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. ABSTRACT

-{

This thesis develops and utilizes electro-thermal analogies

to analyze the amount of heat dissipated in a typical tran-

sistor cap. A series of parametric curves are developed to
illustrate the results obtained. These curves may be used
by circuit designers in order to obtain a more precise esti-
mate of the heat sink system requirements.
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A. BACKGROUND . .

There are at least two important reasons why the
junction of a transistor must be kept within prescribed and !
precise temperature limits. The first of these concerns the
reliability of the device and the second relates to the bias
or operating point.

It is an established fact that the failure rate of a
transistor is a direct function of junction temperature. ’

There is a vast amount of literature that provides curves

and tables of semiconductor failure rates as a function of
junction temperature. Such a table taken from data provided
by Thornell et al [Ref. 1] and Harper [Ref. 2] is shown in
Table I . The numbers shown clearly demonstrate the
necessity for thermal control to a maximum operating
temperature dictated by the requirements for the reliability
of commercial and/or military systems.

Because collector current varies directly with junction
temperature, it is apparent that, in the collector circuit

with fixed bias and external resistance, as in the common

-emitter configuration, increases in collector current can

cause decreases in collector-emitter voltage. A severe

decrease of this voltage may shift the bias-stabilization
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(Failure rates in percent per thousand hours)

| 1
| |
I |
| TABLE I |
I |
| BASE FAILURE RATES VS. TEMPERATURE |
| ) |
| o I
| Iemperature (°C) :
I
| Element a5 29 15 100 125 :
|
| Transistor chips |
| Low power . 0001 . 0003 . 0009 . 0027 .007 |
| High power .0050 .0100 .0300 . 0900 .270 |
I | Diode chips .0001 .0003 .0009  .0027  .007 |
I I
E | Microcircuits |
! | Quad gate .0020 .0036 .0180 . 0820 .240 |
| | Dual flip-flop .0040 .0072 .0360 . 1640 .480 |
} | |
I |
: I |
I l
I I
J

point of an amplifier to a point where the device is

operating outside of its specification. This too may be

thought of as a reduction of both device and system

reliability. )
Therefore, in order to obtain optimal performance from a

device, the designer must know exactly what his heat

& "5 D 1

dissipating requirements will be. Overestimation and
overcompensation in terms of implementing heat dissipating

devices can also adversely affect size, cost, and even

operation.
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B. OBJECTIVES

The goal of this thesis is to provide the designer with
curves that will permit a precise estimate of the amount of
heat dissipated by the cap of a TO package. A knowledge of
the fraction of the heat dissipated by the cap to the total
heat dissipated can perhaps lead to a lighter and less
costly cooling structure. Although the fraction of the heat
dissipated by the cap may be small, any improvement in

reducing size and cost may still be sought.

C. PROCEDURE

To obtain the desired curves, this thesis will utilize
familiar electrical theory by first developing an
electro-thermal analogy for the transistor package. The
electro-thermal model will then be analyzed in terms of
parameters that equate to those of interest in the
transistor package. The result of this analysis will be one
unifying procedure that relates the temperature and heat
flow at the transistor junction to heat transfer and
physical variables such as air flow, temperature levels, and
package size. A set of parametric curves will be drawn
utilizing this procedure in order to illustrate the
relationships that the designer will be required to consider

for a particular TO configuration.

10
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II. THE IRANSMISSION LINE ANALOGY FOR THE COOLING FIN

A. THE ELECTRO-THERMAL ANALOG

The flow of electricity and the flow of heat are similar
in many ways. Analogies are drawn between the gquantities
used to describe each process, and electro-thermal analogs
in the form of electrical networks are formulated to model
and to analyze thermal configurations. The development of
these analogies has been covered in depth in several works,
including Holman [Ref. 3], Lienhard [Ref. 4], and Incropera
and Dewitt [Ref. 5]. A discussion is presented here for
purposes of continuity and completeness.

A brief presentation of the heat flow problem in and
from a cooling fin is contained in Appendix A, along with a
list of assumptions pertaining to the transistor cap that
will impact on further derivations. The reader may refer to
Appendix A for answers to any questions regarding the heat
flow theory considerations necessary to an understanding of
what will be proposed in this thesis.

The first step towards development of an electrical
model for the transistor cap is the determination of
equivalent thermal and electrical quantities. The wvariables
of concern in an electrical network are the voltage or

potential, V, and the current, I. The variables of interest

11



in thermal applications are the temperature excess, O, and
the heat flow, g. First compare the equations for heat flow
by conduction in a rectangular fin and the flow of

electricity through an impedance:

kAAT/Ax (2.1)

a
"

[
n

(1/Z)(AV/Ax) (2.2)

where Kk is the thermal conductivity of the fin material, A
is the area perpendicular to heat flow, T is the temperature
of the fin, and Z is the impedance per unit length of the
network. The two equations are of similar form, suggesting
that an analogy between the variables can be proposed.

In a second comparison, consider the equations for heat
transfer from the surface of the fin by convection and for
current through an admittance. Conduction was compared in
the foregoing with a series process, because heat flows
through the fin against a thermal "resistance". Here,
convection may be viewed as a shunt process, because heat is
transferred off the surface of the fin into the air or

surrounding medium. The two equations are then:

Aq

hLOAx (2.3)

AI = YVAx (2.4)

12
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where h is the heat transfer coefficient that governs the
heat transfer from fin to surroundings, L is the length of
the fin, © is the temperature excess (the temperature of
the fin surface minus the temperature of the surroundings),
and Y is the admittance per unit length of the electrical
network.

