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* ABSTRACT

This thesis develops and utilizes electro-thermal analogies

to analyze the amount of heat dissipated in a typical tran-

sistor cap. A series of parametric curves are developed to

illustrate the results obtained. These curves may be used

by circuit designers in order to obtain a more precise esti-

mate of the heat sink system requirements.
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I. INTRODUCTION

A. BACKGROUND

There are at least two important reasons why the

junction of a transistor must be kept within prescribed and

precise temperature limits. The first of these concerns the

reliability of the device and the second relates to the bias

or operating point.

It is an established fact that the failure rate of a

transistor is a direct function of junction temperature.

There is a vast amount of literature that provides curves

and tables of semiconductor failure rates as a function of

junction temperature. Such a table taken from data provided

by Thornell et al [Ref. 11 and Harper [Ref. 21 is shown in

Table I . The numbers shown clearly demonstrate the

necessity for thermal control to a maximum operating

temperature dictated by the requirements for the reliability

of commercial and/or military systems.

Because collector current varies directly with junction

temperature, it is apparent that, in the collector circuit

with fixed bias and external resistance, as in the common

-emitter configuration, increases in collector current can

cause decreases in collector-emitter voltage. A severe

decrease of this voltage may shift the bias-stabilization

8



TABLE I

BASE FAILURE RATES VS. TEMPERATURE

I Element 2 505 125

Transistor chips
Low power .0001 .0003 .0009 .0027 .007
High power .0050 .0100 .0300 .0900 .270

Diode chips .0001 .0003 .0009 .0027 .007

Microcircuits
I Quad gate .0020 .0036 .0180 .0820 .240

Dual flip-flop .0040 .0072 .0360 .1640 .480

(Failure rates in percent per thousand hours)

point of an amplifier to a point where the device is

operating outside of its specification. This too may be

thought of as a reduction of both device and system

reliability.

Therefore, in order to obtain optimal performance from a

device, the designer must know exactly what his heat

dissipating requirements will be. Overestimation and

overcompensation in terms of implementing heat dissipating

devices can also adversely affect size, cost, and even

operation.

9
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B. OBJECTIVES

The goal of this thesis is to provide the designer with

curves that will permit a precise estimate of the amount of

heat dissipated by the cap of a TO package. A knowledge of

the fraction of the heat dissipated by the cap to the total

heat dissipated can perhaps lead to a lighter and less

costly cooling structure. Although the fraction of the heat

dissipated by the cap may be small, any improvement in

reducing size and cost may still be sought.

C. PROCEDURE

To obtain the desired curves, this thesis will utilize

familiar electrical theory by first developing an

electro-thermal analogy for the transistor package. The

electro-thermal model will then be analyzed in terms of

parameters that equate to those of interest in the

transistor package. The result of this analysis will be one

unifying procedure that relates the temperature and heat

flow at the transistor junction to heat transfer and

physical variables such as air flow, temperature levels, and

package size. A set of parametric curves will be drawn

utilizing this procedure in order to illustrate the

relationships that the designer will be required to consider

for a particular TO configuration.

10



II. TE TRANSMISSION LINE A GLQX FOR COOLING FLN

A. THE ELECTRO-THERMAL ANALOG

The flow of electricity and the flow of heat are similar

in many ways. Analogies are drawn between the quantities

used to describe each process, and electro-thermal analogs

in the form of electrical networks are formulated to model

and to analyze thermal configurations. The development of

these analogies has been covered in depth in several works,

including Holman [Ref. 31, Lienhard [Ref. 4], and Incropera

and Dewitt [Ref. 51. A discussion is presented here for

purposes of continuity and completeness.

A brief presentation of the heat flow problem in and

from a cooling fin is contained in Appendix A, along with a

list of assumptions pertaining to the transistor cap that

will impact on further derivations. The reader may refer to

Appendix A for answers to any questions regarding the heat

flow theory considerations necessary to an understanding of

what will be proposed in this thesis.

The first step towards development of an electrical

model for the transistor cap is the determination of

equivalent thermal and electrical quantities. The variables

of concern in an electrical network are the voltage or

potential, V, and the current, I. The variables of interest

11t
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in thermal applications are the temperature excess, E, and

the heat flow, q. First compare the equations for heat flow

by conduction in a rectangular fin and the flow of

electricity through an impedance:

q = kAAT/Ax (2.1)

I = (l/Z)(AV/Ax) (2.2)

where k is the thermal conductivity of the fin material, A

is the area perpendicular to heat flow, T is the temperature

of the fin, and Z is the impedance per unit length of the

network. The two equations are of similar form, suggesting

that an analogy between the variables can be proposed.

In a second comparison, consider the equations for heat

transfer from the surface of the fin by convection and for

current through an admittance. Conduction was compared in

the foregoing with a series process, because heat flows

through the fin against a thermal "resistance". Here,

convection may be viewed as a shunt process, because heat is

transferred off the surface of the fin into the air or

surrounding medium. The two equations are then:

Aq = hLOAx (2.3)

AI = YVAx (2.4)

12



where h is the heat transfer coefficient that governs the

heat transfer from fin to surroundings, L is the length of

the fin, 0 is the temperature excess (the temperature of

the fin surface minus the temperature of the surroundings),

and Y is the admittance per unit length of the electrical

network.

