)dA(6), where P(.|®) g 8
is a probability distribution for each ©. (See Strassen, 1965,

Theorems 2 and 8.)

Here we are interested in higher order (k-order, k » 1) notions of dis-
persiveness. These higher order notions involve Tchebycheff systems
(T-systems) of functions U = {u ""'“Zk-ll and U-convex functions which
are defined in terms of U.

In Section 2, a rudementary account on T-systems and U-convexity is given
and a simple characterization of U-convexity is proved (Theorem 2.1). Very
thorough accounts on T-systems and generalized convexity can be found in
Karlin and Studden (1966) and in Karlin (1968). A palatable introduction to
generalized convexity can be found in Roberts and Varberg (1973).

In Section 3, U—;J convexly parameterized families are defined for
T-systems U and ;J It is shown that {Fez 0 ¢ 0O} is u-;l convexly para-

-~ LJ

U U U U
meterized if and only if F, > F, whenever v > A\ vhere > and > are

partial orderings defined in terms of U and V:! (Theorem 3.1). In addition it
is shown that under the (equivalent) moment conditions

AdLH 'NXMLKMM’MMTL&MHLM‘A
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I ujd)\ - f “jd)k 3=0,...,2k-1

or
I ujd!'x - u:‘cl!'xk j=0,...,2k-1

fx - txk has 2k sign changes and the order is +,-,+,...,~,+ where )\ |is

discrete with k mass points (Theorems 3.2, 3.3 and 3.4). The latter result
is useful in determining "if you’ve gone for enough” when fitting a mixed
model using a method of moments approach.

Finally, in Section 4, a necessary and sufficient condition is given to
show when a probability measure y has the representation

k
l v(¢) = [ P('l"y---v"k) ?d)\(xi)
U
vhere P(elxgpeeeixy) > By

and F, is the empirical distribution function for the sample

X = (X)9..0,%) (Theorem 4.1).
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2. U-Convexity. Fundamental to the notion of U-convexity is the definition

of a Tchebycheff system. (Throughout this section, X = {xi: i=0,1,...,n+l1},
Xy < X €enol xml‘)

Definition. A family of functions U = {“i’ i=0,1,...,n} defined on X
is said to be a Tchebycheff system (T-system) on X if the determinant

°o"‘6’ cee uo(x;,)

ul(x(',) e ul(x‘{l)

ux’) = u(x6,...,xr") a .

*

un(xb) cee un(xr")

is positive whenever X' = {x6 oo x;_.} CX. PFor a set Y of cardinality

greater than n+., the family U is said to be a T-system on Y if U is a

T-system for each X c Y,

Definition. Let U= {“i‘ i=0,...,n} be a T-system on X. A function £

is said to be U-convex on X if the determinant

uo(xo) cee “O(xml)

ul(xo) ul(xml)
uf(X) = . 2 0.

un(xo) un(xm-l)

f(xo) f(xml)

If U is a T-system on a set Y of cardinality greater than n+l, f is said

tobe U-convex onY if £ is U-convex on each Xc Y. A function £ is

said to be U-concave if -f is U-convex.

Remark. Note that a polynomial in the u’s, P(x) = Aouo(x) + Alul(x)

oot Anun(x), is both U-convex and U-concave.




The next theorem gives a useful characterization of U-convexity. For the
usual definition of convexity, i.e., u, = 1 and y,(x) = x, it corresponds to
the midpoint of the chord between two points on the graph of a convex function
lying above the function.

For this characterization we need the following notation. Let k = %]

where ([x] denotes the integer part of x. For X = {xo <x <...¢ xn+1l'

let t i.e., t

k-j = *n-2j for
t denote both the proba-
bility distribution and probability measure which places mass k-l at L.

k= *n k-1 " *n-2¢ B2 " Xpogrece
j - 0,1,...,k—1. For E L (tl'tZ"'°'tk)' let F

L is just the empirical distribution for the sample tireeanty.

Theorem 2.1. A function f is U-convex on X if and only if

(2.1) ) det < J fdx

for each finite measure )\ with support contained in X satisfying

(2.2) IudeE - Iujd)\ for 3j=0,1,...,n.

