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It is obvious that the physical world is highly structured and

that this structure exists at many levels. For example, the

3 surfaces of objects in an office possess a gross or very global

structure as in the outline form of the desk, bookshelves or

computer terminal. on the other hand, these objects may also be

characterized in terms of their more detailed, local structure as in

the shapes of individual books, desk drawers or the terminal

keyboard. When light is reflected from these surfaces to create an

image, intensity variations over the two image dimensions capture

many aspects of this three-dimensional structure. The most

fundamental problem of spatial vision is to understand the way in

which this information is used to interpret the visual world.

Although psychologists and others have been interested in this veryI basic perceptual problem for many years, a full understanding has

remained elusive.

Computer vision theorists have argued recently that to be

successful visual analyses must take place across several levels of

image scale, with each level contributing to the overall

understanding of the objects in the image (M'arr, 1982; Yuille&

Poggio, 1983; Crowley & Sanderson, 1984). Interestingly,

considerable physiological and psychophysical evidence suggests that

the mammalian visual system may operate in this fashion (Sekuler,

1974). Specifically, the visual system contains a series of

independent channels or analyzers, each sensitive to image structure

at a different scale (Julesz & Schumer, 1981). These channels are

thought of as broadly-tuned spatial frequency filters (Julesz,

180), bar detectors of varying widths or sizes (Macleod
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Rosenfeld, 1974), or zero-crossing filters of different bandwidths

(Marr, 1982). In this view, image (and hence object) structure is

processed separately at different scales by the various channels.

For example, the global structure of an image is extracted

independently of any local detail (or vice-versa), and some have

argued that this global anlysis may actually precede or dominate the

more local analysis (Hughes, Layton, Baird, & Lester, 1984).

with the increasing evidence for the existence of these

channels, research has turned to the question of their role or

function in vision. Several individuals have argued chat the broad,

low-frequency channels respond to global or Gestalt properties of an

image and are important in early processing--for instance, during an

initial glance at an image (Broadbent, 1977; Julesz, 1980). In

contrast, the high-frequency channels are sensitive to local detail

and are important in later visual processing when attention has been

focused on a particular aspect of the image. Despite the growing

popularity of this view, relatively little experimental work has

explored the implications of these hypothesized differences for

visual perception. The experiments reported in this paper address

this question by investigating the ability of human observers to

detect and recognize simple objects in visual images. Prior to

presentation, the images are transformed by spatial frequency

filters to emphasize the global- (low spatial frequency), local-

(high spatial frequency) or intermediate- (mid spatial frequencies)

scale structure. The results support the hypothesis that spatial

scale plays an important role in the detection and recognition of

objects in visual imagery.
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Evidence For Visual Channels

In 1843 Ohm proposed that the human auditory system can

decompose a complex sound into its elementary frequency components

S (cited in Julesz, 1980). Ohm's Acoustical Law--as this proposal is

known--paved the way for Helmholtz, von Bekesy, and ultimately

Fletcher, to develop a view of the auditory system which is based on

a set of broadly-tuned filters, called critical bands, each of which

responds to only a subset of frequencies in the audible spectrum.

These filters, or channels, form the basis of much of contemporary

auditory theory. The argument that they exist is intuitively

compelling since it is common experience to hear the tonal

components when listening to a complex sound such as a musical

chord.

Although Young proposed the existence of separate channels for

color vision in the early 1800's, the analogous concept of

independent channels in human spatial vision is a relatively recent

proposal. Campbell and Robson (1968) were the first to suggest that

vision may be based on a set of spatial frequency analyzers each of
which responds to only a narrow range of spatial frequencies. This

proposal suggests, unintuitively, that at some level in the visual

system, a complex pattern may be decomposed into a finite set of

simpler, periodic intensity patterns. Despite its lack of intuitive

appeal, this basic idea has gained wide acceptance in recent years

with significant support from both physiological and psychophysical

findings (see reviews by Sekuler, 1974; DeValois & DeValois, 1980;

Julesz & Schumer, 1981).

. '" "5:?
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One implication of the multichannel model of spatial vision is

* that overall spatial sensitivity, as measured by the modulation

transfer function (MTF) for example, reflects the envelope of a

*number of individual sensitivity curves. Two basic questions

follow. First, how many individual channels exist, and second, what

is the underlying sensory mechanism for each channel? Both

* questions are addressed in a model proposed by Wilson and Bergen

(1979). The model proposes that four broadly-tuned, size-sensitive

mechanisms exist at each point in the retina. Furthermore, the size

of these units increases linearly with eccentricity on the retina,

and the composite sensitivity at any point results from probability

summation across the four units. The proposed units resemble the

on-center, off-surround retinal cells described by Kuffler (1953),

with a sensitivity profile characterized by a difference of Gaussian

distributions--one narrow and positive (excitatory) and the other

broad and negative (inhibitory). Although more recent work has

reinterpreted these basic units to be zero-crossing (Marr, 1982) or O

* other (e.g., Daugman, 1983) filters rather than size-sensitive

units, the distinction between these interpretations is not

especially important for this paper. The important point for the

present argument is that at least four broadly-tuned visual channels_

seem to exist which respond to information at different spatial

scales. Whether these channels reflect size sensitive units,

zero-crossing filters, or spatial frequency filters is not of

concern here.
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gj Much of the psychophysical evidence for the existence of

spatial channels is based on experiments with one-dimensional

BI sinusoidal grating patterns. In this type of pattern, intensity

varies sinusoidally in one dimension with this variation extended

redundantly across the second dimension. Surprisingly few studies

have used two-dimensional patterns as may occur in realistic

imagery. Fortunately, in cases where complex imagery such as faces

(Harmon & Julesz, 1973; Fiorentini, Maffei, & Sandini, 1983), scenes

(Caelli, 1983) or complex textures (Ginsburg, 1978; Caelli, 1982) - -

have been used, the results have been consistent with the

multichannel model. The imagery investigated in the present
P%

experiments depicted simple top-view intensity profiles of simulated

ship hulls on uncluttered backgrounds.

