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ABSTRACT

The complex LMS adaptive algorithm developed by Widrow

[Ref- is used in the frequency domain to estimate the

azimuth and elevation angles of a plane wave incident upon

a planar. array. The complex LMS algorithm is applied to two

cases. The first case is a passive detection problem. The

second case is a pulse communication problem. In both

cases, complex weights are determined using the complex LMS

algorithm which cophase all of the output electrical signals

frQm...the planar array. Three versions of the complex LMS

algorithm are studied and their performances are compared.
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I. INTRODUCTION

Frequency domain beamforming is accomplished by applying

appropriate phase shifts at the sensor outputs of an array

to account for the relative propagation delays of a signal

from a particular direction. The phase-shifted signals from

all sensors are then added together coherently to realize

the full array gain. Discrete Fourier Transform (DFT) beam-

forming is the usual method of determining the direction of

arrival of a plane wave signal. A discrete number of

spat-ial frequency bins are formed and each bin corresponds

to a discrete direction. If the number of spatial frequency

bins is large, very fine spatial resolution can be obtained.

The phase shifts needed to cancel the relative propaga-

tion delays can be determined adaptively. The complex LMS

adaptive algorithm is used in this thesis. The LMS adaptive

filter adjusts its adaptive weights recursively to minimize

the mean square difference between a reference signal and

its estimate. When the beam is steered toward a signal

propagating in a particular direction, the phase of the

signals at all sensors must be the same. Therefore, the

signal at any sensor can be used as a reference which the

others will be matched. The estimated signal is obtained by

weighting the input signal by the current adaptive weights.

Note that no prior knowledge of the reference signal is

11
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required. The response of the LMS adaptive filter converges

to the discrete Wiener filter without a priori knowledge of

the input [Refs. 1,21. [Ref. 1] proposed the complex LMS

algorithm to deal with complex inputs. [Ref. 5] addressed

the implementation of the LMS adaptive filter in the fre-

quency domain. [Ref. 4] used the LMS adaptive filter in the

frequency domain to estimate the bearing of a plane wave

due to an acoustic source radiating a sinusoidal signal. In

this application, the LMS adaptive filter was implemented to

estimate the phase difference between two sonar arrays

separated by a distance many times the signal wavelength.

The angle of arrival of a plane wave can be estimated if the

frequency of the acoustic signal and the speed of wave propa-

gation are known or can be extracted from the received signal

itself.

The objective of this thesis is to extend the results in

[Ref. 3] and [Ref. 41 to a planar array of M xN elements

(hydrophones) where M and N are greater than two. Such an

array has an overall size many times the wavelength of the

received signal. The inter-element separation, however, is

usually maintained at a distance of less than or equal to

one-half of the expected minimum wavelength. This requirement

[Ref. 5] prevents the occurrence of grating lobes in the

far-field beam pattern. A two-dimensional array allows

spatial resolution in both azimuth and elevation. Even

though the detection range in underwater acoustics is large

12



compared to the ocean depth, the effect of ray bending due

to the inhomogeneous ocean medium can bend the incident

acoustic wave such that it can appear to arrive at a steeper

or shallower angle than the line of sight angle in the homo-

geneous medium case. The elevation/depression angle is

at present used to estimate Convergence Zone (CZ) and Bottom

Bounce (BB) ranges.

In this thesis, the problem of a plane wave incident upon

a planar array of M xN elements is studied. The acoustic

wave signal at each of the elements in the array are identical

if the array is steered in the direction of the incident

wavefront. However, if the main lobe of the array is not

steered properly, the plane wave signal will have the same

spectral content at each element but modified by a phase

shift proportional to the location of the element with respect

to some reference element. These undesirable phase shifts

can be cancelled by applying appropriate phase weights at

each element and thereby cophasing the total array output to

realize its array gain. (Ref. 4] demonstrated that the LMS

adaptive filter can achieve phase alignment between a refer-

ence signal and input signal in the frequency domain by

direct application of the complex LMS algorithm. This is

equivalent to a tapped delay line structure in the time do-

main. However, in the frequency domain, a time delay T

corresponds to multiplication of a complex number that is

equal to ejWT where w is the signal frequency. The

13
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implementation of the LMS adaptive filter in the frequency

domain requires fewer computations per iteration than in the

time domain. An added advantage of using phase weighting

is that a continuous range of spatial directions can be

described, whereas in a tapped delay line structure, only

finite increments of delays can be applied. Figure 1 shows

a functional diagram of an N-element adaptive array imple-

mented in the frequency domain [Ref. 6].

Chapter II of this thesis describes the specific struc-

ture of the adaptive filter and the equations implemented for

simulations. The assumptions made in the model are discussed

and justified. Several modifications to the complex LMS

adaptive algorithms are made to increase the array's spatial

coverage and to ensure that the steady state phase weights

do correspond to the direction of the incident wave.

In Chapter III, a passive sonar system is modeled to

test the ability of the modified complex LMS algorithm to

estimate the direction of a source in the presence of noise.

The simulation program is implemented in VS APL.

Chapter IV demonstrates the application of the complex

LMS algorithm to a pulse communication problem. The inte-

gration time in this case is much shorter than that of the

passive sonar case. Two types of pulse waveforms are included,

continuous wave (CW) and linear frequency-modulated (LFM).

This simulation program is implemented in VS FORTRAN.

14
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Chapter V concludes this thesis by identifying further

research areas and other possible applications.

Appendix A contains the derivation of the complex LMS

algorithm. Appendix B has the description of the passive

detection program implemented in APL. Appendix C has the

description of the pulse communication program implemented

in VS Fortran.
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II. THEORY OF SYSTEM MODEL

A. OVERVIEW OF ARRAYS [Refs. 5,6,7,81

The characteristics of the array elements and their

arrangement in forming the array determine the ultimate

performance of an adaptive array system [Ref. 6]. Both the

linear array and the planar array are examined here.

1. Linear Arrays [Refs. 5,8]

Consider a linear array that has M equally spaced,

identical point source elements along the x-axis. For illus-

tration, Figure 2 shows a 7-element linear array with uniform

interelement spacing dx and a plane wave arriving at the

array with an incident angle e as measured from the array

normal. The phasor sum of all elements is:

M-1
s(t) = I y(t)e j m  (2.1)

m=0

where ' is the phase shift between the mth and the m+lth

element for m = 0,1,2,3, ..., M-1.

dx sine 2(d sine
= k c -c ) (2.2)c c

where:

17
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k = wave number. in radians per meter

A = wavelength in meters

f = frequency in hertz

d - interelement spacing in meters

e = incident angle measured from array normal

c = speed of wave propagation in meters per second.

Rewriting equation (2.2) by substituting A = c/f yields

2Trf dx sin e- (2.3)
c c

The Fourier transform of equation (2.1) is:

S(f) = F{s(t)} = f s(t)e-j 27Tftdt (2.4)

M-0

= f 0 y(t)em'e-J 2 ftdt (2.5)
-0 m=O

M-I 2fM 1 e jm  f y(t)e-j27ftdt 
(2.6)

m=0 -

s(f,O) = A(f,e)Y(f) (2.7)

where Y(f) is the frequency spectrum of the incident wave and

A(f,e) is called the space factor or array factor. The array

19



factor A(f,e) determines the directional plane of the array

in a plane containing the array. The dependence of A(f,9) on

frequency, speed of propagation, element separation, number

of elements, and incident angle can be shown by rewriting

A(f,e) as:

M-( 21j f d sin )

A(f,e) = 1 e j m  M 1 e c (2.8)
m= 0 m=0

Summing equation (2.8) yields:

Mj sin 2-4

A(f,6) = e ( ) (2.9)
sin T

The normalized directional pattern is given by:

tA(fe) 12
G(f,8) = 10 logl 0 { 2' } (2.10)

10 M

For nonisotropic (non-point source) elements, it is necessary

to introduce an additional factor E(f,6) in equation (2.9)

to include the directional response pattern introduced by

each sensor element [Ref. 61. The overall directivity pat-

tern then is given by the produce of the array factor and the

element factor [Ref. 51. However, if the size of the individual

20



elements are small compared to a wavelength, they can be

assumed to be omnidirectional point sources, i.e., E(f, ) = 1.

The effects of increasing the number of elements while main-

taining the same element spacing are shown in Figures 3 and

4 [Ref. 6]. It can be seen that the main lob beamwidth de-

creases as the number of elements increases, and the number

of sidelobes and nulls increases. In Figures 5-8, the number

of elements is held constant at M = 7 while the interelement

spacing is varied to illustrate the effects of elements

spacing on the directivity pattern.

Beamsteering (Ref. 5] is accomplished by applying a

linear phase shift across the line array as shown in Figure

9 [Ref. 6]. The effect of the insertion of this sequence of

phase shifts is that the main lobe is steered to an angle as

measured off the boresight equal to e where

e sin- { f 1 X 6} (2.11)

and 6 is the phase shift between adjacent elements. Figure

10 shows the directivity pattern of a steered linear array.

2. Planar Arrays [Refs. 5,61

Much of the analysis done in linear arrays can be

extended to the case of a rectangular-shaped planar array.

A circular planar array or a spherical volume array would re-

quire the use of polar and spherical coordinates respectively.

However, array theory is invariant under coordinate

transformations.

21
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A planar array has the advantage of resolving the

azimuthal and the elevation angles of arrival of an incident

plane wave [Refs. 5,9]. Consider a rectangular-shaped

planar array as shown in Figure 11; sensor elements are

arranged in a rectangular grid in the x-y plane. The center

of the array is usually chosen as the coordinate origin.

The entire array has M elements in the x-direction with uni-

form spacing dx and N elements in the y-direction with uni-

form spacing d The elements are assumed to be point sources.

The phasor sum of the entire array can be written as:

Jmpx jniy

s(t) = I y(t) e e (2.12)
m n

where

)dx

= 2 7(-X) sine cos, (2.13)

= dy 2.4
Sy 2 Tr(-d-) sine sinP (2.14)

The directivity pattern of the planar array is given by:

A(f,I,) = em e n y = A (f,e,O)A (f,e,) (2.15)
mn x y

It follows from the model given by equation (2.12) that the

planar array beam pattern is the product of the array factors

28
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of two linear arrays. However, separability of the two-

dimensional beam pattern is not necessary to ensure the

proper operation of the LMS adaptive algorithm for a planar

array. Beamsteering is accomplished by applying appropriate

linear phase shifts for the row and column elements. For

the rectangular array case under investigation here, it is

more convenient to transform the elevation-azimuth (6,4)

space to a rectilinear coordinate space (u,v) by the

transformation:

u = sin e cos (2.16)

v = sin 6 sin (2.17)

The parameters u and v are the direction cosines with

respect to the x and y axes, respectively. Figure 12 shows

the alternate diagrams for presenting two-dimensional array

beam patterns [Ref. 61. The ranges of the spherical angles

are 0 < e < 7/2 and 0 < < 2 7 whereas the ranges of the

rectilinear coordinate system are -1 < u < 1 and -1 < v < 1.

