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1. INTRODUCTION

The problem of electromagnetic coupling to a cavity
through an aperture is an old problem. For an extensive list
of references see [1]. A number of problems are sclved by
the so—called generalized network formulation for aperture
problems [21-[4]. In this method, the aperture is closed by
a perfect conducter, a sheet of unknown magnetic current M
is placed on one side of the shorted aperture and M is
placed on the other side. This insures continuity of the
tangential electric field across the aperture. Next, the
tangential magnetic field is forced to be continuous across
the aperture,; resulting in an integral equation for M. M is
found numerically by following the method of moments [S].
Unfortunately, this methed can be easily implemented only
when the aperture is in a perfectly conducting infinite
plane so that image theory [6,Sec.3-4] may be applied to
find the fields due to M [3]1,[4].

When the aperture is in a finite curved surface, the
fields due to M (or M) radiating in the presence of the
complete conducting surface are difficult ¢to find. The
complete conducting surface is the conducting surface with
its aperture shorted. The present report gives an accurate
solution to such problems. We recognize that the problem of
obtaining the electromagnetic field due to M is a scattering

problem in which the impressed source is on the scatterer. A
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’ similar static problem was solved in [7] by a methed in

ff which a pseudo—image was used in order to improve the

?; numerical accuracy. For reference, we call this method the

;

' pseudo—image method. With this in mind, we approach the

A

@ problem by following the generalized network formulation

§ method until the peoint of finding the fields due to M

’ radiating in the presence of a complete conducting surface.

R/

;f We then solve this scattering problem by placing an electric

Ef current J on the complete conducting surface, introducing

{

g the pseudo-image as in [71, writing the electric field

f? integral equation for J and finally sclving this equation

;E for J by the method of moments ([S]. As shown in the

A following sections, the theory developed in this way works

Y

% very well for a non-resconant cavity formed by the complete

? conducting surface. However, it fails when the cavity is
resonant. Further study is needed to treat this special

B

p case.

% Section 2 states and formulates the general problem
shown in Fig.1. The theory developed applies to both tweo and

? three dimensiconal problems. In a two dimensional problem,

? all quantities are invariant in one direction, for instance,

; the z-direction. Section 3, which is essentially the

¢ application of the theory developed in Section 2, sclves the

i problem of electromagnetic scattering from an infinitely

@ longs infinitesimally thin, perfectly conducting cylindrical

ﬁ surface with an infinitely 1long slot illuminated by a

§ uniform TM plane wave. Section &4 gstates the numerical
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results obtained for the problem of Section 3. Various
methods are compared to show how well the pseudo-image
method works. Appendix A evaluates some of the complicated
integrals appearing in Section 3. Appendix B summarizes a
method for the aperture problem in which the aperture is not
closed by a perfect conductor and only an unknocwn electric
current J 1is placed on the conducting surface. This method
fails to give accurate fields inside the cavity when the

aperture becomes very small.
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:yj 2. FORMULATION OF THE PROBLEM

\

Hay

ﬁﬂ 2.1 Statement of the Problem

iy

,,lp‘

(F e

ﬁ$ The problem to be considered is shown in Fig.1 where

electromagnetic coupling cccurs throcugh an aperture of

§$ arbitrary shape in a perfectly conducting body which may
i‘ have finite thickness. If the aperture were closed, there
;{ would be a cavity. Some additional complete perfectly
:? conducting boedies may exist either inside or ocutside the
%}; cavity, or both. To keep the formulation of the problem

simple, we consider the case where only one additional

§ ' complete conducting body is 1located outside the cavity.
R o)
i Other cases are just straightforward extensiocns of the case

under consideration. A homogeneous medium with permeability
R R and permittivity € fills all space ocutside the perfectly
' conducting bodies. The perfectly conducting body with an

aperture is specified by its internal surface, denoted by

;? S,» and its external surface, denoted by So. (Of course, if
i)

tﬁ, the body has zero thickness, then the internal and external
; surface will be indistinguishable.) The additional
é% perfectly conducting body is specified by the surface Sa.. It
g& does not matter whether ¢this body 1is hollow eor solid
;$ because, due to the fact that Sa. is clesed, ne field can
g{ penetrate it. The cross sections of the conducting bodies
et

;{ are shown in Fig.1. The problem is two dimensicnal if

A IOONOLKIKMI R M) DO SO O, a0 e Ay LY O S T e A e LT A y
<e.‘"r.’}-"""n."v,’!‘:l-‘eg\.-)t‘f‘h'r,‘l"lj.\,ﬂ’-n ‘.‘4.\4 .Q ﬂ‘:.‘!‘v."ul‘»".‘al O.I.D .t,l" ' } ¢ ".5.!, », .n. O W "* J.' 2 -b ) ) B Fy "



< everything is invariant in the z-direction. In this case the
£§ conducting bodies are infinitely 1long cylinders and the
E;j aperture is an infinitely 1loeng slot. We formulate the
e problem without mentioning whether it is a three- or two-
ﬁf* dimensional problem.

:§5 Next, we define the symbols appearing in Fig.l.
e (Jr~> , M) denotes the known impressed electric current
?%; source and impressed magnetic current source. (Eyrme Hr"E)
;ﬁa denotes the fields that would exist if (JrmP,Mi™P) were to

-
-
»

radiate into unbounded, homogeneous space with (p,€)

1ol
LR 5

“l
¥

everywhere. Region b denotes the space inside the cavity,

N
o

;:ﬁ and region a denotes the space external to the cleosed
250

. surface that consists of Sa and the aper ture.
-

§ 3 (Err=+Ea,Hr"=+H*) denotes the total field in region a, and
%:! (E®,H®) denctes the total field in region b. The objective
if is to determine these total fields. In turn, related
2§: quantities such as power gain and polarizability can be
g; easily determined. Also, we want to investigate how Bethe
t.' hole theoryl(8l,[9]1 should be modified when a small aperture
¢§ (compared to wavelength) is in a finite perfectly conducting
;bl cavity instead of in an infinite ground plane. Finally, we
%{ state the boundary conditions required for sclving this
L

?p problem. First, both the tangential electric field and the
[/

%& tangential magnetic field must be continucus acreoss the
é; aper ture. Second, the tangential electric field on the
;fs perfectly conducting surfaces, i.€.; On Ses S, and S. must
'zﬁ be zero. With this in mind, we proceed to the next section.
2.4
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‘;:' Fig. 1. Original problem: Electromagnetic coupling through an

, arbitrary shaped aperture in a conducting body. (Only
heX a typical cross section is shown; the shaded area denotes
a perfect conductor.) Impressed sources iimp and Mi™
radiate in the presence of surfaces Si’ Se, and S;.

q .3

o A s \
‘q w",‘l KR h‘nl‘l.! i,

T gt L e e G VL O ¢ ' h g ' J
B R AN DA N AR A R DA T X A L MR SACR S ATV



:\, 7
i
5
E
@fw 2.2 Derivation of the Operator Equation
;ﬁ: The situation considered in Fig.1 is rather
b complicated. The approach that we take is to decompose the
&3 problem into two parts. The point of departure is the
}_‘ equivalence principle [6,5ec.3-5]. The aperture in Fig.l is
e

first closed by a perfectly conducting flat plate. (If, in a
,§£§ three dimensional case, it is not possible to close the
ifg aperture by a flat plate, then special treatment is needed.)
| Then the magnetic current sheet M is placed on the left-hand
if% side of the flat plate and M is placed on the right-hand
‘ii side of the flat plate. The M is defined as
f‘; M= E xp (2-1)
-
iﬁ; where n is the unit normal vector on the aperture, pointing
:; toward region a, and E is the electric field in the aperture
;§' in Fig.1. 1In this way, the boundary condition that the
aﬂi tangential electric field is continuous across the aperture
‘ is satisfied. The combination of S. and the flat plate is
gzé called S:== and the combination of S, and the flat plate is
égﬁ called ST . (Superscript sc stands for short circuit since
lf the closing of the aperture can be viewed as the short
:ji circuiting of the aperture). The equivalent problem is shown
:r: in Fig.2. Before the problem in Fig.2 is actually equivalent
é? to the problem in Fig.l, we have to impose continuity of the
;% tangential magnetic field across the aperture, as required
y in the original problem. Namely,

~ oy .
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He (Jrme  MAmP ) 4H (B M) =He (8 ,-M) on A (2-2)

where A denotes the flat plate shorting the aperture. The
subscript t in (2-2) denotes the component tangent to A. In
(2-2); H®2(-,-) is the magnetic field cperator in region a
with the scurces indicated in the parentheses (-5-)
radiating in the presence of S:cand Sa. H®2(-,-) 15 the
magnetic field operator in region b with the sources
indicated in the parentheses (-,-) radiating in the presence
of S:T Actually,the "a" fields on the left-hand side of (2~
2) are evaluated not exactly on A but immediately to the
left of any electric current that could flow on the flat
plate. Moreover, the "h" field on the right-hand side of (2-
2) is evaluated not exactly on A but immediately tc the
right of any electric current that could flow on the flat
plate. Each magnetic field in (2-2) has two arguments. The
first argument is an electric current source and the second
argument is a magnetic current source. Equation (2-2) states
that the tangential magnetic field must be continuocus across
the aperture.

The impressed sources J*™ and M* and the boundary
conditions on the fields on Ay, Sis Sasy and S, in Fig.2 are
the same as in Fig.1. It is evident from [16,Theorem I] that
the electric field in an infinite region cutside a closed
surface is uniquely specified by its impressed sources in

the region and its tangential components on the surface.

Consequently, the fields in Fig.2 are identical toc those in

QGG ; G e e Y 5 W ) O A Ry R R TRl ;
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(1 ,€)
E(I"™M'"™)1EOM)
204 HOF ™ M) HOO,M)

:33 shorted
> aperture

e Fig. 2. The equivalent problem as viewed in the xy plane.
The space inside the cavity formed by S?C is called

)
%a, region b and the space outside S:C is called region a.
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Fig.l so that the problem in Fig.2 is equivalent to that in

Fig.1. Comparing Fig.1l with Fig.2, we find that

(g:n:.pg-,t’tﬂc-q-t!-)z (2-3)
{(Ea(Jrme Mrme) +E2 (G ,M) sH=(J* ™" ,M2r™R) +H=(F,M) 3

in region a

(E®y HP )=(E®(8,-M) ,H> (Z,-M)) in region b (2-4)

The electric fields on the right-hand sides of (2-3) and (2-
4) correspond to the magnetic fields in (2-2). E=(-,-) is
the electric field coperator in region a with the sources
indicated in the parentheses radiating in the presence of
S:c and Sa. EP(-s-) is the electric field operator in region
b with the sources indicated in the parentheses radiating in
the presence of S:c. For example, EP(8,M) is the electric
field in region b due to -M placed on the right-hand side of
the flat plate that shorts A.

To find the unknown magnetic current M, we appeal to
{(2-2). Rearranging the terms in (2-2) and using the
linearity of the operators, we obtain

“He(BsM)—He (B:M)=He (Jtme ,Mrme) on A (2-5)

2.3 Numerical Solution of the Operator Equation

To find M using (2-5), we first approximate M by

M=2Z Vs Mn (2-6)

lal
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- where M, are known (to be chosen) vector expansion
functions, and V,, are scalar coefficients. Substituting (2-
:&3 6) into (2-5), we have, by the linearity of the operators in
(2-35), :

\
Q" f" - (-] -
whed T Vn(-He(B:M)~He(B:Mn) )=Ho (T me M2 me) (2-7)

Lol

Next, we define a symmetric product as ‘

ks < AsB >= I A - Bds (2-8)

]

?5 where A and B are vector functionss S 1is the surface on

Wy which they are defined, and ds ic the differential element
of surface area on S. Taking the symmetric product of (2-7)

d with My, m=1,2,---, we obtain

-» -
[LY=]+[Y®] V = Jane (2-9)
- - -
) where V and 1*"< are coclumn vectors. The n®*" element of V is
-5 2 e

;mn Vna. The m®" element of I*™= is I. given by

aAncs -

Im ={MmsHe(J2 P ,M2™P ) (2-10)

A
;g) Moreover,[Y®2] and [Y®P] are square matrices whose mn*"
¥

e | elements are given by

.‘..“ - -

e Ymmn = —=| Mm + He(@:Mn) ds (2-11)

1 -]
e Yo = —=| Mm « He(@,Ma) ds (2-12)
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e
e
e
S In (2-11) H*(@8,M,) is evaluated on the region a side of A.
E[, Similarly, in (2-12), H®(8,M,.) is evaluated on the region b
B . - >
B, side of A. If [Y¥Y+], [Y®]), and I*~= are found, V can be found
BN
A 1

by solving the set of linear equations given in (2-9). A
é& standard computer routine for this purpose 1is available.
0
Wt
hul Substituting (2-6) into (2-3) and (2-4), we relate each
1 "
'n",.

field component in those two equations to the fields due to
o
?k the known expansion functions (sources). Now the problem of
¥
55 finding the fields due to the unknown source M is reduced to
et
L the problem of finding the fields due ¢to known sources
Sﬁ radiating in the presence of complete perfect conductors.
SO
ks &
32 The fields in each region can be written as follows: In
J‘o"

region a,
C%E
:¥ Errc=+Es = Ea(Jr P , M2 )+ V., E=2{(F,;M,,) (2-13)
Ex Y L)
Sy

4 Hi =4+H® = Ha(Jrme ,M2me )+F V,, H*(B,M,) (2-14)

:E'l : n
?ﬂ In region b,
i
8
. E® = -Z V,, E®P(G, M) (2-13)
MY [
8
o H> = - Vn H®(8,M.) (2-16)
i Qb n
by
‘ﬂi The fields on the right-hand sides of equations (2-13)-(2-
;g 16) have the same meaning as in (2-3) and (2-4). The fields
8
e on the left-hand sides of (2-13)-(2-16) are those in the
Eﬁ: original problem Fig.1.
L
a\"
;¥ In the following sections, we evaluate the fields on
2§
1',;
g the right-hand sides of (2-13)-(2-146) one by one. The

BLUOEDGUICONERGO0) gtalg‘:}_lg'\ B e “ O Wa A\ CRNL AR Y L ACOA " A X PO T 28 DA
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results cbtained are not only substituted inte (2-13)-(2-16)
but alsoc into (2-18)-(2-12) to find the coefficients of the

magnetic current expansion functions, i.e., Vas N=1,2,---.

