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1. INTRODUCTION

The problem of electromagnetic coupling to a cavity

through an aperture is an old problem. For an extensive list

of references see 113. A number of problems are solved by

the so-called generalized network formulation for aperture

problems [23-E43. In this method, the aperture is closed by

a perfect conductor, a sheet of unknown magnetic current M

is placed on one side of the shorted aperture and -M is

placed on the other side. This insures continuity of the

tangential electric field across the aperture. Next, the

tangential magnetic field is forced to be continuous across

the aperture, resulting in an integral equation for M. M is

found numerically by following the method of moments E53.

Unfortunately, this method can be easily implemented only

when the aperture is in a perfectly conducting infinite

plane so that image theory (8,Sec.3-4J may be applied to

find the fields due to M 33],143.

When the aperture is in a finite curved surface, the

fields due to M (or -M) radiating in the presence of the

complete conducting surface are difficult to find. The

complete conducting surface is the conducting surface with

its aperture shorted. The present report gives an accurate

solution to such problems. We recognize that the problem of

obtaining the electromagnetic field due to M is a scattering

problem in which the impressed source is on the scatterer. A
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similar static problem was solved in [7] by a method in

$which a pseudo-image was used in order to improve the

numerical accuracy. For reference, we call this method the

pseudo-image method. With this in mind, we approach the

problem by following the generalized network formulation

method until the point of finding the fields due to M

radiating in the presence of a complete conducting surface.

We then solve this scattering problem by placing an electric

current J on the complete conducting surface, introducing

the pseudo-image as in C73, writing the electric field

integral equation for J and finally solving this equation

for J by the method of moments [53. As shown in the

following sections, the theory developed in this way works

very well for a non-resonant cavity formed by the complete

conducting surface. However, it fails when the cavity is

resonant. Further study is needed to treat this special

case.

Section 2 states and formulates the general problem

shown in Fig.1. The theory developed applies to both two and

three dimensional problems. In a two dimensional problem,

all quantities are invariant in one direction, for instance,

the z-direction. Section 3, which is essentially the

application of the theory developed in Section 2, solves the

problem of electromagnetic scattering from an infinitely

long, infinitesimally thin, perfectly conducting cylindrical

surface with an infinitely long slot illuminated by a

uniform TM plane wave. Section 4 states the numerical



results obtained for the problem of Section 3. Various

methods are compared to show how well the pseudo-image

method works. Appendix A evaluates some of the complicated

integrals appearing in Section 3. Appendix B summarizes a

method for the aperture problem in which the aperture is not

closed by a perfect conductor and only an unknown electric

current J is placed on the conducting surface. This method

fails to give accurate fields inside the cavity when the

aperture becomes very small.



4

2. FORMULATION OF THE PROBLEM

2.1 Statement of the Problem

The problem to be considered is shown in Fig.1 where

electromagnetic coupling occurs through an aperture of

arbitrary shape in a perfectly conducting body which may

have finite thickness. If the aperture were closed, there

would be a cavity. Some additional complete perfectly

conducting bodies may exist either inside or outside the

cavity, or both. To keep the formulation of the problem

simple, we consider the case where only one additional

complete conducting body is located outside the cavity.

Other cases are just straightforward extensions of the case

under consideration. A homogeneous medium with permeability

14 and permittivity E fills all space outside the perfectly

conducting bodies. The perfectly conducting body with an

aperture is specified by its internal surface, denoted by

S&., and its external surface, denoted by S.. (Of course, if

the body has zero thickness, then the internal and external

surface will be indistinguishable.) The additional

perfectly conducting body is specified by the surface S.. It

does not matter whether this body is hollow or solid

because, due to the fact that S. is closed, no field can

penetrate it. The cross sections of the conducting bodies

are shown in Fig.l. The problem is two dimensional if
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everything is invariant in the z-direction. In this case the

conducting bodies are infinitely long cylinders and the

aperture is an infinitely long slot. We formulate the

problem without mentioning whether it is a three- or two-

dimensional problem.

Next, we define the symbols appearing in Fig.1.

(Jlk,MM'n) denotes the known impressed electric current

source and impressed magnetic current source. (E 1"=,H"'=)

denotes the fields that would exist if (J'II,MkmP) were to

radiate into unbounded, homogeneous space with (*,E)

everywhere. Region b denotes the space inside the cavity,

and region a denotes the space external to the closed

surface that consists of S. and the aperture.

(E'-+E-,H'--+_H) denotes the total field in region a, and

(Eb,_Hr) denotes the total field in region b. The objective

is to determine these total fields. In turn, related

quantities such as power gain and polarizability can be

easily determined. Also, we want to investigate how Bethe

hole theory[8],[9] should be modified when a small aperture

(compared to wavelength) is in a finite perfectly conducting

cavity instead of in an infinite ground plane. Finally, we

state the boundary conditions required for solving this

problem. First, both the tangential electric field and the

tangential magnetic field must be continuous across the

aperture. Second, the tangential electric field on the

perfectly conducting surfaces, i.e., on S., S, and S. must

be zero. With this in mind, we proceed to the next section.

*2W *
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E inc + E a

:H H.nI Ho  ~ a. In region a
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)erture " xb

Fig. 1. Original problem: Electromagnetic coupling through an

arbitrary shaped aperture in a conducting body. (Only

a typical cross section is shown; the shaded area denotes

a perfect conductor.) Impressed sources jimP and Mimp
radiate in the presence of surfaces Si, S , and S--

1 e a

V
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2.2 Derivation of the Operator Euation

4 The situation considered in Fig.1 is rather

complicated. The approach that we take is to decompose the

problem into two parts. The point of departure is the

equivalence principle r6,Sec.3-5]. The aperture in Fig.1 is

first closed by a perfectly conducting flat plate. (If, in a

three dimensional case, it is not possible to close the

aperture by a flat plate, then special treatment is needed.)

Then the magnetic current sheet M is placed on the left-hand

side of the flat plate and -M is placed on the right-hand

side of the flat plate. The M is defined as

E x n (2-1)

where n is the unit normal vector on the aperture, pointing

toward region a, and E is the electric field in the aperture

in Fig.1. In this way, the boundary condition that the

tangential electric field is continuous across the aperture

is satisfied. The combination of S. and the flat plate is

called S. ; and the combination of S, and the flat plate is

called S5 . (Superscript sc stands for short circuit since

the closing of the aperture can be viewed as the short

circuiting of the aperture). The equivalent problem is shown

in Fig.2. Before the problem in Fig.2 is actually equivalent

to the problem in Fig.l, we have to impose continuity of the

4tangential magnetic field across the aperture, as required

in the original problem. Namely,

m J ~ m~~ ~ -~All
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H, (J L -, MAf- +H, .0, M) H (0.,-M.) on A (2-2)

where A denotes the flat plate shorting the aperture. The

subscript t in (2-2) denotes the component tangent to A. In

(2-2), H-(-,-) is the magnetic field operator in region a

with the sources indicated in the parentheses (-,-)

radiating in the presence of S: and S.. Hb(-, - ) is the

magnetic field operator in region b with the sources

indicated in the parentheses (-,-) radiating in the presence

of Si. Actually,the "a" fields on the left-hand side of (2-

2) are evaluated not exactly on A but immediately to the

left of any electric current that could flow on the flat

plate. Moreover, the "b" field on the right-hand side of (2-

2) is evaluated not exactly on A but immediately to the

right of any electric current that could flow on the flat

plate. Each magnetic field in (2-2) has two arguments. The

first argument is an electric current source and the second

argument is a magnetic current source. Equation (2-2) states

that the tangential magnetic field must be continuous across

the aperture.

The impressed sources JImp and MI- P  and the boundary

conditions on the fields on A, St, S., and S. in Fig.2 are

the same as in Fig.1. It is evident from [10,Theorem I] that

the electric field in an infinite region outside a closed

surface is uniquely specified by its impressed sources in

the region and its tangential components on the surface.

Consequently, the fields in Fig.2 are identical to those in
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~,im

je(gIMPMmP)+et)M) M Ii- OL

Fig. 2. The equivalent problem as viewed in the xy plane.
The space inside the cavity formed by S~c is called

1

region b and the space outside S scis called region a.
e
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Fig.1 so that the problem in Fig.2 is equivalent to that in

Fig.1. Comparing Fig.1 with Fig.2, we find that

in region a

(Et, Hts(El(0,-M),(0,--M)} in region b (2-4)

The electric fields on the right-hand sides of (2-3) and (2-

4) correspond to the magnetic fields in (2-2). E-(-,-) is

the electric field operator in region a with the sources

indicated in the parentheses radiating in the presence of

S. and S.. _El(-, - ) is the electric field operator in region

b with the sources indicated in the parentheses radiating in

the presence of S7-. For example, E(0,-M) is the electric

field in region b due to -M placed on the right-hand side of

the flat plate that shorts A.

To find the unknown magnetic current M, we appeal to

(2-2). Rearranging the terms in (2-2) and using the

linearity of the operators, we obtain

4 -H. , M)-H (0,M)=H,6(J&t "',MxM) on A (2-5)

k 2.3 Numerical Solution of the Operator Equation

To find M using (2-5), we first approximate M by

M= Z V"M., (2-6)
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where M,. are known (to be chosen) vector expansion

functions, and V, are scalar coefficients. Substituting (2-

6) into (2-5), we have, by the linearity of the operators in

(2-5),

Z V. (2-7)

Next, we define a symmetric product as

< A,B >= J A - B ds (2-8)

where A and B are vector functions, S is the surface on

which they are defined, and ds is the differential element

of surface area on S. Taking the symmetric product of (2-7)

with M,, m=1,2,---, we obtain

[y-l+(yf] J V = I l
(

= 12-9)

41 -01

where V and I ' - are column vectors. The n*" element of V is

V.,. The m*h element of It-I is I. given by

Moreover,[Y] and [Y11 are square matrices whose mn"

elements are given by

Y.. HI:(,MM,) ds (2-11)

Y. =- J • H-(0,M,.) ds (2-12)
-A
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In (2-11) H-(O,M,) is evaluated on the region a side of A.

Similarly, in (2-12), Hb(O,M.) is evaluated on the region b

side of A. If [Y-], [Y(], and I'-- are found, V can be found

by solving the set of linear equations given in (2-9). A

standard computer routine for this purpose is available.