B. THE PLANE WAVE MODEL

1. Far-Field Condition

The LMS adaptive filter designed in this thesis

will provide spatial resolution for a planar array for an

incident plane-wave field. The plane wave assumption is

justifiable for a radiating source located in the far-field

29
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(Refs. 5,10], due to wavefront expansion. The far-field

range for a planar array is given by [Ref. 5]:

R Tr D2 (2.18)

where:

L X2 L 21/2

D)+ (-f) 21/ (2.19)

represents the maximum radial extent of the transducer array

and L and L are the dimensions of the planar array in

X y

the x and y directions, respectively.

2. Propagation of a Plane Wave from a Far-Field Source

The plane wave solution of the Helmholtz wave equa-

tion has the form:

y(t,r) = Aej( 2 ft+k.r) (2.20)

where y(t,r) is called the velocity potential, f is the

frequency, k is the propagation vector, and r the position

vector. In rectangular coordinates,

k = kx + kyy + kz (2.21)

and

r xx + yy + zz (2.22)
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For a planar array located at some reference location z = 0,

the velocity potential is:

j [2Trft+ (k x+k y)]
y(t,r) = y(t,x,y) = Ae X y (2.24)

For a planar array with discrete sensor elements located

uniformly in the x-y plane with spacings dx and dy respec-

tively, the continuous space variable x can be replaced by

mdx and y replaced by ndy. If the time signal is digitized

for computer processing, then the time variable t can be

replaced by ZTs , where Z is the discrete time index and T

the sampling interval. To summarize:

t - ZTs  (2.25a)

x - mdx  (2.25b)

y - ndy (2.25c)

The corresponding discrete time, sampled space signal is

given by:

s dxjn~)fAe j (mdxkx+ndyk Y)

y(ZTs,mdx nd Y  = Ae Se (2.26)

where y(ZTs5 mdx,ndY ) is usually shorted to y(Z,m,n). The

propagation vector k at z = 0 has two components k and k
3x y
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that can be related to the direction cosines u and v via

[Ref. 5]:

k 2 u (2.27a)
x x

and

k 2T v (2. 27b)

y A

Substituting equation (2.27) into equation (2.26) yields:

j2T fZTe J 2 (umdX+VndY)
y(£,m,n) = Ae e (2.28)

Let

j2rf£.T

y(Z) = Ae s (2.29)

represent the time dependence of the signal. Equation (2.28)

then becomes:

2ir
j - - ( umdX+Vnd Y

y(Z,m,n) = y()e x x Y (2.30)

From equation (2.30), it is easy to see that the signal at

each element location (m,n) has the same time dependence

but has a different phase due to the elehient location and
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the direction cosines associated with the incident angle of

the plane wave upon the array. The exponential relationship

of the phase in equation (2.30) also suggests that the

phases in the x and y directions are separable.

C. FREQUENCY DOMAIN LMS ADAPTIVE FILTER FOR SPATIAL RESOLUTION

The objective of the LMS adaptive filter used in this

thesis is to phase align the signals from all sensor elements

sucn that they add up coherently to realize the full array

gain. Figure 13 shows a general cophasing scheme for linear

arrays. Cophasing or phase alignment is done in the frequency

domain by multiplying the frequency spectrum at each element

by the proper phase weight .in order to cancel out the phase

due to element location. This is equivalent to a phasor

rotation in the complex plane. The amount of rotation needed

to align each sensor element is proportional to the frequency

of interest, the direction cosines u, v and the location of

that element.

1. Phase Weights for the Planar Array

The total array output is maximized if all elements

in the array are phase aligned. If we let cd(m,n) be the

proper phase weight at location (m,n), then the phase

weighted total array output is:

s(Z) = Z cd(m,n)y(Z,m,n) (2.31)
m n

Substituting equation (2.30) into equation (2.31) gives:
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j2 T 'umdX+vnd

s(£) M y(Z) [ cd(m,n)e (2.32)
m n

If

2z- umndX+Vnd Y

cd(m,n) = e X Y (2.33)

then the quantity inside the summations becomes unity and:

s(£) = y(Z) Y 1 (1) (2.34)
m n

or

s(M) = MN y() (2.35)

where s(£) is the sum over all elements and equation (2.35)

is the maximum signal level possible. This maximum level is

achieved by tuning M xN adaptive weights cd(m,n) to conform

to equation (2.33). The same phase weighting procedure is

also true in the frequency domain, in fact, the implementation

of phase weighting is inherently a frequency domain opera-

tion. Since phase weight equation (2.33) is a function of

wavelength X and X = c/f, the proper phase weight for co-

phasing at each element is a function of frequency f. Thus

for each valid frequency component in the signal, a different
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set of phase weights {cd(m,n)} must be generated. Consider

the DFT with respect to time of equation (2.32):

* ~2r
j -- (umd X+vnd )

S(q) = Y(q) [ [ cd(m,n)e (2.36)
m n

where q is the frequency index and Y(q) is the DFT of y(Z).

If equation (2.33) holds, then:

S(q) = Y(q) I j(l) = MN Y(q) (2.37)
m n

Only valid spectral lines will be processed.

2. The Frequency Domain LMS Adaptive Filter

The general frequency domain LMS adaptive algorithm

is derived in Appendix A. Suppose that the time signal z(M)

is the reference or desired signal and z (Z) is the normalized

sum of all signals in the planar array. In the frequency
signalth

domain, the reference signal in the q DFT bin is:

Z(q) Lz()e (2.38)
Z=o

and the estimated output in the frequency domain is:

L-1 ^ - j--kq
Zi(q) Z zi(Z)eL (2.39)

z=0
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Substituting equation (2.31) with z. (Z) = i(Z) yields:

^L-I1 - j- -r q

Z.(q) = 7 - cdi(mn)y(Z , m , n)e L (2.40)
1 £=0 m n

where:

£ is the time index; £ = 0,1,...,L-1

q is the DFT bin index; q = 0,1,...,Q-1

i is the complex phase weight iteration number.

The DFT operation with respect to time in equation (2.40)

can be performed first to yield:

1
Zi(q) - Z I cd. (mn)Y(qmn) (2.41)

m n

where:

L-Il

Y(q,m,n) = ' y(£,m,n)e (2.42)
Z=0

Based on the complex LMS algorithm [Ref. 11, the adaptive

filter output in the qth bin is given by equation (2.41).

The error signal is generated by comparing the desired

(reference) signal to the adaptive filter output (estimate).

The error is denoted by ei , where:
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e. = Z(q) - Zi (q) (2.43)

The estimate, equation (2.41), is formed by applying the
, .th

phase weights {cdi (m,n)} of the i iteration to each element

in the planar array. The complex weight cdi(m,n) is updated

recursively as follows:

cdi+l(m,n) = cdi(m,n) + 2pieiy*(q,m,n) (2.44)

where:

m = 0,1,...,-

n = 0,1,... ,N-I

(*) denotes complex conjugate

= feedback coefficient, a parameter that con-trols the rate of convergence, algorithm

noise, and the stability of the algorithm
[Ref. 4].

From equation (2.44), it can be seen that the i+lth weight

cd i(m,n) may have magnitudes larger than unity. This

growth in magnitude is undesirable for the purpose of

spatial resolution since spatial resolution depends on the

relative phase between adjacent elements to resolve the

direction of wave arrival. Thus, a normalization is neces-

sary t. bring equation (2.44) back to unity. This normali-

zation is:

39



cdi+l (m,n) cd i+l(m,n)/Icd i+l(m,n)I (2.45)

These updated and normalized phase weights can now be applied

to equations (2.41), (2.43), and (2.44) in sequence to

compute the next set of phase weights. This iterative

process stops when predetermined criteria are met. At that

point, the set of phase weights {cdi(m,n)} can be used to

find the direction cosines of the incident plane wave.

However, the phase angles of the phase weights {cdi(m,n)}

may have been wrapped around an integer multiple of 27. The

procedure for phase unwrapping is explained in Sections 4 and

5 of this chapter.

The feedback coefficient pi in equation (2.44) con-

trols the rate of convergence and the stability of the LMS

adaptive filter. Robbins and Monro [Ref. 11] showed that

the adaptive weights {cdi (m,n)} will converge to the optimum

result if Vi is allowed to decrease with the iteration index

i. The precise conditions are [Ref. 12]:

1i > 0

lim14i = 0

Ii =
i=l
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* ~ 1J~ < 00
i=l1

A coefficient i that satisfies the above conditions will

work as long as the signal and noise inputs are truly

stationary but will not be satisfactory for a filter operat-

ing in a slowly varying environment. Widrow's LMS algorithm

[Ref. 11 uses a constant value of p satisfying the inequality

0 < <X1
max

where max is the largest eigenvalue of the correlation

matrix of the input. Although this matrix is typically not

known a priori, some bound can be set up by examining equation

(2.44). If stationarity can be assumed, it is possible to

update pi every iteration in order to obtain the optimum set

of phase weights. In Appendix A a simple method of updating

the feedback coefficient pi is proposed to improve the per-

formance of the LMS adaptive filter.

3. Applying the Frequency Domain LMS Adaptive Filter
to a Planar Array

Given a rectangular planar array with M xN elements,

there are several ways to process the signal from the array

to achieve spatial resolution in both azimuth and elevation.

Three different ways are considered in this thesis.
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a. Orthogonal Linear Arrays

Two-dimensional spatial resolution is possible

by just considering one linear array in the x-direction and

one linear array in the y-direction. A total of M+N-I ele-

ments out of M xN are used. This scheme is useful when

processing time is limited. Figure 14 illustrates the choice

of the center linear arrays for this scheme. However, any

two orthogonal linear arrays in the planar array can be

used. The recursive equations needed to implement this

algorithm are divided into two sets; one set for the linear

array in the x-direction and the other for the y-direction.

In the x-direction the estimate is:

1 Ml1
Z-x(q) Z ci(m)Y(q,m,n =n ) (2.46)

where:

n = constant y-direction index

ci (m) = unity magnitude phase weight.