2.4 Short—-Circuit Field due to the Impressed Sources

(E=(J2™P ,MrmP) H2(J2™",M2™P)) in (2-13) and (2-14) are
the fields in region a due to the impressed sources
(Jr~»,M2"®) radiating in the presence of S:.= and Sa (See
Fig.2). These fields can be viewed as the sum of the fields
due to the impressed sources radiating in an unbounded
homogeneous space with (g,€) and the fields due to the

-

electric current induced on S. and S. radiating alsc in the

unbounded homogeneocus space with (p,;,€). Namely, in region a,

E-(gtmp ’ﬂtmp) = gsnc...g(l-n,g) {(2—-17)

He(Jsmp,Mimp) = HimesH(J=x,0) (2-18)

where (E*m=,H*"=) is defined in the last paragraph of

section (2.1)5 (E(J*">,8),H(J="*,8)) are the fields due to

induced current J®* on S, and Sas radiating in an unbounded

homogenecus space with (p,€).

On the surfaces of the perfectly conducting bodies Sa

i and Sa.

nded

PO,

Io )

Y .

vi'ld - ne

rbl Ee(Jr™P Mrimp) = E, +Eo(J™*,@)= & (2-19)
iy

\ %

where the subscript t denotes the component tangent to
L1

: either Sea or Sa.. Rearranging (2-19), we obtain
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A me
_Eg(l.”’g) = E. (2-26)

on Se and Sa
The electric current J=* ic approximated by

-
g-"= Z I, l, (2—21)
3

where {J,} are expansion functiocns that are chosen later

when particular impressed fields are given. The function J,

is on either S, or Sa and is tangent to whichever surface it
is on. Seeking to determine the unknown coefficients I, s we
substitute (2-21) into (2-280) and take the symmetric product

of (2-28) with lg, i=1,2,"°9 to obtain

> >
[Za] == = Yo (2-22)

> -»> -
where I®* and V*= are ccoclumn vectors. The ;*" element of I=x

- -» -

is I, . The i®*" element of V== ig V, given by

-
Va = £ lg ,E*“‘) (2-23)

Furthermore, [2=] is a square matrix whose 1i;j®*" element is

given by
- - - - -
Zg, = <lg ,‘E(!J,g)> = - Jg - E(g, ,Q) ds (2-24)
L1}
Se +Sa

where I denctes that the surface integral is performed on
Se +Sa

both S:eand Sa. Note that Er*m= and g(g:,g) are due to their

corresponding sources radiating in empty space. They can be

found by the well known foermulas in empty space. In turn (2-

14

RSO0 o 17,07 P ) (] W, Ny 0) DA 0 OLITRIOUT LA A
N 1"‘ 2.0 g i, KT 5;!;'.5.‘;7;'.0!!g’.f(l".O.:.i‘:of.‘.; A"‘!‘!!...fl‘:'l’!‘ﬁ“‘rit€:!';9‘3§!’:‘!ﬂ?‘&0."’<'?f e E'EE“?Q"

SN

3

A MY




«

]

- s -

- v
P
il
-

_,. .
faed -'?"-v
- o

»

[

AL DR 0y A OO0 OdaCalt 578 X X0l SO 2 A AN
DR MG .-‘_i‘. s ;."'l. ’h‘.s\ *5.., ‘t-,a,l?e.’ ,"l,‘ U M J»‘.lt“?‘&‘. ),.1 NS .“ VARG !

-»
23) and (2-24) can be computed. With [22] and V** available,
{1, } can be found by sclving the matrix equation (2-22).
Substituting (2-21) into (2-17) and (2-18), we obtain, in
region a,
- -
E2(Jrmp , Mrme)=Frrns + T I, E(J,,&) (2-25)
3
- -|
Ho2(Jrm ,Mrmp)=Hrnc + T I, H(J,:.@) (2-26)
3

As introduced in Fig.2, the fields on the left-hand sides of
(2-23) and (2-26) exist only in reqion a so that (2-25%) and
(2-26) are only valid in region a even though (Ern=,Hro=)

and (E(J,:8):H(J,,8)) are valid everywhere in space.

2.5 Short-Circuit Fields due to the Magnetic Current

Expansion Functions

a) Finding (E®(8,M.) ,H=(F,M.))

The field (E=(8,M,),H*(F,M,.)) appearing in (2-13) and
(2-14) is the field in region a due to the magnetic current
sheet M.. placed on the region a side of the shorted aperture
and radiating in the presence of S:cand Sa. Since S:.= is
perfectly conducting, the region inside it is completely
isclated from region a. Therefore, any medium and any source

can be placed inside Sa without affecting the field in

1
region a. We fill the region inside Sa with the medium
characterized by (K;€) and place the magnetic current sheet

M~ on the right-hand side of the sheorted aperture as shown

in Fig.3. The magnetic current sheet on the right-hand side
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of the shorted aperture in Fig.3 is called the pseudo-image
of the one on the left-hand side of the shorted aperture.
Now, the electromagnetic field (E®(g,M.),H=2(F,M,.)) in region

a is written as

E* (B ,M,,)=E(D,2M,)+E (T ,D) (2-27)

H* (B ,M,.)=H{8,2Mn ) +H (I ) (2-28)

The fields on the right—hand sides of (2-27) and (2-28) are
due to their corresponding sources given in the associated

parentheses radiating in the unbounded hoemogeneous medium as
-

cn the right-bhand sides of (2-17) and (2-18). Heres 7. 1is

1
the electric current induced on Se and Sa. by 2M.. where 2M,

represents the combination of the two magnetic current

sheets in Fig.3. Now, J. adjusts itself so that

E.(g!mr\) = Q_ - (2"29)
on Se and Sa

where subscript +t denctes tangential cocmponent. Combining
(2-27) and (2-29), we obtain

a
- Ee(Tns@) = Ee(B,2M,) (2-38)

Jn is now approximated by
o =Z 1,n I, (2-31)

where I 4ns j=1,2,--- are coefficients to be determined., and

Js are the same as in (2-21). Substituting (2-31) intc (2-

38) and taking the symmetric product of (2-39) with each

-
Jisy we obtain
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4
SSC
E° (0,M,). H°(OM,) ¢
region a
Mt [} Mo o
= o €)
(i, €) .,
shorted
aperture

Fig. 3. The xy cross section of a situation in which (g?(o, En)’

g?(o, M )) can exist. The magnetic current sheet immediately
to the—gight of the shorted aperture is called the pseudo-
image of the one immediately to the left.
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e, (223 In = Vn (2-32)
Nl

)

3 :\\ - —a
A?’ Here, [2=2] is given in (2-24), and I, and V. are column

Q?.fg > -

vectors. The j®*" element of I, is I,;ns and the i®*" element

;f\ >a -

ﬁ\ of V. is Vi given by

"

(": -a -

0 Vin = <Js sEe(@,2M,)> (2-33)

Because E(8,2M..) is the field due to 2M. radiating in

;3% unbounded homogeneocus space., it can be evaluated easily.
;' Thus, (2-33) can be computed. Therefore ;: can be found by
fﬁ solving the linear equations in (2-32), i.e., Q: is

55: completely determined. Substituting (2-31) inte (2-27) and
98

(2-28), we obtain, in region a,

»
3 "\’) - -
o E*(B,Mn)=E(B,2Mn) + T I, E(J,,8) (2-34)
N :
Yl;‘ R | -

A H* (@ MI=H(B,2M,) + £ I, H(J, &) (2-35)
v s
o In (2-33)-(2-35), 2M. represents the combinaticn of the
L
2
o' magnetic current sheets placed on boeth sides of the flat
g? plate that shorts the aperture in Fig.3. At any pocint not on
LY}
&‘ the shorting plate E(8,2Mn) and H(F,2M..) are simply twice
Vo

: the fields due to M.~ because the two M-~'s are

infinitesimally close to each other. On the shorting plate

.’ the normal electric field E.(8,2M.) and the tangential
ﬂ; magnetic field H.(8,2M,) are simply twice those due to M.,
%5 but E«(8,2M,) and HA(8:2Mn) vanish. Because E«{(@,2M,)
& vanishes on the shorting plate, the magnitude of the

electric current on it 1is considerably reduced. Hopefully,
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N

) §

%s,
s this reduction will improve the behavior of the electric
L i
h current on the shorting plate and consequently a more
e

$ accurate numerical solution to the problem can be obtained.
iy

ol

Q b) Finding (E®P(8,M,) . H (8,M.))

N

> (E2(B:Mn) sHP (G, M) in (2-15) and (2-16) are the fields
oy

ﬁj due to M., placed on the right-hand side of the shorted

L 14 -

; aperture radiating in the presence of S, . Since S, forms a
;: cavitys Mn will produce zero fields in region a. With the

P

&' same idea as in Section 2.5a, we write for region b

9 %S

’ E® (8 sMn) =E (85 2Mn) +E (T » D) (2-36)
i o

L0 H® (8 sMn)=H( @5 2M ) +H (T » @) (2-37)
[

N - where (E(@,2M.),H(B,2M,,)) is the electromagnetic field due
1

O,

vyl to 2M.. radiating in unbounded homogeneous space where 2M,
>

e represents the combination of the two magnetic current
;‘ sheets shown in Fig.4. There, the M., placed on the right-
X

ﬁi band side of the shorted aperture is the original M, ,and the
e

ﬁ' M. placed on the left-hand side of the shorted aperture is

A =

N called the pseudo-image of Mn. Jn is the electric current

; L 13 [ -] [ -]

" induced by @M. on Si « (E(Tns B H(Tns @) is the

D) ©

}: electromagnetic field due to J. radiating in homogenecus

o '

$| space. Now, 7, adjusts itself such that

:.

1.. [ -] ac

%| Ec(@:My) = @ on S, (2-38)
ﬂ where subscript t denctes tangential component. Combining

™

A

N (2-36) and (2-38), we obtain

-
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E"(OMa)

HTO.Mn)
shorted regionb > X

aperture A |\(pu,é€)

ste

. , . b
Fig. 4. The xy cross section of a situation in which (E (O, gn),

EP(O, M )) can exist. The magnetic current sheet immedi-
ately t0 the left of the shorted aperture is called the
pseudo-image of the one immediately to the right.
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- o -

~Ee(TnrsB)=E¢ (F,2M,,) on S, (2-39)

[ -]
ot Jn is next approximated by

s T =Z 1,0 J, (2-4@)
3

(=] -
2 where J, is an expansion function on S, . Substituting (2-

49) into (2-39) and taking the symmetric product of (2-39)

-3
with J.s we obtain

ol
A S

oy

[ 4

"‘

- o

(221 In = Vn (2-41)

<
i

;
*

- $.~ - ey —se
where I, and V,, are column vectors. The ;*t" element of I, is

»"-)‘. o - [~

3$: I,n. The i*" element of Vn is V., given by

-] -3

- Vin = <J4,E(@:2Ma)> (2-42)

»,
o, Furthermore, [£®] is a square matrix whose 1;j*™ element is
i given by

[ -] [ -] [ -]

2y = —| ds - E(J,4+8) ds (2-43)
L& Sa

. 1

M Once (J,,M,.) are chosen, (2-42) and (2-43) can be evaluated.

[}
(3 >
i Thus,; I. can be found by sclving (2-41). Substituting (2-48)

() into (2-36) and (2-37), we obtain, in region b,

B (-]

o E®(B,M)=E(8,2M,) + Z I,n E(J,,@) (2-44)
N 3

Lo - .