By comparing variables and constants between equations
2.1 and 2.2 and 2.3 and 2.4, the analogies displayed in
Table II are easily observed. The equivalent quantities may
therefore be used in development of an electrical network

model of a thermal configuration, or vice versa.

B. THE TRANSMISSION LINE MODEL

The transistor cap may be divided into two separate
parts: the cylindrical body and the circular disk. At this
point it is desired to develop an electrical model only for
the cylinder. As shown in Figure 2.1, the cylinder may be
treated as a rectangular fin with length L, where L is equal
to the circumference of the cylinder (L = nd) and, if rg
is the outer radius of the circular disk, d = 2r, .

In developing the electrical model for the fin, it
should be noted from Appendix A that the fin possesses two
distributed parameters that, together with its dimensions,
can completely determine its thermal behavior: the thermal
conductivity, k, and the heat transfer coefficient, h. The

behavior of the electrical transmission line is similarly

13




TABLE II
ELECTRO~-THERMAL ANALOGIES

IHERMAL QUANTITY ELECTRICAL QUANTITY

q (heat flow) I (current) !
O (temperature V (voltage)

excess)
1/kA ( thermal Z (impedance per

"resistance") unit length)

per unit length
hL (thermal Y (admittance per

"admittance") unit length)

per unit length

——————
S U

dictated by two distributed parameters: the impedance 2Z per
unit length and the admittance Y per unit length. However,
as Table II clearly shows, the thermal resistance and the
electrical impedance are analogous quantities as are the
heat transfer coefficient and the electrical admittance. 1In

addition, the per unit length stipulation pertaining to

these quantities demands a consideration of the fin as a
distributed configuration. This suggests that the

transmission line may be an appropriate model for the fin.

14 "




CYLINDER EQUIVALENT FIN
. ﬁfffgsé? CIRCUMFERENCE L !
b
% = =~ % Convective = = =3 b
heat flow
. (exterior only)
N J ¢

Tt ! ! !

Direction of
heat flow from | — nd -]
transistor base

————
]

Figure 2.1 The Cylinder as a Rectangular Fin.

Next, consider the well known transmission line

equations [ Ref. 6: page 215]:

a%v/dax? - y2y = ¢ (2.5)

0 (2.6)

d21/dx? - y21

where Y =¢ 2Y. These equations may be compared with

equation A.1l0 for temperature excess in the fin:

where m? = h/kA (for heat transfer off one side of the

cylinder only). Consideration of the quantities in Table II

indicates that:




Y=ﬁ=.@=f&r.=f€3=m (2.8)

2 js equivalent to 72, the differential equations

Since m
of equations 2.5 and 2.7 are analogous in terms of both
variables and constants. Because they are identical in
form, they will possess identical general solutions, and if
evaluated for correspondingly equivalent boundary
conditions, they will have identical particular solutions.
The conclusion, therefore, is that the transmission line may

be used as a model in analyzing the behavior of the cooling

fin in general and the side of the TO can in particular.

C. PROPERTIES OF THE TRANSMISSION LINE

Before proceeding further, it may be useful to discuss
some finer points pertaining to the transmission line and
their impact on application of the line as a model for the
cooling fin.

Usually the series impedance Z is defined in terms of

the resistance and inductance of the line, as in:

Z =R + joL (2.9)

The shunt admittance Y is usually defined in terms of the

conductance and capacitance:

Y =G+ joC (2.10)

16
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The concept of inductance, however, has no thermal
equivalent because no thermal element exists to "store"
temperature excess. Additionally, in this application, no
heat sources or sinks are allowed to exist in the fin, so
that no heat can be stored. This implies that no term
equivalent to capacitance is present. Moreover, thermal
capacitance is a phenomenon that relates to transient heat
flow, and the analysis contained in this thesis deals
strictly with the steady state. Equations 2.9 and 2.10

therefore reduce to:

R

Y=0 (2.12)

The transmission line analogy then reduces to the particular
case of the resistive-conductive (R-G) or "lossy"
transmission line.

Several other parameters are of interest in the
description of a transmission line. The characteristic
impedance of the line, Zg, is defined to be JE7?.
Conversely, the characteristic admittance of the line, YO,
is 1/20, or dﬁaﬁi From Table II, the equivalent thermal
"characteristic impedance" and "characteristic admittance"

can be calculated to be:

ZO = 1/(L Jhk&)
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Yo = L Jﬁkﬁ (2.14)

respectively. Note that this expression for Yo corresponds
to the definition of thermal "characteristic admittance"

proposed in Appendix A.

A term that was used earlier, Y, is designated as the

propagation constant and is usually of the form

Yy =a+ jp (2.15)

where a is the attenuation constant and B is the phase shift
constant. Since phase shifts are meaningless in the thermal
process (i.e. the quantity Y is real so that B = 0), the

electrical model may assume that the propagation constant is

equal to the attenuation, i.e.

Y=« (2.16)

Because y = a = 'JE-, the equivalent thermal attenuation
factor is m, where m = \/37;5. This, too, corresponds to
the suggestion provided in Appendix A that m can be
considered as the fin "attenuation" factor. These points

are summarized in Table III .