The Role of Channels in Spatial Vision

As the evidence for the existence of multiple, scale-sensitive

channels has accumulated, increasing numbers of investigators have

speculated on their possible role in spatial vision. Most

hdiscussions of this issue have pointed out that one should be

cautious in assuming that the channels literally perform a spatial

Fourier analysis which could lead to a reconstruction from the

orthogonal components. The small number of channels and two-octave

bandwidths proposed are too limiting for this purpose (Julesz,

1980). Rather, most speculation on the role of these channels has

involved some kind of underlying attentional mechanism. 'I
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In an early proposal, Broadbent (1977) identified two gross

stages in human visual analysis, an early, relatively automatic

preattentive stage and a subsequent active, attentive analysis. In

his view, the early processing is based on global information and

serves to segregate " ... detailed stimuli into bundles or segments

that can be attended to or rejected as a whole" (p. 112). In

contrast, the later processing is based on the detailed information

in the image. He speculated further that the visual mechanism which

accomplishes this analysis could very well be the scale-sensitive

channels described in the previous section of this report.

A more complete attentional hypothesis has been developed by

Julesz (Julesz, 1980; Julesz & Papathomas, 1984). He proposes that

the spatial channels serve as a kind of "perceptual zoom lens" that

permits an image to be analyzed at any of a number of levels. For

example, a low-frequency channel will discard fine details and

thereby emphasize the overall layout of the entire picture. A

high-frequency channel brings the local details into prominence at

the expense of the large-scale regions and structure" (1980, p.

309). He points out that the assumed two-octave bandwidths -

proprosed for the filters would permit three "lenses" at low- (.5-2 7

cycles/degree of visual angle), mid- (2-8 cycles/degree), and high-

(8-32 cycles/degree) spatial scales. Although some controversy

exists (e.g., Gellatly, 1983), Julesz and Papathomas (1984) have

recently presented some demonstrations which support what they term .

a strong version of this attentional hypothesis--that the spatial F

channels function in attention and that the observer can exert U

control over the specific channel that will be dominant at any

Ui
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instant.

Related to this are some recent discussions of the relation %.
.

between spatial scale and the traditional Gestalt distinction

between "figure" and "ground." Julesz and his colleagues (Julesz,

1978; Julesz, 1980) have suggested that the "figure" portion of an

image receives a more detailed analysis than the "ground" portion.

Presumably, this would involve high- and low-frequency channels for

the "figure" and "ground," respectively. This was supported in a

simple, but informative visual detection experiment by Wong &

Weisstein (1983). Prior to presenting a stimulus, observers were

asked to fixate an ambiguous goblet/faces image and to indicate when

a designated portion of it (e.g., goblet) was seen as figure. In

this way a small test line could be presented in either a figure or

a ground region of the display. Two line targets of different

(Z spatial frequency content were used, a sharply defined line which

had a relatively broad spectrum, and a blurred line which had a

markedly peaked spectrum with most of its energy at lower

frequencies. In other words, the sharp target had considerably

greater high frequency content than did the blurred target. The

results of their experiments revealed that the high spatial

frequency target was more accurately detected in a region perceived

as "figure" whereas the low-frequency target was more accurately

detected in a "ground" region. They concluded that the global

character and the rapid response time (see following section)

generally attributed to low spatial frequency channels make them

well suited for processing image ground (Wong & Weisstein, 1983).

This suggests that the subjective state of attending to a spatial

N2
NW.
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region--the figure--selectively activates the high detail channels.

These results are consistent with the attentional hypothesis

outlined earlier. Unfortunately, relatively few studies have

actually examined the hypothesis empirically as in this case.

Global Precedence and Low-Frequency Dominance

An important aspect of Broadbent's discussion of the role of

spatial channels in attention is the notion that the global

(low-frequency) analysis temporally precedes the local

(high-frequency) analysis. This refers to a recurring theme in

recent visual information processing studies, and is sometimes

referred to as the global precedence effect (Navon, 1977; Ward,

* 1982; Hughes, Layton, Baird, & Lester, 1984). As implied by the

title of Navon's original 1977 article, the global precedence effect

asserts that in a relative sense the global information in an

image--"the forest"--will be processed before the local
p

information--"the trees." Although the proposal is not without

controversy (see for example, Miller, 1981; Ward, 1982), most agree

that global dominance is often observed.

