
RO-AI71 395 MODELLING OF A MULTILEVEL SECURE TACTICAL COMBAT 1/2
COMPUTER SYSTEM(U) NAVAL POSTGRADUATE SCI400L MONTEREY
CA C 8 CAVALCANTI JUN 86

UNLASIFIED F/ /2NL'ommmmmmmoll
hmmmmmmmm

EhhhhIhEEIhII I

mhhEEElhhII

IIHIW 1.0L.2~

1. 5 1411111.6

MICROCOPY RESOLUTION TEST CHART

NATIONiAL BUREAU OF STANDARDS- I963-A

41{* # , a ~ .~z-07.

Lfl

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
ELECTE

SEP 05 1 8 ~,e .J°Q 1D

THESIS
MODELLING OF A MULTILEVEL SECURE
TACTICAL COMBAT COMPUTER SYSTEM

by

Claudio Augusto Bailly Andersen Cavalcanti

June 1986

Lai
Thesis Advisor: Uno R. Kodres.

Approved for public release; distribution is unlimited

.86 9 5 011

SECURtry CLASSIFICATION OF THIS PILGE 1 2/3 5
REPORT DOCUMENTATION PAGE

la REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

b DApproved for public release; distribution
Zb) DECLASSIFICATION/DOWNGRADING SCHEDULE is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(if r able)

Naval Postgraduate School 52 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5100 Monterey, California 93943-5100

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If apoiab*le)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO

I, TITLE (Include Security Claswsfication)

MODELLING OF A MULTILEVEL SECURE TACTICAL COMBAT COMPUTER SYSTEM

N ACavalcanti, Claudio B.

'3a TYPE OF REPORT 113b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 1IS PAGE COUNT
Master's Thesis FROM TO 1986 June 121

-6 SUPPLEMENTARY NOTATION

COSATI CODES I18 SUBJECT TERMS (Continue on revere if necessary and identify by block number)

;ELD GROUP SUB-GROUP Secure System, Multilevel System, Tactical System

'9 A8-.STRACTr (Coninue on reverse if necessary and idlentify by block number)
'---This work is an analysis of the use of a multilevel secure computer system to execute

tactical combat applications programs. Using the Gemini Trusted Multiple Microcomputer
Base, currently under evaluation by the Department of Defense Computer Security Center,
applications and test programs were written and implemented in order to expose some
characteristics of the system. Using a Janus/Ada compiler with the necessary library
alterations for the Gemini machine, a simple weapons application program was implemented
in a system designed to simulate a tactical environment where classified material can be
handled in spite of the different levels of security held by the operators that can
access the system. The loss in performance due to the secure operating system's overhead
is estimated in order to establish the tradeoffs in performance gains due to parallel
processing capability of the multiprocessor system.

,0 D S 7rt3UTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

3 2NCLASSIF;ED/UNLIMITED 0 SAME AS RPT D3OTIC USERS Unclassified
22.a IAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Uno R. Kodres (408) 646-2197 1 52Kr

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF Ti5 PAGE
All other editions are obsolete

Approved for public release; distribution is unlimited.

Modelling of a Multilevel Secure
Tactical Combat Computer System

by

Claudio Augusto Bailly Andersen Cavalcanti
Lieutenant Commander, Brazilian Navy

B.S., Escola Naval, 1970

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June, 1986

Author:__ _

Claudio Kuigusto Bailly Afidersen Cavalcanti

Approved by: /Z"'l/~e~:
Uno R. Kodre isor

Commander ary S. Baker, Second Reader

Vincent Y. LdI, Chairman, Department of
Zomputer Science

John #4. Dyer. Dean of Science
and Engineering

!II I Z -6 1 1 :11 11 1 . 1 1 2

ABSTRACT

This work is an analysis of the use of a multilevel

secure computer system to execute tactical combat

applications programs. Using the Gemini Trusted Multiple

Microcomputer Base, currently under evaluation by the

Department of Defense Computer Security Center, applications

and test programs were written and implemented in order to

expose some characteristics of the system.

Using a Janus/Ada compiler with the necessary library

alterations for the Gemini machine, a simple weapons

application program was implemented in a system designed to

simulate a tactical environment where classified material

can be handled in spite of the different levels of security

held by the operators that can access the system.

The loss in performance due to the secure operating

system's overhead is estimated in order to establish th(

tradeoffs in performance gains due to parallel processing

capability of the multiprocessor system.

Accesion For

NTIS CRA&I
DrIC TAB 0

Dric Urannounced El
copy Justification .

fpcrroBy

Di-t. ibutionj

Availdbility Codes

Avail adjor
3 DiSpecial

I~~~~ ~ ~ ~ V'lm ~ 1111,10 l

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

during this research are not completely v alidated. Although

every effort has been made in order to make the programs

free of computational and logical errors, the time available

was not sufficient to perform- a fully reliable job.

Documentation and software used in this work were supplied

by the manufacturers of the microcomputer used, in a

preliminary format with updates being received throughout

the research period.

Some terms used in this thesis are registered trademarks

of commercial products. All trademarks appearing in this

thesis will be listed below following the firm holding the

trademark:

1. Gemini Computers Inc. Monterey, California.

Gemini Trusted Multiple Microcomputer Base.

GEMSOS

2. RR Software Inc. Madison, Wisconsin.

Janus/Ada development package.

3. INTEL Corporation, Santa Clara, California.

INTEL

Multibus

APX-286'

'4

TABLE OF CONTENTS

I. INTRODUCTION................................. 9

A. PROBLEM STATEMENT........................ 9

B. PROPOSED SOLUTION....................... 12

C. THESIS FORMAT............................ 15

I. SECURE SYSTEMS............................... 17

A. TRUSTED COMPUTER........................ 17

1. Background.......................... 17

2. The Threats......................... 19

3. Proposed Technology................. 20

B. -THE GEMINI SYSTEM....................... 21

1. General.............................. 21

2. Resource Management Concepts.........23

3. The Operating System................. 26

4. The NPS Configuration................ 31

II. TACTICAL SYSTEM DESIGN...................... 32

A. DESIGN ISSUES........................... 32

1. Objectives.......................... 32

2. Hardware Simulation.................. 34

B. SOFTWARE DESIGN......................... 35

1. The Parent Process................... 36

5

2. The Child Processes 37

C. SOFTWARE DESIGN GOALS 38

IV. IMPLEMENTATION ON GEMINI SYSTEM 39

A. GEMSOS LIBRARY 39

I. Package "MANAG 39

2. Package "GEMIO" 40

3. Package "CRPROCE" 40

4. Package "TABLES" 41

B. PROCESS STRUCTURE 41

1. Pathname Convention 41

2. Ring 1 Environment 42

3. Application Program Environment ... 43

4 Process Synchronization 45

C. GENERATION OF A SECURE PROGRAM 46

D. LOSS IN PERFORMANCE 47

1. Test Program 48

2. Performance Results 49

V. APPRECIATION OF RESULTS 52

A. GENERAL COMMENTS 52

B. SYSTEM OPERATION 54

C. CONCLUSIONS AND SUGGESTIONS 55

APPENDIX A: APPLICATION PROGRAMS LISTING 57

APPENDIX B: LIBRARY PROGRAMS LISTING 73

APPENDIX C: TEST PROGRAM LISTING 94

1 .

APPENDIX 0: SIMrPLE ACCESS PROGRAM LISTING 111

APPENDIX E: SUBMIT FILES LISTING................. 114

LIST OF REFERENCES.................................. 118

INITIAL DISTRIBUTION LIST.......................... 119

I'

LIST OF FIGURES

-1.1 A Tactical Secure Environment................ 10

1.2 A Secure Process Interaction................. 14

2.1 Functions of a Reference Monitor............ 27.

3.1 Tactical Combat Model....................... 33

3.2 Package THEMAIN.............................. 36

3.3 Package CHILD................................ 3

4.1 Package CRPROCE.............................. 40

4.2 -Ring 1 Structure............................. 43

4.3 Application Program Structure................ 44

4.4 Sysgen Submit File...........................47

4.5 Package TOTIME............................... 48

8

I. INTRODUCTION

A. PROBLEM STATEMENT

This thesis investigates the use of a multilevel secure

computer system in a tactical combat environment. The

specific application of the system proposed is to perform

the duties of a real-time system with the extra ability to

handle sensitive information in a trusted manner.

A real-time system is defined as:

A system that reacts as to affect the environment in which
it is operating. It is a collection of devices,
conltrolled by a stored program of instructions. This

- ~,,program acts as the regulating element in a feedback loop,
which then forms part of a system. (Ref. 1: p.11

Sensitive information is defined as a collection of data

that cannot be access ed but by those who have specific

authorization.

The type of environment where a secure tactical system

can be implemented is shown in Figure 1.1 , which depicts a

hypothetical section of the operation's room of a combat

ship.

The tactical program executed by this specific system

requires some secret data, in order to produce the desired

results. The system should allow the tactical program to

access the secret data, make the necessary computations and

transfer the result to the desired peripheral. The operator

who "drives" the tactical program should not have direct

DATABASE

M=Q BE WET)

MAIN

APPLICATICH

naw PROGPAM OT

OPERATO'S

TE10CAL

II

Figure 1.1 A Tactical Secure Environment

10

access to the secret data. The eventual access to the

secret data, i.e. to update some parameters, should be

allowed only to operators with secret clearance or a,,ve.

Another important aspect of a tactical secure combat

system is that the tactical program needs to be maintained

by on-board technicians, who might not have secret

clearance. If a "free" access to the secret data is

allowed, a skillfull maintainer with some corrupt

intentions, can easily produce a "patch" which will extra.

the sensitive information and transfer to a printer or a

display. This dangerous picture is very much likely to

exist, and in fact, such a problem ocurred two years ago on

board of an aircraft carrier, involving the geographic

positions of U.S. Navy's nuclear submarines.

In order to avoid the necessity to clear all tne

maintainers on-board to secret level, some sort of

independence should exist between the modules of a tactical

program. The modules should be able to receive different

security labels that cannot be changed by on-board

maintenance. The modules authorized to be maintained on

board should be re-integrated into the system with no

changes to the security parameters.

Since tactical environment automatically calls for

speed, all the necessary security techniques must not- create

4,f too much overhead to the overall performance.

.1V.
*4

""I:.p

This research was pert ormeci in conjunction witn tne

Naval Postgraduate School's AEGIS Modelling Group. This

group is sponsored by the AEGIS Combat System Project Offic:e

to conduct research in the area of combat system

development.

To summarize the problems discussed in this section we

can state the following requirements for a tactical secure

combat system:

1) The system will execute tactical programs that uses
sensitive information;

2) The access to the sensitive information should be
controlled;

3)- The tactical programs need to have an on-board
maintenance by technical personnel with no clearance
to the sensitive information;

4) Changes to the security parameters should not be
possible unless by authorized personnel;

5) There should be no large overhead due to the security
aspects of the system.

B. PROPQSED SOLUTION

This thesis proposes the use of a multilevel secure

computer system to execute the tactical combat program. The

secure computer system would be the "heart" of the proposed

system, executing the application program specifically

designed for each different situation. The multilevel

secure computer system, based upon the security level of the

operator currently logged on, would perform different kinds

of functions. The capacity of labeling the modules of

12

execution in a multilevel secure computer system would allow

the isolation of sensitive modules, thus protecting them

against unauthorized users.

An schematic view of the proposed solution is shown in

Figure 1..2.

Here, an application program would be delivered to the

ship's system containing five independent modules. Module I

is the "master" module, which controls the execution of the

whole system and performs the synchronization between

modules. It would not be permitted to maintain this module

on-board. Modules 2 and 3 contain algorithms to process

inputs and outputs and some intermediate calculations.

Those modules can be maintained on-board. Module 4 accesses

the secret data, and cannot be maintained on-board. Module

S contains the secret data, and cannot be maintained

on-board although alteration of some specific fields can be

done by an authorized operator.

When an unclassified operator logs on, the master module

will activate modules 2 and 3, which will execute and call

module 4 to access the secret data. The secret data is

then, handled only by module 4 which provides the result of

the operation requested by modules 2 and 3. but will never

transmit the information read from module 5.

When a "secret" operator logs on, the master module will

activate directly module 4, which accesses module 5, but

this time the information read is transferred to the

13

HM~fX,. 2

PROCESS

M3=DUI 5

MODM.E 4 DATA
ACCESS &

SE ATA,

MMMUE 3

PR~OCESS

Figure 1.2 A Secure Processes Interaction

14

operator whose "secret" classification level authorizes

access to the information.

There are several systems being currently evaluated by

the Department of Defense to operate as a multilevel secure

system. The Gemini Trusted Multiple Computer Base is the

one used in this research. This system is still undergoing

development and so, some restrictions were imposed.

C. THESIS FORMAT

This thesis is composed of five chapters ordered in a

sequence to provide the reader with a presentation of the

problem, some background information in secure systems and

then introduce the design and the implementation of a system

to execute tactical secure combat programs.

Chapter I presents the problem and the solution in a

generic format.

Chapter II describes the concepts of multilevel security

and provides some detailed information about the

microcomputer used in this research, the Gemini Trusted

Multiple Computer Base.

Chapter III discusses the actual design of the

application program for the proposed system.

Chapter IV covers the implementation and testing of the

application program using the Gemini system. Some.
information about loss in performance due to overhead caused

by security checks is included in chis chapter.

Is

chapter v analyzes thne results, proposes some techn1ques

for the development of applications programs and suggests

some follow-up research.

16

11. SECURE SYSTEMS

A. TRUSTED COMPUTER

1. Background

There is not to date an unique and generally

accepted definition for a trusted computer system.

Depending on the origin (i.e., business or government), the

requirements can be quite different and sometimes they even~

conflict between each other. The Department of Defense,

with the purpose to define parameters for any work in the

area---of secure systems, has elaborated a document which is

entitled DOD Trusted Computer System Evaluation Criteria and

was published in 1983 (Ref. 2]. This document established

guidelines for the test and evaluation of any new system

involving security aspects. It contains all the information

necessary to anyone involved in research with trusted

computer systems.

One of the important concepts described in this

publication, which has direct effect in the analysis

executed in this thesis, is the establishment of two basic

types of security policy: Mandatory (sometimes called Non-

discretionary) and Discretionary Security.

Mandatory Security is defined by the following

direct quote.