18
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TABLE III
TRANSMISSION CHARACTERISTIC ANALOGIES

ELECTRICAL THERMAL
/z/y characteristic 1/(L Jhk&)
impedance
JY/Z characteristic L Jhké
admittance
,zy attenuation ,h/k&
constant

]

o G . —— — — —— — — —— — ————— ——— — —

D. THE FIN AS A TWO-PORT NETWORK
1. The Electrical Iwo-Port Network

It is known from electrical theory that the
transmission line may be represented by a two~-port network.
The representation of a two-port is shown in Figure 2. 2.
Note that the arrows indicate the conventional direction of
positive current, which is always flowing into the network
from either port.

Analysis of a two-port network concerns only the
conditions at the two ports. Conditions inside the network
are usually neither desired nor available. For the

transmission line, the conditions at the ports are the

voltage and current at the "sending" end, and the voltage

N -

o e e A .
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Figure 2.2 A Two-Port Network.

and current at the "receiving" end. Any two of these four
variables may be represented in a two-port by the linear

superposition of the effects of the other two variables,

such as:
Vs = AVR - BIR (2.17)

where Vs and Ig are the voltage and current at the sending
end, VR and IR are the voltage and current at the receiving
end, and where the minus signs are required because
convention has the current Ip leaving port B. This pair of
equations is often represented by the transmission

parameterization:

20
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Vg A B VR (2.19)

In this particular case, the conditions at one port (the
sending end) have been selected as the dependent variables.
They are induced by the values of the independent variables,
which in this case are the conditions at the receiving end.
The linear transformation matrix which maps receiving end
conditions to sending end conditions is known as the
transmission parameter or ABCD matrix.

The transmission parameter formulation is germane to
the application covered in this thesis because it allows the
cap or disk of the TO can to be connected to the side of the
can in cascade. It may be recalled that when two or more
two-ports are connected in cascade, the entire configuration
may be expressed by an equivalent transmission parameter
matrix that is equal to the matrix product of the individual
transmission parameter matrices. The cascade connection for
the electrical case is displayed in Figure 2.3.

Here, with regard to Figure 2.3,

eq eq

D Cy D4 | Cy D,

21
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Figure 2.3 Cascaded Two-Ports.

Because it has been shown that the transmission line
is an acceptable model for the fin, and the transmission
line is known to have a two-port representation with a
transmission parameter matrix, it is proposed that an
equivalent thermal two-port and transmission parameter
matrix representation must exist.

2. TIhe Thermal Iwo-Port

The conventional representation of the transmission
line as a two-port was shown in Figure 2.2. Based on the
analogies listed in Table II, the proposed thermal two-port
for the case of the fin dissipating heat by convection to

the environment is illustrated in Figure 2.4. Note that

22




here the conventional positive direction of heat flow at the
"tip end" is opposite to that of the receiving end current

in the electrical two-port. This must be represented in

this manner because the limiting assumptions (listed in

Appendix A) dictate heat flow in one direction only. This
heat flow, in a cooling application, is from the base of the

fin to the tip.

oO—p— —p——0

Bo 0

o———— ——o
(Base) (Tip)

S

Figure 2.4 Proposed Thermal Two-Port.

Baced on Figure 2.4, the equivalent transmission

parameter matrix representation would be:

0y A B ||e,

23
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where it can be observed that the minus sign present in the
electrical representation has been deleted due to the
direction of heat flow.

To find the transmission parameters for the fin, the
heat flow equation for temperature excess can be solved
using initial value data. Appendix A provides the

differential equation for the fin temperature excess:

dO2 - n2@ = 0 (2.20)

where m =,/h/k6 for convective heat flow off one side only.

This equation has a general solution:

O(x) = Cpe™* + Cye MK (2.21)

The initial conditions at the base are:

O(x=b) = O (2.22)

q(x=b) = qy (2.23)

When equation 2.22 is substituted into equation 2.21 above,

the result is:

O = Cre™ + cye ™D (2.24)
and from the Fourier Law of Heat Conduction:

q(x) = kA dO/dx = kKAm[ Cye™ + Cye™™X ] (2.25)

the substitution of equation 2.23 into equation 2.24 yields:
24
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qp = kam [ Clemb - Cze‘mb )| (2.26)

Equations 2.24 and 2.26 are two equations in two
unknowns (C; and Cj)., and these can be solved simultaneously

to determine that:

c, = e"“b(sa_IZ + qul) (2.27)
2 2
= b .
Cy = e (Gb + quh) (2.28)
2 2
where 4 is the characteristic impedance

discussed in section C of this chapter.

Use of these values of the constants C; and C,

provides the particular solution to equation 2. 20:

O(K) = .S[(Obe'mb + Zoqbe’mb)emxi-(ebemb - Zoqbemb)e-mx-l

and when rearranged to show a superposition of the effects

of O and qy this becomes:

O(x) = .5[eb(em<b'x) + e-m(b-x)) - (2.30)
Zoap (em(b"‘) - e‘m(b’x))]

This may alternately be expressed in terms of hyperbolic

sines and cosines as:

O(x) = Op cosh m(b-x) - Zyqysinh m(b-x) (2.31)
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It is then easy to obtain the heat flow, q(X), through an

application of the Fourier Law:

a(x) = -Ygsinh m(b-x) + qpcosh m(b-x) (2.32)
where Yo = L Jhk& is the characteristic thermal admittance of
the fin.

