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Abstract

ow the dispersiveness of the mixing distribution carries over to the

mixed model is qualified in terms of generalized convex functions. These

ideas are extensions of those in Shaked (1980) and Schweder (1982). A

representation akin to the one for dilations is also given for balayages

defined in terms of these generalized convex functions.



. Introduction. In certain statistical problems, one typically has in

mind a family (F*: S e) of models (distributions) for the observations.

As sometims happens, though, the observed data may be "more dispersed" than

might be expected of the above family. This could suggest that a "mixed

model" may be a more appropriate fit since mixing introduces more dispersion

intc the model.

In this paper we qualify just how "dispersiveness" in the mixing distribu-

tion carries over to the mixed model for certain types of models. This extends

the work of Shaked (1980) and of Schweder (1982). More specifically (and

ignoring obvious measure theoretic technicalities), for a mixing distribution

A on 0, let F. - I F dX denote the mixed model. hen the models,

F., 9 c e , arise from a family of densities (f: 0 e e) with respect to a

q-finite measure m, f- fe dX will denote the mixed density with respect

to m. Note that fO a fa when 0 Is the mixing distribution degenerate

at 0.

Shaked (1980) investigated two types of dispersiveness for one parameter

exponential families. One type was in terms of sign changes and the other in

terms of dilations. (A distribution G is said to be a dilation of another

d
distribution F, written G > F, if I cdF cdG for all convex c.) Shaked

showed that fx - f e has two sign changes and the order is +, -, + when X

satisfies the first "moment" condition f ue)dX() - u(-*) where u(e) -

Sd 

I xfe(x)d(x). He also showed that if u(e) is linear in 0 and y > X,

d
then F > F.
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Schweder (1982) further investigated this second type of dispersiveness

d d
and showed that ry > F) whenever y > X if and only if the family

(Fe: B e e) is convexly parameterized. That is, c(e) - I c(x)dFW(x) is convex

whenever c is convex.

The above two types of dispersiveness might be considered first order

notions of dispersiveness. The sign change since 'fX is compared to f

which arises from the degenerating mixing distribution 6 ,; the dilation

d 0 d
since y > X if and only if y(.) - 5 P("Ie)dX(e), where P(.Ie) > 6e

is a probability distribution for each e. (See Strassen, 1965,

Theorems 2 and 8.)

Here we are interested in higher order (k-order, k > 1) notions of dis-

persiveness. These higher order notions involve Tchebycheff systems

(T-systems) of functions U - (u ... ,U2k-l) and U-convex functions which

are defined in terms of U.

In Section 2, a rudementary account on T-systems and U-convexity is given

and a simple characterization of U-convexity is proved (Theorem 2.1). Very

thorough accounts on T-systems and generalized convexity can be found in

Karlin and Studden (1966) and in Karlin (1968). A palatable introduction to

generalized convexity can be found in Roberts and Varberg (1973).

In Section 3, U-U convexly parameterized families are defined for

T-systems U and U. It is shown that {Fe: 0 C G) is U-U convexly par&-

U U U U
meterized if and only if F V > FX whenever y > X where > and > are

partial orderings defined in terms of U and U (Theorem 3.1). In addition it

is shown that under the (equivalent) moment conditions
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I ud)- I udAk J-O...2k-l

or

SiujdF I UjdF j-O,...,2k-l

fX- f'k has 2k sign changes and the order is *,-,...,- where A is

discrete with k mass points (Theorems 3.2, 3.3 and 3.4). The latter result

is useful in determining "if you've gone for enough" when fitting a mixed

model using a method of moments approach.

Finally, in Section 4, a necessary and sufficient condition is given to

show when a probability measure y has the representation

k
Y(.) = P(eIxl,...,xk) I dX(x i )1

U
where P(.Ixl,...,xk) > FX

and Fx is the empirical distribution function for the sample

x - (Xl,...,xk) (Theorem 4.1).
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2. U-Convexit. Fundamental to the notion of U-convexity is the definition

of a Tdhbychff system. (Throughout this section, X - {x i : i-O,1,...,n+l),

x0 < x <...< Xn+1 .)

