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ABSTRACT

The complex LMS adaptive algorithm developed by Widrow

. " [Ref+—3] is used in the frequency domain to estimate the
azimuth and elevation angles of a plane wave incident upon
a planar array. The complex LMS algorithm is applied to two
cases. The first case is a passive detection problem. The
second case is a pulse communication problem. In both
cases, complex weights are determined using the complex LMS
algorithm which cophase all of the output electrical signals
fram.the planar array. Three versions of the complex LMS

algorithm are studied and their performances are compared.
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I. INTRODUCTION

Frequency domain beamforming is accomplished by applying
appropriate phase shifts at the sensor'outputs of an array
to account for the relative propagation delays of a signal
from a particular direction. The phase-shifted signals from
all sensors are then added together coherently to realize
the full array gain. Discrete Fourier Transform (DFT) 5eém-
forming is the usual method of determining the direction of
arrival of a plane wave signal. A discrete number of
spatial frequency bins are formed and each bin corresponds
to a discrete direction. If the number of spatial frequency
bins is large, very fine spatial resolution can be obtained.

The phase shifts needed to cancel the relative propaga-
tion delays can be determined adaptively. The complex LMS
adaptive algorithm is used in this thesis. The LMS adaptive
filter adjusts its adaptive weights recursively to minimize
the mean square difference between a reference signal and
its estimate. When the beam is steered toward a signal
propagating in a particular direction, the phase of the
signals at all sensors must be the same. Therefore, the
signal at any sensor can be used as a reference which the
others will be matched. The estimated signal is obtained by
weighting the input signal by the current adaptive weights.

Note that no prior knowledge of the reference signal is

11

P S AR N A A AT W AR A A

PO O ALY




required. The response of the LMS adaptive filter converges

to the discrete Wiener filter without a priori knowledge of
the input [Refs. 1,2]. [Ref. 1] proposed the complek LMS
algorithm to deal with complex inputs. [Ref. 5] addressed
/ the implementation of the LMS édaptive filter in the fre-
quency domain. [Ref. 4] used the LMS adaptive filter in the
frequency domain to estimate the bearing of a plane wave
due to an acoustic source radiating a sinusoidal signal. 1In
this application, the LMS adaptive filter was iﬁplemented to
v estimate the phase difference between two sonar arrays
) : separated by a distance many times the signal wavelength.
The angle of arrivél of a plane wave can be estimated if the
frequency of the acoustic signal and the speed of wave propa-
gation are known or can be extracted from the received signal
itself.

The objective of this thesis is to extend the results in
[Ref. 3] and [Ref. 4] to a planar array of M xN elements
(hydrophones) where M and N are greater than two. Such an
array has an overall size many times the wavelength of the
received signal. The inter-element separation, however, is
usually maintained at a distance of less than or equal to
one-half of the expected minimum wavelength. This requirement
. [Ref. 5] prevents the occurrence of grating lobes in the
.far-field beam pattern. A two-dimensional array allows
spatial resolution in both azimuth and elevation. EQen

though the detection range in underwater acoustics is large

12
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compared to the ocean depth, the effect of ray bending due
to the inhomogeneous ocean medium can bend the incident
acoustic wave such that it can appear to arrive at a steeper

or shallower angle than the line of sight angle in the homo-

LR g

geneous medium case. The elevation/depression angle is
at present used to estimate Convergence Zone (CZ) and Bottom
Bounce (BB) ranges.

In this thesis, the problem of a plane wave incident upon
4y | a planar array of M xN elements is studied. The acoustic
f wave signal at each of the elements in the array are identical
if the array is steered in the direction of the incident
! wavefront. However, if the main lobe of ghe array is not
¥ steered properly, the plane wave signal will have the same
b spectral content at each element but modified by a phase
8- shift proportional to the location of the element with respect
? to some reference element. These undesirable phase shifts
i can be cancelled by applying appropriate phase weights at
Y each element and thereby cophasing the total array output to
realize its array gain. [Ref. 4] demonstrated that the LMS
adaptive filter can achieve phage alignment between a refer-
. ence signal and input signal in the frequency domain by
\ direct application of the complex LMS algorithm. This is
equivalent to a tapped delay line structure in the time do-
main. However, in the frequency domain, a time delay Tt

corresponds to multiplication of a complex number that is

equal to eI®T where w is the signal frequency. The

L}

NI TIUR 0020 (RS PG (1, C Lot RN S A S LT




C B g B B P e B R - bte fia P Al tis Pl d a iy ilog b2é MR R Y D EyR) AN NI T O MUFAX T T AN DA TR NS TS TN IAT

implementation of the LMS adaptive filter in the frequency
domain requires fewer computations per iteration than in thé
time domain. An added advantage of using phase weighting

is that a continuous range of spatial directions can be
described, whereas in a tapped delay line structure, only
finite increments of delays can be applied. Figure 1 shows
a functional diagram of an N-element adaptive array imple-
mented in the frequency domain [Ref. 6].

Chapter II of this thesis describes the specific struc-
ture of the adaptive filter and the equations implemented for
simulations. The assumptions made in the model are discussed
and justified. Several modifications to the complex LMS
adaptive algorithms are made to increase the array's spatial
coverage and to ensure that the steady state phase weights
do correspond to the direction of the incident wave.

In Chapter III, a passive sonar system is modeled to
test the ahility of the modified complex LMS algorithm to
estimate the direction of a source in the presence of noise.
The simulation program is implemented in VS APL.

Chapter IV demonstrates the application of the complex
LMS algorithm to a pulse communication problem. The inte-
gration time in this case is much shorter than that of the
passive sonar case. Two types of pulse waveforms are included,
continuous wave (CW) and linear frequency-modulated (LFM). r

This simulation program is implemented in VS FORTRAN.

14
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Chapter V concludes this thesis by identifying further
research areas and other possible applications.

Appendix A contains the derivation of the complex LMS
algorithm. Appendix B has the description of the passive
detection program implemented in APL. Appendix C has the
description of the pulse communication program implemented

in VS Fortran.
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ITI. THEORY OF SYSTEM MODEL

A. OVERVIEW OF ARRAYS [Refs. 5,6,7,8]

The characteristics of the array elements and their
arrangement in forming the array determine the ultimate
performance of an adaptive array system [Ref. 6]. Both the
linear array and the planar array are examined here.

l. Linear Afrays (Refs. 5,8]

Consider a linear array that has M equally spaced,
identical point source elements along the x-axis. For illus-
tration, Figure 2 shows a 7-element linear array with uniform
interelement spacing dx and a plane wave arriving at the
array with an incident angle 6 as measured from the array
normal. The phasor sum of all elements is:

M-1

I oy(e)el™ (2.1)
m=0

s (t)

th h

where y is the phase shift between the m and the m+lt

element for m = 0,1,2,3, ..., M-1l.

) (2.2)

where:
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. . & Lx

Figure 2. A Seven-Element Linear Array with Uniform
Interelement Spacing and Point Source Elements
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k = wave number. in radians per meter

A = wavelength in meters
£ = frequency in hertz
dX = 1interelement spacing in meters
8 = incident angle measured from array normal

¢ = speed of wave propagation in meters per second.

Rewriting equation (2.2) by substituting A = ¢/f yields

d, sin ©
2nf X
v S S (2.3)
The Fourier transform of equation (2.1) is:
S(£) = F{s(t)} = [ s(r)e I2MEg; (2.4)
w M=] .
= [ 7 yiryed™eTidnity, (2.5)
-o m=0
M-1 . oo : . .
= 7 eI™ [ y(rye %My (2.6)
m=0 -~
s(£,8) = A(f,8)Y(E) (2.7)

where Y(f) is the frequency spectrum of the incident wave and

A(f,8) is called the space factor or array factor. The array
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factor A(f,9) determines the directional plane of the array
in a plane containing the array. The dependence of A(f,é) on
frequency, speed of propagation, element separation, number
of elements, and incident angle can be shown by rewriting
A(f,8) as:

M-1 . M=1 jm(%f%-dxsin 8)

A(£,8) = J§ ™ = 7 o (2.8)
=0 m=0

Summing equation (2.8) yields:

M . M
=¥ sin zV{
A(E,0) = e 2 (227, (2.9)

sin

N

The normalized directional pattern is given by:

2
G(£,8) = 10 1og10{l§i£4§ll-} (2.10)

M

For nonisotropic (non-point source) elements, it is necessary
to introduce an additional factor E(f,8) in equation (2.9)

to include the directional response pattern introduced by
each sensor element [Ref. 6]. The overall directivity pat-
tern then is given by the produce of the array factor and the

element factor [Ref. 5]. However, if the size of the individual
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elements are small compared to a wavelength, they can be
assumed to be omnidirectional point sources, i.e., E(f,2) = 1.
The effects of increasing the nﬁmber of elements while main-
taining the same element spacing are shown in Figures 3 and
4 [Ref. 6]. It can be seen that the main lob beamwidth de-
creases as the number of elements increases, and the number
of sidelobes and nulls increases. In Figures 5-8, the number
of elements is held constant at M = 7 while the interelement
spacing is varied to illustrate the effects of elements
spacing on the directivity pattern.

Beamsteering [Ref. 5] is accomplished by applying a
linear phase shift across the line array as shown in Figure
9 [Ref. 6]. The effect of the insertion of this sequence of
phase shifts is that the main lobe is steered to an angle as

measured off the boresight equal to 6 where
7—5} (2.11)
and § is the phase shift between adjacent elements. Figure

10 shows the directivity pattern of a steered linear array.

2. Planar Arrays [Refs. 5,6]

Much of the analysis done in linear arrays can be
extended to the case of a rectangular-shaped planar array.
A circular planar array or a spherical volume array would re-
quire the use of polar and spherical coordinates respectively.
However, array theory is invariant under coordinate

transformations.
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A planar array has the advantage of resolving the
azimuthal and the elevation angles of arrival of an incident
plane wave [Refs. 5,39]. Consider a rectangular-shaped
planar array as shown in Figure 1ll; sensor elements are
arranged in a rectangular grid in the x~-y plane. The center
of the array is usually chosen as the coordinate origin.

The entiré array has M elements in the x-direction with uni-
form spacing dx and N elements in the y-direction with uni-
form sp&cing dy. The elements are assumed to be point sources.

The phasor sum of the entire array can be written as:

jmy jny
s(t) = JTyt)ye *e ¥ (2.12)
m n
where
dX
wx = Zn(—r) sin® cos¢ (2.13)
dY .
wy = 2v(-xﬁ sin® sing¢ (2.14)

The directivity pattern of the planar array is given by:

jmy, jny
Al£,0,0) = [ Je Te ¥ = A (£,8,0)A (£,8,0) (2.15)
mn

It follows from the model given by equation (2.12) that the

planar array beam pattern is the product of the array factors
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of two linear arrays. However, separability of the two-
dimensional beam pattern is not necessary to ensure the
proper operation of the LMS adaptive algorithm for a planar
array. Beamsteering is accomplished by applying appropriate
linear phase shifts for the row and column elements. For
the rectangular array case under investigation here, it is
more convenient to transform the elevation-azimuth (8,¢)
spaée to a rectilinear coordinate space (u,v) by the

transformation:

sin 9 cos ¢ (2.16)

e
n

<
]

sin 8 sin ¢ (2.17)

The parameters u and v are the direction cosines with

" respect to the x and y axes, respectively. Figure 12 shows

the alternate diagrams for presenting two-dimensional array
beam patterns [Ref. 6]. The ranges of the spherical angles
are 0 < 8 < /2 and@ 0 < ¢ < 2m whereas the ranges of the

rectilinear coordinate system are -1 < u < 1l and -1 < v < 1.