By comparing variables and constants between equations

2.1 and 2.2 and 2.3 and 2.4, the analogies displayed in

Table II are easily observed. The equivalent quantities may

therefore be used in development of an electrical network

model of a thermal configuration, or vice versa.

B. THE TRANSMISSION LINE MODEL

The transistor cap may be divided into two separate

parts: the cylindrical body and the circular disk. At this

point it is desired to develop an electrical model only for

the cylinder. As shown in Figure 2.1, the cylinder may be

treated as a rectangular fin with length L, where L is equal

to the circumference of the cylinder (L = nd) and, if re

is the outer radius of the circular disk, d = 2re .

In developing the electrical model for the fin, it

should be noted from Appendix A that the fin possesses two

distributed parameters that, together with its dimensions,

can completely determine its thermal behavior: the thermal

* conductivity, k, and the heat transfer coefficient, h. The

behavior of the electrical transmission line is similarly

13



TABLE II

ELECTRO-THERMAL ANALOGIES

THERMAL ONIII ELECTRIAL QUANTIY

q (heat flow) I (current)

0 (temperature V (voltage)
excess)

1/kA (thermal Z (impedance per
"resistance") unit length)
per unit length

hL (thermal Y (admittance per
"admittance") unit length)
per unit length

dictated by two distributed parameters: the impedance Z per

unit length and the admittance Y per unit length. However,

as Table II clearly shows, the thermal resistance and the

electrical impedance are analogous quantities as are the

heat transfer coefficient and the electrical admittance. In

addition, the per unit length stipulation pertaining to

these quantities demands a consideration of the fin as a

distributed configuration. This suggests that the

transmission line may be an appropriate model for the fin.

14
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CYLINDER EQUIVALENT FIN

I CIRCUMFERENCE __

I re L =d I
bI

Convective 9 b

heat flow
(exterior only)

Direction of

heat flow from nd -I
transistor base

Figure 2.1 The Cylinder as a Rectangular Fin.

Next, consider the well known transmission line

equations (Ref. 6: page 215]:

d2V/dx2 - y2 V = 0 (2.5)

d2 1/dx2 - y21 = 0 (2.6)

where y = i-. These equations may be compared with

equation A. 10 for temperature excess in the fin:

dO 2 - m2 0 = 0 (2.7)

where m2 = h/kA(for heat transfer off one side of the

cylinder only). Consideration of the quantities in Table II

indicates that:

15



gyii F - (2.8)

Since m2 is equivalent to y2 , the differential equations

of equations 2.5 and 2.7 are analogous in terms of both

variables and constants. Because they are identical in

form, they will possess identical general solutions, and if

evaluated for correspondingly equivalent boundary

conditions, they will have identical particular solutions.

The conclusion, therefore, is that the transmission line may

be used as a model in analyzing the behavior of the cooling

fin in general and the side of the TO can in particular.

C. PROPERTIES OF THE TRANSMISSION LINE

Before proceeding further, it may be useful to discuss

some finer points pertaining to the transmission line and

their impact on application of the line as a model for the

cooling fin.

Usually the series impedance Z is defined in terms of

the resistance and inductance of the line, as in:

Z = R + JL (2.9)

The shunt admittance Y is usually defined in terms of the

conductance and capacitance:

Y = G + jwC (2.10)

16



The concept of inductance, however, has no thermal

equivalent because no thermal element exists to "store"

temperature excess. Additionally, in this application, no

heat sources or sinks are allowed to exiat in the fin, so

that no heat can be stored. This implies that no term

equivalent to capacitance is present. Moreover, thermal

capacitance is a phenomenon that relates to transient heat

flow, and the analysis contained in this thesis deals

strictly with the steady state. Equations 2.9 and 2.10

therefore reduce to:

Z =R (2.11)

Y =G (2.12)

The transmission line analogy then reduces to the particular

case of the resistive-conductive (R-G) or "lossy"

transmission line.

Several other parameters are of interest in the

description of a transmission line. The characteristic

impedance of the line, Z0 , is defined to be 127?.

Conversely, the characteristic admittance of the line, Y0

is l/Z0 , or [/Z. From Table II, the equivalent thermal

"characteristic impedance" and "characteristic admittance"

can be calculated to be:

Z0 = 1/(L AM) (2.13)

17
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Yo = L (2.14)

respectively. Note that this expression for Y0 corresponds

to the definition of thermal "characteristic admittance"

proposed in Appendix A.

A term that was used earlier, Y, is designated as the

propagation constant and is usually of the form

7 + jP (2.15)

where u is the attenuation constant and p is the phase shift

constant. Since phase shifts are meaningless in the thermal

process (i.e. the quantity y is real so that p = 0), the

electrical model may assume that the propagation constant is

equal to the attenuation, i.e.

y-a = (2.16)

Because y = U / i, the equivalent thermal attenuation
factor is m, where m = Jh/. This, too, corresponds to

the suggestion provided in Appendix A that m can be

considered as the fin "attenuation" factor. These points

are summarized in Table III

18



TABLE III

TRANSMISSION CHARACTERISTIC ANALOGIES

ELECTICAL THERMAL

I characteristic 1/(L Ii5k)
impedance

characteristic L /i-8
admittance

Iz attenuation jh1 U
constant

D. THE FIN AS A TWO-PORT NETWORK

1. Th ectia Two-Port Network

It is known from electrical theory that the

transmission line may be represented by a two-port network.