The error is the difference between the reference and the

estimate.

e = Z(q) - Zx. (q) (2.47)X.
1 1

The recursive update for phase weights is:
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ci+l(m) = ci(m) + 2 u xe x 0Y*(q,m,n =n0 ) (2.48)

The phase of the new update is:

ci+ n(m) 4_ ci+1 (m)/Ici+1 (m)I (2.49)

In the y-direction, the procedure is similar:

1 N-1

Estimate: Z Yi(q) = N d i (n)Y(q,m =m ,n) (2.50)

Error: eyi = Z(z) - Z yi(q) (2.51)

Update: di+l(n) = di(n) + 2pyieyiY*(q,m =m 0In) (2.52)

Normalization: di+l (n) di+l (n)/I i+l (n)l (2.53)

The convergence constants px and iy are usually set to be

equal since the statistics in the orthogonal directions of

a planar array can be assumed to be the same for the obser-

vation time of most systems.

b. Two-dimensional Array

This scheme uses all M xN elements and therefore

it can realize the full array gain of equation (2.35). The
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phase weights cd(m,n) are not assumed to be separable. The

equations for the LMS adaptive filter in the frequency

domain are:

^ 1

Estimate: Z (q) = j [ d (m,n)Y(q,m,n) (2.54)
m n

Error: e. = Z(q) - Zi(q) (2.55)'

Update: cd i+(m,n) = cdi(m,n) + 2uieiY*(q,m,n) (2.56)

Normalization: cdi+ 1 (m,n) cdi+1 (m,n)/Icdi+1 (m,n)l (2.57)

c. Separable Two-dimensional Array

As mentioned in the discussion on planar arrays

and plane waves, the form of a plane wave suggests that the

phase of a signal at an element (m,n) is separable. This

scheme then uses the separability property

cd (m,n) = c (m)d (n) (2.58)

to implement a two-dimensional LMS adaptive filter. All

M xN elements are used but only M+N phase weights need to be

updated recursively. The equations are:

Estimate: Z (q) = (n) c (m)Y(q'm'n) (2.59)
MN m
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Error: e. = Z(q) - Z(q) (2.60)

Updates: c i+l(m) = ci(m) + 2ui ei(I di(n)Y(q,m,n))* (2.61)
n

di+l(n) = di(n) + 2i ie(I ci(m)Y(q,m,n))* (2.62)
m

Normalizations: c. (M) c ci~l (M)/Ici (m)I (2.63)

1+1 i+1 l

All three of the aforementioned schmes are implemented and

their results compared. At the start of all three algorithms,

the initial phase weights are set to the boresight of the

planar array, i.e., magnitude equal to unity and'phase angle

to zero. The normalization of phase weights to unity forces

the spatial transfer function of the LMS adaptive filter to

have unit magnitude. The steady state phase response is

designed to phase align all sensor elements in an element-

by-element fashion. More discussion on this topic can be

found in Appendix A.

4. Extracting Estimates of the Direction Cosines u and
v from Phase Weights

To extract u and v from the orthogonal linear arrays

and the separable two-dimensional array cases discussed in

Section C.3.a. and C.3.a.c., only M elements in the x-direc-

tion and N elements in the y-direction need to be considered.
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a. Direction Cosine Estimates for Linear Arrays

Consider that in cases 3a. and 3c., the phase

weights c(m) , d(n) have reached a steady state. The

objective at this point is to relate the phase angles of

these two sets of phase weights to their respective direction

cosines. Let Ex(m) be the phase angle of c(m) and y (n) be

the phase angle of d(n), i.e.,

(m) = tan-1 {Im[c(m) ] , (2. 65a)x Re [c(m)T]

and

y(n) = tan-{ Im[d(n)] (2.65b)
y Re (d n) T

It can be seen from equation (2.33) and using the concept

of separability that:

(in) = - 2(u mdx) (2 .66a)
x- x -

y(n) = - 2-(v ndy) (2.66b)

Solving equation (2.66) for u and v yields:

-AEx (m)
u = 27-md ,m # 0 (2. 67a)

-AE (n)_
v = 2-ndy n # 0 (2.67b)
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Thun e -direci, trer are M-1 etates of1 u;.

Thus, in the x-direction, there are M-1 estimates of u;

while' in the y-direction, there are N-1 estimates of V.

To find an estimate of the direction cosines from equation

(2.67), one needs to take an arithmetic average of possible

estimates:

1 M-1 -XE (m)
u = z 2 7mdx (2.68a)

N-1 -XE (n)
= V (2.68b)

Equations (2.68a) and (2.68b) will be referred to as the

point by point method. Another way of finding u and v makes

use of linear regression [Ref. 131. Consider equation (2.66)

where (x(m) is a linear function of m with slope equal to

27ua d and E (n) is a linear function of n with slope equal
7u x y
27T

to -- Vy Using a linear regression fit of M data points

vs. the element number m, the slope and intercept of the line

x(m) can be calculated. The same procedure can be used

for Ey (n). Let the slope in the x-direction be sI and the

slope in the y-direction be s2 . Then:

= x - ud (2.69a)

2s2S- -T vd (2.69b)
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Thus, u and v can be solved by rearranging equation (2.69).

to the form:

^ -Xs1
u =2Td (2.70a)

^ -Xs 2v X 2 
(2.70b)

The estimates u and v obtained from the linear regression

method represent the best linear least-squares fit of the

observed data.

b. Direction Cosine Estimates for Planar Arrays

The two-dimensional array discussed in Section

3.b of this chapter does not require the phase weights to

be separable. Consider that the set of phase weights

{cd(m,n)} has reached a steady state. Let xy(m,n) be the

phase angle associated with the cd(m,n). Then:

-(mn) tan-1 {Im[cd(m,n)]} (2.71)xy Re [cd (m, n)

From equation (2.33), it can be seen that

x(m,n) = 2-(u md x + v ndy) (2.72)
xy xy

In general, xy(m,n) can be a more complicated function of m

and n. For instance, in the near-field problem, one needs to
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modify equation (2.72) to contain quadratic phase terms to

account for wavefront curvature [Ref. 5]. For the plane

wave model, equation (2.72) adequately describes the phase

weights needed to steer the directivity pattern of the planar

array to the direction corresponding to u and v.

The point by point method is applicable here

to find u and v given a steady state phase angle. However,

a linear regression fit of xy(m,n) vs. the element index

m and n appears to be more suited to this problem. Rewriting

equation (2.72) in the form of the equation for a plane in

three-dimensional space yields:

Exy(m,n) = (-X- udx)m + (---vdy)n (2.73)

Equation (2.73) describes a plane with slope -- - ud in the
2X ^

m-direction (x-direction and slope -- -vd in the n-direction

(y-direction). Again, let the slopes be:

2Tr ^
s -- u d (2.74a)

2T ^s = -X v d (2.74b)

Thus, equation (2.74) is identical to equation (2.70) and

the direction cosine estimates u and v are found by equation

(2.71), i.e.,
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^ -X 1

u 2 7 (2.71a)
x

A-Xs2
v 21rdy (2. 71b)

This result is not surprising since the exponential represen-

tation of the plane wave, equation (2.20), is inherently

separable.

5. Unwrapping the Steering Phase Weights

a. Linear Array Unwrapping

The proper phase weights for beamsteering are

given by equation (2.66):

(m (2iTn

x X -- (u md x )  (2.66a)

S()=-2T, ̂, y (n) = - - (v ndy) (2.66b)

Consider a 7-element linear array lying in the x-direction

with the center element as the reference element. The element

index then runs from m = -3, -2, -1, 0, 1, 2, 3. If u is

equal to 0.55 and dx = X/2, then equation (2.67a) reduces to:
x^

x(m) = - 7um (2.75)

= -0.55 rrm
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The following table shows the required phase weights x(m)

needed to steer the beam to u = 0.55.

TABLE 1

PHASE WEIGHTS FOR BEAMSTEERING

m -3 -2 -1 0 1 2 3

(m) 1.65iT 1.i1r .557T 0 -.55T -i.17 -1.657

(m) -. 35 -9T .5570 -.55Tr 0.9r .35T

jCxm)

The phase factors {e } are a set of complex numbers in

the complex plane. The angle of any complex number must lie

within a 27 interval. The interval chosen here is [-zi]

This means that any angle x (m) that is outside the range

[-7,n] will be wrapped around to an angle x(m) that is

inside the range. This property can be shown as follows:

j(3+27rk) eJe j27k ej  (2.76)

since

"ej 2 rk = 1 for k = 0,t1,t2,...

therefore

ej8 has modulo 27.
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Referring back to Table 1, the observed angles '' (m) are

wrapped. If no processing is done to unwrap the observed

angles, the equations derived in Section C.4 of this chapter

will not apply for all permissible values of u and v. For

small values of u or v, the needed phase weights do not wrap

around but the spatial range of interest is severely restricted

[Ref. 41. In tracking systems, the above restriction in look

direction can be justified since a crude target direction is

usually provided by a search array. The maximum spatial

window of an M element linear array without the unwrapping

of the steering phase weights can be calculated. For example,

given- that the element spacing is dx = X/2, and the maximum

permissible magnitude of x(m) is 7 in the range [-rn] then

equation (2.66a) becomes:

Sx (m)Iimax = = I-um max (2.77)

or

^ml =1l
l max

For the 7-element linear array described here, the maximum

value that the index m can have is 3. Therefore,

I^ 1
lmax =3
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In general,

^ 2
lUlmax 2-1 (2.78)

where M is the number of elements in the array. The corres-

ponding angular coverage in terms of the polar coordinate

angle e is (for @ =0):

= sin (uIax) (2.79)

The total angular coverage is 20. For the case of the 7-

element linear array, this. corresponds to a coverage of about

40* out of a range of 1800. Figure 15 shows the expected

phase angles required for beamsteering vs. element number.

Figure 16 shows the wrapped angles vs. element number. It

should be noted that either set of these angles (phase

weights) will steer the beam to the proper direction. The

difficulty with the wrapped (observed) angles is that the

direction cosines u and v cannot be directly estimated using

the methods developed in Section C4 of this chapter. In

order to unwrap the observed angles in Table 1, consider

equation (2.76). It can be seen that the observed angles

differ from the angles generated from equation (2.66) by

an amount of ±27k where k = 0,1,2,.... In order to unwrap

the observed phase angles, it is necessary to find out which

elements' phase angles have been wrapped around and by what

54



z

z

'U

LL)

0 z
LJ

-2 -1 0
Z

En

ELEMENT INDEX

Figure 15. Phase Angles for Beamsteering

55



Ald

U)
z

z

hi z

U

ELEMENT INDEX

Figure 16. Wrapped-Around Phase Angles

56



integer multiple of 2n. Let w(m) be the unwrap factor such

that:

(M) = E"m) = Ex(m) + w(m) (2.80)

Table 2 shows (for u = 0.55 and dx = X/2) how the implemen-

tation of equation (2.80) will yield the phase weights

required for spatial resolution.