In a recent study, Hughes and his colleagues have examined the

effect under a variety of conditions. They present the argument

that local and global processing occurs concurrently and that the -

presence of global cues can serve to retard the processing of local

information. They also speculate that global precedence may result

from asymmetric neural inhibition between the local and global

spatial frequency channels (Morrone, Burr, & Maffei, 1982 cited by

Hughes et al, 1984). It is also interesting to note that Wilson &

4-

€ ' . •,. .., . .'
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Bergen (1979) attribute different temporal response characteristics

to their four size-sensitive mechanisms. These findings are

reminiscent of earlier work which revealed two types of temporal

response in spatially-sensitive retinal cells. As Braddick,

Campbell, and Atkinson (1978) summarize, "The X- or sustained cells

show linear spatial summation, small receptive fields (and hence a

good response to high spatial frequencies but a poor response to

low), and a sustained temporal response. The Y- or transient cells

are spatially nonlinear and respond to lower spatial frequencies -.£"

than X-cells in the corresponding retinal region." (p. 27).

Although the implication of these cells in the attentional processes

,' ,that Broadbent (1977) distinguished would be very speculative, it is

of interest that known temporal response properties of spatial

vision channels are consistent with the attentional hypothesis.

Experiment 1

The purpose of this experiment is to investigate the ability of

human observers to detect and recognize simple two-dimensional

visual objects under conditions where the low-, mid-, or

high-spatial frequency content is dominant. The objects were four

simulated top views of ship hulls distinguished by the presence of

one or two deck houses and by the presence of square or circular

upper deck structures. The research summarized in the preceding

discussion suggests that spatial frequency should be of major '.

importance in determining the detection and recognition performance

achieved with the spatially filtered images. For example, since the

visual cues which permit the four ships to be discriminated involve

°* * *...q * >>. a . ;. .. ' * * ' Vj' , . . .. .V%.. '¢" .. . .**, ,,". ,, , , ,-... ......-.,
% %~
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relatively fine detail and hence, primarily high spatial frequencies

(see method for a more complete discussion), recognition performance

should be best when high-frequencies are dominant but difficult or

impossible when this information is reduced as in the low- and

mid-dominant conditions. On the other hand, the low frequency

channels should play a primary role in detection and, therefore, the

low-dominant conditions should lead to optimal detection

performance. By a parallel argument, the mid- and high-dominant

images should be relatively difficult to detect.

To summarize, according to the attentional hypothesis for the

ship images employed here, the low-frequency dominant imagery should

lead to poor recognition performance, but to very good detection

performance. In contrast, the high-frequency dominant images should

lead to good recognition performance, but relatively poor detection

performance.

Method

Observers. Six paid undergraduate volunteers served as

observers in the experiment. Two served in both the detection and

recognition tasks, two in only the detection task, and two in only

the recognition task. All of the participants had normal or

corrected-to-normal vision.

Apparatus. Image preparation, control of experimental events,

and data analyses were cairied out on a general purpose laboratory

computer (Digital PDP-11/23). This computer served as a controlling

host for a Gould Imaging and Graphics IP8400 image processing system 7
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which was used for on-line image processing, storage, and

presentation. Participants were seated in a darkened room and

viewed the test imagery on a high-resolution, 9 in (22.9 cm)

diagonal, monochrome monitor (Cohu Model DM 9/C) at a viewing

distance of 122 cm. The image was displayed with a resolution of

256 by 256 8-bit pixels in one quadrant of a 512 by 512 pixel

display. Participants entered their responses on a standard

terminal keyboard, and verbal feedback was displayed on the monitor

by means of the IP8400 alphanumeric generator.

Imagery. Preparation of the test imagery involved several

steps. Initially, top-view images of the four ships were created by

varying a two dimensional intensity profile as shown in Figure 1. p.

Ships A and C are characterized by a split deck house with square 4
and circular upper deck structures, respectively. Ships B and D

have a single deck house with square and circular upper deck

structures, respectively. It is clear from Figure 1 that the .

differences among the four ships are based on a small number of

pixels and hence on relatively high spatial frequencies. The gap

distinguishing the split and full deck house is six pixels (.088

degree of visual angle at the 4 ft viewing distance), and the

difference between the circular and square deck structures is three

pixels on the diagonal (.044 degree).

Once the images were constructed, three transformed versions of

each ship were created to emphasize low-, mid-, and high-spatial

frequencies. Each ship image was Fourier transformed using an FFT

alogrithm (see Gonzales & Wintz, 1977). The frequency domain

representation of each ship was then multiplied by circular low-pass
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and band-pass "pill-box" filters with two-octave bandwidths. The

low-pass filter was centered at 1 cycle/degree (0-8 pixels), the

mid-pass filter at 5 cycles/degree (9-32 pixels), and the high-pass

filter (actually a band-pass filter) at 21 cycles/degree (33-128

pixels). The resulting data were then inverse transformed back into

the image domain for presentation. Although two-octave filters were

used, the resulting displayed imagery had somewhat broader

bandwidths because of the mapping used to display the transformed

images. The resulting images had dominant information in the low,

Lmid, and high spatial frequency regions. These images are shown in

Figure 2.

Finally, the transformed and original ship images were adjusted

to have equivalent mean luminance when displayed on the calibrated

monitor as measured by a Photo Research model 502 spot photometer.

Pilot experimentation was carried out to establish presentation U

durations and intensities which would yield acceptable performance

levels in the detection and recognition tasks, that is, with neither

floor nor ceiling effects in either task. For recognition, a

display time of approximately 132 ms was used with a mean display

luminance of approximately 15.52 cd/n 2 
.For detection, the images

were presented for a single frame time of approximately 33 ms and

observers viewed the monitor through neutral density filters to

achieve an overall reduction in display luminance of 4.3 log units

from the recognition level.