The representation of a two-port is shown in Figure 2.2.

Note that the arrows indicate the conventional direction of

positive current, which is always flowing into the network

from either port.

Analysis of a two-port network concerns only the

conditions at the two ports. Conditions inside the network

are usually neither desired nor available. For the

transmission line, the conditions at the ports are the

voltage and current at the "sending" end, and the voltage

19



+ A B +B

0 0

VA  B

Figure 2.2 A Two-Port Network.

and current at the "receiving" end. Any two of these four

variables may be represented in a two-port by the linear

superposition of the effects of the other two variables,

such as:

V$ = AVR - BIR  (2.17)

i s = CV R - DIR  (2.18)

where Vs and I s are the voltage and current at the sending

end, VR and 'R are the voltage and current at the receiving

end, and where the minus signs are required because

convention has the current I R leaving port B. This pair of

equations is often represented by the transmission

parameterization:

20
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VSA BVR] (2.19)

In this particular case, the conditions at one port (the

sending end) have been selected as the dependent variables.

They are induced by the values of the independent variables,

which in this case are the conditions at the receiving end.

The linear transformation matrix which maps receiving end

conditions to sending end conditions is known as the

transmission parameter or ABCD matrix.

The transmission parameter formulation is germane to

the application covered in this thesis because it allows the

cap or disk of the TO can to be connected to the side of the

can in cascade. It may be recalled that when two or more

two-ports are connected in cascade, the entire configuration

may be expressed by an equivalent transmission parameter

matrix that is equal to the matrix product of the individual

transmission parameter matrices. The cascade connection for

the electrical case is displayed in Figure 2.3.

Here, with regard to Figure 2.3,

Aeq Be _ l A i  A2  B2

LCeq Deq C1 [D [2 D2

21
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C! D C2 D2  4

-cI Io

PjiFigure 2.3 Cascaded Two-Ports.

Because it has been shown that the transmission line

is an acceptable model for the fin, and the transmission

line is known to have a two-port representation with a

transmission parameter matrix, it is proposed that an

equivalent thermal two-port and transmission parameter

matrix representation must exist.

° 2 2. Th= Thermal Two-Port

The conventional representation of the transmission

line as a two-port was shown in Figure 2.2. Based on the

- analogies listed in Table II, the proposed thermal two-port

" for the case of the fin dissipating heat by convection to

the environment is illustrated in Figure 2.4. Note that

22
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here the conventional positive direction of heat flow at the

"tip end" is opposite to that of the receiving end current

in the electrical two-port. This must be represented in

this manner because the limiting assumptions (listed in

Appendix A) dictate heat flow in one direction only. This

heat flow, in a cooling application, is from the base of the

fin to the tip.

b 0qa

0 0

(Base) (Tip)

Figure 2.4 Proposed Thermal Two-Port.

Bared on Figure 2.4, the equivalent transmission

parameter matrix representation would be:

23
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where it can be observed that the minus sign present in the

electrical representation has been deleted due to the

direction of heat flow.

To find the transmission parameters for the fin, the

heat flow equation for temperature excess can be solved

using initial value data. Appendix A provides the

differential equation for the fin temperature excess:

dO2 - m2O = 0 (2.20)

where m =h/ki for convective heat flow off one side only.

This equation has a general solution:

E0(x) = Ciem + C2 e -mx (2.21)

The initial conditions at the base are:

0(xb) = 0 b (2.22)

q(x=b) = qb (2.23)

When equation 2.22 is substituted into equation 2.21 above,

the result is:

O b = Clemb + C2 e-mb (2.24)

and from the Fourier Law of Heat Conduction:

q(x) = kA dO/dx = kAm[ Clemx + C2 emx ] (2.25)

the substitution of equation 2.23 into equation 2.24 yields:

24



qb = kAm [ Clemb - C2 e-mb ] (2.26)

Equations 2.24 and 2.26 are two equations in two

unknowns (C1 and C2 ), and these can be solved simultaneously

to determine that:

C= e-mb( 0 (2.27)

*C 2 =em'b ( Ob +Zoaqj (2.28)

where 4o is the characteristic impedance

discussed in section C of this chapter.

Us he rt e values of the constants C1 and C2
provides the particular solution to equation 2.20:

and when rearranged to show a superposition of the effects

of Ob and qb this becomes:

O(x) = .5[0b(em(bx)+ e-m(b-x)J- (2.30)

Zoqb(em(b-x) e-m(bx))]

This may alternately be expressed in terms of hyperbolic

sines and cosines as:

0(x) = Ob cosh m(b-x) - Zoqbsinh m(b-x) (2.31)

25
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It is then easy to obtain the heat flow, q(X), through an

application of the Fourier Law:

q(x) = -Y0 sinh m(b-x) + qbcOsh m(b-x) (2.32)

where Yo = L 1iik8 is the characteristic thermal admittance of
the fin.