Proof. (+) If £ is not U-convex, then uf(x) < 0. So,

i uo(xo) “o(xml) 1T AO 7 0]
ul(xo) ul(xm-l) Al 0
(2.3) Ab s ) : I
un(xo) “n(xml) An 0
. fo(xo) f(xm_l) ] ,An+1_ . -1 |

has a solution 4.

By Cramer’s rule, o, = (-1)+4+3 U(X)) / ug(X) vhere X, =X - (x;}.

Since uf(x) <0<« u(xj), Aj alternates in sign with 81 ¢ 0. So,

o A L e e e o o




C= -nx(Aj: jen,n-2,... } > 0.

Let “j -C - °j for jen,n-2,... and = -Aj for the other values of j.

Then, by (2.3),
n+l n+l
0= jfo “i(xj)Aj - j-:,ﬁ-z,... “i("j) - jfo “i("j)"j
3 . and n+l n+l
;i-: =l = jfo f(xj)Aj - j-:,ﬁ-z,... f(xj) - jfo f(xj)uj.

Setting X((xj]) = mj(kc)-1 > 0, we have from the above that (2.2) is
satisfied but [ fd\ < [ f!‘t. This proves the "if" part of the theorem,

ok T
-

P 2.4

(¢) Now let f be U-convex. If uc(X) =0, then £ is a polynomial
in the u’s. In this case, from (2.2) equality holds in (2.1). Thus to
3 complete the proof, we only need to consider when uf(x) > 0. ‘
§ Let )\ denote a measure whose support is contained in X and which
satisfies (2.2). Let 4; = A({x;}) = M{x;]) - F.({x;}) and c = [ f£da.

Then for A and e as defined in (2.3), AA = ce. So, from Cramer’s rule,
- « o(=1)2(N+2)

0¢ M{"n-o-l” °n+1 c(-1)

u(%ﬂ) > 0, it follows that [ fd\ - | det =c>0. ]}

“(xml) /uf(x). Since uf(x) >0 and

U-convex functions can be used to define a measure of dispersiveness for

ORI e

probability measures. This is needed in the next section to qualify how
dispersiveness of the mixing distribution carries over to the mixed model.
% The terminology is from Meyer (1966).

Definition. let U= {uo,...,un} be a T-system on a Borel set Y CR.
Let A and v be two finite measures on Y. If [ fdx < [ fdv for all
i’ integrable U-convex £, then v is called a balayage of A. This is written
U

U
a8 A<V or v> A, Note that if u=1 is inU, then [d\x= [ dv.
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3. U-U Convexly Parameterized Families. Let {Fez © €6} be a family of

distribution functions on X ¢ R where © c R. For a (integrable) function g,
let g(6) = f g(x)dFg(x).

Definition. let U= [uo,...,un} be a T-system on X and let

U= {uo,ul,...,;n}. The family {Fe: © ¢ ©) is said to be U-U convexly para-

meterized if (1) U is a T-systemon 6, and (2) ; is a-convex whenever c
is U-convex. (Implicit here is that uj(x) is integrable for each Fo and
that the cardinalities of X and of © are greater than n.)

Example 1. Let Fg be absolutely continuous with respect to some

o-finite measure m on X. Let fe-dreldm. 1f fe(x) is strictly totally

positive (STP) of order n+l, (see Karlin, 1968, pages 11 and 12 for the

definition), then U is a T-system whenever U is a T-system. This follows
from the basic composition formula on page 98 of Karlin (1968) (see also
Theorem 3.2 on page 284).

Example 2. The one parameter exponential family with density

B el ey WG

fe(x) - exeB(e)r is STP of all orders up to the minimum of the cardinalities
of © and X. Such a family includes the binomial family, the Poisson, the
: Jamma with fixed shape parameter, and the normal with fixed variance. See
Karlin (1968), page 19, for details.

Analogous to Schweder’s (1982) theorem on on page 166 for convexly para-
5 meterized families, the following theorem points out the connection between
' 0—6 convexly parameterized families and balayages.

Theorem 3.1. let U= [uo,...,un} be a T-system for which 6 is a
T-system for the family {Pe: © € ©6}. Then {Pez 6eco] is U - ;J convexly

U U
* parameterized if and only if F\ <F, whenever A < v.