Definition. A family of functions U - (ui: i-O,1,...,n) defined on X

is said to be a Tchebycheff system (T-system) on X if the determinant

UM)(x6 S. u0(...Ox)

un(xV ... un(xA)u(x') • u(x6,...xA)•

Un,6) ...

is positive whenever X' - x (... x } c X. For a set Y of cardinality

greater than n+.L, the family U is said to be a T-system an Y if U is a

T-system for each X c Y.

Definition. Let U - (ui: i-0,...,n) be a T-system on X. A function f

is said to be U-convex on x if the determnant

Uo0(x O0 u. Uo(Xn+l )

U 1(xO 0 . u 1(x n+1 ) I

Uf(X) * . 0.

Un(X o ) ... Un(xn+ 1 )

f(x0) ... f(xn+1 )

If U is a T-system on a set Y of cardinality greater than n+l, f is said

to be U-convex on Y if f is U-convex on each X c Y. A function f is

said to be U-concave if -f is ii-convex.

Remark. Note that a polynomial in the u's, P(x) - Aouo(x) + Alul(x)

... + ~Anun(x), is both U-convex and U-concave.
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The next theorem gives a useful characterization of U-convexity. For the

usual definition of convexity, i.e., u0 a 1 and u (X) m x, it corresponds to

the midpoint of the chord between two points on the graph of a convex function

lying above the function.

For this characterization we need the following notation. Let k - [n2]

where [x] denotes the integer part of x. For X - (x0 ( x <...< Xn+l),

let tk - xn, tk_1 = xn_2, tk_2 - xn 4 ,..., i.e., tk-j w Xn_2j for

j - O,1,...,k-1. For t - (tlet 2 ,...,tk), let Ft denote both the proba-

bility distribution and probability measure which places mass k- l at ti.

Ft is just the empirical distribution for the sample tl,...,tk .

Theorem 2.1. A function f is U-convex on X if and only if

(2.1) 1 fdFt  I fdX

for each finite measure X with support contained in X satisfying

(2.2) 1 u dF_ W I u dX for J=0,1,...,n.

Proof. (4) If f is not U-convex, then uf(X) < 0. So,

u0(x0 ) ... uo(xn+l) " 0  0

u1(x) " . U1(xrl) A1 0

(2.3) A 6 . --

Un(xO) ... un(x..) An 0

f0(x0) ... f(xn,1 ) n+lJ -1

has a solution A.

By Cramer's rule, A - (- 1 ) n 4+ u(Xj) / uf(X) where X - X - (x

Since uf(X) < 0 < u(X1 ), Aj alternates in sign with An+ I < 0. So,
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c - mx(A1: J-n,n-2,... ) > 0.

Let ma - c - Aj for j-n,n-2,... and - -Aj for the other values of j.

Then, by (2.3),

n+l n+l
0- z u(x )A c E u(x)- I u(x)a

J-0 ( j-n,n-2,... 1-0
and n+l n+l

.- r f(X )A1  c I f(X) E f( C
1- j-0 J -n,n-2,... 1- J.0 f j.

Setting \({x ) - aj(kc) - 1 > 0, we have from the above that (2.2) is

satisfied but I fdX < I fFt. This proves the "if" part of the theorem.

(*-) Now let f be U-convex. If uf(X) - 0, then f is a polynomial

in the u's. In this case, from (2.2) equality holds in (2.1). Thus to

complete the proof, we only need to consider when uf(X) > 0.

Let X denote a measure whose support is contained in X and which

satisfies (2.2). Let Ai M A((xi}) - X((xi) - Ft((xil) and c - I fda.

Then for A and e as defined in (2.3), A4 - ce. So, from Cramer's rule,

0 & ({xn+l)) - &n+1 - C(-1) 2 (n+2 )U(Xn+l) / uf(X). Since uf(X) > 0 and

U(ltn+ ) > 0, it follows that I fdX- f fdFt - c > 0.

U-convex functions can be used to define a measure of dispersiveness for

probability measures. This is needed in the next section to qualify how

dispersiveness of the mixing distribution carries over to the mixed model.

The terminology is from Meyer (1966).