B. THE PLANE WAVE MODEL

l. PFar-Field Condition

The LMS adaptive filter designed in this thesis
will provide spatial resolution for a planar array for an
incident plane-wave field. The plane wave assumption is

justifiable for a radiating source located in the far-field
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[Refs. 5,10], due to wavefront expansion. The far-field

range for a planar array is given by [Ref. 5]:

2
R > % (2.18)
where:
L L 1/2
D = {(—25>2+ % (2.19)

represents the maximum radial extent of the transducer array

and L, and L are the dimensions of the planar array in

Y
the x and y directions, respectively.

2. Propagation of a Plane Wave from a Far-Field Source

The plane wave solution of the Helmholtz wave equa-

tion has the form:

Aej(2nft+5-£)

Y(tlz) = (2.20)

where y(t,r) is called the velocity potential, f is the
frequency, k is the propagation vector, and r the position

vector. In rectangular coordinates,
k = kxx + kyy + kzz (2.21)
and

A A ~

XX + yy + 22 (2.22)

i
]
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For a planar array located at some reference location z = 0,
the velocity potential is:

Jl2mft+ (k x+k y) ]
y(t,r) = yl(t,x,y) = Ae Y

(2.24)
For a planar array with discrete sensor elements located
uniformly in the x-y plane with spacings dX and dY respec-
tively, the continuous space variable x can be replaced by
mdx and y replaced by ndy. If the time.éignal is digitized
for computer processing, then the time variable t can be
replaced by T_, where % is the discrete time index and T

the sampling interval. To summarize:

t - QTS (2.25a)
X - mdx (2.25b)
y - ndY (2.25¢)

The corresponding discrete time, sampled space signal is

given by:
j2mELT_ j (md k. +nd k)
- ] XX Yy
y(ZTs,mdx,ndY) = Ae e (2.26)
where y(lTs,de,ndY) is usually shorted to y(¢,m,n). The

propagation vector k at z = 0 has two components kx and ky
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that can be related to the direction cosines u and v via

[Ref. 5]:
_ 21u
kx = = (2.27a)
and
_ 2mv )
kY = = (2.27b)
Substituting equation (2.27) into equation (2.26) yields:
. 2T
]ZWfETs J = (umd g +vnd, )
y(¢,m,n) = Ae e . (2.28)
Let
j2mfeT
y(2) = Ae s (2.29)

represent the time dependence of the signal. Equation (2.28)
then becomes:
2T
3——(umdx+vndY)

A

y(2,m,n) = y()e (2.30)

From equation (2.30), it is easy to see that the signal at

each element location (m,n) has the same time dependence

but has a different phase due to the element location and
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the direction cosines associated with the incident angle of
the plane wave upon the array. The exponential relationship
of the phase in equation (2.30) also suggests that the

phases in the x and y directions are separable.

C. FREQUENCY DOMAIN LMS ADAPTIVE FILTER FOR SPATIAL RESOLUTION
The objective of the LMS adaptive filter used in this
thesis is to phase align the signals from all sensor elements

sucn that they add up coherently to realize the full array
gain. Figure 13 shows a general cophasing scheme for linear
arrays. Cophasing or phase alignment is done in the frequency
domain by multiplying the frequency spectrum at each element
by tﬁe proper phase weight .in order to cancel out the phase
due to element location. This is equivalent to a phasor
rotation in the complex plane. The amount of rotation needed
to align each sensor element is proportional to the frequency
of interest, the direction cosines u, v and the location of
that element.

1. Phase Weights for the Planar Array

The total array output is maximized if all elements
in the array are phase aligned. 1If we let cd(m,n) be the
proper phase weight at location (m,n), then the phase

weighted total array output is:

s(2) = J ¥ cd(m,n)y(2,m,n) . (2.31)
mn

Substituting equation (2.30) into equation (2.31) gives:
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2T,
j—r\umdx+vndY)

s(2) = y(2) ] J cd(m,n)e (2.32)
: mn
If
-jz%(umdx+vndy)
cd{(m,n) = e (2.33)

then the quantity inside the summations becomes unity and:

s(L) y(2) 7} (1) (2.34)
mn

or

s(%)

MN v (2) (2.35)

where s(%2) is the sum over all elements and equation (2.35)

is the maximum signal level possible. This maximum level is
achieved by tuning M xN adaptive weights cd(m,n) to conform

to equation (2.33). The same phase weighting procedure is
also true in the frequency domain, in facﬁ, the implementation
of phase weighting is inherently a frequency domain opera-
tion. Since phase weight equation (2.33) is a function of
wavelength A and A\ = ¢/f, the proper phase weight for co-
phasing at each element is a function of frequency f. Thus

for each valid frequency component ih the signal, a different
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set of phase weights {cd(m,n)} must be generated. Consider
the DFT with respect to time of equation (2.32):
2™ (umd+vnd,,)
j umd, +vnd,

A

S(q) = ¥Y(q) ] ] cd(m,n)e (2.36)

mn

where g is the frequency index and Y(q) is the DFT of y(2).

If equation (2.33) holds, then:

S(g) = ¥(a) } (1) = MN Y(q) (2.37)
mn .

Only valid spectral lines will be processed.

2. The Frequency Domain LMS Adaptive Filter

The general frequency domain LMS adaptive algorithm
is derived in Appendix A. Suppose that the time signal z(2)
is the reference or desired signal and ;i(l) is the normalized
sum of all signals in the planar array. In the frequency

h

domain, the reference signal in the qt DFT bin is:

L-1 "szq
2(q) = ) z(2)e (2.38)
=
and the estimated output in the frequency domain is:
N L-1 . -j%glq
2.(q) = ) z.,(M)e (2.39)
i 429 1 |
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Substituting equation (2.31) with ;i(l) = ﬁ% s; (1) yields:
Z;, (@) = ] v ) cd; (m,n)y(2,m,n)e (2.40)
2=0 m n
where:

2 1is the time index; 2 = 0,1,...,L-1
g is the DFT bin index; g = 0,1,...,Q-1

i is the complex phase weight iteration number.

The DFT operation with respect to time in equation (2.40)

can be performed first to yield:

o 1
z2,(Q) = &y } 1 cd;(m,n)¥(q,m,n) (2.41)
mn
where:
L-1 —j%glq
Y(gq,m,n) = } y(&,m,n)e (2.42)
2=0

Based on the complex LMS algorithm [Ref. 1], the adaptive
filter output in the g bin is given by equation (2.41).
The error signal is generated by comparing the desired
(reference) signal to the adaptive filter output (esﬁimate).

The error is denoted by e where:
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e = ~_ -,

e, = (@ - Z;(q) (2.43)

. -~

The estimate, equation (2.4l1l), is formed by applying the

phase weights {cdi(m,n)} of the ith iteration to each element

e A AR s A g e b

in the planar array. The complex weight cdi(m,n) is updated

-

recursively as follows:

cdi+l(m,n) = cdi(m,n) + 2uieiY*(q,m,n) (2.44)
kY
where:
; m = 0,1,...,M=1
| n = 0,1,...,N-1

(*) denotes complex conjugate
u. = feedback coefficient, a parameter that con-
trols the rate of convergence, algorithm

noise, and the stability of the algorithm
[Ref. 4].

From equation (2.44), it can be seen that the i+lth

weight
| cdi+l(m,n) may have magnitudes larger than unity. This

. growth in magnitude is undesirable for the purpose of

p spatial resolution since spatial resolution depends on the
relative phase between adjacent elements to resolve the
direction of wave arrival. Thus, a normalization is neces-

sary t> bring equation (2.44) back to unity. This normali-

zation 1is:
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cd,,, (m,n) « cdi+1(m,n)/|cdi+l(m,n)| (2.45)

These updated and normalized phase weights can now be applied
to equations (2.41l), (2.43), and (2.44) in sequence to
compute the next set of phase weights. This iterative
process stops when predetermined criteria are met. At that
point, the set of phase weights {cdi(m,n)} can be used to
find the direction cosines of the incident plane wave.
However, the phase angles of the phase weights {cdi(m,n)}

may have been wrapped around an integer multiple of 2m. The
procedure for phase unwrapping is explained in Sections 4 and
5 of this chapter.

The feedback coefficient My in equation (2.44) con-
trols the rate of convergence and the stability of the LMS
adaptive filter. Robbins and Monro [ﬁef. 11] showed that
the adaptive weights {cdi(m,n)} will converge to the optimum
result if g is allowed to decrease with the iteration index

i. The precise conditions are [Ref. 12]:

My 0
limpy, = O
i+o0

z u - o0
i=1 1
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A coefficient My that satisfies the above conditions will

work as long as the signal and noise inputs are truly

stationary but will not be satisfactory for a filter operat-
ing in a slowly varying environment. Widrow's LMS algorithm
[Ref. 1] uses a constant value of p satisfying the inequality

A—l

< <
0 M max

whera Amax is the largest eigenvalue of the correlation
matrix of the input. Although this matrix is typically not
known a priori, some bound can be set up by examining equation
(2.44). 1If stationarity can be assumed, it is possible to
update B every iteration in order to obtain the optimum set
of phase weights. In Appendix A a simple method of updating
the feedback coefficient My is proposed to improve the per-
formance of the LMS adaptive filter.

3. Applying the Frequency Domain LMS Adaptive Filter
to a Planar Array

Given a rectangular planar array with M xN elements,
there are several ways to process the signal from the array
to achieve spatial resolution in both azimuth and elevation.

Three different ways are considered in this thesis.
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a. Orthogonal Linear Arrays

Two-dimensional spatial resolution is possible
by just considering one linear array in the x-direction and
one linear array in the y-direction. A total of M+N-1 ele-
ments out of M xN are used. This scheme is useful when
processing time is limited. Figure 14 illustrates the choice
of the center linear arrays for this scheme. However, any
two orthogonal linear arrays in the planar array can be
used. The recursive equations needed to implement this
algorithm are divided into two sets; one set for the linear
array in the x-direction and the other for the y-direction.

In the x-direction the estimate is:

A~ lM-l
2, (@ = 5 ! ¢;(mY(gm,n=ny) (2.46)
i : m=90
where:
n, = constant y-direction index
c;(m) = unity magnitude phase weight.

The error is the difference between the reference and the

estimate.