]



n+2
Proof. (=) Let en+1 = {90 <9 <. em_l] cO. For k= [—2—1 and

j=0,1,...,k-1, let tk-j - Xy 25 Let F, denote the probability distribution

placing mass 1/k at each of the points tireenty and let A be any other
finite measure with support contained in en and satisfying

J ugon - Jijdrt j=0,...,n.

~

v U

Then, by Theorem 2.1, Ft <A So, F, <F,. Thus, if ¢ is U-convex,
= t

I derS = 1] clx)aFy(x)dF, (0)

- [ C(x)dFFt(x) < I cix)dF, (x)

= If c(x)dFg(x)dN(e) = | cd)

This with another application of Theorem 2.1 yields that c¢ is U-convex.

U ~
(¢) Let A< v and let ¢ be U-convex. Since {Fe: @¢e®© is UU

convexly parameterized, :: is 6 convex. So,
) cdF, = ) c(x)dFg(x)dA(6)
= [ cd\ < | cdv
= [] e(x)dFg(x)dV(8) = | cdF,.
Consequently, F, 2 F,. ]

In the next three theorems sign change results are given for f)‘ - f

when

)

(3.1) Iujd)\ - Iuj dy, for j=0,1,...,2k-1,

and xk is discrete with k mass points. In these three theorems it is




A W T T e

assumed that, for each © ¢ ©, Fg has a density fg with respect to a

©-finite measure m which is STPyk,) on © x X, X the support of m.

Throughout it also is assumed that, for each j, uj is integrable with

respect to f) and f), .

The first theorem deals with the classical T-system

2k-1

U= {1,x},...,x**} and generalizes Theorem 1 of Shaked (198 ).

Theorem 3.2. Let A and xk be two mixing distributions satisfying (3.1)
for U= {l.xl,...,ka'll where )‘k is discrete with k mass points. If

m({fx ¢ f)‘k}) > 0, then f)‘ - f)‘k has 2k sign changes on X and the order
is8 +,-,4,000,=,4.

Proof. Note that from the definition of STP, ., it is implicit in the
statement of the theorem that both © and X are of cardinality greater than
2k.

For © a mass point of )k' let s(0) = -1 if X({6}) ¢ xk({e}) and
let s(6) = 1 otherwise. So s(6) has at most 2k sign changes.

Let ¢ be the measure given by du = s(+)d(x-A\ ). Since

O(x) = fx(x) - ka(x) = [ s(e)fe(x)dy(e) and fe(x) is STP2k+1, it follows

from the variation diminishing theorem (Karlin, 1968, page 233) that A(-) can
have at most 2k sign changes. If there are less than 2k sign changes,

say 1 sign changes, then there are 1 points in X, X) <Xy <aan< Xy, such
andyel

that A4(x)a(y) < 0 when x eI 1’ j=0,...,1-1 and I0 - (-o,xl),

j 3+
Il - (xl,xz). ceos Il - (xl,-). Let P(x) = (x—xl)(x-xz)...(x—xl). Since

P(x) is a polynomial of degree 1 < 2k~1, it follows from (3.1) that

(3.2) J P(x)a(x)am(x) = 0.

Since P(x)48(x) is of the same sign and P(x) # 0 except at XyreoerXyo
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(3.3) 4(x) = 0 a.e. [m)] on XXy, Xy ® [xl,...,xl} from (3.2).
Thus, for n, - A(xn)m((xn}),
0= 1 Jm, ju0,...,11
n=1 n e 370reeer
from (3.1) and (3.3). Som = 0. This with (3.3) implies that ka- f)‘

a.e. [m] which contradicts the hypotheses of the theorem. §

when U= {“0""'“21:-1] is a Haar system, i.e. {uo,...,uj} is a
T-system for 3j=0,1,...,2k-1, then the next theorem is a consequence of
Theorem 5.2 on page 30 of Karlin and Studden (1966) and the above proof with
x:l replaced by uj(x).