Definition. Let U - (u0 ,... , un) be a T-system on a Borel set Y C R.

Let X and v be two finite measures on Y. If I fdX S I fdv for all

integrable U-convex f, then v is called a balayage of X. This is written
U U

as X < v or v > X. Note that if u-1 is inU, then IdX- I dv.
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3. U-U Convexly Parameterized Families. Let (Fe: e c e) be a family of

distribution functions on X c R where e c R. For a (integrable) function g,

let g(0) - I g(x)dFe(x).

Definition. Let U - (uO,...,un) be a T-system on X and let

U - ( 0'U ...,Un The family (Fe: e c 0) is said to be U-U convexly para-

meterized if (1) U is a T-system on 9, and (2) c is U-convex whenever c

is U-convex. (Implicit here is that u.(x) is integrable for each Fe and

that the cardinalities of x and of e are greater than n.)

Example 1. Let Fe be absolutely continuous with respect to some

a-finite measure m on X. Let fe " dFeldm. If fe(x) is strictly totally

positi (STP) of order n+l, (see Karlin, 1968, pages 11 and 12 for the

definition), then U is a T-system whenever U is a T-system. This follows

from the basic composition formula on page 98 of Karlin (1968) (see also

Theorem 3.2 on page 284).

Example 2. The one parameter exponential family with density

fe(x) - exs(e) is STP of all orders up to the minimum of the cardinalities

of e and X. Such a family includes the binomial family, the Poisson, the

gamma with fixed shape parameter, and the normal with fixed variance. See

Karlin (1968), page 19, for details.

Analogous to Schweder's (1982) theorem on on page 166 for convexly para-

meterized families, the following theorem points out the connection between

U-U convexly parameterized families and balayages.

Theorem 3.1. Let U- (u0,...,un) be a T-sy~tem for which U is a

T-system for the family (F0: e c e). Then (F0: e C e) is U - u convexly

U U
parameterized if and only if FX < Fv whenever X < V.

L M - ---- -i --
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Proof. ()Let e c (69~<..6~)C. For k -j1 and

J-O'1l..k-l, lot t k- mxn-j Let Ft denote the probability distribution

placing mass 1A at each of the points tl1*Ik and let X be any other

finite measure with support contained in en and satisfying

u u dX - 5 dF t jo..n

U U
Then, by Theorem 2.1, F t < X. So, F F < F X* Thus, if c is U-convex,

IcdF - 11 c(x)dFe0(x)dFt(e)

- I c(x)dF, (x) W c(x)dF X(x)

-Ic(x)dF,(x)dX(e) - If cdX

This with another application of Theorem 2.1 yields that c is U-convex.

U
(4) Let X < v and let c be U-convex. Since (F: IS C G) is Cl-U

convexly parameterized, ; is U convex. So,

IcdFX 1 c(x)dF,(x)dX\(e)

-IcdX S I cdv

-Ic(x)dF (x)dv(e) - IcdF. *
U

Consequently, F,\ < ~

In the next three theorems sign change results are given for f. - f

when

(3.1) Iu~d -d ujid~ for J-0,1,...,2k-1,

and Akis discrete with k mass points. In these three theorems it is
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assumed that, for each 0 C e, Fe has a density fe with respect to a

0-finite measure m which is STP2k+l on e x X, X the support of m.

Throughout it also is assumed that, for each J, uj is integrable with

respect to fX and fXk.

The first theorem deals with the classical T-system

U - {1,x1 ,...,x2k-l) and generalizes Theorem 1 of Shaked (198).

Theorem 3.2. Let X and Xk be two mixing distributions satisfying (3.1)

for U- (l,xl ,..., x2k-i) where Xk  is discrete with k mass points. If

m({f X f )) > 0, then fX- f has 2k sign changes on X and the order

is +1-1+1 ...I-#+.

Proof. Note that from the definition of STP2k+l it is implicit in the

statement of the theorem that both 0 and X are of cardinality greater than

2k.

For e a mass point of Xk, let s(e) - -1 if X((O)) S Xk(Ue)) and

let s(e) - 1 otherwise. So s(0) has at most 2k sign changes.