It is necessary to evaluate equations 2.31 and 2. 32
at x=0 in order to obtain a relationship between tip and
base conditions of temperature excess and heat flow. Under

this particular circumstance:

Ga = G)bcosh(mb) - Zoquinh(mb) (2. 33)

qg = -Ypsinh(mb) + qpcosh(mb) (2.34)

and these equations can be put into matrix form:

a cosh(mb) -Zgsinh(mb) 0%

q, -Yosinh(mb) cosh(mb) qp

This is the inverse thermal transmission representation.
To obtain the transmission parameter matrix, it is
required to show the base conditions as dependent on tip

conditions, not vice versa as depicted in equations 2.33 and
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2.34. The necessary rearrangement is easily accomplished by

taking the inverse and the result is such that:

Oy cosh(mb) Zgsinh(mb) 0,| (2.35
9 Ygsinh(mb) cosh(mb) q,

From this one can see that the base conditions are
dependent upon the linear superposition of the effects of
the tip conditions. This final form is the equivalent
transmission parameter matrix for the fin.

Presented below is the known transmission parameter
matrix for the transmission line [Ref. 6: page 217]. In a
comparison of the matrix relationships for the thermal

two-port and the electrical two-port, one finds the expected

similarity.
Vg cosh(yb) Zosinh(yb) Vg
Ig = Ygsinh( ¥Yb) cosh(yb) Ig

From this similarity it is concluded that the fin
has a thermal two-port representation and a transmission

parameter matrix as indicated by equation 2. 35.
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E. THE CASE OF A TWO-PORT CASCADED WITH A SHUNT ADMITTANCE
As already indicated, two-port theory states that the
equivalent transmission parameter matrix for two or more
two-port networks connected in cascade is equal to the
product of the individual two-port matrices. In the
particular case where a two-port network is connected in
cascade with a shunt admittance, as illustrated in Figqure
2.5, the equivalent two-port transmission parameter matrix
is even easier to obtain. No calculation of a transmission
parameter matrix for the shunt admittance is necessary,
although it is easily derived. The transmission parameter
matrix for the shunt admittance is known to be of the form

[Ref. 7: p. 163]:

When this equivalent shunt transmission parameter matrix is
premultiplied by the transmission parameter matrix that
represents the rest of the network, the result is the
equivalent transmission parameter matrix for the entire
network. In this case the equivalent transmission parameter

matrix is of the form shown below:
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A B Ay By 1 o [asByy, B (2.36)

in

(@] -
=}
-
o
U P S S——

Figure 2.5 A Two-Port Cascaded With

a Shunt Admittance.

This reasoning can also be extended to the performance
of the fin which may be discussed using two-port
terminology. Consequently, if an eguivalent "input
admittance" can be determined for the top disk of the
transistor cap, the entire cap (the cylindrical sides which
are connected in cascade to the circular disk) may be
modeled by one two-port network by using the relationship

shown in equation 2. 36.
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The next chapter will concentrate on developing an
equivalent "input admittance" for the circular disk.

F. CAUTIONS PERTAINING TO THE USE OF THERMAL TWO-PORT

ANALOGIES )

The purpose of this chapter was to develop a thermal
two-port representation for the rectangular cooling firn.
This was done through the use of electro-thermal analogs,
and the similarity between the thermal two-port and
electrical two-port was duly noted. However, significant
differences exist between the two and these differences must
be taken into consideration when attempting to use
electrical two-port theory in thermal applications. These
differences are:

1) In the electrical two-port either port can be
considered as the input port. In the thermal two-port
for the fin, the base is always considered as the
input port.

2) The thermal two=-port always has a height-coordinate
associated with it. It is measured in a direction
taken positive from the tip to the base of the fin.
The electrical two-port has no equivalent directional
dependency.

3) The direction of the heat flow at the output port (the
tip of the fin) in the thermal two-port is opposite
that of the current flow at the output port of an

electrical two-port. This difference has a tremendous
effect on conversions between the two-port parameters.
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III. IHE INPUT ADMITTANCE OF A CIRCULAR DISK

A. INTRODUCTION

The objective of this chapter is to develop an
expression for the "input admittance", Y;., of the disk,
which is the admittance seen looking into the disk.
Physically, it relates to the ease in which the heat will
flow into the disk, and here the entire disk may be replaced
in the electro-thermal analog by the input admittance alone.

Generally, admittance is expressed as the ratio of
current to voltage (I/V). Using the electro-thermal analog,
the equivalent thermal admittance is defined to be the ratio
of heat flow to the temperature excess (q/0). The input
admittance in this application is specifically the
W o “tance at the edge of the disk, and this will be denoted

as Q/@
Q.

B. THE GENERAL EQUATIONS FOR THE DISK

To determine the input admittance of the disk, the
differential egquations of heat flow in the disk must be
solved. To obtain the differential equations, first
consider the differential element between radius r and
r + Ar in the disk as shown in Figure 3.1. Notice that the
positive orientation of the radial coordinate is from the

center to the edge of the disk and that heat enters the
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element at radius r + Ar and leaves the element at radius r

by conduction. Additional heat will be lost through the top

face of the element by convection.