Substituting (2-6) into (2-3) and (2-4), we relate each

field component in those two equations to the fields due to

the known expansion functions (sources). Now the problem of

finding the fields due to the unknown source M is reduced to

the problem of finding the fields due to known sources

radiating in the presence of complete perfect conductors.

The fields in each region can be written as follows: In

region a,

EIL"=+Em = Em'wM1_'+ V1. E-(0,M., (2-13)

Hl"=+Hb = H (J 1  M1 ')+E V,. H(,M.) (2-14)

In region b,

Eb = -E V,. Eb(O,M,) (2-15)

= -E V. WH(O,M.) (2-16)

The fields on the right-hand sides of equations (2-13)-(2-

16) have the same meaning as in (2-3) and (2-4). The fields

on the left-hand sides of (2-13)-(2-16) are those in the

original problem Fig.1.

In the following sections, we evaluate the fields on

the right-hand sides of (2-13)-(2-16) one by one. The
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results obtained are not only substituted into (2-13)-(2-16)

but also into (2-10)-(2-12) to find the coefficients of the

magnetic current expansion functions, i.e., V.9, n=1,2,---.

2.4 Short-Circuit Field due to the Impressed Sources

(Em(Jkmp,M),_HmCJlfu,M p)) in (2-13) and (2-14) are

the fields in region a due to the impressed sources

(JI,M'') radiating in the presence of S and S. (See

Fig.2). These fields can be viewed as the sum of the fields

*! due to the impressed sources radiating in an unbounded

homogeneous space with (0,E) and the fields due to the

electric current induced on S:= and S. radiating also in the

unbounded homogeneous space with (P,E). Namely, in region a,

_ _ =E 1 ",-+E(J--,@) (2-17)

Hm(Jkp,Mk ) = Hl=+H(J-",) (2-18)

where (E'"=,H1"=) is defined in the last paragraph of

section (2.1); (E(JM,0),H(JmM,0)) are the fields due to

induced current J- on S7 and S., radiating in an unbounded

homogeneous space with (p,E).

On the surfaces of the perfectly conducting bodies S

and S.

9*.'wMm)= Ev, +E,(J,0,)= 0 (2-19)

where the subscript t denotes the component tangent to

either C. or S.. Rearranging (2-19), we obtain
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-9,(J--,@) = E. (2-20)

on S. and S.

The electric current J-- is approximated by

i--= E I17J (2-21)

where {QJ} are expansion functions that are chosen later

when particular impressed fields are given. The function Z2

is on either S or S. and is tangent to whichever surface it

is on. Seeking to determine the unknown coefficients I. , we

4substitute (2-21) into (2-20) and take the symmetric product

of (2-20) with J1, i=1,2,---, to obtain

-01 4
[Z- 1 IMM = V-M (2-22)

where I-- and V - are column vectors. The j"" element of Ii

is 1- . The i*" element of VinW is V7 given by

V" = < J: ,EL-> (2-23)

Furthermore, [Z- ] is a square matrix whose ij*" element is

given by

Z7, = <J: ,-E(.J,@)> = - - E(JJ ,@) ds (2-24)

S. +S.

where j denotes that the surface integral is performed on

S +S,

both S. and S.. Note that El- and E(J,) are due to their

corresponding sources radiating in empty space. They can be

found by the well known formulas in empty space. In turn (2-

mill
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23) and (2-24) can be computed. With [Z-J and V-- available,

SI, ) can be found by solving the matrix equation (2-22).

Substituting (2-21) into (2-17) and (2-18), we obtain, in

region a,

mM

E (J m'mMMV) =E1 " + Z 17, E(j7,@) (2-25)

H (J',MI)=H L r" = + X Ij H(J,) (2-26)

As introduced in Fig.2, the fields on the left-hand sides of

(2-25) and (2-26) exist only in region a so that (2-25) and

(2-26) are only valid in region a even though (Ekt-,H$-=)

and (E(J,,),H(J,0)) are valid everywhere in space.

2.5 Short-Circuit Fields due to the Magnetic Current

Expansion Functions

a) Finding (E(0,M),H (0,M))

The field (E-(,M,),H(,_M,)) appearing in (2-13) and

(2-14) is the field in region a due to the magnetic current

sheet M, placed on the region a side of the shorted aperture

and radiating in the presence of Sm and S.. Since S. is

perfectly conducting, the region inside it is completely

isolated from region a. Therefore, any medium and any source

can be placed inside SC without affecting the field in

region a. We fill the region inside SC with the medium

characterized by (P,E) and place the magnetic current sheet

M., on the right-hand side of the shorted aperture as shown

in Fig.3. The magnetic current sheet on the right-hand side
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of the shorted aperture in Fig.3 is called the pseudo-image

of the one on the left-hand side of the shorted aperture.

Now, the electromagnetic field (E-(0,M,),H(,M,)) in region

a is written as

!4- (0,M,) =H1.0, 2M,, )+H(2Q,@) (2-28)

The fields on the right-hand sides of (2-27) and (2-28) are

due to their corresponding sources given in the associated

parentheses radiating in the unbounded homogeneous medium as

cn the right-hand sides of (2-17) and (2-18). Here, is

the electric current induced on S. and S. by EM,, where 2M

represents the combination of the two magnetic current

sheets in Fig.3. Now, n" adjusts itself so that

E.0M.)=0 (2-29)
on Se and Sa

where subscript t denotes tangential component. Combining

(2-27) and (2-29), we obtain

a
v -E, 1 (V,.,,0) = E.f(0,2M,) (2-30)

% is now approximated by

"m
= Z I J.,(2-31)

where I,. j=1,2,--- are coefficients to be determined, and

J: are the same as in (2-21). Substituting (2-31) into (2-

30) and taking the symmetric product of (2-30) with each
-~J , we obtain
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SC
(O,M.&±(O M~) $

region a

shorted - X____

ape re

Fig. 3. The xy cross section of a situation in which (E a(0, M n,
*H a (0M n)) can exist. The magnetic current sheet immediately

to the right of the shorted aperture is called the pseudo-
image of the one immediately to the left.
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EZ- I =V" (2-32)

Here, [Z-] is given in (2-24), and I,, and V, are column

vectors. The j*"* element of I,, is Ij., and the i*" element

of V, is V&, given by

V:" = <31 ,E(,)> (2-33)

Because E(0,2M,.) is the field due to 2M, radiating in

unbounded homogeneous space, it can be evaluated easily.

Thus, (2-33) can be computed. Therefore I, can be found by

solving the linear equations in (2-32), i.e., is

completely determined. Substituting (2-31) into (2-27) and

(2-28), we obtain, in region a,

E-(0,M,)=E(0,2M) + Z I, E(iJ,0) (2-34)

H-(0,M,)=H(0,2M,.) + E 1:,, "(4:10) (2-35)

In (2-33)-(2-35), 2M, represents the combination of the

magnetic current sheets placed on both sides of the flat

plate that shorts the aperture in Fig.3. At any point not on

the shorting plate E(0,2M,) and H(0,2M,) are simply twice

the fields due to M, because the two M 's are

infinitesimally close to each other. On the shorting plate

the normal electric field E,,(0,2M,) and the tangential

magnetic field H*(0,2M ) are simply twice those due to M,,

but E,(0,2M) and H,,(0,2M) vanish. Because E*(0,2M,)

vanishes on the shorting plate, the magnitude of the

electric current on it is considerably reduced. Hopefully,

IN~
4 ~ %V
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this reduction will improve the behavior of the electric

current on the shorting plate and consequently a more

accurate numerical solution to the problem can be obtained.

b) Finding (Eb(_,M),Hb(0,M))

(Eh(0,M.),Hb(0,M,)) in (2-15) and (2-16) are the fields

due to M, placed on the right-hand side of the shorted

aperture radiating in the presence of S7 . Since S, forms a

cavity, M. will produce zero fields in region a. With the

same idea as in Section 2.5a, we write for region b

(0.,M,) =E(0,2M,) +E. (V,) (2-36)

E P. (O.,M,.) =H(0,.2M.)+H (_,0) (2-37)

where (E(0,2M,),H(0,2M,,)) is the electromagnetic field due

to 2M, radiating in unbounded homogeneous space where 2_.1,

represents the combination of the two magnetic current

sheets shown in Fig.4. There, the M. placed on the right-

hand side of the shorted aperture is the original M,,and the

placed on the left-hand side of the shorted aperture is

called the pseudo-image of M,. % is the electric current

induced by 2M,, on S. . (E(Z,O).H(D ,)) is the
b

electromagnetic field due to 2 radiating in homogeneous
b

space. Now, VI. adjusts itself such that

E.(0,M,) = 0 on S, (2-38)

where subscript t denotes tangential component. Combining

(2-36) and (2-38), we obtain

-V ---.. %~
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'4

y

(M fn)
.- ( / . ,E )

shorted region b
aperture A (Lf)

VC

Fig. 4. The xy cross section of a situation in which (Eb (0, Y ),

H b(0, M )) can exist. The magnetic current sheet immedi-

ately to the left of the shorted aperture is called the
pseudo-image of the one immediately to the right.

J.

'4.
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=E. 0,2M.) on S7 (2-39)

,,, is next approximated by

b b

, = E I jr J (2-40)

where Ja is an expansion function on S, . Substituting (2-

40) into (2-39) and taking the symmetric product of (2-39)

with Jig we obtain

I I.= V, (2-41)

4 where I, and V, are column vectors. The h element of I, is

I,,. The ia" element of V, is Vx, given by

%a..

V,, = <J_,(0,2M,.)> (2-42)

Furthermore, EZf 3 is a square matrix whose ij* h element is

given by

=E(13,) ds (2-43)-J
Si

Once (Jj,M,.) are chosen, (2-42) and (2-43) can be evaluated.