Let p be the measure given by dp - s(.)d(X\-Xk). Since

A(x) a fx(x) - f '(X) - I s(e)fe(x)dp(e) and fe(x) is STP2k+l, it follows

from the variation diminishing theorem (Karlin, 1968, page 233) that A(-) can

have at most 2k sign changes. If there are less than 2k sign changes,

say 1 sign changes, then there are 1 points in X, xI < x2 < x , such

that A(x)A(y) S 0 when x c I and y t Ij+l, J-O,...,1-1 and 10 - (--,Xl),

11 - (X 1x2 ), ..., I1 - (X1,,). Let P(x) - (x-xl)(x-x2 )...(X-xl). Since

P(x) is a polynomial of degree 1 S 2k-i, it follows from (3.1) that

(3.2) 1 P(x)A(x)dm(x) - 0.

Since P(x)a(x) is of the same sign and P(x) # 0 except at Xl,...,x 1,
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(3.3) M~x) -0 a.e. [a) on "0 (x11...,x1) from (3.2).

Thus, for an A(xn)i((xn))#i

n-1 i 'J-f00-

from (3.1) and (3.3). So ma. 0. This with (3.3) implies thatf f

a.e. [a) which contradicts the hypotheses of the theorem. is

Whenl U - (u of... fu2k.1) is a Haar system, i.e. (u0 j...,vuj is a

T-system for J-0j,-,..,2k-1, then the next theorem is a consequence of

Theorem 5.2 on page 30 of Karlin and Studden (1966) and the above proof with

A replaced by uj W.

Theorem 3.3. Assume that the support of a, X, is contained in a finite

*interval [a,b). Let U - (u ODl,**" D 2kl1) be a Haar system, of continuous

functions on (a,b). Let X and Akbe two mixing distributions satisfying

(3.1) where Akis discrete with k mass points. if m(fX * f '\k > 0,

then f \-f has A sign changes on X and the order is ,,..-.

For the next theorem, it is assumed that U - (u OIll... .u2k) is a

Descartes system, i.e., (u i 'u i P...DUi )is a T-system for each

(1 ~ ~ ~ 1 1m<.< O..2)

Theorem 3.4. Let U - (u 01 ... u2k ) be a Descartes system on X. Let X

and Xkbe two mixing distributions satisfying (3.1) where Nkis discrete

with k mass points. If x(If~ X f )k ) > 0, then fX- f~ has 2k sign

changes on X and the order is +-+..-+

Proof. As in the first part of the proof of Theorem 3.2, a a f X -f

has at most 2k sign changes by the variation diminishing theorem (page 233

of Karlin, 1968).
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Since U is a Descartes system, uj(x) is STP2k+l on {0,1,...,2k) x X.

If A has less than 2k sign changes, say 1 S 2k-i sign changes, another

application of the variation diminishing theorem shows that g(j) .

I uj(x)A(x)dm(x) can have at most 1 sign changes on {O,l,...,2k) where

zeroes of g can be arbitrarily assigned either sign. But this leads to

a contradiction since g(j) - 0 for j-O,...,2k-l.

Remark. These Theorems should be compared with Theorems 5.4 and 5.5 on

pages 409 and 410 of Karlin and Studden (1966). Note that there U is an

extended complete T-system (or what might be called an extended Hear system)

which involves assumptions on the derivatives of the u's.
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4. A Representation Theorem. For k a fixed positive integer, let

U W (uOFuiI,...#u 2kil) be a T-system of continuous functions on 1-Cab) an

open interval. Hhen k > 1 it shall be further required that U be an

extended T-syste, i.e., in addition to U being a T-system, each

U * C 2k-CzM and, for 1 distinct values of the x's (1 - ,.Vk-)

au0 X1 00 Xq, q1 .1in xq+2 ''-xq < ... < -q_,lx q,<L,q1

= 2k-1, the following determinants are all positive:

u*CxO#xlo ... #x2k-l)M

(ql) q-_,l
uOX) UCx ) .. Ou0  (x u uX0CU(qlu (XlUxq1) 0 q, q, Xq2  0 0  q)

UCq1) U 1 ) q,.U, (xql) u1 (xq2) ... u1(xq) .. u Cxql)

(ql) U q1-ql_1 +l)

u22k-1(xq1) uik..lCxql ... u2k-iCxq1 ) u2k...( xq2)**2k..(xql) .U.. - (xql)

(See Karlin and Studden, 1966, page 6.) In this section a representation is

obtained for balayages defined in terms of U-convex functions which is akin to

the (Hardy-Li ttlewood-Polya-Slackwel 1-Ste in-Sherman-Ca rtier-Fel 1-Neer-

Strassen) representation for dilations (see Strassen, 1965, Theorems 2 and 8).