. H* (B ,M-)=H(B,2M,,) + T I, H(J,,@) (2-45)
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2.6 Summary

In section 2.4 through 2.5, we have evaluated all the
field quantities in (2-13)—-(2-16). Substituting (2-25) and
(2-34) into (2-13), (2-26) and (2-35) intc (2-14), (2-44)

into (2-15), and (2-45) into (2-16), we obtains in region a,

Etns + E= = E*»= + £ I, E(J,,9)
3 - -
+ T VLIE(@.2M,x) + £ 1,,, E(J,.8)13 (2-46)
n 3
H*"s + H® = H*™= + Z I, H(J,.2)
3 - -
+ Z VLIH(G,2M,y) + £ 1,3, H(J .81 (2-47)
n 3
and, in region b,
-2 -]
E®» = - £ V., [E@,2M,2) + Z I, E(J,.@) 1 (2-48)
b J
» [ -]
H* = - Z V., [H(@g,2My) + £ I, H(J,,9) 1 (2-49)
b J

To evaluate V., we must sclve (2-9) . Before (2-9) can

=Y
be solved, [(y=1, [yl and 1I*~= have ¢toc be evaluated.

Substituting (2-35) into (2-11) and (2-45) inteo (2-12), we

obtain
- (a2 3 -
Yorr = Yon ¥+ A Y (2-58)
-] (a1 1 ]
where
nes
Yon = =] Mw - He(8,2M,) ds (2-52)
A
A Yorm = ~-Z I,n I m'H-H'(.JJ ,@) ds (2-53)
3 A

3
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-] o - [ -]
A Yon = -Z I, Mn- He(J,.8) ds (2-54)
3 A

In (2-53), Hel(Jy+8) 1s Hel(J, @) evaluated immediately to

the left of the shorted aperture on which J, may flow. In

- [ -] - )
(2-54)y He(Jys3) is He(J,s8) evaluated immediately to
[ -]
the right of the shorted aperture on which J, may flow.

he
[Ymnl is called the half-space admittance matrix. The

terminology comes from the fact that it is the admittance
matrix for the case of electromagnetic coupling through an
aperture in an infinitely large ground plane, which has been
investigated extensively in the literature, e.g., Bethe hole
theory [B] is developed for the small circular hole in the
ground plane. Imagining the infinitely large ground plane
being shrunk down to a finite size and bent over to form a
cavity, we can view [ AY2]l and [ AY®] in (2-S8) and (2-.1)
as modifying terms. We want to state how Bethe hole theory
should be modified for an aperture in a finite body.
Substituting (2-26) into (2-1@), we find that the at"

-’
element of I*™= is given by

A e - d -
Im = J Mn-HY*™= ds + 2 I, I Mm-H{J,,8) ds
A 3 A (2-55)
In summary, we first shorted th: aperture in the
conducting body with a perfectly conducting flat plate and

then put magnetic current sheets on both sides of the plate,
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M on one side and —M on the other to render the tangential
A
%:‘ electric field continuous across the aperture. By requiring
by
g: the tangential magnetic field to be continuous across the
v .“' i*

aperture, we found an integral equation for M. Sclving this
,D
I\
aﬁ integral equation by the method of moments [S5], we obtained
4
ﬁ M as the linear combination (2-6) of the magnetic current
e,
E expansion functions M.n. In (2-13)-(2-16), we expressed the
o
b electromagnetic field of the original problem of Fig.l1l as
&
%: the sum of the field due to the impressed sources and linear
Wt
L combinations of the fields due toc the magnetic currents M.,
>
,jt all sources radiating in the presence of the conducting body
.;\
m} with its aperture shorted. In turn, each of these fields was
=K 4 ]

expressed as the sum of the field due to its source
e
::: radiating in homogenecous space and the field due to the
1
*‘
:‘ electric current induced on the body with its aperture
]
¥4
. shorted. This electric current was cbtained by sclving its
it
'Y
}Q integral equation by the method of moments. Collecting
o
3‘ results, we were able to express the electromagnetic field
.‘A )
4 of the original problem of Fig.1 as the summations (2-4&)-
LA
oo
D (2-49).
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i&f; 3. ELECTROMAGNETIC COUPLING TO AN __INFINITELY
:"%{. LONG _CYLINDER; TM_ CASE
i
g?: 3.1 Remarks and Simplifications
§E: Although the formulas derived in Section &2 are valid
?if for both two and three dimensional problems, it is difficult
J%; te evaluate all the inteqrals in the three dimensional case.
?%ﬂ Because of complication, we may lose insight to the problem.

»
?3 Therefore, we shall make the following simplifications.
Eij A). Everything is invariant in the z-direction. Namely,
éé% the conducting bodies (three dimensional ) become infinitely
'35 long cylinders and they are completely specified by their xy
wfz cross sections. The aperture becomes an infinitely long
wtﬁ slot. The impressed sources (Jrm",Mr™») produce two
f;? dimensional fields. All field quantities in Section 2 are
;§% now only functions of the ccoordinates (x,y). (The time
ﬁg‘ dependence exp(jwt) is suppressed).
¥
ﬂﬁ B). Conductor S. given in Fig. 1 is removed since its
f;b presence entails only minor modifications.
é;; C). The conductor with an aperture which 1s now a
TL: slotted cylinder has zerc thickness, 1.e., S5, and Sa in
é;j Fig.1 become indistinguishable sco that the slotted cylinder
&j is completely specified by one contour dencted by C in the
ok
:J xy plane.
%z D). In Section 3, we consider the case where a TM plane
&;E wave is incident on the cylinder. The plane wave is
iﬁ specified by
ts
K
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Erre = u, expljk(xcosgr+ysingd)] (3-1)

where u, is the unit vector in the z direction, k=wdp€, and
#* is the polar angle of the direction from which the plane
wave comes.

E). As shown in Fig.5, the contour C of the cylinder is
a chain of L-1 straight line segments. The end points of the
j*" segment are labeled t, and t,.; where t; is the value of
t at the beginning of the segment and t,.. is the value of
t at the end of the segment. Measured from the " beginning "
of C at t,=0, t is the arc length along C.

F). As shown in Fig.5, the contour (x=@, lyli W) of
the slot is partitioned into M straight line segments. The
end points of these segments are specified by their values
of t. Here, t is the arc length along C extended onto the
contour of the slot. At (x=#, y=-W), we have t=t. ., and at
(x=B8,y=W), we have t=t_.m =t_+2W.

6). The combination of C and the contour of the slot is

- [
called C=<=. Now, J, and J, are both on C==. We chocse

- [ -]
Iy =715 = Jy(t) (3-2)
where
E. t’.{.t_{t"ﬁ
_J,J(t) = . j=1,2,...,N (3-3)
. 7] elsewhere
where
N = L+M-1 (3-4)

The magnetic current expansion function Mn(t) will be
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Fig. 5. =xy plane view of the slotted cylinder. The dotted line
oy on the y axis represents the slot. CS€ is the combination
4 of the contour C of the cylinder and the contour (x=0, |y]| < W)
{ of the slot.
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specified in Section 3.3. i

Assuming that both J,(t) and M.(t) are tangent to C=<

i and independent of z, the two-dimensional fields due to the

electric current Jy(t) on C*= and the magnetic current M.(t)

“Q on the contour of the slot, both radiating in the unbounded

ﬁ% homogeneous space with constitutive parameters (p,€), are
given by [S,Eq.3-271,[11;Eqs.(5) and (6)1

N teem

~';s: E(J, ,8)= -l k Jyt?) H.:=:k|rg—ﬁ’|) dt’ +
.‘s,‘: [
o

"l tL*ﬂ A
ie8 VJ d(E-3,(t%)) (e

o — Ho (k| p—-p"1) dt’ (3-5)
| 3 k dt, -I’ﬂ # '

u;-,,.’ t -

iX
]

s

!' 1 cm>

Y (3,58)= €a Ty(t)xn — — | T, (t7) x vHo (k|p—p7|) dt’

i "j (3-6)
?é g

X tiom
:", 1 «m>
b'l. E(B,Ma)= — €4 M (t)xn + ——| ML(t’)x vH, (k“g—,q") dt’

45

ot tl.

(3-7)

N tl.’ﬂ

iyt - 4 n

AL to

()
".:. 1 cm>
b H(B,Ma)= = —— | k| Ma(t”) Ho (k|p—p’|) dt” +

‘ tl_-" A
i v d(E-Ma(t’)) (>
o —_ Ho (k|g-p"|) dt’
k Jto dt’ s (3-8)

vy where i is the unit tangential vector on C®<, ﬁ’ is the two-
X dimensional radius vector to the point on C®"< wheose arc

- length is t’, and ﬂ is the two-dimensional radius vector to
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the field point. The field point is the peint at which an
electromagnetic field in (3-3)-(3-8) is evaluated. In (3-5)-
(3-8), k is the wave number wJ{F€ where w is the angular
frequency, n is the intrinsic impedance JR7€, n is the unit
normal vector that points cutward from C®< as shown in Fig.S
and H;., is the Hankel function of the second kind of order

zero. If the field point is remote from C®<, then €. is
zero. If the field point clings to either side of C®<, then
€a is *1/2. Specifically, €a is 1/2 if the field point is on
the region a side of C=<, and €. is —-1/2 if the field pecint
is on the region b side of C®=., If €.=*1/2, then the t that

appears in (3-6) and (3-7) is the arc length of the field

point on C®<=,

- o
In this section we specialize 2,, of (2-24), 2,, of (2-
- » - =
43), and V, of (2-23) to the case in which both J, and J,
are the same electric current J, of (3-2).

a) Evaluation of 2,, of (2-24) and Z2,, of (2-43)
Substituting (3-2) inte (2-24) and (2-43) and
integrating only over the contour C=< rather than a surface,

we obtain

2:, = 2:, = 2, (3-9)
where
tiem
Zay = — I Ja(t) - E(J,,8) dt (3-10)
@

O <
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;e Substituting (3-3) into (3-5), we obtain

s E(J,:8)= ux | - — Ho (k|p=p”|)dt” (3-11)

M
:" kn It3+a <m>
4

ts

bl Substitution of (3-11) and (3-3) into (3-18) yields

ta.-o-x t.‘-o-l

k c=>

N 2yy =—— | dt dt’ Ho (klﬁ_ﬂ’l) (3-12)
l."e 4

» t’ t"

ﬁﬁ New variables of integration u and u’ are defined by

e u = 2(t—t.—4AC,/2)/ACs (3-13)

s U= 2Ct —t,—AC,/2)/AC, (3-14)
where

ﬁa ACs = t4+2— ty » §=1585....3sN (3-15)

q
A,
“gﬁ Substitution of (3-13) and (3-14) into (3-12) leads to

.‘4. qrgl‘_, 1 "1 cm>

g*\ — 1 du du’ He (|Css(usu’)|) s 1#j

2 16k J-1 J-1

B 2y 5= (3-16)
Fl '1 cm>

. —}{ du du’ He (IFMa/2|u-u’}) s i=j
Ly % 16k J-1 J-1

b where
f Ma = kpCs » 1=1,285...s N (3-17)

kRa, + (Faut, - r,u*t,se (3-18)

o Caslusu?)

)
,Qé In (3-18)s R., is the vector from the midpoint of C,;, to the
midpoint of C, where C, and C, are the straight line
st segments of C®< whose end pcints are (t,;ti+:) and

G\ (tystyer)s Tespectively. Moreover, &; and i, are the unit

(4 B!
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4:::
‘g,
- vectors tangent to C, and C,, respectively. Here, i; points
(e
Qﬁ* from t, toward t,.,, and 2, points from t; toward t;.,. The
uh
;“% vectors R,,» g‘, and £, can be expressed in terms of the
o
{x,y) coordinates of the end points of C, and C,.
?z. If i # j, 2., is found by the two-dimensional Gaussian
‘n:
:?; Quadrature method [12]1. If i=j3, we recast (3-16) as
’:
Y n .= 1 P1 «m>
L7 2yy = —— | du} du’lfH, (|u-u’|Fg/2)-g(|u-u’|F;/E)]
o 16k J-1 J-1
B
e nr.=f1 f1
L + ——— | du} du’ glju-u’|Fy/2) (3-19)
N 16k J-1 J-1
;'
, o
N cm>
{ﬁ where g(x) is the small argument approximation of H, (x)
.
N
[éup.‘bba]; i-.-,
f{i 2
- g(x) = 1 - j——log(Tx/2) (3-20)
- "
where log denoctes the natural logarithm, logt is Euler’s
Dy
g&’ constant, and 71=1.781. The first integral in (3-19) now has
N,
'h. no singularity at u=u” and can be evaluated by the two-
o
e dimensional Gaussian quadrature method. The second integral
o in (3-19) is found analytically as [13, Eqgs.(62) and (63)1)
DY)
.
L
vy 1 1
hﬁ- du du’ g(|u—u’|F;/2)
A -1 -1
K-+
s
) = 4 + j;4(3-2log(ryr/2))/m (3-21)
| 3)
EQ. Substituting (3-28) and (3-21) into (3-19), we obtain
3
wh Zaa = 1 Ma® [1+(3-2logllF,1/2))/n1/4k  +
A
&
et
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r]r,’ b} N 2. 2
du du‘(H,,(,u—u'}l";/E) -1 - j-—lcg('u-u'lr‘,-r/tr)]

16k J-1 -1 w
(3—-22)

b) Evaluation of V, of (2-23)
Substituting (3-1)-(3-3) inte (2-23), and integrating
only over the contour C=< rather than a surface, we find

S
that the i*®*" element of VY*= is given by

ex [taes jkixcosgi+ysing?)
Vy = J e dt (3-23)
t,

where (x,y) are the rectangular ccocerdinates of the point t

on C=*=. Performing the integration of (3-23), we obtain

- AC; sinkfA, Jkag
Vi = ———mm———e e (3-24)
kR
where Xy =L {xs+2+Ms)CoSPBr+(y, ., +y, )singr]/2 (3-25)
Rg=|:(x;-—;—x;)C05¢*+(YL+1_Y5)5.1“¢"]/2 (3-24&)

Here, (x.,y.) are the (x,y) ccordinates of the point t, on

Cme
-
Now that the elements of Z2= and V=* have been

—’
evaluated, we can solve (2-282) for Ie»x,

3.3 One Magnetic Current Expansion Functicn for

- the Narrow Slot
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In this section, we assume that kw 1. Considering
that the slot is narrow, we take only one expansion function
for the magnetic current M. We choose

u, fi-(y7Wr= x=@, |y|i W
M, = (3-27)

[ elsewhere
because it 1is a simple vector function that, for the T™
case, has the correct direction and the correct behavior as
y approaches *W. In the rest of this section, formulas
involving the magnetic current expansion functions M, are
specialized to the case where M, of (3-27) is the only

magnetic current expansion function.