TABLE 2

PHASE UNWRAPPING

m -3 -2 1 0 1 2 3

Ex (M) 1. 65n 1 .17T .55r On -.55r -i. i7 -1. 65r

x(m) -.35r -.97 .557T 0 -.55Tr 0.9w 0.35w

w (m) +27 +27 0 0 0 -2w -2w

E o(m) 1. 657 1. 17 .55w 0 -.557 -1. 17 -1. 65T
x

Observe from Table 2 and equation (2.66) that the phase

angles for elements m = -1 and m = 1 do not wrap around as

long as dx < . Recall also that the center element is

chosen as the reference element. It is possible then after

a set of steady phase weights has been computed that an

estimate of the direction cosine can be computed using the

phase angles at elements m = -1 and m = 1 in equation (2.67)

below.
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-Xx (in)
u(m) = 2mdX (2.67)

For

dx - X/2 ,

^ - x (in)
u(m) - (2.81)

7m

The estimate of direction cosine u using only the information

(phase angles) at m = ±1 is denoted as ug where

^ 1 A A

Ug = 2[u(l) + u(-l)] (2.82)

Equation (2.82) will yield a good estimate of u as long as

AdX < The next step in this process of phase unwrapping

is to use the result from equation (2.82) to generate a set

of projected phase weights {E (m)} using the following

relation:

-27rmdx u
Cx(M) = (2.83)

Recall from equation (2.76) that a phase angle outside the

rangle [-7r,n] is mapped to an angle within [-rr]. By

examining the magnitude of the projected angle, it is possible

to determine how many multiples of 27 were lost due to the

modulo 27 property of complex numbers. The sign of ug and
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the location of the element m determine the sign of the

unwrap factor w(m). For linear arrays with an odd number of

elements, the unwrap procedure can be described as follows:

if (k-2)r <_ 1 (m)l < k (2.84)

and if 1 (m) I does not lie between the limits in equation

(2.84), the value of k is decremented by two and the inequality,

equation (2.84), is tested again until 1j(m)I falls within a

27 interval, then

jw(m) I = (k-l) h (2.85)

For an M-element (odd) array, the initial value of k is

The sign of w(m) is determined by:

sign w(m) = -sign (W) sign (ug) (2.86)

where:

m -,... -2,- ,0, , ....
2 2

i.e., using the center element as the reference. A similar

procedure can be utilized in an array with an even number of

elements. The reference used should then be the point be-

tween the two center elements since there is no need for the
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reference point to coincide with the location of a sensor

element. This choice of reference takes full advantage of

the resulting symmetry. From Table 2, it can be seen that

only half of. the elements need to be examined using equations

(2.84)-(2.86). The unwrap factors {w(m)} for the other half

are simply the negative of the first half. This unwrap

procedure is good for the two array configurations discussed

in Sections 3a. and 3c. of this chapter. The unwrap proce-

dure for the two-dimensional array is similar but the compu-

tation is a little more involved. The unwrapping procedure

for the linear array in the y-direction is identical with

the substitution d dy, m n, &x(m) - y(n),..., etc.

b. Two-dimensional Array Unwrapping

The proper phase weights to steer a beam to

(u,v) are given by:

= -2rr ^
x(m,n) -(u md x + v ndy) (2.87)xy X y

The unwrapping procedure is best illustrated by considering

the following example. Consider the case (u,v) = (-0.7,+0.7)

and dx = dy = X/2. Equation (2.87) then becomes:

xy(m,n) = -ir(um + vn) (2.88)

= -r(-0.7m + 0.7n)
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Assume also that we are given a planar array with M elements

in the x-direction and N elements in the y-direction (the

corresponding element indices are (x,y) - (m,n), with both

M and N equal to 5. For the sake of symmetry, let the

element indices run as follows:

m =),- ( ) i . . , . ,(

n =

In this case, for M = 5,

m = -2,-1,0,1,2.

Similarly, for the orthogonal direction,

n = -2,-1,0,1,2.

The obvious choice of reference element is (m,n) = (0,0),

i.e., the center element. The desired phase weights for

this example are given in Table 3.

The phase weights marked within the two triangles

in Table 3 will be wrapped around, so the actual observed

phases when the phase weights reach steady state are-tabu-

lated in Table 4.
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TABLE 3

DESIRED PHASE WEIGHTS {ixy(m,n)} GIVEN
THAT u = -0.7,v = +0.7

n

2 -2.87 -2.1w -1.4w -0.7w 0

1 -2.17 -1.4w -0.7w 0 0.7T

0 -1.47 -0.7w 0 0.71 1.4w

-1 -0.7w 0 0.7w 1.4w 2.17

-2 0 0.7w 1.4w 2.1w 2.8w

-2 -1 0 1 2 m

TABLE 4

OBSERVED PHASES OF THE STEADY STATE
ADAPTIVE WEIGHTS xy (m,n)

n

2 -0.8w -0. 1w 0.6w -0.7w 0

1 -0. 1w 0.6w -0.7w 0 0.7w

0 0.6w -0.77 0 0.7w -0.6w

-1 -0.7w 0 0.7w -0.6w 0.1w

-2 0 0.7w -0.6w 0.1w 0.8w

-2 -1 0 1 2 m
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Let w(m,n) be the two-dimensional unwrap factor, i.e., the

unwrapped phase is:

x(mn) - 'x(mn) = y' (m,n) + w(m,n) (2.89)xy xy x

By comparing {xy (m,n)} in Table 3 with {&xy(m,n)} in Table

4, it can be seen that w(m,n) must be equal to the tabu-

lated values in Table 5.

TABLE 5

UNWRAP FACTORS w(m,n)

n

2 -2w -2w -2w 0 0

1 -2w -2T 0 0 0

0 -2w 0 0 0 2T

-1 0 0 0 2w 2T

-2 0 0 2T 2w 27

-2 -1 0 1 2 m

To generate w(m,n) , estimates of the direction cosines

u and v must be computed using elements at m = ±1 and

n = ±1. Let u and v be those estimates obtained using theg g

point by point method below:
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u - u(1) + u(-l)I (2.90)

Vg = [v(l) + v(-l)] (2.91)

For d = dy = X/2, equation (2.88) can be applied to com-

pute the projected phases {xy (m,n)} by the relation:

xy (m,n) - -Um + v gn} for all m and n (2.92)

The set of projected phases (angles) are then examined to

decide the proper unwrap factor for a particule element

(m,n). The logic is as follows: for each n, all elements m

are examined.

Check (k-2)7 < xy (m,n)! < k7 (2.93)

and if I xy(m,n) does not lie between the limits, then k is

decremented by two and equation (2.93) is tested again. If

j]x(m,n) I does lie between the limits, then

1w (m,n)I = (k-l)Tr (2.94)xy

This procedure applies when M is odd and the initial value

of k is (M2). The sign of w(m,n) is determined by:

signlw(m,n)] = -sign[sign(m)sing(ug)+sign(n)sign(vg)] (2.95)
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where:

m = -(...,1-1, , ,...,(M- )

m 2

n = (N-1 (N-i)2 2,. ,l 0 1 . .

For the next value of n, equations (2.93), (2.94), and (2.95)

are repeated for all values of m. This continues until the

last value of n is reached. It is possible though to examine

only half of the planar array since the unwrap factors for

the other half are the negative of that of the first half.

To ensure symmetry about the reference element, it is neces-

sary to rotate the phase angle at the reference element to

zero. This can be accomplished by multiplying the phase

weights of all M N elements by the complex conjugate of

the reference phase weight, i.e.,

cd.(m,n) cd.(m,n) cd (m ,n )(2.96)
1 1 00

where m and n are the indices locating the reference element.

This operation will ensure that the unwrapping procedure

will work properly. For linear array phase weights, this

phase centering should also be completed before unwrapping.

The equations are:

ci(m) ci(m) c*(mo) (2.97)
1 1 1 0
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di (n) di(n) d*(no) (2.98)
1 1 1 0

where m is the index locating the reference element of the

linear array along the x-direction and n0 is the index

locating the reference element of the linear array along the

y-direction.

6. Summary

The original complex LMS adaptive filter [Ref. 1]

requires three necessary modifications to make it useful for

estimating the direction cosines of an incident plane wave.

Without the following modifications, accurate spatial resolu-

tion is not possible:

- normalization of the adaptive complex weights (phasors)
to unity magnitude after each iteration.

- unwrapping of the observed steady state phase angles
to extend the spatial coverage to the full range of
u and v.

- allowing the feedback coefficient p to decrease with
increasing iteration number to achieve convergence to
an optimal set of phase weights and to realize a
robust filter.

D. NOISE MODEL

In the SONAR environment, the ambient noise field is a

composite of many different noise sources. Therefore, using

the Central Limit Theorem [Ref. 131, the ambient noise can

be modeled quite adequately as additive white Gaussian noise.

Intentional jamming is not considered in this thesis. How-

ever, the use of an adaptive filter to place a null at the
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spatial location of a jamming signal has been studied exten-

sively [Refs. 2,4,15]. The noise corrupted received signal

is given by:

r(Z,m,n) = y(Z,m,n) + n(Z,m,n) (2.99)

where y(£,m,n) is the sampled signal represented by equation

(2.26) and n(km,n) is white Gaussian noise time samples

2
with zero mean and noise power aN. If A is the signal

amplitude (see equation (2.26)), then the signal-to-noise

ratio is given by:

A2

SNR = A2  (2.100)
oN

or

(SNR)dB 10 logl 0 (SNR) dB (2.101)

The performance of the frequency domain LMS adaptive filter

was tested for various signal-to-noise ratios. The noise

environment is assumed to be stationary during the look

interval of the SONAR system.
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III. LOW FREQUENCY PASSIVE SONAR TARGET LOCALIZATION

The objectives in passive SONAR are to detect and possibly

classify noise sources in the ocean. Most of the noise gener-

ated by vessels is concentrated in the low frequency range

(30-1K Hz). Acoustic energy in this frequency range is

capable of long range propagation and, as a result, most

long range detection systems in the underwater environment

operate at these low frequencies. Propeller cavitation,

machinery noise, and wake are the major sources of such noise.

Under certain situations, very long range detection has been

demonstrated in this frequency range. In a long range

detection scneario, knowledge of the elevation/depression

angle is necessary to resolve potential range ambiguities

in convergence zone (CZ) problems. Therefore, the use of a

planar array is well justified.

A computer program was implemented using the VS APL

language to test the performance of the LMS adaptive filter

in a noisy passive environment. The array size used in the

simulation is small compared to most modern systems but the

other parameters are set to simulate a very realistic pas-

sive SONAR. The APL language is used because of its large

library of advanced signal processing functions and its

interactive mode of operation which allows for rapid program

development. The major disadvantage of the APL language is
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its slower speed of execution compared to running a compiled

Fortran program that performs the same functions. This is

not a serious problem, however, for the research of this

thesis.

