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PREFACE 

This AGARDograph presents a comprehensive, up-to-date review of the shock-wave boundary-layer interaction 
problem. A detailed physical description of the phenomena for transonic and supersonic speed regimes is given based on 
experimental observations, correlations, and theoretical concepts. Approaches for solving the problem are then reviewed in 
depth. Specifically, these include: global methods developed to predict sudden changes in boundary-layer properties; integral 
or finite-difference methods developed to predict the continuous evolution of a boundary-layer encountering a pressure field 
induced by a shock wave; coupling methods to predict entire flow fields; analytical methods such as multi-deck techniques; 
and finite-difference methods for solving the time-dependent Reynolds-averaged Navier-Stokes equations used to predict 
the development of entire flow fields. Examples are presented to illustrate the status of the various methods and some 
discussion is devoted to delineating their advantages and shortcomings. Reference citations for the wide variety of subject 
material are provided for readers interested in further study. 

Get AGARDograph presente une revue densemble et mise a jour des problemes d'interaction onde de choc/couche 
limite, en regime turbulent principalement. Dans une premiere partie, les phenomenes physiques recontres aux vitesses 
transsoniques et supersoniques sont decrits de maniere detaillee en s'appuyant sur de nombreuses observations 
experimentales, des lois de correlations et certains concepts theoriques. Dans une seconde partie, les differentes approches 
utilisees pour modeliser le phenomene sont presentees et discutees en profondeur. Gelles-ci comprennent: les methodes 
globales dont I'objectif est de calculer le changement brutal que les proprietes de la couche limite subissent au cours de 
I'interaction; les methodes integrales ou aux differences finies qui permettent le calcul continu de revolution d'une couche 
limite recontrant un champ de pression induit par une onde de choc; les techniques de couplage fluid parfait-fluide visqueux 
qui permettent de calculer I'ensemble du champ aerodynamique; les techniques analytiques du type modele multi-couches, et 
enfin les methodes aux differences finies resolvant les equations de Navier-Stokes moyennees en temps qui sont appliquees a 
I'ensemble de I'ecoulement. Des exemples d'application sont brievement discutes. L'ouvrage contient un grand nombre de 
references couvrant I'ensemble du sujet et destinees a aider le lecteur interesse par la recherche d'une plus ample 
information. 
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INTRODUCTION 

The interactions of a shock-wave with a boundary-layer can have a significant inflcxence on aircraft or missile 
performance. Drag rise, flow separation, adverse aerodynamic loading, high aerodynamic heating, and poor engine inlet 
performance are but a few examples of its deleterious iafluf^nce. Although the problem has received much attention and 
study, it remains an unresolved fluid mechanics issue. It has been a decade since Hankey and Holden (1975) compiled the 
last AGARDograph oa the subject. Their publication augmented the very comprehensive review by Green (1970) who 
discussed many of the physical aspects of the problem and some of the methods for predicting its behavior, particularly 
for the unseparated case (see also the lecture series by Stanewsky, 1973 and by Leblanc, 1976). The 1975 AGARDograph 
introduced newly emerging theoretical developments on viscous-inviscid coupling, provided a preliminary look into 
numerical simulations of the Navier-Stokes equations,and extensively reviewed the new experimental work on 
hypersonic interactions. Since then, rapid developments in computational fluid dynamics and advanced instrumentation 
provided new opportunities to investigate this important phenomena, especially for the transonic and supersonic speed 
regimes. And, in those intervening years a certain maturation of the subject has taken place. It is the purpose of this 
AGARDograph to provide a comprehensive review of the subject in light of these new developments and maturation. 
Emphasis is therefore placed on high Reynolds number turbulent flows for the transonic and supersonic speed regimes. 

The first part of the report presents a physical description of the phenomenon for transonic and supersonic flows 
based on experimental observations, correlations, and theoretli,a.l c;oacepts. The second part presents an in-depth review 
of various methods used to predict the phenomenon. It begins with methods used to predict the properties of a turbulent 
boundary-layer encountering a pressure disturbance due to the presence of a shock-wave. There is some overlap in this 
description with the material covered by Green (1970). However, the authors felt this was necessary to fulfill the 
requirement of completeness and because of the maturation of some of the concepts. Subsequent discussion deals with 
coupling methods involving the modeling of viscous and inviscid regions for the purpose of predictiag entire flow fields. 
Then, analytic methods involving multi-deck techniques which provide insight into the physical aspects of the localized 
phenomena are reviewed. The discussion ends with methods for solving the fim«-dependent Reynolds-averaged Navier- 
Stokes equations now being developed to predict entire flow fields. Turbulence modeling necessary for implementing the 
coupling and Navier-Stokes methods .i>-e discussed. Examples are presented through out the report to support the 
appropriateness of the various methods and to provide an up-to-date status of their development. The authors have 
attempted to make the various sections complete and self-consistent in order to facilitate the needs of 
some readers who may not want to review the complete subject. 
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PART I - A PHYSICAL DESCRIPTION OF SHOCK-WAVE/BOUNDARY-LAYER INTERACTION 

1 -   GENERAL COMMENTS 

1.1 - Introductory Remarks 

In analyzing flows past obstacles, both from a theoretical and a phenomenological point of view, it is customary to 
conceptually divide the field into distinct zones consisting of : 

i - regions where viscous effects play a negligible role. There the flow is said to behave like a perfect fluid which 
means that dissipative effects are (practically) inexistent. In these regions, the fluid motion can be accurately 
computed  by  solving  the  Euler  equations   (or  a  simplified  form  of  these  equations  if   further  simplifying 
assumptions are verified: e.g. irrotationality...). Frequently, the perfect fluid region is called the "outer" or 
"external" flow field. 

ii- regions where viscosity must play a predominant role, namely: boundary-layers, wakes, mixing zones.. 

Except when the Reynolds number is very low, the viscous or dissipative regions are most often thin when 
compared to a characteristic dimension of the obstacle (e.g. the chordlength of an airfoil). However, it should be 
pohiijid i>nt that even at high Reynolds number, circumstances can be met where the dissipative zones have a thickness 
comparable to that of the obstacle. This is the case when a boundary-layer separates in a situation leading to the 
development of a large separated bubble. Such a situation is encountered, for example, when an airfoil is stalled or in a 
strongly overexpanded nozzle in which the flow separates far upstream of the exit plane. 

In this AGARDograph, we will only consider flows with sufficiently high Reynolds number for the classical Prandtl 
boundary-layer concept to be applicable to the incoming flow which will meet the shock-wave. That means that the yet 
undist^orbed boundary-layer approaching the shock region can be represented in terms of classical boundary-layer 
concepts. Also, the conditions will be such that the shock structure has H negligible thickness when compared to the 
various macroscopic scales of the boundary-layer (see Section 1.2 below for more information on the turbulent 
boundary-layer structure). 

^       Thus, we shall consider the problem of a shock-wave propagating in a transonic or supersonic stream and that 
interacts" with the boundary-layer developing on an obstacle. Before going into a detailed examination of the so-called 

mteraction process, it can be useful, for future interpretation of the observed phenomena, to briefly recall the essential 
features of a boundary-layer flow. 

Basically, a boundary-layer is a thin layer across which the flow velocity decreases from the (high) external value 
to zero at the waU where the no-slip coadition must be satisfied. At the same time, the Mach number varies from the 
outer value Mg to zero. Since the static pressure is transversally constant across it, the boundary-layer can be viewed 
as a quasi-parallel flow with variable entropy from one streamline to the other, or which is equivalent, as a quasi- 
parallel rotational flow.   

Anticipating forthcoming explanations, its seems reasonable to consider that when a shock-wave propagates 
through such a dissipative-layer, the viscous forces (resulting both from "true" laminar viscosity and "apparent" 
turbulent viscosity) have locally a negligible influence over the major part of the flow. This fact will be experimentally 
and theoretically justified in the forthcoming Sections. However, such behavior can be intuitively understood if it is 
realized that the shock-wave imparts to the flow such an intense deceleration that - on the macroscopic scale -the 
viscous forces become temporarily negligible vis a vis the inertial and pressure forces. (In reality, shock-waves are 
VISCOUS phenomena but on a microscopic scale in most usual situations. Thus, for our purpose, shocks will be considered 
as perfect discontinuities). 