To state the representation theorem requires the following notation.

Let FP - (f: f is U-concave on 1). Note that since U is a T-system of

continuous functions, any f c F is continuous. Furthermore, when U is

an UT-system with k >10 f c FP is differentiable. (Theorms and D on pages

248 and 249 of Roberts and Varberg, 1973, or Theorem 3.4 on page 188 of Karlin*
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For x C Ik and f a real valued function on 1, let

!(x) - (f(x1) +...+ f(xk))/k. Let B and Sk denote the Borel subsets of R

and Rk , respectively. For v a probability measure (p.m.) on (RB), let

S(v) a (x: v((x-c,x+e)) > 0 for every e > 0) denote the support of v.

Note that S(v) is always closed.

The following conditions are imposed in the representation theorem:

(cl) v and X are two p.m.'s on (R,B) with supports contained in a

compact interval K c I and satisfying

(c2) If A...A fdv A J1 ...A k dX

whenever fiC F, i-l...,m,m-l,2,...

Below P(-I.) denotes a Markov kernel on B x Kk , i.e., P(OI-) is a

p.m. on (R,B) for each x e Kk and P(AI') is B k( a (Borel subsets

of Kk)) measurable for each A c B.

Theorem 4.1. Under condition (cl), (c2) is necessary and sufficient for

v(A) - I P(Ajx) f1k dX(x) for every A v B where P(OI') is a Markov
Uk

kernel on B x Kk with P(.13) > Fx for every x e K

The proof of Theorem 4.1, though somewhat involved, is really along the

line of Strassen's (1965) proof for dilations. Before giving the proof some

further quantities need to be defined and some lemmas need to be stated and

proved.

Let K be a compact interval contained in I. Later K will be chosen

to contain S(M) and S(). Let D denote the set of discrete p.m.'s on

(KK) with at most k mass points.

Lot N denote the moiant space (p c R2k: 0 I UJ-1dD, Jul,...,2k,DeDj.



14

Note that Theorem 2.1 and case 2 (ii) on pages 42 and 46, respectively, of

Karlin and Studden (1966) guarantee that if ma R are the "moments" of a p.m.

with support contained in K, then there is a (unique) D. C D with moments m.

Consequently R is convex and, since the u's are continuous, it is easy to

see that 1 is copact.

Let f e C(K). For a N and.-x Kk, slet

U
lf (_)- supfJ fdp: # > DM, S(X) C K)

and u

hf(x) - supiI fdu: u > Fx, S(X) c K)

where Fx  is the empirical distribution of the sample xlIx2 , ... ,xk. Note
K

that in the definition of 1f and hf, p is a p.m. since u0 * 1.

Let a(-): Kk - N be given by j u j_dFx - Ek uJ(xi)/k.- - u~l xi)-

Obviously m(.) is continuous and it follows from the definition of If and

hf that hf(x) - lf(m(x)).

In Lemma 4.2, the relative interior of R refers to the interior of M

when R is viewed as a subset of the smallest affine set containing it (see

Rockafellar, 1970).

Leama 4.2. 1f(. ) is concave on R, and consequently, continuous on the

relative interior of M.

Proof. That If(-) is continuous on the relative interior of N is

immediate from Theorem 10.1 of Rockafellar (1970) once If(. ) is shown to be

concave on N.