A. PROBLEM STATEMENT

A low frequency acoustic signal from a far-field source

is received by a planar array in a noisy underwater environ-

ment. The noise is assumed to be Gaussian and uncorrelated

with the signal. It is also assumed that the noise between

elements is uncorrelated. The planar array has a square

structure with M = 5 elements in the x-direction and N = 5

elements in the y-direction. The element spacing is set to

one-half the wavelength of the maximum frequency of the

system's operating range. The geometry of the problem is

shown in Figure 17 [Ref. 18]. The system parameters are:

- Signal: A cos(27ft), where A is the amplitude and
f is the frequency

- Integration time: 0.5 seconds (T
0

- Frequency resolution: 2 Hz (1/To = f )

- Number of samples: 128 = 27 (L)

- Number of sensor elements in the x-direction: 5 (M)

- Number of sensor elements in the y-direction: 5 (N)

- Speed of sound: 1500 meters/second (c0 )

- Sampling rate: 256 samples/second (fs

- Frequency range: 0-128 Hz

- Number of frequency bins: 128
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- Elements spacing: 7.5 meters (d and d equal)

2- Noise model: additive white Gaussian - N(O,a N)

- Number of noise samples per sample function: 3200,
i.e., L xM xN = 128 x5 x5

The signal used in the simulation is a 100 Hz sinusoid

corrupted by white Gaussian noise. A total of 128 samples

are taken for each processing period of 0.5 seconds. This

corresponds to 256 samples per second which satisfies the

Nyquist sampling theorem [Refs. 12,16,17]. The maximum

observed frequency in this case is 128 Hz. The 100 Hz

signal will center in bin number 50 for this simulation.

Frequency bin numbers 64-127 correspond to the negative

frequencies [Ref. 16]. The element spacing of 7.5 meters

is the maximum allowable separation for the 100 Hz signal

to avoid grating lobes in the far-field directivity beam

pattern. The speed of sound is the speed in the proximity

of the planar array.

B. SIMULATION

Given the system parameters stated in Section A, and a

128 point DFT, a 100 Hz sinusoidal signal will be centered in

frequency bin number 50. The logical flow graph of the simu-

lation program is shown in Figure 18. The principle of

superposition allows different frequency bins to be processed

independently. However, if the same frequency is emitted

from two or more spatial locations, the LMS adaptive filter

will lock on to the one closest to boresight. Complete
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documentation of the simulation program for this case can

be found in Appendix B. The outputs of the simulation pro-

gram are the estimated direction cosines u and v. The RMS

error is defined as:

2 21/2
E- (Au2 + AV2) (3.1)

where:

Au = u - u (3.2)

AV = V - V (3.3)

where u and v are the actual direction cosines. This measure

of error is consistent with the least-squares criterion used

in estimating u and v. If the estimate of the spherical

coordinates (e,O) are required, the following transformations

will transform (u,v) to (e,4) [Ref. 5]:

A AAl .2 21/2
O(u,v) = sin [(u) + (v) ] (3.4)

and

O(u,v) = tan (v/u) (3.5)

It should be noted that the transformation from (u,v) to

(e,o) is nonlinear. A particular value of the RMS error
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in equation (3.1) can be due to infinitely many different

values of 8 and 0, that is, given an RMS error E, there is

no unique set of spherical angle estimates. The spherical

angle estimates (8,0) depend on the values of both u and v.

Evaluating the total differential of equation (3.4) and

equation (3.5) yields:

3 udu + vdv
de_ _ _ __ _ _ _ _ (3.6)V A2+^2 A2+A22(u+v) (1 - (u + Y)

and

A A vdud^ ^d (3.7)d =^2 ^ 2 (d u -
u +v

Replacing d8 by Ae, do by Ao, du by Au and dv by AV results

in the following:

uAu+vAV (3.8)
/(u2+v 2 ) (1 -(Cu2+v2))

u vnu)

Ao - (2- ^2 (A ) (3.9)
u +v u

C. RESULTS

Three versions of the frequency domain LMS adaptive

filter were discussed in Chapter II. The performance of

each will be presented here.
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1. Orthogonal Linear Arrays

This configuration uses only M+N-l elements. The

parameters used for the simulation are as follows:

Signal - cos 2Tr(100)t (bin number 50)

Number of iterations (I) - 75

Initial feedback coefficient (Nx) - 0.0005
xI

Initial feedback coefficient (Uy) - 0.0005
y

Scale factor for W and iy(as ) - 0.909 (see Appendix A)

Input SNR at single array element, i.e., SNR at FFT
input - 0 dB

ICident angles (0,0) - (550,350) (see Figure 17)

The corresponding direction cosines (u,v) - (0.67101,0.46985)

Figures 19 and 20 show the convergence characteristics of

the complex LMS adaptive filter vs. iteration number i. The

solid horizontal lines are the true values of direction

cosines u and v. The oscillations in the beginning of the

adaptation are due to the large initial values of x and y.

The feedback coefficients px and y are scaled down recur-

sively by the scale factor via the rule described in Appendix

A which is rewritten below:

Wx(i) = x (i-l)cas (3.10a)

and
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Uy(i) = y(i-1)a s  (3.10b)

Convergence to the steady state occurred in fewer than 35

iterations in both cases. Figure 21 shows the error in

estimating u and v using equation (3.1) vs. iteration number.

The use of a constant feedback coefficient requires a much

longer iteration period and results in less accuracy (see

Appendix A). The chosen initial values of x and w y are

outside the bound of the convergence coefficient described

in Appendix A. However, the convergence coefficients are

decreased rapidly using equation (3.10). This choice of

lx and py shows that the LMS adaptive filter with decreasing

convergence coefficient(s) is very robust. Table 6 summarizes

the simulation results for a particular sample function of

noise.

2. Two-dimensional Array

This version uses all M xN elements and the complex

weights are not assumed to be separable. The parameters

used in the simulation are:

Signal - cos 27(100)t (bin number 50)

Number of iterations (I) - 75

Initial convergence coefficient - 0.001

scale factor (as ) - 0.909

Input SNR at single array element, i.e., SNR at FFT
input - 0 dB

78



w

x

InI

-I I

.1.....: I I I

--------------------- ----------------------&

r:-[ ---- r.---- -- a---------------- -------------------

- ~ 'I--------.-------------------

0 a -- -o - -- - - --•, a , , a

-- - - - - - - - - - - - --- --- -------- '+ 44-- -----. - ------ o -

I ------ ----------- --
a a a a a a

o------.-. -.1,--------.a' .-----..-,-'-........-,---...... - -.....- ...

.... ... ---.... ----------_P -..--. -------.. --------.- ... ...--- ...o AA--- - -- - -

ata Iat N of0d

79------



TABLE 6

SUMMARY OF COMPLEX LMS ADAPTIVE FILTER
PERFORMANCE FOR THE ORTHOGONAL LINEAR

ARRAY CONFIGURATION AT SNR = 0 dB

Simulation Values

u 0.671010

V 0.469846

u 0.695675

V 0.466038
^ -2

Au = U - U 2.4665 xi0
^ -3

AV = V - V -3.808 x10

E = (Au 2+Av ) 0.024957

e 550

6 54.7830

350

33.8180

Incident angle (e,q) - (550,350)

Corresponding (u,v) - (0.67101,0.46985)

Figures 22 and 23 show the convergence characteris-

tics of the two-dimensional array configuration of the

complex LMS adaptive filter vs. iteration number i.

Figure 24 plots the RMS error in estimating u and

v (see equation (3.1)). The results of the simulation for

a particular sample function of noise are summarized in

Table 7.
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TABLE 7

SUMMARY OF COMPLEX LMS ADAPTIVE FILTER PERFORMANCE
FOR THE TWO-DIMENSIONAL ARRAY AT SNR = 0 dB

Simulation Values

u 0.67101

v 0.46985

u 0.68442

v 0.46569

Au 1.341 xl02

AV -4.16 x 10

1.404 x10 2

e 550

e55.8760
350

34.2320

3. Two-dimensional Array with Separable Weights

This configuration assumes that the complex weights

are separable, i.e., cd(m,n) = c(m)d(n). The simulation

parameters are the same as those used in the two-dimensional

array case discussed in the previous section. Figures 25

and 26 show the convergence characteristics of this configura-

tion. Figure 27 shows the RMS error versus number of

iterations. The summary for this run is in Table 8. An

alternate way to illustrate the performance of the complex

LMS adaptive filter is a plot of RMS error vs. input SNR at
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TABLE 8

SUMMARY OF COMPLEX LMS ADAPTIVE FILTER PERFORMANCE
FOR THE TWO-DIMENSIONAL ARRAY WITH SEPARABLE

WEIGHTS AT SNR = 0 dB

Simulation Values

u 0.67101

V 0.46985

u 0.66304

V 0.47353

Au -7.97 x 10

AV 3.68 xl03

E 8.78 x 10

e 550

e 54.5650

350

35.5340

a single array element (SNR at FFT input). Figure 28 shows

these curves for all three configurations.

D. SUMMARY

The algorithm that assumes separable complex weights

shows better performance over the prescribed SNR range. The

improvement of performance of all three algorithms with

increasing SNR is evident from Figure 28. Since each noise

sample function has a total of 3200 independent samples, the

RMS error versus SNR curve is rather smooth. If several sample
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functions are averaged, the slight 'humps' in Figure 28

can be smoothed out further. The RMS error quantity is

analogous to that of a 'miss distance' on a rectangular grid.
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IV. PULSE COMMUNICATION [Ref. 181

The simulation results of two cases are presented in

this chapter. They are:

- Homogeneous medium case, in which the output electri-
cal signal data at each array element is produced by
the ocean communication channel simulation computer
program [Ref. 19]. Figure 29 shows the system geometry
of this case [Ref. 18]. Note that the ray path from
transmit to receive array is a straight path.

- Inhomogeneous medium case, in which the ray path is
bent due to the variable sound-speed profile. Thus,
the apparent direction of arrival viewed from the
receive array is different from the previous case.
Figure 30 shows the system geometry of the inhomo-
-geneous medium case [Ref. 18].

From the analysis of Chapter II, it can be seen that the

LMS adaptive filter should be able to phase align a planar

array to point in the direction of arrival. The signals

used for this simulation are a CW pulse and a LFM pulse.

These are very common signals used in the SONAR environment.

Information is carried by the modulation of these pulses.