It is necessary to evaluate equations 2.31 and 2.32

at x=0 in order to obtain a relationship between tip and

base conditions of temperature excess and heat flow. Under

this particular circumstance:

E a = ObcOsh(mb) - Z0 qbsinh(mb) (2.33)

qa -Y0sinh(mb) 
+ qbcosh(mb) (2.34)

and these equations can be put into matrix form:

O a  cosh(mb) -Zo sinh(mb) 1b
[a [-Yosinh(mb) cosh(mb) [qb

This is the inverse thermal transmission representation.

To obtain the transmission parameter matrix, it is

required to show the base conditions as dependent on tip

conditions, not vice versa as depicted in equations 2.33 and

26
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2.34. The necessary rearrangement is easily accomplished by

taking the inverse and the result is such that:

Ob"coh~b) Zosinh(mb) [ea] (2.35)

qb L osinh(mb) cosh(mb) q

From this one can see that the base conditions are

dependent upon the linear superposition of the effects of

the tip conditions. This final form is the equivalent

transmission parameter matrix for the fin.

Presented below is the known transmission parameter

matrix for the transmission line [Ref. 6: page 2171. In a

comparison of the matrix relationships for the thermal

two-port and the electrical two-port, one finds the expected

similarity.

[vsl cosh(yb) Zosinh(yb) 1 VR1

Is Y0 sinh(lb) cosh(yb) IR

From this similarity it is concluded that the fin

has a thermal two-port representation and a transmission

parameter matrix as indicated by equation 2.35.

27



E. THE CASE OF A TWO-PORT CASCADED WITH A SHUNT ADMITTANCE

As already indicated, two-port theory states that the

equivalent transmission parameter matrix for two or more

two-port networks connected in cascade is equal to the

product of the individual two-port matrices. In the

particular case where a two-port network is connected in

cascade with a shunt admittance, as illustrated in Figure

2.5, the equivalent two-port transmission parameter matrix

is even easier to obtain. No calculation of a transmission

parameter matrix for the shunt admittance is necessary,

although it is easily derived. The transmission parameter

matrix for the shunt admittance is known to be of the form

[Ref. 7: p. 163]: 1 0
0 Yin

When this equivalent shunt transmission parameter matrix is

premultiplied by the transmission parameter matrix that

represents the rest of the network, the result is the

equivalent transmission parameter matrix for the entire

network. In this case the equivalent transmission parameter

matrix is of the form shown below:

28



A l B1  1= +Bi (2. 36)

e 1 Di LYin 1 BC+DYin

II °

0 A. B 0 i

CI  D1

I I

Figure 2.5 A Two-Port Cascaded With

a Shunt Admittance.

This reasoning can also be extended to the performance

of the fin which may be discussed using two-port

terminology. Consequently, if an equivalent "input

admittance" can be determined for the top disk of the

transistor cap, the entire cap (the cylindrical sides which

are connected in cascade to the circular disk) may be

modeled by one two-port network by using the relationship

shown in equation 2.36.

29I "
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The next chapter will concentrate on developing an

equivalent "input admittance" for the circular disk.

F. CAUTIONS PERTAINING TO THE USE OF THERMAL TWO-PORT

ANALOGIES

The purpose of this chapter was to develop a thermal

two-port representation for the rectangular cooling fin.

This was done through the use of electro-thermal analogs,

and the similarity between the thermal two-port and

electrical two-port was duly noted. However, significant

differences exist between the two and these differences must

be taken into consideration when attempting to use

electrical two-port theory in thermal applications. These

differences are:

1) In the electrical two-port either port can be
considered as the input port. In the thermal two-port
for the fin, the base is always considered as the
input port.

2) The thermal two-port always has a height-coordinate
associated with it. It is measured in a direction
taken positive from the tip to the base of the fin.
The electrical two-port has no equivalent directional
dependency.

3) The direction of the heat flow at the output port (the
tip of the fin) in the thermal two-port is opposite
that of the current flow at the output port of an
electrical two-port. This difference has a tremendous
effect on conversions between the two-port parameters.
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III. INPUTk1J ADITTACE C IL 1AR DIS

A. INTRODUCTION

The objective of this chapter is to develop an

expression for the "input admittance", Yin, of the disk,

which is the admittance seen looking into the disk.

Physically, it relates to the ease in which the heat will

flow into the disk, and here the entire disk may be replaced

in the electro-thermal analog by the input admittance alone.