(2.47)

The recursive update for phase weights is:
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ci+l(m) = ci(m) + 2uxiexiY*(q,m,n =n,) (2.48)

The phase of the new update is:

Ci+l(m) « ci+l(m)/lci+l(m)| (2.49)
In the y-direction, the procedure is similar:
. 1 N2t
Estimate: zy_(q) = 5 Z d; (n)¥(g,m =m_,n) (2.50)
i n=0
Error: = 2Z - 2 2.
eyi (2) yi(q) (2.51)
Update: di+l(n) = di(n) + ZpYiein*(q,m =mo,n) (2.52) l
1
Normalization: d, ,(n) =« di+l(n)/|di+l(n)[ (2.53)

The convergence constants My and uy are usually set to be
equal since the statistics in the orthogonal directions of
a planar array can be assumed to be the same for the obser-
vation time of most systems.
b. Two-dimensional Array
This scheme uses all M xN elements and tﬁerefore

it can realize the full array gain of equation (2.35). The

'ﬂ{ ram* .'-"-:'-f-;f_-;:-tz:.: .:!;i;‘.:'!.:':‘:’t‘t‘ﬁ



phase weights cd(m,n) are not assumed to be separable. The
equations for the LMS adaptive filter in the frequency

domain are:

Estimate: 2,(q) = g g,g cd, (m,n)¥(q,m,n) (2.54)
Error: e, = (@) - Z(q) (2.55)°
Update: cdi+l(m,n) = cdi(m,n) + 2uieiY*(q,m,n) (2.56)
Norméiization: cdi+l(m,n) « cdi+l(m,n)/|cdi+l(m,n)| (2.57)

c. Separable Two-dimensional Array
As mentioned in the discussion on planar arrays
and plane waves, the form of a plane wave suggests that the
phase of a signal at an element (m,n) is separable. This

scheme then uses the separability property

cd(m,n) = c(m)d(n) (2.58)
to implement a two-dimensional LMS adaptive filter. All
M xN elements are used but only M+N phase weights need to be

updated recursively. The equations are:

Estimate: 2Z,(q) = MN 2 d; 2 c; (m)¥(q,m,n) (2.59)
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Error: e, = Z(q) - Zi(q) (2.60)
Updates: ci+l(m) = ci(m) + zuiei(g di(n)Y(q,m,n))* (2.61)
di+l(n)' = di(n) + 2uiei(£ ci(m)Y(q,m,n))* (2.62)
Normalizations: ¢, ,(m) < ci+l(m)/lci+l(m)| S (2.63)
d;,p(m) < di+l(n)/|di+l(n)| (2.64)

All three of the aforementioned schmes are implemented and
their results compared. At the start of all three algorithms,
the initial phase weights are set to the boresight of the
planar array, i.e., magnitude equal to unity and phase angle
to zero. The normalization of phase weights to unity forces
the spatial transfer function of the LMS adaptive filter to
have unit magnitude. The steady state phase response is
designed to phase align all sensor elements in an element-
by-element fashion. More discussion on this topic can be
found in Appendix A.

4. Extracting Estimates of the Direction Cosines u and
v _from Phase Weights

To extract u and v from the orthogonal linear arrays
and the separable two-dimensional array cases discussed in
Section C.3.a. and C.3.a.c., only M elements in the x-direc-

tion and N elements in the y-direction need to be considered.
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a. Direction Cosine Estimates for Linear Arrays
Cénsider that in cases 3a. and 3c., the phase
weights c¢(m) , d(n) have reached a steady state. The
objective at this point is to relate the phase angles of
these two sets of phase weights to their respective direction
cosines. Let Ex(m) be the phase angle of c(m) and gy(n) be

the phase angle of d(n), i.e.,

£ (m) = tan_l{é—rg-%%—%%—%—} (2.65a)

and

-l{Im[d(n)]}

Reld(m)T (2.650)

Ey(n) = tan

It can be seen from equation (2.33) and using the concept

of separability that:

Ex(m) = - 2%(& mdx) (2.66a)
_ _ 2n,0
Ey(n) = —TJV ndY) (2.66b)

Solving equation (2.66) for u and v yields:

~ -Agx(m) A

a = " m# 0 (2.67a)

N -xg  (n)

v = _EF%H__ , n#0 (2.67b)
Y
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Thus, in the x-direction, there are M-1 estimates of u;
while' in the y-direction, there are N-l1 estimates of ;.
To find an estimate of the direction cosines from equation
(2.67), one needs to take an arithmetic average of possible

estimates:

! u = m Z m—— (2.68a)
m=1 X
~ 1 N=-1 =X (n)

Vo= 5T g - (2.68b)
n=1 Y

Equations (2.68a) and (2.68b) will be referred to as the
point by point method. Another way of finding G and ; makes
use of linear regression [Ref. 13]. Consider equation (2.66)
where Ex(m) is a linear function of m with slope equal to

-Z%udx and gy(n) is a linear function of n with slope egual

to -z;vdy. Using a linear regression fit of M data points
vs. the element number m, the slope and intercept of the line
gx(m) can be calculated. The same procedure can be used

for gy(n). Let the slope in the x-direction be s, and the

slope in the y-direction be S, Then:
_ _ 2 "
s, = -T-udx (2.69%a)
_ _ 2n
52 = TVdY (2.69b)
48




E-— VO YT Y O T T SR O -wmmmwwmmmmmmmmm'\mm,v‘-nm-\mmm-\ﬂxl

~

h Thus, u and v can be solved by rearranging equation (2.69)

to the form:

| ~ -ksl

h u = 5 (2.70a)
A X

o

N ~ -Asz

i = v

; v m—Y- (2.70b)

The estimates & and ; obtained from the linear regression
X method represent the best linear least-squares fit of the
observed data.
b. Direction Cosine Estimates for Planar Arrays
The two-dimensional array discussed in Section

3.b of this chapter does not require the phase weights to.

‘e w6 s & & N

be separable. Consider that the set of phase weights

{ed(m,n)} has réached a steady state. Let Exy(m,n) be the

) phase angle associated with the cd(m,n). Then:
_ -1, Im[cd(m,n)]
g Sxy(m,n) = tan {Relchm,n)T} (2.71)
From equation (2.33), it can be seen that
- £ (m,n) = - Z(umd, + v nd,) (2.72)
B xy ' A X Y :

In general, Sxy(m,n) can be a more complicated function of m

and n. For instance, in the near-field problem, one needs to

; 49
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modify equation (2.72) to contain quadratic phase terms to

account for wavefront curvature [Ref. 5]. For the plane
wave model, equation (2.72) adequately describes the phase
weights needed to steer the directivity pattern of the planar
array to the direction corresponding to G and ;.

The point by point method is applicable here
to find G and ; given a steady state phase angle. However,
a linear regression fit of Exy(m,n) vs. the element index
m and n appears to be more suited to this problem. Rewriting
equation (2.72) in the form of the equation for a plane in
three-dimensional space yields:

~-

Cymm) = (T udpm + (Fvapn (2.73)

Equation (2.73) describes a plane with slope -%\ludx in the

m-direction (x-direction and slope —2%-de in the n-direction

(y=-direction). Again, let the slopes be:
. _ 2r -
s, = 5 U dx ' (2.74a)
_ _2m 7
S, = 5 Vv dY (2.74Db)

Thus, equation (2.74) is identical to equation (2.70) and

the direction cosine estimates u and v are found by eguation

(2.71), i.e.,




e w o =

>

!
= >
n

=

u = m—); (2.71&)
’ ~ -\s
¥ 2
Y v = 2ndY (2.71b)

This result is not surprising since the exponential represen-

tation of the plane wave, equation (2.20), is inherently

N A R N

separable.

5. Unwrapping the Steering Phase Weights

a. Linear Array Unwrapping
The proper phase weights for beamsteering are
given by equation (2.66):

:zl(u md ) (2.66a)

Ex(m)

~

£, (n) = 2y ndy) (2.66b)

Consider a 7-element linear array lying in the x-direction

with the center element as the reference element. The element

index then runs fromm = -3, -2, -1, 0, 1, 2, 3. 1If u is

equal to 0.55 and dX = A/2, then equation (2.67a) reduces to:

Ex(m) - mum (2.75)

-0.55 ™m

- -~
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The following table shows the required phase weights ¢ (m)

A

‘ needed to steer the beam to u = 0.55.
p
TABLE 1
‘ PHASE WEIGHTS FOR BEAMSTEERING
m -3 -2 -1 0 1 2 3

g m  1.65m 1.1m .55m 0 -.551  =l.1m  =1.657

' gLm)  -.35m -.97 55m 0 -.551 0.9m .35m
jE_ (m)

The phase factors {e = } are a set of complex numbers in
the complex plane. The angle of any complex number must lie
within a 27 interval. The interval chosen here is [-7m,7].

i This means that any angle &x(m) that is outside the range
[-m,m] will be wrapped around to an angle g;(m) that is

inside the range. This property can be shown as follows:

ej<8+2ﬂk) = ejBej21rk ejB (2.76)
since
ej2Trk = 1 for k =0,:1,22,...
therefore '
ejB has modulo 2. | |
52 1
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Referring back to Table 1, the observed angles S;(m) are

wrapped. If no processing is done to unwrap the observed

angles, the equations derived in Section C.4 of this chapter

¢ will not apply for all permissible values of G and ;. For

§ small values of G or 3, fhe needed phase weights do not wrap

around but the spatial range of interest is severely restricted

[Ref. 4]. 1In tracking systems, the above restriction in look

. direction can be justified since a crude target direction is

E usually provided by a search array. The maximum spatial
window of an M element linear array without the unwrapping

; ) of the steering phase weights can be calculated. For example,

Y given- that the element spaéing is dX = A/2, and the maximum

permissible magnitude of Ex(m) is m in the range [-m,n}, then

4 equation (2.66a) becomes:

A

le,m i, = 7 = |-mum| (2.77)

or

For the 7-element linear array described here, the maximum

N value that the index m can have is 3. Therefore,

W)+

|ulmax =

{ 53
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In general,

~ 2
|u|max M=-T (2.78)

where M is the number of elements in the array. The corres-

ponding angular coverage in terms of the polar coordinate

angle 68 is (for ¢ = 0):

sin’l(lul'

mak) (2.79)

The total angular coverage is 26. For the case of the 7-

element linear array, this corresponds to a coverage of about

40° out of a range of 180°. Figure 15 shows the expected

phase angles required for beamsteering vs. element number.

Figure 16 shows the wrapped angles vs. element number. It
should be noted that either set of these angles (phase
weights) will steer the beam to the proper direction. The

difficulty with the wrapped (observed) angles is that the
direction cosines G and Q cannot be directly estimated using
the methods developed in Section C.4 of this chapter. 1In
order to unwrap the observed angles in Table 1, consider
equation (2.76). It can be seen that the observed angles
differ from the angles generated from equation (2.66) by
an amount of +t27k where k = 0,1,2,.... In order to unwrap
the observed phase angles, it is necessary to find out which

elements' phase angles have been wrapped around and by what
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integer multiple of 2n. Let w(m) be the unwrap factor such

that:

g, (m)

g (m) = £i(m) + W(m) (2.80)

~

Table 2 shows (for u

0.55 and dX = A/2) how the implemen-
tation of equation (2.80) will yield the phase weights

required for spatial resolution.