Thus, I,, can be found by solving (2-41). Substituting (2-40)

into (2-36) and (2-37), we obtain, in region b,

E"(0,M,)=E(0,2M,,) + E I's, E(Jj,0.) (2-44)

Hft(O,M,_)=H(0,2M) + Z I , H(J:,0) (2-45)
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2.6 Summary

In section 2.4 through 2.5, we have evaluated all the

field quantities in (2-13)-(2-16). Substituting (2-25) and

(2-34) into (2-13), (2-26) and (2-35) into (2-14), (2-44)

into (2-15), and (2-45) into (2-16), we obtain, in region a,

.Ekwr + E- = Ell- + Z 13 g(L3,@)

+ E Y,-JH(0,2Mr) +i E 13, H(J.3,@)J (2-46)

+ Z V, CE(0,I ) + E I:. E(j,) (2-47)

F= - Z V~., EH(092Mm.) + Z I r. H (J,0 (2-49)

To evaluate V.., we must solve (2-9) .Before (2-9) can

be solved, EY-J, EYtbJ and Il-~ have to be evaluated.

Substituting (2-35) into (2-11) and (2-45) into (2-12), we

obtain

y "= Y,,. + yfV.,, (2-50)

"pY.~ = V.M., + Y V.,. (2-51)

where

1m

A s,,= ,, tM.(,H, ) ds (2-53)

JA ( s(-3
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Y iny1 = -z I. M - H,( J,0) ds (2-54)
A

In (2-53), HU(Zq@) is Hb(g ,p) evaluated immediately to

the left of the shorted aperture on which J, may flow. In

(2-54), H.(J1 ,0) is H*(Jj,@) evaluated immediately to

the right of the shorted aperture on which Jj may flow.

[Y.,j is called the half-space admittance matrix. The

terminology comes from the fact that it is the admittance

matrix for the case of electromagnetic coupling through an

aperture in an infinitely large ground plane, which has been

investigated extensively in the literature, e.g., Bethe hole

theory E8] is developed for the small circular hole in the

ground plane. Imagining the infinitely large ground plane

being shrunk down to a finite size and bent over to form a

cavity, we can view I AY-] and [ Ayb] in (2-50) and (2-'A)

as modifying terms. We want to state how Bethe hole theory

should be modified for an aperture in a finite body.

Substituting (2-26) into (2-10), we find that the m~ h

element of I'"- is given by

I. = _M -H = ds + M I:" fL-H(3j,0) ds
JA J A (2-55)

In summary, we first shorted thz aperture in the

conducting body with a perfectly conducting flat plate and

then put magnetic current sheets on both sides of the plate,
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M on one side and -M on the other to render the tangential

electric field continuous across the aperture. By requiring

the tangential magnetic field to be continuous across the

aperture, we found an integral equation fcor M. Solving this

integral equation by the method of moments E53, we obtained

M as the linear combination (2-6) of the magnetic current

expansion functions M,~ In (2-13)-(2-16), we expressed the

electromagnetic field of the original problem of Fig.1 as

the sum of the field due to the impressed sources and linear

combinations of the fields due to the magnetic currents M1-,,

all sources radiating in the presence of the conducting body

with its aperture shorted. In turn, each of these fields was

expressed as the sum of the field due to its source

radiating in homogeneous space and the field due to the

electric current induced on the body with its aperture

shorted. This electric current was obtained by solving its

integral equation by the method of moments. Collecting

results, we were able to express the electromagnetic field

of the original problem of Fig.1 as the summations (2-46)-

(2-49).
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3. ELECTROMAGNETIC COUPLING TO AN INFINITELY

LONG CYLINDER, TM CASE

3.1 Remarks and Simplifications

Although the formulas derived in Section 2 are valid

for both two and three dimensional problems, it is difficult

to evaluate all the integrals in the three dimensional case.

Because of complication, we may lose insight to the problem.

Therefore, we shall make the following simplifications.

A). Everything is invariant in the z-direction. Namely,

the conducting bodies (three dimensional ) become infinitely

long cylinders and they are completely specified by their xy

cross sections. The aperture becomes an infinitely long

slot. The impressed sources (JLm%,M'hY'P) produce two

dimensional fields. All field quantities in Section 2 are

now only functions of the coordinates (x,y). (The time

dependence exp(jwt) is suppressed).

B). Conductor S. given in Fig. 1 is removed since its

presence entails only minor modifications.

C). The conductor with an aperture which is now a

slotted cylinder has zero thickness, i.e., S, and S. in

Fig.1 become indistinguishable so that the slotted cylinder

is completely specified by one contour denoted by C in the

xy plane.

D). In Section 3, we consider the case where a TM plane

wave is incident on the cylinder. The plane wave is

specified by
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E1-- = u. exprjk(xcosd+ysinl)] (3-1)

where u. is the unit vector in the z direction, k=w4PE, and

01 is the polar angle of the direction from which the plane

wave comes.

E). As shown in Fig.5, the contour C of the cylinder is

a chain of L-1 straight line segments. The end points of the

j*" segment are labeled tj and t3 1 where t4 is the value of

t at the beginning of the segment and t.. 1 is the value of

t at the end of the segment. Measured from the " beginning "

of C at t1 =0, t is the arc length along C.

F). As shown in Fig.5, the contour (x=O, jyLS W ) of

the slot is partitioned into M straight line segments. The

end points of these segments are specified by their values

of t. Here, t is the arc length along C extended onto the

contour of the slot. At (x=O, y=-W)p we have t=t , and at

(x=Oy=W), we have t=t"-m =t,+2W.

G). The combination of C and the contour of the slot is

called C- -. Now, J and J, are both on C - -. We choose

JJ = Z= J(t (3-2)

where

it(t) = , =1,2,...,N (3-3)
0 elsewhere

where

N = L+M-1 (3-4)

The magnetic current expansion function M,1(t) will be
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Hna

reg ion a

r'O, C
I13_ tj

SLOT -#tLt, region b tj+g

Fig. 5. xy plane view of the slotted cylinder. The dotted line
on the y axis represents the slot. Csc is the combination
of the contour C of the cylinder and the contour (x-O, y_ W)
of the slot.
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specified in Section 3.3.

Assuming that both J4(t) and M,(t) are tangent to C--

and independent of z, the two-dimensional fields due to the

electric current J4(t) on C- and the magnetic current M.,(t)

on the contour of the slot, both radiating in the unbounded

homogeneous space with constitutive parameters (P,E), are

given by [5,Eq.3-27J,[11,Eqs.(5) and (6)3

E(J~0)=k J j(t') H., (kIg#,'I) dt' +

k dt' ~~~H. Mp)dt 35

Li(Jj@)= . J t'x 4t)xVzek? j t

tL

4nm I

tLt

- C. M,.(t- M.(') H,(kt-p') t

ktL- dt' j.(j- J t (3-8)

where is the unit tangential vector on CO-, /'is the two-

dimensional radius vector to the point on C-- whose arc

length is V', and -0is the two-dimensional radius vector to
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the field point. The field point is the point at which an

electromagnetic field in (3-5)-(3-8) is evaluated. In (3-5)-

(3-8), k is the wave number wJ-fPwhere w is the angular

frequency, 9 is the intrinsic impedance 4ji7, n is the unit

normal vector that points outward from C9 as shown in Fig.5

and H. is the Hankel function of the second kind of order

zero. If the field point is remote from Cm-, then E. is

zero. If the field point clings to either side of CO=, then

E. is ±1/2. Specifically, E. is 1/2 if the field point is on

the region a side of C--, and E. is -1/2 if the field point

is on the region b side of Cm- . If E.=±1/2, then the t that

appears in (3-6) and (3-7) is the arc length of the field

point on Cm-.

3.2 Evaluation of Quantities That Do Not Depend on M,

In this section we specialize Z.., of (2-24), ZL, of (2-

43), and VI of (2-23) to the case in which both , and J

are the same electric current J3 of (3-2).

A a) Evaluation of Zj of (2-24) and Z1j of (2-43)

Substituting (3-2) into (2-24) and (2-43) and

integrating only over the contour C-- rather than a surface,

we obtain

Z: = Z,. = Z, (3-9)

where

Z13 = - J,(t) • E(J,) dt (3-10)

0
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Substituting (3-3) into (3-5), we obtain

-(.,) q t H.mk f'~t (3-11)

Substitution of (3-11) and (3-3) into (3-10) yields

= - dt dt' Hc, ( 1oj')(3-12)

t' t

New variables of integration u and u' are defined by

u = 2(t-tt-AC%/2)/AC, (3-13)

u'= 2(t'-t1 -ACa/2)/C, (3-14)

where

Substitution of (3-13) and (3-14) into (3-12) leads to

,-r r,, 1 1 C a J{ 6 du Jdu' H. (Iji.,(u~u')I) , j
ZJ= (3-16)

S6 du Idui' H,, (r,/2Iu-U'1 ' ~

where

r,1 = kAC& i=1,2,..., N (3-17)

Cis(u,u') =kR,. + (flt, - r.,u'%.,)/2 (3-183)

In (3-18), ! j is the vector from the midpoint of C., to the

midpoint of C& where C, and C., are the straight line

segments of C-- whose end points are (t,,tx...) and

(ta,yts.&), respectively. Moreover, tand i. are the unit
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vectors tangent to C& and C4, respectively. Here, t points
~A

from t, toward t..,, and tj points from tj toward t,.&. The

vectors R&3, ti and t. can be expressed in terms of the

(x,y) coordinates of the end points of C, and C,.

If i * j, Z%3 is found by the two-dimensional Gaussian

quadrature method [12]. If i=j, we recast (3-16) as

z,& du d 'CHo ( Iu-u' Ir /2)-g( I -u' r ./2)3
16k J-1 J-1

9 r,= Jdujdu[ 

+ du du' g(ju-u'rF,/2) (3-19)
16k J-1 1-1

where g(x) is the small argument approximation of H (x)

[6,p.4621, i.e.,

2
g(x) = 1 - j-log4x/2) (3-20)

W

where log denotes the natural logarithm, logr is Euler's

constant, and T=1.781. The first integral in (3-19) now has

no singularity at u=u' and can be evaluated by the two-

dimensional Gaussian quadrature method. The second integral

in (3-19) is found analytically as E13, Eqs.(62) and (63)]

Jdu fdu' g( IU-U' I r,/2)

= 4 + j4(3-2logrT/2))/w (3-21)

Substituting (3-20) and (3-21) into (3-19), we obtain

2,, = rm rW [1+j(3-2log(fr /2))/n]/4k +
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Idu Idu':H-( Iu-u'jFt/2) - 1 - j-i-;og( u-u'jI'r/4)J
16k 1 J -1

(3-22)

mp

b) Evaluation of V I of (2-23)

Substituting (3-1)-(3-3) into (2-23), and integrating

only over the contour CII rather than a surface, we find

that the i*' element of V--e is given by

WXrtti kxo0ysn'
V=j e dt (3-23)

where (x~y) are the rectangular coordinates of the point t

on C--. Performing the integration of (3-23), we obtain

AC, sinka1  j kc1
V, - - - - - - - - e  ( 3 - 2 4 )

kAk

where <xi=((xi..i+x 1)cosOL+(y.I+yi,)sin~1J/2 (3-25)

ai=r(x1 4*.i-xi)cos0k+(yi.1-yi)sin~kJ/2 (3-26)

Here, (x,qy) are the (x,y) coordinates of the point tt on

Now that the elements of Z- and V-- have been

evaluated, we can solve (2-22) for I-.