Generally, admittance is expressed as the ratio of

current to voltage (I/V). Using the electro-thermal analog,

the equivalent thermal admittance is defined to be the ratio

of heat flow to the temperature excess (q/e). The input

admittance in this application is specifically the

4& Ltance at the edge of the disk, and this will be denoted

as

B. THE GENERAL EQUATIONS FOR THE DISK

To determine the input admittance of the disk, the

differential equations of heat flow in the disk must be

solved. To obtain the differential equations, first

consider the differential element between radius r and

r + Ar in the disk as shown in Figure 3.1. Notice that the

positive orientation of the radial coordinate is from the

center to the edge of the disk and that heat enters the
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element at radius r + Ar and leaves the element at radius r

by conduction. Additional heat will be lost through the top

face of the element by convection.

r T

I r r

r ~
r 

e

Fiur 3.Iiga fCrua ik

Th hetetrn h lmn ycnuto trdu
r +Irwl e

I~+,r = ITdkd/ 2rkO 31
rLI -A+A Ir,&

Tiiay he heat ntering the element by conduction at du

radiusr will e:ulo

qr=k Td nk8dO/dr 2rkddI (3.1)
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and the heat lost through the top surface by convection must

equal:

qs = hdOAS = hdO(2nrAr - nAr 2 ) (3.4)

An energy balance (the law of conservation of energy)

indicates that, in the steady state, the total heat entering

the element must equal the total heat leaving the element:

q r+Ar = qr + qs (3.5)

and use of equations 3.1, 3.3, and 3.4 in equation 3.5

yields:

2nr6k dO/dr = 2nrSk dO/dr + hdO(2nrAr - nAr 2 ) (3.6)

A rearrangement of equation 3.6 yields:

r dO/drj - r dO/dr hOr(l - Ar/2) (3.7)
Ilr+Ar Ir =

Ar kS

and in taking the limit as r-O, one obtains:

d/dr (r dO/dr) - (hd/kS)rO = 0 (3.8)

or

r(d 2 0/dr 2 ) + dO/dr - n 2 rO = 0 (3.9)
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Here n - ]d/k, where hd is the heat transfer coefficient
for the disk.

Multiplication of equation 3.9 throughout by r puts it

in the form of a modified Bessel equation:

r 2 dO 2 /dr 2 + r dO/dr - n 2 r 2 0 = 0 (3.10)

and the general solution is: [Ref. 8: p. 4171:

0(r) = C110 (nr) + C2K0 (nr) (3.11)

where C1 and C2 are constants to be determined from the

appropriate boundary conditions.

C. APPLICATION OF THE BOUNDARY CONDITIONS

One boundary condition for the circular disk may be

obtained by considering the temperature excess at the edge

(r = re) as a k- quantity:

O(r=re) ;. 4e (3. 12)

However, an inspection of equation 3.11 shows that at

r=O, 0(r=O) will be unbounded because K0 (0) is unbounded.

Therefore, in order to keep O(r=0) finite, C2 must equal

zero. Thus, with C2 -, equation 3.11 can then be restated

as:

0(r) = C110(nr) (3.13)

Then substitution of the boundary condition of equation 3.12

into equation 3.13 yields:
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e(r=r e ) = ee = ClIo(nre) (3.14)

The constant C1 may therefore be represented as:

Cl = ee/Io(nre) (3.15)

and substitution of this result into equation 3.13 provides

the temperature excess of the disk as a function of the

radial coordinate r:

e(r) = Oe[Io(nr)/I0(nre) ]  (3.16)

The heat flow may then be obtained by once again

employing Fourier's Law:

q = kA dO/dr (3.17)

th., that, with (r) from equation 3.16:

q(r) - )trk6 [ neeIl(nr)/1 0 (nre) ( (3.18)

The expression for the thermal input admittance may be

obtained from equations 3.16 and 3.18 as shown:

Yin = q(re)/O(re) = YoIl(nre)/Io(nr e ) (3.19)

where Yo = 2nrev/KdS is the characteristic admittance of

the disk as discussed in Chapter I.

This thermal input admittance, qe/0 e, will therefore be

used as a single element admittance to represent the
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circular disk in further analysis of the entire transistor

cap..
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IV. DETERMINATION FT INPUTDMITAE C

Results from the previous two chapters can now be

combined to achieve the goal of determining the input

admittance (Yin) at the base of the transistor cap with

respect to the parameters involved, including the quantity

of air flow, dimensions of the cap, and materials used in

the cap.

In Chapter I, it was stated that because a two port

representation had been determined for the cylindrical side

of the TO can, determination of the input admittance of the

circular disk was the only quantity needed to obtain Yin for

the entire cap, as long as the disk could be considered as

being connected in cascade with the cylinder.

To illustrate that the disk is indeed connected in

cascade with the cylinder, consider again the conventional

two port cascade representation displayed in Figure 4.1.

From this diagram it can be seen by continuity that q2

must equal q3 and by compatibility 02 must equal E3. The

physical interpretation is that the heat flowing out of the

cylinder must equal that flowing into the disk, and that the

temperature excess at the top of the cylinder must match

that at the edge of the disk.
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q, q2 q3 q4

0 0

I -I

Figure 4.1 Cascaded Two-Port Networks.

These conditions are guaranteed through the limiting

assumptions that the cap is constructed of the same material

throughout with uniform thickness. Because there is no

surface area at the point of interest, no heat will be lost

via convection. Thus all of the heat flowing out of the

cylinder must be entering the disk. This indicates further

that the temperature excess will not change between the top

of the cylinder and the edge of the disk. Of course,

intuition provides the fact that there can be no temperature

discontinuity.

The electrical network model for the cap can therefore

be represented as a transmission line terminated in a shunt

admittance. Using the two port representation of the

transmission line, the network is shown in Figure 4.2.
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WW 91 I

I

qbI
I A B Y(Disk)

C D

(Cylinder)

Figure 4.2 The Electrical Model for the Transistor Cap.