TABLE 2

PHASE UNWRAPPING

m -3 -2 1 0 1 2 3

Ex(m) 1.65nm l.1rw .55m On -.55m =1l.1m -1.657
£, m)  -.357 -.9m .55 0 -.55m 0.9m 0.35m
w{m) +21 +2m 0 0o 0 -2m -2m
£ m  1.65m 1.1m .55 0 -.55m  -l.1m  -1.65m

Observe from Table 2 and equation (2.66) that the phase
angles for elements m = -1 and m = 1 do not wrap around as
long as dX < %. Recall also that the center element is
chosen as the reference element. It is possible then after
a set of steady phase weights has been computed that an
estimate of the direction cosine can be computed usiné the
phase angles at elements m = -1 and m = 1 in equation (2.67)

below.
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~ -A&_(m)

u{m) = Trmd (2.67)
X
For
dX = A/2,
~ -Ex(m)
u(m) = —?—m—— (2.81)

~

The estimate of direction cosine u using only the information

(phase angles) at m = *1 is denoted as ug where
1 A . ~
u = 7[u\l) + u(-1)] (2.82)

Equation (2.82) will yield a good estimate of u as long as

A
dxii.

is to use the result from equation (2.82) to generate a set

The next step in this process of phase unwrapping

of projected phase weights {Ex(m)} using the following

relation:
g (m) = — £ d (2.83)

Recall from equation (2.76) that a phase angle outside the
rangle [-7,n] is mapped to an angle within [-7,7]. By
examining the magnitude of the projected angle, it is possible
to determine how many multiples of 2n were lost due to the

A

modulo 2n property of complex numbers. The sign of ug and
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the location of the element m determine the sign of the
unwrap factor w(m). For linear arrays with an odd number of

elements, the unwrap procedure can be described as follows:
if (k=2)1 < |&m)| < km (2.84)

and if |g(m)| does not lie between the limits in equation
(2.84), the value of k is decremented by two and the inequality,
equation (2.84), is tested again until |[£(m)]| falls within a

21 interval, then
|w(m) | = (k-1)7 (2.85)

For an M-element (odd) array, the initial value of k is

(E%l). The sign of w(m) is determined by:

sign w(m) = - sign (m) sign (Gg) (2.86)

where:

M-1 M-1
m = -(—2—),...,-2,-1,0,1,...,(7)r

i.e., using the center element as the reference. A similar
procedure can be utilized in an array with an even number of
elements. The reference used should then be the point be-

tween the two center elements since there is no need for the
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reference point to coincide with the location
element. This choice of reference takes full

the resulting symmetry. From Table 2, it can

only half of the elements need to be examined

of a sensor
advantagé of
be seen that

using equations

(2.84)-(2.86). The unwrap factors {w(m)} for the other half F

are simply the negative of the first half. This unwrap
procedure is good for the two array configurations discussed
in Sections 3a. and 3c. of this chapter. The unwrap proce-
dure for the two-dimensional array is similar but the compu-
tation is a little more involved. The unwrapping procedure
for the linear array in the y-direction is identical with
the substitution dy » d,, m + n, £ (m) =~ Eg(n)sens, ete.
b. Two-dimensional Array Unwrapping

The proper phase weights to steer a beam to

~ ~

(u,v) are given by:

Exy(m,n) = —T--(umdX + v nd_)

v (2.87)

The unwrapping procedure is best illustrated by considering

Consider the case (u,v) =

the following example. (-0.7,+0.7)
and dX = dY = )A/2. Egquation (2.87) then becomes:
Exy(m,n) = =m(um + vn) (2.88)

= e7(=0.7m 4+ 0.7n)
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Assume also that we are given a planar array with M elements
in the x-direction and N elements in the y-direction (the
corresponding element indices are (x,y) - (m,n), with both

! M and N equal to 5. For the sake of symmetry, let the

element indices run as follows:

. mo= =L o ®ha, o, &Y
N-1 N-1 N-
n = ‘(—Z—)p‘(—z—)+l,...,0,l,...,(——2—1

T

In this case, for M = 5,

-

m = -2,-1,0,1,2.

~ e

: Similarly, for the orthogonal direction,
’ n = -2,-1,0,1,2.

N The obvious choice of reference element is (m,n) = (0,0),
i.e., the center element. The desired phase weights for
this example are given in Table 3.

The phase weights marked within the two triangles

o e v

in Table 3 will be wrapped around, so the actual observed
phases when the phase weights reach steady state are tabu-

lated in Table 4.
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DESIRED PHASE WEIGHTS {{xy(m,n)} GIVEN
-0.7,v = #0.

OBSERVED PHASES OF THE STEADY STATE
ADAPTIVE WEIGHTS Eéy(m,n)

K n
2 -2.87
1l =2.1w
K 0 -1l.4r7
-1 =-0.7m
;) -2 0
y
-2
¢
'
by
i
‘l
N n
; 2 -0.8m
[)
X 1 -0.1m
3 0 0.6m
: -1 -0.77m
-2 0

:'.‘Iﬁn.t ‘. 'N. " Vo .' g™ ..'-"\'.‘"' .b'-

THAT u

-2.17
-1.47

-0.77m

0.7n

TABLE 3

TABLE 4
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0.77 l.47
l.47 2.17
2.1m 2.87
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Let w(m,n) be the two-dimensional unwrap factor, i.e., the

PR, A

unwrapped phase is:
- 1] - rt
' E;xy(m,n) Exy(m,n) c,xy(m,n) + w(m,n) (2.89)
By comparing {gxy(m,n)} in Table 3 with {Eéy(m,n)} in Table
- 4, it can be seen that w(m,n) must be equal to the tabu-

lated values in Table 5.

TABLE 5

UNWRAP FACTORS w(m,n)

)
1
S
X n
!
2 =27 -27 ~27 0 0
g 1 -2m -27 0 0 0
! .
! 0 -2 0 0 o] 2T
-1 0 0 0 2T 2T
P -2 0 0 27 27 27
-2 -1 0 1 2 m
f To generate w(m,n) , estimates of the direction cosines

1
h A A

u and v must be computed using elements at m = *1 and
n=*1, Let ug and vg be those estimates obtained using the

point by point method below:

- e
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>

a = %[G(l) + u(-1)] (2.90)

e v = %-[Q(l) + v(-1)] (2.91)

For dy = d, = A/2, equation (2.88) can be applied to com-

Y
pute the projected phases {Exy(m,n)} by the relation:

, gxy(m,n) = -w{ugm + vgn} forzall m and n (2.92)

P

The set of projected phases (angles) are then examined to
decide the proper unwrap factor for a particule element

(m,n). The logic is as follows: for each n, all elements m

T ot wa e

are examined.

-

s, ~

Check (k=2)71 < ngy(m,n)! < km (2.93)

X x.]

and if ngy(m,n)l does not lie between the limits, then k is
decremented by two and equation (2.93) is tested again. If

ngy(m,n)l does lie between the limits, then
|wxy(m,n)| = (k=l)n (2.94)

X This procedure applies when M is odd and the initial value

of k is (ggl). The sign of w(m,n) is determined by:

- - - v

sign{w(m,n)] = -sign[sign(m)sing(Gg)+sign(n)sign(Gg)] (2.95)
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where:

m = -(”%l),...,-l,o,l,...,(”%l)

_(§-1

N-1
2 ),...,'l,o,l,...,‘(T)

For the next value of n, equations (2.93), (2.94), and (2.95)
are repeated for all values of m. This continues until the
last value of n is reached. It is possible though to examine
only half of the planar array since the unwrap factors for
the other half are the negative of that of the first half.
To ensure symmetry about ﬁhe reference element, it is neces-
sary to rotate the phase angle at the reference element to
zero. This can be accomplished by multiplying the phase
weights of all M N elements by the complex conjugate of
the reference phase weight, i.e.,

cdi(m,n) - cdi(m,n) cd;(mo,no) (2.96)
where m and n are the indices locating the reference element.
This operation will ensure that the unwrapping procedure
will work properly. For linear array phase weights, this
phase centering should also be completed before unwrapping.

The equations are:

*
ci(m) « ci(m) ci(mo) (2.97)
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d;(n) <« d,(n) df(ng) (2.98)

where my is the index locating the reference element of the

linear array along the x-direction and n, is the index

locating the reference element of the linear array along the

y-direction.
6. Summary

The original complex LMS adaptive filter [Ref. 1]
requires three necessary modifications to make it useful for
estimating the direction cosines of an incident plane wave.
Without the following modifications, accurate spatial resolu-
tion:is not possible:

- normalization of the adaptive complex weights (phasors)
to unity magnitude after each iteration.

- unwrapping of the observed steady state phase angles
to extend the spatial coverage to the full range of
u and v. ‘
- allowing the feedback coefficient u to decrease with
increasing iteration number to achieve convergence to
an optimal set of phase weights and to realize a
robust filter.
D. NOISE MODEL
In the SONAR environment, the ambient noise field is a
composite of many different noise sources. Therefore, using
the Central Limit Theorem [Ref. 13], the ambient noise can
be modeled quite adequately as additive white Gaussian noise.

Intentional jamming is not considered in this thesis. How-

ever, the use of an adaptive filter to place a null at the
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spatial location of a jamming signal has been studied exten-
sively [Refs. 2,4,15]. The noise corrupted received signal

is given by:
r(2,m,n) = y(2,m,n) + n(2,m,n) (2.99)

where y(2,m,n) is the sampled signal represented by equation
(2.26) and n(2,m,n) is white Gaussian noise time samples

with zero mean and noise power og.
amplitude (see equation (2.26)), then the signal-to-noise

If A is the signal

ratio is given by:

A2
SNR = - (2.100)
Iy
or
(SNR) 4z = 10 log,,(SNR) dB (2.101)

The performance of the frequency domain LMS adaptive filter
was tested for various signal-to-noise ratios. The noise
environment is assumed to be stationary during the look

interval of the SONAR system.
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ITI. LOW FREQUENCY PASSIVE SONAR TARGET LOCALIZATION

The objectives in passive SONAR are to detect and possibly
v classify noise sources in the ocean. Most of the noise gener-
N ated by vessels is concentrated in the low frequency range

(30-1K Hz). Acoustic energy in this frequency range is

[2~F K

capable of long range propagation and, as a result, most

long range detection systems in the underwater environment

3
; operate at these low frequencies. Propeller cavitation,

. machinery noise, and wake are the major sources of such noise.
& Unde; certain situations, very long range detection has been
f demonstrated in this frequency range. In a long range
; detection scneario, knowledge of the elevation/depression
: angle is necessary to resolve potential range ambiguities
_S in convergence zone (CZ) problems. Therefore, the use of a
» planar array is well justified.

: A computer program was implemented using the VS APL

language to test the performance of the LMS adaptive filter
h in a noisy passive environment. The array size used in the

' simulation is small compared to most modern systems but the
; other parameters are set to simulate a very realistic pas-

e sive SONAR. The APL language is used because of its large

f library of advanced signal processing functions and its
. interactive mode of operation which allows for rapidvprogram
\ development. The major disadvantage of the APL language is
r
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its slower speed of execution compared to running a compiled
Fortran program that performs the same functions. This is
not a serious problem, however, for the research of this

thesis.