3.3 OneMaanetic Current Ex~pans ion Function for

the Narrcow Slot
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In this section, we assume that kw (( 1. Considering

that the slot is narrow, we take only one expansion function

for the magnetic current M. We choose

fuyv .,fT-(yw) x=0, lI"L w
M I = (3-27)

0 elsewhere

because it is a simple vector function that, for the TM

case, has the correct direction and the correct behavior as

y approaches _W. In the rest of this section, formulas

involving the magnetic current expansion functions M, are

specialized to the case where M, of (3-27) is the only

magnetic current expansion function.

a) Evaluation of V, of (2-33) and V1., of (2-42)

Substituting (3-2) into (2-33) and (2-42) and

integrating only over C-- rather than a surface, we find

that the i*" elements of V,- and V, are given by

V:= Vrl = VI" (3-28)

where t r

J(t) - E*(0,2.) dt (3-29)

.c. 0

Referring to the last paragraph in Section 2.5a, and using

(3-7) with [6,Eq.(D-15)]

S-k(p-p') m=

H. (k-") H3 (kip-'I) (3-30)

substituted into it, we obtain
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-k I H1 (klp-F'I)
j~t- (Mr.( (t) x 90-R" , dt" ,O<t<t.-

_E. (0,2M_., 2= t.-

(3-31)

i 0 1t.-<t<tL. "
\,

The subscript t on both sides of (3-31) denotes the

component tangent to CeO. Substitution of (3-31) into (3-

29) yields

tL-.-p (m

.- jk H: H1 i"
2i jdtJ,(t)- dt'(r_(t')x(. -F'))0 If-F'I

40

(3-32)
.- i=L,L+I ..... ,N

where N is given by (3-4).

Substituting (3-3) and (3-27) into (3-32) and

introducing new variables of integration u defined by (3-13)

and u' defined by

U = (t-t -W)/W (3-33)

we obtain

jkWAC, 1 Ilu1 !-(u') (u.-r,(u,u'))HI (Irim(uLu:)I)
- du du'

(3-34)
0 , i=L,L+I,...,N

where

ri.(u,u" )=.Ro+(ru/2)t L-kWu'uv (3-35)



35

and Rj- is the vector from the origin at the center of the

slot to the midpoint of C&.

Now that the elements of Z-, Zt, V., and V. have

been evaluated, we can solve (2-32) for It and (2-41) for

I,. Because of (3-9) and (3-28), the solution I to (2-32)

is the same as the solution 11 to (2-41). Calling this

4
common solution I., we write

= I = (3-36)

b) Evaluation of Y., of (2-52)

Replacing the surface integral by a line integral over

the contour (x=O, jy W) of the shorting strip, substituting

(3-8) into (2-52), and performing an integration by parts,

we obtain

2knY., = k=J dt !.(t)-I dt'M,(t')Ho (k o -lo')

tL tL.

tL- M tL- "
! d d 4M-.

dt - t M (t ) d - (tM,( ) Ho, ( jO-V j
dt j dt'

tL. tL. ( 3-37 )

, . Substituting (3-27) into (3-37), anticipating that t_--Uy'

Swhen t.<t<t. -P, and introducing new variables of integration

" . u and u" defined by

u = (t-t.--W)/W (3-38)

u'= (t'-tL--W)/W (3-39)
we obtain
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2kqVY1  = (kW)m U, -U (3-40)

where

I'1 I ,.
U1 = dult-u du'1-(u')= H. (kWlu-u'j) (3-41)

j-_1 1-1

L6 = 11 - du H. (kWlu-u') (3-42)

-1 n J l- ')

We recast (3-41) and (3-42) as

I1 [H, 1
+j u 1-u j' u' -( 

')
Ul = 11 + dl--u du'4Tl-(u " ) m H. (kWlu-u'l)-g(kWlu-u'l)

(3-43)

11 u [I u" [e, ,]
L6 = In + du' - du" H kWlu-u" t-g(kWtu-ull)

- J-1 Jl-(u')

(3-44)

where g is given by (3-20) and

I, = dui l- du'Jl(u')! g(kwlu-u'l) (3-45)

I 1  u I1 U P

Im = d du" g(kWlu-u' I (3-46)
J- l u -1 u•)

By straightforward integration, we have

11F41-u du = w/2 (3-47)

JumJ i du = w/S (3-48)

Um

- du = /2 (3-49)
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It is evident from E14,Eqs.(A6a) and (A6c)] that

J -hIF loglu-u'[du' = - (u - 1/2 -log2) (3-50)

It is evident from [14,Eq.(A6b)] that

1 u "

f-1-(u')M logIu-u'ldu' = -wu (3-51)

Thanks to (3-47), (3-48), and (3-50), 11 of (3-45) becomes

I = w/4 + jw(1/4-log(TkW/4))/2 (3-52)

Thanks to (3-49) and (3-51), Im of (3-46) becomes

Im = jW (3-53)

Now, 2krY 1  is given by (3-40) where U, and Um are

obtained from (3-43) and (3-44) in which the explicit

integrals are evaluated by the two-dimensional Gaussian

quadrature method, and I, and In are given by (3-52) and (3-

53).

a b

c) Evaluation of AY.., of (2-53) and Ay-, Of (2-54)

Replacing the surface integrals in (2-53) and (2-54) by

line integrals over the contour (x=O,IyISW) of the shorting

strip, we obtain

.M N
6Y"= E 1:". C. (3-54)

hj=
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N N
6Ymv = 3 " Ce. (3-55)

3=1

where
t -. 4

C =- JMm(t) - H_(J,@) dt (3-56)

t-

tL M"

C = -J M,(t) - H,(J, 0 ) dt (3-57)

tL-

Substitution of (3-2) into (3-56) and (3-57) yields

tL-.*."

Cjm = - _M(t) - H,(J, 0 ) dt (3-58)

tL-

C =- JM,(t) - H.(J,@) dt (3-59)

tL-

First substituting (3-30) into (3-6), then substituting

(3-6) into (3-58) and (3-59), and finally noting that Ja(t)

is on the shorting strip (t" < t < t ..m) only when j > L, we

obtain

"-H 1  (kI,-f'I)
C. = C = d (t)- dt'(J(t')x(- '))

(3-60)

=' -C:., - J .,(t)-(J 1,(t)xn) dt
9."=. , 3 LL-1 3-61)

13-61 )
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If, after interchanging t and t' in (3-60), we interchange

the order of integration in (3-60), then it is evident from

comparison with (3-32) that

1
C:. = C7 = - Vj=1,2,...,L-1 (3-62)

2

Since J,(t) is given by (3-3) and M. is M, of (3-27),

(3-62) specializes to

C:, = C, 1 = - Vi1  ,j=1, 2 ,...,L-1 (3-63)
2

where Val is given by (3-34). Substituting (3-3) and (3-27)

into (3-61) and introducing the new variable of integration

u defined by (3-38), we obtain

C1 1 = -C 1  = - 4 1-um du , j=L,L+I,...,N
2 (3-64)

uj

where

U= (t.-t&-W)/W , j=L,L+I,...,N+I (3-65)

Performing the integration in (3-64), we obtain

-& W -1 - U 5 ...
Cal =-C [= [sin u + u1-LA I ,j=LL+1,...,N (3-66)

4 U

where the principal value of sin-lu is taken.

Substitution of (3-36), (3-63), and (3-66) into (3-54)

and (3-55) gives

' I L-1 N
AYli = - Z Ij1 V5 1 + Z I31 Cal (3-67)

2 j=1 j=L
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S IL-I N -

AYii = - E I3 V31 - I.$% C,3 (3-68)
j=L

Setting m-n-1 in (2-50) =nd (2-51), adding them, and

substituting (3-67) and (3-68), we obtain

11 L-l
Y1 1 + Y1 = 2 Y11 + E I z Vii (3-69)

j=1

where Yi was evaluated in Section 3.3b, IS is the jh

element of the column vector I, = 11 = I, that satisfies

both (2-32) and (2-41), and V.1 is given by (3-34) with i

replaced by j.

d) Evaluation of I" of (2-55)

Replacing the surface integrals in (2-55) by line

integrals over the contour ( x=09, lyI W ) of the shorting

strip, we obtain

I".= I"= N .
It = C. - EIa C, (3-70)

j=l

where I1 is the j" element of the column vector I that

satisfies (2-22), C. is given by (3-56), and

C.=J M • H dt (3-71)

tL-

Substitution of (3-1) into the Maxwell equation

H mV x E (3-72)
k 9
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leads to

~ 1 jk (xcos~l+ysinwl)
H -(-u.~ sin~+u, cospil) e (3-73)

where uw. is the unit vector on x axis. Substituting (3-73)

into (3-71) and anticipating that !!1.. will lie on the y axis

and have no x-component, we obtain

4 tL

In Section 3.3c, expressions (3-61) and (3-62) were found

* for Cm..