The Fortran program used to simulate this problem is docu-

mented in Appendix C. Blount [Ref. 18] studied the effect

of model-based cophasing on the probability of detection of

a single pulse. The amount of cophasing is determined by

the system geometry and deterministic ray bending. It was

shown that by applying the phase weights generated by con-

sidering those factors, the performance of a correlator

receiver was improved markedly. Analysis done on those

91

,i~



(RAGE

x

y

PLANAA
U ARRAY

x

y

Figure 29. System Geometry for the Homogeneous
Medium Case [Ref. 18:p. 161

92



x

x

wN Z

0 Y C A

a. TRANSMIT %

-PLANAR y
ARRAY

REFRAC7ED
R AY PATH

Figure 30. System Geometry for the Inhomogeneous
Medium Case [Ref. 18 :p. 171

93



steering phase weights showed that the main beam of the array

directivity pattern was indeed steered to the direction of

actual arrival instead of line of sight.

A. TRANSMIT WAVEFORMS [Ref. 18]

Two types of waveforms were used to test the LMS adap-

tive algorithm.

1. Rectangular-envelope CW Pulse

The signal presented to the processor is a quadra-

ture demodulated complex envelope of the CW pulse [Refs. 5,

18].

K K jk (2Trf )t
z(t) = ze (4.1)k=-K n

where "~' denotes complex envelope.

The pulse repetition frequency is the same as the

fundamental frequency f0 of the finite (K harmonics) fre-

quency spectrum from which the pulse is ysnthesized. The

pulse duty cycle is arbitrarily set to 0.5. The complex

Fourier series coefficients zn used to synthesize the com-

plex envelope of the CW pulse are obtained from a closed-form

expression for the complex-valued continuous spectrum. The

Fourier coefficients are obtained by evaluating the closed-

form expression for the continuous spectrum at discrete

frequencies corresponding to integer multiples of the
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fundamental frequency. The following specific transmit

signal parameters were used in all CW pulse simulations:

- Amplitude (A): 40.0

- Duty Cycle (D): 0.5

- Fundamental Frequency (f ): 200 Hz

- Harmonic Values: z = 20 exp [j0 0 1

Z -1= z1 = 12.3324 exp [j0 0 ]

z_ 2 = z2 = 0.000 exp [j0 0 ]

z-3 = z3 = 4.244134 exp [j1800]

z_ 4 = z 4 = 0.000 exp [j0 0 ]

z_5 = z5 = 2.546479 exp [j0 ]

2. Rectangular-envelope LFM Pulse [Ref. 18]

The complex Fourier coefficients used to synthesize

the LFM pulse are found using a procedure similar to that

used for the CW pulse except the closed form expression for

the complex-valued continuous spectrum of the LFM pulse was

found by using the method of stationary phase. Officer

[Ref. 20] describes the method of stationary phase as does

Papoulis [Ref. 21] who also provides a complete description

of the LFM waveform. The following transmit signal param-

eters were used in all LFM pulse simulations:

- Amplitude (A): 40.0

- Duty Cycle (D): 0.8

- Phase Deviation Constant (B): 2356.2 radians/volt

- Fundamental Frequency (f) : 10 Hz
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Harmonic Values: zO = 14.60593 exp [j450]

Z_1 = z1 = 14.60593 exp [j21 0]

z_2 = Z2 = 14.60593 exp [3090]

z_3 = z 3 = 14.60593 exp [j189 0]

B. PROBLEM STATEMENT

A pulsed signal (CW or LFM) is sent to an intended

receiver in the far-field. The signal at the receive array

has a planar wavefront. The direction of arrival of the

incident plane wave is determined by applying the frequency

domain LMS adaptive filter to phase align (cophase) signals

at all sensor elements in the planar array. The discrete

time signal at element (m,n) has the form:

.2n3 x (umdX+Vnd y )
y(T smdxndY ) = z(ZT s)e (4.2)

where

T K jk2nf0 t

Z(Ts  I z ke (4.3)
k=-K

£: time index

m: element index in the x-direction

n: element index in the y-direction

T: sampling period

U: direction cosine with respect to the x-axis
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v: direction cosine with respect to the y-axis

d: interelement spacing in the x-direction

d: interelement spacing in the y-direction

z: complex Fourier coefficient

f: fundamental frequency

K: total number of harmonics

[Ref. 5] shows that the number of time samples needed to

completely describe equation (4.3) is L, where:

L > 2K + 1 (4.4)

The system parameters are:

CW LFM

Integration time (T0): 5 mS 100 mS

Frequency resolution (f ): 200 Hz 10 Hz

Number of samples (L): 11 7

Number of sensors M): 5 5

Number of sensors (N): 5 5

Sampling rate (f) : 2200 samples 70 samples
per second per second

Number of frequency
bins (Q): 11 7

Element spacing dx, dy: 0.1229 meters 0.1229 meters

Carrier frequency (fc): 5 KHz 5 KHz

Noise model: Additive white Gaussian noise for
both cases

Number of complex noise
samples/pulse: 275 175
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The carrier frequency fc is assumed to be known a priori. It

is found for the CW pulse that the best direction cosine

estimates are obtained by processing the spectral line corres-

ponding to the carrier frequency. This is reasonable since

the signal-to-noise ratio at that bin is the highest. For

the LFM pulse, all the harmonic lines still have roughly the

same magnitude after propagating through the medium. The

accuracy in estimating the direction cosines is about the

same for any harmonic line. Therefore the spectral line

corresponding to the carrier is processed.

C. RESULTS

The homogeneous medium case is considered first for both

CW and LFM pulses, followed by the inhomogeneous case.

1. Homogeneous Case

The parameters for the system geometry (Figure 29)

are:

Speed of sound (c0): 1475 meters/second

Depth of transmit array (Yo): 1000 meters

Depth of receive array (Y r): 2500 meters

Cross range (Xr -Xo): 500 meters

Line of sight range Ir -r0 1: 3000 meters

True spherical angle e: 31.810

True spherical angle 0: -108.4*

Direction cosine u: -0.1666

Direction cosine v: -0.5000
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The three array configurations of the frequency domain LMS

adaptive filter were then applied to the CW and LFM pulse

cases to estimate the direction cosines. The averaged re-

sults for one pulse corrupted by 100 sample functions of

noise at an input SNR of 0 dB at a single array element for

the CW pulse, homogeneous case are presented in Table 9.

The initial convergence coefficient is 0.5 and the scale

factor a is 0.909 for both CW and LFM waveforms.

TABLE 9

PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT

-SNR = 0 dB FOR CW PULSE, HOMOGENEOUS CASE

Algorithm

orthogonal 2-dimensional
linear arrays with separable 2-dimensional

phase weights array

u -0.1666 -0.1666 -0.1666

v -0.5000 -0.5000 -0.5000

u -0.1714 -0.1672 -0.1670

v -0.4757 -0.5003 -0.5032

6u -0.00048 -0.0006 -0.0004

AV 0.0243 -0.0003 -0.0032

0.0247 -0.0u0624 0.0032

e 31.810 31.810 31.810

-108.40 -108.40 -108.40

S 30.370 31.840 32.020

-109.80 -108.50 -108.40
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The rms error versus signal-to-noise ratio curves for all

three array configurations are presented in Figure 31.

The simulation results for the LFM pulse in the

homogeneous medium at an input SNR of 0 dB at a single array

element are summarized in Table 10. A total of 100 differ-

ent noise sample functions were used to corrupt the received

signal. The tabulated values in Table 10 are the ensemble

average values. Figure 32 illustrates the rms error versus

SNR plot for the LFM pulse in the homogeneous medium.

TABLE 10

- PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT
SNR = 0 dB FOR LFM PULSE, HOMOGENEOUS CASE

Algorithm

orthogonal 2-dimensional 2-dimensional
linear arrays with separable array

phase weights

u -0.1666 -0.1666 -0.1666

V -0.5000 -0.5000 -0.5000

u -0.1096 -0.1611 -0.1462

v -0.2695 -0.4096 -0.4079

Au 0.0570 0.0055 0.0204

Lv 0.2305 0.0904 0.0921

s 0.2375 0.0905 0.0943

8 31.810 31.810 31.810

-108.40 -108.40 -108.40

e 16.910 26.110 25.680

S -112.10 -111.50 -109.70
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The performance of the LFM pulse is worse than that

of the CW pulse since the number of samples per pulse is

seven where the CW pulse has eleven time samples per pulse.

Consider also the Fourier coefficients given in Section A of

this chapter. The magnitude of the spectral line correspond-

ing to the carrier for the CW pulse is 1.37 times larger than

that of the corresponding spectral line in the LFM pulse.

However, for both waveforms, it can be seen from Figures

31 and 32 that the two-dimensional array with separable

weights has the best performance, followed by the two-dimensional

array and orthogonal linear arrays, respectively. For the

CW pulse, accurate spatial localization can be obtained for

SNR greater than -3 dB. For the LFM pulse, the SNR required

is about 3 dB.

2. Inhomogeneous Case [Ref. 18]

The parameters for the system geometry (Figure 32)

are:

- Speed of sound (c0 ): 1475 meters per second

- Gradient: 0.017 per second

- Depth of transmit array (Y : 1000 meters

- Depth of receive array (Y r) : 2500 meters

- Cross range (Xr -Xo) : 500 meters

- Line of sight range Ir -r0 1: 3000 meters

- True spherical angle e: 30.100

- True spherical angle 1): -109.41

- Direction cosine u: -0.1666

Direction cosine v: -0.4731
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Figure 30 shows that the path traveled by the acoustic rays

is bent. The LMS adaptive filter is able to resolve the

actual direction of arrival but not the true line of sight

direction to the transmit array. The initial convergence

coefficient p is set equal to 0.5 and the scale factor

is set equal to 0.909. Both the CW and LFM pulses are con-

sidered for each of the three array configurations.- Table 11

summarizes the performance of the LMS adaptive filter applied

to the CW pulse case at an input SNR of 0 dB at a single

array element. Figure 33 shows the decline of rms error as

the signal-to-noise ratio is increased. All three array

configurations are included in the plot for comparison.

The performance for the LFM pulse case is tabulated

in Table 12 for an input SNR of 0 dB at a single array ele-

ment. Figure 34 illustrates the performance of all three

array configurations versus signal-to-noise ratio for the

LFM pulse case.