41,~
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Low-pass Condition Mid-pass Condition

U

U

High-pass Condition

Figure 2. Spatial frequency filtered images of simulated ship
hulls. Within each filter condition ship A appears in the upper
left, ship B in the upper right, ship C in the lower left, and ship U
D in the lower right.

-7. -1
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Procedure. Prior to beginning the experiment, observers read

I instructions which explained the task. For detection they were told

~ that a ship would occur on every trial and that only the quadrant in

which it appeared was important--its identity could be ignored.

Conversely, for recognition they were told to ignore the quadrant of

presentation and to identify the ship. In the latter case, a sketch

of the four ship types was provided. Testing took place in a m

darkened room and a ten-minute dark adaptation period preceded the

detection sessions. Individual trials were similar for the

detection and recognition sessions and began with a 500 ms

kol presentation of a cross-hair fixation which divided the display into

qudat. Following this the cross-hai was relcd by oeof the

4 ship images selected randomly. This remained visible for 33 ms

I for the detection trials (1 video frame time) or 132 ms for the

recognition trials (4 frame times). Observers entered their
response on a standard keyboard. For recognition trials, verbal

feedback regarding the correct response was displayed on the monitor

for 2 s. No feedback was provided on the detection trials. The

duration of the inter-trial-interval varied depending on the time

required to obtain the next image from a disk file, but was

approximately 1.5 s. observers completed 384 trials per session (6

occurrences of the 4 ships by 4 filter conditions by 4 quadrants)

for 5 sessions totalling 1920 trials per individual.

Results and Discussion

'77-
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Overall recognition performance. A mean percentage correct was

calculated for each condition for each of the four observers across

the five experimental test sessions. These overall means are

presented in Figure 3 for the three filtered and the unfiltered

images. These data were submitted to a three-way (filter condition

by ship by day) repeated measures ANOVA. Several findings were of

interest. First, as expected, a significant main effect of filter

was obtained, F(3,9)=26.56, p<.001, with no significant interactions

between filter and any of the other variables. A post-hoc analysis -,

of these differences with Duncan's New Multiple Range Test revealed

that performance was significantly better for the unfiltered images

(69%) than for any other condition, that the high-pass imagery was :
recognized more reliably (45%) than the mid- and low-pass cases (31%

and 32%, respectively), and that the mid- and low-pass cases were

not reliably different from each other.

Second, no main effect of ship occurred (43%, 45%, 43%, and 45%

for ships A, B, C, and D, respectively), F(3,9)<1.0, and no

significant interactions were obtained between ship and any other

factor. This result indicates that no single ship had unique or

idiosyncratic properties which may otherwise limit interpretation of r

the filter effect.

Third, a reliable main effect of day was observed,

F(4,12)-6.87, p<.O1, with overall performance increasing across the

first four days and leveling off by the fifth day (37%, 40%, 45%,

49%, and 50% for the five days, respectively). Although not

specifically predicted, a practice effect of this type is not

unexpected. The further finding that no reliable interactions

7
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occurred between day and any other factor indicates that practice

simply led to improved performance, regardless of the viewing

condition.

Resd'onse bias in recognition. The above findings are

consistent with our predictions. It would be difficult to account

for the observed pattern of results by response bias alone.

Nevertheless, overall performance level may reflect response bias

tendencies as well as actual observer sensitivity to the image

attributes.

A prelimary analysis was carried out to examine the recognition

data for evidence of response bias. This analysis involved

compiling the frequency of each recognition response for each filter

condition and observer. Any tendency to favor a particular response

regardless of the actual ship that was presented would indicate the

presence of response bias. These frequencies were analyzed by a

two-way, repeated measures ANOVA (filter condition by ship). No

significant main effects or interactions were obtained. Hence,

there was no systematic bias. Despite this, a detailed examination

of individual data did suggest a slight response bias for one

observer. Specifically, this individual displayed a tendency to

indicate ship A or ship B (both with square deck structures)

whenever an unfiltered or high-frequency image occurred (61% vs.

39%) and to indicate ship C or ship D (circular deck structures)

whenever a mid- or low-frequency image occurred (65% vs. 35%).

This suggests that the presence of high spatial frequencies led this

individual to "see" a ship with sharp features (the square deck

structures) rather than one with smooth features. Nevertheless, .-. ;

U
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pthis tendency was not sufficiently strong to play a major role in J

the overall data.

Analysis of recognition confusions. The previous analyses have

shown that observers recognize the unfiltered and high-frequency

ships more reliably than they do the mid- and low-frequency ships,

and that this result cannot be attributed to response bias.

Additional analyses were carried out on the types of confusions

which actually occurred to obtain more information about what

aspects of the imagery made the mid- and low-conditions difficult.
rail.~

Two by two confusion matrices were derived for each individual and

filter condition, one for the split/full deck house attribute and

the other for the square/circular deck structures attribute. A 5.

response-bias free index of performance, d' (see Green & Swets,

1966), was then determined for each matrix by defining a hit as a

split-deck category response (ships A or C) given that a split-deck '.

occurred and a false alarm as a split-deck response when a full-deck

actually occurred (ships B or D). Analogous definitions were used

for the square/circular deck structures matrix.