When M, of (3-27) is the only magnetic current

expansion function, C,1 is given by (3-63) and (3-66) so

that (3-70) becomes

I % , 1 L-1 IN
I. C1  - E I.3 V3 1 - E I., C3, (3-75)

2- j=1 j=L

where Cj is given by (3-66) and, as obtained by

substituting (3-e7) into (3-74) and introducing the new

variable of integration u defined by (3-38),

C, - ccust J-1uO cos(kWusinOL) du (3-76)

e) Summary

When M& of (3-27) is the only magnetic current

expansion function, the matrix equation (2-9) reduces to the

single algebraic equation
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( YI + Y 11 ) V1 = I" (3-77)

Substituting (3-69) and (3-75) into (3-77) and solving for

Vi, we obtain

I = N mm a
Cl - Z I., C,,1

j=l

V, = (3-78)
pow L-1

2 Y1 , + Z 1l, VI
= j=l

where I, is the jb" element of the column vector I that

satisfies (2-22), V3& is given by (3-34) with i replaced by

j, I, is the j*" element of the column vector I: =11 = I,

that satisfies both (2-32) and (2-41), Y1 1 is given by (3-

40), C:, is given by (3-63) and (3-66), and C1  is given by

(3-76).

Thus, when M1(t) of (3-27) is the only magnetic current

expansion function, the constants I,, I7., IJ,3. and V, in

(2-46)-(2-49) can be evaluated. The fields E and H are

given by (3-1) and (3-73), respectively. The remaining

fields in (2-46)-(2-49) are due to the sources J: and J,

defined by (3-2) and (3-3) and 2M, where MI is defined by

(3-27). With the meaning of 2M. clarified in the last

paragraph of Section 2.5a, these fields are given by (3-5)-

(3-8). Having evaluated all quantities on the right-hand

sides of (2-46)-(2-49) under the assumption that MI of (3-

27) is the only magnetic current expansion function, we have

achieved our objective , which was to determine the total

=~' *
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fields (E +E , H s+H) and (E , H ) in regions a and b.

3.4 Several MaGnetic Current Expansion Functions for

the Wider Slot

In this Section, we assume that the width of the slot

is comparable to the wavelength so that several magnetic

current expansion functions are needed. The slot is

partitioned into at least three straight line segments of

equal length AC. Otherwise stated,

t,&.. -t. = AC, n=L,L+1,...,N (379)

where N is given by (3-4) in which M 1 3. See Fig.5. The

magnetic current expansion functions are now defined by

" 1-((tL.., -t)/AC)m uIV tL- i t i ts-,

tL- W -t
M2.(t)= uV tL-.Xt i tL-M

(3-80)

0 elsewhere

t- t

LC

,AC
(3-81)

0 elsewhere

with n=2,3,...,M-2
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'6C

_M -1 t) J 1-(t-tL "-J)/1C) a  U, tL -r-lts tL- "

(3-82)
0 elsewhere

If M=3, then (3-81) is to be discarded. The expansion

functions (3-80)-(3-82) are continuous and have the correct

behavior as t approaches tL. and as t approaches tL.-1 .

a) Evaluation of V... of (2-33) and V:, of (2-42)

Equations (3-28)-(3-32) are still valid because they

were obtained without knowledge of M,. Hence, V:,, and V,.

are given by (3-28) where V,, is given by (3-32).

Substituting (3-3) and (3-80)-(3-82) into (3-32),

introducing the new variable of integration defined by (3-

13), replacing the integral with respect to t' by the sum of

the integrals over the two straight line segments CL,-,-= and

CL_,, on which M(t') exists, and introducing a new variable

of integration u' that goes from -1 to I as t' goes from the

beginning to the end of the pertinent straight line segment,

we obtain, for i=1,2,...,L-1,

[ 11

[Va J du'J4-(l-u') H, Ir&-(u,u')j)
1+ Ifl2,(u, ).

+ du'(1-u') H, (I7%,= ,(u~uo) I)

(3-e
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kACAC2,c)
V(=J{ du du'(1+u') H1 ( VL, -(uu' )

j16 I g .,-,. 1(u,u )

u.Ir Iu -" u,, )

+drdU )(u,.."fl, L...(u,uf cm,
+ du d,'(1-u') H, ( ....,.(u!u')

, n=2,3, . . .,M-2

(3-84)

V1 ,I,-1 - d (ldu(+u' )

16 1 1r c,1 (U, U,

H: _ _ _ _ _ _ u U

+ du du'44-(l+u') H1 ( , -uu
f-1 i-I t,._-.,.( , '

(3-85

where r1,(u,u7) is given by (3-18). From (3-32). we have

VL, = 0 (3-86)

Knowing the elements of Z-, Zft, V,, and V,, we can

solve (2-32) for I" and (2-41) for I.. Because of (3-9) and

(3-28), the solution I,, to (2-32) is the same as the

solution I, to (2-41). Calling this common solution I,, we

write

I =I = Ij (3-87)

bio

b) Evaluation of YV., of (2-52)

.4 , .,.it.'.'% '. .,;::-;?'.,..: "' ,:, ,: .".. : , , ,A :. :' '; ,
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Equation (3-37) is still valid because it was

obtained without knowledge of M. and M.. Substituting (3-

80)-(3-82) into (3-37), replacing the integral with respect

to t' by the sum of the integrals over the two straight line

segments C..,_-. and C-. .. on which M1 .(t') exists, .introducing

a new variable of integration v' that goes from 0 to 1 as t'

goes from one end to the other end of the straight line

segment, and dealing similarly with the integral with

respect to t to introduce a corresponding variable of

integration v, we find that the first row of Y"- is given by

g' " 1'1 i 1  
2)

2kqY1 . =(kAC)[ v 1-n dv'Jl-v- H. (AC Iv-v"P

+2 v v dv'J -v ' n H. (kAC(v-vk-vi )

+Idv vlv' 1' H](kC -'-IJo J0

+ dv v dv'v' Ho (kACIv-v'I)

Il v V ( 2

- v _ Jdv" H. (k2iCjv-v'j)J- o lv o1

1Hl v, ,-1 l
+2 dv dv' - Ho (kLCIv-v'-1I) - dv dvI H. ¢kAC

1 0JJ lv~ i Jo Jo

2knY1,=(k<AC d v dv'v[H kClv+v'+n-21)+H kClv-v'+n]

+ dv v dv'v'[H. (kaClv+v'+n-31)+H. (kACIv-v'+n-I) I
0 10JO

dv - dv'[H. (kACIv+v'+n-2l)-Ho (kACIv-v'+nI) I

0 -1 -v 5% JO-~ ~
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II

n=2,3,. - ,M-2
(3-89)

2kY,,-,=kA) dvj-i-v- vJ1 mH (kAClv-4-v'+M-21)

+ -dv vjdv' v'Hr, (kCv-#-v'+M-41)

10 10 (-) 1

+2d d'j...-a H. (kAClv+v'+M-3')

Jdv- dv) __ H. (k,3CIv'-M2I

<M3, (3-90)4jdliv Jdv H. (kAC:v+v+M-4L)

1 f1 V (a

-2jdv Jdv' -v H. (kA Cjv+v'+M-3p

and that the "internal" elements of Ytl- are given, by

2k1Y,., =kC Idv vldv' v'[ H. (kAClv-v'4m-nl)

+ H~. (kA Civ-v'+n-mI) I

r~v r'. (a)-

+Jdv v dv' v'EH,,, (k2CIv ' -I ) +H~m 3(kIC Iv+v' +rk-M-2j

Jdv Jdv' I H., (kLCiv-v'+m-n)+H. (k_Civ-v'+n-ml) I

(3-91)

1 1a a

+{dv Jdv I H. (k'Clv+v'+m-n-2I)+H., (kLCIv+V'+fl-rf-21) I

101

with m=2,3.... ,M-2. and ii=2,3.....M-2.
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Since t and t' can be interchanged without affecting

' - in (3-37), Y"- is symmetric.

YM = Y"M (3-92)

If both Mm and M- are reflected about the xz plane, then Y.,,

does not change. Since the reflection of Mm is M,_- and that

of M, is Mr,-,. it is evident that

Yr-m -" = YM (3-93)

From (3-92) and (3-93), we obtain

rim n"'M=l ... ,M-1
Y , Y(3-94)

YY,,Ig = Yl,I._ , J

Therefore, the first column, the last row, and the last

column of Y"- can all be generated from the first row of Y-

given by (3-88)-(3-90). It is not necessary to compute all

the internal elements of Y"- because, as given by (3-91).

they depend only on Im-nl rather than on m and n

individually.

Each integral in (3-88)-(3-91) whose integrand does not

have any singularity interior to the reqion of integration

is evaluated by the method of two-dimensional Gaussian

quadrature. Each integral that has a singularity interior to

the region of integration is treated in Appendix A by
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"subtracting out" the singularity before applying the method

of two-dimensional Gaussian quadrature.

c) Evaluation of 6Y,., of (2-53) and AY,, of (2-54)

What was done in the first two paragraphs of Section

A 3.3c is still valid because it was accomplished without

knowledge of the magnetic current expansion functions. In

those two paragraphs, we found that AY.. and AY., are given

by (3-54) and (3-55) where C,, and C. are given by (3-62)

and (3-61).

Since Jj(t) is given by (3-3) and Mm is given by (3-

80)-(3-82), (3-62) specializes to

1 rj=1,2,... .L-1i '"Cjm = C.,, = -Vjm (3-95)

where Vim is given by (3-83)-(3-85). Substituting (3-3) and

(3-80)-(3-82) into (3-61) and evaluating the resulting

integrals, we obtain

CCI = -C%_. I

8 (3-961

- ACic ., = - ., -

. 4 m=2.3....M-23-97
* C~...... = - C .. =

4

%5
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S=AC

4 I (3-98)

C,_.,-.-,2,.,-:. -- -CL.-,..-I-1,,'-. -

8

The rest of the C-'s and Cb's, those that do not appear in

(3-95)-(3-98), are zero.