111 ]
~|

|-

L

e e A G —— — — ——— ——— — ————
e e e e e — — —— —— . — —

Figure 3.1 Diagram of Circular Disk.

The heat entering the element by conduction at radius

r + Ar will be:

= = = 2nrdkd@/dr 3.1
atwedr) = ananjad < adosad < 2o IRERY

where O is used instead of T because it has been postulated

that ©

T - T, so that:

dO® = dT (3.2)

Similarly, the heat leaving the element by conduction at

radius r is equal to:

q, = kA dT/dr = 2nrké dO/dr (3.3)

32

BT A R S N S A L A RS TR TR




and the heat lost through the top surface by convection must

equal:

qg = hg@AS = hy@(2nrAr - rAr?) (3.4)

An energy balance (the law of conservation of energy)
indicates that, in the steady state, the total heat entering

the element must equal the total heat leaving the element:

q T ar * s (3.5)

r+Ar

and use of equations 3.1, 3.3, and 3.4 in equation 3.5

yields:

2nrdk dO/dr = 2nrék dO/dr + hyO(2nrAr - nAr?) (3.6)

A rearrangement of equation 3.6 yields:

r dO/dr] - r dO/dr hOr(1l - Ars2) (3-7)
r+Ar r =

Ar ko

and in taking the limit as r-0, one obtains:

d/dr (r dO/dr) - (hy/ké)r® = 0 (3.8)

r(d20/dr?) + dO/dr - n2r@ = 0 (3.9)
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Here n = /hd/kﬁ, where hd is the heat transfer coefficient
for the disk.
Multiplication of equation 3.9 throughout by r puts it

in the form of a modified Bessel equatiomn:

r2d02/dr? + r dO/dr - nr2@ = 0 (3.10)

and the general solution is: [Ref. 8: p. 417]:

O(r) = CyIg(nr) + CyKg(nr) (3.11)
where Cl and CZ are constants to be determined from the

appropriate boundary conditions.

C. APPLICATION OF THE BOUNDARY CONDITIONS
One boundary condition for the circular disk may be
obtained by considering the temperature excess at the edge

(r = re) as a kr- quantity:

v

O(r=r,) = < (3.12)

However, an inspection of equation 3.11 shows that at
r=0, O(r=0) will be unbounded because K3(0) is unbounded.
Therefore, in order to keep @(r=0) finite, C, must equal
zero. Thus, with C, = 0, equation 3.11 can then be restated

as:

@(1‘) = CIIO(nr) (3.13)

Then substitution of the boundary condition of equation 3.12

into equation 3.13 yields:
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O(r=r,) = O = CqIg(nre) (3.14)

The constant Cq may therefore be represented as:
Cy = G)e/IO(nre) . (3.15)

¢ and substitution of this result into equation 3.13 provides
the temperature excess of the disk as a function of *the

radial coordinate r:

O(r) = ©,[Ig(nr)/Ig(nr,)] (3.16)

The heat flow may then be obtained by once again

employing Fourier's Law:

p q = kA dO/dr (3.17)

tbat that, with (r) from equation 3. 16:
2 ‘Vit
4 cVi)
q(r) - “Zrrkd [ nOeII(nr)/Io(nre)]

}

(3.18)

The expression for the thermal input admittance may be

obtained from equations 3.16 and 3.18 as shown:

Yin = a(re)/0(rg) = YgIj(nrg)/Ig(nr,) (3.19)
where Y, = ane,/hdkﬁ is the characteristic admittance of
the disk as discussed in Chapter I.

This thermal input admittance, qe/Oe, will therefore be

used as a single element admittance to represent the
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circular disk in further analysis of the entire transistor

cap. )
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IV. DETERMINATION OF IHE INPUT ADMITTANCE OF IHE CAP

Results from the previous two chapters can now be
combined to achieve the goal of determining the input
admittance (Y;,.) at the base of the transistor cap with
respect to the parameters involved, including the quantity
of air flow, dimensions of the cap, and materials used in
the cap.

In Chapter I, it was stated that because a two port
representation had been determined for the cylindrical side
of the TO can, determination of the input admittance of the
circular disk was the only quantity needed to obtain Yin for
the entire cap, as long as the disk could be considered as
being connected in cascade with the cylinder.

To illustrate that the disk is indeed connected in
cascade with the cylinder, consider again the conventional
two port cascade representation displayed in Figure 4.1.

From this diagram it can be seen by continuity that q7

must equal q3 and by compatibility ©, must equal ©5. The

physical interpretation is that the heat flowing out of the
cylinder must equal that flowing into the disk, and that the
temperature excess at the top of the cylinder must match

that at the edge of the disk.
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Figure 4.1 Cascaded Two-Port Networks.

These conditions are guaranteed through the limiting
assumptions that the cap is constructed of the same material
throughout with uniform thickness. Because there is no
surface area at the point of interest, no heat will be lost
via convection. Thus all of the heat flowing out of the
cylinder must be entering the disk. This indicates further
that the temperature excess will not change between the top
of the cylinder and the edge of the disk. Of course,
intuition provides the fact that there can be no temperature
discontinuity.

The electrical network model for the cap can therefore
be represented as a transmission line terminated in a shunt
admittance. Using the two port representation of the

transmission line, the network is shown in Figure 4. 2.
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Figure 4.2 The Electrical Model for the Transistor Cap.