Security policies defined for systems that are used to
process classified or other specifically categorized

17

sensitive information include provisions for the
enforcement of mandatory access control rules. That is,
must include a set of rules for controlling access based
directly on a comparison of the individual's clearance or
authorization for the information and the classificatiion
or sensitivity designation of the information being
sought, and indirectly on considerations of physical and
other environmental factors of control. The mandatory
access control rules must accurately reflect the laws,
regulations, and general policies from which they are
derived. [Ref. 2: p.72]

As it can be understood from the definition above,

the mandatory policy is expressed by a lattice of access

classes. The mandatory policy establishes that the control

of the accesses is based on an access level determined by

the user's security clearance and this policy cannot be

modikied or bypassed within the system. The mandatory

policy, furthermore, establishes the limits for the

discretionary security, -which is an additional set Df

constraints on access to information, based on sume

particular constraint, like the military "need-to-know"

policy.

The Discretionary Security is the second type of

security policy established by the DOD document and it is

expressed by direct quote which follows.

Security policies that are defined for systems that are
* used to process classified or other sensitive information

must include provisions for the enforcement of
discretionary access control rules. That is, they must
include a consistent set of rules for controlling and
limiting access based on identified individuals who have
been determined to have a need-to-know for the
information. (Ref. 2: p. 73]

There -will be certain situations where although the

elements of a group, involved in an analysis or a research

project may have the same clearance, the manager wants to

limit the type of information which each one should access.

This can be done in order to extract different and unbiased

opinions and observations. The discretionary policy is the

tool to provide this access granularity without affecting

the mandatory rules.

2.The Threats

The attractive field of computer technology has had

in the past few years one of the fast and impressive

dever~opments ever observed in a new science. This has lead

to a proliferation of computers and networks so that it is

improbable to find today any company or organization that

does not use some kind of a computer system.

Among all the information stored, some is

classified, and so, need special care. The few and basic

security controls first used were considered sufficient to

limit the access to classified information. The machines

were physically isolated and locked. Some more

sophisticated systems had a software coded control. As it

has always happened in human history, there is always a

conflict of interests and there is almost no limit to the:

human desire and dedication. So, the computer "hackers"

entered the scene and there has been a lot of break-ins

widely reported by the press, in many types of computer

systems. The ;ontrol processes rhad to be improvedl and the

break-in techniques improved concurrently!

The only very low break-in prooability technique ended

up to be the enclosure of the peripheral, which permits

access to the classified information, in a tightly secured

vault. Evidently this is not a satisfactory solution. In

some tactical applications, for instance, the operators

might have no secret clearance, but the data the tactical

program uses, is secret. A bright and "interested" operator

can use this situation to create a software patch, for

example, which although transparent to the normal operation

of -the system, will extract some of the classified

information that is stored somewhere.

3. Proposed Technoloigv

Research centers and universities have conducted a

great amount of work and fortunately, some very good results

are now available to be implemented. The security kernel

technology [Ref. 3) has been considered the driving for,.e

for the building of trusted computer systems and several

products have implemented and improved this technique in an

effort to turn the products into practical, simple to use.

and most of all, secure systems.

To determine if a system is secure or not, is a very

difficult task, starting with the problem to establish the

criteria to evaluate the performance. The Departament of

Defense is preparing a document which will contain the

2.0

details of such an evaluation criteria and this analysis is

not considered in this work.

rhe employment of secure products by potential

customers is usually not considered until some harmful

break-in happens, mainly because the practicality of its use

has not been demonstrated yet. In the tactical environment

N there are extra concerns like timing, adaptability and real-

time applicability that have to be demonstrated together

with the secure capabilities, in order to integrate these

products into a combat system.

The Gemini Trusted Multiple Microcomputer Base using

the 'Gemini Multiprocessing Secure Operating System tGEMSOS)

is claimed by its manufacturers to fulfill the tactical

requirements with secure aspects, and this was the machine

used in this research.

'4 B. THE GEMINI SYSTEM

1. General

The Gemini Multiprocessing Secure Operating System

(GEMSC'S) was designed for the Gemini Trusted Multiple

Microcomputer Base, in order to have the system to operate

* at the B3 [Ref. 2J level of classification, although the

ultimate goal is to meet the class Al, the highest level

defined. The system is currently under evaluation by the

Department of Defense Computer Security Center for

certification to the B3 class. The system was developed

ML 21

A based on the security kernel technology [Ref, 3] like all

trusted systems are, and the main idea was to provide an

off-the-shelf product, using state of the art, hardware

components and software engineering techniques. The main

characteristics of the system are [Ref. 4):

1) Can operate with up to eight Intel APX-286 based
microcomputers in parallel, giving a great processing
power. The microcomputers communicate through shareo
memory segments prov;ding high throughput, and the'
GEMSOS minimizes bus contention by locating data and
code in the local memory of each processor, whenever
it is possible.

2) The multiple microcomputers are capable of
multiprocessing and multiprogramming. The GEMSOS can
multiplex processes to a single processor or
distribute processes to several processors, so that

- both parallel and pipeline processing is possible.

3) Concurrent computing is independent of the programming
language used, since the GEMSOS provides its own
primitives to manipulate the abstracts eventcounts and
sequencers, in order to support communication and
synchronization among processes.

4) A variety of I/O devices and storage, which include
fixed disks, high density floppy diskette drives and
non-volatile memory, can be directly connected to the
Multibus. Each RS-232 interface board can handle up
to eight devices.

5) The system includes some other features like a real
time clock, data encryption device (NBS-DES
algorithm), a system unique identifier to prevent
covert channels, and a non-volatile memory to store
passwords and encryption keys.

The Gemini system allows the development of

applications programs using theoretically any language

supported by the CPM-86 operating system. Some additional

files, which will change the utility library associated with

the programming language, has to be provided with the Gemini

92

system. AS the decision was to generate application

software using the Janus/Ada computer language, the actual

coding of this work had to wait the delivery of the

Janus/Ada environment software and documentation, which

happened in late March. There are special features for the

Gemini Janus/Ada environment that cannot be easily adapted

from a normal Janus/Ada code and these will be pointed out

later in this work. The current implementation of Janus/Ada

on GENSOS still does not include the ability to use a

Janus/Ada process as the initial Ring I process and some

limitations result from that.

The claimed ability to handle different hardware

configurations is an important characteristic of the Gemini

system. If the system is going to be used in real tactical

applications, this certainly is an important aspect.

2. Resource Management Concepts

A set of resource management services that can be

invoked by an application program is provided by the GErISOS,

in order to provide the customer with tools to control the

performance of the particular implementation under

development. The application program uses what is called a

service call, which can be treated as a subroutine call,

with arguments being passed and returned. These service

calls are called gate calls, since they make certain

security checks to allow the flux of data. The actual

details of each call is specific to the language being used

23

and is supplied in the GEMSOS interface library proviced

with each compiler (Janus/Ada inthis study).

The GEMSOS kernel is divided into three basi*

management areas, which are: segment management, process

management and device management.

a. Segment

Segments are discreet and logical objects

(entities) that contain all the information to be

manipulated in a Gemini system. The segments of concern to

the applications programmer are the code, data and stack

segments.

The GEMSOS kernel allows some application

program to move data within the system in such a way as to

be immediate available to a particular process or not.

There are eight different calls provided for tnis

management. These calls will handle the movement, creation

and termination of data as well as the transfer of the

necessary information to the Kernel's mandatory security

model, which will deny or accept the request for service.

The segment manager controls a "Known Segment Table" (KST).

where the segment numbers are related to the system-unique

identifier of the segment usable by the memory. The segment

when created, will receive a tag associating it to a

particular collection of segments, called a volume, which is

the unit of secondary storage. A volume can be treated as

separate entity and so be called by a process. A detailed

24

OUL.

description about each of the segment management calls is

contained in (Ref. 5).

b. Process

'.- .'.The management of a process includes the actual.

management and the synchronization between processes.

(1) Management. When created, each process is

uniquely identified by code, stack and data segments and a-,

the same time, a fixed amount of resources is assigned to

it. There are four primitives to manage a process.

(2) Synchronization. Once a segment is created

in an application program, an eventcount and a sequencer are

automuatically associated with it. These two abstrac.t

objects have the same name as their owning segment. The

process can then be synchronized with other processes by

means of four primitives supported by the kernel, which are:

advance, await, read and ticket.

c. Device

The Gemini system treats the management of

devices in a very peculiar way, which is, to reside most of

the functions dealing with 1/0 management in the code at the

application level. This design is two-fold. It reduces the

size of the kernel making verifications easier, but it also

makes the 1/O applications software more difficult to be

coded. There are six calls to handle a device. The I/O

device controller is treated as a process, which is then

* synchronized with the segments eventcounts and sequencers to

~~%

perform the desired functions. More information about

device management, process management and synchronization,

can be found in (Ref. 5].

3. The Operating System

The Intel APX-286 supports four protection levels

and GEMSOS uses them as four hierarchical rings to enforce

the security layering. They are numbered from 0 to 3, 0

being the most privileged one. The mandatory and

discretionary policy are supported in rings 0 and I

respectively. The mandatory policy, as already mentioned,

cannot be modified and is represented as a lattice of access

classes in the distributed kernel contained in ring 0. This

distributed kernel in ring 0 will virtualize processors,

storage, I/O and objects (processes, segments and devices).

Ring 1 supports the discretionary policy and any other

security requirements. The supervisor, which is built on

the kernel, uses the virtualized objects to perform the

normal functions of an operating system. The other two

rings, 2 and 3, are used by the programmers for the

development of applications.

The implementation of a reference monitor [Ref. 31

is the base of the GEMSOS. All the access by the active

entities, subjects, to passive entities, objects, has to be

mediated by the reference monitor as shown in Figure 2.1.

All these checks are performed by the security

kernel located in ring 0. The subjects are processes

26

allowed to perform in a specific domain, and objects are

pieces of information that are observed or modified. Both

have security labels assigned to them. The result of the

comparison between the security labels of the subjects

versus the objects, is what decides if the transaction is

approved.

~ ~D~MO= DATABASE

USER aCCESS. OBJECr S TTVm

Figure 2.1 The Functions of a Reference Monitor

27

kg~i 3 lh -

security latoei 15 a tag tnat represents the access

class of an entity. This access class is defined as having

two components: a compromise level and an integrity level.

* -. ~ There are properties that establish the criteria for an

access to be granted based on the compromise and integrity

protection enforcement rules. These properties are listed

in (Ref. 4: pp. 16,17] and are summarized here as follows:

Compromise Properties.

1) If a subject has "observe" access to an object, the
compromise access component of the subject must

* ~dominate the compromise access component of the
object.

2) If a subject has "modify" access to an object, the
-compromise access component of the object must
dominate the compromise access component of the

- subject.

Integrity Properties.

1L) If a subject has "modify" access to an object, then
the integrity access component of the subject

Ndominates the integrity access component of' the
object.

2) If a subject has "observe" access to an object, then
the integrity access component of the object dominates
the integrity access component of the subject.
Compromise can be related to the secure distribution

of information, and integrity to the secure modification of

information. "Dominates" in the above properties, means

access level greater than or equal to the referred entity.

U.,The number 1 property of both compromise and

__ integrity protections are the traditional security policies

4* ~ which are called simple security properties. They state

that in order to observe/modify some information one has to

28

have a clearance at least equal to or greater than the

information referenced.

The number 2 property, on the other hand. is no,:

usual and it is called the a-property (star property). The

purpose of this protection is to avoid an indirect

observation or modification of an entity by an "inferior-

one. In the compromise situation, for example, a secret

process could modify an unclassified file if this protection

did not exist. This "modification" could easily be the

transmission of secret data that the secret process has

access, to the unclassified file. In the integrity

situation, it prevents a secret process of observing an

* , unclassified file, and this observation could be "read some

data and include it in your computation", which will allow

the secret process to be influenced by an unclassified user.

In [Ref. 6) there are some more comments about the types of

attacks (Trojan Horse) that can result if these properties

are not enforced.

Ring integrity is enforced, in addition to all those

properties already mentioned, in the Gemini system. it

means that, subjects can only access objects with equal or

greater ring number, which enforces the hierarchical

structure of the rings.

The rigid observance of the properties mentioned

above, would transform the simple task of distributing

messages (when they have different access classes), into a

29

very Qompiicated and resourc;e consuming proceaure. AS ttle

Gemini system is a multilevel system, this would be thne

case. In order to avoid this problem, the *-property for

compromise and integrity are relaxed within a certain range

of security levels. The process, which has certain

flexibility in order to execute some trusted activities, is

called. "trusted" subject, and it is up to the application

programmer that his "trusted" process does not violate the

security policies. In GEMSOS, the implementation of

"trusted subjects" are in the form of multilevel subjects

and they are trusted within a range, demarcated by their

maximhum and minimum access classes. As mentioned already,

only subjects guaranteed not to improperly observe or modify

information, should be created as multilevel subjects.

Extreme caution should be emphazised when interfacing with

" devices.

The range of access classes for devices, should be

chosen depending on the physical location in which they

operate. Devices can be single level or multilevel, and the

classification is based on the data they manipulatewhether

they have a security label attached to it or not.

The security properties of single and multilevel

devices are the following (Ref. 4: pp. 21,22]:

30

*S

Single-level Devices.

1) To receive ("read") information:
Process maximum compromise =;=Devi'ce minimum compromise
Device maximum integrity y=Process minimum integrity

2) To send ("write") information:
Device maximum compromise)=Process minimum compromise
Process maximum integrity }=Device minimum integrity

Multi-level Device.

1) To receive ("read") information:
Process maximum compromise J=Device maximum compromise
Device minimum integrity }=Process minimum integrity

:2) To send ("write") information:
Device minimum compromise)=Process minimum compromise
Process maximum integrity y=Device maximum integrity

4. The NPS confizuration

The Gemini system used during this research has the

following configuration:

I) one Intel APX-286 microcomputer

2) two 1.2 Mbyte floppy disk drives

3) one RS-232 interface board with a maximum of eight
ports

This system proved to be sufficient for the

execution of some preliminary processes like the ones

presented in this thesis. However, the amount of time

expended during compilation, linking and sysgening and the

constant swapping of floppy disks due to the floppy disk

drive environment was a big constraint.

31

-. -. .5 -~ .. e .