D. SUMV4ARY

For both the homogeneous and inhomogeneous medium cases,

the complex'LMS adaptive filter performed as expected. The

array configuration that assumed separability of the complex

weights consistently demonstrated better performance than

that of the orthogonal linear arrays and the two-dimensional

array. The superior performance can be attributed tO the

fact that equation (2.24) which describes the reception of

a plane wave by a planar array is separable. Therefore, by
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TABLE 11

PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT
SNR = 0 dB FOR CW PULSE, INHOMOGENEOUS CASE

Algorithm

orthogonal 2-dimensional 2-dimensional
linear arrays with separable array

phase weights

u -0.1666 -0.1666 -0.1666

v -0.4731 -0.4731 -0.4731

u -0.1663 -0.1686 -0.1651

v -0.4527 -0.4782 -0.4746

Au 0.0003 -0.0019 0.0015

AV 0.0204 -0.0051 -0.0015

0.0204 0.0054 0.0022

a 30.100 30.100 30.100

-109.40 -109.40 -109.40

e 28.830 30.470 30.170

-110.20 -109.40 -109.2
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TABLE 12

PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT
SNR = 0 dB, LFM PULSE, INHOMOGENEOUS CASE

Algorithm

orthogonal 2-dimensional 2-dimensional
linear arrays with separable array

phase weights

u -0.1666 -0.1666 -0.1666

v -0.4731 -0.4731 -0.4731

u -0.1035 -0.1614 -0.1417

v -0.2447 -0.4058 -0.3332

Lu 0.0631 0.0052 0.0249

Lv 0.2284 0.0673 0.1399

F- 0.2369 0.0675 0.1421

e 30.100 30.100 30.100

-109.40 -109.40 -109.40

G 15.410 25.890 21.230
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assuming separable complex weights, the system is set up to

match the physics of the problem. The performance of this

pulse communication system can be enhanced by increasing the

pulse width, taking more time samples per unit time, using

high resolution spectrum analysis, and enlarging the size

of the array by adding more sensor elements.
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V. CONCLUSIONS AND RECOMMENDATIONS

The frequency domain LMS adaptive algorithm has been

shown to perform the function of spatial resolution. The

number of iterations required (approximately 35) to reach a

steady state is found to be much fewer than that of a com-

parable time domain adaptive filter [Refs. 2,41. The three

modifications made to the original complex LMS adaptive

filter [Refs. 1,4] are:

- normalization of the complex weights to unity
magnitude after each update

- reduction of the magnitude of the convergence
coefficient for each iteration

- unwrapping of the phase weights

It has been shown that the above three modifications enable

the frequency domain LMS adaptive filter to be applied to

a multiple element array, to have a fast convergence rate

and robustness, and to cover the entire angular range of

6 and ¢ values.

In Chapter III, a passive low-frequency signal was

generated to test the performance of the frequency domain

LMS adaptive filter in the presence of white Gaussian noise.

The low frequency problem is significant in the area of long

range detection and possibly long range control and communi-

cation for ballistic missile submarines. Some form of

modulation, whether amplitude or angle, will have to be used
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to carry the information. The slow data rate is not a major

drawback since only certain predefined emergency operation

codes will be transmitted. The simulation results indicate

that for an input SNR at a single array element of greater

than -3 dB, accurate bearing and depressive angle estimates

can be obtained.

In Chapter IV, a pulse communication problem was con-

sidered. Two types of pulses, rectangular-envelope CW and

rectangular-envelope LFM pulses, were used. The possible

applications at this frequency range (5 KHz) are high reso-

lution SONAR imaging, active SONAR detection, and communica-

tion--between submerged vessels. The performance of the

frequency domain LMS adaptive filter was again tested in the

presence of white Gaussian noise. The simulation results

indicate that accurate bearing and depression angle esti-

mates can be obtained for input SNRs of greater than 0 dB.

The result here is slightly worse than that of the passive

low-frequency case due to the shorter data length used for

the pulse communication waveforms. For the simulations

in Chapter IV, the number of time samples collected is the

minimum required to satisfy the Nyquist sampling theorem.

The following three configurations of the frequency

domain LMS adaptive filter were considered:

- orthogonal linear arrays

- two-dimensional array with separable phase weights

- two-dimensional array
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In all simulations, the configuration that used the separa-

bility assumption produced the best results. This is quite

reasonable since this configuration uses all the output data

from the available elements and more importantly, its assump-

tion of separability matches the physics of the plane wave

signal since the phases of a plane wave in the orthogonal x

and y directions are separable.

In the course of this investigation, some interesting

topics for further research revealed themselves:

- exact target localization (range, depth, bearing,
and depression angle) if accurate environmental
data can be obtained

- -more efficient update algorithm for the convergence
coefficient

- implementation of more efficient software

- application of the steady state phase weights generated
by the frequency domain LMS adaptive filter to Blount's
[Ref. 18] correlator receiver

- addition of a noise reduction system before spectral
estimation

- modifications to make the system jam-resistant

- applications of other high resolution spectral analysis
techniques to produce frequency spectra (such as
maximum entropy [Ref. 22], autoregressive, maximum
likelihood, etc.).
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APPENDIX A

THE FREQUENCY DOMAIN LMS ADAPTIVE ALGORITHM

A. DERIVATION

Consider the phase aligning system shown in Figure 13.

The performance objective is for the adaptive filter to con-

verge to a set of phase weights such that the array output

signal will match a reference signal. In the frequency

domain, the output of a linear array of M elements at iter-

ation i can be written as:

Zi(q) = I ci(m)Y(q,m) = i(q) (A.1)
m

If Z(q) is the reference signal, then the error between the

reference and the array output is:

e i  = Z(q) - Zi (q) (A. 2)

where ei is a complex quantity.

The mean square error is:

e e~ - leil2 [Z(q) -Zi(q)][Z(q) -Zi(q)]* (A.3)

2 2 A2Iei - Z(q) 1 _Zi (q)Z*(q) -Z i (q)Z(q) + IZ i (q) (A.4)
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Substituting equation (A.1) into equation (A.4) for Z i(q)

yields:

lei1 2  = IZ(q) 12 -Z*(q)(cTY(q)) -Z(q) (cTY(q))* + IcTY(q) 2

(A.5)

The complex weight vector that will minimize equation (A.5)

is computed from the following recursive algorithm (Refs. 1,

6,141:

Ci+ I = Ci + 2.ieiY*(q) (A.6)

where Ii is the convergence coefficient used in the graaient

method [Ref. 61.

For the two-dimensional case discussed in Chapter II,

Section 3.b, replace ci+l with cdi+ 1 to yield:

cdi+ = cd i + 2pieiY (q) (A.7)

where:

1

e. = Z(q) - - cdi(mn)Y(q,m,n) (A.8)
m n

If the complex weights {cdi(m,n)} are separable, then

cdi (m,n) = ci (m)di(n)
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and:

cm) = ci(m) + 2uiei(7 di(n)Y(q,m,n))* (A.9)
n

i+l(m) = d(n) + 2 iei(mz ci(m)Y(q,m,n))* (A.10)
m

where:

ei = Z(q) - - ci(m) Z di(n)Y(q,m,n) (A.II)
MN n

Reference 4 studied the application of the frequency domain

LMS algorithm to a split array. The error signal is

the difference between the outputs of the two arrays. It

is possible to extend this idea to an (M xN) planar array

by generating an error signal ei (m,n) at each element location

where:

ei(m,n) = Z(q) - cd. (m,n)Y(q,m,n) (A.12)

for all m,n. Although this scheme is not studied in this

thesis, the implementation is rather straightforward. One

needs only to replace the error ei with ei (m,n) in all the

equations and to rewrite the code to generate the error.

This scheme, however, does not have the advantage of

averaging noisy data points from all of the elements in the
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array to come up with an estimate. Therefore, it can be

assumed that the noise performance will probably be inferior.

The magnitude of the reference signal Z(q) is generated

by averaging all (M xN) magnitude spectra whereas the phase

of Z(q) is taken to be the phase of the reference element.

A thresholding is done to determine which frequency bins

should be processed.

B. MODIFICATION TO THE LMS ADAPTIVE ALGORITHM TO MAKE IT

USEFUL FOR SPATIAL RESOLUTION

Three modifications are incorporated in the basic LMS

adaptive algorithm.

1. Normalization of Recursive Complex Weights

The components of the recursive complex weights (cif

d. and cd.) must be normalized to have magnitudes equal to

one. This restriction forces the algorithm to achieve

minimum error by adjusting the phase weights only. The esti-

mation of direction cosines depends on the linear relationship

of the phases of the signal across the array. Figure 35

shows that, without the normalization performed after each

complex weight update, the vector sum composing the estimate

can be made close to that of the reference. The correct

values of the direction cosines can only be achieved if each

component in equation (A.1) has the same phase as the refer-

ence phasor. All the vector sums shown in Figure 35 have

the same resultant phase and magnitude as the reference but

the phases of the components are not equal. It can also be
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seen that there are infinitely many ways to achieve a small

error without the normalization. The LMS adaptive filter

implemented for this thesis has a unity magnitude across

the array. It is, in fact, a phase-only filter. With the

normalization, each component is forced to adapt to the

phase angle of the reference. This is the only way that

spatial resolution (based on the amount of phasor rotation

of adaptive weights) can be achieved.

2. The Convergence Coefficient (1)

This quantity is sometimes referred to as the feed-

back coefficient, signifying the analogy to control systems

[Ref,. 6]. For nonstationary environments, a constant con-

vergence coefficient is usually chosen [Refs. 1,4,23].

However, if stationarity can be assumed, the performance of

the LMS adaptive filter can be improved by using a mono-

tonically decreasing scheme for implementing the convergence

coefficient [Ref. 11]. If a constant convergence coeffi-

cient is used, the bound on the choice of value is given

by [Refs. 12,241:

0 < < (A.13)
max

where

I I

A < Tr[R] = [ R(i,i) = [ R(0) = (I+I)R(O)max i=0 i=
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and R is the covariance matrix of the received noise cor-

rupted signal. If p is larger than the maximum determined

by equation (A.13), oscillation will occur [Ref. 253 and

the LMS adaptive filter will not converge. If p is too

small, then the rate of convergence is slow. Figures 36, 37

and 38 show the convergence characteristics for different

values of p.

The recursive LMS algorithm is based on the stochas-

tic approximation technique [Ref. 111. The choice of 1 is

optimal if the following conditions are met [Ref. 123:

vi > 0

lim i 0

[ 'ii =
i=l

i=l

A particular choice of Pithat meets the above four condi-

tions is Ki = i/i [Ref. 121. The effect of the adaptation

decreases with the number of iterations and ceases completely

for large i. Simulations show that the above choice of Ki

is better than using a constant u, however, the choice
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i (A.14)

where 0 < as < 1 and p0 is the initial value, appears to

speed the rate of convergence and also achieve a high

degree of accuracy. Equation (A.14) does not meet the

condition [ i = = ' but simulations show that the response
i=l1

of the LMS adaptive filter is fast and accurate for

0.75 < as < 0.95.. Further investigations of the convergence

characteristics are warranted. The current implementation

of the convergence coefficient results from experimentation

with various values of a. to achieve the best estimates of

direction cosines. With this scheme, the inifial value of

Ii can be set quite liberally since the value of pi decreases

geometrically.