- | -]

a) Evaluation of V,,, of (2-33) and Vi~ of (2-42)
Substituting (3-2) into (2-33) and (2-42) and
integrating only over C=< rather than a surface. we find

“>a >0

that the i*"™ elements of V., and V., are given by

Vi = Vun = V4nn (3-28)
where tiem
Vin =j Ja(t) « Ee(d,2M.) dt (3-29)
g

Referring to the last paragraph in Secticn 2.5a. and using

(3-7) with [6,Eq.(D-15)]

2> ‘k(ﬂ—ﬂ’) cm>
VH, (klp-ﬂ l) = —T;:;:T—H; (klp—ﬂ'l) (3-3a)

substituted into it, we obtain

L]
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AL ~ tioem cem>
. -k Ha (k| p- R
S8 2 4
Fﬂ ——-j (ﬂn(t’)x(ﬁ—ﬁ’)), |P a dt’ @<t
RO 2; lAr" |
::l':‘ Ee(G,2Mn)= to 'Q F
#& : (3-31)
}
: i 2 s t<t<tLom
\, \
N : .
jq The subscript t on both sides of (3-31) denotes the
component tangent te C®<=. Substitution of (3-31) inte (3-
li‘"'
N 29) yields
%.' tL*‘ﬂ tl—"" (=)
3 - ik Ha (k|p=p |
cﬁ —] dtJ,.(t)- dt’(mn(t’)x(ﬂ-g’))
Ayl ‘ a Ilo—y‘z’l
3 i=1,2,...,0L-1
%
i (3-32)
- B i=L,L+1,--.-,N
ft;
: 33 where N is given by (3-4),
).~
Lhd
A
. Substituting (3-3) and (3-27) into (3-32) and
TJ introducing new variables of integration u defined by (3-13)
Y and u’ defined by
”(
\§
u® = (t-t . -W)/wW (3-33)
,: we obtain
<
ue _ c2)>
e f IKWAC. L 1 J1-(u")® (Up-Tielusu™))IH, (|E,.(u,u’)|)
§¥ - ————|du|du’
o J 4 -1 -1 [Fam(usu’y|
B¢ Viya1={ . i=1,ay-..9L"1
i, |
Do, '
K
R L (3-34)
e o s  i=Lsl+1l,...,N
o
e where
zt
o Cri@(Ustu’)=kRa@+(Fau/2)t . —kWu’ u, (3-35)
Ey

R
. »
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and R, e 15 the vector from the origin at the center of the

slct to the midpoint of C,.

Now that the elements of 2=, 2, 3:, and 3? have
been evaluated, we can solve (2-32) for ?: and (2-41) for
;:. Because of (3-9) and (3-28), the solution ?: toe (2-32)
is the same as the solution ?? to (2-41). Calling this
common solution ?,, we write
- e
Iy = 142 = 14, (3-36)

[l 3

b) Evaluation of Ya. of (2-52)

Replacing the surface integral by a line integral over
the contour (x=@, ly!ﬁw) of the shorting strip, substituting
(3-8) into (2-52), and performing an integration by parts,
we obtain

teem tiem
- ce>
2knYmn = kEJ dt mm(t)-I dt"Ma(t7)Hs (klﬂ_ﬂ’l)
te to

tiem tl_*-n
d d <>
- J dt ——-(g-mm(t))J dE?—(t-M.(t")) Ho (k'ﬂfﬂ,l)
dt dt’
to to (3-37)
Substituting (3-27) intc (3-37), anticipating that £=gy

when t_<{t<{tL+ms and introcducing new variables of integration

u and u’> defined by

u = (t-t -W)/wW (3-38)

u's (£t -W)/W (3-39)

we obtain
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(a3 )

Ekr]Y,_; = (kW)= Ux - L’a

(3-40)
where
"1 <=m>
U, = |dudl—-u= du JI-Ta’ )& H, (kwlu—u |) (3-41)
u 1 _1
1 wu \[1 u’ cm>
Uas = |du du? Heo (kwlu—u’ ) (3-42)
J4-1 Jl—ue -1 -‘1---(u’)'lt |

We recast (3-41) and (3-42) as

1 1 cm>
U, I, +Jdu~|1—-u= du*fi—(u’H=

. (kN’u—u’l)—g(kwlu—u’l)
-1 -1

(3-43)
1 u 1 u’ c=>
Ua = 1e +|du du’ Ho (kulu—u’l—g(kuiu—u i
-1 f1-a= J-1 fi—(uHr=
(3-44)
where g is given by (3-28) and
"1 1
I, = |dudt—u= [du’dfI-(u= g(kwlu—u") (3-45)
o ""1 —'1
1 u 1 u’
Ie = |du du’ g(kwlu-u’|) (3-46)
J-1 Ji—a= J-1 1-(u’)=
By straightforward integration. we have
f1-4® du = nse (3-47)
\ "'1
"1
usfi-G® du = w/8 ' (3-48)
u "1
(L ‘1 ug
ff;’ du = n/2 (3-49)
: J-1 f1-ue=
y

v' ’.‘
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A

e

1908
-' ﬂ

W
,5{ It is evident from [14,Eqs.(Aba) and (Ab6c)] that
[
‘_:~ 1 n
J1-u~= loglu—u’(du’ = - (u® - 1/2 —-loga) (3-54)

ENX, -1 2

,‘ui

N# .

39 It is evident from [14,Eq.(A6b)] that

v“('i

g 1 u’

W legju-u’|du’ = -wu (3-51)
o -1 fi<(u"Hr=

X,

e,

' Thanks toc (3-47), (3-48), and (3-58), 1, of (3-45) becomes
G}f

N I, = w=/4 + ju(1/4-log(TkW/4))/2 (3-52)
S
Thanks to (3-49) and (3-51), Ia of (3-46) bhecomes

t.&

]

'\

Vigt) la = jmw (3-53)
)

K%

Kae he

. Now, 2knYii is given by (3-40) where U, and Ue are

HUy

s i'|

gw cbtained from (3-43) and (3-44) in which the explicit
Y

ﬁa integrals are evaluated by the two-dimensional Gaussian
Mol

i quadrature method, and I, and I. are given by (3-5S2) and (3-
-39

- }: S3).

-

’. a b

L c) Evaluation of AY¥Ymnm of (2-53) and AYmn of (2-54)

4!

‘? Replacing the surface integrals in (2-33) and (2-54) by
A

%: line integrals over the contour (x=@,|y|iw) of the shorting
Xy

~— strip, we obtain

e

:"!‘ a N a a

\:\: Avmn = T I,,n C.’m (3“5‘0)
ﬁ, =1

!

o

\‘.
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o [ -] o
ey =1
o
ey where
l" . t
",’,(‘ =M
e Ciem = — J Ma(t) - g:(g,,g) dt (3-56)
e
:é& to
e » t
S GF -~
-4 - »

R Cim = — Mmlt) « He(J,,8) dt (3-57)
:‘. 0 t|_
0
o, Substitution of (3-2) into (3-56) and (3-57) yields
.
X" tuem
R WA - P
‘-1 Com = — | Mm(t) -« He(J,,d) dt (3-58)
5‘ 4 o
% §! t

_ T
::' . Cla _ -
3 sm = — Mm(t) » He(J,,8) dt (3-59)
Al J
¥
o te
!‘_Q,

" First substituting (3-38) into (3-46), then substituting
3% )
ae
§¥ (3-6) into (3-58) and (3-59), and finally nating that J,(t)
.l »
sw: is on the shorting strip (t. < t < t_+«m) only when j 2 L, we
e
- obtain
o
AN
‘%f',
." tL#-H t|_-." CE)>
534 - = ik Ha (k|g-p’|)
g Cym = Cym = —|dt Mn(t)- dt’(;,(t’)x(ﬁ—ﬁ’))
- 4 I,ﬂ—ﬂ’ I
Bl to o
frot: §=1925e..sl—1 (3-68)
Vs
Uag
v . tl_oﬂ
N - - 1
== Csym = Cym = - - Mm(t)-(J,(t)xn) dt
." a 9j=L.!L"'lg.-.,N
'\.‘: t\_
%ﬁ‘ (3-61)
l“‘:
NN
s
|‘|'|‘
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J‘
;
D
si‘
N If, after interchanging t and t’ in (3-68), we interchange
'i the order of integration in (3-&8), then it is evident from
comparison with (3-32) that
¥
- B 1
! C;m = CJM = - V_,... sj=1929---,L—1 (3-62)
£ 2
"
) Since J,(t) is given by (3-3) and Mm is M, of (3-27),
'\‘
(3-62) specializes to
&
1* - -] 1
§ Csa = Cya = — V,a s §=1s25 ... 5L—1 (3-63)
i 2
4§
3 where V,:, 1is given by (3-34). Substituting (3-3) and (3-27)
L}
§ inte (3-61) and introducing the new variable of integration
u defined by (3-38), we cobtain
u,)o-t
;: - . W
2| C,; = —C_'; = - J 1-u®= du . j=L,L+1,---,N
, e (3-64)
u,
[}
. where
Iy
y Uy = (ty—t W)W  j=L.,L+1,...,N+1 (3-65)
o
! Performing the integration in (3-64), we obtain
y - o W -1 Ujye2
C,; =—C,‘= —C(sin u + l.l-\l].-l..lg ] ,j=L,L+l,-.-9N (3-66)

4H u,

where the principal value of sin~*u is taken.

Substitution of (3-36), (3-63), and (3-66) intco (3-5S4)

— e ey

and (3-55) gives

: AY“ = - Z I"; VJI + Z I,; CJ: (3-67)
! 2 j=1 =L
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3,

-1 N -
z I.,; V‘,, -z I,x Col
=1 j=|_

Setting m=n=1 in (2-5&) =z2nd (2-S1), adding them,

substituting (3-67) and (3-68', we obtain

IJ’_
>

where Y,: was evaluated in Section 3.3b,

Sa )
Ig I;

element of the column vector
both (2-32) and (2-41), and V,,
replaced by j.

A TVE

d) Evaluation of I, of (2-55)

Replacing the surface integrals in (2-55)

integrals cver the contour ( x=9, ly' kS

strip, we obtain

where I, is the ;*" element of the ceolumn vector 1

-
satisfies (2-22), C,ym is given by (3-56)., and

tL*H

of (3-1) into the Maxwell equaticn

L re J

—_—U x E
kn

A N

)

+ (ORI [ R OV [
“‘ns"'f’i’ A’)ﬁ,pn?'f s ",4},3{ J.’R'etl-'e s '\ﬁn?"'\‘l’, “.“"i:“ﬂfﬁ“‘q?!""!;.‘-if“}.

and

by

dewe
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(3-68)

(3-69)

is the ;*"
I, that satisfies

is given by (3-34) with i

line

W ) of the shorting

(3-73)

that

(3-71)

(3-72)

' i "y BEO00 OO0
‘?""K:’a""0".0’"‘:"h"‘n“‘."h“h‘ -'f‘:.«’r'.'J"o‘»h"’l'?‘"‘"n N "o , n‘!'b.!inif'a
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leads to

trne 1 jk{xcosgr+ysing?)
H = = (-u, sinp*+u, cosgr) e (3-73)

-

where u,. is the unit vector on x axis. Substituting (3-73)
into (3-71) and anticipating that M, will lie on the y axis

and have no x—-component, we obtain

tiem
ane COos¢g? Jk(t-tL—u)Slnﬁt
Cwm =——] (Mm-u,) e dt (3-74)
r‘
to

In Section 3.3c, expressions (3—-61) and (3-62) were found

for Cum.