III. TACTICAL SYSTEM DESIGN

A. DESIGN ISSUJES

1. Objectives

The primary objective of this design was to develop

a model which would demonstrate the use of the Gemini

Trusted Multiple Computer Base in a tactical combat

environment. Based on the requirements for a tactical

secure combat environment listed in the introductory

chapter, the model shown in Figure 3.1 is presented.

In this model, the Gemini computer would be used to

receive the encoded data from a tracker radar, and transmit

some positioning information to a weapons device. The

actual devices being controlled in this model, are

irrelevant at this point. The application program executed

by the Gemini computer would make use, for the ccomputation£

of the results, of some stored information classified as

secret. This can be better understood, if we suppose that

the tracker radar is tracking an incoming missile, and the

desired response, is the firing of a chaff burst as a

defensive procedure. During the computation phase, the

program has to access data about our own ship which might be

classified. The operator controlling the tactical picture

cannot have direct access to his data. However th is data

has to be updated eventually by some authorized operator.

32

RADAR - OAF

ENCO DEDR

CP'S

TERM.

Fi1ure 3.1 Tactical Combat Model

33

in addition to all tniat., the system has to nave a

very fast response, and the steps of execution (reception)i

radar data, computation of results, transmission o.t

position) have to be precisely synchronizea.

2. Hardware Simulation

The construction of the model described in the

previous section, would be ideal, since the attachment of

* different devices to the Gemini computer would be tested.

Response time, encoding input techniques and many other

aspects would be revealed. This should be part of a follow-

up research.

As a preliminary research, the development of the

- . application program was considered the main task.

The complete model, will then be simulated as

follows: One terminal attached to a serial port is going to

simulate the radar input. The values sent to the "main"

process will be generated by scoftware. Another terminal

will perform the same simulation of the weapon to be driven,

showing on the screen the transmitted values. The "main"

process will make use of the secret data stored in another,

segment, simulating a secondary storage.

These simulations will not disturb the development

of the application program. The processes to be created in

order to perform the simulations described above, would be

necessary in the complete model as well. The. main

34

difference would be in the code itself, since the processes

would be executing controlling functions.

B. SOFTWARE DESIGN

The application software for this system was designed

using the modular programming construction technique. In

the particular case of the system used, which had a floppy

disk environment, this technique was very useful, because

the modules could be compiled separately. Unfortunately,

the testing of the modules cannot be done separately, when

the modules execute calls to the GENSOS. To prepare a

program to be executed in the Gemini computer, which is

going to be explained in a further section, takes about 1.5-

17 minutes, and the main process (the parent process) has to

be included always, since the creation of processes and

synchronization are coded in the main process.

The application software was then divided in four

application programs:

1) "THEMAIN", the parent process, containing the
initialization, creation of processes, synchronization
and deletion of processes(log off).

2) "RADAR", a child process, performing the simulation of
the radar inputs, and the transmission of data to the

o parent process.

3) "COMPUTE", a child process, which receives data from
the "RADAR" process, execute some computations, and
tramsmit the results to the "CHAFF" process.

*4) "CHAFF", a child process, which will receive data from
*>the "COMPUTE" process, and will simulate the

positioning of a weapon.

-35

4.6X4kv" N

1. The Parent Process

This is the controlling process for the whole

system. The creation of the child processes is established

in this module, together with the security parameters and

the synchronization scheme. This module has to be designed

and coded by a programmer cleared to the maximum level of

security to be used, since he will decide the levels for

each of the child processes to be created. The coding of

the child modules, will be given to different programmers,

depending upon the security level of the module.

The general algorithm for a parent process is shown

in Figure 3.2.

Package body THEMAIN is

begin
perform initialization;
create segment -o be parent;
create segment to perform synchronization;
create processes;
loop

call child 1;
call child 3;
call child 2;
exit when some condition;

end loop;
delete processes;

end THEMAIN;

Figure 3.2 Package THEMAIN

There are some other procedures, to transfer data to

and from the child processes, not shown here. They can be

found in the program listing in Appendix A.

q4"

qA

2.The Child Processes

These processes will perform some defined functicn

which has oeen determined by the software manager. The

actual details of implementing the code are left to the

programmer in charge.

In our application program, the child modules

execute the general algorithm described in Figure 3.3.

This is just a general algorithm, and the full

listing of each module used in the application program

developed in this research, is shown in Appendix A.

-~Package CHILD body is

begin
receive data from parent;
perform calculation;
execute simulation;
pass data to parent;

end CHILD;

Figure 2.3 Package CHILD

As it was mentioned before, the child processes can

be maintained separately, as long as the synchronization

part of each module is not changed. If a module is to be

labelled as secret, the maintenance can be restricted to

Authorized personnel. The preparation of the complete

program to be executed in the system, will be done by a user

with the necessary level of security.

V 37

C. SOFTWARE DESIGN GOALS

The configuration used for this research had some

restrictions, as already mentioned, and among them, the

amount of time necessary for each development step

represented considerable difficulty. The GEMSOS calls using

the Janus/Ada language are yet under development. A

preliminary version of the Janus/Ada software library and

manuals were received in March 86. Due to these reasons,

the following sequence of steps has been established for the

development of the application program:

1) Demonstrate the attachment and detachment of a
terminal.

2)- Demonstrate an application program which samples an
input device, performs calculations, and presents the
result, all synchronized sequentially.

3) Extract some information about overhead caused by some
GENSOS calls.

4) Synchronize the application program via a real-time
clock.

S) Label one of the child processes as secret, and test
the access for different operators.

This research was performed in cooperation with

another student, Major Miguel Reyes, Peruvian Air Force.

who has one more quarter to work on this system. Hopefully,

the steps not accomplished by this thesis would be

demonstrated in his work.

38

"V- V ."q

,'

IV. IMPLEMENTATION ON GEMINI SYSTEM

A. GEMSOS LIBRARY

When developing Janus/Ada application programs to run on

.GEMSOS, the standard IO and file type utilities provided

with the normal Janus/Ada compiler, cannot be used.

Instead, the GEMSOS gate calls provided by the

manufacturers, have to be used. As the Janus/Ada

environment provided for use with the GEMSOS, is nt

complete yet, some of the utilities necessary for the

development of the application program had to be

constructed. Four packages were built to modularize the

procedures, functions and declarations necessary for the

present application: MANAG, GEMIO, CRPROCE, TABLES.

1. Package MANAG

This package includes the procedures necessary f.or

the management of segments and terminals. To create a

segment, a number of parameters should be passed to the

GEMSOS call CREATESEGMENT. These parameters are then

explicitly passed in this procedure.

Any device to be used by the Gemini system needs to

be attached. This applies to the screen terminal as well.

The GEMSOS call ATTACHDEVICE, has a specific configuration

parameters which are used with terminals. The same applies

for the GEMSOS call DETACHDEVICE. Two procedures were then

.39

'C

built, in sucn a way that some parameters wnliri are

constants for terminals do not have to be passed.

2. Package GEMIO

This package is designed to be the IO package for

the Gemini system. The procedures included here, are tht

ones found to be necessary up to this point of the research.

Evidently, many more have yet to be developed, in order to

have a comprehensive I/O package. Some of the procedures

included in this package were taken from the demonstration

program supplied by the manufacturers of the Gemini

computer.

3. Package CRPROCE

In order to create a process, the general algorithm

presented in Figure 4.1 has to be applied.

Package body CREATE A PROCESS is

begin
makeknown the mentor segment
specify the address for the process stack
specify the address for the process code
specify the address for the process mentor
specify the address for the trap segment
calculate the stack size
create the segment for the stack
makeknown the segment for the stack
swap in this segment
create the segment for data
makeknown the segment for data

T C. swap in this segment
complete the record for the CREATE PROCESS call
call the GEMSOS CREATE-PROCESS

end CREATE A PROCESS

Figure 4.1 Package CRPROCE

40

As it can be seen from Figure 4.1, the creation of a

process involves a large number of steps. The size of this

procedure alone, justifies the construction of a package

containing just this procedure.

4. Package TABLES

The purpose of this package is to concentrate a

great number of the declarations necessary for the

implemented application program. Since, as already

mentioned, the utilities programs coded in Janus/Ada have

not yet all been delivered, some procedure to supply the

parameters necessary for the create and makeknown calls, had

to be built. For the time being, a simple loop that will

generate fixed numbers is what will be used. A correct

procedure, which will look for the next free number to

allocate, should be done in the future. This package has a

preliminary procedure to load access classes yet to be

tested.

B. PROCESS STRUCTURE

1. Pathname Convention

Since all information in the Gemini system is stored

%.in segments, some method to make reference to these segments

is needed. A pathname is the shorthand method used for this
.

.I purpose of aliasing a segment. It consists of a sequence of

entry numbers that together define all of the mentor

segments to a particular segment. The pathname "3,8"

41.b

a

indicates that the target segment is at entry 8 oi

mentor segment, which itself has entry 3 in the system

mentor segment. Pathnames may be up to 5 entry numbers Iong

in the present implementation.

The pathname is used during the generation of a

program to run in the secure environment, and it will be

explained in the next sections.

2. Rinx I Environment.

The current implementation of Janus/Ada on GEMSOS

does not allow the use of a Janus/Ada process as the initiai

Ring I process. The Ring I Login and the Ring I Loader

provided have to used in order to run Janus/Ada programs.

Another restriction imposed by this preliminary

version is that, the file RITRAP.CMD, which contains the

trap handler and debugger, has to be syseened (to be

discussed later), at entry six off the system mentor

segment. Figure 4.2 shows the Ring I environment segment

naming hierarchy. The segments which have fixed "positions"

in the ring I structure are shown in Figure 4.2, which are:

1) SSAT- System Segment Aliasing Table; containing thebootstrap and kernel segments.

2) Viloader- Ring 1 loader code segment.

3) VIlogon- Login process code segment.

4) NV.DS at 5,0- Shared segment for loader processes.

5) NV.DS at 5- Appliccation Root

6) Rltrap- Trap entry and debugger

42

SYSM~ MEOR

SSTAPILICATON TRAP
5 10

NV.DS U=GI

Figure 4.2 Ring 1 Structure

The entry of concern for the applications

programmer, is 'entry number 5. In the current

* implementation, this is the position were the application

* program should be located.

3. Application Program Environment

The application program developed in this research,

is composed* of four segments. The mentor segment for the

code segments (the application mentor) will be at entry S

43

&.." S.,

off tihe system mentor. The mentor segment for .ne stack and

data segments will be at entry 5 off the application mentor.

The parent process will be located at entry 0 off the

application mentor. The child processes will be located at

entries 7. 8 and 9 off the application mentor. This scheme

can be better explained by the diagram in Figure 4.3.

1 iur 2 .3 Aplct4 Pr5 a 6tucur

44

......

The entries used for this structure, were chosen

with no special reason. Other combinations could have been

chosen. The only restriction is to position the parent

procese at entry 0 off the application mentor.

These entry numbers are treated as paths, when

referenced. So, entry 7 off entry 5 off the system mentor,

is called 5,7. This will be used in the file with the

commands for the sysgening phase. Those entries have to be

passed as parameters during the creation and makeknown of

segments.

For the application program developed, a segment for

the -purpose of executing the synchronization was created.

and will be located at entry 6 off the application mentor.

4. Process Synchronization

Process synchronization is accomplished using the

eventcount of the synchronization segment (5,6) , and the

eventcount of the stack segment of each child. Advancing

each eventcount in turn, the parent process would prepare

each child to execute its code, as soon as the parent makes

an AWAIT call. The child, would then, after execution.

advance the eventcount of the syncronization segment, which

is the one being read by the parent process. This scheme

would be repeated and the synchronization between all

processes is achieved. The actual sequence of

synchronization used in the programs developed, can be seen

in the programs' listing in Appendix A.

45
'p

Z. GENERATION OF A SECURE PROGRAM

To prepare programs to run in the Gemini e .ure

Operating system (GEMSOS) environment is much more

complicated than running a Janus/Ada program in a non-secure

environment. There are some specific calls the program has

to make, in order to be recognized by the GEMSOS, and gain

access to the security kernel. The programs are compiled

and linked like normal Janus/Ada programs. The command

(CMD) files, will then be put in the secure environment. T1-,

assign the security classification and prepare the programs

to run in a secure environment, a secure volume must be

created by running the operating system generation program

(SYSGEN). Execution of the SYSGEN program will include the

application programs into a segment structure, which will

then be transformed into a bootable executable program.

The SYSGEN program reads a submit file to identify the

segment structure. This submit file, for the current

implementation, will have the format as in Figure 4.4.

Except for the application.cmd and the child.cmd files,

all the other segments are to be sysgened exactly as

described in Figure 4.4. The submit file used to SYSGEN the

application program implemented is listed in Appendix E

File Application.ssb

bs:ld3.cmd
ks:kO.cmd
ks:kl.cmd
ks:k0h.cmd
ks:k2.cmd
cs:vlloader.cmd;2;
ds:vllogin.cmd;2,10;
ds:nv.ds;2,5;
ds:nv.ds;5;
ds:application.cmd;5,0;
ds:childi.cmd;5,7;
ds:child2. cmd;5,8;
*1 9 999 99 10 *U 99.9 It I. 19 11 99 * 1

ds:rltrap.cmd;6;
end

Figure 4.4 Submit File

D. LOSS IN PERFORMANCE

In order to achieve a secure environment, we have

developed our program using four different processes, which

can have different access classes. During the execution of

the secure program, the operating system will perform

security checks each time a process is brought into

execution and each time a segment is accessed. Evidently,

some overhead, in comparison with a non-secure system,

exists. A test program was developed in order to extract

the preliminary measurements of such a overhead.

47

1. Test Program

The same structure used in the application process

developed, was used in this test program.

The algorithm used in the main program is described

in Figure 4.5.

Package body TOTIME is

begin
perform initialization
create parent segment
create synchronization segment
create processes
case

execute calculations with no calls
ty execute calculations with one call

execute calculations with calls
every loop

end case
delete processes

end TOTIME;~.

A. Figure 4.5 Package TIME

When the procedure to execute calculations with no

calls is activated, the program will perform a simple

arithmetic calculation 30000 times. These calculations will

be performed by the main process, after the creation of all

child processes, and with values already in the main

process, so there. are no GEMSOS calls.