C. PHASE WRAP-AROUND PROBLEM

The resolution of the phase wrap-around problem in the

adaptive phase weights was discussed in Chapter II exten-

sively. The scheme to resolve the phase ambiguity depends

on the proper functioning of the elements adjacent to the

reference element. In the event that some of those adjacent

elements are not operational, the unwrapping scheme will

have degraded performance. However, since the reference

element can be any element in the array, it is possible to

shift the location of the reference element to a region of

the array that has sufficient adjacent elements that are

functioning properly.
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APPENDIX B

DESCRIPTION OF SIMULATION PROGRAM
FOR THE PASSIVE DETECTION CASE

The VS APL application package worksapce (CMS file

ADAPTIVE VSAPLWS) contains all the functions necessary to

implement the simulation discussed in Chapter III. The

general processing flow is as follows:

- generate time samples of a plane wave signal of
frequency f incident upon a (M xN) planar array with
angles of incidence (,0)

- add white Gaussian noise for a desired SNR

- compute the discrete Fourier transform (DFT) of each
of the M xN time sequences

- determine the spectral line with the largest magnitude
and its corresponding frequency bin number

- apply one of the three frequency domain LMS adaptive
filters (orthogonal linear arrays, two-dimensional
array with separable complex weights, or two-dimensional
array)

- compute estimates of direction cosines.

Usage of the functions are described below.

A. SIG2D

SIG2D generates planar array signal at each element

location (equation (2.28)):

Syntax: YN AGl SIG2D AG2

YN is a L xM xN matrix where L is the number of time

samples, M is the number of elements in the x-direction, and
0
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N is the number of elements in the y-direction. AG1 is the

spherical angle 9 and AG2 is the spherical angle p. The

speed of sound (c), the signal amplitude (A), the frequency

of the signal (F), the interelement spacing (DX and DY),

the sampling interval (T), the number of elements (M,N)

and the number of time samples (L) can be changed by editing

the function.

B. NORRAND

NORRAND generates independent white Gaussian noise

samples.

Syntax: NOISE K NORRAND N Nl

K is the number of noise samples desired, N is the mean

Nl is the variance. The noise array NOISE must be reshaped

to conform to the shape of the signal generated by SIG2G

by:

NOISE L M N pNOISE

The standard deviation aN = 1 is necessary to scale a sample func-

tion of noise with zero mean and variance 1 to a desired

signal-to-noise ratio. The signal power at each element is

A2/2 and the noise power at each element is aN' The input

signal-to-noise ratio at a single array element is then given

by:
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A22 A2
i ~ ~SNR A222

SN = / - A (B.1)

cN  2 N

Solving for aN yields:

aN = A2  1/2 (B.2)

where A is the amplitude of the signal and SNR is the numeri-

cal signal-to-noise ratio. Therefore, a noisy signal with

the desired SNR can be generated as:

RN - YN + aN xNOISE (B.3)

where NOISE has zero mean and variance 1.

C. DFTWRT

DFTWRT computes the discrete Fourier transform with

respect to the time index for each element (equation (2.42)).

Syntax: YK - DFTWRT RN

YK has dimensions L xM xN; the first index L is now the

total number of frequency bins. RN is the noisy signal

generated by adding noise to the output of SIG2D. A total

of (M xN) L-point DFTs are computed using a radix-2 FFT

algorithm.
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D. ADPLMS

ADPLMS computes estimates of the direction cosines using

the frequency domain LMS algorithm for the orthogonal array

configuration.

Syntax: QTGT ADPLMS YK

QTGT is the frequency bin number where a valid signal has

been identified and YK is the output of the function DFTWRT.

A reference signal at frequency bin QTGT is generated by

calling the function REFGEN. Direction cosine estimates

u and v are computed in two different loops since in general

the number of elements M is not necessarily equal to N.

Estimates of both direction cosines are generated for each

iteration under the names UHAT and VHAT. The phase unwrapping

is done by calling the function DClDX for the x-direction

and DC1DY for the y-direction. The number of iterations

(ITER) and the initial convergence coefficients (MUX, MUY)

can be changed by editing the function ADPLMS. The scale

factor (SCMU) for decreasing the convergence coefficients

can be changed in the workspace.

E. QFLMS

QFLMS computes estimates of the direction cosines

using the frequency domain LMS algorithm for the two-dimen-

sional planar array with separable complex weights.

Syntax: QTGT QFLMS YK
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QTGT is the frequency bin number and YK is the output of the

function DFTWRT. A reference signal is generated by the

function REFGEN. Direction cosine estimates u and v are

computed every iteration of the LMS adaptive loop. They

are stored in the vectors named UHATQF and VHATQF. The

phase unwrapping is done by using DC1DX and DC1DY in the x

and y-directions, respectively. Recall that only M+N com-

plex weights are updated for this configuration because of

the separability assumption. The initial convergence

coefficient (MUQ) and the number of iterations (ITER) can

be changed by editing the function QFLMS. The scale factor

is named SCMU and is stored in the variable list in the

workspace.

F. ADPLMS2D

ADPLMS2D computes estimates of the direction cosines

using the frequency domain LMS adaptive algorithm for a

two-dimensional planar array.

Syntax: QTGT ADPLMS2D YK

QTGT and YK are the same quantities described in the last

two functions. A reference signal at frequency bin QTGT

is generated. Direction cosine estimates u and v are com-

puted for each iteration and stored in vectors named. UHAT2D

and VHAT2D. The phase unwrapping is accomplished by using
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the function DC2D. The number of iterations (ITER) and the

initial convergence coefficient (MUG) can be changed by

editing the function ADPLMS2D. The scale factor can be

changed by assigning a different value to SCMU in the work-

space. The use of a different unwrapping function is

required since the complex weights are not assumed to be

separable.

G. REFGEN

REFGEN generates a reference signal at a particular

frequency bin QTGT.

Syntax: CQREF QTGT REFGEN YK

CQREF is the reference signal used in the frequency domain

LMS adaptive filter. The magnitude of CQREF is obtained by

averaging the magnitudes of all (M xN) frequency spectra

in the frequency bin QTGT. The phase of CQREF is taken

to be the phase of the reference element in the QTGT fre-

quency bin.

H. DC1DX

DClDX unwraps the phase weights for a linear array in

the x-direction.

Syntax: UHAT[i] + N DClDY DV
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UHAT[i] is the direction cosine estimate u of the ith

iteration, M is the number of elements in the x-direction

and CV is a complex vector of M phase weights that will co-

phase the incident signal.

I. DClDY

DC1DY unwraps the phase weights for a linear array in

the y-direction.

Syntax: VHAT[i] N DClDY DV

VHAT[i] is the direction cosine estimate v of the i iter-

ation, N is the number of elements in the y-direction and

CV is a complex vector of N phase weights that will cophase

the incident signal.

J. DC2D

DC2D unwraps the phase weights for a two-dimensional

array.

Syntax: DC2D CD

CD is the two-dimensional phase matrix that will cophase

the incident plane wave signal. This function is used by

the function ADPLMS2D.

An example of using this application package is shown

as follows:
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YN - 55 SIG2D 35 signal generation

NOISE - 3200 NORRAND 0 1 noise generation

NOISE - 128 5 5 p NOISE noise generation

RN - YN + SCALE NOISE noisy signal

YK - DFTWRT RN transform to frequency
domain

- QTGT ADPLMS YK estimate direction
cosines

- QTGT ADPLMS2D YK estimate direction
cosines

- QTGT QFLMS YK estimate direction
cosines

This sequence of statements generates a plane wave signal

inci'dent upon a 5 x5 planar array with angles of incidence

e = 550 and = 350. The number of time samples for each

element is 128. A noise matrix is then generated and added

to the plane wave signal and the discrete Fourier transform

with respect to time is taken for each element in the array.

The three array configurations for the frequency domain LMS

algorithm are then used sequentially to estimate the

direction cosines of the incident plane wave.
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APPENDIX C

DESCRIPTION OF SIMULATION PROGRAM
FOR THE PULSE COMMUNICATION CASE

The VS FORTRAN prgrams were written to implement the

pulse communication problem discussed in Chapter IV. Two

separate programs were written utilizing essentially the

same subprograms. These programs handle the quadrature

demodulated complex envelope signals generated by Vos'[Ref.

191 program. The programs are available on user account

0218P at the Naval Postgraduate School, Monterey, California.

A. PROGRAM ADBFM

This program is compiled using FORTVS and is designed

to run under DISSPLA. It requires a storage capacity of

1 Mbyte. The following sequence of commands should be used

to run the program.

- DEFINE STORAGE 1 M

- I CMS

- GLOBAL TXTLIB VALTLIB VFORTLIB CMSLIB IMSLSP NONIMSL

- GLOBAL LOADLIB VFLODLIB

- FILEDEF 04 DISK fname DATA
(fname is the filename of the date file)

- LOAD ADBFM

- DISSPLA ADBFM

When execution begins, the user will be prompted to enter

the desired values for the necessary parameters. These
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parameters are noise status, input signal-to-noise ratio in

dB at a single array element, number of iterations, spec-

tral line to be processed, convergence coefficient, scale

factor for the convergence coefficient, and the choice of

one of the three array configurations.

For each array configuration, plots of the estimates of

the direction cosines are generated. The plots for magni-

tude and phase of the difference between the reference

signal and the estimate are also generated.

B. PROGRAM ERVSDB

This program computes the rms errors for various input

signal-to-noise ratios. If a plot of rmi error versus SNR

(dB) is not required, this program does not have to be run

under DISSPLA. The following sequence should be used:

- DEFINE STORAGE 1 M (if plot is required)

- I CMS

- GLOBAL TXTLIB VALTLIB VFORTLIB CMSLIB IMSLSP NONIMSL

- FILEDEF 04 DISK fname DATA
(fname is the filename of the data file)

- LOAD ERVSDB

- DISSPLA ERVSDB (if plot is needed)

or START * (if plot is not needed)

When execution begins, the program will prompt the user to

enter an initial input signal-to-noise ratio in dB at a single

array element. It will then ask for a dB step size such

that the next SNR is determined by the current SNR in dB

plus the dB step size. A total of nine SNRs are allowed.
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For example, if the initial SNR is -12 dB and the step size

is 3 dB, then the program will compute rms errors for the

set of dB levels {-12, -9, -6, -3, 0, 3, 6, 9, 12}. The

other parameters such as iteration number, initial conver-

gence coefficient, scale factor for convergence coefficient,

and the spectral line to be processed are entered when

prompted. The program will then ask for how many sample

functions of signal and noise are to be averaged. Simula-

tion results show that the average of 50 to 100 sample func-

tions are sufficient to reduce the variance of the direction

cosine estimates. One of the three array configurations is

then-.chosen by the user to estimate the direction cosines.

The screen output of this program is ordered pairs of

rms errors corresponding to a particular input SNR in dB

for all nine specified SNRs. A plot of rms error versus

SNR in dB can be generated if desired (provided that the

program is run under DISSPLA).
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