A mean d' discrimination index was then determined for each

filter and attribute by averaging across individuals. These means

are shown in Figure 4. A two-way (filter by attribute), repeated

measures ANOVA revealed reliable main effects of both filter,

F(3,9)-27.24, p<.001, and attribute, F(1,3)-27.24, p<.001, as well

as a significant filter by attribute interaction, F(3,9)-5.90,

5 p<.025. As is evident in Figure 4, the filter effect obtained with

these bias-free means mirrors that reported for the overall

performance analysis (mean d's: unfilteredm2.18, high-1.040
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low-.27, and mid-.28). The main effect of attribute reflects i

large performance advantage for the split/full deck discrimination

(mean d'=1.39) over the circular/square structure discrimination

(mean d'=.50). Furthermore, as seen in Figure 4, the reliable

interaction indicates that this advantage occurred primarily for the

unfiltered and high frequency images.

Recognition latency analysis. A mean response latency was

determined for each condition and individual in the experiment. The

results are shown in Figure 5. These data were analyzed by a

three-way (filter condition by ship by day), repeated measures

ANOVA. The analysis revealed a significant main effect of filter,

F(3,9)-5.82, p<.025; no other main effects or interactions were

significant at the .05 level. Inspection of Figure 5 suggests that

the main effect of filter condition reflects a partitioning of the

latencies into two sets, relatively fast for the low-frequency

images (1394 ins), and relatively slow for the unfiltered, high- and

mid-frequency images (overall mean of 2031 ins). A follow-up post

hoc analysis with Duncan's New Multiple Range test confirmed this

observation with reliable differences occurring across the slow and

fast groups, but no reliable differences occurring within the slow

conditions. Although individuals differed dramatically in their -

average response time (from 1442 mns to 2163 ins), each showed this

pattern. These findings, coupled with the accuracy data, suggest

that observers might have regarded the low-frequency images as a

S "lost cause" and responded relatively quickly whenever they .

occurred. On the other hand, a simple speed/accuracy tradeoff

cannot account for the overall pattern of latencies because

0A
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observers took significantly longer to respond to the mid- than to

the low-frequency images even though these two conditions did not

j differ in accuracy.

Summary of recognition results. Overall, the recognition

I findings were consistent with the predictions developed in the

introduction. The low- and mid-frequency images were nearly

impossible to recognize reliably under the conditions presented

here, whereas the high-frequency and unfiltered images led to

reasonably accurate recognition levels. Furthermore, a follow-on

a analysis of attribute confusions indicated that neither attribute

could be discriminated in the low- and mid-frequency images, the

higher frequency deck structures attribute was reasonably well

discriminated for only the unfiltered images (mean d'-l.88), and the

lower frequency deck house attribute could be discriminated in both

the unfiltered Wd-2.86) and the high-frequency imagery (d'-1.82).

Finally, the pattern of response latencies was consistent with the

accuracy analyses in suggesting that observers regarded the

low-frequency images as very difficult or impossible to recognize. INS

overall detection performance. The mean percentage correct

detection was determined for each condition and each observer in the

experiment. Since a four-alternative forced-choice detection

procedure was used, unlike the overall recognition data, these data

provide a bias-free index of detection performance (Green & Swets,

U1966). These means are plotted by day in Figure 6 for each of the

3 four filter conditions. A three-way (filter condition by ship by

day) repeated measures ANOVA was carried out on these data. This

analysis revealed significant main effects of filter, .E(3,9)-70.51,

a.~~~~~~q I ~ a' ' ~ . **
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U p<. 001, and ship, F(3,9)-4.45, 2<.05, as well as significant filter

by ship, F(9,27)-5.66, 2<.001, and filter by day, F(12,36)-3.99,

p<.001, interactions. The reliable main effect of ship reflects a

small performance difference across the four ships (66%, 69%, 69%,

S and 66% for ships A, B, C, and D, respectively). This difference

will not be considered further.

As seen in Figure 6, the main effect of filter condition

reflects the predicted detection advantage for the low-frequency

images, with performance on this condition exceeding even that for

the unfiltered condition (low-83%, unfiltered-76%, high-56%, and

mid-54%). However, these findings must be interpreted within the

context of the two reliable interactions. Consider first the filter

by day interaction depicted in Figure 6. It is obvious by visual

inspection that the four filters led to a consistent pattern of

performance for all except the first day when a reversal of the

high- and mid-frequency conditions occurred. Since this effect is

. small and theoretically-uninteresting, the interaction will not be

considered further.

The more important interaction occurred between filter and

ship. Does this suggest that the four ships led to meaningfully

different detection performance for the different filter conditions?

The relevant means are shown in Table 1. A simple effects analysis

revealed a highly significant main effect of filter for each of the

four ships, indicating that a filter effect did occur for each of

the four ships as suggested by Table 1. Furthermore, post hoc

comparisons were carried out on each simple effects analysis with

Duncan's Test. This revealed that both the low-frequency and

p ,
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Table 1

Mean correct detection M% by ship and filter condition.

Filter Condition

Low Mid High Unfilt

A 82.3 55.0 47.9 78.4

Shp B 84.2 55.8 54.6 80.6

C 85.3 53.6 64.9 72.9

D 81.4 50.6 57.5 73.6

Li.



3 Spatial scale Page 27

U unfiltered images were detected reliably better than the mid- and

high-frequency images for all ships, but that the low-frequency

3 condition was detected reliably better than the unfiltered images

only for ship C.