Substitution of (3-B7), and (3-95)-(3-98) into (3-54)

and (3-55) gives

a 1L-1
6Ym., = - v I m V + AYmm (3-99)

2 jel

i- Ei" -i Aynrn (3-100)=" ~AY-,,, = - 2: Is, Vjm Y (-

2 j-i

where

4 2(-~ 
(-- IP c- e 

m 1

6C
,, Yin~, = -( I--vv e- .,) ,m2,3, . . .M-2

4 
(3-101)

4 2

Substituting (3-99) and (3-100) into the sum of (2-50) and

(2-51), we obtain

, = L-1
Yp1 " Y". - 2 Y., . V., (3-102)

j=1

where Ym, was evaluated in Section 3.4b, I,, is the j"h

element of the column vector I. = I,, that satisfies both (2-
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32) and (2-41), and Vj. is given by (3-83)-(3-85) with i

replaced by j.

d) Evaluation of I. of (2-55)

What was done in the first paragraph of Section 3.3d

is still valid because it was accomplished without knowledge

of the magnetic current expansion functions. In that

paragraph, we found that I. is given by (3-70) in which Ij

is the j*" element of the column vector I-- that satisfies

(2-22), C:. is given by (3-56), and Cm is given by (3-74)

When the magnetic current expansion functions are given

by (3-80)-(3-82), the non-zero CS.'s are given by (3-95)-(3-

98) so that (3-70) becomes

&~C

4 2

(3-13)

2 j=l 4

Im=Cm-- j( Ia--x + --Is.-, ) m2,3,e=M-
ac IT

42

Substituting (3-80)-(3-82) into (3-74), we obtain

%= ACcoso, j(1+0M) 1 -jo v
C, - e [ 1-va e dv

SeJ v e dv 3 (3-104)
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am = I *I ' dv

a~I~ v e 1  dv ](3-105)
JO ,m-2,3, . . . M-

=ACCOSO, 1(M1~4~ J1  ~

-jot 1 joxv

*a JOv a dv 3 (3-106)

whee kAjC sin~ (3-107)

ow - KW sinel (3-108)

If sinl * Op then 0,*0 and, thanks to E15,Formula 567.1.3,

(3-104)-(3-106) become

JL=ACCOSO, j(01+0 rI ov
C, = fJ 1V e dv

1-caoupS + Oisn)

Cm =C E ~CO9 1  1 (3-109)

2AC COsS, j(mpS1+pS)

ACCO~ j(M1)px~p~)~ - (3-110)

C..,-1 , = e I!0+o 1v a v
C--I n 0[JO a d

1-cos 1, - j(p0i -sinS 1 )
pS~a J1 (3-111)

a, ~r - * .-
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If sing =
O , then 0 =On =0 and (3-104)-(3-106) reduce to

t AC co5Po' W
C1  = ( 1 +- ) (3-112)

2r 2

= , m=2,3,...,M-2 (3-113)
9

26

= C1  (3-114)

Now, I. of (2-55) is given by (3-103) in which Ij is

the j*' element of the column vector I-" that satisfies (2-

22), V,. is given by (3-83)-(3-85), and C. is given by

either (3-109)-(3-111) or (3-112)-(3-114).

e) Summary

Substituting (3-102) and (3-103) into (2-9), we can

solve (2-9) for V, whose n*" element V,, appears in (2-46)-

(2-49). Of the remaining constants in (2-46)-(2-49), 3 is

the j*" element of the column vector I that satisfies (2-

22), and I., and Ij., are given by (3-87) in which Ij,, is the

j"h element of the column vector I = I = I that satisfies

both (2-32) and (2-41).

Thus, when the magnetic current expansion functions are

given by (3-80)-(3-82), the constants V,, Ij, I,,., and I,.

*'. in (2-46)-(2-49) can be evaluated. The fields E'-- and Hl-'

are given by (3-1) and (3-73), respectively. The remaining

fields in (2-46)-(2-49) are due to the sources J , and J3

defined by (3-2) and (3-3) and 2M., where M, is defined by

(3-80)-(3-82). With the meaning of 2M,, clarified in the last
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paragraph of Section 2.5ap these fields are given by (3-5)-

(3-8). Having evaluated all quantities on the right-hand

sides of (2-46)-(2-49) with the magnetic current expansion

functions given by (3-80)-(3-82)p we have achieved our

objective, which was to determine the total fields

(E'-+E,t-,H 1 '-.He) and (E ,IW) in regions a and b.

%, :

.. _-

4..-'

P

PI;
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4. NUMERICAL RESULTS ANDDIC OJ

Programs have been written in FORTRAN for both a narrow

slot and a wide slot. More general than the theory presented

in Sections 3.3 and 3.4, these programs apply when the wall

of the cavity is finitely thick and when an additional

conductor is either inside or outside the cavity. A report

on the usage of the programs is in preparation. Since the

magnetic current (or the aperture field) is our main

interest,. it has been computed for different widths of the

aperture, different sizes of the cavity and different angles

cof incidence. Some far field patterns are also computed.

4.1 Remarks and Definitions

The numerical results presented in this report are all

for the case where the uniform TM plane wave given in (3-1)

impinges on the aperture with the incident angle 01 being

defined in Fig.5. We decided to plot the magnitude of the

magnetic current versus the position in the aperture since

our computations show that the phase of the magnetic current

changes little in the aperture. All numerical integrations

are performed by 10 point Gaussian quadrature.

% The name pseudo-i magemethod 1 _ is attached to the

solution developed in Section 3.3. where only cone special

expansion function is used for the magnetic current. The

name p.ud-iag method 2 is attached to the solution

developed in Secticon 3.4, where no less than two expansion

,-~.' A !L
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functions are chosen for the magnetic current. The Fourier

Series method is the method presented in [13,Appendix BI for

a circular cylindrical cavity with very narrow slot. The

scattering method _is the method used in [16) and summarized

in Appendix B, where only an electric current is solved for.

In the scattering method, a matrix equation is extracted

from the electric field integral equatlon either by

Galerkin's method [5,Section 1-3], or by point matching. In

Galerkin's method, the symmetric product of the integral

equation is taken with each expansion function. In point

matching [5,Section 1-4], the integral equation is enforced

at discrete points. The non- seudo-imae method__is the

method where the pseudo-image introduced in Section 2.5 is

eliminated. This method is summarized in £13, Appendix A].

Finally, if the plots are for the pseudo-image method, then

the magnetic current expansion functions used are triangles

only (i.e., M1 (t) of (3-80) and !!4,-&(t) of (3-82) are

replaced by triangles) unless we state otherwise. The reason

for this is explained in Section 4.4.

4.2 Validlty of Results

We have to check whether we obtain correct and

accurate results. This is not only an important task but

also a difficult one since no exact solution is available to

compare with. That is why we started with the simplest case:

a circular cylindrical shell cf zero thickness. This shell

was treated by the Fourier series method in [13] where the

magnetic current distribution (3-27) was on the arc in
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Fig.6 instead of on the plane strip. For ease of comparison

and simplicity, most of our computations are made for

circular cylinders and zero thickness of the cavity wall

even though the programs work for thick cylinders of

arbitrary cross section. The comparison is made as follows:

It is very interesting to note the following from

Figs.7-16:

a) The results obtained by the different methods are of

the same order of magnitude (Fig.7). The pseudo-image

methods and the Fourier series method give especially close

results. For instance, at the center of the aperture the

magnetic current is obtained as 0.15234 /103.180, by the

pseudo-image method 1; 0.15384 /-103.490 by the pseudo-image

method 2, and 0.1535 /-102.970 by the Fourier series method.

b) The scattering method yields larger results than

other methods. Scattering (Galerkin's method ) yields the

second largest and Scattering (point matching) yields the

largest. (see Figs.8-10). The results obtained by the

scattering methods monotonically approach the results

obtained by the pseudo-image method as N increases. This is

true for both a large aperture (e.g., 0.=30)) and a small

aperture (e.g., 0.=5). (see Figs.11-16). Furthermore,

Scattering (Galerkin's method) approaches faster than

Scattering (point matching). (see Fig.13). The magnetic

currents of both scattering methods are usually within 10%

of each other. Scattering (Galerkin's method) is more

accurate since Galerkin's method tests the equation over an

K I III .
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tinc

Shortin
arc shoring strip

Fig. 6. An infinitely long circular cylinder with a slot. k= wiu --C is the

wavenumber and a is the radius of the circular cylinder.

-r + 0 < 6 < 7 - 0 defines the conducting part of the
0 li d- 0

cylinder. The edges of the shell are at (x = 0, y = _+ a sin ' )
o
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interval instead of at one point as point matching does

[5,Sections 1-3 and 1-4].

As a further check, we compare our results with those

obtained in [16) and E17) for two special cases. At the

center of the aperture, the magnitudes of the electric fiald

are obtained as: case i) 0.31 by (16) and [17), 0.235 by

Scattering (point matching) with N=31!, 0.22 by Scattering

(Galerkin's method) with N=319 and 0.19 by the pseudo-image

method with M=15 and L=18, where 01=00, 0.=10 0 ,and ka=l.

Case ii) 0.75 by E16) and [17), 0.54 by Scattering

(Galerkin's method) with N=31, and 0.52 by the pseudo-image

method with M=15 and L=1S where 01=00, 0o=30,%and ka=l.

01, 0., and ka are defined in Fig.6.

In the previous paragraph, the numbers obtained in [16]

and [17) are the largest. The reasons are twofold. First of

all, [16) and [17) evaluate the electric field on the arc

part of the cavity (Fig.6 ), whereas we evaluate the

electric field on the plane strip connecting the cavity

edges. Ours should be smaller since we are further inside

the cavity. However, This should not yield a big difference

when the aperture is small. Secondly, in (16) and [17) point

matching is used to apply the moment method, and the

integrals are approximated by the interval of integration

times the integrand sampled at the center of the interval

with special treatment of the singularity of the integrand.

Gaussian quadrature yields results that are more accurate

than those of any other technique for well behaved functions

% .
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[12]. Hence, our results should be more accurate than

theirs.

On the whole,the comparisons and discussion presented

above lead to the conclusion that the results we obtained

are correct and that the pseudo-image method yields very

accurate results.

4.3 Usefulness of the Pseudo-imLge

On the surface, the introduction of the pseudo-image in

Section 2.5 seems a little artificial. However, as shown in

Figs.17-19, the pseudo-image method does give better results

than the non-pseudo-image method. First of allthe non-

pseudo-image method yields unexpected overshoots near the

edges. We say that they are unexpected overshoots since no

other method mentioned in Section 4.1 predicts them.

Secondly, the non-pseudo-image method gives larger amplitude

(within 10%) but essentially the same phase for the magnetic

current (within 1% ).

From the results discussed in Section 4.2 and those

shown in Figs.17-199 we conclude that the pseudo-image

method gives a more accurate magnetic current than the non-

pseudo-image method.