It has also been shown that for a two port with a given
transmission parameter matrix terminated by a shunt

admittance, the equivalent two port representation is:

Ob A+BYin B @C (4.1)

dy C+DY;, D 9c

where O, and q, are respectively the temperature excess
and heat flow at the center of the disk.

However, as was noted earlier, no temperature gradient
can exist at the center of the disk, thus q. = 0 and this
fact can be used to easily show that an expansion of
equation 4.1 provides:
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qp = (C + DYin) Gc (4.3)
To obtain the desired input admittanc¢e at the base,
namely qb/Gb, the ratio of equations 4.2 and 4.3 can be

taken, to yield:

dp/Op = (C + DY; )/(A + BY;,) (4. 4)

Then, using the appropriate substitutions:

cosh(mb)

[
"

-
"

ZOSsinh(mb)

C = Yggsinh(mb)

o
"

cosh(mb)

Yin = YoqlI1(nry)/Ip(nze)]

the relationship for the input admittance:at the base of the

transistor cap is:

= Yggsinh(mb) + Yg4cosh(mb) [I;(nr.)/Ig(nr,)] (4.5)
cosh(mb) + Zp Ya4ysinh(mb) [Ij(nr,)/Ig(nr,)]

Yin
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where Ygp4 = 2nre.Jhdk6 and Y54 = anew/hska’ m = /hs/kﬁ
and n = /hd/kG, given that hg is the heat transfer coefficient of

the cylindrical sides and hy is the heat transfer coefficient of

the circular disk.

2Rkl ol B

41

Yo B P A N T ST N TS N 1 T N I A A s 2 S I AT R L o s ROTRGE et
N - - . . v h 3 o " » " L4 ol ¥ g .



(I S VY T O SRR SR N LY TR R R @ € el e LW [ TN IR 4 Y B P N R TR R e T TOR UK TR OB R g STy % s AP

4 V. RISCUSSION OF PEREORMANCE CURVES

A series of parametric curves illustrating the
relationship between the input admittance of the cap as
o given by equation 4.5 as a function of the cap dimensions
- and the heat transfer parameters h and k is displayed in
S alternate forms in Figures 5.2, 5.3, and 5.4.This chapter
7 will discuss the development of these curves, and the

i possible ways that they might be utilized.

A. DEVELOPMENT OF CURVES

R Pto . Ky

> r .
g L

The TO3 package was chosen as the configuration on which
to base the illustrations. Dimensions of this package are

shown in Figure 5.1, taken from the D.A.T.A. handbook

e b0,

[Ref. 9]. Where Figure 5.1 indicates a range of lengths or
heights, the largest value was used. A standard thickness

of 0.03 inches, or 0.0762 cm, was also used.

ES P

After specifying the package size, the procedure for

obtaining the data for the curves in Figure 5.2 was as

S5 o

S

follows: For each inlet air temperature, an air velocity

>
"

was assumed. Then the corresponding heat transfer

Yo,

coefficients for the top and sides were determined. The

g

heat transfer coefficient for the top was obtained through

XY

the use of the McGraw~Hill software package "Heat Transfer

riaTe

Software" [Ref. 10], designed for the IBM PC. The heat
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All dimensions
in inches

Upper figure is
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minimum

,._____________________
]

Figure 5.1 Outline Drawing of a TO3 Package.
transfer coefficient for the side was calculated from
Hilpert's correlation [Ref. 11}:

h = (k/d) C (ugd/ve)® prl/3 (5.1)

where qx,is the free stream velocity, Pr is the Prandtl
number, d is the diameter of the cylinder, kf is the thermal
conductivity of the fluid, v¢ is the kinematic viscosity of
the fluid, and C and n are constants that depend on the
value of the Reynolds number term (qxp/vf). The heat

transfer coefficients used in determining the curves

presented here can be found in Appendix B.
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A computer program ( found in Appendix C) was then used
to calculate the resulting input admittance as defined by
equation 4.5. This entire procedure was then repeated for
other inlet air velocities and temperatures.

The procedure for obtaining data for Figures 5.3 and 5.4
was similar, except that in these cases an inlet air
temperature of 25 C was used in all calculations, and the
height of the cap (Figure 5.3) or the thickness (Figure 5. 4)

was taken as the variable parameter.

B. USE OF CURVES

A sample problem may best serve to illustrate how these
curves may be utilized. For example, consider a situation
where 40 W must be dissipated in an air stream that is
flowing at 5 m/s at 50 C. The junction to case resistance
is 0.4 C/W, and the temperature at the junction is 125 C.

The case temperature will be 109 C, because:

To = Ty - 40 (0.4) = 125 - 16 = 109 °C (5.2)
The temperature excess may then be calculated to be:
O, = T, - Tg = 109 - 50 = 59 °C (5.3)

where T is the free stream temperature. The input
admittance, Y , is obtained from Figure 5.2 (for an inlet
air temperature of 50 C and a velocity of 5 m/s) and is

approximately 0.052 W/ C. From this value of Y , g (which
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is the heat dissipation of the cap) may be calculated by

observing that:

Yin = /9 . (5. 4)

or

dp = Yin O (5.5)
Hence, in this example,

qp = (0.052)(59) = 3.068 W (5.6)

The cap dissipates 3.068 watts out of the total
dissipation of 40 watts. This amounts to approximately 7.5%
of the total dissipation. The designer now has a more
precise value of the heat dissipation to be applied to the

heat sinking system.
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Cap Thickness 0,762 mm
Height 1.143 cm