According to the above remarks, for a first and crude schematization of the phenomenon, the shock penetration 
into a boundary-layer can be viewed as a perfect fluid problem and some general trends can be inferred without 
consideration of dissipative terms. However, it should be pointed out that a purely inviscid flow model necessarily leads 
to inconsistencies m the near wall region where viscous terms must be predominant because of the no-slip condition at 
the wall (this problem will be discussed in detail in Section 4 of Part H). Nevertheless, this so-called "inner viscous 
layer" is excessively thin, especially in turbulent flows, so that its influence can be assumed of secondary importance. 

When a shock-wave propagates through a boundary-layer, it "sees" an upstream flow of lower and lower Mach 
number as it approaches the wall. The shock must adapt itself to this situation so that it becomes vanishingly weak 
when it reaches the place where the Mach number is sonic. Moreover, the "pressure signal" carried by the shock is 
necessarily transmitted in the upstream direction through the subsonic inner part of the boundary-layer. Thus, the 
pressure rise caused by the shock is "felt" upstream of the point where the shock would meet the surface in the perfect 
fluid model, i.e., in a flow without boundary-layer. Conversely, the thickening of the boundary-layer subsonic channel, 
resulting from a rise in pressure, generates compression waves in the adjacent supersonic layer. These waves will in turn 
weaken the shock wave, according to a mechanism which will be analyzed in more detail in following Sections. 

The above simple reasoning shows that a very complex mechanism will take place in such a way that there is a 
reciprocal influence between the shock-wave and the boundary-layer. This rapid description takes into consideration 
only one aspect of the various phenomena involved in a shock-wave/boundary-layer interaction. Its purpose is to 
emphasize the crucial importance of the velocity distribution - and hence the Mach number distribution - of the 
mcoming boundary-layer. Thus, before going into a more thorough examination of shock interaction problems, it is 
certainly useful to recall some basic properties of a turbulent boundary-layer, since this AGARDograph will be mainly 
concerned with turbulent flows. 



1.2 - The Structure of a Turbulent Boundary-Layer 

Experimental observation shows that a "well behaved" or "equilibrium" turbulent boundary-layer has a composite 
nature. One successively distinguishes, as schematically shown in Fig. 1.1 : 

( Y : distance Trom the wall ) 

"TY value depends on Re( Reynolds number) 

V 
1 10 100 1000 

Fig. 1.1 — Structure of a well "behaved" turbulent boundary-layer. 

i - a viscous sublayer very close to the wall, in which (molecular) viscosity is essential. This sublayer can be 
further divided into: a linear sublayer, in contact with the wall, where the velocity is a linear function of the 
ordinate y, and a buffer layer which insures a smooth transition with the adjacent non-linear region. 

ii - a log-law region. With the use of the conventional profile representation : U/UT= f(uTy/\*) - where UT= *^/P is 
a scaling velocity (often called the "friction" velocity) -all well behaved boundary-layers collapse into a single 
curve independent of Reynolds number 

iii- an outer region which is a wake-like region, that is independent of the Reynolds number but dependent on the 
outer flow field, e.g., pressure gradient, .... 

A faithful and widely used analytical representation of the velocity distribution across an incompressible turbulent 
boundcu:y-layer wEts given by Coles (1956). It consists in a combination of the law of the wake-law of the wall 
(logeurithmic region) written in the form : 

(1.1) u/u^ = (1/k) hi (yu^/v) + c + (w/k) w (y/6) 

In this equation, k and C are two constants (usually k = 0.41 and C = 5.1), IT is a "form factor" whose value deter- 
mines the "strength" of the wake-component (for a flat-plate 7r= 0.55, it increases when the boimdary-layer is submitted 
to an adverse pressure gradient), and w (y/6 ) is the "wake function". 

For our purpose, it is more convenient to express the velocity ratio in terms of Uei the value of u at the boundary- 
layer outer edge. Thus, Eq. 1.1 is written in the form : 

u/ue = Uj/ue (1/k) [In (yu^/v) + c + (^/k) w(y/6) 

Writing this equation for y = 6 > gives : 

(1.2) ■ 1 = Uj/ue [(1/k) In (6 o^/v) + c + 2n/ld 

(the functioa w having been normalized in such a way that its vjdue at y = 6 is 2). 

Combining Eqs. 1.1 and 1.2 gives : 

(1.3) u/ue = 1. + (1/k) ^ hi (y/5 ) + TT [2 - w(y/6 »} ' 

In terms of more usual boundary-layer peirameters, T\ is determined by the equation : 

(1.4) w=k(ue/uT-) (6*/6)-l 

where 6  is the boundciry-layer displacement thickness. Equation 1.3 can also be written in the form : 

(1.5) u/Ue = 1 + (1/k) (UT-/Ue) In (y/ 6) - (5*/ 6 - UT./kue) [2 - w(y/ 5)] 

which eliminates the singularity presents in Eq. 1.3 at the separation point where ^ tends to infinity. According to 
Coles' formula, at a separation or a reattachment station u =0, which suppresses the logarithmic component of the 
profile representation. 



(1.6) 

Introducing the Reynolds number R g = "e 6and taking Eq. 1.4  into account, Eq. 1.2 can be written : 
V 

1-   =  u^/Ug   [(1/k)   In   (Rgu^/Ug)   + C  +  2   (u  S'/u^S  -  1/k)] 

Remembering that from the definition of the friction velocity (in incompressible flow), one has u /ug = (0.5 Cf)l/2, 
Eq. 1.6 provides an equation to compute the skin-friction coefficient knowing the Reynolds number RT and the profile 
"shape parameter" S*/ $. a t- 

According to Coles'hypothesis, w(y/6) is a universal function common to all two-dimensional incompressible 
boundary-layer flows. This function is determined from correlation of experimental data and, for practical purposes, it 
is frequently represented by the following analytical formula : 

w (y/^) = 1 - cos (TTy/6) 

It is to be noticed that Eq. 1.1 (or 1.5) is not vjdid near the wall since the log term tends to minus-infinity when y 
approaches zero. However, at usual Reynolds numbers, Eq. 1.1 (or. 1.5) can be utilized for very small veilues of y/ 5 , 
with realistic results still being given for y/ 5 =0.01. In general, Eq. 1.1 (or 1.5) is sufficient for estimating the boundary- 
layer globed properties. If one needs more accurate information on the velocity distribution and especially on the 
laminar sublayer, more sophisticated analytical representations are available (see Sections 1 and 2 of Part II). 

As shown by Mciise and Mc Oonedd (1967) it is possible to derive a good representation of the velocity distribution in 
a compressible turbulent boundary-layer by using the Van Driest generalized velocity concept. Thus, in compressible 
flows, the velocity profile will be given by : 

(1.7) u/u^ =   (1/a)   sin   [a   (u^/ku  )   (in   (y/6)   -     ^[2-w   (y/S)])  + sin       a] 

wherea= {0.5r(Y-l)  M^/[l+0.5r  (Y-1)  K]}  '        , r being the recovery factor. 

the e 
However, for an adiabatic wall (i.e., no heat transfer at the wall) and moderate external Mach number Mg (Me<2), 
effect of compressibility on the velocity profile is weak, so that Eq. 1.5 can still be used. The essential differenc 

with an incompressible flow is that the shape parameter will then be defined with the "incompressible" displacement 
thickness : 

0   (1  - u/Ug)   dy 

and not with the "true" or compressible displacement thickness. 

Thus, at a given Mach number, the velocity distribution depends on two-parameters : namely, the skin-friction 
coefficient and 0 j/6  (orTT) ; or (which is equivalent) on the Reynolds number Rfi  and &\/& . 