A. PROBLEM STATEMENT

A low frequency acoustic signal from a far-field source
is received by a planar array in a noisy underwater environ-
ment. The noise is assumed to be Gaussian and uncorrelated
with the signal. It is also assumed that the noise between
elements is uncorrelated. The planar array has a square
structure with M = 5 elements in the x-direction and N = 5
elements in the y-direction. The element spacing is set to
one-half the wavelength of the maximum frequency of the
system's operating range. The geometry of the problem is
shown in Figure 17 [Ref. 18]. The system parameters are:

- Signal: A cos(2nft), where A is the amplitude and
f is the frequency

- Integration time: 0.5 seconds (To)

- Frequency resolution: 2 Hz (l/To = fo)
- Number of samples: 128 = 27 (L)

- Number of sensor elements in the x-direction: 5 (M)
= Number of sensor elements in the y-direction: 5 (N)
- Speed of sound: 1500 meters/second (co)

- Sampling rate: 256 samples/second (fs)

- Frequency range: 0-128 Hz

- Number of frequency bins: 128
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- Elements spacing: 7.5 meters (dx and dY equal)
- Noise model: additive white Gaussian ~ N(O,oé)

- Number of noise samples per sample function: 3200,
i.e., LxMxN = 128 x5 x5

The signal used in the simulation is a 100 Hz sinusoid
corrupted by white Gaussian noise. A total of 128 samples
are taken for each processing period of 0.5 seconds. This
corresponds to 256 samples per second which satisfies the
Nyquist sampling theorem [Refs. 12,16,17]. The maximum
observed frequency in this case is 128 Hz. The 100 Hz
signal will center in bin number 50 for this simulation.
Frequency bin numbers 64-127 correspond to the negative
frequencies [Ref. 16]. The element spacing of 7.5 meters
is the maximum allowable separation for the 100 Hz signal
to avoid grating lobes in the far-field directivity beam
patterh. The speed of.sound is the speed in the proximity

of the planar array.

B. SIMULATION

Given the system parameters stated in Section A, and a
128 point DFT, a 100 Hz sinusoidal signal will be centered in
frequency bin number 50. The logical flow graph of the simu-
lation program is shown in Figure 18. The principle of
superposition allows different frequency bins to be processed
independently. However, if the same frequency is emitted
from two or more spatial locations, the LMS adaptive filter

will lock on to the one closest to boresight. Complete
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documentation of the simulation program for this case can

be found in Appendix B. The outputs of the simulation pro-
gram are the estimated direction cosines u and v. The RMS

error is defined as:

1/2
e = (bu? + Avd) (3.1)
where:
Au = G - u (3.2)
AV = v - v (3.3)

where u and v are the actual direction cosines. This measure
of error is consistent with the least-squares criterion used
in estimating u and v. If the estimate of the spherical
coordinates (6,&) are required,'the following transformations
will transform (G,G) to (8,@) [Ref. 5]:

A

~ ~ 1/2
8 (a,v) 2

sin~trw)? + (v)?) (3.4)

and

tan-l(;/a) (3.5)

[

5 (Q,v)

It should be noted that the transformation from (u,v) to

~ ~

(6,¢) is nonlinear. A particular value of the RMS error




in equation (3.1l) can be due to infinitely many different
values of 6 and ¢, that is, given an RMS error e, there is

no unique set of spherical angle estimates. The spherical

~

angle estimates (6,¢) depend on the values of both u and v.

Evaluating the total differential of equation (3.4) and

equation (3.5) yields:

™o i e

g A A A A

K ’ dg - udu + vdv ' (3.6)
b, \/(Gz+62) (1 - (42+0°))

)

A

) and

v ~ ~ A

‘{. .. ~ u ~ v du

“ d¢ = T;‘z‘(dv - 7\1—') (3.7)

Replacing d6 by 46, d¢ by A¢, du by Au and dv by Av results

in the following:

‘e - -

A

udu + vVAv (3.8)

pe =
\/(u2+v2) (1 - (ul+v?))

- -t

3
‘W ~ ~
Ay = :-2——9—,\2-(AV-VA£) (3.9)
u +v u

; C. RESULTS
Three versions of the frequency domain LMS adaptive
filter were discussed in Chapter II. The performance of

each will be presented here.
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l. Orthogonal Linear Arrays

This configuration uses only M+N-1 elements. The
parameters used for the simulation are as follows:

Signal - cos 27(100)t (bin number 50)

Number of iterations (I) - 75

Initial feedback coefficient (ux) - 0.0005
Initial feedback coefficient (u,) - 0.0005
Scale factor for u, and uy(as) - 0.909 (see Appendix A)

Input SNR at single array element, i.e., SNR at FFT
input - 0 dB

Incident angles (6,9) - (55°,35°9) (see Figure 17) .

The corresponding direction cosines (u,v) - (0.67101,0.46985)

Figures 19 and 20 show the convergence characteristics of
the complex LMS adaptive filter vs. iteration number i. The
solid horizontal lines are the true values of direction
cosines u and v. The oscillations in the beginning of the
adaptation are due to the large initial values of My and Hye
The feedback coefficients My and “y are scaled down recur-

sively by the scale factor via the rule described in Appendix

A which is rewritten below:
ux(l) = ux(l-l)as N (3.10a)

and
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uy(i) = uy(i-l)as . (3.10b)

Convergence to the steady state occurred in fewer than 35
iterations in both cases. Figure 21 shows the error in
estimating u and v using equation (3.l1l) vs. iteration number.
The use of a constant feedback coefficient requires a much
longer iteration period and results in less accuracy (see
Appendix A). The chosen initial wvalues of My and “y are
outside the bound of the convergence coefficient described

in Appendix A. However, the convergence coefficients are
decreased rapidly using equation (3.10). This choice of

u, and “y shows that the LMS adaptive filter with decreasing

X
convergence coefficient(s) is very robust. Table 6 summarizes
the simulation results for a particular sample function of
noise.

2. Two-dimensional Array

This version uses all M xN elements and the complex
weights are not assumed to be separable. The parameters
used in the simulation are:

Signal - cos 27(100)t (bin number 50)
Number of iterations (I) -~ 75

Initial convergence coefficient - 0.001
scale factor (as) - 0.909

Input SNR at single array element, i.e., SNR at FFT
input - 0 dB
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TABLE 6

SUMMARY OF COMPLEX LMS ADAPTIVE FILTER
PERFORMANCE FOR THE ORTHOGONAL LINEAR
ARRAY CONFIGURATION AT SNR = 0 dB

Simulation Values

u 0.671010
v 0.469846
’ a 0.695675
v 0.466038
Au = u - u 2.4665 x 10”2
AV =V - v -3.808 x1073
e = (aud+av?) 0.024957
8 550
6 54.783°
o 350
¢ 33.818°
Incident angle (6,¢$ - (55°,35°)

Corresponding (u,v) - (0.67101,0.46985)

Figures 22 and 23 show the convergence characteris-
tics of the two-dimensional array configuration of the
complex LMS adaptive filter vs. iteration number i.

Figure 24 plots the RMS error in estimating u and
v (see equation (3.1)). The results of the simulation for
a particular sample function of noise are summarized in

Table 7.
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TABLE 7

SUMMARY OF COMPLEX LMS ADAPTIVE FILTER PERFORMANCE
FOR THE TWO-DIMENSIONAL ARRAY AT SNR = 0 dB

Simulation Values

s> < =

<>

Aua

Av

D>

©>

0.67101
0.46985
0.68442
0.46569

1.341 x10~2

~4.16 x10~>

1.404 x10”2
550
55.876°
350

34.232°

3. Two-dimensional Array with Separable Weights

This configuration assumes that the complex weights

are separable, i.e., cd(m,n) = c(m)d(n). The simulation

parameters are the same as those used in the two-dimensional

array case discussed in the previous section. Figures 25

and 26 show the convergence characteristics of this configura-

tion. Figure 27 shows the RMS error versus number of

iterations. The summary for this run is in Table 8. ' An

alternate way to illustrate the performance of the complex

LMS adaptive filter is a plot of RMS error vs. input SNR at
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TABLE 8
SUMMARY OF COMPLEX LMS ADAPTIVE FILTER PERFORMANCE

FOR THE TWO-DIMENSIONAL ARRAY WITH SEPARABLE
WEIGHTS AT SNR = 0 dB

Simulation Values

u 0.67101
v 0.46985
u 0.66304
v 0.47353
Au -7.97 x1073
Av 3.68 x1073
e » 8.78 x10™°
8 550
8 54.565°
6 350
A 35.534°

a single array element (SNR at FFT input). Figure 28 shows

these curves for all three configurations.

D. SUMMARY

The algorithm that assumes separable complex weights
shows better performance over the prescribed SNR range. The
improvement of performance of all three algorithms with
increasing SNR is evident from Figure 28. Since each noise
sample function has a total of 3200 independent samples, the

RMS error versus SNR curve is rather smooth. If several sample
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Two-dimensional array with
Separable Weights

Orthogonal Linear Arrays

Configuration
Two-dimensional Array

The RMS Error in Estimating u and v

Versus Input SNR.

Curve 1
Curve 2
Curve 3

Figure 28.
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functions are averaged, the slight 'humps' in Figure 28
can be smoothed out further. The RMS error quantity is

analogous to that of a 'miss distance' on a rectangular grid.
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IV. PULSE COMMUNICATION [Ref. 18]

The simulation results of two cases are presented in
this chapter. They are:

- Homogeneous medium case, in which the output electri-
cal signal data at each array element is produced by
the ocean communication channel simulation computer
program [Ref. 19]. Figure 29 shows the system geometry
of this case ([Ref. 18]. Note that the ray path from
transmit to receive array is a straight path.

- Inhomogeneous medium case, in which the ray path is
bent due to the variable sound-speed profile. Thus,
the apparent direction of arrival viewed from the
receive array is different from the previous case.
Figure 30 shows the system geometry of the inhomo-
~-geneous medium case [Ref. 18].

From the analysis of Chapter II, it can be seen that the
LMS adaptive filter should be able to phase align a planar
array to point in the direction of arrival. The signals
used for this simulation are a CW pulse and a LFM pulse.
These are very common signals used in the SONAR environment.
Information is carried by the modulation of these pulses.
The Fortran program used to simulate this problem is docu-
mented in Appendix C. Blount [Ref. 18] studied the effect
of model-based cophasing on the probability of detection of
a single pulse. The amount of cophasing is determined by
the system geometry and deterministic ray bending. It was
shown that by applying the phase weights generated by con-

sidering those factors, the performance of a correlator

receiver was improved markedly. Analysis done on those
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steering phase weights showed that the main beam of the array
directivity pattern was indeed steered to the direction of

actual arrival instead of line of sight.

A. TRANSMIT WAVEFORMS ([Ref. 18]

Two types of waveforms were used to test the LMS adap-
tive algorithm.

1. Rectangular-envelope CW Pulse

The signal presented to the processor is a quadra-
ture demodulated complex envelope of the CW pulse [Refs. 5,

18].

- K jk(2mf )t
z(t) = ) ze ° (4.1)

where "." denotes complex envelope.