In summary, detection was better for images containing low

spatial frequencies (80% overall for the low-frequency and

unfiltered images) than for images containing only the higher

spatial frequencies (55% overall for the mid- and high-frequency

images). In addition, the fact that there was a consistent

I tendency, statistically reliable for ship C, for the low-frequency

images to produce better detection than the broad-band, unfiltered

images, suggests that the presence of high spatial frequencies in

the images might have interfered with the observers' ability to

detect the ships.

Detection latency analysis. A mean detection response latency ..

was determined for each individual and condition. A three-way

(filter condition by ship by day) repeated measures ANOVA revealed a

significant main effect of filter, F(3,9)-5.07, p-.025, and a

significant filter by ship interaction, F(9,27)-2.71, p-.025. No

other effects were significant at the .05 level. As in the case of

the recognition latencies, inspection of the overall means for each

filter condition reveals a partitioning into fast and slow

responses. However, in this case the two conditions that led to

accurate detection also led to fast responses (934 ms on the

average) whereas those that led to poor detection (mid- and

high-frequency) showed slow responding (1019 ms on the average).

% %
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Before considering these findings further, the filter by ship M

interaction must be considered. The relevant means as well as the

F's resulting from a simple effects analysis on each ship are shown

in Table 2. AS may be seen, a reliable simple effect of filter

occurred for each of the four ships and a similar "fast/slow"

pattern of latencies occurred for all but ship C. Post hoc

follow-on analyses with Duncan's Test revealed (a) that the

low-frequency and unfiltered image latencies did not differ for any

ship, (b) that the low-frequency images were detected significantly

faster than the mid- and high-frequency images for all ships, and

(c) that the unfiltered images were significantly faster than the

mid- and high-frequency images for only ships A and B. These

latency results are consistent with the detection accuracy data in E

distinguishing the images with low-frequency content (the unfiltered

and low-frequency images) from those with relatively little

low-frequency information (the mid- and high-frequency images).

Although highly speculative in the context of this experiment, it is

interesting that the relatively faster response times observed for

the low-frequency images is consistent with the known temporal

characteristics of the low-spatial frequency channels reviewed in_

I the introduction.

Experiment 2

The results of Experiment 1 were consistent with the

attentional hypothesis on the role of spatial scale in visual V

perception. Different ranges of spatial frequencies led to optimal

performance for the detection and recognition tasks. An additional

41m
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Table 2
Mean detection response latency (ms) by ship and filter condition.

Filter Condition

Low Mid High Unfilt Mean

A 944 1027 1025 923 980

B 913 1012 1030 937 973
Ship

C 916 1036 982 961 974

D 926 1027 1014 958 982

Mean 924 1025 1013 945

zeN,
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question raised by Julesz and Papathomas (1984) concerns the ability

of observers to regulate the attended spatial frequency channels on

a voluntary basis. Their demonstration supported what they referred

to as a "strong" form of the hypothesis in revealing that some

*voluntary control does exist. This leads to the further question of -V

* whether, if given a choice, observers would voluntarily select

imagery that had been spatially filtered to include an optimal

frequency band. This question is investigated in the second

experiment. In particular, the detection and recognition tasks of Z

Experiment 1 were replicated, but in Experiment 2, observers were

given control over the filter condition viewed on each trial.

* Immediately prior to image presentation the observer selected which

of the four filter conditions to present (low-, mid-, or

high-frequency dominant, or unfiltered). -f the observers are

sensitive to the role of spatial frequency filtering on detection

and recognition performance then performance should be optimized by

the selection of low-frequency images for the detection task and

unfiltered images for the recognition task. This finding would

suggest that individuals have a reliable "eaprpto" or

intuition regarding what will contribute to good performance in a

simple perceptual task (Nisbett & Wilson, 1977; Ericsson & Simon,

1980).

Method

observers. Eight undergraduate volunteers served in the

Experiment, four in the recognition task and four in the detection

task. All reported normal or corrected-to-normal vision, and none
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participated in Experiment 1.

Apparatus. The apparatus was identical to that used in

Experiment 1.

Imagery. The imagery was identical to that used in Experiment

1.

Procedure. The procedure of Experiment 1 was used, but prior

to beginning each trial the observer pressed a key to select which

of the four filter conditions to observe. As a result, the

frequency of occurrence of each filter condition was an additional

dependent variable in this experiment. No specific instructions

were given regarding which filter condition to select, observersrn were told simply to select the imagery which would make their task

easiest. As in Experiment 1, feedback was provided following the

recognition responses, and no feedback was given during detection.

Results and Discussion

Filter selection for the, recognition task. The mean frequency

of selection was determined for each filter condition and observer

in the experiment. The results of this analysis are shown in Table

3. As is evident from the table, two of the four observers showed a

decided preference for the unfiltered images, selecting these images

on 97% and 66% of the trials, whereas the remaining two observers 10

preferred the high-pass images with selection on 58% and 98% of the

Wtrials. The selection of the high-pass imagery by the latter two

individuals is curious given the finding of Experiment 1 that

high-pass filtered imagery led to poorer recognition performance

SV
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Table 3

Mean relative frequency of filter selection and percentage correct

recognition (shown in p.rentheses) for each of four observers.