When M. of (3-27) is the only magnetic current

expansion function, C,, is given by (3-463) and (3-646) so

that (3-70) becomes

L e A re 1 L-1 - N - e
I‘ = Cg - - z I_, V,; - 2 IJ C.’g (3—75)
2 j=1 i=t

where C,: is given by (3-64é) and,; as obtained by
substituting (3-87) into (3-74) and introducing the new

variable of inteqration u defined by (3-38),

tme W 1

€y, = - cas#‘j F1-4® cos(kWusing®) du (3-76)
n -1

e) Summary

When M, of (3-27) 1is the only magnetic current

expansion function, the matrix equation (2-9) reduces tc the

single algebraic equation

W‘G\WW&YR:&J
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¢

v

i

s
- - o L e

d { Yg; + Y‘; ) V; = I; (3-77)
q
R\
iy Substituting (3-69) and (3-75) into (3-77) and solving for
4
3

) Vis we obtain
i

'
:3 A nes N - -

L) Cg - Z I" CJ].

! =1

Vo = (3-78)
ne L-1

B a Yg; + z I,; V,;
=1
.'0

1 - bl 1
s where I, is the j*" element of the column vector I that
b

X satisfies (2-22), V,: is given by (3-34) with i replaced by

. Sa 36 >

y js 131 1is the j*™ element of the column vector I, =I, = I,
s. he

that satisfies both (2-32) and (2-41), Y., is given by (3-

_ - A M

, 48), C,, i1s given by (3-63) and (3-66), and C: 1is given by
:

? (3-76).

&

Thus, when M, (t) of (3-27) is the only magnetic currvrent
.}' -re - [
f expansion function, the constants I,, I,;,5 Iy:s and V, in
i) L e L e
i (2-46)-(2-49) can be evaluated. The fields E and H are
I\
given by (3-1) and (3-73), respectively. The remaining

: - [SY
? fields in (2-46)—-(2-49) are due to the sources J, and J,

[

defined by (3-2) and (3-3) and &M, where M, is defined by
(3-27). With the meaning of 2M, clarified in the last
paragraph of Section 2.5a, these fields are given by (3-5)-
(3-8). Having evaluated all quantities on the right-hand
- sides of (2-46)~-(2-49) under the assumption that M, of (3-
' 27) is the only magnetic current expansion function, we have
; achieved our objective , which was to determine the total

!;
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o
v Ane a [ R - (-] [ )
o fields (E +E , H +HH ) and (E » H ) in regions a and b.
a&:
e
. “!
g
i 3.4 Several Magnetic Current Expansion Functions for
&l the Wider Slot
b
ﬂl
q&‘ In this Section, we assume that the width of the slot
L
!

is comparable to the wavelength so that several magnetic

-ﬁé current expansion functions are needed. The sleot is
ey
Wy
AN partitioned into at least three straight line segments of
%Q
B
if equal length AC. Otherwise stated,
- traes —tn = ACs N=L,L+1,...,N (3-79)
ib

¥

where N is given by (3-4) in which M z 3. See Fig.3. The

] magnetic current expansion functions are now defined by

e
He
-
i tiea —t
g“ M, (t)= u, trerit £ tiee
3~ A€
& (3-8a)
" Y @ elsewhere
Cd
L)
& t- tLen-a
¥ AC
;_:4
;_ tl_onoz -t
i, Ma ()= u, teenititienes
Ac
" (3-81)
t':
- ' \ 1] elsewhere
\J
e
~: “ith n=2,3,-.-,"-2
o
:‘
h"
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k.
e
i:.:"l
G.’.
]
‘Qt‘ [ ]
)
. /t—tu_-—n—e
"“i 4 U, tL.o"—g zts tl_q-n—;
«Qﬁ. AC
-,’:“.
A .
! : &—x(t)-: 4 1- ((t"’t._-o.n—g)/AC)g U, teem—12t2 tiem
e
h (3-82)
ﬁ? Lﬁ elsewhere
ﬁﬂ
*ﬁ
m& If M=3, then (3-81) is to be discarded. The expansion
:“l.p
LNy |
functions (3-83)-(3-82) are continuocus and have the correct
¥y,
{ o behavior as t appreoaches t. and as t apprcocaches tLem.
Y
".' a B
,ﬁé a) Evaluation of V,,, of (2-33) and V.n of (2-42)
1
el Equations (3-28)-(3-32) are still valid because they
\-l“ a [ -]
::5 were obtained without knowledge of M.. Hence, Vin» and Vin
b
}
: are given by (3-28) where V,,,. 1is given by (3-32).
‘5& Substituting {3-3) and (3-88)-(3-82) into (3-32) .,
)
?#ﬁ introducing the new variable of integration defined by (3-
iy 13), replacing the integral with respect to t° by the sum of
,&% the integrals over the two straight line segments CL+n-1 and
l.‘l
\J
:%. CLen on which M (t’) exists, and introducing a new variable
D
"
s of integration u’ that goes from -1 to 1 as t’ goes from the
ﬁ% begimming to the end of the pertinent straight line segment,
U
C‘g‘l
:$: we obtain, for i=1,2,...5L~-1,
s
QJ
s 1 p1
O:. —JkACACQ (gN'CgL(U,U’)) <>
:-$ V, = duf{du’Je-Cf-u’r= Hy (|Cac (usu™) )
.' 16 [Caw (usu’) |
:4 > -1J-1
D
:% 1 1 (g_..-f_'fg,-._-;(u,u’)) ey
“:; + du du’{1-u’) H, (lEg,L#;(U,U")I)
I:’!v -1 -1 l_':_‘h. !l.--;(U,LI’)'
i
i (3-83)
::l:q

[5¢) X -« - O, “ T T L I T I A - -~ vm Ve - -y At A -
MABGAC WO A % N et e N T L R AL PR L L L A L e e T e NS W S L) \
'.F\'?."A',",’:'l'e.lt e pi,‘gﬂ.‘gﬁ,v ..l,‘..l s l::“dh (3 - ‘{"’ - N } .( 15 A f ak -f\' . ’ ' ‘- ) ) * @3 Wb, 5585,

&,
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.,1‘4"4 1 1

kACAC, (U Caseen—a{usu™)) ¢m,

;:‘Q V;"= {]dujdu’(1+u?) H;(Il:;"_.,.-._;(u,u’)l)
’.‘ Jlb l!:l n_-n—;(u,u’)l

A ~1J-1 '

1 1

"' (Hu'l_:’_’k¢n(u,u’)) c=>

;\J +{du |du’{i-u?’) Ha (IE;!L¢n(Ugu’)l) >
.
LY
A

< l[:an_on(u.-u")l
» -1 J-1
] =E,-3,...,M—E
(3-84)

-
o,

du {du®*(i+u?)
-1 -1 lr:;,._-n_g(u,u’)l

Vism—2r =

-
-
o

JkACACg jl J‘l (I:!n'f:g,l_-pn—-g(u‘u,))

16

o~
<
-

"
R

cem>
Ha ¢ Icz,l_-‘-n—g(usu’ ) l )

oy > 4
SN .

i

du dLl’JL)‘—(l"'U‘)g H;(’Cg’;_q-n—t(u,uu’)l)

-1 -1 ll:_';,;_-n_;(u,u’)l

Il J’I (U *Capem—a(u,u’)) (=
+

5

a’v
2

(3-85

.‘IUIIA‘

where Ty ;{(us,u’) is given by (3-18). From (3-32), we have

-
-

N by

™~ -

) !i=L’L+1""’N
R Vi = @ (3-86)

(=125 ...,M~1

kL k)
Y Knowing the elements of 2=, Z®, V., and V.., we can

o Sa B
s solve (2-32) for 1. and (2-41) for I.. Because of (3-9) and

)
A e
k“ (3-28), the solution I, tc (2-32) is the same as the

s e >
) solution I~ to (2-41). Calling this common sclution I, we

;. .
o write

B
¢ - o

- Ijn =l3n = I3 (3-87)

) (2] ]

" b) Evaluation of Yan of (2-S2)
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s, v . iy ,q,a &f"’*""""' Ll dars o ot Laeade )‘( .'?’- . ‘." ) PNt

J



Aroaa - dai el ago Ml ek d Latat ek Ban aak Aol Aok hai Sl g i A8 o i G-k b Adh o b a Red hih d-e f

0ol

e 46
(R &

\.Q‘

i

éI:Q‘.

*W

)'Q;:'

b Equation (3-37) 1s still valid because it was
‘ﬁ?' obtained without knowledge of Mw and M.. Substituting (3-
Th

d

gm 88)~-(3-82) into (3-37), replacing the integral with respect
¥

ehe

e tae t° by the sum of the integrals over the two straight line
'&* segments CLen-1 and Ci+n on which M. (t’) exists, .introducing
T~§ a new variable of integration v® that goes from ¢ to 1 as t°

goes frcm one end to the other end of the straight line

-

; ; segment, and dealing similarly with the integral with

D

ﬁ? respect tc t ¢to introeduce a corresponding variable of

"

{? integration vs we find that the first row of Y™= is given by

2N

2 .
< "o 1 1 c=)>

105 2knYia. =(kpC)= dvdi—v® |dv'Jfi-v ® H, (kAC|v—v’|)

- e e

n f1 '1 cm>

ey +2|dv vidv S 1I-v’® H, (kgC)v-v™-1])

y :‘} Jo Jo

".‘*

! FI' 1 > (3-88)
, + ldv v]dv’v® Hg (kAClv—v’l)

.|." Jo Jo

O

o 1 v 1 v? (m>

;:j - |dv———— |dv’——— Ho (kiC|v-v’ )

N Jo JS1-—v= yp J1-v'E

"-) 1 1 v’ <> 1 1 <>

UhE) +2|dvidv ——H, (kAC|v=v’=1]) —|dv|dv’ Ho (kaC|v-v’]|)

5?j ¢ Jg JI-v'= g Ja

el

Oy

L ne =|f1 - n c=> <=5

= 2knYa1n=(kAC) dvii-v& dv’v’[Ha(k;C|v+v’+n—E|)+H°(k:Civ—v’+np]

]:ﬁ a3 7

k.

”li

e

"1 1 (=®)> [ & ]
+ldv vidv’v’[H. (kAC|v+v’+n—3')+H° (kAC|v—v’+n—1') ]
Ja (0]

: . PI v 1 (X -3 Cm)>
N —|dv————|dVv [Ho (KkAC|v+v +n-2|)-He (KAC|v-v’+n|) 1
W, Jo fi—va ja

t’) X

AW

¥ iy 0 RO o REPLN
) R ) A L A r‘ L

Ty SIS 0 0 X AL ) ¥ Y
RNONCYS ey, 'l;a‘!‘ ..’\‘!el'c,l.:,.l.o 'n.l * ‘.c.h’:x.:‘ 2 .‘b. A WA X MY \.’ a’q.l‘! .-\.l 4 0"‘. ‘\ﬁ.‘ﬂ ‘e.
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; :l‘
e
s
!'%
A
\Q\ h ,
\‘:",-‘ 1 1 cm> «=>
258 +ldvidv® [He (KAC|v+v’+n=3|)-Ho (kpC|v-v +n-1]) 1

n\:;:' G ﬁ
‘.ﬁ"’: N=2s3s...sM2

‘ (3-89)

','h'-‘: " F-3 1 1 CE=>
‘3} 2knYi sm—1 =(kAC) Ivai—v= Jdv’«ll—v’= Ho (kAC|v+v’+M—E|)
R @ @

;}xq

1 1 cm>

e +1dv vidv’ v’Hg (KAC|v+v7+M-4])
3 \:*l AL E LY @

e
) { ‘
:;' s [ 1 "1 cm> ]

oo +2|dv vidv'dI-vT® H, (kAClv+v’+M—3')
{“; Ja Ja
Yy
:' 1 v 1 v? cems

oY +|dv———— |dv’————— H, (kJC|v+v’+M—2|)

" Jg Jfi1-ve 1] fi-v =
W

¥ 1 ‘1 1 CEmy ( 3—9’3 )

S slov Tdv® Ho (KAC v+v ™ +M-4 )
PO Jo Jo '
WO
MY
N "1 1 v’ cem)
W —-2{dv |dv’=————— Ho (kAC'v+v’+M—3')

¥ Jg 7] Si—v-e
Ly

B %

and that the "internal" elements of Y= are givewn by

T
".

T

(A e = 1 1 <.e >

. 2knNYmn = (kAD) dv vijdv’ v’[ He (kAC|v—v’+m—n')
N 8 8

_'&- “ <>

?a + Ho (KAC|v—-v 4+n-m|) 1]

58
157 + 1 1 CEm) <=

A +idv vidv® v iHo (KAC|v+v +m—n—-2})+Hg (kK Cjv+v +n—-m-21})

A o

L Jo @
i *.
‘ L]
e 'L ce> ce»
N —-ldv ldv’ [ Ho (kiC|v-v’+m-n|)+Ho (K!C|v-v +n-m|) 1]
N o Ji J g
+‘ (3-91)
,s-;.‘ F1 M1 Cc=m> <=y

o +ldv |dv® [ Hg (k;C|v+v’+m—n—8|)+Ho (k;C|v+v’+n-m—Ei) 1
333 o J@

i

i with m=2,34...:M-2., and n=2,3....:M-2.