48

When the procedure to perform calculations with one

call is activated, the program will activate two processes:

CALCI and STODISP. The STCDISP process will supply ,ne

value to the CALCI process. CALCi process will receive this

value and perform the same arithmetic calculation as before

30000 times as well. The actual value passed by one process

to the other is irrelevant, and it is there just to provoke

a call to the operating system during the transmission of

the value. The result of the calculation will be displayed

by the STODISP process.

Finally, the procedure to perform calculations with

call" in every loop is activated. The program will then

activate CALC2 and STODISP processes. Process CALC2 will

perform the same calculations as before, but this time will

include in every loop of the computation, a transmission of

data between the STODISP and CALC2 segments.

Because a loop statement is being used to control

these tests, two measurements are taken at the first step

(calculations with no GEMSOS calls), in order to estimate

the contribution of the loop control code to the overall

time taken by the calculation.

All those steps are measured and analysed.

2. Performance Results

The results obtained from the test program are the

following:

1) With no GEMSOS calls, 30000 operations => 3.33
seconds.

FtL

2) With four 4) GEM Qk. calls .30000 oper'tlon .
seconds.

3) With four t4) GEMSOS calls for each operation, 300
operations =) 23.8 seconds.

At the first step, no GEMSOS calls, another

measurement was taken, doubling the number of operations and

maintaining the same loop number, in order to estimate the

time delay contribution of the loop control. The time

measured was 6.03 seconds, which shows that the actual

operations take 2.7 seconds, and the loop control is

responsible for 0.63 seconds. Since we execute the loop

30000 times, it is possible to estimate the time delay fcr

each-. loop to be 21 wseconds. The times measured show that

each mult/div operation, which there are 12 on each loop, is

using 7.5 pseconds, which is the expectable time delay for a

APX-286 CPU.

'" The time measured during the execution of the second

step, the same number of operations plus four GEMSOS calls,

did not show any appreciable difference.

At the third step, where there are four GEMSOS calls

on each loop, and the loop is executed 300 times, the time

measured was 23.8 seconds. As the test executes the loop

300 times, each loop uses 79 milliseconds. Assuming the

same loop delay time as before, each loop control uses 21

pseconds, and the time delay of the actual calculations is

(12 x 7.5 wseconds) 90 kiseconds. Therefore, as four GEMSOS

5O

S "

"p ,' " ,, -' '..'. .-. - . ' ' .',-";. .. "', .- ' 'v ' ' ' _ , ,. ,, , v .: €

calls are executed in each loop, each call uses an average

of 19 milliseconds.

These preliminary measurements are far from

complete, but the results obtained can be considered as a

design parameter to be expected when the security

environment is used with the Gemini system.

.d*1

V. APPRECIATION OF RESULTS

* ~.*A. GENERAL COMMENTS

'A The development of application programs to execute in

the Gemini microcomputer proved to be much more time

consuming that it was anticipated. Testing and debugging of

the programs could not be done using the techniques and

skills normally used when working with non-secure systems.

.4Some factors can be listed as the major ones which

contributed to this problem. They were:

l)-- new terms and concepts that had to be completely
A understood before attempting to use the system

2) preliminary version of the manuals provided, which are
still being updated, and developed

3) preliminary version of the library programs whic:h do
not include yet, most of the common needed procedures

4) the system used was configured with two floppy disk
drives.

The Janus/Ada gate calls for the Gemini Secure Operating

* system (GEMSOS). are not yet very well explained in the

manuals provided. As such, any time a new call was to be

tested, in order to increase our understanding of a new

concept, the complete process of preparation of a program to

run in a secure environment had to be executed. Since this

process involves the access to a large number of files, the

fact that the system used floppy disk drives, imposed a time

delay of at least 7 minutes.

45.4

As discussed in Chapter III, in order to prepare a

program to run in the secure environment, the operating

system generation program (SYSGEN) had to be executed, wnich

would create a secure volume containing the program segment.

Before running the system generation program, the

application program had to be compiled and linked in the

normal way.

After the creation of the secure volume, the system has

to be reinitialized with the secure application program

volume. If a problem is found in the execution of the

program, the system will either execute an interrupt trap

halt indicating the processor's register contents, or

sometimes will halt completely not giving any indication on

the screen. The error then, must be corrected before any

further progress can be achieved. After the correction has

been made, the preparation process has to be repeatea

completely to check if the modification was successful. The

average amount of time from compilation to the final run of

a program, was found to be between 15 to 17 minutes for the

application programs developed in this research.

The use of the modular programming technique is very

important for the compilation and linking phases, but as the

preparation of the secure program has the "sysgening" phase.

where all the modules have to be included, the modularity

does not bring great advantages to the preparation phase.

53

I '- .

Improved versions of the Gemini system will. c-ertainly

become available in the near future, which will reduce

significantly the effects of these problems. System

libraries will be expanded, making the process of writing

programs to be run in the secure system less complicated and

time consuming.

B. SYSTEM OPERATION

The system designed proved the possibility of using a

secure computer system as the main building block in a

tactical computer system. The ability of handling different

and somewhat independent. processes, easily synchronized by

the calls already provided by the operating system, was

demonstrated by the model implemented. The actual code of

the modules used do not represent any real application, but

only exemplifies that they can be independently developed.

and integrated into a complete system.

Due to the problems already discussed in the previous

* sections, the amount of time for this research, was not

sufficient to proceed with the next step scheduled, which

4 was, to label one of the processes as secret and then limit

the access based on the security level of the operator

logged on the system.

The use of the system clock to control the

synchronization between the different processes involved in

"S 54

a.MM

the application program could not be completed in time to be

included in this thesis.

The overhead analysed has shown that an average oi 19

Nmiliseconds is used for each GEMSOS call, where

synchronization and security checks are performed. This

time delay has to be taken into account when the tactical

system is designed, but certainly it is not a high price to

pay in order to be able to develop a system with a large

number of security possibilities available.

C. CONCLUSIONS AND SUGGESTIONS

In this thesis, a model of a tactical combat system was

developed to demonstrate the possibility of using a

multilevel secure computer system in this environment. The

Gemini Trusted Multiple Microcomputer Base used in this

research, proved to be able to synchronize the execution of

independent processes which will give the capability oi

assigning different security labels to these processes.

Although it has not been possible to achieve all the

desired goals proposed when this thesis was first planned,

the concepts and research done, will certainly facilitate

any further work to be done in this new area.

Most of this research was done in conjunction with

t another student, Major Miguel Reyes, working with the same

microcomputer, which to a certain extent guarantees that the

Jk-;55

results here obtained are iompletely ?fnown by a ,ollow-up

researcher.

The unit testing of application program modules should

first be accomplished on development systems which nave

existing tools for testing the logical correctness and real

time performance. A specially trained "lead programmer"

should take the unit tested modules and incorporate these

. •into a system's program 'which synchronizes the units and

produces the necessary communications between the units in a

secure systems environment. The art of systems integration

programming in a secure environment requires an in-depth

understanding of GEMSOS functions as well as the real-time

performance of the system.

5%

.4.

1%" 5

APPENDIX A

APPLICATION PROGRAM LISTING

This application program is compiled and prepared for

execution in the manner discussed in Chapter III. The

program consists of four packages, each one generating a

separate command (CtID) file. The packages to be sysgened as

child processes are designed to have procedures which can be

altered without modifying the overall synchronization of the

application program.

.5 57

.5'.,~~~~ i4K ~ ~ %

-- This package controls the operation of the cc-lete --
-- system

with arl, alibi, agate, manag, tables, gemlo, alit, crprcce;
,package body TEMAIN is
use anl, alibi, agate, mraag, tables, gerrio, alib, crproce;

-- constants

ST"IO W : CONSTANT integer := 1;
STDIO-R : CONSTANT integer := 0;
IO_-FORT : CONSTANT integer := 0; -- 0 port for main prograr

-- variables

init rl_process-def; --necessary for all kernel
calls
ch tatle : rlpararn;
chlevel user level;
seg_mode : segacresstype;
ch tab : rl_parameters;
ch lev : level record;
w class : access class;
class : access class;
rd class : access class;
in choice : string;
pass-rad : radarinput;
passchaf : chaff out;
mentor : integer;
entryx : integer;
defseg : integer;
def off : integer;
def size : integer;
size : integer;
success : integer;
segnumber : integer;
syncr_seg : integer;
choice : integer;
evc value : irteger;

procedure INITIALIZATION is

begin

* -- attach serial port for writing

.q attach tew (IO PORT, STDIO W);

-- attach serial port for reading

.....

attach-ter '10 _PORT, S~rI3O ?\;

-load parameters to create up to 4 children

loadparamrto_4chld(init, ch-table);

--load access ,lasses for Top-Secret, Secret, Confliential

and Unclassified.

load access class (irilt, oh level);

-- prepare class for accessing main terminal

w-class := irit-.resources.mrin class;

end INITIALIZATION;

procedure STACTAV~DSYNCCREATION is

be-in

-creating segrent for steck(parent).Will be unclassified

-so as to obey compatibility property : segment compromrise
-must domrinate mentor compromise.

mentor init.initialseg()
entryx :;
class :-init.resources.min class;

crseErnent(Thit ,ment or ,entryx ,size ,class ,success);

if success /= 0 then
put surc("success stack parent ",success,w class');
put -ln (STDIOW,w class,)

end if;

-- ake1'nown this segment

s e pmode := r w;
seg number-31

mkcsegmen t (mit ,ment or ,entryx,a seginumber, seg mode, success '1
If success /= e then

p.utsucc("success makeknown
stack *parent ,success, Class);

put lr. (STDIO_',w clas5,);

I* 59

end if;

-creating sy-chrorizatior segmrent .Will te :.c--Secret.

mentor init.initial~s~g(2);
entryx :=e;
class init.resources .minclass;

cr -segment(irit,mertor,entryx,size,class,success);

if' success /= 0 then
put succ("success sync i§'*,success,w-CL~ss);
put lni(STDIOW,v class,"

end if;

-makeknown this segment

seg mrode :=rw;
seg-numrter :=51;

mk segment (init rreptor,en try! ,seg numnter, seg mode, success);

if success /= 0 t1l.en
put suc"-("success mrkknowfl sync",sruccess,u ~class);
put-ln(STrIDW,wclass,);

end if;

V syncbrseg := segnrurter;

swapin this segment

swapinsegment(segnutber,success);

if success /= 0 then
put sucv-("success swapir sync" ,success,w-class);
put -ln(STDIOW,w_class,)

end if;

end STACK AND SYNC CREATION:

procedure PROCESS CREATICN is

bg put ln(cTfIOWwclass "Begin. Process Creation");

type any~keytocontinue(w.class);

-start creating processes ir' the system
-process 1 ==> Radar
-- process 2 1 C Compu te
-process 3 > Chaff

60

-- NCT:
-- all processes with unclassified acess class
-- next version to have process 3 changed to Top-Secret in
order
-- tc access Secret data.

for i in 1..3 loop

ch _ tab : ch table(i);
ch-lev = ch-level(4);

to createprocess(init,ch tal,
end loop; chlevi,synchr_seg,success);

end PROCESSCREATION ;

procedure MYNU (selection : out integer) is

-- Pre~ent optior to run tactical program or alter date
field

-- Data field to secret in next version

begin
put ln (STDIO_W.,w_class,"Vun Tactical

Program == > < any key . ;
put_ln(STDIO W,wclass ,"Alter

Data Field ==> < A >");
put ln(STDIO W,w class,"Fxit Program

< < E >);

get str(STDIO _Rrd class,ir choice);
if in choice = a or in choice = "A then

selectior := 1;
elsif in choice = "e" or in choice = "E" then

selection := 2;
else

selectic" : 3;
end if;

end MFNU;

procedure ALTER is

teginputln(STDIO_W,wclass,"Not
Implemented yet");

erd ALTER;

procedure RFCXIVFFIVRADAR is

61

begin
def seg :

fit rmk sel (Idt-table,chtatle(1).segnr.terdat a);
def of? 0= ;
def size :=radar input'size /S;
rrovebtytes(defseg,def~cff,getss(),

passrad ADDRFSS,defl6size),;

end RECEIVE FM RAflAR ;

procedure ?ASS TOCOMPUTF Is

begin
def-seg :

litbmk -sel(ldt table.ch-table(2).segnurrberdlata);A def off := e
def size :=radar-input'size /6;
move -b yte s

(get ss (),pass rad 'ADDRYES,def seg,def off ,def size)

erd PASS TO COMPUTE;

proredure RECFIVFXFM-CQMPUTF is

tei def-seeg:=lib-mk-sel(ixdt table,
ch tiable(2) .segi number date)x;

def off : .
def-size :=chaff out'size /P;
move-bytes(defseg,defofftgetsso), pass -chaf'ADDRFES

,def size);

end RECEIVE-FMCOV~PUTE ;

procedure PASS TO-CPAFF is

begin
def-seg

lib mrk sel(ldt tatle,ch tatl e(3).seg-nurrter_ datal;
def off 0
def size chaff out'size /S;
mrove bytes 'get ssT) ,pass chaf 'ADDRESS,

def-seg,defoff~def-size);

end PASS TO CHAFF;

procedure RUN is

62

begin

pass-rad.flag z := false;

outer : locp
inner : for i in 1 .3 loop

advaice(chtable(i).segnumber.stack,sucress);
read evrc(synchr.seg,evc..value Isuccess);
await(synchrseg,evcvalue+1,suiccess);
if i = 1 then

re ce ive -f m -rad ar;
if pass a.flag .z then

exit outer;-
end if;
pass to compute;

elsif i = 2 ther
receive-frncoinpute
pass to chaff;

end if;
end loop inner;

end loop outer;

end RUN;

proredure SELF-DELETION is

begir
for i in 1.-.7 loop

advance(ch-table(i) .seg numter stack, success-);
read evc(synchr..seg,evc value,success);
await(synchr..se,ev%.value+l,success);

end loop;

end SrLF rLFTION;

procedure DELETE PPOCESS SEGMFNTs is

begin
for i in 1-7~ loop

*child -delete(i-1, success);
term inat esegrrert(ch_ table(i0. seg nurer.stack,success);

*termrinate segrrent(ch_ table(i).Segnumter-ata,successi;
terrinatespgr'ent(ch table(i) .seg nurrber-cole success)
delete segmrent(ch -tale().me'tor.stack,i,success);
delete.segme nt(ch -table(I) .mentor -data ,i4, success);
delete segmenttch-table(i).meltor.code,i46,succe~ss)l

end loop;

end DELETE PROCESS SEGMENT;

63

procedure DELFTE_'ENTO?_SYNC is

begin elete segment (init.iitial seg(2), , success);

terminate segment (51, success);
delete segment (irit.iritialseg(2), 5, success);
terminatesegment (31 ,success);

end DELETEMENTORSYNC ;

procedure DELFTIONALL is

regin
self deletion;
delete process segment;
delete-mentor

iync

end DELETION-ALL

procedure PREVENTTRAP is

begin
success := 0,
while success = 0 loop

success := @;
end loop;

end PREVENT TRAP

-- ############ MAIN PROGRAM ##############

begin
init := get rl def();
lib set bracket(1,1,1,init.resources.minclass);
initialization;
stack and synccreation;
process-creation;
loop

menu (choice);
case choice is

wben 1 => alter;
when 2 > EXIT;

when 3 => run;
end case;

* end loop;
deletion all;
preventTrap;

end THIMAIN

64

A . r ' , ., .""" .""" ." ;" J -"""'"." " """".J '""""" -"-"- .