It is more usual to characterize the shape of the velocity distribution by using the following "incompressible" shape 
parameter (or form factor) : 

Hi=6>i , 

where 9i is the "incompressible" momentum thickness defined as : 

=     /" (u/ug)   (1 u/u  )   dy 

As It IS a simple matter to deduce Hj from f^i/& by numerical integrations on the velocity profile, henceforward, 
we will definitively adopt Hj as shape parameter (the word "incompressible" being omitted). To conclude, one sees that 
the velocity distribution of a so-called "well behaved" or "equilibrium" turbulent boundary-layer is entirely determined 
from the knowledge of Hj and R6   (plus perhaps the Mach number; Furthermore, the flow is assumed adiabatic). 

As a matter of fact, Hj and R6   are not always entirely independent. For a well-behaved flat-plate boundary-layer, 
Hi is a unique function of the Reynolds number (and of the Mach number). There exist several well-known correlation 
laws allowing the calculation of H; from siven values of RiS   =.«^ A*    -r-i. n   1     j ^ ,    .,      .    , 6 1   ruiii givcii vdiueb oi n.0   and Mg. They generally lead to nearly identical results. One 

of these laws (Clauser, 1954) has be used to compute the variations of Hj with R 5 shown in Fig. 1.2. One notes that for 
a flat-plate Hj is weakly dependent on the Mach number. An increase in the Reynolds number provokes a decrease of 
the shape parameter. This decrease in Hj reflects a "filling" of the velocity distribution as the Reynolds number rises. 

Fig. 1.2 - Flat plate turbulent boundary-layer - Incompressible 
shape parameter. 



For a fixed value of R 5, Hj can be varied by submitting the boundary-layer to some external constraint : e.g., a 
pressure gradient, injection or aspiration at the wall or rough-wall effect... 

The cheinge in the shape of the velocity profile with varying Hj, at constant Reynolds number, is illustrated in Fig. 
1.3 (the drawn profiles have been computed by using Eq. 1.5). The higher Hi the less "filled" is the profile and, 
consequently, the less the kinetic energy carried. Thus we can already guess that a boundary-layer having a high shape 
parameter will be more sensible to adverse external agencies. The importance of the boundary-layer shape parameter, 
specially in transonic interactions, seems to have been pointed out first by Panaras and Inger (1977). 

To conclude the present Section, the curves traced in Fig. 1.4 give the skin-friction coefficient of an equilibrium 
flat-plate boundary-layer. These curves can be helpful for the interpretation of results presented in forthcoming 
Sections. 
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1.3 - Upstream Influence 

Let us consider the case of an oblique shock-wave produced in a supersonic flow by a wedge (or compression ramp). 
For this configuration, it is possible to define unambiguously an upstream interaction length LQ as the distance between 
the corner which would be the origin of the shock in perfect fluid flow (provided that the deflexion angle is not such 
that the shock is detached)   and the point where the existence of the shock is first felt in the real viscous flow. 

According to previous remarks, LQ appears as being essentially a function of the height y of the subsonic part of 
the boundary-layer since this part constitutes the "channel" through which the shock effect can be transmitted in the 
upstream direction. Thus, it can be forecasted that for a given external Mach number, i.e., a given shock-strength, the 
thicker the subsonic layer, the longer the upstream influence length. 

The ordinate y* depends on the external Mach number, on the velocity and temperature distributions across the 
boundary-layer as well as on the boundary layer thickness 6 ( the temperature profile which determines the speed of 
sound distribution depends mainly on the thermal situation at the wall). Thus, for a turbulent boundary-layer, the 
normalized ordinate y7 6 depends on : Mg, R 5, Hj and on the ratio T„/Tte of the wall temperature to the external 
stagnation temperature. 

In order to give some idea of the value of n =y /<S , Fig. 1.5 shows evolutions of n with Mg, Hj and Tvp/Tte, the 
Reynolds number being kept constant. Examination of these curves leads to the following remarks : 

i - in a turbulent boimdary-layer, the sonic line rapidly approaches the wall as the outer Mach number increases. 
Hence, it can already be anticipated that the upstream influence length will be much shorter in turbulent flows 
than in laminar flows (as shown by the insert of Fig. 1.3, the subsonic layer of a laminar flow is fcir thicker). 

ii- when Hj increases, the velocity profile becomes less filled and, consequently, the subsonic layer is thicker. 
Hence, in principle, to a greater Hj will correspond a longer upstream influence length. As Hj decreases when 
Rfi  increases for a flat-plate boundary-layer (see Fig. 1.2), we can anticipate a decrease in Lg for increasing 
Reynolds number.  However,   this  conclusion  should  be  tempered,  since  the  above  tendency  is not  always 
observed at low Reynolds number. 

iii- cooling the wall (T^/T^g <1.) reduces the speed of sound throughout the boundary-layer. Consequently, the 
Mach number level is raised, especially in the vicinity of the wall: hence, a thinning of the subsonic layer 
leading to a reduction of the usptream influence length. 



A more complete examination of the upstream propagation of shock influence will be presented In the forthcoming 
Sections, firstly from experimental observations, then by considering theoretical arguments. It will also be seen how the 
fullness of the initial boundary-layer profile plays a determinant role in the "resistance" of that boundary-layer to Shock 
Induced Separation. This problem will be thoroughly discussed in Sections devoted to Incipient Separation. 

A second parameter of Influence is the relative Importance of the viscous and inertia forces in the lower part of 
the boundary-layer. As seen from intuitive arguments and from consideration of the momentum equation, these forces 
have contrary effects. The above demonstration puts an emphasis on inertia forces in the sense that the "fullness" for 
the Incoming boundary-layer profile is presented as playing the essential role in the interaction mechanism. In fact, this 
behavior seems to be true only at high Reynolds numbers. At low to moderate Reynolds numbers, the Interaction tends 
to be dominated by viscous effects, in accordance with the Free Interaction Theory presented in Section 3 below. The 
situation is Illustrated by Fig. 1.6 which shows the variation of the sonic layer and viscous layer locations with the 
Reynolds number for a flat plate turbulent boundary-layer at an outer Mach number of 3 (Settles, 1975). One sees that 
at low Reynolds number (R(5<5.105), the viscous layer thickness is comparable to that of the sonic layer. But, as the 

Reynoldsnumber Increases, the relative thickness of the viscous layer decreases rapidly and at R5>107,  it  is  an  order 
of magnitude thinner than the sonic layer. The consequences of this behavior will be commented on in forthcoming 
Sections. 
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2  - INTERACTION IN TWO-DIMENSIONAL TRANSONIC FLOWS 

2.1 - Some Specific Cheiracteristics of Transonic Flows 

Broadly speaking, a flow is said to be transonic when in the outer inviscid stream there exist regions where the 
Mach number is supersonic and regions where the Mach number is subsonic. This is in contrast to the situation envisaged 
in Section 3 below where the external stream remains supersonic throughout the region of interest. Hence, the essential 
characteristics of a transonic flow is that the inviscid psirt of the fluid is governed by equations of motion which are of 
the hyperbolic type in some domains - i.e., when the flow is supersonic - and of the elliptic type in other domains - i.e., 
when the flow is subsonic. 

An essential feature of these flows is that the transition from supersonic to subsonic Mach number practically 
always takes place in an irreversible manner, i.e., by means of a shock-wave (except on shock-free supercritical airfoils 
which are specially designed to produce an isentropic compression on their upper surface in order to eliminate wave- 
drag, Whitcomb, 1974; Sobieczky et al., 1979). 

An immediate consequence of the ellipticity of part of the outer inviscid flow is that the whole flow depends 
strongly on conditions prevailing well downstream of the shock interaction region. This fact constitutes a major 
difference with entirely supersonic outer streams, the flow structure in this later case being essentially determined by 
the upstream incoming state. Then, the influence of the downstream conditions via the boundary-layer is most often 
weak, except in the case of large separation. 

Another typical feature of the envisaged transonic flows is that the shock-waves they contain are "normal" shock- 
waves, or more exactly, "quasi-normal" shock-waves. The expression "quasi-normal" means that in most transonic 
streams, the shocks are strong oblique shock, in the sense of the strong solution of the oblique shock equations (this fact 
will be established in Section 2.6). As opposed to this situation, in a Supersonic Interaction the shocks encountered aie 
most often weak oblique shocks. 