It has also been shown that for a two port with a given

transmission parameter matrix terminated by a shunt

admittance, the equivalent two port representation is:

SEbi AI~ B [ej (4.1)
qb LC+DYin D qc

where O c and qc are respectively the temperature excess

and heat flow at the center of the disk.

However, as was noted earlier, no temperature gradient

can exist at the center of the disk, thus qc = 0 and this

fact can be used to easily show that an expansion of

equation 4.1 provides:
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Ob (A + BYin) Oc (4.2)

qb (C + DYin) Oc (4.3)

To obtain the desired input admittance at the base,

namely qbIOb, the ratio of equations 4.2 and 4.3 can be

taken, to yield:

qbEb= (C + DY.n/( + BYin) (4.4)

Then, using the appropriate substitutions:

A = cosh(mb)

B =Zossinh(mb)

C=Yossinh(mb)

D =cosh(mb)

Yi- YOdEIl(nre)/IO(nre)J

the relationship for the input admittance-at the base of the

transistor cap is:

Yin Yossinh(mb) + YOdcosh(mb) [Il(nre)/I0 (nre)J (4.5)

cosh(mb) + ZOsyOdsinh(mb) [Il(nre)/Io(nre)]
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where YOd = 2nre 4id76 and Yos = 2nre f/ii6, M = jhs7F6

and n = ]hd/k7, given that hs is the heat transfer coefficient of

the cylindrical sides and hd is the heat transfer coefficient of

the circular disk.
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V. DLIUSSOQE PERORMNC CURVES

A series of parametric curves illustrating the

relationship between the input admittance of the cap as

given by equation 4.5 as a function of the cap dimensions

and the heat transfer parameters h and k is displayed in

alternate forms in Figures 5.2, 5.3, and 5.4. This chapter

will discuss the development of these curves, and the

possible ways that they might be utilized.

A. DEVELOPMENT OF CURVES

The T03 package was chosen as the configuration on which

to base the illustrations. Dimensions of this package are

shown in Figure 5.1, taken from the D.A.T.A. handbook

[Ref. 9]. Where Figure 5.1 indicates a range of lengths or

heights, the largest value was used. A standard thickness

of 0.03 inches, or 0.0762 cm, was also used.

After specifying the package size, the procedure for

obtaining the data for the curves in Figure 5.2 was as

follows: For each inlet air temperature, an air velocity

was assumed. Then the corresponding heat transfer

coefficients for the top and sides were determined. The

heat transfer coefficient for the top was obtained through

the use of the McGraw-Hill software package "Heat Transfer

Software" (Ref. 101, designed for the IBM PC. The heat
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Figure 5.1 Outline Drawing of a T03 Package.

transfer coefficient for the side was calculated from

Hilpert's correlation [Ref. 111:

h = (k/d) C (tyd/vf) n Prl/ 3  (5.1)

where u., is the free stream velocity, Pr is the Prandtl

number, d is the diameter of the cylinder, kf is the thermal

conductivity of the fluid, vf is the kinematic viscosity of

the fluid, and C and n are constants that depend on the

value of the Reynolds number term (uod/vf). The heat

transfer coefficients used in determining the curves

presented here can be found in Appendix B.
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A computer program (found in Appendix C) was then used

to calculate the resulting input admittance as defined by

equation 4.5. This entire procedure was then repeated for

other inlet air velocities and temperatures.

The procedure for obtaining data for Figures 5.3 and 5.4

was similar, except that in these cases an inlet air

temperature of 25 C was used in all calculations, and the

height of the cap (Figure 5.3) or the thickness (Figure 5.4)

was taken as the variable parameter.

B. USE OF CURVES

A sample problem may best serve to illustrate how these

curves may be utilized. For example, consider a situation

where 40 W must be dissipated in an air stream that is

flowing at 5 m/s at 50 C. The junction to case resistance

is 0.4 C/W, and the temperature at the junction is 125 C.

The case temperature will be 109 C, because:

Tc = Tj - 40 (0.4) = 125 - 16 = 109 0C (5.2)

The temperature excess may then be calculated to be:

E b = Tc - Ts = 109 - 50 = 59 0C (5.3)

where T is the free stream temperature. The input

admittance, Y , is obtained from Figure 5.2 (for an inlet

air temperature of 50 C and a velocity of 5 m/s) and is

approximately 0.052 W/ C. From this value of Y , q (which
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is the heat dissipation of the cap) may be calculated by

observing that:

Yin = qb/Ob (5.4)

or

qb= Yin Ob (5.5)

Hence, in this example,

qb = (0.052)(59) = 3.068 W (5.6)

The cap dissipates 3.068 watts out of the total

dissipation of 40 watts. This amounts to approximately 7.5%

of the total dissipation. The designer now has a more

precise value of the heat dissipation to be applied to the

heat sinking system.