-- This package simulates the samling of a tracker --

-- radar, as an input to a tactical system --

---- ---

with arl, ranag, gemio, strilt."., agate , tables , alit,

alibj
package body RADAR is
use arl, manag, gemlo, strlit, agate , tables , alit,
alibJ;

-- constants

STDIO W : CONSTANT integer 1;
STDIO R : CONSTANT integer 0;
10 PORT : CONSTANT integer :: 6;
If!IT DIST : CONSTANT integer : 1000;
INIT - HAR : CONSTANT integer 090;
CR : CONSTANT integer 13;
-- variables

init : rl processdef;
w class : access class;
miss rec : radarirput;
success : integer;
evc ch val : integer;

defseg : integer;
def off : integer;
def size : integer;

procedure ET TRACK is

-- simulate tracking of a missile
-- constants

begin
miss rec.radarl := miss rec.radarl - 50;
if miss rec.radarl < 2000 then

miss rec.radar2 := miss rec.radar2 -;
Wend if;

putstr,STDIO W,wclass, "RANGE ")
put dec(STDIO-W,w class,miss rec.radarl);
put-str(STDIO-W,w class," BFARING ");
put-dec(STDIO W,w-class,miss-rec.radar2);
put str(STDIC-' ,w-class ,char to str(character 'val (CR))) ;
if miss rec.radarl < 600 then

e miss rec.flag z := true;
end if;

65

,0"

-- - - - - - - -

end GFT TRACK;

procedure PASS TO PARENT is

begin

def :ff: 0;
def -size radar input 'size /S;
move bytes(get ssT),mriss-ree'AIDRES,ef.seg,def..off,,def..s ze

end PASS TO FAF.YNT

-- AIN PROGRAM

begin

init :=get rl-defW

-- attach terminal to write

attach tew,'IO PORT,STDIOJ W/;
w-class := inlt.resourres.min class;

q- ttach terminal to read

attach terf,1OPORT,STDIR);

p~ut ln(STDIOW,w class, R A fl A R."

-Advance the eventcount of the synchronization segment
-path 5,6- , plsn 51 , p~assed to child as ch seg list(2).
-Will be recognized in child as init-ini tla r seg(2).

advance(init-initialseg(2),success); -- this will
permit creation of processe.s t o go or

read _evc (inlit .ini tialseg(9.,evc chval1,succe ss)-
2 stack to sync
'V ~await(init.initial .se(0),evc..Ch .val+l,success';

7,)-ntrol sent back to Creation of processes.

miss rec.flag-z :~false;
!miss rer.radarl INI IST;
miss rec.rader2 IMIT BFAR;

loop
get~ track; -- get track information

___ pass to parent;

K:. advance(irit.inltial seg(2) success);
read evc (init. ini tial seg (O , evc chval ,success);
await'init.initial-seg'C),evcchval+,siccess';
if miss rec.flag z then

66

miss rec.radarl INIT DIST;
mniss rec.radar2 INIT BEAR;

end if;

end loop;

advance(init.initial-seg2),sccess);,

-detach and deletion

detach device(STDIO R,success);
detach devi-e(STDIO W Isuccess);
self dglete(init.initial seg(2),success);

end RADAR;

67

" -- This package performs the actual computations --
--

with arl, manag, gemio, strlib, agate, tables, alit, alitj;
package body COMPUTE is
use arl, manag, gemio, strlib, agate, tables, alit, alitj;

-- con.stants

STDIO W : CONSTANT integer := 1;
STIO-R : CONSTANT integer 0;
10 PORT : CCNSTANT integer := 3;
CR : CONSTANT integer 13;
-- variables

init • rl process_def;
w class access class;
nad i : radarinput;
cha out : chaff-out;
shiprec shipparam;
def.seg : irteger;
def off integer;
def size : integer;
success integer;
evc-ch-val integer;

procedure RFCEIVYFMPARENT is

t egi n
def seg := lib mk sel(ldt table, init.initial seg(3));
def off := 0;
def size := radar input'size /E;
movebytes (def _seg,def _off,

get _ss ,rad-ir 'ADDRESS ,def size);

end R1CEIVEFPARFNT;

procedure PASS TO PARENT is

.- begint defseg : limksel(ldttable, init.lnitial-seg(3);

'-' def off := 0;
def-size := chaff out'size /e;
move bytes(et ssT),cheout'ADDRFSS,

defseg,def_off,df-si ze);

end PASS TO PARFNT

procedure CALCULATION is

68

begin _ _/vlC2)

chaut~hafl(-~ad inlradarl/l ?e2)-shiprec.;aram1)+75;
chaout.cheff2 -=(r ad i .radar2/10) + 30;

end CALCULATION

-- MAIN PROGRA

begin
ship-rec.paraml :=2;
init := get-rl-def();

-- attach terminal to write

attach -tew (10_PORT,STDIO -W;
w-class := init .resources.min class;

--attach terminal to read

attach ter(IO-POPT,STDIO-R);

put ln(STDIC _W,w _class," C 0 M P U T F f

-advance evertcount of synchro segment path 5,6 jlsn 51
-passed to child as c-h seg list(2).
W- ill be called in child as init.initial-seg(2)

advance (init.initial-seg(2),success);
read evc(init.initial seg(O),evcchval~success);

2.await(mnit.iritial-seg(0),evcnh-val+,sccess);

chaout.flagz := false;

loop
receive fm ~parent;
calculation;
if rad In.radart < 150e then

._4 ~~p5tln(STDIOW,wclass,")
W put str(STDIOW,w class," I I R F

end if;
* pass to parent;

advanceTinit.initialseg(2),success);
read evc(init.initial seg(0),evc ch val,success);
awaif(init.initialsei() ,evcch-va~l,success);

end locp;

2 69

advance(init.initialseg(2),success);

-dettac1h and delete

detach -device(STDIO-R, success);
detach device(STDIO W,success);
self-delete(iPit .inftial seg(2), success);

end COMPUTE

70

-- This package simulates the driving of a weapon device --

with arl, manag, gemio, agate ,strlib, tables, alib, alib"
package body CHAFF is
use art, manag, gemio, agate ,strlib, tables, alib, alitj

--constants

STDIO W : CONSTANT integer := 1;
STDIO R : CONSTANT integer := 0;
10 'PORT : CONSTANT integer := 5;
CR : CONSTANT integer := 13;
-- variables

int : rl_process def;
weclass : access class;
cha cont : chaff out;
def-seg : integer;
def off : integer;
def-size : integer;
success : integer;
evc ch val : integer;

procedure RECEIVEFMPARENT is

begin
def seg := libmksel(ldt_teble,irit.initial-seg(3));
def-off 0;
def-size • chaff out'size /8;

m ovebytes(def-seg,defoff,getss(,cha-c on t "ADD]PESS def-si ze);

end RECEIV1_FMPARENT

-- MAIN PROGRAM

begin init := getrldef();

-- attach terminal to write

attach_ tew(ICPORTSTDIOW);

w-class := int.resources.min class;

--attach terminal to read

attach ter(IOPORT,STDIO R);
putlnTSTDIOW,wclass,"-C .R A F F ");

-advance eventcount of synic segment pathi 5,6 p~sn 51
-- assed to child as ch seglist(2).
-Will te callei in child as irit.iritialseg(2)

advance (init.initial-seg(2, ,success);
read evc(init initialseg(0) ,evc ch val, success);
await(init.initial-seg(') ,evc ch-val+1,success);

cha-cont.flag z := false;

loop rcief aet
parent;IO- ~-cas, BEARING *)

put dec(STDI W wclass,cha .cont.chaffl);
put-str(STDIO-W~w-class," FIEVATION
put dec(STDIO -W, wclass,cha -cont.chaff2);

put str(STDIO VW,w class char to str(character'val(CR)));
advance(init.iniial ieg2) , success);
read evc(init.initial seg(O),evcchval,sr'ccess);

If cha -cont.flagz then
Put ln(STDIO-W,w class,"");
put ln(STflIO W w class, P A R K E Dl

edcba cont.flagz false;

end loop,;

put ln(STDIO V~ clss, P A R K E D "
advance (init- wcavini ial-seg(2) ,success);

-dettach ard delete

detach -device(STDIOP,success);
detach device(STDIO-W,success);
self delete(init.initial-seg(2),success);

end CHAFF

72

*~q 1

APPENDIX B

LIBRARY PROGRAMS LISTING

These packages were built in order to concentrate all

common procedures used for the application program developed

in this research. They are far from complete, although they

establish the organization necessary to develop secure

applications programs. Some of the procedures included in

this library were taken from the demonstration program

supplied by the manufacturers of the Gemini computer.

-- Specification for the MANAG package --

-- Contains procedures to handle segments --

with agate, agatej, arl, util;
package MANAG is
use agate, agatej, arl, util;

procedure CRSYGMFNT (init : in rl_process def;
mentor : in integer;
entrx : in integer;
size : in integer;
class : in access-class;
success: out integer);

procedure MKSEGMENT (init : in rl-processdef;
mentor: in integer;
entrx : in integer;
number in integer;
mode : in seg acces stype;
success : out integer)

procedure ATTACH TEW(I0 PORT : in integer;
LDE V : in integer);

-- attach to write; 10 PORT is physical device
-- LDEV is logical device

procedure ATTACH TER(I0 PORT : in integer;
LDEV : in. i.teger)

-- attach to real; IO PORT is physiral device
-- -LDFV is logical device

procedure b24_FMINTIGER (ir val : in integer;
b24_val : out b24_type)

erd MANAG;

74

e.,

g1~-
*49

pP" "'- "., .,' '-" " " " - - ', " % " w " ." " " " % % % % ' ' % % , " w '
'

--- ---

-- This package has procedures to handle segments
-- and terminals

with agate, agatej, arl, util;
package body MANAG is
use agate, agatej, arl, util;

-- Constants for device slots.

STDIOW : CONSTANT integer = i;
STDIO R : CONSTANT integer :0 ;
IOPORT CONSTANT integer := 0; -- port zero for main

process

procedure CRSEGMENT(init : in rl_process-def;
mentor : in integer;
entry : in integer;
size : in integer;
class in access class;
success : out integer) is

-- Create segment ball

crsegstr : rreate segstruct;

begin
cr seg_str.mentor := mentor;
cr segstr.entryx := entrx;
cr segstr.limit := size;
cr-segstr.class := class;

createsegment(cr-segstr, success);

end CRSGMFNT;

procedure MK_SEGMENT init : in rlprocess-def;
mentor : in integer;
entrx : in integer;
numter : in integer;
mode in seg accesstype;
success : out integer) is

-- Makekncwn segment call

segrec : mkknstruct;

p75

I%

seg ret rec : mk-kn return;

I-,egi n
seg rec.mentor mentor;
seg rec.entryi entrx;
seg rec .seg number := rumber;
seg-rec.seg mode :=made;
segrec.protjlevel : byte(1);-rn

protecti on
seg rec.gate -number :=NULL INDFX; --no gate
segrec.gate~prot :tyte(6)

makekrown-segmvert (segrec, seg ret rec, success

end MK SEGrMENT;

procedure ATTACH TFW (10 PORT : in integer

LE111V : In integer) is

-- attach serial port writing

mode : attach struct;
success : integer;

begin
mode.dev name := siow;
mode.siow -rec.dev -num :=ioport; -- physical device
rnode.siow rec.dev type :=io; --device itself to be

used
mode.siow-rec.dev-id :=LDY.V; --logical device
mode.sicw-re-.rrrl := byte(1C-#04D#) --device

configurati on
mode.siow rec.mr2 :=byte(16#03'E#)
mode.siow rec.io -mode := asrt-rts;

attach-device(mode, success)

-4 end ATTACH TEW;

procedure ATTACH-TER(10 PORT : in integer;
LDFV : in. integer) is

-- attach serial port for reading.

modeoder : attach struct;
suc'cess : integer;

tegin
mode r.dev namre := sior;
mode r.sior-rec.dev-num := io-port;U 76

mr ode r.sior rec.dev type := io;
rrode r.sior rec.dev id := LDEV;
mcde r.sior rec.mrl byte(1;#04D# f;
mode r.sior-rec.mr2 =byte(16#03'#);
rmode r.sicr rec.io mode := asrt dtr;
mode r.sior rec.delim active := FALSE;
mode r.sior rec.delimiter := ,yte(13)
mode r.sior rec.maximum := i; -- only reads one

character at a time.
attach device(mode r, success);

end ATTACH TER;

procedure b24 FRM INTEGER (in val : integer;
b24_val : out b24_type. is

-- to convert an integer into a b24_type variable (3 bytes)
begin

b24 val.1yte2 := byte()
b24-val.bytel := hi(in val);
b24-val.byteO lo(in-val)

end b24_FRMINTYG'R;

end MANAG;

.'Z

a[.'

a.