For the two kinds of interaction, however, a situation may exist in which shocks belonging to the other family are 
also present. For instance, in what is called a transonic lambda shock-system, the leading wave is a weak oblique shock 
(see section 2.8.1 below). 

2.2 - Importance of Viscous Effects in Transonic Flows 

Within the concept of Viscous-Inviscid Interaction, the effect of viscous (or dissipative) regions on the external 
inviscid stream can be interpreted : 

i - either as a change in the effective body-shape, according to the displacement body concept, 

ii - or as a modification of the usual condition enforced on the obstacle, according to the transpiration velocity 
concept (for more information, see Section 3 of Part U below). 

Thus, for a fixed body geometry and unchanged outer boundary conditions at upstream and downstream infinity, 
local alteration of the boundary conditions "seen" by the outer inviscid stream are due to viscous effects, namely: 
boundary-layers, wakes.... 

Hence, considering the fact that in transonic flows, the field contains large elliptic regions, any change -even 
slight- in the boundary conditions at some specific location may entail dramatic repercussions on the structure of the 
whole flow field. This is particularly true for the position of a normal shock on an airfoil or in a transonic channel. 
Consequently, it is to be expected that viscous (we will also say "dissipative") effects, and particulairly those taking 
place when a shock meets a boundary-layer, will be of special importance in transonic flows. 

A demonstrative way to illustrate this point is to compare perfect fluid calculations to experiment. Here, we sheill 
give a very limited number of such comparisons, many other examples can be found in the literature. 

A dramatic example of the Importance of viscous effects on a transonic airfoil is given in Fig. 2.1 (Wai and 
Yoshihara, 1981b). This case is relative to a supercritical airfoil. Here, experiment is compared to two perfect-fluid 
calculations; the first one uses the full potential equation, the second, the small disturbance approximation of this 
equation. Both calculations give a flow in which the shock on the upper surface is located practically at the airfoil 
trailing-edge; whereas, in reality, the shock occurs at about 30% of the chordlength. Accordingly, on the upper surface, 
there is a huge difference between the computed and the measured pressure distributions. Neglecting any inaccuracies 
in applying these inviscid methods where shock Mach numbers are above 1.3, the differences between computation and 
experiment can be attributed to the neglect of important viscous effects. In the present example, such a large 
discrepancy is due to the special shape of the airfoil: its uper surface is nearly flat over the major part of the 
chordlength, with a rear part highly cambered. Hence, any alteration of the airfoil contour in consequence of viscous 

effects, entails a large displacement of the shock in the perfect fluid calculation. Furthermore, for a highly rear-loaded 
airfoil, viscous effects are enhanced by the strong compression taking place in the trailing-edge region (see Section 2.3 
below). The agreement between computations and experiment is also very poor on the lower surface. This is a 
consequence of the great change in circulation produced by viscous effects. To conclude, Fig. 2.1 shows a schematic 
representation of the computed and actual flow fields. 
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The second example, shown in Fig. 2.2, is relative to the flow inside a two-dimensional transonic channel (Delery et 
al., 1973). In this arrangement, a circular half-profile (or bump) is mounted on the channel lower wall, the upper wall 
being flat (see sketch in Fig. 2.2). The figure shows the "wall" Mach number distributions on the upper and lower walls 
(the "wall" Mach number M„, is computed from the wall pressure by assuming an isentropic relationship and by 
considering the stagnation pressure as everywhere constant. Then entropy rise through the shock being here very small, 
M„ is practically equal to the Mach number at the boundsury-layer edge, except in the shock foot region where non- 
negligible normal pressure gradients may exist). 

The bump produces an acceleration of the flow to a velocity which is slightly supersonic near the lower wall. The 
supersonic pocket which forms is terminated by a shock located at a place where the Mach number is close to 1.25 in 
the immediate vicinity of the bump. One sees that the channel is not choked, the Mach number near the upper wall 
remaining subsonic. 

The experimental values of M„ are here compared to distributions computed by solving the full Euler equations 
(Laval, 1973). In the upstream part of the channel, where viscous effects Eire weak (except in the immediate vicinity of 
the bump leading edge), agreement between perfect fluid theory and experiment is very good. On the other hand, one 
observes a large discrepancy between the computed Euid measured distributions in the downstream part of the bump as 
well as in the subsequent constemt section channel. The origin of the discrepancy is to be found in the "strong" viscous 
interaction taking place in the shock foot region. This interaction provokes an important thickening of the boundary- 
layer with a sizeable modification of the channel "effective" geometry as an obvious consequence. 

Before proceeding to a detailed local analysis of Transonic Shock-Wave/Boundary-Layer Interaction phenomena, it 
is useful to provide an overview of viscous interactions on a transonic airfoil, so as to emphasize the crucial role played 
by phenomena occurring in the shock foot region. 

2.3 - Phenomenological Description of Transonic Viscous Interaction on an Airfoil 

For an airfoil, viscous effects are of special importance in two regions: in the vicinity of the shock foot and near 
the trailing edge, the situation at the trailing edge being obviously strongly dependent on the previous history of the 
boundary-layer, which includes its interaction with the shock. 

The phenomenological description of the flow development past cm airfoil at transonic speed was given nearly 
thirty years ago by Pearcey (1955) (see also more recent publications by Pearcey et al., 1968). According to this well- 
known and now classical work, interactions entailing flow separation (which are of special importance for practical 
ptirposes) are classified into Type A and Type B separation patterns. i 

In Type A flows, a moderately strong shock induces a local thickening of the boundary-layer (see sketch in Fig. 2.3). 
As the free stream Mach number M.^ (or incidence) is increased, the shock becomes stronger and a limit is reached 
where Incipient Sepsiration occurs at the shock foot (see Section 2.7 on Incipient Shock Induced Separation in transonic 
flows). 

Thereafter, a separation bubble forms at the shock foot and any further increase in Mach number (or incidence) 
beyond that stage results in the growth of the separation bubble. The progressive growth of the bubble is thus a 
characteristic feature of this type of flow with the separation point fixed at the shock foot and the reattachment point 
moving progressively downstream toward the trailing edge as the oversill strength of the shock increases. According to 
Pearcey, such a situation does not depend much on the boundary-layer thickness at the shock foot (provided it is fully 
turbulent). The reason is that Incipient Separation is weakly dependent on the Reynolds number (see section 2.7.2 
below). Furthermore, the growth of the separation bubble, in relation to an increase in the shock strength, is so rapid 
that the flow cannot be strongly influenced by scaling effects in the trailing edge region. In this situation, the rapid 
divergence of the trailing edge pressxire and the correlative change in circulation occur as a consequence of a rapid 
bubble growth triggered from the shock foot. This kind of interaction, designated as Type A flow, occurs with moderate 
adverse pressure gradient downstream of the shock. 

In Type B flows, a very strong recompression takes place in the rear part of the profile. This situation corresponds 
to highly rear-loaded airfoils, as is the case with supercritical airfoils (see first example given in the previous Section). 
The essential difference between this type and Type A is the inclusion of a second separation in the subsonic flow 
approaching the trailing-edge (see Fig. 2.3). This second separation is the classical subsonic, turbulent, rear-separation 
occurring in an adverse pressure gradient present on the rear part of an airfoil. 
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As is well known, the separation of a boundary-layer primarily depends on the two following factors: 

i - the local adverse pressure gradient imparted to the boundeiry-layer; or, more exactly, the pressure gradient 
scaled to the thickness  6 of the boundary-layer, 

ii - the velocity distribution across the boundary-layer. A destabilized boundary-layer having a high shape 
pcirameter is more likely to separate than one with a low Hj. 

The shock effect serves both to thicken the boundary-layer (which increases the intensity of the adverse pressure 
gadient) and to increase its shape parameter by "emptying" its velocity distribution. Hence, it is clear that the shock 
interaction will "catalyze" the development of a rear separation that was already either incipient or actually present in 
the subsonic rear gradients before shock-waves appeared. 

In such circumstances, one can expect several variants of the Type B Flow (see Fig. 2.4): 

i - the shock interaction produces a bubble at the shock foot, thus a strong destabilisation of the boundary-layer 
which thereafter separates near the trailing edge; 

ii - the perturbation produced in an interaction without separation is strong enough to promote rear separation; 

iii - rear separation is already present in subsonic conditions, but the occurrence of a shock at higher Mach numbers 
worsens the situation by provoking a rapid extension of the rear sepau'ation. 