Filter Condition

Observer Low Mid High Unfilt

1 .12 .21 .58 (46) .09

2 -- -- .98 (60) --

3 .02 .-- .97 (82)

4 .02 -- .32 .66 (88)

(i'
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than did unfiltered imagery. Recognition performance is examined

next.

Recognition performance. The mean percentage correct was

determined for each preferred viewing condition for each of the four

observers, collapsed across the five test sessions. These results

appear in parentheses in Table 3. The two observers who showed a

preference for the high-frequency imagery performed substantially

pooer(53% corc)than the two with a preference for the

unfiltered imagery (85% correct). This is consistent with the

pattern of Experiment 1 which revealed better recognition

performance for the unfiltered (69%) than for the high-frequency

images (45%). Nevertheless, the overall performance levels achieved

* in this experiment were higher than those observed in the first

experiment.

As in Experiment 1, an additional response-bias free analysis

was carried out on the two by two confusion matrices for the

deck-house and deck-structures attributes. The results of this 2
analysis were consistent with those of Experiment 1 in revealing

superior overall performance for the deck-house attribute (mean

d- 2.60) than for the deck-structures attribute (mean d' - 1.72).

Furthermore, this analysis also supported the asymmetry between the

two categories of observers identified above. Individuals who

selected the high-frequency imagery did substantially worse on both

attributes than those who selected the unfiltered imagery

3(deck-structures: mean d' - .73 vs. 2.72; deck-house: mean

d- 1.86 vs. 3.34). As in the case of the overall performance

data, these analyses also show better performance for both
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attributes in this experiment (mean d' - 1.72 and 2.60) than in the

first experiment (mean d' = .50 and 1.39).

The key to understanding the overall differences between the

results of this experiment and those of Experiment 1 may lie in the

overall practice obtained under each viewing condition. Since each

observer in Experiment 2 tended to select only one of the four image

types for presentation, the selected type (either high-frequency or

unfiltered) occurred far more frequently than in Experiment 1. In

particular, individuals who selected the unfiltered imagery averaged

1579 presentations, whereas those who selected the high-frequency

imagery averaged 1490 presentations. In both cases, the preferred

filter condition appeared more than three times as often in this

experiment than in Experiment 1. This suggests that additional

practice with the selected imagery led to better overall recognition

performance than found in Experiment 1.

Filter selection for the detection task. As in the case of

recognition, the relative frequency of filter selection was

determined for each filter condition and observer. These results

are shown in Table 4. As seen in the table, each of the four

* observers had a clear preference for the low-pass imagery with

dselection for more than 90% of the trials. This finding is

consistent with the results of Experiment 1 which demonstrated

optimal detection performance for this filter condition. The result

also stands in sharp contrast to the selection results for the

recognition condition in which two of the four observers had a k
selection preference for a non-optimal filter.

'- i'Lti
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Table 4

I Mean relative frequency of filter selection and percentage correct
detection (shown in parentheses) for each of four observers.

Filter~~ Codto

observer Low Mid High Unfilt

1 .87 (80) .02 .02 .09

2 .91 (81) - .09

3 .91 (46) .03 .03 .03

4 .95 (87) .01 .02 .02

rN
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Detection performance. The mean percentage correct was

determined for the preferred low-pass imagery for each of the four

observers, collapsed across the five test sessions. These results

are shown in parentheses in Table 4. With the exception of observer

3 who found the task extremely difficult, overall detection

performance (74% with and 83% without Observer 3) was comparable to

that obtained in Experiment 1 (83% overall). This comparability

occurred despite the fact that observers in the present experiment

* received substantially more practice with the low-frequency imagery

(mean number of trials = 1739) than did the observers in Experiment

1 (480 trials). This suggests that unlike recognition, detection

levels are nearly optimal and further improvements would not be

expected with more practice.

General Discussion

Overall, the results of this study are consistent with the

attentional hypothesis on the role of spatial scale in image

perception. In Experiment 1, different ranges of spatial

frequencies led to optimal performance for the detection and

recognition tasks. Experiment 2 showed further that, when given a

P choice, observers may not always select imagery which contains

spatial frequencies which lead to optimal recognition performance.

Several aspects of these results are discussed further below.

As noted above, the recognition findings were consistent with

the predictions developed in the introduction. In the first

experiment the unfiltered and high-frequency images were recognized

substantially better than the other images. A follow-on analysir
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indicated further that the higher frequency deck-structure

(circular/square) was nearly impossible to discriminate in all but

the unfiltered images, whereas the lower-frequency deck-house

(split/full) discrimination was comparatively easy for both the

high-frequency and unfiltered images. To understand this result, it

is necessary to consider the spatial-frequencies involved in the two

discriminations. In a simplified first analysis it can be argued

that the six-pixel discrimination required to distinguish the split

from full deck house would have a fundamental spatial frequency of

0 21.33 c/i (cycles/image) or 5.63 c/d (cycles/degree of visual angle)

(128/6-21.33 c/i), whereas the three-pixel difference between the

circular and square deck structures has a fundamental of 42.67 c/i

or 11.26 c/d (cf. Ginsburg, 1978; p. 44). From this perspective,

the observation that low- and mid-frequency images led to poor

~ discrimination is not surprising--the information was simply not

provided within the passbands of these filters to permit

discrimination (.26 c/d -2.11 c/d for low, 2.38 c/d - 8.44 c/d for

mid).