To do this, let _1 and.n2 € R (um 2 ), a e (0,1) and -l-a. Since N

U
is cwhwe, a3 n am 1 +s;m2 cN. For i-l and 2, let Xi>D. and let
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A - a 2 . That If is concave an a will follow imediately from the

U U
definition of If once it is shown that X >Dm3 . Since > is transitive,

-3
U

it suffices to show that D • a + aD > D

Case 1: k-i. Let x e y < z denote the three mass points of D and Dm
-3

and let g be U-convex. To avoid trivialities, assume that ug(x,,YZ) > 0.

First we show that y is the mass point corresponding to D . If not
m3

assume that x is the mass point corresponding to D . Then
!3

U l(x) ul(y) ul(z) a - ,c - gd(D-D

g(x) g(y) g(z) i s J c

By Cramer's rule, -1 - cxu(y,z)/u9 (x,y,z) and 0 < a - cxu(x,y)/u 9 (X,Y,Z)

which is a contradiction since u(x,y), u(y,z) and ug(x,y,z) are all positive.

Similarly z cannot be a mass point of D
-!3

Since y is the mass point corresponding to D ,
-3

Ul(x) ul(y) ul(z) -1 - 0 c- 3 1.

g(x) g(y) g(z) I c

Again by Cramer's rule, 0 < a - cxu(y,z)/u (x,y,z). So, 0 < c since

u(y,z) and U,(x,yz) are both positive.

Case 2: k > 1. Let xi C K, i-,...,l k denote the mass points of

D . If 1 < k, let xi c K, i-k-ll,...,k be chosen so that xj,...,x k

are all distinct. Let Y1 < Y2 <'"< Yk denote the ordered x's.

Let g be U-convex. Since U is an ET-system, recall that g is

differentiable and u*(ylYlY 2 ,Y2 ,...,yk,Yk) > 0. So there exists a polynomial
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P(x) in the u's such that P(xi) - g(xj) and P'(xi) - g'(xi) for i-l,...,k.

By Theorem 2.2 on pages 282 and 283 of Karlin (1968), g(x) P 1(x) on K. Thus,

since the "mcnents" of D agree with those of D* ,

-3
$gdD IPdD-fPdD -gdD

3U

where the last equality follows since P - g on the S(D ). So, D > D. i

Lemma 4.3. hf(x) is continuous on Kk with h f >.

Proof. That hf _ I is immediate from the definition of hf.

Let x c K k . If the coordinates of x are all distinct, it follows from

Theorem 2.1 on page 42 of Karlin and Studden (1966) that m(x) must be in the

relatively interior of M. Since hf(x) - lf(m(x)), it follows from Lemma 4.2

that hf is continuous at x.

Now consider the case when at least two coordinates of x agree. Let

yl *.. < yl, 1 < k denote the distinct values of x1 -...,xk. First we show

U
that X- x  if X > Fx with S(X) cK, in which case, hf(x) - (x).

Since 1 < k, by Theorem 5.2 on page 30 of Karlin and Studden there

exists a nonnegative polynomial P(x) in the u's whose only zeroes on K are

Since P(-) is both U-concave and U-convex, I Pd(X-Fx ) - 0

U
whenever X > Fx and S(X) c K. But this implies that S(X) c {yl,...,yl}.

U
So X e D. Since the "moments", m, uniquely determine Dm and X > rx

implies that ujd i ujdx for each J, X Fx

Let xn *x through points in K as n 4.. Now we will show that

U
hfC(3n) -* (x) - hf(x). Let en 4 ' Oe n > 0 as n -a. Choose un > ry with

S(Pn) cK such that hf(xn )  I fdun + cn. Since f c C(K), it suffices to

show that on # Fx in distribution since then

A..
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?(x)) Liphf(x!n )

lh f(in) lim Ifdu, infdF -Ix)

Since K is compact, (un) is tight. Thus to show that #n - Fx in

distribution it suffices to show that if I#M) is a convergent subsequence

U
of (fn), say converging to u, then j > Fx .

To see this, let g be U-convex. Since g is U-convex, g is con-

U
tinuous on K. Since um > F

Sx x.

Nwlet R denote the set of functions on Kk which are uniform limits

an 1k of functions of the form 1 1 A 72 ^'"9 I^ Im f i F, i-l,0..m, repl,2, ....