For all these circumstances, an increase in the upstream Mach number or in the angle of attack, results in the 
formation of a large separated zone extending from the shock foot. The formation of this zone can be the consequence 
of the merging of the bubble present at the shock foot and of the rear separated zone. 

A quantitative example of Type B Flow can be fovmd in a paper by Stanewsky and Little (1971). These authors made 
experiments with a simulated airfoil contour installed near the lower wall of a small transonic wind tunnel (type b test 
set-up shown in Fig. 2.12). The evolution, with the free stream Mach number M^, of the shock chordwise location and 
of the extent of the separated regions are shown in Fig. 2.5. 

When M    increases, one observes first a displacement of the shock towards the trailing edge. At the same time, the 

size of each separated region increases, especially the size of the bubble forming at the shock foot. For M^ greater 
than 0.83, the two separated zones merge and one notices a temporciry reversal in the shock motion, probably due to the 
large  change in circulation which occurs  when the airfoil is largely separated. This situation is illustrated by the 
schlieren photograph of Fig. 2.6 (acccording to Pearcey,  1955) which shows the flow structure past an airfoil with 
severe separation at the toot of the upper surface shock. 
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Fig. 2.5- Example of type B flow - Shock location and develop- 
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(Stanewsky and Little, 1971). 

Fig. 2.6 - Transonic interaction on an airfoil schlieren photograph 
of the flow with severe separation at the foot of the upper- 

surface shock (Pearcey, 1955). 
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The progressive evolution from an unseparated to a largely separated situation is illustrated by the sequence of 
holographic mterferograms shown in Fig. 2.7 to 2.9 (according to Johnson and Bachalo, 1978). The sequence corresponds 
to an increase of the angle of attack a for a symmetrical airfoil (NACA 64A010), the free stream Mach number being 
kept constant and equal to 0.8. For at=0, a shock is already present in the flow, but there is no evidence of separation. 
For 01=3.5 deg., one observes an important thickening of the boundary-layer downstream of the shock and it is probable 
that separation occurs in a small region near the trailing edge. When a = 6.2 deg., a large separated region emanates 
from the shock foot. The situation is similar to the one shown in Fig. 2.6. Processing of the interferograms has 
permitted the tracing of the iso-Mach lines in the inviscid flow which are shown in Figs. 2.7 to 2.9. One notes that the 
shock induced separation (at oi= 6.2 deg.) corresponds to a situation where the local Mach number at the boundary-layer 
edge, just upstream of the shock, is close to 1.3. This value is in good agreement with the correlation for Incipient 
Shock Induced Separation given in Section 2.7.2 below. 

» - Infinite fringe interferogram b - Corresponding Mach number contours 
Fig. 2.7- Transonic f/ow past an airfoil angle 

of attack a = 0 deg. (Johnson, 1978). 

«_  Infinite fringe interferogram b _  Corresponding  Mach number contours 
Fig. 2.8- Transonic flowpastan airfoil angle 

of attack a== 3.5 deg. (Johnson, 1978). 

a _   Infinite fringe interferogram b _  Corresponding Mach number contours 
Fig. 2.9 - Transonic flow past an airfoil - Angle of attack 
a = 6.2 deg- Separation at the shock foot (Johnson, 1978). 

2.4 - Sceiling Effects in Transonic Flows i 

Consideration of viscous effects in transonic flows is also essential for the correct interpretation of wind tunnel 
tests made on small scale models. Differences in Reynolds number and "scaling effects" can lead to dramatic 
differences between wmd tunnel experiments and flight results. This problem has been examined in great detail by 
Stanewsky (1981). Here, we will give only two examples of these effects in order to illustrate their crucial importance. 

The first example is presented in Fig. 2.10 which shows a comparison between flight tests and wind tunnel 
measurements performed at a Reynolds number ten times smaller (Stanewsky and Little, 1971). In wind tunnel 
conditions, the boundary-layer on the upper surface is certainly turbulent over the major part of the airfoil 
Neverthe ess, its relative thickness 6/c (c being the airfoil chordlength) is larger than at higher natural Reynolds 
numbers (this is particul^ly true if tripping devices are used to promote transition). Thus, the scaled streamwise pres- 
sure gradients ( 6/p) (dp/dx) are more intense and, consequently, the viscous effects tend to be more severe in test 
conditions than for the full scale airfoil: on the small scale model, the shock is farther upstream and the pressure rise in 
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the rear pcirt of the airfoil is more likely to produce separation. As a consequence, the boundary-layer displacement 
thickness grows considerably following the jump caused by the shock and the rear separation. On the other hand, at high 
Reynolds number, the boundary-layer upstream of the shock is thinner. The relative jump in displacement thickness 
across the shock is greater due to a higher Mach number upstream of the shock cmd the possible presence of a small 
separation bubble. However, the increase in boundary-layer displacement thickness down to the trailing edge is more 
gradual partly due to the absence of rear separation. 

Another example of the fundamental importance of scaling effects is relative to an airfoil whose lift coefficient 
was measured as a function of the free stream Mach number M ^ the model being equipped with different transition 
bands (Pearcey et al., 1968). The corresponding results are shown in Fig. 2.11. 

The lower chain-dotted curve in Fig. 2.11 corresponds to a coarse transition band located very near the leading- 
edge. The upper, full curve, was obtained for a finer band, placed further downstream. In this case, the boundary-layer 
is certainly thinner than in the first case. One sees that when M is lower than 0.65, the two curves are very close. 
They start to diverge for M greater than 0.65, the lift coefficient measured with the coarse transition band becoming 
more and more inferior to that obtained for a fine, sparse transition band. Such a divergence is due to the difference in 
boundary-layer thickness, viscous effects being more severe for the thicker boundary-layer. 
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2.5 - Beisic Experimental Arrangements Used in Transonic Interaction Studies 

The phenomenological discussion of shock-wave/turbulent boundary-layer interaction in transonic flows will be 
greatly facilitated by a preliminary short presentation of the experimental arrangements most often employed to study 
these phenomena. Such an Introductory Section allows us to avoid a repetitive description of the various test set-ups 
utilized to collect the data which will be presented in what follows. As a matter of fact, for transonic flows, it is 
particularly important to specify the experimental conditions in which the data were obtained since, as will be seen 
later, a transonic interaction strongly depends on the whole flow field configuration. On the other hand, it can also be 
of interest to briefly discuss the specific problems encountered in the experimental analysis of transonic interactions. 

In this Section, we will consider only two-dimensional test set-ups, since most of the available experimental results 
were obtained for nominally two-dimensional flows. Also, we will restrict our attention to experimental arrangements 
aimed at the specific study of viscous interaction and not at the simulation of the transonic flow past an airfoil placed 
in an unbounded atmosphere. This last problem is extremely difficult to solve. It is the origin of very intensive research 
programs which are still underway. Its examination would be beyond the scope of the present AGARDograph. 