The pulse repetition frequency is the same as the
fundamental frequency fo of the finite (K harmonics) fre-
quency spectrum from which the pulse is ysnthesized. The
pulse duty cycle is arbitrarily set to 0.5. The complex
Fourier series coefficients z, used to synthesize the com-
plex envelope of the CW pulse are obtained from a closed-form
expression for the complex-valued continuous spectrum. The
Fourier coefficients are obtained by evaluating the closed-
form expression for the continuous spectrum at discrete

frequencies corresponding to integer multiples of the
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fundamental frequency. The following specific transmit
signal parameters were used in all CW pulse simulations:
t ) - Amplitude (A): 40.0
y - Duty Cycle (D): 0.5

- Fundamental Frequency (fo): 200 Hz

- Harmonic Values: 2z 20 exp [joO°]

N
i
N
0

12.3324 exp [§0°)

-1 1
4 zZ_, = 2, = 0.000 exp [j0°]
| z_3 = 23 = 4.244134 exp [jl8C°]
h) .
; Z_y = 24 = 0.000 exp [jo°l]
Y zZ_g = 2g = 2.546479 exp [jO0°]
3 2. Rectangular-envelope LFM Pulse [Ref. 18]
; The complex Fourier coefficients used to synthesize

the LFM pulse are found using a procedure similar to that
used for the CW pulse except the closed form expression for

the complex-valued continuous spectrum of the LFM pulse was

-

found by using the method of stationary phase. Officer
[Ref. 20] describes the method of stationary phase as does

Papoulis [Ref. 21] who also provides a complete description

S X

of the LFM waveform. The following transmit signal param-

eters were used in all LFM pulse simulations:

I - Amplitude (A): 40.0

Duty Cycle (D): 0.8

Phase Deviation Constant (B): 2356.2 radians/volt

‘ . - Fundamental Frequency (f): 10 Hz
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- Harmonic Values: z 14.60593 exp [j45°]

s o

: 2, = z; = 14.60593 exp [j21°]
: z_, =z, = 14.60593 exp [309°]
. z_3 =23 = 14.60593 exp [j189°]

B. PROBLEM STATEMENT

A pulsed signal (CW or LFM) is sent to an intended

Sl

receiver in the far-field. The signal at the receive arréy
has a planar wavefront. The direction of arrival of the

incident plane wave is determined by applying the frequency

o - -

domain LMS adaptive filter to phase align (cophase) signals

at all sensor elements in :thé planar array. The discrete

time signal at element (m,n) has the form:

v i 32% (umdy+vnd,)
N y(lTs,de,ndY) = z(QTs)e (4.2)
where
' . K jk2nf_t
z(LT]) = ! ze (4.3)
k=-K

.

time index

“ow"as e W o
P
L

m: element index in the x-direction

n: element index in the y-direction
T: sampling period

) u: direction cosine with respect to the x-axis

96

i 4 AP A S AN 2 T P SR P R T80 AN a3 2 Ak X =




o g e m -

DR A D A R e e N A

t ae gt w6 ot np Tag baf Faug iaf - 8 Saa - gh gt wid pbs gds g0 ui, s .8 ite o8s At ke Lt i bat diet Bat B.b Bad £af €a @' gt 6%

v: direction cosine with respect to the y-axis
¢ interelement spacing in the x-direction
: 1interelement spacing in the y-direction
z: complex Fourier coefficient
: fundamental frequency

£
K: total number of harmonics

[Ref. 5] shows thét the number of time samples needed to

completely describe equation (4.3) is L, where:

L > 2K+ 1 (4.4)

“an
.

The system parameters are:

cw LEM
Integration time (To): 5 mS 100 msS
Frequency resolution (f,): 200 Hz 10 Hz
Number of samples (L): 11 7
Number of sensors (M): 5 5
Number of sensors (N): 5 5
Sampling rate (fs): . 2200 samples 70 samples
per second per second

Number of frequency

bins (Q): 11 7
Element spacing dx, dY: C.1229 meters 0.1229 meters |
Carrier frequency (fc): 5 KHz 5 KHz
Noise model: . Additive white Gaussian noise for ‘

both cases

Number of complex noise
samples/pulse: 275 175
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The carrier frequency fc is assumed to be known a priori. It
is found for the CW pulse that the best direction cosine
estimates are obtained by processing the spectral line corres-
ponding to the carrier frequency. This is reasonable since
the signal-to-noise ratio at that bin is the highest. For

the LFM pulse, all the harmonic lines still have roughly the
same magnitude after propagatingvthrough the medium. The
accuracy iﬁ estimating the direction cosines is about the

same for any harmonic line. Therefore the spectral line

corresponding to the carrier is processed.

C. RESULTS
The homogeneous medium case is considered first for both
CW and LFM pulses, followed by the inhomogeneous case.

1. Homogeneous Case

The parameters for the system geometry (Figure 29)

are:

' Speed of sound (co):‘ 1475 meters/second
Depth of transmit afray (Yo): 1000 meters

, Depth of receive array (Yr): 2500 meters

Cross range (Xr -X,): 500 meters
' Line of sight range |r -ro[: 3000 meters
‘ True spherical angle 6: 31.81°
True spherical angle ¢: -108.4°
Direction cosine u: -0.1666

Direction cosine v: -=0.5000
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The three array configurations of the frequency domain LMS
adaptive filter were then applied to the CW and LFM pulse
cases to estimate the direction cosines. The averaged re-
sults for one pulse corrupted by 100 sample functions of
noise at an input SNR of 0 dB at a single arfay element for
the CW pulse, homogeneous case are presented in Table 9.
The initial convergence coefficient is 0.5 and the scale
factor oy is 0.909 for both CW and LFM waveforms.

TABLE 9

PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT

- SNR = 0 dB FOR CW PULSE, HOMOGENEOUS CASE
Algorithm
orthogonal 2-dimensional
linear arrays with separable 2-dimensional
phase weights array
u -0.1666 -0.1666 -0.1666
v -0.5000 -0.5000 -0.5000
a -0.1714 -0.1672 -0.1670
v -0.4757 -0.5003 -0.5032
Au -0.00048 -0.0006 -0.0004
Av 0.0243 -0.0003 -0.0032
€ 0.0247 -0.000624 0.0032
8 31.81° 31.81° 31.81°
¢ -108.4° -108.4° - -108.4°
8 30.37° 31.84° 32.02°
A -109.8° -108.5° -108.4°
99
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The rms error versus signal-to-noise ratio curves for all

Ve

three array configurations are presented in Figure 31l.

-
-

The simulation results for the LFM pulse in the

o

-
-h

homogeneous medium at an input SNR of 0 dB at a single array

-

element are summarized in Table 10. A total of 100 differ-
ent noise sample functions were used to corrupt the received
< signal. The tabulated values in Table 10 are the ensemble

average values. Figure 32 illustrates the rms error versus

\
b SNR plot for the LFM pulse in the homogeneous medium.
‘

.

" TABLE 10

. - PERFORMANCE OF COMﬁtEX LMS ADAPTIVE FILTER FOR

" SPATIAL RESOLUTION, 100 ITERATIONS,

N SNR = 0 dB FOR LFM PULSE, HOMOGENEOUS CASE
\
d Algorithm
; orthogonal 2-dimensional 2-dimensional
5 linear arrays with separable array
}: phase weights
* u  -0.1666 ~0.1666 -0.1666
; v -0.5000 -0.5000 -0.5000
! a  -0.1096 -0.1611 -0.1462
1 v -0.2695 ~0.4096 ~0.4079
: Au 0.0570 0.0055 0.0204
: v 0.2305 0.0904 0.0921
> € 0.2375 0.0905 0.0943
; 8 31.81° 31.81° 3L.81°
$ -108.4° -108.4° -108.4°
6 16.91° 26.11° 25.68°
l 5 -112.1° -111.5° ~109.7°
f 100
o
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Two-dimensional Array with

Orthogonal Linear Arrays
Separable Weights

Configuration
Two-dimensional Array

The RMS Error in Estimating u and v Versus
. 1'. . t‘.‘"J

Input SNR for the CW Pulse/Homogeneous

Medium Case.

Curve 1
Curve 2
Curve 3:
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Figure 31.

Hoa,dw,

-

IR N



4

e
o7,
),
7
5
0
> Oy,
' . “ >
] 1 1S/ ]
H Q2 ..r\
3 IR 3
3 Ganll BECE] TELE SRR LEEE SEPES >0 D .Mu
- S 4
£0 ® nm
el Sl Selitd Aottt ed S Shihds Rl © m H .W‘ .W. * L
ST & W w M
N NN 2
: g 5 44y %
bt St e bl Lt Sutalals db bl - o o —~ O S
- ”“w m.um mmw X
" E 210000
bl Sl L L LDl D ot sl o DDl LD LY - = A
H M Py Ad0uy
“ 3 B9 FhEge
[}
' w 9 03 a
S SRR SRR -+ 7} cg o gm m o o~
1 1 o - OATTO N o
H ‘ > SWiia —
“ " vy 5288
Tyt 2 H& 800 & w 0
m 2 WS
e} - nNu NM A @
7 m+um.c [T
o B > >
AT N LN
- —— Le03 oS3
HR 20O LU

|
)
i
'
'
'
-

pocoaw

50 »0 £'0 Z0 10 0
. HOHYI SWY

Figure 32.

ASNIIXI LHIvM

HIAO09 LY AID2NAQA0MJIIY
o LR - AT "



The performance of the LFM pulse is worse than that
of the CW pulse since the number of samples per pulse is
seven where the CW pulse has eleven time samples per pulse.
Consider also the Fourier coefficients given in Section A of
this chapter. The magnitude of the spectral line correspond-
ing to the carrier for the CW pulse is 1.37 times larger than
that of the corresponding spectral line in the LFM pulse.
However, for both waveforms, it can be seen from Figurés
31 and 32 that the two-dimensional array with separable
weights has the best performance, followed by the two-dimensional
array and orthogonal linear arrays, respectively. For the
CW pulse, accurate spatial localization can be obtained for
SNR greater than -3 dB. For the LFM pulse, the SNR required
is about 3 dB.

2. Inhomogeneous Case [Ref. 18]

The parameters for the system geometry (Figure 32)
are:
- Speed of sound (co)£ 1475 meters per second
- Gradient: 0.0l17 per second

- Depth of transmit array (Yo): 1000 meters

- Depth of receive array (Yr): 2500 meters
- Cross range (xr —xo): 500 meters
- Line of sight range |r -rOI: 3000 meters

- True spherical angle 6: 30.10°

- True spherical angle ¢: =-109.4°

-~ Direction cosine u: =0.1666
- Direction cosine v: =0.4731
103
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Figure 30 shows that the path traveled by the acoustic rays
is bent. The LMS adaptive filter is able to resolve the
actual direction of arrival but not the true line of sight
direction to the transmit array. The initial convergence
coefficient p is set equal to 0.5 and the scale factor ag

is set equal to 0.909. Both the CW and LFM pulses are con-
sidered for each of the thrée array configurations.- Table 11l
summarizes the performance of the LMS adaptive filter applied
to the CW pulse case at an input SNR of 0 dB at a single
array element. Figure 33 shows the decline of rms error as
the signal-to-noise ratio is increased. All three array
gonf;gurations are included in the plot for comparison.

1 The performance for the LFM pulse case is tabulated
in Table 12 for an input SNR of 0 dB at a single array ele-
ment. Figure 34 illustrates the performance of all three
array configurations versus signal-to-noise ratio for the

b LFM pulse case.