For two p.m.'s X andv on (K k,B k) write _v *_X if 14v_ _d

for every _f c K, i.e., _v is a balayage of _X under .Let &x denote

the p.m. which is degenerate at x.

The following lema characterizes R in terms of blayages of x .

Teproof is the same as the proof of Theorem 47 an page 240 of Meyer (1966).

Asa corollary, we gt that h f € K.

Lenma 4.4. Lt f € C(k) Then felt if and only if fdk flx)

Corollary 4.5. h f t K.

Proof. Note that h f € C(Kk ) by irem 4.3. So, by Iema 4.4, it

sulffice to show that I hfd_ S hf(x) whenever X > & x and x t Rk .

Since R is compact, it is easy to see that h f(_W is a support function

' q @ ' . . ". ."" %e •" " ' " "-rn"' " '" "
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on C(K) (i.e., subadditive and nonnegative homogeneous as a function in f)

for each x satisfying the conditions of Strassen's (1965) Theorem 1

(Theorem 51 on page 244 of Meyer, 1966). Thus h(f) - I hfdX is the support

function of p.m.'s of the form

U
(4.1) v(A) - I P(Ajy)dM() where P(.Iy) > F is a

Markov kernel on BK x Kk.

If g £ F, then j e K and it is inuediate from (4.1) that, for such a v,

g 9dv - g(z)P(dzly)d_\(y) I ()d(y) S (x) - I gd x whenever X> &x
U

So, V > F . Thus, since h(f) - sup(f fdv: v is of the form (4.1)) (by the
x

Hahn-Banach Theorem - see (5) on page 424 of Strassen, 1964), h(f) S hf(x).E

For a p.m. v on (R,B) let v0 be the p.m. on (RkB k ) defined by

v0(91 x...x Bk ) - v(B1 l nB 2 n...n Bk) for Bi e B, i-1,...,k. In other words,

v0 is just the p.m. which is concentrated on the diagonal of R and having

univariate marginals v.

Lemaa 4.6. Let v and X be two p.m.'s on (R,B) with S(v) U S(\) c K.

Then condition (c2) is equivalent to

(c2') I fdv 0  fIik d for every f e K.

Proof. From the definition of v0 it is clear that

(4.2) 1 1 A...A m dv t- f A0...A fm dv

I A...A UkdX

for fi € F, i-1,...,m, m-1,2,... is equivalent to (c2). The equivalence

of (2) and (c2') follows from (4.2) since f e K is the uniform limit of

functions of the form 1 ...A Am



19

Proof of Theorem 4.3. (Necessity) Let f CF, i-l, ... Pm. Then, since

U
P(- 13) F x I f1(y)P(dyjj) S Ti(x), and so,

If, A ... A f Is(y)P(dyjx) S 11 A ..A7(x).

Thus,

ff1 A ... Afm dv f f A..A f(y)P(dyj3) Dk dX(x)

A I ... A I X) Bk dX(x
11Xi)1

(Sufficiency) Let f c C(K). Then, by LeIn 4.3, Corollary 4.5,

Lera 4.6 and the definition of v ,

I fdv - ldv0 , hfdvo hf( ) 1k dX(x

This with Theorem 1 of Strassen (1965) gives the representation of v in
U

terms of X and a Markov kernel V(.I1) > F1 . I

k U
Remark 4.7. Let *(A) - (Al!) a 1 d(x i ). Then V(.13) > Fx for all

3 is equivalent to 3(5 MYdF kI dIX) where X 1 IX2 ... #X are i.i.d. Xq

and, given X - x, Yl'p*' t yk are i.i.d. P(-13). Mhen U is an ET-system

an argument like that in Case 2 of Lears 4.2 shows that this is equivalent to

the martingale type of formula 3(I -j~ j! M I ujdrX, J-O#... .2k-1. For the

classical ET-system uj (xW - xi, an apt name for a sequence -x1,, 2.,. of

rand=m k-vectors satisfying

3(5 x~drx 12! n...,xl) - I xidF, for J-O,..., 2k-1 is a k-mart

sequenc. Theorem 4.1 characterizes the marginal p.m.'s that can correspond

to a k-mart sequence.
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