It is clear that the arrangement allowing the most faithful simulation of interactions taking place on an airfoil 
consists in a model airfoil mounted in the center of the flow field, between the two opposite walls of the wind tunnel 
test section (Type a test set-up schematically represented in Fig. 2.12). This arrangement has been -and is still- widely 
used in research aimed at the improvement of airfoil performance or the design of new airfoil shapes. The first 
phenomenological studies of transonic interactions were made essentially with this type of installation. A frequent 
drawback of this kind of arrangement is that the Reynolds number is insufficient to insure a fully turbulent boundary- 
layer at the shock location. To promote transition,it is thus necessary to employ tripping devices that generally provoke 
an "unnatural" thickening of the boundary-layer. This fact leads to the already mentioned scaling-effects (see Section 
2.4 above). Furthermore, the tripped boundary-layer may differ markedly from a well behaved turbulent boundary-layer. 

cbiAinq obstacle 

adjustable wind tunnel 
SJTOCT nwuer 

oking Flap \ 

^ 

Flal plate with shock generator 
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r_  Axisymmetric supersonic  noiile 

d _ Symmetric supersonic noiile c _ Bump on the wind tunnel wall 

Fig. 2.12 a- Typical experimental arrangements for the study 
of 2D transonic shock/boundary-layer interaction. 

g _ Toroidal bump in axisymmetric flow 

Fig. 2.12 b - Typical experimental arrangements for the study 
of 2D transonic shock/boundary-layer interaction. 
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The relatively recent development of pressurized and/or cryogenic wind tunnels tends to overcome this 
shortcoming by providing unit Reynolds numbers high enough to insure"natural" transition on small scale models. 
Nevertheless, for basic studies necessitating local flow analysis, other types of model arrangements are often preferred 
to the complete airfoil so as to have boundary-layers thick enough to be accurately probed by existing techniques. One 
variant of the complete airfoil model consists in mounting an enlarged half-airfoil model on the floor of the wind tunnel 
(Type b set-up shown in Fig. 2.12). The wind tunnel floor boundary-layer is removed via a bleed system so that a new 
boundary-layer will begin at the airfoil leading edge stagnation point. Such an arrangement ensures an airfoil-type flow 
over the model and makes it easier to implement instrumentation (it is obvious that only the upper-surface flow can be 
simulated). Furthermore, the boundary-layer is thicker thanks to the realization of greater chordlengths, tunnel 
blockage being prevented by contouring the facing wall. 

A still thicker boundary-layer can be obtained with a bump mounted on a wind-tunnel wall (Type c set-up shown in 
Fig. 2.12). This arrangement has the disadvantage of the tunnel boundary-layer being superimposed on the model 
boundary-layer. Furthermore, the wind tunnel boundary-layer has an uncertain origin, so that the Reynolds number and 
upstream influence are unlike those of an airfoil boundary-layer. This drawback is not very serious if one is mainly 
concerned with a local analysis of shock interaction phenomena. However, one should be careful to use bumps of 
sufficiently small relative thickness, otherwise the favorable pressure gradient in the accelerating part of the flow can 
be so large that the boundary-layer shape parameter Hj falls to unrealistically small values at the interaction origin 
(Delery, 1974). Another disadvantage is that the flow field past the model is rather complex. This fact can lead to 
serious difficulties in establishing the proper influence of the "basic" parameters acting on the process: namely, the 
initial Mach number M^, the local Reynolds number, the curvature of the wall, etc... Also, such flows can be hard to 
model with the presently available theoretical methods. 

A simpler "basic" configuration can be obtained by positioning a normal shock-wave in the test section of a 
supersonic wind tunnel and considering its interaction with the tunnel wall boundary-layer (Type d set-up shown in Fig. 
2.12). The initially supersonic flow can be produced either by symmetrical nozzle blocks or by a long bump-like block 
mounted on one of the tunnel walls. A second throat, of adjustable cross-section, is frequently placed at the test section 
outlet making it possible to position the shock by choking effects in a continuous and precise manner. A more stable 
flow is generally obtained by adjusting the second throat in such a way that the shock forms at the end of the diverging 
part of the nozzle. The presence of a second throat is also recommended in the preceding arrangements in order to 
isolate the flow under study from pressure disturbances generated in the downstream ducts of the wind tunnel. 

The Type e test set-up (see Fig. 2.12) is frequently utilized to study the interaction with a boundary-layer whose 
origin is well-known and which has developed in a imiform supersonic flow prior to the interaction. This arrangement 
consists of a flat-plate above which a shock generator is equipped with a choking flap whose aperture is adjusted in such 
a way that a quasi-normal shock-wave stands in the place containing the shock-holder leading edge. 

An intrinsic drawback of all nominally two-dimensional experimental models is that, in reality, they are not free of 
three-dimensional disturbances produced by side effects, i.e., coming from the interactions taking place with the 
boundary-layers of the test section side walls. Such disturbances may have considerable influence in transonic flows 
where a very slight change in the effective tunnel geometry "seen" by that part of the flow considered as inviscid (i.e. 
the geometry taking into consideration the four wall boundary-layers) can induce dramatic modifications in the flow 
field and especially in the shock location. 

Moderate three-dimensional effects are not really a problem for a phenomenological discussion of shock- 
wave/boundary-layer interaction focussing on typical trends and characteristic scaling laws. On the other hand, even 
small side effects affecting a transonic experiment, can render meaningless any comparison with a two-dimensional 
calculation. 

A complete elimination of side-effects in transonic flows is extremely difficult if not impossible to achieve. To 
overcome this major drawback of two-dimensional installations, without sacrificing the simplicity of flows depending on 

adjustable second throat 

T, = 3CI0 K 

Dimensions in mm 

Fig. 2.13 - Schematic of ttie test section arrangement 

for investigation of typical transonic interactions. 

only two spatial co-ordinates, the best solution is certainly to use an axisymmetric arrangement like the one shown in 
Fig. 2.12 (Type f test set-up). This arrangement is in fact the axisymmetric counterpart of the 2-D Type d test set-up 
It IS also possible to employ a toroidal bump mounted on a cylinder placed in a cylindrical transonic channel (Type g test 
set-up m Fig. 2.12). Then, we would have the axisymmetric counterpart of the bump-on-the-wall arrangement. 

A major disadvantage of a totally axisymmetric installation is that it renders both flow visualisation and 
measurements with non-mtrusive optical techniques difficult (e.g. interferometry or Laser Doppler Velocimetry) This 
constitutes a severe shortcoming since transonic flows are extremely sensitive to disturbances generated by "material" 
probes. ^ 
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2.6 - Transonic Interactions Without Boundary-Layer Separation 

2.6.1   The General Flow Structure 

As will be shown in Section 2.7 on Incipient Shock Induced Separation, this means that the Mach number M^ on the 
upstream face of the shock is less than approximately 1.3. The following analysis will be based on experimental 
observations made on an arrangement belonging to the Type d test set-up (see Fig. 2.12). These experiments were 
performed in a small transonic channel whose main dimensions are given in Fig. 2.13. The wind tunnel was continuously 
supplied with dessicated atmospheric air, the stagnation conditions being pt = 95 kPa for the pressure and Tt = 300 K for 
the temperature (Delery, 1977). 

Figure 2.14 shows interferometric photographs of interacting flows obtained with a long bump mounted on the 
channel lower wall, the upper wall being flat. Before interpreting these photographs, let us recall that, for a two- 
dimensional flow, the fringes of an interferogram of the kind obtained here -i.e. by using the infinite fringe mode of 
operation- are lines of constant flow density. Hence, if the flow is isentropic, the fringes are also lines of constant 
Mach number, constant pressure, etc... This is not true in dissipative or rotational flow regions, such as in boundary- 
layers or downstream of a curved shock. However, as already pointed out in Section 2.2, for the transonic flows under 
investigation, the entropy rise across the shock is so small that these flows can be considered as irrotational throughout 
the field - except of course in the boundary layers. 

M..1.11 Mo. 1.18 M„1.26 R6, = 0.55i:10' 

Fig. 2.14 - Transonic interaction wittiout separation 

interferogram of flowfields. 

On the interferograms, the bovmdary-layer outer edge coincides with the rapid bending of the fringes visible in the 
vicinity of the wall. This bending is due to the rapid decrease of density across the bound£u:y-layer. The apparent 
thickness of the shock in the main field comes from the aforementioned side effects on the test section windows. 

In the sequence of photographs shown in Fig. 2.14, the upstream external Mach number MQ relative to the 
interactions taking place on the test section lower wall varies from 1.11 to 1.28. The maximum value nearly corresponds 
to the limit for Incipient Shock Induced Sepsuration. 