4-4 Edge Co.Pnitions

In Section 3.4, we have chosen the two special

expansion functions M1 (t) and Mm-, 1(t) tc. obtain the prcoper

edge behavior [14] because we initially believed that this

would yield more accurate results. Alternatively. we could

4, '9 %''.
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use only triangle functions. For comparison we carry out

both solutions. Figs. 20-22 show that the results of these

two methods are very close to each other, even near the

edges. Not much advantage is gained by satisfying the edge

conditions in the examples we computed. The addition of the

special expansion functions results in much more complicated

equations, and more effort and computer time are needed.

4.5 SpRee of Convergence

Given a certain size of aperture, how many expansion

functions should be used? In other words, how fast do the

results converge ? It can be seen from Figs.23-26 that M=10

suffices to obtain convergence for a small aperture and M=16

* suffices for a large aperture. The larger M is, the smoother

the plots are. Hence, as a rule of thumb, M should be large

enough to obtain a smooth curve.

4.6 Other Numerical-Examples

Fig.27 shows that the magnitude of the aperture field

increases with the width of the aperture. Figures 28 and 29

show that oblique incidence causes noticeable asymmetry of

the aperture field only when the aperture is large. Figs.30

and 31 give results for the case where the cavity wall is

finitely thick (see Fig.32). It is interesting to note that

the aperture field increases with the wall thickness.

The far scattered field is obtained by replacing the

Hankel function by its large argument approximation [6,

eq.(D-13)]. Although the aperture fields obtaioed by the
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different methods mentioned in Section 4.1 are differentthe

far fields are nearly the same. Their difference is less

than 1%. This is expected since the aperture field only

affects the electric current in the vicinity of the

aperture. However, the field inside the cavity is

proportional to the aperture field. Examples of far field

scattering patterns are given in Fig.33 and Fig.34. If the

angle of incidence 0 increases by SO', then the far field

scattering pattern rotates through the angle &0' as does the

scattering pattern of an infinitely long complete circular

cylinder. Again, this shows that the small aperture has
-N

little effect on the far field scattering pattern.

4.7 Conclud ing Remarks

In this report, a new method called the pseudo-image

method, incorporated in the generalized network formulation

for aperture problems, is developed to accurately determine

the field inside and outside a conducting cavity with a

small aperture. The theory can be applied to both two and

three dimensional cavities of arbitrary shape.

A number of computations have been made for an

infinitely long slot in a perfectly conducting cylindrical

surface illuminated by a uniform TM plane wave. The programs

developed apply to a cavity with finite thickness and an

additional conductor may be either inside or outside the

cavity. With some modifications, the main program can apply

to a multi-conductor system as well. As further wcrk, we

could solve the problem of an infinitely long cylinder with

-.do . .•- . . v - -" . . . -"-' . . . .,. -" "."-"- v ,.. ","-",
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a slot illuminated by a uniform TE plane wave instead of a

uniform TM plane wave.

Finally, we should point out that, although the pseudo-

image method works well for a no~n-resonant cavity!. it fails

when the cavity is resonant. There two reasons. One is that

the resonant electric current on the conducting surface S.,

produces tangential electric field on this surface so. that
a
_can not be uniquely determined by using the electric

field integral equation only [1B, Section 2). The other is

that the field inside the cavity would go to infinity if the

- magnetic current M. on the right hand side of the shorted

aperture in Fig.4 excited the resonant morde of the cavity. A

special technique has to be developed to treat the resonant

cavity.

-76
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0.175

0.1l

0.125

0. 10O

0.075

X The pseudo-image method 1 (N-36)

0.0 0 The pseudo-image method 2 (M-16, L=18)

* Scattering (point matching) (N=71)

0.01 t The Fourier series method

0.00

-W 0 w

y

Fig. 7. The magnitude of the magnetic current in the ;ipertuire obtainled

bv different methods for 1 = 180', ' 0 = 5'. k-i = 7T/2.
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Ile

1/

0.15-,//

0 Pseudo-image method (M=16, L=33)

* Scattering (Galerkin's method) N=31

tScattering (point matching) N=31

*0.09

0.06

i Fig. 8. The magnitude of the magnetic current in theIio

aperture for 1 1800, 1 10, ka = 1.0.03-0

0 . - . . ..

-W 0 w
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•
..//

0. 

/

* ./Pseudo-image method (M16, L=18)
: / pScattering (Galerkin's method), N=31

0.2 /Scattering (point matching), N=31

Fig. 9. The magnitude of the magnetic current inSthe aperture for i =1800, o = 15*' ka 1 .
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0.4

0.2

0 The pseudo-image method

M = 16, L = 18

T~ Scattering (Galerkin's method)

N =51

0.0*
-W 0 w

y

Fig. 10. The magnitude of the magnetic current in the aperture for

-1800, ,p = 3Q0, ka =1.
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0. 0 Pseudo-image method
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t N = 51 Scattering

X N = 71 Scattering
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Fig. 11. The magnetic current magnitude in the aperture obtained by

the pseudo-image method (M = 20, L = 18) and the scattering
i

(point matching) method for i = 1800, o = 300, ka = 1.
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Fig. 13. The magnitude of the magnetic current in the aperture for
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Fig. 15. The magnitude of the magnetic current in the aperture for
i

=1800, =o 5*, ka = 1.
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Fig. 16. The magnitude of the magnetic current in the aperture for
i

=1800, to = 50, ka = 1.
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Fig. 18. The magnitude of the magnetic current in the aperture
i

for =1800, ~ ~ ,ka = 1.
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Fig. 19. The magnitude of the magnetic current in the aperture

for (t 1800, to = 300 , ka =1.
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Fig. 20. The magnitude of the magnetic current in the aperture obtained by the

pseudo image method with and without the satisfaction of the edge condition
i

=1800, = 1.25*,ka = 2.
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Fig. 21, The magnitude of the magnetic current in the aperture obtained by
the pseudo-image method with and without the edge condition in-
cluded for i- 1800, = 100 ka I.
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Fig. 22. The magnitude of the magnetic current in the aperture obtained by
the pseudo-image method with and without the edge condition

i
included for =1800, t 30l0, ka = 1.
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Fig. 27. The magnitude of the magnetic current in the aperture obtained by
the pseudo-image method for different sizes of the aperture, where
i = 1800, ka = 1.
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Fig. 28. The magnitude of the magnetic current in the aperture obtained

by the pseudo-image method for different incident angles, where
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Fig. 30. The magnitude of the magnetic current in the aperture obtained by the
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APPENDIX A

In this Appendix, we express 2krj Zm. of (3-88)-(3-

91) in terms of integrals whose integrands have no

singularity interior to the region of integration. Whenever

the argument of H., is zero at a point interior to the

region of integration we subtract out the small argument
gm -

approximation of H-. and integrate this approximation

analytically.

Of all the arguments of the Hankel functions in (3-88),

Aonly kAC Iv-v'I can be zero at a point interior to the region

of integration. Accordingly, we recast (3-88) as

=(kAY11  Jdv (41-v 1-v'= +vv')

(H. (kACjv-v'I) - g(kACiv-v'l))(A1

* 1 ~1 (M'1

*L +2dv v dv',Flv- 0 Her (kAC Iv-v'-1I) +4I,

dJdv' ______+1)(H. (kACjv-v'j) g(k~iC~v-v 1))

+2Jdv Jdv' Ho (kAClv-v'-1f) - IM

where g is given by (3-20) and

= dv fdv'U1-vm 4F74-'R vv')g(kdC Iv-v'P) (A2

010 (A-2) *
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Im = dv dv'( +l)g(k~c v-v" I) (A-3)
Jo 10 l1-ve i-v"e

The indentity

fv 1-v dv'-fl-v'O log v-v' = (A-4)

-Jdv1-FJ dv' 1-v'elogiv-v" I - dv4TiV dv'Jl-v'logIv+v"
2J-1 J-1 .

can be verified by expressing each integral over (-1,1) on

the right-hand side of (A-4) as the sum of the integral over

(-1,90) and the integral over (0,1) and changing the variable

of integration so as to replace the integral over (-1,0) by

an integral over (0,1). Using (3-47), (3-48), and (3-50), we

obtain

dv 1-7 dv!'l1-v logiv-v'l = -- (1+ 4log2 ) (A-5)

_ 1 -1 16

Substitution of (A-5) into (A-4) gives

dvJl-v dv'j-v'O loglv-v'j =

(A-6)

-- ( I + 41og2 ) 4 v'4l-v'- logjv+v'
32 0

Using [15,formulas 610., 610.1., 610.2., and 610.3.3

and working diligently, we obtain

11 V1 7
dv v dv' v' log v-v' = (A-7)

Jt i ey16

It is easy to show that
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dvdv (I -vRI -v a+ v- +- (A-8)
101016 4

Substituting (3-20) into (A-2) and using (A-6)-(A-8), we

obtain

wr 1 it 1 W If 7
Ii + - -j( (- +-)logb -- log2 --

16 4 8 2 4 16 SW

+ Jdv 1- vl- loglv+v' I  (A-9)
W 0

where
b = - kAC (A-10)

2

Seeking to evaluate Im of (A-3), we consider

I v I! v
U = dv Jdv" loglv-v' I  (A-11)

joJ1-va 10 --v,=

The substitutions

v = cose (A-12)

V' = cose" (A-13)

transform (A-11) to

w/2 w/2

Us =fdO cosO Jde'cose ' logicose-cose'l (A-14)

Substituting [14, eq.(A-2)]

D 2
1ogicose-cosell = -log2 - Z -cos(mO) cos(mO') (A-15)

m=i m



95

into (A-14) and interchanging the order of summation and

integration, we obatin

wr/2 w/2

U, =-log2 ( cose de) EZ - ( os cos(me) dO
10 m=1 m JO

(A-16)

which first reduces to

Tra CD1 [sin ((m-6-l)w/2) sin((m-1)w/2)
U, -log - -- E - I+

6 m=2 2m m+1 rn-i

(A-17)

and finally to

WO 1
U.. = -log2 - - - E (A-18)

a n=1 n(2n+1)n(2n-1)

Using E15, Formulas 610. and 610.1.], we obtain

v Jdv' logi v-v'j = 3/2 (A-19)