1.,

-* 77

50M * ~ ~ . .~/-' ~ a

with agate, agatej, strlib
;ackage GEMIO is
use agate, agatej, strlib ;

procedure PUT iN (idev : in integer;
w class : in access class;

str : in string-);

procedure GETSTR (idev : in integer;
r class : out access class;

str : out string);

procedure PUTSTR (Idev : i!! integer;
w class : in access class;

str : in string);

procedure PUT DEC (ldev : in integer;
w class : in access class;

dval : in integer)

procedure PUTSUCC(instr : in string;
de- val : in integer;
w-cass : in, access-class

procedure TYPYANYK317TOCONTINUF (wclass : in
access class)

procedure BLKSCR C ldev : in integer;
w class : in access class);

end GFMIO;

7.,IW78

-- SS r**. hm

-- This package contains procedure to handle I/0 --

with agate, agatej, strlib;
package body GEMIO is
use agate, agatej, strlit;

STDIO W : CONSTANT integer 1;
STDIO-R : CONSTANT integer 0;

procedure PUTLN (ldev in integer;
w class : in access class;

str in string) is

-- put a string on device Idev with cr and if

out buf : string(82)
success : integer;
wt sio : wtseqstruct;
size--*str : integer;
CR : CONSTANT i!teer :=13;
LF : CONSTkNT integer := 10;

begin
out bur := str;
size str := length(str);

. out bu = out bur & char to str(character'val(CR))
out but := out lur & char to str(cbaracter'val(LF));
wt sio.device 7= ldev;
wt-sio.data off out buf'ADDRESS + 1;
wt-sio.data seg := getss();
wt sio.count : size str + 2;
wt sio.class := w class;
write sequential(wtsio, success);

end PUTLN;

procedure GETSTR (Idev : in integer;
roclass : out access class:

str : out string) is

-- get a string from' device Idev.

in but : string(62);
success integer;
rdsio : rdseqstruct;
rd-ret : rdseqretur.;
size-str : integer;

79

" Y-G I N

rd sio.data off := in buf'ADlRESS + I;
rd sio.device := ldev7

rd sic.data-seg := getss();
read sequential(rd sio, rd ret, success);
in buf(0) := character'var(rd ret.count);
str := in buf;
r-class := rd-ret.class;

end GETSTR;

procedure PUT STR (ldev : in integer;
w class : in access class;

str : in string) is

-- put a string on device ldev.

outI uf : string;
success : integer;
wt sio : wt seqstruct;
size str : integer;

* begin
out buf := str;
size str := length(str);
wt so.device := ldev;
wt sio.deta off := out buf'ADDRESS + 1;
wt-sio.data-seg : get ss(;

-. wt-sio.count := size str;
wt sio.class := w class;
writesequential(-wt sio, success)

end PUT STR;

. procedure PUT DEC(ldev : in integer;
w-class : in access. class;

dval : in integer) is

-- put the string equivalent of a integer on the terminal
screen.

out buf : string(10)

regin
out-tuf := Int to str(dval
put_str(ldev, vclass, out tuf)

5,'* end PUT DEC;

80

J _E9

S% ' ' " " - " " " W * , " , -" - 4 Z . " • """' . "•''" ' . "•" .

- , .1,% - ., . ., . . , , , ,<. . , . . . ,. .;-'.'. ... 2 .,'.-.

procedure PUT SUCC (instr :in string;
dec val : in integer;
w-class : in access-class) is

-- print a string and an integer cn device attached in
slot STDIO W

-- (should be a serial terminal).

begin
put str(STDIO-W, wclass, in _, tr)
put dec(STDIO-W, wclass, dec -val)
put-ln(STDIO-W, wclass,

end PUT SUIVC

*procedure TYPX ANY KFY TO CONTINUE(w class in
access class) is

rd -s t.r :string;
rd-class : access-class;

* begin

put str (STDIO t,w class, "t~pe any key to contir'ie",'
get -str (STDIO-R,rd -class Ird -str);
;ut-ln (STDIO.-W, wclass,rdstr);

end TYPE ANY KEY TO CONTINUJE

* pro~edure B1(SCR (ldev : in integer;,
w-class: in access-class) is

-clear screen and home cursor

out buf : string;
success :in~teger;
wt sio :wtseqstruct;
ESC : CONSTANT integer 27;

F :CONSTANT integer :45;

begin
out tuf :=c~rar to str(characterval(ESC));
out tuf' :=outbEuf & char to str(character'val(F71);
wt slo.device :=ldevq
wt sic.datacoff:=out buf'ADDRESS 1
wt sio.data seg:=getss0)
wt-sio.count:=2;

81

14
M

4 10
W,

wt sio class: =w class;
write-sequei-tial(wt-sio~ssuccess);

end BLK-SCR;

end GEMIO;

82

-- This package contains declaraticns for the --
-- application programs

with agate, arl;
package TABLES is
use agate, arl;

MAXPROC : CONSTANT integer := _;
MAX LEVELS : CONSTANT integer : 4;
TOP-SECRET : CONSTANT integer := 1;
SFCRET : CONSTANT integer := 2;
CONFIDENTIAL : CONSTANT integer := 3;
UNCLASSIFIED : CONSTANT integer 4;

type R1 PARAMETERS is record
entrystack : integer;
mentor stack : integer;
seg number stack : integer;
entrycode : integer;
mentor code : integer;
seg number code : integer;
entrydata : integer;
mentor data : integer;
segnumber data : integer;
evn count : integer;
evn count data : integer;

end record;

type R1_PARAM is array (1..MAXPROC) of rliparameters;

type LEVEL RECORD is record
min : access-class;
max : access-class;

end record;

type USERLEVEL is array (O..MAXLEVELS) of level-record;

type SHIPPARAM is record
paral : integer;
param2 integer;
param3 : integer;
flag z • boolean;

end record;

type RADARINPUT is record

83

-%'

radarl : integer;
radar2 : integer;
radar. : integer;
flagz : boolean;

end record;

type CHAFF OUT is record
chaff! : integer;
chaff2 : integer;
chaff3 : integer;
flagz : boolean;

end record;

type TFST MISSAGI is record
recl : integer;
rec2 : integer;
result : integer;
flag : boolean;

end record;

procedure LOADPARAMTO-4_CHLD (init in
rlp-rocess-def;

chpara out rl-param);

procedure LOAD ACCESS CLASS(init : in r1_jrocess def
usr access : out user level);

end TABLES;

48

w8

b

-- This package loads the parameters for the segments --

-- Also loads security parameters

with agate, arl ;
package body TAPLES is
use agate, arl

procedure LOAD PARAM TO_4_CELD (init : in rl-process def;
chpara : out rlparam) is

-- load the segments specifications

INITIAL : CONSTANT integer := 31;
NEXTNUMBER FREE : CONSTANT integer := 40;

prep : rlparameters;

begin
for i in 1..4 loop

prep.entrystack := i;
prep.mentor stack := INITIAL;
prep.segnumberstack :- INITIAL + i;
prep.segnurrbercode := INITIAL + i + 4;
prep.entrycode "= i + 6;
prep.mentor code = init.initialseg(2);
prep.entry data " i + 4;
prep.me-tor data :: INITIAL;
prep.segnumberdata NEXTNUMBER FREE + i - 1;

chpara(i) := prep;
end loop;

end LOAD PARAMTO_4_CHLD

procedure LOAD ACCFSS CLASS (init : in rltprocess def;

usr-access : out user-level) is

-- load user security levels

usr-level : level-record;

BEGIN
usr-level.rin.compromise.intV := 0;
usr level.min.compromise.intl :=;
usr-level.min.integrity.into := 0;
usr-level .min.irtegrity.int : 21504;
usr-level.max.compromise.int0 := 6;

85

usr -level.ra7'.cornpromise.intl 0= ;
usr level .riax.integrity. intZ 0= ;
ust level .max.integrity.irt1 : 215e4;

usr-access(TOP-SECRFT) := usr level;

usr-level.mrin.compromise.intO : 0;
usr-level.min.compromrise.intl 0
usr-level.m'in.integrity.int0 : 0;
usr-level.mir.integrity.intl : 21504;
usr-level.max.compromise.int0 : 4;
usr- level .aK compromise. in tl = o;I
usr lIevel. max. integrity. intO 0;
usr-level.mat.integrity.irtl :=21504;

usr-access(SECRET) :=usr level;

us4evlmi,;,~rmieinO 0

usr-level.min.conpromise.intl 0=Q;

usr level .min. integrity .int0 : e;
..usr level.mrin.integrity.intt 215e4;
usr level.max.compromise.int0 : 2;
usr level.max.compromise.iitl 0
usr level.ma!.integrity .int0 e=
u srl1e ve1. rax .iit e gr ity .in t 1 =21504;

- *.usr-access(CONFIDENTIAI) := usr level;

I.usr level.min.compromise.intO 0;
% usr-level.in.com'promise.intl :=0;

usr level.nin.integrity.inte z= e;
usr level.rrin.integrity.irtl: 21504;
usr level .max .comnpromise .int0 : e;
usr -level.rrax.compromise.intl 0= ;
usr level.rnax.integrity.int0 0 ;
usr-level.max.integrity.intl :=21504;

usr-access(UNCLASSIFIED) usr level;

end LOAD ACCESS CLASS;

end TAKLES;

86

%

4
-- Specification for the Create Process Package

with agate, agatej, arl, alit, alibj, manag, gemio, tables;
packcage CRPROCE is
use agate, agatej, at1, alib, alibj, manag, gemio, tables;

procedure FILLINIT(init : in rl_process-def;
ch Init : out rl_process def;

chaccess : in level recorH) ;

procedure TOCREATF PROCESS(iit : ir rlnDrocess-def;
ch_;are : in rl_peraeeters;

ch access : in level record;
prcces : in integer;

synchrseg : in integer;
success : out integer);

end CRPROCE;

p

! 87

Il

-- This package contains the procedure to c-reate --

-- processes

with agate, agatej, arl, alib, alit., gerio, manag, tables;
package body CRFROCE is
use agate, agatej, ar, alit, alibj, gem io, manag, tables;

-- Constants for device slots.

STDIC W : CONSTANT integer 1;
STDIO R : CONSTANT integer 0;
1OPORT : CONSTANT integer := 0; -- port zero fcr main
process

procedure FILLINIT(init : in rprocess-def;
ch init out rl process def;

ch acess : level record)-is

-- fill in the initial process record of a child
process.
.. - called by to-createprocess

begin
ch init.cpu := init.cpu;
ch init.num cpu : init.num cpu;
ch init.nurrkst := init.num kst;
ch init.root access :- init.root access;
ch init.s seg := 3;
ch-init.resources.priority init.resources.priority;

-- same as parent.
b24 frm irteger(1.0, ch init.resources.mencry);
ch hnit.resources.processes := 2;
ch init.resources.segmnts := 100;

-- this will be modified with the specific access class of
S-- each process

ch init.resources.m4 n class := ch access.min;
ch init.rescurces.rrax class ch access.max;
ch init.rirg num : byte(1);
ch-init.sp2 -0 1;

end FILLJINIT;

proredure TOCREATFPROCESS(init : in riprocessdef;
chpar : in rl-parameters;
ch-access : in level-record;

f 88

proces :in integer;
syrchrseg : in in*,teger;

success : out integer)is

-- process creation

4chldseg :rl-segstruct; -- rl-addr array for child 's
segment

ch -init :riprocess-def; -- rl-processdef for child
segrec :create seg struct; -- used to create stack segment
segl-mkn mk knstruct; -- used to make known stack

s egmen.t
segl~ret mk-kn return;
crt-rec :rlcpstruct; -- create process structure
chseglist : seg array;
w class -access class;
evc value integer;

*stack -size :integer;
segmrgr bytes : integer;
def off : integer;
defseg : integer;
rl def size :in~teger;

-constants for determining stack size

rl-stack-size : 'CONSTANT integer := 1#F#
vect size : CONSTANT integer :=4;

3 EGIN
Sw-class := ch-access.min;

seglmkn.mentor :=ch-par.mentor code;
seglmrrkn.entryx :=ch par.entry code;
seglmkn.segnumber := chpar.segnumber-code.
segi rrkn.seg mode := r -e;
segl mkn.prot level :=byte(1)
seg1_mkn.gatenurnber :=NULL INDFX; -- Io --ate

makeknownsegment(seglmkn, segi ret, success)

if success /= 0 then
put succ("Success value is ",suCcess,wclass);
put ln(STDIO_ W,w class",;

end if;

-- address spec for child's stack

chld seg.seg number :- chpar.seg.nurrer-stack;
chld -seg.seg mode := r w;
rhld-seg.swapin :=TRUE;

89

chldseg.prctect := byte(1)

crt-rec.rl-addrarray(0 chld-seg;

-- address spec fcr child's code

chid seg.seg number := chpar.segirber code;
chldseg.seg rode := r e;
chld -seg.swapin :=TRUE;
chld seg.protect :=byte(1)

crt-rec.rl-adr-array(1)chld-seg;

-- address spec for child's mentor

chid -seg.seg rumber := synchrseg;
chld -seg.seg rrode := a-a;
chld seg.swapin :=TRUJE;
chld-seg.protect :=byte(1)

crt-rec.rl-addr-array(2) =chld-seg;

-- address spec for trap handler segment

chid -seg.seg number :- init.initial-seg(4);
chld -seg.seg mode := r e;
chld -seg.swapin :=TRUE;
chld-seg.prctect :=byte(1)

* crt-rec.rl-addr-array(4) =chldseg;

-- address spec for child's data

chid -seg.seg number := ch par.seg number data;
chld -seg.seg mode := r w;
chld -seg.swapin :=TRUE;
chld-seg.protec7t :=byte(1)

crt-rec.rl-addr-array(3) =chldseg;

-- fill the order in which the segments will be passed

ch -seglist(0) =chpar.segnrumber -stack;
Ch -seg -list(1) :=c-h par.seg number code;
ch seg list(2) : syntrbr-seg;
ch seglist(V) : ch par .seg number data;

ch-seg-list(4) : it .Initi-alseg(4);U -- calculate required stac~r size.
-- (in the future will calculate based on data in "CMD"

go

..... * .

file header

but now just use constat.

sep,_rrgr_.bytes stack header'SIZE/S

(kst header'SIZZ/6)
stack_ size :=rl stack size + vect size + secgmgr-bytes

(rlprocess-def'SIZE/8

-- create ani make known child's stack seegment

segrec.mentor :=chpar.mentor-stack;
segrec.entryx :=ch par .entry stack;
segrec.lir~it :=stack size - 1
segrec..class :=ch access.rnin;

create segment(segrec, success)

if success /= 0 then
put succ("success value chsta i ,success,w-class);
put Tln(STflIO-W,w-class,*);

end if,'

seglmkn.mentor : ch-par.mentor-stack;
seglmkn.entryx : cli par.entry steck;-
seg1_ rkn.seg nu1mber :=clipar.seg number stack;
seglmrrkn.segmode :=r -w;
segi mkn.prot level := yte(1)
segl-mkn.gate rumber =N17LL INDFX;
seglmkn.gateprot :=byteZ e

makekrowtisegrrent(seglmrkn, segi ret, success

if success /= 0 then
put succ("success value miksta is ",siuccess,w _class);

end if;

swapinsegment(chpar.segnumberstac, success)

if success /= 0 then
put succ("success value swapsta ,is9success ,w-class);
Put ln(STtIO-W,w class,"");

erd if;

-- create and make known child's date segmenit

segrec.mentcr := chpar.mentcr-data;

LM91

seg-rec.entryx := chpar.entry data;
segrec.limit :=test m-essage'size/S;
seg-rec.class : ch access.mir;

create..segrnent(segrec, success)

if success /= 0 then
put succ("success value cbdat is ",success,w-class);
put ln(STDIOW,w class,*"");

end If,'

seglj~lkn.mentor :=cbpar.mentor data;
seglmrkn.entryi : chpar.entryEata;
seglymkn.segnumber := chpar.seg~numberdiata;
seglmkn.seg~mode := r w;
seglmkn.prot-level :byte(1)
seglmn.gate -number: NULL-INlFX;
seglmkn.gateprot :=byte(0

makeknownsegmrent(seglmkn, segi ret, success)

success /= 0 then
put succ("success value,*mkdat is ",siuccess,w-class);
put ln(STflIOW,w class, "

end if;

swapir'segment(cli par.seg rumber data, success)

if success /=~ I then
put -succ("success value swadat is ",success,w class);

end if?