A closer examination of the interferogreims reveals the following flow features : 

i - when the shock-wave is very weak {Fig. 2.14a), one observes that the discontinuity (which is the trace of the 
shock in the outer inviscid stream) continues in the boundary-layer. This indicates a deep penetration of the 
shock inside the boimdary-layer. In the present case, the unperturbated incoming boundary-layer is supersonic 
over approximately half of its thickness in spite of the low external Mach number MQ. This is because of the 
"filling" of the boundary-layer velocity distribution by the strong acceleration taking place in the channel, 
upstream of the shock (this filling is reflected by a relatively low value for the initial incompressible shape 
parameter Hjo = 1-3); 

ii - when the shock strength is increased (Fig. 2.14b and 2.14c), compression waves are seen to form inside the 
boundcury-layer. These waves originate from a region close to the wall and converge to a point from which the 
quasi-normal shock seems to emanate. There is no special reason for the compression waves to precisely meet 
at a point. Nevertheless, interferograms show that the focussing of the waves is nearly punctual. The 
spreading of the compression waves in the vicinity of the wall becomes more and more evident as MQ 

increases. At the same time, one observes an emergence of the shock origin from the interior of the boundary- 
layer. 

A schematic representation of the flow structure in the shock foot region is. shown in Fig. 2.15. The rise in pressure 
produced by the shock propagates upstream through the subsonic part of the boundary-layer. The subsequent 
deceleration entails a thickening of this subsonic layer. The corresponding bending of the sonic line generates 
compression waves which propagate in the supersonic part of the flow. Hence, in this region, the shock discontinuity is 
replaced by a gradual compression. 

When the upstream Mach number is very close to unity, the "elliptic leakage" beneath the shock produces a 
relatively slight thickening of the boundary-layer subsonic channel. Consequently, the compression waves induced in the 
adjacent supersonic part of the flow are very weak so that the shock is only slightly weakened as it propagates in the 
boundary-layer. It disappears only upon reaching the sonic line. In the present situation, the observed flow structure 
rather closely resembles the flow model of asymptotic theories when considering the limiting process in which the 
boundary-layer sonic line is very close to the wall. Then, according to these theories, the shock penetrates deep into the 
boundary-layer (for more information on asymptotic theories, see Section 4 of Part n below). 

On the other hand, when the incident shock becomes stronger, the thickening of the subsonic layer is more rapid, 
with subsequent higher local deflection angles. In these circumstances, the induced compression waves are more 
intense. There results a greater weakening of the shock in the bovmdary-layer structure. 
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It should be pointed out that the interaction mechanism cannot be entirely explained in terms of perfect fluid 
arguments. As a matter of fact, the neglecting of viscous terms (both laminar and turbulent) in the near wall region 
leads to inconsistancies because of the necessity of satisfying the no-slip condition at the wall. In fact, the upstream 
influence phenomenon, with the accompanying spreading of the compression at the wall, is a very complex process 
involving "strong" interaction between the different layers into which the flow can be divided. A correct picture of the 
phenomenon was developed from rational arguments by Lighthill (1953) and by Stewartson and Williams (1969). Their 
research led to the so-called "triple-deck" theory which is presented in detail in Section 4 of Part H below. Here, we 
will only cite its essential conclusion. The flow through an interaction must be considered as consisting of three layers 
or "decks" : the outer potential flow (outer deck), the inviscid rotational flow comprising most of the boundary-layer 
(main deck) and the thin viscous sublayer in contact with the wall (inner deck). Upstream influence is viewed as the 
result of a self-induced interaction among these three layers. As a consequence of this process, it may be that viscous- 
interaction and subsonic forward propagation are mutually responsible for the observed trends (Settles et al., 1981). 

A more quantitative picture of the flow in the shock foot region is given in Fig. 2.16 which shows a tracing of iso- 
Mach lines determined from measurements performed with a two-color Laser Velocimeter in the transonic channel 
represented in Fig. 2.13. 

Before going into a closer examination of the interaction domain, let us briefly consider some properties of the 
outer inviscid flow. As already seen, the shock tends to be replaced near the wall by a continuous compression wave 
which extends higher and higher in the inviscid flow field as the upstream Mach number increases. The shock starting 
from the wave focusing point is generally curved, its structure being that of a "strong" oblique shock. 

Mach waves Shock 

Elliptic leakage __ pre.shod 
beneath shock       compression 

Surface pressure distribution 

Fig. 2.15 - Schematic representation of tiie flow in a transonic 

shocl<-wave/turbulent boundary-layer interaction  without Separation. 

Fig. 2.16 - Transonic interaction - Iso-IUach lines contours 

in the shock foot region. 

Mach number streamwise distributions corresponding to increasing distance from the wall are plotted in Fig. 2.17. 
They are relative to an interaction whose maximum upstream Mach number is equal to 1.25. One observes a progressive 
and monotonic decrease in the Mach number for the region closest to the wall. Farther from the wall, the decrease in 
Mach number occurs through the shock discontinuity, the compression jump being immediately followed by an 
expansion. Further downstream, the Mach number increases anew before reaching a nearly constant level. The 
amplitude of the so-called "post shock expansion" increases with the upstream Mach number (see other examples in 
Section 2.8.1 relative to interactions with shock induced separation). This post shock expansion is a typical feature of 
the inviscid flow field associated with a transonic shock-wave/boundary-layer interaction. It is also observed in airfoil 
flows. The phenomenon is due to an apparent wall curvature effect resulting from the rapid growth of the boundary- 
layer displacement thickness in the interaction region (Gadd, 1961 ; Bohning and Zierep, 1980). Because of this growth, 
the streamtubes must contract in order to be consistent with the fact that the streamlines are roughly parallel to the 
waU at a great distance from it and inclined at a positive angle at the boundary-layer edge. There results an expansion 
of the flow m the subsonic part of the flow field. Upstream of the shock, the influence of the boundary-layer thickening 
is trsmsmitted along Mach waves and it is thus felt only near the wall. 

post iiiock expansion 

200 250 300       X(mm) 

i _   Streamwise Mach number distributions fa - Interrerogram of flowfield 

Fig. 2.17 — Transonic interaction — Mach number streamwise distributions 

in the outer inviscid flowfieid. 
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2.6.2 Scaling Laws for the Interaction Domain 

Some experimental evidence. We will now examine some properties exhibited by the wall pressure distributions in 
a transonic interaction. As typical examples Fig. 2.18 shows "wall" Mach number distributions measured in a wind tunnel 
allowing large variations of the Reynolds number by adjustment of the stagnation pressure (Laurent, 1977). The 
experimental arrangement was a bump-on-the-wall type set-up (Type c set-up in Fig. 2.12). The pressure distributions 
plotted in Fig. 2.18 were measured on the flat wall opposite to the bump (in the curves, the streamwise distance is 
arbitrarily scaled to the bump chord-length). Figure 2.18a gives results corresponding to a relatively low Reynolds 
number RS (here, R6 is computed tor sonic conditions, the reference length being the boundary-layer thickness just 
upstream of the shock) and varying initial Mach number MQ. Results for a Reynolds number approximately twenty times 
greater axe plotted in Fig. 2.18b. 

A first obvious consequence of viscous interaction phenomena is a smoothing of the pressure distribution in the 
shock foot region where a steady rise replaces the discontinuity of perfect fluid theory in the actual flow. This 
spreading is of course a direct manifestation of the upstream propagation mechanism briefly discussed m the preceding 

Section. 
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Fig. 2.18 - Transonic interaction in a channel - Influence of Reynolds number on "wall" Mach number distributions. 