Theorem 3.3. Assume that the support of m, X, is contained in a finite
interval [a,b]. Let U= [uo,ul,...,qu_l] be a Haar system, of continuous
functions on [a,b]. Let A and Xk be two mixing distributions satisfying
(3.1) where xk is discrete with k mass points. If m({f)‘ ¢ ka}) >0,

then fx - f)k has 2k sign changes on X and the order is +,~,+,...,-,+.

For the next theorem, it is assumed that U = (“0'“1""'“21(} is a

Descartes system, i.e., (ui WUy peeesly } is a T-system for each
1 "2 m
[11'<.OO<'im] c {o,...,Zk]o

Theorem 3.4. let U= {uo,...,qu} be a Descartes systemon X. Let A\
and )k be two mixing distributions satisfying (3.1) where )k is discrete
with k mass points. If m({fx # ka}) > 0, then f)\ - ka has 2k sign

changes on X and the order is +,-,+,...,~,+.

Proof. As in the first part of the proof of Theorem 3.2, 4 = fx - £

"

has at most 2k sign changes by the variation diminishing theorem (page 233
of Karlin, 1968).

RTS8 TSR R
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S8ince U is a Descartes system, uj(x) is STP2k+1 on {0,1,...,2k} x X.
If & has less than 2k sign changes, say 1 < 2k-1 sign changes, another
application of the variation diminishing theorem shbws that g(j) =
J uj(x)A(x)dm(x) can have at most 1 sign changes on {0,1,...,2k} where
zeroes of g can be arbitrarily assigned either sign. But this leads to
a contradiction since g(j) = 0 for 3j=0,...,2k-1. g

Remark. These Theorems should be compared with Theorems 5.4 and 5.5 on
pages 409 and 410 of Karlin and Studden (1966). Note that there U is an
extended complete T-system (or what might be called an extended Haar system)
vhich involves assumptions on the derivatives of the u’s.
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4. A Representation Theorem. For k a fixed positive integer, let

U= {ug,uy,...,uy, 1] be a T-system of continuous functions on 1I=(a,b) an
open interval. When k > 1 it shall be further required that U be an
extended T-system, i.e., in addition to U being a T-system, each

v ¢ c®*(1) and, for 1 distinct values of the x's (1 =1,...,2k-1),

- | e = < = ceee = €eosl ese ® X <L',
axg = %y qu xq1+1 xql+2 xq2 qu-l"'l - q 9

= 2k-1, the following determinants are all positive:

u*(xopxl' eee 'ka"].) B

() (9)-9)4*1)
uo(qu) uo(qu) «e sl (qu) uo(xqz) ...uo(qu) .o eV (qu)

(qy) (q-q;_,+1)
ul(qu) ul(qu) ee oYy (qu) ul(xqz) l(qu) ooy (qu)

(q) (qq)_,+1)
uzk_l(qu) uék_l(qu)...qu_l(qu) “Zk—l(xqz)“’“Zk-l("ql)"'“Zk-l (qu)

(See Karlin and Studden, 1966, page 6.) In this section a representation is

obtained for balayages defined in terms of U-convex functions which is akin to

the (Bardy-Littlewood-Polya-Blackwell-Stein-Sherman-Cartier-Fell-Neyer-

Strassen) representation for dilations (see Strassen, 1965, Theorems 2 and 8).
To state the representation theorem requires the following notation.

Let F= (f: £ is U-concave on I}. Note that since U is a T-system of

continuous functions, any £ ¢ P is continuous. Furthermore, vhen U is

an ET-system with k > 1, f ¢ F is differentiable. (Theorems B and D on pages

248 and 249 of Roberts and Varberg, 1973, or Theorem 3.4 on page 188 of Karlin,
1968).

- -
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For x ¢ 1 and f a real valued function on I, let
E(x) = (£(x;) +...+ £(x,))/k. Let B and B* denote the Borel subsets of R
and Rk, respectively. For v a probability measure (p.m.) on (R,B), let
S(v) = {x: v((x-¢,x+¢)) > 0 for every € > 0} denote the support of .
Note that S(v) is always closed.

.« The following conditions are imposed in the representation theorem:

(cl) vand A are two p.m.’s on (R,B) with supports contained in a

compact interval K <1 and satisfying
k
(€2) [ £ A..Afdvg ] 'fl AceoA Imnl dx

whenever fi eP, i=],...,m,m=1,2,... .