Wiy
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Lﬁ Since t and t° can be interchanged bithout affecting

L')-:.

Qf Iﬁje’l in (3-37). YP™ is symmetric.
Ny
i

Nne tal
L A Ymrl = Ynm (3—98)
'\:: [T ]
fﬁ If both Mm and M. are reflected abocut the =z plane, then Yan
b
\3
o does not change. Since the reflection of Mm is Mm—m and that
’ﬁv of Mna 18 Mm—ns it is evident that
2
A
.1' ne (a2
": Yor—msrr—n = Yan (3-93)
O From (3-92) and (3-93), we obtain
%
-"4’ nea e ‘
Yﬂl = Yl.n

2 ne "e N=1.24...+M-1

35 Yr—a1,n = Y1 ,m—m ’ (3-24)
2

- rne e .
— Yn'H—x = Y; » M—r e
* fal

t
b2
{ Therefore, the first column., the last row. and the last
e
SO
Bl columm of Y"= can all be generated from the first vrow of Y"=
-3: given by (3-8B8)—-(3-98). 1t 1is not necessary toc compute all
J:'

#; the internal elements of Y™*= because, as given by (3-91).,
o

153

»: they depend cnly on |m—n| rather than on m and n
o individually.
a5
5y Each integral in (3-88)-(3-91) whose integrand dces nct
4

h
s
é& have any singularity interiocr to the region of integration
<$i 1s evaluated by the method of two—dimensicnal BGaussian
n‘:“)i

jﬁ quadrature. Each integral that has a sinqularity interior toc
K
oty the region of integration is treated in Appendix A by
rs
)
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the singularity before applying the methad

of two-dimensiconal Gaussian quadrature.

c) Evaluation of AYen of

What was dcone in

3.3c 1is still wvalid

knowledge of the magnetic current expansion functions.

those two paragraphs, we found
by (3-S54) and (3-535) where C,m
and (3-61).

Since J,(t) 1is given by

86)-(3-82), {(3-62) specializes

- o 1
C_’m = C.’m = - v,’m
2

where V,m

the first

because it

is given by (3-83)-(3-85).

-]

(2-53) and AYmn of (2-54)
two paragraphs of Section

was accomplished withcout

In
- [ -]
that AYmen and AYam are given
(-]

and C,m are given by (3-62)

(3-3) and Mm is given by (3-
to
f,:]=1 ,-E, «w e _-L—l
94 (3-925)
m=1 ,E, e« e s -M_l
~
Substituting (3-3) and

(3-88)-(3-82) 1intc (3-61) and evaluating the resulting
integralss we obtain
<
- [~ TTAC
Cir = -CLa =
8 § (3-96)
Clwvr.r = ~Clw2.1 -_—
- AC
Ciem—21.m = ClLom=2.m = -_—
4 : (3-97)
- - AC ! m=2.3.....M-2
Civmem - CLvmem = -_
4 J

. ,_.f e J' -‘_J R -’/' e , .z ‘_(.".- (".r\.r

---'-4'4'(,"_,.’
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- o AC
Q.on—e, m—1 = Ciem—= gr—1 —
4 (3-98)
C|_+n—1.,r1—x = =Ce+m—2 gr—1 =
8

The rest of the C*’s and C°’s, those that do not appear in
(I3-95)—-(3-98), are zero.
Substitution of .(3—87). and (3-99)-(3-98) into (3-54%)

and (3-595) gives

a 1 L-1
2 j=1
® 1 L-1
Avmn = - z I,’n v,’m - AYmn (3-100)
2 j=1
where
, AC 4
—_'(__ ILH -+ ILvl,n ) lmsl
4 2
AC
Y ={ e | IL.*m—x,n +IL+m,n) ,m=2.3,...,ﬂ-2
&
(3-191)
AC w
L —_— ILOH—E,H + - IL.-O-N—I.,n) »ym=M-1
4 2

Substituting (3-99) and (3-10@0) into the sum of (2-50) and

(2-51), we obtain

- [ e L-l
i=1
™w
where® Y.. was evaluated in Section 3.4b, I, is the j®"
- -

element of the column vector I, = 1. that satisfies both (2-

-« 0 I ",
gL G CRCREL ALY n.'(\
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32) and (2-41), and V,. is given by (3-83)-(3-85) with i
replaced by j.

2 e

d) Evaluation of I. of (2-595)

What was done in the first paragraph of Section 3.3d
is still valid because it was accomplished without knowledge

of the magnetic current expansion functions. In that

a e -
paragraph, we found that I. is given by (3-70) in which I,
=
is the j*" element of the column vector I=* that satisfies
@ e

{2-22)y Cym is given by (3-56), and C. is given by (3-74)

When the magnetic current expansion functions are given
by (3-80)-(3-82), the non-zero C,~"s are given by (3-99)-(3-
98) so that (3-79) becomes

AC w - -

([ — ( = Ig + I wa ) sm=1
4 2
(3—-123)
L e r1ne 1 L-1 o AC - -
Im = Cm - = 2 IJ v_’m—ﬁ — ( Il_-vm—]. + II_"-m ) ,m=a|3’---)”-a
2 j=1 4
AC - " - re
— leerm—e + — I wm—a ) sm=M-1
| 4 2
\
Substituting (3-80)-(3-82) into (3-74), we obtain
ine ACcospg® j(p,+pde) 1 —jhav
L, =-———g¢ L l-v& @ dv
n ]
iP. 1 —jav
+ @ v @ dv 1 (3~-104)
2
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v Cm = v e dv

L sine ACcosg*  jimg,+ge) —-jBaifl jeiv
=z — e
W n 2

o
. ,
Thet

0‘0‘ j¢1 1 —jﬂtv
g + e v e dv (3-105)

m=2,3,...,M2

Ch-r = ———— @ C J1-v&8 e dv

;:::‘{ n o

*

ﬁ“ -, [l jPav

_?g + e v e dv 1 (3-106)
i

oy sne  ACCOSEr  j(M-1)g +pe) Jl jPav

iy where
P p. = kAC sing!® (3-1087)

s, fe = — KW sing? (3-108)

I If sing* # @, then g.# & and, thanks to [15,Formula 567.1.1,

?x; (3-194)-(3-106) become

e Cr = S1-v& e dv
()
\::":: n 0

M¢ l-cose, + j(P,-sing,) ]

$$ sne ACcospg* j(¢z+¢e)[ Il =iV
—_—

(3-109)
'.-‘ ¢I=

223 ine 2AC cospg?t jimp,+pe)

Kt Cm = e C 1"C°5¢1 ] ,m=E.3,...,H—E
faa. n B, =

Ko (3-110)

Cr-1 = —————— ]

l-v®& g dv

et n

" A re ACcosp?* JU(M=1)@,+pm) Il jPav
e
2

(3-111)

§ ] l-cosp:, = j(P, -sing,)
5&3 g, =

\
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R If sing* = @, then P. =pe =0 and (3-104)-(3-106) reduce to
) .
{5
‘3 Ame AC cosg? w
U Ch, = ———————— (1 +— ) (3-112)
>
J‘?h 211 2
\ e AC cosg?
Z§ Gm = » m=2,3,...,M-2 (3-113)
A |
3 .
P “ Lal=d A rme

Cm—2 = C, (3-114)
2 e -
AS Now; I. of (2-95) is given by (3-103) in which I, is
* >
f? the j*" element of the column vector I=> that satisfies (2-
* 2 Me
&g @2)y V,m is given by (3-83)-(3-89), and C. is given by
:§ either (3-109)-(3-111) or (3-112)-(3-114).
i

@) Summary

‘1
kf Substituting (3-192) and (3-1903) into (2-9), we can
He -
o solve (2-9) for V, whose n®*" element V. appears in (2-46)-

(2-49). Of the remaining constants in (2-46)-(2-49), I, is
»’_l‘ ’ s 21
" the j*" element of the column vector I that satisfies (2-

-

"‘ - -] .
M 22), and I, and I, are given by (3-87) in which I, is the
A Sa > >

j*" element of the column vector I =1 = 1 that satisfies

ly both (2-32) and (2-41).
:é Thus, when the magnetic current expansion functions are
%i given by (3-80)-(3-82), the constants V., I:: I:n. and Ijn
t;' in (2-46)-(2-49) can be evaluated. The fields E*~< and H*"<
iﬂl are given by (3-1) and (3-73), respectively. The remaining
:. fields in (2-46)-(2-49) are due to the sources g: and gj

# defined by (3-2) and (3-3) and &M, where M. is defined by
i& (3-89)-(3-82). With the meaning of @M, clarified in the last
\“.4
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< paragraph of Section 2.5a, these fields are given by (3-5)-
}?. (3-8). Having evaluated all quantities on the right-hand
i sides of (2-46)-(2-49) with the magnetic current expansion

functions given by (3-80)-(3-82), we have achieved our
:ﬁ objective, which was to determine the total fields

(Er~=+E=,H*"<+H*) and (E®,H") in regions a and b.
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4, NUMERICAL RESULTS AND DISCUSZION

Programs have been written in FORTRAN for bath a narvow
slot and a wide slot. More general than the theory presented
in Sections 3.3 and 3.4, these programs apply when the wall
of the cavity is finite}y thick and when an additicnal
conductor is either inside or cutside the cavity. A report
on the usage of the programs 1is in preparation. Since the
magnetic current (or the aperture field) 1is ocur main
interest, it has been computed for different widths of the
apertures different sizes of the cavity and different angles

of incidence. Some far field patterns are alsc computed.

4.1 Remarks and Definitions

The numerical results presented in this repcrrt are all
for the case where the uniform TM plane wave given in (3-1)
impinges on the aperture with the incident angle @ being
defined in Fig.5. We decided to plot the magnitude of the
magnetic current versus the position in the aperture since
our computations show that the pbase of the magnetic current
changes little in the aperture. All numerical integrations
are perfarmed by 18 point Gaussian gquadrature.

The name pseudo—-image method 1 is attached to the

sclution developed in Section 3.3. where only cne special

expansion function is used for the magnetic current. The

()
é& name pseudo—image method 2 is attached to the sclution

develcped in Section 3.4, where no less than twe expansion
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- functions are chosen for the magnetic current. The Fourier

Series method is the method presented in [13.Appendix H1 for

Y
,' a circular cylindrical cavity with very narrow slot. The
)

scattering method 1is the method used in [161 and summarized
)
S

in Appendix B, where only an electric current is soclved far.
In the scattering method, a matrix equation is extracted
frem the electric field integral equation either by
Galerkin's method [5,Section 1-31, or by point matching. In
Galerkin®s method, the symmetric product of the integral
equation is taken with each expansicn function. In point
matching [S,S5ection 1-4], the integral equaticn i1s enfarced

at discrete points. The non—-pseudo—image methcod is the

RN, " STAR e

method where the pseudo—-image introduced in Section 2.5 is
S eliminated. This method is summarized in [13. Appendix Al.
o~ Finally, if the plots are for the pseudac-image method,. then

the magnetic current expansion functions used are triangles

) only (i.e.s Ma(t) of (3-88) and Mm—(t) cof (3-82) are
y

2 replaced by triangles) unless we state otherwise. The reason
. for this is explained in Section 4.4,

by

¢

» 4.2 Validity of Results

o We have to check whether we obtain correct and
X accurate results. This is not only an important task but
S
:- also a difficult one since no exact solution is available to
L

i compare with. That 1s why we started with the simplest case:
)

h a circular cylindrical shell of zerca thickness. This shell
<8

4

% was treated by the Fourier series method in [13] where the
s

»

magnetic current distribution (3-27) was on the arc in

b
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A Fig.6 instead of on the plane strip. For ease of compariscn
»334 and simplicity, most of ocur computations are made for

-«

P‘
- circular cylinders and zerc thickness of the cavity wall
B

.a

' even though the programs work for thick cylinders of
W
,$5 arbitrary cross section. The compariscn is made as fcllows:
P
?* It 1s very interesting ¢to note the following from
R

Figs.7—-16:

l;ya )
"MV a) The results obtained by the different methods are of
l’.:l )
*&s the same order of magnitude (Fig.7). The pseudoc—image
A
¢.8

: methods and the Fourier series methed give especially close
& .