However, this simplified analysis falls short of telling the

~u. whole story. For even relatively simple shapes such as those used

to construct the ship images investigated here, differences between

objects in the spatial frequency domain are far more subtle and

complex than is suggested in the above analysis. For example,

Figure 7 displays the two-dimensional Fourier transform of the

difference between a circular and square shape as used in the

deck-structures attribute. Examination of this figure makes it

clear that the frequency-domain differences between these two simple
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Figure 7. Log display of two-dimensional spectral magnitude data
for the difference between a circle and square (as in the
deck-structure attribute). The display is centered at the constant
or d.c. point with spatial frequency increasing outward from this
point.
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p shapes are broadly distributed across the spectrum. In terms of the

filters used in this investigation, information sufficient for

discrimination exists in all three frequency bands. The real issue,

then, concerns the ability of the human observer to make use of this

information.

In the first experiment observers were not able to distinguish

the more subtle deck-structures attribute on the basis of a subset

of spatial frequencies regardless of where these frequencies fell

(i.e., low-, mid-, or high-band). only the unfiltered images

produced reliable discrimination for this attribute. This suggests

that the overall spectral configuration or pattern of spatial

frequencies is of primary importance for discrimination and hence

5 recognition.

;% The results of the second experiment suggest further that

substantial improvements in recognition performance can occur with

* additional practice. This finding must be interpreted cautiously,

however, since the image selection paradigm investigated in the

second experiment may have produced quite a different perceptual

task than that investigated in the more conventional paradigm used

in the first experiment. In particular, the observers in Experiment

~ 2 were effectively classifying imagery falling within a single

spatial frequency band. In contrast, observers in Experiment 1

received imagery from four spatial frequency bands (low, mid, high

and unfiltered). This distinction may have permitted the former

individuals to treat each of the four images (4 ships x 1 filter

condition) as a unique entity to be categorized in a

* paired-associate fashion, whereas the observers in Experiment 1 had



Spatial scale Page 40

the more difficult task of either learning categories for 16 unique

images (4 ships x 4 filter conditions) or of determining general

features or characteristics for the four ships which would apply

across the various filter conditions. Additional experimentation is

required to understand more fully the performance differences

obtained between Experiments 1 and 2.

Detection. The detection results obtained in the present study

are also consistent with the hypotheses developed in the

introduction. For the luminance and exposure conditions

investigated here, the low spatial frequency imagery led to

unambiguously better detection performance than did imagery from the

three other spatial frequency bands. Furthermore, although

observers in the second experiment received considerably more0

practice with the low-frequency imagery than did observers in the

first experiment, no overall detection performance difference

occurred between the two experiments. This suggests that detection

performance was nearly optimal with this imagery in both cases.

Despite this, however, an alternative to the attentional hypothesis

can be proposed to account for the detection results. Specifically,

the 1 cycle/degree center frequency of the low-pass spatial

frequency filters investigated here would be expected to yield

maximum contrast sensitivity at the low luminance levels used

(Campbell & Robson, 1968). This alone could account for the

superior detection performance observed for this filter condition.

More interesting, however, is the finding that overall detection was

better for the low frequency (83% correct) than for the unfiltered

(76%) imagery despite the fact that the unfiltered imagery obviously '
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contains the low frequency information. AS indicated previously,

U this suggests a possible interference effect of the higher frequency

information contained in the original, unfiltered imagery. AS in

the case of recognition, this underscores the importance of the

overall pattern of spatial frequencies for detection performance.

Implications for image processing And image quality metrics.

Image processing and enhancement techniques are widely used in Navy

applications such as reconnaissance, weather forcasting, and sonar

imaging. In many such applications, a human observer is required to

i4' apply image enhancement algorithms on an interactive basis to

improve image quality for the task at hand. Two aspects of this

problem deserve further comment in light of the findings reported 4
here, the role of the human observer in interaction, and the

perceptual basis for assessing image quality.

First, the present study was only part of a larger project to

investigate human-computer interaction in image processing and was

not designed to examine fully-interactive capabilities. Despite

this, however, a limited "interactive" capability was provided in

Experiment 2 when observers were required to select which of four

spatial frequency filter conditions to observe on each trial--a

first step in the investigation of fully-interactive systems. The

results of this experiment revealed that some observers did not

select the optimal spatial frequency parameters for image

recognition. Additional research is called for on the problem of

determining what an observer knows of the conditions that will lead

to optimal performance. Previous research by Peterson, Goppelt, &

Grossman (1984) has shown that spatial frequency filtering can lead lob
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to improved recognition performance for infrared ship images. The

results reported here suggest that observers may not be able to take

advantage of such image processing tools in an interactive imaging%

environment without some kind of additional decision aid or expert

system to assist them.

Second, image "quality" has received considerable attention in

the image processing literature (Snyder, Shedivy, & Maddox, 1982).

The objective of image quality research is to determine a scale or

metric of image quality suitable for predicting the ability of

observers to extract information from images. Although not designed

to investigate this problem, the findings of the present study

suggest that singular measures of image quality necessarily fail to

capture the perceptual complexity of imagery for all tasks. For

example, one could argue that the low-pass imagery provided very

high quality for detection but low quality for recognition, whereas

the reverse was true for recognition. No simple measure can provide

an accurate sense of image quality without considering the

observer's task. Additional work such as that carried out by

* KUperman (1985) is needed to place image quality metrics on a more

secure theoretical footing.
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