Below P(:|+) denotes a Markov kernel on B x Kk, i.e., P(+|*) is a

p.m. on (R,B) for each x ¢ K and P(A|-) is B ,( = (Borel subsets
K
of !(k}) measurable for each A ¢ B.

Theorem 4.1. Under condition (cl), (c2) is necessary and sufficient for
V(A) = [ P(A|x) lll{ d\(x;) for every A € B where P(:|) is a Markov

‘ u
kernel on B x K* with P(-|x) > F, for every xe¢ KX,

The proof of Theorem 4.1, though somewhat involved, is really along the
line of Strassen’s (1965) proof for dilations. Before giving the proof some
further quantities need to be defined and some lemmas need to be stated and
proved.

Let K be a compact interval contained in 1. Later K will be chosen
to contain 8(v) and S(A\). Let D denote the set of discrete p.m.’s on

(R.IK) with at most k mass points.

Let M dencte the moment space (m ¢ Rzk: nj - f uj_ldn, Jwl,...,2k,DeD}.

RO

YV
.
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Note that Theorem 2.1 and case 2 (ii) on pages 42 and 46, respectively, of
Karlin and Studden (1966) guarantee that if m ¢ M are the "moments" of a p.m.
with support contained in K, then there is a (unique) D, €D with moments m.
Consequently M is convex and, since the u’s are cont;i;mous, it is easy to
see that M is compact.

Let £e¢C(K). For me N ar\d;-_:gexk, let -

u
1¢(m) = sup{f fdu: » > D, S()) <K}

U
he(x) = sup{f fdu: v > F,, S()) €K}
vhere F, is the empirical distribution of the sample Xy 1Xyre00sX,. Note

that in the definition of 1f and hf, # is a p.m. since u, = 1.,

k
Let m(°): Kk M be given by "j = “j—ldpg - ifl “j—l(xi)/k'

Obviously m(-) is continuous and it follows from the definition of 1f and
he that hg(x) = 1.(m(x)).
In Lemma 4.2, the relative interior of M refers to the interior of M

when M is viewed as a subset of the smallest affine set containing it (see
Rockafellar, 1970).

Lemma 4.2. lf(-) is concave on N, and consequently, continuous on the

relative interior of A.

Proof. That lf(-) is continuous on the relative interior of M is
immediate from Theorem 10.1 of Rockafellar (1970) once lf(-) is shown to be
concave on AN,

To do this, let » andl_az ¢ M (mm,), « ¢ (0,1) and o= l-a, Since N

v

is convex, ganagl-oigzcn. For i=1 and 2, 1let A\ >D, andlet
-1

|

LR AL N M M W I W W L ) mﬁmt&hm&mm&cﬁx&#



Ay =a e a A,. That 1. is concave on M will follow immediately from the

U U

definition of 1£ once it is shown that xa > Dm . Since » is transitive,
=3

U
it suffices to show that DsaD + aD > D

L U

Case 1: k=1. Let x ¢ y < z denote the three mass points of D and D,
-3
and let g be U-convex. To avoid trivialities, assume that ug(x,y,z) > 0.

First we show that y is the mass point corresponding to Dm3’ If not

assume that x is the mass point corresponding to D, - Then
=3
1 1 1 -1 0
ul(x) ul(y) ul(z) a|l=]0]|,c=] gd(D-DE3).
g(x) gly) g(z) P c

By Cramer’s rule, -1 = cxu(y,z)/ug(x,y,z) and 0 < a= cxu(x,y)/ug(x,y,z)
which is a contradiction since wu(x,y), u(y,z) and ug(x,y,z) are all positive.
Similarly 2z cannot be a mass point of D, -
-3
Since y 1is the mass point corresponding to D+
=3

1 1 1 o 0

g(x) gly) g(z) « c
Again by Cramer’s rule, 0 < a= cxu(y.z)/ug(x,y,z). So, 0 < ¢ since

u(y,z) and ug(x,y.z) are both positive.
Case 2: k > 1. Let x; €K, i=1,...,1 < k denote the mass points of