45



T03 CONFIGURATION

o Diameter 2.22 cm
S Cap Thickness 0.762 mm

Height 1.143 cm

Inlet Air Stream7 Temperature C

E -- 20
E- 3

50
70

E-4

14/C) ZI

o I

o

II I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

AIR VELOCITY (M/S)

Figure 5.2 Input Admittance vs. Air Velocity

with Varying Air Temperatures.
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Diameter 2.22 cm
o Cap Thickness 0.762 mm

Inlet Air Temp 25 C
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This thesis has provided a means to calculate the amount

of heat that a transistor package will dissipate under

operating conditions. The heat sinking system is the

primary area where weight, volume and cost savings can be

effected. It is extremely beneficial to the designer to

have a precise estimate of the heat sinking system

requirements. The small amount of heat dissipated by the

transistor cap may nonetheless lead to smaller, less costly

cooling structures. The savings here continue to translate

down the line and the overall impact may be considerable.

Good engineering demands precision. Technology advances

not purely through development of new systems, but also

through continuous striving to obtain a better and deeper

knowledge of existing systems and operating conditions. As

a designer's knowledge of the capability of his available

tools and equipment increases, the better he is able to

provide effective and efficient products.
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APENDIX A

HEAT FLOW IN A RECTANGULAR FIN

1. ASSUMPTIONS

This appendix will review some basic heat transfer

theory and develop equations that govern heat flow in a

rectangular fin. The following assumptions, which are

attributed to Murray [Ref. 12] and Gardner [Ref. 131, are

made in these derivations:

1) Steady heat flow throughout the fin.

2) Heat transfer to or from the faces of the fin is
proportional to the temperature difference between fin
and surroundings. This eliminates radiation as a mode
for this heat transfer.

3) There is no thermal resistance between the fin and the
base surface.

4) Fin material is homogenous, with constant heat

transfer coefficient and thermal conductivity.

5) No heat sources or sinks in the fin.

6) Temperature of surrounding medium is constant.

7) Temperature at base of fin is constant.

8) The dimensions of the fin are such that temperature
gradients exist in the x direction only.
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2. CONDUCTION

-Heat flow through a body from an area of higher

temperature to one of lower temperature occurs through the

process of conduction. Heat flow by conduction is

predicated to arise in two distinct ways: by molecular

collisions with a resultant transfer of kinetic energy from

a hotter to a cooler substance, and by electron drift. The

kinetic energy transfer is commonly viewed as occurring

between rapidly vibrating molecules of a substance and less

rapidly vibrating adjacent molecules.

The amount of heat flow by conduction is directly

proportional to the temperature gradient in the direction of

the path of heat flow and to the area normal to the path of

heat flow:

q = -A dT/dx (A.1)

where the minus sign indicates that if the temperature

decreases with x, then q will be positive and will flow in

the x direction. This relationship was first proposed by

Joseph Fourier in 1822 (Ref. 4: p. 91. An example of a heat

flow path by conduction is shown in Figure A.l.

Insertion of a proportionality constant, k, results in

the Fourier Law of Conduction:

q = -kA dT/dx (A. 2)
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Teat dx T2 <

flow

I I

I I

Figure A.1 Heat Flow Path by Conduction.

which serves to define the thermal conductivity of a

particular material as:

k = (-q/A)/(dT/dx) (A.3)

3. CONVECTION

Heat transfer at the interface between a solid and a

fluid at different temperatures is significant in many

common applications. When the surrounding fluid is

completely stationary relative to the solid, heat transfer

is purely by conduction. When flowing, however, the fluid

forms a thin boundary layer around the solid into which heat

is conducted [Ref. 4: p. 17]. This heat is then swept away

with the removal of the fluid in a prevailing circulation
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pattern. The transfer of heat in this fashion describes the

convection mode of heat transfer.

The amount of heat transferred by convection is

proportional to the surface area normal to the heat flow

path and the difference in temperature between the surface

and the bulk of the surrounding fluid:

q oc S(T - Ta) = SO (A. 4)

where Ta indicates the temperature of the fluid (or

environment). Figure A.2 illustrates the flow of heat by

convection.

S= T
L~x a

Heatflow/, |

flo I-I , ",

I I-A x--II

Figure A.2 Heat Flow Path by Convection.

lo The constant of proportionality used in convection, h,

is the heat transfer coefficient. The provision of this
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proportionality constant results in what is known as

Newton's law of cooling by convection:

q = hS@ (A. 5)

and this serves to define h as:

h = q/(SO) (A. 6)

The heat transfer coefficient may be viewed as a measure of

the ease with which the convection process may proceed.

4. THE TEMPERATURE EXCESS AND HEAT FLOW IN THE COOLING FIN

The longitudinal fin of rectangular profile is shown

with its terminology and coordinate system in Figure A.3.

Note that the coordinate system has its origin at the fin

tip and has a positive sense of direction toward the fin

base. The slice in the middle indicates a differential

element of width dx.

The principle of conservation of energy requires that

the difference between the heat entering and leaving the

differential element by conduction must equal the heat

leaving by convection:

d/dx (kA dT/dz)dx = h(2Ldx) (T - Ta) (A.7)

Assuming constant thermal conductivity and cross-sectional

area, and defining the temperature excess 0 as:

0 = T - Ta (A.8)

54



aea
L LI 

I

bb

x:0 

x~b

Figure A. 
3 Coordinate 

System 
o Cooling 

Fin.

so that

dO 

= 
dT 

(A.9 
)

equation 
A. 7 then 

becomes

d2 E)/dx2  - m2E = 0 

(A. 10 )

where

M 2-h-/ 

(A. 11)

The m term 
is regarded 

as the fin 
performance 

factor or fin

"attenuat on".