It is easy to show that

Jdv dv' + 1 )=2 (A-20)

Substitution of (A-1B)-(A-20) into (A-3) gives

2 m 3 wO 1
le = 2 - ,- log(--) - - - - - E (A-21)

W 2 2 8 n=1 (n10210

Now, 2knvii of (3-8B) is given by (A-i) where 1,~ and In are

given by (A-9) and (A-21), respectively.
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Of all the arguments of the Hankel functions in (3-89),

only kAiClv+v'+n-3 I can be zero at a point interior to the

region of integration. Accordingly, we recast (3-89) as

2k9Y, = (kAC) d(--wdv' v' ( H. (kACjv-4v'+n-21)

+ H: (kACiv-v'+nI)

+ Jdv vj'dv' v' Ho MAC Iv-v'4n-1I) + 1M (A-22)

Sdv -Jdv'(H. (kAC~v4v'+n2P)H. (k.ACjv-v'+nI)

1 '1 Mi,
J dv d Ho (kAC Iv-v'+n-lj) + I..

where

I= = dv v' ' H. (kAC lv+v'+n-31) (A-23)

r0 10

=. - dv (dv' H. (kAC~v-*v'+n-31 (A-24)
J0 J0

If n Z 3, (A-23) and (A-24) are all right as they stand

beca--sa the argumnent of HC) can not vanish at v 7.cint

-ei4 -or to. the region of integr-ationr. If n=2. te (-3)

-0^ P-24) are recast as

IM=-UM+{dv vJdv'v(H. (kC Iv+v'-1)-g(k~Cjvv--1)) (A-25)

where

L= Jdv vJ'dv'v' g(kAC1 v+v'-1j) (A-27)
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L6 = dv fdv' glkAClv+v'-I I) (A-28)
0 0

Using £15, Formulas 610., 610.1., 610.2., and 610.3.3

and working diligently, we obtain

1i 1 5

v v dv'v'loglv+v'-I I  - (A-29)
0 10 16

Substituting (3-20) into (A-27) and using (A-29), we find

that

1

U= - +- ( 5 - 4logb ) (A-30)
4 8w

Substitution of (A-30) into (A-25) gives

I= dv v fv'v'(Ho (kAClv+v'-1)-g(kAClv+v,-ii)
10

1 j
+-+ -( 5 - 41ogb) ,n=2 (A-31)

4 8w

where b is given by (A-10).

Seeking to evaluate U of (A-28), we write

1 1 1 3

dv" dv" loglv+v'-I I = -- (A-32)
0J 0 2

To verify (A-32), note that if v' is replaced by l-v' in (A-

32), then the left-hand side of (A-32) reduces to that of

(A-19). Substituting (3-20) into (A-28) and using (A-32), we

obtain

j
L6 = 1 + - ( 3 - 2logb ) (A-33)

Substitution of (A-33) into (A-26) gives
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ICop

I,. = d dv'(H. (kAClv+v'-1)-g(kLCIv+v'-I)

+ 1 + - ( 3 - 2logb ) ,n=2 (A-34)
Ir

Now, 2krYz1 . of (3-89) is given by (A-22) where Im and I are

given by (A-31) and (A-34) for n=2 and by (A-23) and (A-24)

for n=3,4,...,M-2.

Of all the arguments of the Hankel functions in (3-90),

only kACIv+v'+M-4I can be zero at a point interior to the

region of integration. Accordingly, we recast (3-90) as

2k + ,-, d vv'4(Cv' + H

+ v - dv' H,--v' mH .(k.1Cv+v'+M-21)

(A-35)

+ Iv - v dv " H. (k Cv+v'+M-3f)

where+ ri r '
In = dv v dv'v' H. (kCIv+v'+M-41) (A-36)

d = v dv' H (kA-Clv+v'+M-4i) (A-37)

If M 1 4. (A-36) and (A-37) are all right as they stand

because the argument of Ha can not vanish at any point
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interior to the region of integratio~n. If M=3, then the

right-hand sides of (A-36) and (A-37) are the same as those

of (A-23) and (A-24) with n=2. Hence, fro~m (A-31) and (A-

34), we have

=C ld vfdv' v'(H. (kACv+v'-l)-g(kACiv+v'-1l)

1O 0

+ - + -(5 -4logb !',M=3 (A-28)
4 anr

I, Jdv Jdv' (H. (kACIv+v'-11)-g(kAClv+v--11)

+ 1 + -C3 - 2logb ) M=3 (A-39)

Now, 2kqY, 1.,-l of (3-90) is given by (A-35) where I= and I&

are given by (A-38) and (A-39) for M=3 and by (A-36) and (A-

37) for M=4.59....

We rewrite 2kY, of (3-91) as

rW =m2539 .. ..M-2

~n=2 ,3, ... , M-2

where

I-, = dv Jdv'( (kAC) vv'- 1)(H. (kjCjv-v'+m-nI)

+ H. (kACIV-v'+n-mI)) (A-41)

JM dv ldv1 (kAC) vv'+1)H I'vv"mn2

0
(A-42)
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IM =dv dv'( (kAC) vv'+ 1) H. (kAClv+v'+n-m-2)
0

(A-43)

If m f n, (A-41) is all right as it stands because

neither of the arguments of its Hankel functions can vanish

at any point interior to the region of integration. If m=n,

then (A-41) is recast as

1.7 =2U. +2 dv dv'((kAC) vv'-l)(H. (kclv-v'l)-g(kAClv-v'l))
1710,

(A-44)

where
I I

hr U. = vdv" ((kMAC) vv' - 1) g(kjCJv-v') (A-45)

10 1

Using (A-7) and (A-19) to evaluate (A-45), we obtain

(kAC) j2 (kMAC) 7 2 3
U. = - - 1 -- ((- - 1 )logb - -(kdC) + -

4 4 16 2
(A-46)

Substitution of (A-46) into (A-44) gives

IP = 2jdv dv'((kAC) vv'-l)(H. (kAClv-v'j)-g(kACjv-v'j))

(A-47)
(kAC)m  7

+ -2-- ( 6- 4logb - (kLC) (--logb) ,m=n
2 4

If m-n 41, (A-42) is all right as it stands because the

argument of H., can not vanish at any point interior to the

region of integration. If m-n=1, then (A-42) is recast as

I1 I "1 I 11" p ,jr- ? F - Mill
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Im=L6+ dv dv'((kAC) vv'+l-)(H. (k6 Clv+v'-11)-g(kdClv+v'-1l))
J0 J0

(A-48)

where

L6 = (kAC) UM + U= (A-49)

in which U and L6 are given by (A-27) and (A-28). In view

of (A-30) and (A-33), substitution of (A-49) into (A-48)

gives

IM = dvjdv'((kAC) vv'+l)(H,. (kACIv+v'-1)-g(kaClv+v'-1l))

+(kAC) ( - 5 -4logb)) + 1 + - (3-2logb) ,m-n=1
4 8W W

(A-50)

If n-m 1, (A-43) is all right as it stands because the
(U)

argument of H. can not vanish at any point interior to the

region of integration. If n-m=1, then IV of (A-43) is what

I of (A-42) would be if m-n=1. Hence,

IV = IV, , n-m =1 (A-51)

where Im is given by (A-50).

Now, 2kY., of (3-91) is given by (A-40) where I-, is

given by (A-41) for m 4n and by (A-47) for m=n, Im is given

*by (A-42) for m-n * 1 and by (A-50) for m-n=1, and IV is

given by (A-43) for n-m f 1 and by (A-51) for n-m=1.

Ir
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APPENDIX B

In this appendix, we summarize the scattering method, a

method in which the aperture remains open and only electric

current is involved in the solution. In the original problem

in Fig.l, the impressed sources radiate in the presence of

the coducting bodies. The resulting field, denoted by

E'(J*MWMm), can be viewed as the sum of the field,

denoted by E which would exist if the impressed sources

radiated in free space and the field, denoted by E(J-,O),

produced by the eletric current J induced on the perfect

conductors radiating in free space.

The boundary condition is that

AL u*%=
Eft + E_.(J-,O) = 0 (B-1)

on S, S., and S.

where t denotes the tangential componet on the conducting

surface and S.,, SL, and S,. are the surfaces of the perfect

conductors. (See Fig.1) (B-i) states that the tangential

componet of the electric field vanishes on the surface of

the perfect conductors. Rearranging (B-1), we obtain

- E - = Ef (B-2)

To emphasize, we repeat that E L -- is the electric field that

would exist if the impressed sources radiated in free space,

and E(J-,O) is the electric field due to J- radiating in

free space as well. E(JM,O) is usually called the scattered
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field. Thus, we refer to the method developed here as the

scattering method.

In the following, we obtain J- by the moment method

E51. Let J- be approximated by

N - -

J E I.. J: (B-3)
j=1

where tJj) are expansion functions which must be chosen

tangent to the conducting surfaces {I.S} are coefficients,

and N is the number of expansion functions used to

approximate J-.

Substituting (B-3) into (B-2), we obtain

N
Ij E.(J-O O) Eft (B-4)

j=l

where E(JjO) is the electric field due to the j ' expansion

funciton J radiating in free space. Taking the summetric

product of (B-4) with J,, i=1,2,...,N, we obtain

EZ-] I- = V- (B-5)

where the ijtI element of EZ-] is given by (2-24) with the

superscript a replaced by s, the it" element of I- is I j,

and the it ' element Vi of V- is given by

Vi = < (B-6)

After I- is obtained by solving the set of linear equations

in (B-5), the fields can be written as

N
E (J t ,M'Mv) = E' -  + Z Ij E(J.,jO) (B-7)
, #- j=1
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N
H (J'aw.MI-P) = H'- + E I.j kj(Jo(8

j=1

where each field quantity on the right-hand sides of (B-7)

and (B-8) is due to its source radiating in free space.

The formulation here is indeed simple. Unfortunately,

it will fail to accurately determine the field inside the

cavity formed by the walls of a conducting body if this

cavity has a very small aperture. This is due to the fact

that the field inside the cavity, being the sum of the

incident field and the field due to J, will be very small.

The field due to J- nearly cancels the incident field.

Hence, a small percentage error in J- will give rise to a

large percentage error in the field inside the cavity.
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