D‘a' If 1<k, let x, €K, i=k-141,...,k be chosen so that XyoeoerXy
are all distinct. Let Yy € ¥y <l ¥y denote the ordered «x's.
let g be U-convex. Since U is an ET-system, recall that g is

differentiable and u'(yl,yl,yz.yz,...,yk.yk) > 0. So there exists a polynomial

R R R AR L ]
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P(x) in the u’'s such that P(xi) - g(xi) and P'(xi) - g'(xi) for i-1,...,k.
By Theorem 2.2 on pages 282 and 283 of Karlin (1968), g(x) 2 P(x) on K. Thus,

since the "moments"” of D agree with those of Dy,
-3

I fpdD= [PdD = [ '
gdD 2 n, 9d°_@3

U
where the last equality follows since P = g on the s(p, ). So, D> D, . ]
=3 -3
Lemsa 4.3. hg(x) is continuous on K* with hg 3 E.

Proof. That hg > f is immediate from the definition of he.
k

Let x ¢ K'. If the coordinates of x are all distinct, it follows from
Theorem 2.1 on page 42 of Karlin and Studden (1966) that m(x) must be in the
relatively interior of M. Since hg(x) = 1.(m(x)), it follows from Lemma 4.2
that h, is continuous at x. .

Now consider the case when at least two coordinates of x agree. Let

Yy <. Yy 1 < k denote the distinct values of RyreoorXye First we show
U
that A =F if A>F  with S(\) <K, in which case, hg(x) = E(x).
Since 1 < k, by Theorem 5.2 on page 30 of Karlin and Studden there
exists a nonnegative polynomial P(x) in the u's whose only zeroes on K are

Yyreees¥y- Since P(:) is both U-concave and U-convex, [ Pd(k—!‘x) =0

U
vhenever X\ > l-“x and S()\) € K. But this implies that S(\) c {yl,...,yl}.

U
So X ¢ D. Since the "moments”, m, uniquely determine D and A > F,
implies that | ujdx - f ujcll"x for each j, A = Fye
- k

Let x -+ x through points in K~ as n + ®, Now we will show that
U
he(x ) » t(x) = he(x). Let € 40, ¢ >0 as n -+ e Choose o > l'y with

S(pn) € K such that hf(gn) <! fdyn + €. Since £ ¢ C(K), it suffices to

show that [ 'x in distribution since then

T2 R YY) "y P | . SRR TR o . apgm, .
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T(x) = 1im E(x ) < lim he(x))
STimhe(x ) S lim [ fdy = | fdr,_‘ = E(x).

Since K is compact, {yn] is tight. Thus to show that My * F, in

distribution it suffices to show that if {pm] is a convergent subsequence

U
of (ﬂn), say converging to u, then yu > F.

To see this, let g be U-convex. Since g is U-convex, g is con-

U
tinuous on K. Since ”m’rx ’
“m
J odu = lim | gdy, > lim [ gdF, = [ gdF,.

So u>F,. |

Now let K denote the set of functions on l(k which are uniform limits
on x* of functions of the form fl A 12 AeeohA !m' f, er, i=l,...,m, m=1,2,....
for two p.m.'s Aandy on (KB ,) write y3 ) if [ fav< [ far

K

for every f ¢ K, i.e., v is a balayage of )\ wunder 3. Let Sx denote
the p.m. vhich is deyenerate at x. B

The following lemma characterizes K in terms of balayages of &x.
The proof is the same as the proof of Theorem 47 on page 240 of Meyer ?1966).
As a corollary, we get that hf ¢ K.

Lemma 4.4. Let £ ¢ C(K). Then £ c K if and only if | f£d\ < £(x)
whenever A;Gx,a_celtk.

Corollary 4.5. hf e K.

Proof. Note that hf € C(Kk) by Lemma 4.3. So, by Lemma 4.4, it
suffices to show that [ hed\ < he(x) whenever 3‘; §, and x ¢ xX.
S8ince K is compact, it is easy to see that he(x) is a support function

¥ R e N e s A T T e e e o TR JON
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on C(K) (i.e., subadditive and nonnegative homogeneous as a function in f£)
for each x satisfying the conditions of Strassen’s (1965) Theorem 1
(Theorem 51 on page 244 of Meyer, 1966). Thus h(f) = [ hfdz‘ is the support

function of p.m.’s of the form

U
(4.1) VA) = | P(A|y)dMy) where P(:|y) > F, is a

Y
Markov kernel on By X Kk.
IfgecPF, theng ¢ K and it is immediate from (4.1) that, for such a v,

[ gdv = If g(z)P(dz[y)dMy) < J G(y)aMy) < 3(x) = [ odF, whenever A3 & .