Inlet Air Stream
Temperature C

T 1 T I v

0.0 1.0 20 30 40 50 60 7.0 80 9.0
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Figure 5.2 Input Admittance vs. Air Velocity

with Varying Air Temperatures.
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Figure 5.3 Input Admittance vs. Air Velocity

with Varying Package Heights.
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VI. CONCLUSIONS

This thesis has provided a means to calculate the amount
of heat that a transistor package will dissipate under
operating conditions. The heat sinking system is the
primary area where weight, volume and cost savings can be
effected. It is extremely beneficial to the designer to
have a precise estimate of the heat sinking system
requirements. The small amount of heat dissipated by the
transistor cap may nonetheless lead to smaller, less costly
cooling structures. The savings here continue to translate
down the line and the overall impact may be considerable.

Good engineering demands precision. Technology advances
not purely through development of new systems, but also
through continuous striving to obtain a better and deeper
knowledge of existing systems and operating conditions. As
a designer's knowledge of the capability of his available
tools and equipment increases, the better he is able to

provide effective and efficient products.
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APPENDIX A
HEAT FLOW IN A RECTANGULAR FIN

1. ASSUMPTIONS
This appendix will review some basic heat transfer

theory and develop equations that govern heat flow in a
rectangular fin. The following assumptions, which are
attributed to Murray [Ref. 12] and Gardner [Ref. 13], are
made in these derivations:

1) Steady heat flow throughout the fin.

2) Heat transfer to or from the faces of the fin is

proportional to the temperature difference between fin

and surroundings. This eliminates radiation as a mode
for this heat transfer.

3) There is no thermal resistance between the fin and the
base surface.

4) Fin material is homogenous, with constant heat
transfer coefficient and thermal conductivity.

5) No heat sources or sinks in the fin.
6) Temperature of surrounding medium is constant.
7) Temperature at base of fin is constant.

8) The dimensions of the fin are such that temperature
gradients exist in the x direction only.
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2. CONDUCTION

-Heat flow through a body from an area of higher
temperature to one of lower temperature occurs through the
process of conduction. Heat flow by conduction is
predicated to arise in two distinct ways: by molecular
collisions with a resultant transfer of kinetic energy from
a hotter to a cooler substance, and by electron drift. The
kinetic energy transfer is commonly viewed as occurring
between rapidly vibrating molecules of a substance and less
rapidly vibrating adjacent molecules.

The amount of heat flow by conduction is directly
proportional to the temperature gradient in the direction of
the path of heat flow and to the area normal to the path of

heat flow:
q = -A dT/dx (A.1)

where the minus sign indicates that if the temperature
decreases with x, then g will be positive and will flow in
the x direction. This relationship was first proposed by
Joseph Fourier in 1822 [Ref. 4: p. 9]. An example of a heat
flow path by conduction is shown in Figure A.1.

Insertion of a proportionality constant, k, results in

the Fourier Law of Conduction:

q = =-kA dT/dx (A.2)

51

PRSI S Y . e LY L e Ly . 5
L ROFEAERIETHT XA RTRDE, P N R N AT R R P N S AT Sy T T R . T, TR _"aM‘.j




o e e e v e i o e e S S o e e e S
b e e e —

Figure A.1 Heat Flow Path by Conduction.

which serves to define the thermal conductivity of a

-ng g

particular material as:

h k = (-a/A)/(dT/dx) (A.3)

3. CONVECTION

Heat transfer at the interface between a solid and a

V% 'a o & &

fluid at different temperatures is significant in many
commop applications. When the surrounding fluid is
completely stationary relative to the solid, heat transfer
is purely by conduction. When flowing, however, the fluid
forms a thin boundary layer around the solid into which heat

is conducted [Ref. 4: p. 17]. This heat is then swept away

P i

with the removal of the fluid in a prevailing circulation

-
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pattern. The transfer of heat in this fashion describes the

convection mode of heat transfer.

The amount of heat transferred by convection is
proportional to the surface area normal to the heat flow
path and the difference in temperature between the surface

and the bulk of the surrounding fluid:

qox S(T - T,) = SO (A.4)

where T, indicates the temperature of the fluid (or
environment). Figure A.2 illustrates the flow of heat by

convection.

Nl
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flow ’ Y
L,

N
-
-
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Figure A.2 Heat Flow Path by Convection.
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The constant of proportionality used in convection, h,

is the heat transfer coefficient. The provision of this
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proportionality constant results in what is known as

Newton's law of cooling by convection:

q = hsO . (A.5)

and this serves to define h as:
h = q/(50) (A.6)

The heat transfer coefficient may be viewed as a measure of

the ease with which the convection process may proceed.

4. THE TEMPERATURE EXCESS AND HEAT FLOW IN THE COOLING FIN

The longitudinal fin of rectangular profile is shown
with its terminology and coordinate system in Figure A. 3.
Note that the coordinate system has its origin at the fin
tip and has a positive sense of direction toward the fin
base. The slice in the middle indicates a differential
element of width dx.