-- fill iir chulds rlprocess-def

fill init(init, chinit, cli access

-- determine segment and offset of rlprocess-def initial
rec ord

def-seg :=libmk-sel(ldt table,
cli par.seg!numter stack)

def off :=stack-size -(vect..size + segmgr bytes +
r1_pricessdef'SIZE/8);

-- move ch-init into proper place in child's stack segment

rl def size :ri process def'SIZE)/E;
move bytes(get ss(T, chminrt'address, def seg, def off,

ri-def size)

92

-- fill in remain~er of create process structure

crt-rec.ip := 128; -- skciD corani
fil1e heade r (92 hex)

crt-rec.spz : def off; -- set childs stack
pc o .- ter

crt rec.spl stack size -(vect size + 5eg mgrbye

crt rec.sp2 0; - no ring 2 stack
crt-rec.vec-seg e= ; -- ri address array

! lement 0
crt rec.vec off :stack-size -vect size;
crt rec.child _num proces-1;
crt rec.priority := ch -init.resources.priority;
crt-rec.memory := ch-init.resources.mernlory.;
crt rec.processes := ch -init.resources.processes;
crt rec .segmnts := ch init.resources.segmrits;
crt rec.mnin class :=ch lnit.resources.mnin class;
crt rec.rnax class =ch-init.resorces.riax class;

-- read event count so we prepare for synchronization

read-evc~syncbrseg,evcval.ue, success)

-- create the process

create process(crt-rec, success
if success /= 0 THEN

put uc('create process success = ,success,

end if;
-as

await(synchrseg, evc value+1, success);-- tloclks and
await

g- ct o process created

end TO CREATE PROCESS
end CRPROCE;

93

*w~ ~~~ ~~~ A P ~ ~ . j~~-.s~jd ~~~~~ 0lh-V£ d A~& L

APPENDIX C

TEST PROGRAM LISTING

This program was developed following the general format

of the application program in Appendix A. The preparation

of this program to execute in thie secure environment is done

in the same way as the application program.

94

-- This package controls the operation of the test --

-- program

with arl, alit, alibj, agate, strlit, manag, tables, gemie,
crproce;
package body TOTIME is
use arl, alit, alibj, agate, strlib, manag, tables, gerio,
crproce;

-- constants

ST.IO W : CONSTANT integer :=,1;
STDIO R : CONSTANT integer 0;
IO PORT : CONSTANT integer = ; -- 0 port for main proram
HE : CONSTANT integer := 7;
-- variables

init rl_process def --necessary for all kernel
calls
ch table : rl_param;
ch level : user-level;
segrnode : seg access type;
ch tab : rl parameters;
ch-lev : level record;
w class : access class;
class : access class;
rd class : access class;
in choice : string;
test rec : testmessae;
mentor : integer;
entryx : integer,
defseg : irtezer;
def off : integer;
def size : integer;

, --'.size : irteger;
success integer;
segnumb. r integer
synchrseg inteper
choice integer
eve'value integer;

procedure INITIALIZATION is

begin

-- attach serial port for writing

attach tew (IO PORT, STDIO W);

-- a~tach serial port for reading

5% *95

AD-A17l 395 MODELLING OF A MULTILEVEL SECURE TACTICAL COMBAT 2/2
COMPUTER SYSTEM(U) NAVAL POSTGRADUATE SCHOOL MONTEREY
CA C B CAVALCANTI JUN 86

UNCLASSIFIED F/G 9/2

L A

111112..

11111!2 LA

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

attach-ter (IOPORT, STfIOR);

-- load parameters to create up to 4 children

loadparam_to_4_chld(init, chtatle);

--load access classes for Top-Secret, Secret, Confidential
and Unclassified .

load access class (init, ch_level);

-- prepare class for accessing main terminal

w-class := init.resources.min class;

end INITIALIZATION;

procedure STACKANDSYNCCREATION is

begin

creating segment for stack(parent).Will be unclassified
-- se as to obey compatibility property : segment compromise

.> , -- must dominate mentor compromise.

mentor := init.initialseg(2);
entryx := 5;
class := init.resources.min-class;
size "= 12P;

cr-segment(irt,mentor,entryx,size,class,success) ;

if success /= 0 then
put succ("success stack parent ",success,w class);
put-ln (STDIOW,wclass,",

end if;

-- makeknown this segment

seg-mode := r-w;
seg number := 31;

mk segment(init,mentor,entryx,segnuber,se_mode,success)

if success /= 0 then

putsucc("success make~kenown stack
parent.. success, w-classi;

put 1n (STDIO #,w class,),
end if;

96

-creating synchronization segment

mentor :=init.initialseg(2);
entryx :=6;
class :=init.resources.mnin cless;

cr-segment(init,mentor,entryx,size,class,success);

if success /= 0 then
put succ("success sync is* ,success,w class);
put-ln(STDIOW,w..class,"') ;

end if;

-- make1known this segment

seg-r..ode :=r w;
segnurrter := 51;

mksegrent(init,mentor,entryx,segnur.,ber,segmode,success);

if success /= 0 then.
put succ("success mkknown sync ,success,wclass);

edput ln(STDIOW, v~class,,)

synchrseg := segnumrber;

-- swepin this segment

swapin ~segment (seg number, success);

if success /= 0 then
put suc,7("sucress swapin .sync",success,w class);
put ln(STr.IIO-W,w-Class,",

end if;

end STACK AND SYNC CREATION;

procedure PROCESS CR~PiTION is

bgnput ln(STDIOW,w class, egir Process Creation");
type any key to continue (w-c lass);

-start creating processes in the system
-process 1 ==>Store and Display
-process 2 ==~Calci o> ne field passed
-process 3 ==>Calc2 ->field passed every loop

97

for I in 1_3 loop

ch -tat i= ch, table(i);
ch-lev := cli level(4);

to create process (iit ,ch tab,
chlev,1 ,synchr seg,success);

end loop;

end -PROCESS-CREATION

procedure MFNU (selection : out integer) is

-Present option to execute each timing program

begin
put ln(STflIO V,w class,:Execute with no GEMSOS calls");
put ln(STDIO W,w class,"12 mult/div 30000 times");
put ln(STEtIO W,w class, => < 1 j
put ln(STDIO W,w class, Exer-ute passing date 4 times");
.Put lr(STDIOW ,w class,',12 mrult/div , 300017 timres");'
put -ln(STDIO:W ,wclass , => < 2 >00);
put 1n(STDIO W,w class,"Execute passing data p/ lo~op");
putln(STfIO w-vcl ass,"12 rrult/div , M~ times"'

put ln(STDIO 'i,w class," < 3
put ln(STDIO , w~class, "E-xit => < 4)

get-str(STP)IOR,rdclass ,in choice);
if in choice = %" then

selecticn : 1;
elsif in choice ="2" then

selecticn 2;
elsif in~ choice = 3" then

selection :=3;
elsif In choice " 4" then

seliction :=4;
else

selection :=5;
end if;

eni1 MENU;

procedure START Is

begin
put ln(STPIOW,w class," Prep to time..
type ~any key to continue (w-class);

erd START,

procedure FINIS!T Is

98

bgnput-str(STDIO_W,w_class,

char to str(character'val(3EL));
put- an(STf I O-W,w-class ,"S-T 0 P) ;
type any key to continue(w class);

end FINISR;

procedure RECFIV-FM-STO Is

begin
def seg :

l ib Mk sel (ldt-table,ch-table(1).seg number data);
def-off 01 ;
.def size :=test message'size /G;
r'dv~bytes(defseg,defoff,getss(),

test rec'AflDRESS,def size);

end RECEIV'E FM STO ;

procedure PASS TO CALCi i-s

begin
defseg :

lib mksel(ldttable,chtle(2).seg_.!umtber_4ata);
def off := ;
def-size :=test-message size /2;
move bytes

(g~et ss(),test rec'ADDRESS,defseg,defoff,defsize);

end PASS TO CALC1

procedure RECEIVE EMOCALCl is

ch-table(2) .seg-nunmber-data);
def off 0 ;
def size :=test message 'size /13
movebytes(defseg,defoff,getss(),

test rec 'ADDR-LSS,def-size);

end RECEIVE FM CALCl

procedure PASS TO-CALC2 Is

begin
def seg

!itbmk sel(ldt-table,chtable(3').seg number data);
def off ::= 0;

99

def -size := test message 'size /e;
move -bytes

(-,et sso, test rec 'ADDRESS. def seg,lef off ,def si ze);

4 end PASS TO CAI.C2

procedure RECEM .rFM-CALCP is

bgndefseg:=ltbmksel (ldt table,
cht abl e(01)seg-numb er-da t a

def off := e;
def size :=test message size./8;
mrove bytes (def seg,def off ,gets sso

te st re c'ADDRES S ,de f s ize)

end RECFIV!FM-CALC?

procedure PASS TO STO is

begin.
def-seg :

lit mksel(ldttale,chtable().se..numterjdata);
def of? 0= ;
def size :=test message'size /e;
move bytes (get ss (), test rec'ADflRESS,

end PASS T OSTO

procedure CALC-NO-CALLS is

FIRST : CONSTANT Integer 10 i000;
SECONfl: CONSTANT i!rteger t=Mg

begin
s tar t
for i in 1...e loop

* *test ren'.restult :((1000 500 30e,) 0ie*
test rec.resiilt :((1000 500) 300 100
test rec.result :(C101000 / 5)e 3..1 100;
test reec.resiilt :=?C 50eee~ e) Xeo0) 10e;

end loop'
f i n i s h ;-- od o t e s m .p r i njutln(STfICW,w-class,"o do he sm ertn

twice");
put ln(STDIO_.W,w~elass,"*cal1culate the loop ccnitrol

timre sa;

100

for I in l...,0zee0 loop
test-rec.result 1=(0000 50 'e)~20 100te;
test rec.result 1=(0000/ 500) * 00) 1ee;
test rec.result looo ((e ,e ~)''zoo lo/oe;
test rec.result :((10000/ 500) 300 10 ie;
test rec.result 1000 500ec 1se 300 1 30;
test rec.resiilt 10((i000 /500) 30e) IMe
test rep.result 1000 500ee /se 300 100ic;
test rec.result :((10000 /500)*300 10/0e;

end loop;
finish;

end CALC NO CALLS;

procedure CALC-ONFEPASS is

begin
start;
advance(chtable(l).seg.number.stack,success);
read evc(synor seg,evc value,success);
await(synchr_seg,evcvalnie+l,succesc'1;
receive fm sto;

--pa s sto-calcl1;
advance~ch table(2).seg number stack~success);
readevc(sinchrseg,evc-value,success)l
await(syncbrseg,evcvaue~l,success);
receive fm calcl;
pa ss t s to;
finish;
advance(ch table(l).seg number stack,success);
readevc (synchrseg, evc-value ,success);
await(synbrseg,evcvalie+l,success);

end CALC ONY PASS;

procedure CALC PASS ALL Is

bgnstart;
for i in i..3eo loop

advance(ch table(l).sepgnumber stack,success);
read ec(s~nc1hr seg evc value, success)l
await(synchr-seg,evcvaluel,successN
receive-fmst o
passto calc2;
advanceTch-table(3).seg-numerstack,succe,,s);
read evc(synchr seg,evc value,success';
await(synchir.seg,evcvalue-6l,success),
receive fmy calc2;
pass-t ost o

101.

end loop;

finish;

end CALC ASS-ALL

procedure SILFDELFTION is

begin
test rec.flag := true;
for i in 1.0~ loop

def-seg :=
lib-mksel(ldttable,chtale(i).seg'numberdata);
lef-of't OT
def-size :=test message'size /Y,
move bytes (defseg,defoff,getss(),

test rec 'ADDRESS,def size);
advancetch-table(i) .seg number stack, success);
read evc(synchrseg,evcvalue,success)D
await(syncbr seg,evc value~l,success);
put succ("self deleted ",i,w class);

-end loop;

end SELF DEIFTION;

procedure DELETEPROCESSSE~mENT is

begin
for i in 1.03 loop
child-delete(i-1, success);

terminate segment(rh table(i).seg number stack,success);
terrinatesegment(th-table(i).segnurrberdata,success);
terminate segmert(ch-tatle(ii'.seg number code,success);
delete segment(ch table Ci) .mentor stack, i,success);K delete segiment(ch-table(i?.rentordata,i.4,success);
delete-sement(ch -table(i).me'tcrcode,i46,success);
put-succ(deleted ,i,w class);
end loop;

end DILFTI-PROCFSS-SIGMFNT;

procedure DZLETEMENTORSYNC is

begin
delete segment (init.initial seg(2), 6, success);
terminate segment (51, succeis),
delete segment (init.initial seg(2), 5, success;;
terminate segment (31 ,success)l;