) D. SUMMARY

For both the homogeneous and inhomogeneous medium cases,

the complex LMS adaptive filter performed as expected. The
array configuration that assumed separability of the complex
weights consistently demonstrated better performance than
that of the orthogonal linear arrays and the two-dimensional
array. The superior performance can be attributed td the
fact that equation (2.24) which describes the recep£ion of

a plane wave by a planar array is separable. Therefore, by

104
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TABLE 11

PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT
SNR = 0 dB FOR CW PULSE, INHOMOGENEOUS CASE

Algorithm
orthogonal 2-dimensional 2-dimensional
linear arrays with separable array

phase weights

<> g3 <

S>> D> S

- o an

- -

-0.1666 -0.1666 -0.1666
-0.4731 -0.4731 -0.4731
-0.1663 -0.1686 -0.1651
-0.4527 -0.4782 -0.4746
0.0003 -0.0019 0.0015
0.0204 -0.0051 -0.0015
0.0204 0.0054 0.0022
30.10° 30.10° 30.10°
-109.4° -109.4° -109.4°
28.83° 30.47° 30.17°
-110.2° -109.4° -109.2°
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Two-dimensional Array with

Orthogonal Linear Arrays
Separable Weights

Configuration
Two-dimensional Array
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Medium Case.
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TABLE 12

PERFORMANCE OF COMPLEX LMS ADAPTIVE FILTER FOR
SPATIAL RESOLUTION, 100 ITERATIONS, INPUT
SNR = 0 4B, LFM PULSE, INHOMOGENEOUS CASE

Algorithm
orthogonal 2-dimensional 2-dimensional
linear arrays with separable array

phase weights

~0.1666 -0.1666 ~0.1666
v -0.4731 ~0.4731 -0.4731
a ~0.1035 ~0.1614 -0.1417
v ~0.2447 ~0.4058 ~0.3332
0.0631 0.0052 0.0249
0.2284 0.0673 0.1399
0.2369 0.0675 0.1421
30.10° 30.10° 30.10°
o -109.4° -109.4° -109.4°
8 15.41° 25.89° '21.23°
5 -112.93° -111.7° -113.0°
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Input SNR for the LFM Pulse/Inhomogeneous

Medium Case.

Orthogonal Linear Arrays
Two-dimensional Array

Configuration

Curve 1
Curve 2
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Two~dimensional Array with
Separable Weights

Curve 3
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assuming separable complex weights, the system is set up to
match the physics of the.problem. Thg performance of this
pulse communication system can be enhanced by increasing the
pulse width, taking more time samples per unit time, using
high resolution spectrum analysis, and enlarging the size

of the array by adding more sensor elements.
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V. CONCLUSIONS AND RECOMMENDATIONS

The frequency domain LMS adaptive algorithm has been
shown to perform the function of spatial resolution. The
number of iterations required (approximately 35) to reach a
steady state is found to be much;fewer than that of a com-
parable time domain adaptive filter [Refs. 2,4]. The three
modifications made to the original complex LMS adaptive

filter (Refs. 1,4] are:

- normalization of the complex weights to unity
magnitude after each .update

- reduction of the magnitude of the convergence
coefficient for each iteration

- unwrapping of the phase weights
It has been shown that the above three modifications enable
the frequency domain LMS adaptive filter to be applied to
a multiple element array, to have a fast convergence rate
and robustness, and to cover the entire angular range of
8 and ¢ values.

In Chapter III, a passive low-frequency signal was
generated to test the performance of the frequency domain
LMS adaptive filter in the presence of white Gaussian noise.
The low frequency problem is significant in the area of long
range detection and possibly long range control and communi-

cation for ballistic missile submarines. Some form of

modulation, whether amplitude or angle, will have to be used

110

AR ST LRART AL SUER YOOANAS
T R R AP T A\ P A



. e e b

to carry the information. The slow data rate is not a major

" drawback since only certain predefined emergency operation

codes will be transmitted. The simulation results indicate
that for an input SNR at a single array element of greater
than -3 dB, accurate bearing and depressive angle estimates
can be obtained.

In Chapter IV, a pulse communication problem was con-
sidered. Two types of pulses, rectangular-envelope CW and
rectangular-envelope LFM pulses, were used. The possible
applications at this frequency range (5 KHz) are high reso-
lution SONAR imaging, active SONAR detection, and communica-
tion--between submerged vessels. The performance of the
frequency domain LMS adaptive filter was again tested in the
presence of white Gaussian noise. , The simulation results
indicate that accurate bearing and depression angle esti-
mates can be obtained for input SNRs of greater than 0 dB.
The result here is slightly worse than that of the passive
low-frequency case due to the shorter data length used for
the pulse communication waveforms. For the simulations
in Chapter IV, the number of time samples collected is the
minimum required to satisfy the Nyquist sampling theorem.

The following three configurations of the frequency

domain LMS adaptive filter were considered:

orthogonal linear arrays

two-dimensional array with separable phase weights

- two-dimensional array
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In all simulations, the configuration that used the separa-
bility assumption produced the best results. This is quite
reasonable since this configuration uses all the output data
from the available elements and more importantly, its assump-
tion of separability matches the physics of the plane wave
signal since the phases of a plane wave in the orthogonal x
and y directions are separable.

In the course of this investigation, some interesting
topics for further research revealed themselves:

- exact target localization (range, depth, bearing,
and depression angle) if accurate environmental

data can be obtained

- ‘more efficient update algorithm for the convergence
coefficient

- implementation of more efficient software

- application of the steady state phase weights generated
by the frequency domain LMS adaptive filter to Blount's
[Ref. 18] correlator receiver

- addition of a noise reduction system before spectral
estimation

- modifications to make the system jam-resistant
- applications of other high resolution spectral analysis
techniques to produce frequency spectra (such as

maximum entropy [Ref. 22], autoregressive, maximum
likelihood, etc.).
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APPENDIX A

THE FREQUENCY DOMAIN LMS ADAPTIVE ALGORITHM

A. DERIVATION
Consider the phase aligning system shown in Figure 13.

The performance objective is for the adaptive filter to con-

- verge to a set of phase weights such that the array output

signal will match a reference signal. In the fregquency
domain, the output of a linear array of M elements at iter-

ation i can be written as:

2,(q) = g c, (m)¥(q,m)

If 2(q) is the reference signal, then the error between the

reference and the array output is:

~

where e, is a complex quantity.

The mean square error is:

= [2(q) -Zi(q)J[Z(q) -Zi(q)]*

2 Sk - 2
|2 (q) | =2, (@) 2*(q) -2 (q)Z(q) + |Zi(q)|

” ."‘- SN X 'ﬂ".'-""-f'-"l"-“ .
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Substituting equation (A.l) into equation (A.4) for Zi(q)

yields:

= 2@ |? -2% @ (eTri@) ~z(@ (efx@* +cTr@

(A.5)

The cbmplex weight vector that will minimize equation (A.S5)
is computed from the following recursive algorithm [Refs. 1,

6,14]:

*
Ciel = S5 * 2u;e;Y7(q) (A.6)
wheré’ui is the convergence coefficient used in the graaient
method [Ref. 6].

For the two-dimensional case discussed in Chapter II,

Section 3.b, replace Ciel with E§i+l to yield:

*
cdi,; = cd; + 2u;e.Y (q) (A.7)

where:

®
n
N
Q
!

ﬁ% ) cd, (m,n)¥Y(q,m,n) (A.8)
mn

If the complex weights {cdi(m,n)} are separable, then

cdi(m,n) = ci(m)di(n)
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and:

Cipp(m = gy(m) + 2u, i g ; (MY (g,m,n))* (A.9)
dip @ = d;(n) + 2, 1(2 c, (mY¥(q,m,n))* (A.10)
where:

e, = Z(q) - ﬁ% % c, (m) g d; (n)Y(q,m,n) (A.11)

Reference 4 studied the application of the frequency domain
LMS algorithm to a split array. The error signal is

the difference between the outputs of the two arrays. It

is possible to extend this idea to an (M xN) planar array

by generating an error signal ei(m,n) at each element location

where:
e; (m,n) = 2Z(q) - cdi(m,n)Y(q,m,n) (A.12)

for all m,n. Although this scheme is not studied in this
thesis, the implementation is rather straightforward. One
needs only to replace the error e, with ei(m,n) in all the
equations and to rewrite the code to generate the error.
This scheme, however, does not have the advantage of

averaging noisy data points from all of the elements in the
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array to come up with an estimate. Therefore, it can be
assumed that the noise performance will probably be inferior.
The magnitude of the reference signal Z(qg) is generated
by averaging all (M xN) magnitude spectra whereas the phase
of 2(q) is taken to be the phase of the reference element.
A thresholding is done to determine which frequency bins
should be processed.
B. MODIFICATION TO THE LMS ADAPTIVE ALGORITHM TO MAKE IT
USEFUL FOR SPATIAL RESOLUTION
Three modifications are incorporated in the basic LMS
adaptive algorithm.

k. Normalization of Recursive Complex Weights

The components of the recursive complex weights (gi,
d; and cd.) must be normalized to have magnitudes equal to
one. This restriction forces the algorithm to achieve
minimum error by adjusting the phase weights only. The esti-
mation of direction cosines depends on the linear relationship
of the phases of the signal across the array. Figure 35
shows that, without the normalization performed after each
complex weight update, the vector sum composing the estimate
can be made close to that of the reference. The correct
values of the direction cosines can only be achieved if each
component in equation (A.l) has the same phase as the refer-
ence phasor. All the vector sums shown in Figure 35 have
the same resultant phase and magnitude as the reference but

the phases of the components are not equal. It can also be
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seen that there are infinitely many ways to achieve a small

error without the normalization. The LMS adaptive filter
implemented for this thesis has a unity magnitude across
the array. It is, in fact, a phase-only filter. With the
normalization, each component is forced to adapt to the
phase angle of the reference. This is the only way that
spatial resolution (based on the amount of phasor rotation
of adaptive weights) can be achieved.

4 2. The Convergence Coefficient (u)

This quantity is sometimes referred to as the feed-
back coefficient, signifying the analogy to control systems

1 [Ref. 6). For nonstationary environments, a constant con-

vergence coefficient is usually chosen [Refs. 1,4,23].
However, if stationarity can be assumed, the performance of
the LMS adaptive filter can be improved by using a mono-
tonically decreasing scheme for implementing the convergence
coefficient [Ref. 11l]. 1If a constant convergence coeffi-

q cient is used, the bound on the choice of value is given

by [Refs. 12,24]:

0 < u < A (A.l3)

o

L where
; I I .
| Apax < TrIRl = ] R(i,i) = ] R(0) = (I+1)R(0)
P i=0 i=0
118
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T

and R is the covariance matrix of the received noise cor-
rupted signal. 1If u is larger than the maximum determined
by equation (A.13), oscillation will occur {[Ref. 25] and
the LMS adaptive filter will not converge. If py is too
small, then the rate of convergence is slow. Figures 36, 37
and 38 show the convergence characteristics for different
values of u.

The recursive LMS algorithm is based on the s;ochas-
tic approximation technique [Ref. 11]. The choice of u is

optimal if the following conditions are met [Ref. 12]:

- My > 0
limpy, - = 0
i1+ 1
[e o]
I oy = =
i=1

A particular choice of My that meets the above four condi-
tions 1is Wy = 1/i [Ref. 12]. The effect of the adaptation
decreases with the number of iterations and ceases completely
for large i. Simulations show that the above choice"of My

is better than using a constant u, however, the choice
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H:, = o_ u (A.14)

where 0 < ag < 1 and Mo is the initial value, appears to
speed the rate of convergence and also achieve a high
degree of accuracy. Equation (A.14) does not meet the

<

condition .Xl My == but simulations show that the response
of the LMSl;daptive filter is fast and accurate for

0.75 < ag < 0.95. Further investigations of the convergence
characteristics are warranted. The current implementation
of the convergence coefficient results from experimentation
with various values of asﬁto achieve the best estimates of
direction cosines. With this scheme, the initial value of

u., can be set quite liberally since the value of My decreases

i
geometrically.