The principle of conservation of energy requires that
the difference between the heat entering and leaving the
differential element by conduction must equal the heat

leaving by convection:

d/dx (kA dT/dx)dx = h(2Ldx) (T - T,) (A.7)

Assuming constant thermal conductivity and cross~-sectional

area, and defining the temperature excess O as:
®@=T-17 (A.8)
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Figure A.3 Coordinate System of Cooling Fin.

so that \
&

dO® = dT (A.9) kY

N4

;

equation A.7 then becomes 3
d2e/dx? - m20 = ¢ (A. 10) 2

»

~

where he

m = /2h/ké (A.11) :

/

The m term is regarded as the fin performance factor or fin ;:
"attenuation". -~
The general solution to equation A.10 is: 2

@ = Cye™ + Cype ™ (A.12) o

T
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and a particular solution can be obtained in a "boundary

value problem" based on the boundary conditions:

©(x=b) = O, _ (A.13)

]
o

a( x=0) (A.14)

which makes the assumption that the heat flowing from the

g tip of the fin is negligible.

ﬂ‘ Substitution of these boundary conditions into equation
A.12 gives:

0\ 0(x=b) = G)b = Clemb + Cze-mb (A.15)

Recognizing that the heat flow through the fin is in a

;3 direction opposite that of the positive sense of the

..“.

[A)

ﬁ coordinate system, the minus sign of equation A.2Z may be
o eliminated, and it can be stated that:

.

C

% q = kA dT/dx = kA dO/dx = kAm (Cje™ - Cye™™X) (A.16)
i

. Then considering the heat flow at x = 0, it is seen that:
W

& _ P ’

s Ax=0) = 0 = ¢; - Cp (A.17)
. which yields:

2

A

W CL=6Cp (A.18)
e

- This result leads to:
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CL=C = T, owb = T cosh(eb) (A-19)

O(x) = O (e™ - ¢™™X)/2cosh(mb) ' (A.20)
or alternatively:

O(x) = O cosh(mx)/cosh(mb) (A.21)

The heat flow in the fin will be:

q(x) = kA dO/dx = kAmO®psinh(mx)/cosh(mb) (A.22)
and at x=b, the heat entering the base of the fin is:

q(x=b) = kAmOp sinh(mb)/cosh(mb) (A.23)
or

With the cross-sectional area of the fin denoted as 8L,

then:

q(x=b) = YOObtanh(mb) (A.25)
‘where Yo is defined to be:

Yy = LJ2hkd (A.26)

may be viewed as a sort of "characteristic admittance" of

the fin.
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APPENDIX B
HEAT TRANSFER COEFFICIENTS

This appendix lists the heat transfer coefficients used

in the calculations of the curves in this thesis.

Heat Transfer Coefficients for the Iop Disk

Alr Velocity (m/s3) Inlet Air Temperature (°C)
20 25 30 20 20 19
1 17.488 17.470 17.449 17.405 17.364 17.291
2 24.968 24.932 24.894 24.813 24.739 24.604
3 ' 30.881 30.829 30.774 30.660 30.553 30.361
4 35.990 35.921 35.850 35.703 35.566 35.318
5 40.587 40.503 40.415 40.236 40.068 39.765
6 44.824 44.723 44.619 44.408 44.211 43.853
7 48.788 48.671 48.551 48.308 48.081 47.669
8 52.538 52.404 52.268 51.994 51.737 51.272
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Air velecity (m/s)

20
1 21.080
2 29.122
3 35.613
‘ 4 42.536
S 48. 825
6 54. 649
7 60. 103
8 65. 289

21.
29.
35.
42.
48.
54.
59.

65.

101

141

486

390

659

464

911

051

Heat Transfer Coefficients for the Sides

Inlet Air Temperature (°C)

21.
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35.

42.

48.

54.

59.

64.
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144

321

194

434

210

629

758

21,

29.

35.

41.

47.

53.

58.
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920
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21.

29.

35.

41.
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58.

63.

034

055

097

324
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APPENDIX D
NOMENCLATURE

an arbitrary constant or Area, m

an arbitrary constant

an arbitrary constant, or capacitance, farads

an arbitrary constant

diameter, m

the Naperian base

Conductance, mhos

Heat Transfer Coefficient, W/m?-s-C

Current, amperes or Modified Bessel Function of
First Kind

Modified Bessel Function of Second Kind

Thermal Conductivity, W/m-s-C

Inductance, henries

length, m

Fin "attenuation" factor of fin or sides, 1l/m

Fin "attenuation" factor of top, 1/m, or
arbitrary constant

Heat flow, W

Prandtl number

Resistance, ohms

Radius, m

Surface area, m
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Temperature, °C

Free stream velocity, m/s

Voltage,

a coordinate

Admittance, mhos in electrical case and W/°C in
thermal case

Impedance, ohms in electrical case and °C/W in
thermal case

Attenuation constant, per unit length

Phase shift constant, per unit length

Propagation constant, per unit length

change in variable

Thickness of fin or transistor cap, m

Kinematic viscosity (m2/s)

Temperature excess, °C

refers
refers
refers
refers
refers

refers

to
to
to
to
to

to

volts

Subscripts

atmosphere or environment, or to end of fin

base of fin

center of the disk, or to the case

the circular disk

edge of disk .

equivalent representation
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refers
refers
refers

refers

to
to
to

to

case junction
receiving end of transmission line

sending end of transmission line

the side of the cap, or to free stream

temperature

refers to characteristic impedance or admittance

refers to first two-port when cascaded

refers to second two-port when cascaded
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