.;{ results. For 1instance, at the center of the aperture the
O

$ "

25 magnetic current 1s obtained as #.15234 /-1¢3.18° by the

Jo method 2y and #.1535 /-192.97° by the Fourier series method.
!
3
J. b) The scattering method vyields larger results than I

. cother methods. Scattering (Galerkin®s methcd ) vyields the

$ ; second largest and Scattering (point matching) vyields the
'
g& largest. (see Figs.8-1@). The results obtained by the
Qf scattering methods monotonically apprcocach the results
¢
;:g obtained by the pseudoc-image method as N increases. This is
?&\ true for both a large aperture f{e.g.» #$=38°% and a small
%;" aperture (e.g.. Po=52). (see Figs.11-156). Furthermeore,
-ﬁé Scattering (Balerkin’s methad) apprcaches faster than
is Scattering (point matching). (see Fig.13). The magnetic
?; currents of both scattering methads are usuallv within 1d¥%
g; of each other. Scattering (Galerkin’s methcd) is more

accurate since Galerkin’s methad tests the equaticn over an

)
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- interval instead of at one point as pcint matching dces
3 [S,Sections 1-3 and 1-41.

As a further check, we compare our results with those

obtained in (163 and (17] for two special cases. At  the

! center of the aperture, the magnitudes of the electir-ic fiald

are obtained as: case 1) @¢.31 by [16] and [17]1, @.235 by

Scattering (pocint matching) with N=31, @#.22 by Scattering

(Galerkin’s methed) with N=31, and €.19 by the pseudc-image

: methed with M=15 and L=18, where @t=0v?, g,=1d°,and ka=1.
; Case i) #8.75 by [16] and [171, ©$.54 by Scattering
: (Galerkin’s method) with N=31, and 4.52 by the pseudoc-image
g' method with M=15 and L=18, where #*=8°, pg,=3¢°%,and ka=1.
$r, By and ka are defined in Fig.o6.
g In the previocus paragraph, the numbers cbtained in [16]
i and {171 are the largest. The reaénns are twofold. First of
? alls C16] and [171 evaluate the electric field on the arc
;' part of the cavity (Fig.6 ), whereas we evaluate the
2 electric field on the plane strip connecting the cavity

-

edges. Ours should be smaller since we are further inside

P

the cavity. However. This should neoet yield a big difference

-

when the aperture is small. Secondlys. in [16]1 and [17] point

~ i X

matching is used to apply the moment methad., and the

-
Co’

integrals are approximeted by the interval of integration

PR

times the integrand sampled at the center of the interval

with zpecial treatment of the singularity of the integrand.

=

Gaussian quadrature vields resultzs that are mare accurate

T

than those of any cother technique for weil behaved functicns
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(121. Hence, our results should be moire accurate than
theirs.

On the whole,the compariscns and discussion presented
above lead to the conclusion that the results we cbtained
are correct and that the pseudo-image method yields very

accurate results.

4.3 Usefulness of the Pseudo-image

On the surface, the introducticn of the pseudo—image in
Section 2.5 seems a little artificial. However, as shown in
Figs.17-19, the pseudo—-image method does give better results
than the non-pseudc-image method. First of all.the non-
pseudo—image method vyields unexpected overshcoots near the
edges. We say that they are unexpected overshoots since no
cther method mentioned in Section 4.1 predicts them.
Secondly. the non—-pseudo—-image method gives larger amplitude
(within 19%4) but essentially the same phase for the magnetic
current (within 1% ).

From the }egults discussed in Section 4.2 and those
shown in Figs.17-19. we conclude that the pseudo-image
method gives a more accurate magnetic current than the non-

pseudc—image method.

4.4 Edge Canditions

In Section 3.4, we have chosen the twe special
expansion functions Mi(t) and Mm—,y(t) tc cbtain the proper
edge behavior [14] because we initially believed that this

would vield more accurate results. Alternatively. we could

,n ot
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use only triangle functions. For comparison we carry out
both sclutions. Figs. 20-22 show that the resulks of these
two methods are very close to each other, even near the
edges. Not much advantage 1is gained by satisfying the edge
conditions in the examples we computed. The additicn of the
special expansion functions results in much more complicated

equations, and mocre effort and computer time are needed.

4.5 Speed of Convergence

Given a certain size of aperture, how many expansion
functions should be used? In other words, how fast do the
results converge 7 It can be seen from Figs.23-26 that M=1@
suffices tc ocbtain convergence for a small aperture and M=16
suffices for a large aperture. The larger M is, the smcother
the plots are. Hence, as a rule of thumb, M shoculd be large

encugh to cbtain a smcoth curve.

4.4 Other Numerical Examples

Fig.27 shows that the magnitude of the apertuwe field
increases with the width of the aperture. Figures 28 and 2%
show that oblique incidence causes noticeable asymmetry of
the aperture field cnly when the aperture is large. Figs.3¢
and 31 give results for the case where the cavity wall 1is
finitely thick (see Fig.32). It is interesting toc note that
the aperture field increases with the wall thickness.

The far scattered field 1s acbtained by replacing the
Hankel functioen by 1ts large argument approximation (6,

q.(D~13)]. Although the aperture fields cbtained by the

g N e s
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different methods mentioned in Section 4.1 are different,the
far fields are nearly the same. Their difference 1is less
than 1%4. This is expected since the aperture field aonly
affects the electric current in the vicinity of the
aperture. However, the field inside the cavity is
propoertional to the aperture field. Examples of far field
scattering patterns are given 1i1n Fi1g.33 and Fig.24. If the
angle of 1ncidence #* increases by &, then the far field
scattering pattern rotates through the angle 4#* as deoes the
scattering pattern eof an infinitely long complete circular
cylinder. Again, this shows that the small aperture has

little effect on the far field scattering pattern.

4.7 Concluding Remarks

In this report, a new method called the pseudo-image
method, incorporated 1n the generalized network formulation
for aperture problems. is developed to accurately determine
the field inside and outside a conducting cavity with a
small aperture. The theary can be applied to both twoc and
three dimensicnal cavities of arbitrary shape.

A number ef computaticns have been made for an
infinitely lang slct in a perfectly conducting cylindrical
surface illuminated by a uniform TM plane wave. The piocgrams
developed apply to a cavity with finite thickness and an
additiconal conductor may be either inside or cutside the
cavity. With scme modifications. the main program can acply
to a multi—-conductor system as well., As further work. we

could sclve the problem of an infinitely long cylinder with

e :.),\:_\
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a slot illuminated by a uniform TE plane wave instead of a
uniform TM plane wave.

Finally, we should point cut that, althocugh the pseudo-
image methed works well for a non—-resocnant cavity. it fails
when the cavity 1s resonant. There twce reasons. One is that
the rescnant electric current on the conducting surface S:c
produces tangential elect%ic field on this surface so that
‘Qi can not be uniquely determined by using the electric
field integral equation only [18, Section 23. The other is
that the field inside the cavity would go to infinity if the
magnetic current M, ocn  the right hand side of the shorted
aperture in Fig.4 excited the rescnant made of the cavity. A

special technique has to be develaped to treat the resonant

cavity.
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Fig. 11. The magnetic current magnitude in the aperture obtained by
the pseudo-image method (M = 20, L = 18) and the scattering
(point matching) method for ¢1 = 180°, ¢O = 30°, ka = 1.
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¢ Triangles only
¥ Edge condition included

M= 16 L =18

>

The magnitude of the magnetic current in the aperture obtained by
the pseudo-image method with and without the edge condition in-
cluded for 41 = 180°, $0 =10° ka = 1.
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g the pseudo-image method with and without the edge condition
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included for @i = 180°, b, " 3n°, ka = 1.
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The magnitude of the magnetic current in the aperture
obtained by the pseudo-image method for a cylinder with

finite thickness, o1 = 180°, @O =15°, ka1 = 1.
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is perfectly conducting.
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APPENDIX A

e

In this Appendix, we express 2kn Ymn of (3-88)-(3-
21) in terms of integrals whose integrands have no
singularity intericr to the region of integration. Whenever
the argument of H;.,is zero at.a point interior to the
region of integration we subtract out the small argument
approximation of H;.’and integrate this approximation
analytically.

Of all the arguments of the Hankel functions in (3-88),

only kAC|v-v’| can be zerc at a peoint interior tco the region

of integration. Accordingly, we recast (3-88) as

ne 1 1 _
BknYaa =(ka0)2] |dv |dv? (T=v® SI=v7= +vv)
g lo

CER>

(Ho (KAC|v=v7|) = g(KAC|v=v™|) )

(A-1)
1 1 cm>
+2|dv v]|dv’d1i-v' = H_ (KAC|v=v’>—1]) +1,
(7] @
1 1 v v’ <>
—fdv jdv’( — — +1) (Ho (kKAC|v-v7}) - g(kAC|v=v™|))
3 a J1-ve Ji-y’=
1 1 v’ cm>
+2|dv |dv’ Ho (kAC'v—v’-l') - Ia
@ ¢ fi-v'e
where g is given by (3-29) and
1 1
I, = [dv [dv (J1-vE® J1-v’® + vv’)g(kpC]v-v'])
@ (A-2)
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1 1 v v?

le = jdv |dv7( +1)g(kAc|v—v’|) (A-3)
& 7 Ji-ve ({-y’e

The indentity
1 1
dv JI-v® |gv’f1—v° = loglv—v’l = {A—4)
@ @

1J;VJT:75 J;V’JT:;TEloglv—v’l -J;vJT:V! j;v’JT:VTilog|v+v’|
a24-1 -1 g &

can be verified by expressing each integral over (-1,1) on
the right-hand side of (AR~4) as the sum of the integral over
(—1,8) and the integral over (4,1) and changing the variable
of integration so as to replace the integral over (-1,8) by

an integral over (@,1). Using (3-47), (3-48), and (3-58), we

cbtain
1 fl e
dvfi-v® Jdv’Jl—v” 1og|v-v’| = == (1+ 4log2 ) (A-5)
-1 -1 16

Substitution of (A-5) into (A-4) gives

1 1
Ival—v= Jdv’Jl—v’g 1og|v—v’| =

@ @
(A-6)
= 1 , 1
- —( 1 + 41cg2 ) —Jdv Ji-v= Jdv’Jl-v’2 leg|v+v ™|
32 @ a

Using [15,formulas 619.. 618.1., 616.2., and 61@.3.1

and working diligently, we obtain

1 1 7
dv v jdv’ v’ leg|v=v’]| = ——— (A-7)
1] 7] 16

It is easy to show that

PRI W
+ ‘“’-‘?‘t"‘t A
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ok 1 b e 1 )

o dv |dv (JI-vEfI-v'® + vv’') = — +— (A-8)
a @ 16 4

Substituting (3-280) into (A-2) and using (A-6)-(A-8), we

(3 obtain

f = 1 ™ 1 w w 7

'fgfiig Ig = — - _j( (- +—)10gb - - ngE — e— )
16 4 8 2w 4 16 8n

X 2 1

531 + ——-jval—v' Idv’dl—v" log|v+v’| ‘ (A-9)
&*‘ w @ ]

O

where : T

A b = — kAC (A-10)
2

Seeking to evaluate Ig of (A-3), we consider

)

;?g 1 v 1 v?
'%V Uy, = jdv dv? loglv—v’l (A—-11)
A g Ji-ve Jjg Jfi—v°=

The substitutions
vy -
V\ v = coso (A~-12)

coso” (A-13)

I v?
transform (A-11) to

g n/2 n/2

L)

f&? Us =Jde cose Ide’cose’ log|cos@-cose’ | (A-14)

; @ a

KRN Substituting [14, eq.(A-2)]

2
— cos{m@) cos(me’) (A-19)
m

nee

- log|co59—cose’| = ~log2 -

&
LX) m=1

SARE O YON VY e MO NI A AR R AP AT AP e O (P B ANT\ MO AT
S "'"'}"‘“ 1"“"‘.’}\":‘0‘.,“‘.'3.,'»at‘}.i‘e‘l‘s."l‘l, ACLURION, ‘q i‘t’l“!v, Q,.l X 'b, .A.“:lﬁ%‘ ¥) ” '3.‘“0_-‘7 ‘-"‘ﬁ‘:"“u.t"‘i":"gf_‘ ti" gt
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inte (A-14) and interchanging the order of summation and
integration, we cbatin
~$f : n/2 n/2
i = 2 -
e U, = -log2 ( |cose d&) - ~— ( {cos© cos{(m8&) do )
1m

. @ m @
ittty
A0 (A-18)

n~e

&Q' which first reduces tc

e o 1 sin{(m+1)uw/2) sin({(m-1)w/2)
o U, = -log8d - — - & - +
ey 8 m=2 2m m+1 m—1

te (A-17)

KA and finally to

[

g&: we @ 1

b U = -log@d - — - X (A—-18)
R 8 n=1 n(2n+1)=2(2n-1)=

) Using [1S5, Formulas 616. and 618.1.1, we obtain

Y 1 1
gt Idv Idv’ log|v=-v’| = - 3/2 : (A-19)
¢ Jo :

It is easy to show that

> gk o e

1 1 v v?
dv ldv’® ¢ +1)=2 (A-23)
a Jo J1-~ve fl-y'm

P

Substitution of (A-18)-(A-20) intc (A-3) gives

-8
1

:".. E b= 3
1,1 Ia = 28 - j—™ |log(-—-) -~ - -
'0..' w a2 2

ne @ i
—_— -5 {A-21)
8 n=1 n(2n-1)®(2n-1)=

,v".l e

oy Now, 2knY:, of (3-88) is given by (A-1) where I, and le are

et given by (A-9) and (A-21), respectively.