C. PHASE WRAP-AROUND PROBLEM

The resolution of the phase wrap-around problem in the
adaptive phase weights was discussed in Chapter II exten-
sively. The scheme to resolve the phase ambiguity depends
on the proper functioning of the elements adjacent to the
reference element. In the event that some of those adjacent
elements are not operational, the unwrapping scheme will
have degraded performance. However, since the reference
element can be any element in the array, it is possible to
shift the location of the reference element to a region of
the array that has sufficient adjacent elements that are

functioning properly.
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APPENDIX B
k. DESCRIPTION OF SIMULATION PROGRAM
3 FOR THE PASSIVE DETECTION CASE

i

The VS APL application package worksapce (CMS file

ADAPTIVE VSAPLWS) contains all the functions necessary to

- -

implement the simulation discussed in Chapéer ITI. The

e

general processing flow is as follows:

- generate time samples of a plane wave signal of
frequency f incident upon a (M xN) planar array with
angles of incidence (6,9¢)

U 5

- add white Gaussian noise for a desired SNR

N - compute the discrete Fourier transform (DFT) of each
i of the M xN time sequences

t - determine the spectral line with the largest magnitude
and its corresponding frequency bin number

- apply one of the three frequency domain LMS adaptive
filters (orthogonal linear arrays, two-dimensional
array with separable complex weights, or two-dimensional

array)
,; - compute estimates of direction cosines.
. Usage of the functions are described below.
I.
]
A. SIG2D

)
5 SIG2D generates planar array signal at each element
; location (equation (2.28)):
s
b

Syntax: YN <« AGl SIG2D AG2
v
v
] .
LY YN is a L xM xN matrix where L is the number of time

samples, M is the number of elements in the x-direction, and

etatasp
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N is the number of elements in the y-direction. AGl is the
spherical angle 98 and AG2 is the spherical angle ¢. The
speed of sound (c), the signal amplitude (&), the frequency
of the signal (F), the interelement spacing (DX and DY),

the sampling interval (T), the number of elements (M,N)

and the number of time samples (L) can be changed by editing

the function.

B. NORRAND
NORRAND generates independent white Gaussian rnoise

samples.
\ - Syntax: NOISE <+ K NORRAND N N1

K is the number of noise samples desired, N is the mean
" N1 is the variance. The noise array NOISE must be reshaped
to conform to the shape of the signal generated by SIG2G

by:
] NOISE + L M N oNOISE

The standard deviation on = 1l is necessary toscale a sample func-
) tion of noise with zero mean and variance 1 to a desired
' signal-to-noise ratio. The signal power at each element is

A2/2 and the noise power at each element is oN* The input
h signal-to-noise ratio at a single array element is then given

' ' by:
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2 2
SNR = iél = iz- (B.1)
oy ZUN
Solving for On yields:
AZ 1/2
GN = (2_(—SN—RT) (B.2)

where A is the amplitude of the signal and SNR is the numeri-
cal signal-to-noise ratio. Therefore, a noisy signal with
the desired SNR can be generated as:

RN <« YN + o,, xNOISE (B.3)

N

where NOISE has zero mean and variance 1.

C. DFTWRT
DFTWRT computes the discrete Fourier transform with

respect to the time index for each element (equation (2.42)).
Syntax: YK <« DFTWRT RN

YK has dimensions L xM xN; the first index L is now the

total number of frequency bins. RN is the noisy signal

generated by adding noise to the output of SIG2D. A total

of (M xN) L-point DFTs are computed using a radix-2 FFT

algorithm.
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: D. ADPLMS
ADPLMS computes estimates of the direction cosines using
the frequency domain LMS algorithm for the orthogonal array

configuration.
s Syntax: QTGT ADPLMS YK

QTGT is the frequency bin number where a valid signai has
been identified and Yk is the output of the function DFTWRT.
A reference signal at frequency bin QTGT is generated by
3 calling the function REFGEN. Direction cosine estimates
] u and v are computed in two different loops since in general
the number of elements M is not necessarily equal to N.
Estimates of both direction cosines are generated for each
iteration under the names UHAT and VHAT. The phase unwrapping
iy is done by calling the function DC1DX for the x-direction
and DC1lDY for the y-direction. The number of iterations
(ITER) and the initial convergence coefficients (MUX, MUY)
can be changed by editing the function ADPLMS. The scale
. factor (SCMU) for decreasing the convergénce coefficients

¢ can be changed in the workspace.

; E. QFLMS
QFLMS computes estimates of the direction cosines
using the frequency domain LMS algorithm for the two-dimen-

sional planar array with separable complex weights.

Syntax: QTGT QFLMS YK
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QTGT is the frequency bin number. and YK is the output of the
function DFTWRT. A reference signal is generated by the
function REFGEN. Direction cosine estimates u and v are
computed every iteration of the LMS adaptive loop. They
are stored in the vectors named UHATQF and VHATQF. The
phase unwrapping is done by using DC1DX and DClDY in the x
and y-directions, respectively. Recall that only M+N com-
plex weights are updated for this configuration because of
the separability assumption. The initial convergence
coefficient (MUQ) and the number of iterations (ITER) can
be changed by editing the function QFLMS. The scale factor
is named SCMU and is stored in the variable list in the

workspace.

F. ADPLMS2D
ADPLMS2D computes estimates of the direction cosines
using the frequency domain LMS adaptive algorithm for a

two-dimensional planar array.

Syntax: QTGT ADPLMS2D YK
QTGT and YK are the same quantities described in the last
two functions. A reference signal at frequency bin QTGT
is generated. Direction cosine estimates u and v are com-

puted for each iteration and stored in vectors named UHAT2D

and VHAT2D. The phase unwrapping is accomplished by using
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the function DC2D. The number of iterations (ITER) and the

initial convergénce coefficient (MUG) can be changed by
editing the function ADPLMS2D. The scale factor can be
changed by assigning a different value to SCMU in the work-
space. The use of a different unwrapping function is
required since the complex weights are not assumed to be

separable.

G. REFGEN
REFGEN generates a reference signal at a particular

frequency bin QTGT.
Syntax: CQREF <+« QTGT REFGEN YK

CQREF is the reference signal used in the frequency domain
LMS adaptive filter. The magnitude of CQREF is obtained by
averaging the magnitudes of all (M xN) frequency spectra

in the frequency bin QTGT. The phase of CQREF is taken

to be the phase of the reference element in the QTGT fre-

quency bin.

H. DC1DX
DC1lDX unwraps the phase weights for a linear array in

the x-direction.

Syntax: UHAT[i] <« N DCIDY DV
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UHAT[i] is the direction cosine estimate u of the ith

iteratidn, M is the number of elements in the x-direction
and CV is a complex vector of M phase weights that will co-

phase the incident signal.

I. DClDY
DC1DY unwraps the phase weights for a linear array in

the y-direction.

Syntax: VHAT[i] <« N DClDY DV

th iter-

VHAT[i] is the direction cosine estimate v of the i
ation, N is the number of elements in the y-direction and
CV is a complex vector of N phase weights that will cophase

the incident signal.

J. DC2D
DC2D unwraps the phase weights for a two-dimensional

array.
Syntax: DC2D CD

CD is the two-dimensional phase matrix that will cophase
the incident plane wave signal. This function is used by
the function ADPLMS2D.

An example of using this application package is shown

as follows:
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- YN <« 55 SIG2D 35

*

- NOISE 3200 NORRAND 0 1

- NOISE <+ 128 5 5 p NOISE
- RN <« YN + SCALE NOISE

- YK <« DFTWRT RN

- QTGT ADPLMS YK

- QTGT ADPLMS2D YK

- QTGT QFLMS YK
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signal generation

noise generation
noise generation
noisy signal

transform to frequency
domain

estimate direction
cosines

estimate direction
cosines

estimate direction
cosines

This sequence of statemen;s generates a pléne wave signal
incident upon a 5 x5 planér array with angles of incidence
= 55° and ¢ = 35°. The number of time samples for each
element is 128. A noise matrix is then generated and added
to the plane wave signal and the discrete Fourier transform
with respect to time is taken for each element in the array.
The three array configurations for the frequency domain LMS
algorithm are then used sequentially.to estimate the

direction cosines of the incident plane wave.
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APPENDIX C

DESCRIPTION OF SIMULATION PROGRAM
FOR THE PULSE COMMUNICATION CASE

The VS FORTRAN prgrams were written to implement the

PR St

pulse communication problem discussed in Chapter IV. Two
separate programs were written utilizing essentially the
same subprograms. These programs handle the quadrature
demodulated complex envelope signals generated by Vos' [Ref.
19] program. The programs are available on user account

. 0218P at the Naval Postgraduate School, Monterey, California.

A. PROGRAM ADBFM
This program is compiled using FORTVS and is designed
R/ to run under DISSPLA. It requires a storage capacity of
1l Mbyte. The following sequence of commands should be used

to run the program.

- DEFINE STORAGE 1 M

I CMS

- GLOBAL TXTLIB VALTLIB VFORTLIB CMSLIB IMSLSP NONIMSL

o s &8 B

- GLOBAL LOADLIB VFLODLIB

-

ol

- PFILEDEF 04 DISK fname DATA
(fname is the filename of the date file)

- LOAD ADBFM
- DISSPLA ADBFM
) When execution begins, the user will be prompted to enter l

the desired values for the necessary parameters. These f
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parameters are noise status, input signal-to-noise ratio in

dB at a single array element, number of iterations, spec-
tral line to be procéssed, convergence coefficient, scale
factor for the convergence coefficient, and the choice of
one of the three array configurations.

For each array configuration, plots of the estimates of
the direction cosines are generated. The plots for magni-
tude and phase of the difference between the reference

signal and the estimate are also generated.

B. PROGRAM ERVSDB
This program computes‘the rms errors for various input

signéi-to-noise ratios. If a plot of rms error versus SNR
(dB) is not required, this program does not have to be run
under DISSPLA. The following sequence should be used:

- DEFINE STORAGE 1 M (if plot is required)

- I'CMS

- GLOBAL TXTLIB VALTLIB VFORTLIB CMSLIB IMSLSP NONIMSL

- FILEDEF 04 DISK fname DATA
(fname is the filename of the data file)

- LOAD ERVSDB

-~ DISSPLA ERVSDB (if plot is needed)
or START * (if plot is not needed)

When execution begins, the program will prompt the user to
enter an initial input signal-to-noise ratio in dB at a single
array element. It will then ask for a dB step size such

that the next SNR is determined by the current’ SNR in dB

plus the dB step size. A total of nine SNRs are allowed.
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For example, if the initial SNR is -12 dB and the step size
is 3 dB, then the program will compute rms errors for the
set of 4B levels {-12, -9, -6, -3, 0, 3, 6, 9, 12}. The
other parameters such as iteration number, initial conver-
gence coefficient, scale factor for convergence coefficient,
and the spectral line to be processed are entered when
prompted. The program will then ask for how many sample
functions of signal and noise are to be averaged. Simula-
tion results show that the average of 50 to 100 sample func-
tions are sufficient to reduce the variance of the direction
cosine estimates. One of the three array configurations is :
then-chosen by the user to estimate the direction cosines.

The screen output of this program is ordered pairs of
rms errors corresponding to a particular input SNR in dB
for all nine specified SNRs. A plot of rms errdr versus .
SNR in dB can be generated if desired (provided that the

program is run under DISSPLA).
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