U
So, v > F,. Thus, since h(f) = sup{J fdv: v is of the form (4.1)} (by the

Hahn-Banach Theorem - see (5) on page 424 of Strassen, 1964), h(f) ¢ hf(:_c).t

For apm. v on (R,B) let v, be the p.m. on (R*,B") defined by
\»()(B1 XoooX Bk) - V(Bl nB, N..n Bk) for B; € B, i=1,...,k. In other words,
Yo is just the p.m. which is concentrated on the diagonal of R and having

univariate marginals wv.

Lemma 4.6. lLet vand A be two p.m.’s on (R,B) with S(v) U §()\) €K,
Then condition (c2) is equivalent to

(c2) Jfavy ST £ n'l‘ d\ for every f ¢ K.

Proof. From the definition of Vo it is clear that
(4.2) [ fl A.o oA fm dv,'= § £ ALA £, dv
<J 21 Avo oA fm n'l‘ d\

for f:l. ceP, i=1,...,m, m=1,2,... is equivalent to (c2). The equivalence

of (c2) and (c2’') follows from (4.2) since f ¢ K is the uniform limit of
functions of the form I, A...A Z . B




Proof of Theorem 4.3. (Necessity) Let fi eF, i=l,...,m. Then,

U
P(-|x) > F,, [ £ (y)P(dy|x) < E (x), and so,

F £ Aeoh £ (VIPWdy(x) S E) ALA E ().

Thus,
£ Ach £ dv =[] £ Aceuh £ (y)P(dylx) TF dA(x;)

"
STE AAT (x) Iy dAx,).

(Sufficiency) Let f ¢ C(K). Then, by Lemma 4.3, Corollary 4.5,
Lemma 4.6 and the definition of v,

I fav = | Tavy S [ hdvy < § hg(x) 0 ancx,).

This with Theorem 1 of Strassen (1965) gives the representation of v in

U
terms of A and a Markov kernel P(:|x) > F . K

v
Remark 4.7. Let V(A) = [ P(A[x) I} dA(x;). Then P(-[x) > F, for all

x is equivalent to E(J fdF |X) 2 [ fdF, where X,,X,,...,X, are i.i.d. )

and, given X =x, Y;,...,¥, arei.i.d. P(:|x). When U is an ET-system
an argument like that in Case 2 of Lemma 4.2 shows that this is equivalent to
the martingale type of fornmla E(J ujdrxh_() - [ ujdi‘!, j=0,...,2k-1. For the
classical ET-system uj(x) - xj, an apt name for a sequence 1_(1,52,... of
random k-vectors satisfying

E(f xjdr?_‘MI B veeeX)) = 1 xjd!'!sn for §=0,..., 2k-1 is a k-mart

sequence. Theorem 4.1 characterizes the marginal p.m.’s that can correspond

to a k-mart sequence.

Ll el Do et It

I.. -. '
' AL LN

. ey n st
PLPLY SRR




Wi s LR NN S e

20

References

Karlin, S. (1968). Total Positivity. Stanford University Press,
Stanford, CA.

Karlin, S. and Studden, W. (1966). Tchebycheff Systems: With Applications in
Analysis and Statistics. Interscience, NY.

Meyer, P. A. (1966). Probability and Potentials. Blaisdell, London.

Roberts, A.W. and Varberg, D.E. (1973). Convex Functions. Academic Press,NY.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press,
Princeton, NJ.

Schweder. T. (1982). On the dispersion of mixtures. Scand. J. Statist., 9,
165-169.

Shaked, M. (1980). On the mixtures from exponential families.

Strassen, V. (1965). The existence of probability measures with given

§ PN SN P PGP0 PO P O MEIT S0 A 0 TS L AT L TR B T g