102

end DELETE-MENTOR SYNC

procedure DELETIONALL is

begin
self -del eti or;
delete processsegment;
delete mentor sync;
put lnTSTDIO _W,w _class," 0. K.)

end DELETIONALL;

procedure PREVENTTRAP is

begin
success := 0;
while success =0 loop.

success 0= ;
end loop;

end PREVENT-TRAP

__#- O##t MAIN PROGRAM#########

meinIit := get rldef(); --must be the first statement
lib set bracket(1,1,1,init.resources.min.class);
initialization;
s tack and synrc creat ion ;
process creation;
test rec.flag := false;
loop

meru(cheice);
case choice Is

when 1 0) caic-no-calls;
when 2 0> calc-one pass;
when 3 0) calcpass~a11;
when 4 =)exit;

*when 5 =)null;
end case;

end loop;
deletior-all;
preventtrap;

end TOTIME

103

D MON W IVNOWA

-- This Package simulates the stcre process in the test --

-- prcgram-

package body STODISP is
use arl, ma.ag, gemio, agate, tables, alib, alibj;

-- constants

STDIO W : CONSTANT integer 1;
STnIO-R : CONSTANT integer := ;
Or PORT : CONSTANT integer 3,03

-- variables

init : rlprocess_def;
w class : access-class;
test rec : testmessage;
defseg : integer;
def off : integer;
def size : irteger;
suc.,'e ss : integer;
evc ch-val : integer;

proredure RXCFIVEFM PARXNT is

begin
def seg := lit mksel(ldt table, init.initial seg(3));
def off := 0;
def size := test message'size /8;
movebytes(def_seg,def_off,gets(),test rec'ADDRESS,

def-size);

end RECEIVE FM PARENT;

procedure PASS TOPARENT is

begin
def seg :=lit mnk sel(ldt table, init.initial segW);
def-off 0= ;

def size := test message'size /8;
move bytes'get -ss() test rec'ADDRESS,def seg,def off,

Aef size);-

end PASSTOPA3ENT ;

104

-MAIN PROGRAM

beiniit := get rltde.-fo

-- attach terminal to write

N attach tew (10 PORT,STDIOW)J;
w class := init.resources~mmn-class;

--attach terminal to read

attach ter(IOPCRT,STDIO R);

put ln(STDTO _W,w_class," STORAGE AND DISPLAY READY ')

-advance eventcount of synchro segment path :3,6 plsn 51
-passed to child as cli seg list(2).
-Will be called in cbird as- init.initialseg(2)

advance (init.iritial-seg(2) ,success);
.read evc(init.initial seg(O'),evcchval,sucress);

awa~fini~iital-e-(0,evcchval+l,success),

* loop
pass to parent;
advarceTinit.initial seg(2) success);
read evc(init .initial seg(WS,evc cli val, success);
await~init.initialseg(0),evcch-vel+,success);
receive fmparet;
advance~init-initial seg(2),success);
read evc(init.initial seg(O),evcchval,success);
await~finit.initial-seg(0),evcchval+,success);
rec eive fm pa rent;
if test rec.flag then

exit;
end if;

end loop;

advance(mnit.mnitialseg(2),success);

-dettach and delete

detach device(STDIO R, success,;
detachidevice(STDIO-W,success);
self-d-elete(init.initial seg(2), success);

end STO'ISP

105

-- This package performs one of the timing tests --

with arl, manag, gemio, agate, tables, alit, alibj;
package body CALC1 is
use arl, manag, gemio, agate, tables, alit, alib.1;

-- constants

STDIO W : CONSTANT integer := 1;
STDIO R : CONSTANT integer := 0;
IOPORT : CONSTANT integer := 5;

-- variables

init : rliprocessdef;
w class : access class;
test rec : testmessage;
defseg : irteger;
def off : integer;
def size : integer;
sucedss : integer;
evc-ch-val : integer;

pIrocedure RECEIVEFMPARENT is

% begin
def seg := lib mk sel(ldt table, init.initial seg(3));
def off := ..
def size := test message'size /8;
movebytes(def seg,def off,getss(),

test rec'ADDRESSief size);

end RECFIVEFMPARENT;

procedure PASSTOPARENT is

begin
def seg .' lib mk sel(Idt table, init.initial seg(3));
def off := 0;
def-size := test message'size /e;

6 1movebytes(getss(), testrec 'ADDRESS,
def-seg,def off,def size);

end PASSTOPARYNT

-- MAIN FROGRAm

106

ll

begin
init := get-ri-def 0;

-attach terminal to write

attach tew (10 PORT,STDIc w);
w class := inilresources'min class;

--attach terminal to read

attach ter(IOPORT,STDIO-R);

put ln(STDIO W,wcless," CALC ONE PASS READY "

advance evertcount of synchros rn path 5,e plsn El

-'iill te called in child as init.initial -s eg(2)

advance (init.initlal seg(2) ,success);
read evc(init.initial.seg(),evc ch val,success);
await(init.initial-seg(01),evc-chvafl,success)l;

receive fmrparent;
if test _ rec.flag then

exi t;
end IP;

for i in 1..'. '0000 loop
test rec.result U10000 /500) 00 100;
test rec.result U100/ 500) _ /. 0 1 2
test rec.result : IU1ZOO0 500) .300 /122;
test rec-result :~U10170 / 500) 300)/100;
end locp;

pass-to parent;
advanceTinit.initialseg(2),success);
read evc(iriit.intial seg(O),evc-chval,success);
awaittirit.initial-seg(0) ,evc ch val+1,suiccess);

end loop;

advance(irit.initlal-seg(2) ,success);

-dettach and delete

detach device(STDIO-R, success);
detach device(STDIO W,success);
sel±>..dlete(init.initialseg,(2), success);

end CALCI

107

with art, manag, gemio, agate , tables , alib, alibi;
package body CALC2 is
use arl, manag, geria, agate , tables , alit, alibi;

-- constants

STDIO W : CONSTANT Integer :=1;
STDIO R : CONSTANT integer :=0;
10 PORT : CONSTANT integer :=6;

-- variables

init : riprocess def;
w class : access-class;
test rec : test message;
success : irteger;
evc-ch-val : integer;

defseg : integer;
def off : integer;
def size *: integer;

procedure PASS TO PARENT is

begin
def seg :=lib mk sel(ldt table,init .initial-seg(3));
def-off :=
del' size :=test message 'size /8;
move bytes(get.ss(),test-rec'ADDRESS.

def-seg,defoff,defsize)l

end PASS TO PARI'T

proredure RECEIVE IM'PARYNT is

tegin

def-off 0; -;
del' size :=test message 'size /8;
mnove bytes(def-segp,def off ,get..ss(),

test rec ADDRESS,def size);

end RECEIVE -'M 17PARENT;

-- MAIN PROGRAM~

108

begin
init := get-rl-defo;

-attach terminal to write

attach tew(10 PORT ,STDIO W);
w-class := init.resources.min class;

-attach terminal to read

attach..ter(IO-PORT,STDIO-R);

p~ut ln(STDIOW,w class," CALC2 PASS EVERY LOOP READY");

-Advance tbe eventcount of the synchronization segment
-path 5,6 , plsn 51 , passed to child as chseglist(2).
-Will be recognized in child as init.initialseg(2).

advance(init.initial -seg(2),suCcess); -- this will
permit creaticn of processesto go on

-read evc C mit. initial-seg(0) ,evc ch val ,success);
-- stack to sync

await(iinit.ritialseg(0),evcchval+l,success);
-- control sent back to creation of processes

loop
receivefmparent;
if test rec.flag then

et;
end if;
test rec result :((10000 / r00- 300z~ 100iS;
test rec.result :((10000/ 500 3 00 10/0o;
test rec.result :=(10000 /500)*300) 100;
test ree.result : C12000 500) 300 10 te;
pass to parent;
advanceTinit .initial seg(2) ,success);
read evc(init.initial sej(O),evcchval,success);
await(init.initial-se (0) ,evcchval+l,siiccess);

end loop;

advance(init.initial-seg(2),success);

-detach and deletion

detach-deviece(S -TDIO R, success);
detach device(SITDIO-W,success);
self delete(irit.mnitialseg(2),success);

109

end cALc2;

110

iiiiii OEM %

APPENDIX D

SIMPLE ACCESS PROGRAM LISTING

This program presents a very simple program, with the

purpose to show the basic steps necessary to be able to

access the secure system. Different from non-secure

systems, the terminal is not automatically a part of the

system, and as shown in this program, a GEMSOS gate call is

necessary to include a terminal in the system.

111

-- Sample programr to access the system -

------------------- i----------------------------

pragma rangecheck(off);pragma debug(off) pragma
erithcheck(off A
pragrna enurrtab(off A;

WITH agate, anl, alibj, util, manag ,gemio;
PACKAGE BODY alo IS
USY agate, anl, alibj, util, manag ,gemio

-- Constants for device slots.

STfIOA : CONSTANT integer 1= ;
STDIO R : CONSTANT integer :=0;
IO-PORT :CONSTANT integer := 0; port zero for main
process

-- Vriables used by main program.
w class : access-class; - AGATE
Vit : rlprocess~def; -- ARi
mentor :integer
entrx integer;
size :Integer
success : integer;
class : access-class-;
seg mode : segaccesstype ;--AGATE
seg number : integer
-- MAIN
WFGIN

init := get nldef(); -- AR1
lib-set-tracket(1, 1, 1, init-resources.minclass)

-- attach serial port for writing.

attach-tew(10 PORT, STDIOW); --MANAG
w-class := init .resources .mimnclass;

put ln(stdiovw,w~class, "HELLO COMPLICATED WOWLD);

-- attach serial port for reading.

attach-ter(I0 PORT, stdio r); -- MANAG

put ln(stdio w,w class " now I will create a segm~ent");

type any key to continue (w..class);

112

-creating segment for STACK (parent)

mentor := irit.initial-seg(2);
entrx :=5;
size :=1023
class := init.resources.min class;

crsegment(init, mentor, entrx, size, class, success);

put ln(stdiow,wclass,**now I will
make the segment known*)

type any key to continie (w class);

-- makekriown, segment created

seg mode := r-w
seg-numrber :=31;

mk segmeat(init, mentor, entrx,segnumber,segmode,success)

piut ln(stdiow,wclass,- Ate logo (good bye)");

-- Infinite loop to prevent trap.
success := 0;
while success = 0 loop

success 0= ;
evmd loop;

end alo;

113

APPENDIX E

SUBMIT FILES LISTING

This appendix presents the submit files used for the

sysgening of the application program, the testing program

and the simple access program.

N

114

-- SU'3MIT FILY FOR APPLICATION PROGRAM -

Ics:ld3.cmd

ks:kl .cmd
lcs:k~ll.cmTd
cs :12 . cmd
cs:vlloader.cm'd 2;
ds:vllogin .cird;2 10;
ds :nv.ds ;2 ,5;
ds :nv .ds;5
ds:themairn..md;5,0;
ds: radar.cmld;5,7;
ds:cornpute .cmd;5,s;
ds:ciaf f .cmd;5,9;
ds:rltrap. cfd;6
end

215

-- lSUBMIT FILE FOR TEST PROOnAM

ts:ld.c cmd
ks:kO .cmd

ks:lcmd

cs :vlloader.cmd; 2;
ds :vllogin .crd ;2 ,I;
ds:nv.ds;2,5;
ds:"v .ds;5;
ds :totime. cmd ;5,0;
ds :stodis .cmd; 5,7;
ds:calcl.cmd;5,E;
ds:calc2.cmd;5,9;
ds:rltrap.cmd;6;
end

N26

-- SUBMIT FILF FOR SAMPLE PROGRAM --

b s : 1 d 3. c rrd
ks:kO .cmd
ks :kl .cmd
ks:k~h.cmd
ks :k2 .cmd
cs:vlloader.cmd 2;
ds:vllogin .crd;2,10;
ds:nv.ds;2,5;
ds:nv.ds;5;
ds:alo.cmd;5,0;
*5s:rltrap.cmd;6;
end

117

LIST OF REFERENCES

1. Allworth, S., Introduction to Real-Time Software Design,
Springer-Verlag New York Inc., New York. 1961.

2. Department of Defense Computer Security Center, Ft.
Meade, Md., Report CSC-STD-OO-83, DOD TRUSTED COMPUTER
SYSTEM EVALUATION CRITERIA, 15 August 1985.

3. Ames, S., Gasser, M., Schell, R, "Security Kernel Design
and Implementation: An Introduction," Computer, v. 16, no.
7, July 1983.

4. Gemini Computers, Inc., Carmel, Ca., System Overview-
Gemini Trusted Multiple Microcomputer Base, 11 May 1984.

5. Gemini Computers, Inc., Carmel, Ca., GEMSOS ing
User's Manual for the Janus/Ada Language, December 1985.

6. Boebert, E., Kain, R., Young, B., "Trojan horse rolls up
to DP gate," Computerworld, 2 December 1985.

plie

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

.3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

4. Dr. Uno R. Kodres, Code 52Kr 3
:Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Lt. Philip J. Corbett, USN 1
72 Pilgrim Rd.
Concord, Massachusetts 01742

6. Daniel Green, Code 20F I
Naval Surface Weapons Center
Dahlgren, Virginia 22449

7. Capt. J. Donegan, USN 1
PMS 400B5
Naval Sea Systems Command
Washington, D. C. 20362

8. RCA AEGIS Data Repository 1
RCA Corporation
Government Systems Division
Mail Stop 127-327
Moorestown, N. J. 08057

9. Library (Code E33-05) 1
Naval Surface Weapons Center
Dahlgren, Virginia 22449

119

10. Dr. M. J. Gralia aI
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20707

11 Dana Small, Code 8242
NOSC
San Diego, California 92152

12. LCDR Claudio Bailly Cavalcanti, Brazilian Navy 2
Brazilian Naval Commission

*., 4706 Wisconsin Ave. N. W.
Washington, D. C. 20016

13. CDR G. S. Baker, Code 52Bj
Department of Computer Science
Naval Postgraduate School
Monterey, California 93944

120

@V,
vIle

'V

vi

.1*,
'p.

4

~dV ~
1%*.