IRRCTOGM 0] B LA 1, BRI ! 5 . \ LA ML i T
L) b:.‘-?n'f-‘ : Lol Soge e e e R e Tt e . LIOLMILNR
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- Of all the arguments of the Hankel functions in (3-89),
*ﬁ@ only kAC|v+v’+n—3| can be zero at a point interior to the

etk region of integration. Accordingly, we recast (3-89) as

<)

o, ) - 1 1
;{f‘:., 2knYin = (kAC) dvdt—v& |dv’ v’ ( He (kACIv+v’+n—E,)
) a @

i‘ 2>
gt +  Ho (KAC|v=v’+n|) )

,‘g.: "1 1 «(=>
; . + |dv vidv’ v’ Ho (KAC|v-v’+n-1]) + Ig (A-22)
v

‘.:' " ‘ J @ @

.!n::f 1 v 1 c=)> «c=>
Lz - ldv dv’ (Hy (kAC|v+v’+n-E|)—Ho (kAClv—v’+n|) )
_\ Jo fi-v= jp

.‘g '1 1 cm>
%& - |dv |dv’ Ho (KAC|v=v’+n-1]) + I,
L)
% Jo Jo

Y where

i 1 1 e
i : Ia = |dv vidv® v’ Ho (KAC|v+v’+n-3{) (A-23)
] )

1 1 cm
N } PR dv {dv’ Ho (kAC|v+v’+n-3|) (A-24)

7] a

e

i If n z 3, (A-23) and (A-24) are all right as they stand

AA CE)>
becauas2 the argument of Hy, camn not vanish at aav point

N iateirior to the region of integraticn. If n=2, than (A-Z3}

-
i
-
3
HU

.~ (A-24) are recast as

i 1 1 «<=>
.hﬁ Ia=Uas+|{dv dev’v’(H° (kAC|v+v’—1!)—g(kAClv*v'-il)) (A-25)
"l.gl o g @

bﬁ 1 1 cm>
o le=Ua+|dv Idv’ (Ho (kAC|v+v’-1‘)—g(kAC|v+v’-1’)) (A-26)
e u’a @

ity where

1 1
®
B Ue = Idv v[dv’v’ G(KAC|v+v -1]) (A-27)

0 by e b-““‘(!"'&‘jﬂ "‘,fig.f‘.-!.*ﬁ ,“‘5.*‘?‘9":‘."’?
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1 1
Uy = Idv Idv’ g(kAC|v+v’—1|) (A-28)
@ &

Using [15, Formulas 616., 616.1., &16.2., and 616.3.1

and working diligently. we obtain

1 1 b
dv v dv’v’lag|v+v’—1| = - — {(A-29)
@ ] 16

Substituting (3-28) inte (A-27) and using (A-29). we find

that
1 J
Uag = — + =— ( 5 - 4logb ) (A-33)
4 8w

Substitution of (A-38) intc (A-25) gives

1 1 cms
Ia = ldv v|dv’v?{Hg (kAC|v+v’—1|)—g(kAC|v+v’—1') )

@ @
1 J

+——* ——( 5 - 4logb) yn=2 (A-31)
4 an

where b i1s given by (A-18).
Seeking to evaluate Us of {A-2B8), we write
1 1 3
Idv’ Idv’ log|vév’i-1| = - — (A-32)

@ @ 2
To verify (A-32), note that if v’ is replaced by 1-v° in (A-~
32), then the left-hand side of (A-32) reduces to that of
(A—=19). Substituting (3-206) into (A-28) and using (A-32), we
obtain

J

U =1 ¢+ - ( 3 - 2lagb ) (A-33)
L

Substitution of (A-33) into (A-26) gives
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1 1 cm>
Ie = |dv jdv’ (He (kAC|v+V’—1|)—g(kAClV+V’—ll) )
7] a

J
+1 + - (3 -~ 2logb ) s =2 (A-34)
v

ne

Nows 2knY.n of (3-89) is given by (A-22) where Is and l. are
given by (A-31) and (A-34) for n=2 and by (A-23) and (A-24)
for Nn=3:4y...sM-2.

Of all the arguments of the Hankel functions in (3-98),
only kAC!v+v’+M-4! can be zeroc at a peoint interior tc the
region of integration. Accordingly. we recast (3-96) as

ne =

Ekr‘y‘ Tg—g = (kAD)

) | 1 cm> .
dvJl-v® fdv J1-v’® Ho (KAC|v+v’+M-2))
) -]

1 1 cm>
+ Is + EJdv v[dv’Jl—v" Ho (kAC|v+v’+M—3|)
a @

1 v 1 v? cm>
+ |av dv® Ho (KAC|v4v’+M-2])
@

g Jfi-va fi-v e

(A-35)
1 1 v? ce)>
+ I - Efdv jdv’ Ho (kJC‘v+v’+M—3,)
a g fi-vce
where
Pl 1 ce>
Is = jdv dev’v’ Ho (k1C|v+v’+M—Ql) (A-36)
J@ a
1 1 cm>
la = jdv Idv’ Heo (k;C|v+v’+H—Q|) (A-37)
Jo a '

If M2 4, (A-36) and (A-37) are all right as they stand

(4 3]
because the argument of He can net vanish at any point
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H

Ay

)
d interior toc the region of integraticn. If M=3, then the
B
g& right-hand sides of (A-36) and (A-37) are the same as those
3¢
Z}: of (A-23) and (A—24) with n=2. Hence, from (A-31) and (A-
b

¢ 34), we have

o

A

% 1 1 Cm=m)

:_ Is = |dv vijdv® v’ {Ho (kAC|v+v’—1|)-g(kAC|v+v’—1|) )

) 7

\* R a

R 1 i |

+ -+ — (5 - 4logb ) +M=3 (A-28)

v 0 4 8w
31‘"
I‘_" 1 1 cm>
4 Io = |dv |dv?® {Ho (kAC|v+v’—1|)—g(kAC|v+v’—1|) )

0 @ @
R
: j

A + 1 +— ( 3 - 2logb +M=3 (A-39)
K w
Lo "ne
zf Nows 2knYism—2 of (3-96) is given by (A-35) where Is and Igs

are given by (A-38) and (A-39) for M=3 and by (A-36) and {(A-

37y for M=4,5,....

W 1 [T 3

ey We rewrite Equmn of (3-91) as

ne m=8,3,....|‘1—2
:":( Ekr'Ymn = I + Ia + I ) (A-4@)
A N=23s3s...1M2

where

O I»

1 1 - <>
dv |dv?( (kgC) vv’= 1) (H,o (kAClv—v’+m—n|)
] @

e <(m)>

ih, + Ho (KAC|v=v’+n-m]) ) (A-41)

:‘ 1 1 - cm)>
5 la = Idv fdv’( (kXC) wvv’+ 1) Ho (KAC|v+vi+m—n—-2})
3 “

o, (A-ag)

QIO W T e N Vo AR T 0 ORI
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1 1 e <m>

Ie = |dv Jdvi({ (KAC) wvv™+ 1) H, (KAC | v4v +n-m—2|)
a 7

(A-43)

Ifm &®n, (A-41) is all right as it stands because

neither of the arguments of i1ts Hankel functions can vanish

at any point intericor to the regiocn of integraticen. If m=n,

then (A-41) is recast as

1 M = T3 i
» =2U., +2|dv]dv’ ({kAC) vv'—-1)(Hg (kAclv—v’|)—g(de'v—v’|))

g Ja
{A—44)
where
1 1 -
Ue = jdv jdv? ((KAC) vv? - 1) g(kJClv-v’l) (A-45)
a a
Using (A-7) and (A—~19) to evaluate (A-45)., we obtain
(kpCH= j2 (kpC)= 7 g 3
U = -1 - —(( - 1 Jlogh — —(kpCY + - )
4 n 4 16 2
(A-46)

Substitution of (A—-46) into (A-44) gives

1 1 P cm>
I, = 2jdvidv’ ((KAC) vv’—-1) (Ho (kACIV-v")-g(delv—v"))

o Jo
(A-47)
(kAC)®= j a 7
+ -2 -~ ( 6~ 4logb - (KkAC) (- -logb) ) +m=n
2 ™ 4

If m-n %1, (A-42) is all right as it stands because the

«<m)>
argument of Hs, can not vanish at any point intericor to the

region of integration. If m-n=1, then (A-42) is recast as
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1 1 P c=>
I.;U5+Idvjdv’((kAC) vv?i+1) (Hg (kAC|v+v’—1|)—g(de|v+v’—1|))

8 Je

(A-48)

where

=
Us = (KAC) Ue + Uan (A-49)
in which Us and Us are given by (A-27) and (A-28). In view
of (A—BE) and (A-33), substitution of (A-49) intc (A-48)

gives

1 1 - cm>
Ia = |dv]ldv? ((KAC) vv’+1) (He (kAC|V+V’—1|)—g(kAClV+v’—ll))
g Ja

= 1 3 i
+(kAC) ( = + —( 5 —-4logb)) + 1 + - (3-2logb) sm—=1
4 8n w
(A-53)
If n-m 1, (A-43) is all right as it stands because the
<C|m>
argument of Ho can not vanish at any point intericor to the

region of integration. If n—m=1, then Ies of (A-43) is what

le of (A-42) would be if m~-n=1. Hence,

Io = I s N—m =1 (A-51)
where le is given by (A-5S@).

(2l J

Nows 2knYmn of (3-91) is given by (A-48) where I-» is
given by (A-41) for m & n and by (A-47) for m=n. la is given
by (A—42) for m—n =1 and by (A-58) for m—n=1, and Ie is

given by (A-43) for n—-m = 1 and by (A-51) for n-m=1.
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ﬁ \ APPENDIX B
e
%i’ In this appendix, we summarize the scattering method, a
Ll
e method in which the aperture remains open and only electric
\l

’h
::j current is involved in the solution. In the original problem
’o

gy
e in Fig.1, the impressed sources radiate in the presence of
LA
.- the coducting bodies. The resulting +field, denoted by
e
‘:1 E=(Jim™e Mime) can be viewed as the sum of the field,
Ny
L
:i denoted by Et"<=, which would exist if the impressed sources
) i radiated in free space and the field, denoted by E({J=,0Q),
‘{._\D

Ll
ﬁjl produced by the eletric current J® induced on the perfect
b <,
'Kf conductors radiating in free space.
o2 The boundary condition is that
0%
5 1ime .
s Ee«e + Ee(J=,0) =0 (B—-1)
L on S&i, S., and Sa
;F where t denotes the tangential componet on the conducting
)...'
ﬁ? surface and Se, Si., and Sa are the surfaces of the perfect
1) .
LY
Zﬁl conductor 5. (See Fig.l1) (B—1) states that the tangential
¥ componet of the electric field vanishes on the surface of

the perfect conductors. Rearranging (B-1), we aobtain

/-
s e n =%

e

%; - Ee(J=,0) = glne (B-2)
:%i To emphasize, we repeat that E*"= is the electric field that
%v. would exist if the impressed sources radiated in free space,
3; and E(J",0) is the electric field due to J* radiating in
.5:j = free space as well. E(J",0) is usually called the scattered
e
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field. Thus, we refer to the method developed here as the
scattering method.
In the following, we obtain J*® by the moment method

£31. Let J™ be approximated by

N -
J* = I, J, (B-3)

where {J;} are expansion functions which must be chosen

tangent to the conducting surfaces, {I;} are coefficients,
and N is the number of expansion functions used to

approximate J=.

Substituting (B-3) into (B-2), we obtain

N - - 1rns
= I Is Ee(Jds,0) = Eeo (B—-4)
j=1
where E(J,,0) is the electric field due to the jt"™ expansion

funciton J, radiating in free space. Taking the summetric
product of (B-4) with J,, i=1,2,...,N, we obtain
> >

[Z=] I= = y=» ' (B~5)

where the ij®*" element of [Z*] is given by (2-24) with the

-> -
superscript a replaced by s, the i®*" element of I* is I,,
s >
and the i*" element Vi of V= is given by
- - 1me
Vi = < Ja,Ee > (B-64)

.)
After I= is obtained by solving the set of linear equations

in (B-5), the fields can be written as

- N - -
E (iamp,ntmn) = Eln: + L I, E(J,,0) (B-7)
i=1
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- N - -
H (Jtme Mime) = Hine &+ T I, H(J,,0) (B-8)
i=1

where each field quantity on the right-hand sides aof (B-7)

and (B-8) is due to its source radiating in free space.

The formulation here is indeed simple. Unfortunately,
it will fail to accurately determine the field inside the
cavity ¥ormed by the walls of a conducting body if this
cavity has a very small aperture. This is due to the fact
that the +field inside the cavity, being the sum of the
incident field and the field due to J®, will be very small.
The field due to J™ nearly cancels the incident %ield.
Hence, a small percentage error in J*™ will give rise to a

large percentage error in the field inside the cavity.

b
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