The general 
solution to 

equation A.0 
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and a particular solution can be obtained in a "boundary

value problem" based on the boundary conditions:

O(x=b) = .(A.13)

q(x=O) = 0 (A. 14)

which makes the assumption that the heat flowing from the

tip of the fin is negligible.

Substitution of these boundary conditions into equation

A. 12 gives:

O(x=b) = O b = Clemb + C2 e-mb (A. 15)

Recognizing that the heat flow through the fin is in a

direction opposite that of the positive sense of the

coordinate system, the minus sign of equation A.2 may be

eliminated, and it can be stated that:

q = kA dT/dx = kA dO/dx = kAm (Clemx - C2 e
- rex ) (A.16)

Then considering the heat flow at x = 0, it is seen that:

q(x=0) = 0 = C1 - C2  (A. 17)

which yields:

C1 = C2  (A. 18)

This result leads to:
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C1=C2  0 (A. 19)

Cl = 2 em + emb 2cosh(mb)

so that

O(x) = Ob (e"'x - e-!lx)/2cosh(mb) (A.20)

or alternatively:

OWx = Ob cosh(mx)/coah(mb) (A. 21)

The heat flow in the fin will be:

q(x) =kA d0/dx =kAnlObsinh(mx.)/cosh(mb) (A.22)

and at x=b, the heat entering the base of the fin is:

q(x=b) kAmEb sinh(mb)/cosh(mb) (A.23)

or

q(xb) kAmobtanh(mb) (A.24)

With the cross-sectional area of the fin denoted as 6L,

then:

q(x=b) = YO~btanh(mb) (A.25)

where Y0 is defined to be:

Y= L Jf2ihk (A.26)

may be viewed as a sort of "characteristic admittance" of

the fin.
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HEAT TRANSFER COEFFICIENTS

This appendix lists the heat transfer coefficients used

in the calculations of the curves in this thesis.

Heat Trnse Coefficients for th =g 2ia"

Air o.±±. (mV~g) Inlt r Te~eatre (0f,)

1 17.488 17.470 17.449 17.405 17.364 17.291

2 24. 968 24. 932 24. 894 24. 813 24. 739 24. 604

3 30. 881 30. 829 30. 774 30. 660 30. 553 30. 361

4 35.990 35.921 35.850 35.703 35.566 35.318

5 40.587 40.503 40.415 40.236 40.068 39.765

6 44. 824 44. 723 44. 619 44. 408 44. 211 43. 853

7 48.788 48.671 48.551 48.308 48.081 47.669

8 52.538 52.404 52.268 51.994 51.737 51.272
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Heat Trnsfer Coefficients f= Ihe Sides

A rocity (mZA) Inlet Air TeMIir i (o)

25 00

21.080 21.101 21.499 21.070 21.034 21.044

2 29.122 29.141 29.144 29.101 29.055 29.068

3 35.613 35.486 35.321 35.150 35.097 35.112

4 42.536 42.390 42.194 41.747 41.324 40.691

5 48.825 48.659 48.434 47.920 47.435 46.707

6 54.649 54.464 54.210 53.633 53.092 52.278

7 60. 103 59. 911 59. 629 58. 210 58. 399 57. 503

8 65.289 65.051 64.758 64.070 63.422 62.450
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APPENDIX 1

NOMENCLATURE

A an arbitrary constant or Area, m

B an arbitrary constant

C an arbitrary constant, or capacitance, farads

D an arbitrary constant

d diameter, m

e the Naperian base

G Conductance, mhos

h Heat Transfer Coefficient, W/m2 -s-b

I Current, amperes or Modified Bessel Function of

First Kind

K Modified Bessel Function of Second Kind

k Thermal Conductivity, W/m-s-C

L Inductance, henries

1 length, m

m Fin "attenuation" factor of fin or sides, 1/m

n Fin "attenuation" factor of top, 1/m, or

arbitrary constant

q Heat flow, W

Pr Prandtl number

R Resistance, ohms

r Radius, m

S Surface area, m
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T Temperature, °C

u Free stream velocity, m/s

V Voltage, volts

x a coordinate

Y Admittance, mhos in electrical case and W/°C in

thermal case

Z Impedance, ohms in electrical case and °C/W in

thermal case

U Attenuation constant, per unit length

0Phase shift constant, per unit length

y Propagation constant, per unit length

change in variable

6Thickness of fin or transistor cap, m

P Kinematic viscosity (m2/s)

o Temperature excess,°C

a refers to atmosphere or environment, or to end of fin

b refers to base of fin

c refers to center of the disk, or to the case

d refers to the circular disk

e refers to edge of disk

eq refers to equivalent representation
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j refers to case junction

R refers to receiving end of transmission line

S refers to sending end of transmission line

s refers to the side of the cap, or to free stream

temperature

0 refers to characteristic impedance or admittance

1 refers to first two-port when cascaded

2 refers to second two-port when cascaded
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