One also notes that the lower the Reynolds number, the wider the spreading of the pressure distribution. This 

phenomenon is more clearly shown by plotting on the same graph the wall Mach number distributions relative to 
different Reynolds numbers R g, the initial Mach number MQ and shape parameter Hjo being the same. An examination 
of these curves (see Fig. 2.19) reveals the following trends : 

i - the spreading of the wall pressure distribution strongly depends on the local Reynolds number. The streamwise 
extent of this spreading significantly decreases when the Reynolds number increases. Such a trend is a typical 
feature of a viscous interaction involving a fully turbulent boundary-layer at high Reynolds number both in 
transonic and in supersonic flows (see Section 3 below); 

ii - the downstream Mach number level is higher (or, which is equivalent, the pressure level is lower) than the value 
corresponding to a shock normal to the wall. In the present situation, the downstream, nearly constant, Mach 
number level would be that of a strong oblique shock producing a deflection h^^ 5.5 deg. Here, the pressure 
rise at the wall falls between the normal shock solution and the level associated, with the maximum deflection 
compatible with an attached oblique shock. In the present case, the pressure rise is noticeably higher than the 
value for sonic condition behind the shock (see shock polar diagram in Fig. 2.20). In some results, the 
downstream level nearly corresponds to the sonic conditions after the shock and so some caution should be 
exercised in defining precise laws for this pressure recovery. 
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Fig. 2.20— Transonic interaction — Representation of Fig. 2.19 
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Several correlations have been proposed to predict the downstream pressure level (Stanewsky, 1973). For example, 
Fig. 2.21 shows a plotting of pressure rises measured on airfoils (Leblanc, 1976). In agreement with the above results, 
the data points lie well below the curve representing the normal shock solution. In the correlation shown in Fig. 2.21, 
the experimental downstream pressure levels lie between the compression curves respectively relative to the maximum 
deflection angle  A'fmax ^"^^ '° 3- sonic downstream state for which the deflection is  Afsonic- 

This kind of correlation is sometimes used in viscous-inviscid coupling methods to model the complex interaction 
tciking place in the shock foot region (Mason et al., 1977 see also Wai and Yoshiharo, 1980a)). One of these models 
consists in assuming that locally the outer inviscid stream encounters an oblique shock produced by a "viscous wedge" 
whose angle, function of MQ, is given by : 

Afw (Mo) = { [ Af^^ (Mo) .   A;f3„„ie (^°» 
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Fig. 2.21 — Correlation for sliock pressure rise on an airfoii 

(Massonetal., 1977). 
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Fig. 2.22 - Correlation for pressure associated with normal shock - 

Boundary-layer interaction (Fottner, 1968). 

Another correlation for the pressure rise Pj/p^^ in a transonic interaction is shown in Fig. 2.22 (Fottner, 1968) Here 
Pi/Pj, is plotted as a function of the pressure ratio P_/PtQ relative to the upstream Mach number MQ (p^ being the 
stagnation pressure). The present correlation, which also includes data for cascades and nozzle flows, exhibits a rather 
large scatter especially when MQ is greater than approximately 1.2 (PQ/PIO ^^SS than 0.4. For Po/pto smaller than 0.36, 
one notes a marked modification in the rate of change of p./p with increasing upstream Mach number. This 
phenomenon occurs for MQ nearly equal to 1.3 and certainly coincides with shock induced separation. 

When MQ is less than 1.3 (po/pto greater thein 0.36), the data points follow (approximately) the curve corresponding 
to maximum shock deflection. Departure from this curve is observed for interactions strong enough to entail separation. 
One sees that this takes place when the equivjilent wedge deflection angle is roughly equal to 6 deg. This value is close 
to the criterion for Incipient Shock Induced Separation discussed in Section 2.7.2 below. 

Correlations such as those just presented must be considered with caution. In fact, as already pointed out in Section 
2.1, the subsonic flow downstream of the shock is highly dependent on the entire flow field. In these conditions, it is 
doubtful that a correlation involving only the upstream Mach number can be of a general character. Furthermore, a 
significant "downstream level" cannot always be defined unambiguously, as shown by the data plotted in Fig. 2.23. These 
results are Mach number distributions measured on a curved bump which imposes a continuous compression downstream 
of the shock. It is clear that in this case it is no longer possible to properly define a downstream level. 

Similar effects can also explain the large scatter of the data points plotted in Fig. 2.22 where it is evident that 
nozzle data does not correlate with airfoil and blade data. Correlations such as those of Figs. 2.21 and 2.22 apply only 
to specific situations, namely airfoil flows in the present case. 

domains of a fxansonic interaction. Actually,   the   search   for   scaling  laws  requires   a  closer  look  at  the 
phenomena tciking place in the vicinity of the shock. For this task, interferometric visualisation is a precious tool. 

local 

Typical evolutions of the wall pressure distribution for interactions occurring on a bump-on-the-wall configuration 
cure plotted in Fig. 2.24 along with interferometic photographs of the corresponding flow fields. The upstream Mach 
number of the most intense interaction shown here is equal to 1.4. Thus, this flow must be slightly separated in the 
shock foot region. However, the flow structure is not profoundly altered as long as the extent of the separated bubble is 
small. So this configuration is not radically different from a non-sepcu:ated case. 
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The above results have been obtained at a practically constant Reynolds number (R'5 g= 0.81 x 10'^, <^ oi being the 
displacement thickness of the incoming boundary-layer). The pressure distributions were measured on the flat wall 
facing the bump. As in the preceding examples, the rapid increase through the shock wave is followed by a more gradual 
compression resulting from flow non-uniformities which are due to the bump curvature adding to the boundary-layer 
displacement effect. 

A more vivid visualisation of the phenomenon is provided by the enlargement of one of the interferometric pictures 
shown in Fig. 2.25. Interpretation of such a picture was discussed in Section 2.6.1. In addition, this interferogram clejirly 
brings to light the two domains typical of the interaction process : 

X Fig. 2.25 — Transonic interaction — Definition of the 

supersonic interaction length. 

i - on the one hand, in the most upstream part of the interaction, there occurs a continuous and rapid compression 
of supersonic nature and of nearly simple wave type, up to an almost sonic value of the velocity in the outer 
inviscid stream. This part of the flow constitutes what we shall call Domain I. One should notice that a truly 
simple wave evolution implies a supersonic uniform upstream state. This cannot be the case here since, even for 
a uniform outer flow, the supersonic compression starts inside the boundary-layer where the flow is rotational 
and hence non-uniform. 

ii - on the other hand, downstream of Domain I, the evolution of the velocity field is noticeably less rapid, resulting 
from a much slower variation of the boimdary-layer displacement effect in the absence of separation. This 
second part of the flow constitutes Domain II. 

From these considerations, it is clear that general and specific characteristics of the transonic shock- 
wave/turbulent boundary-layer interaction phenomena can only be sought within Domain I of supersonic nature. In 
Domain II, of subsonic nature, the flow structure (and hence the wall pressure distribution) results from both the 
integration of effects extending far downstream and the taking into account of the entire flow and, in particular, the 
shape and curvature of the wall. 

That is why we shall concentrate on the analysis of phenomena within Domain I and more particularly on the 
Interaction length. Here L* is defined as the distance between the origin of the interaction (i.e. the point where the 
pressure at the wall starts to rise) and the x-wise station where the local pressure is equal to the critical value y^ (i.e. 
corresponds to a "wall" Mach number equal to unity). The interaction length L* is thus a measure of the extent of the 
domain of "rapid" interaction. 

The measured weill pressure distributions show that the supersonic pcu:t of the interaction process corresponds to a 
very steep rise in pressure, whereas the curves tend to be more gradual downstream of the point where local sonic 
conditions are reached. This fact was also noticed by Alber et al. (1971) in their experiments made on a bump-on-the- 
wall type surrangement. They observed that a close examination of their pressure profiles revealed a change in the 
pressure slope (a kink), downstream of the shock, at a point corresponding to sonic condition. They also concluded that 
this change in dp/dx indicates a significant modification in the character of the flow from a supersonic interaction type 
to a subsonic flow typical of a trailing edge situation. 

Factors influencing the streamwise extent of the supersonic interaction length.   Among the factors 
likely to influence the domain of rapid (or supersonic) interaction, the most commonly investigated are the initial (or 
upstream) Mach number MQ and Reynolds number R(S*o    (here    the    Reynolds    number    will   be    calculated    with    the 
displacement thickness 6*o which is better defined than the physical thickness 6 Q). 
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A thorough analysis of these effects was carried out by Delery (1980b) (see also Sirieix et al., 1981) on a bump-on- 
the-wall configuration (Type c test set-up of Fig. 2.1E). In these experiments, the wall Mach number distributions were 
practically insensitive to changes in the free stream stagnation pressure, which governed the variations of Rj'o. 
Furthermore, in this kind of arrangement, the effect on the shape parameter of the strongly favorable pressure gradient 
preceding the shock predominates over that of the Reynolds number. It is thus possible to vary independently the three 
main  parameters M^, Rj*^ and Hjo- 

The results obtained are presented in Fig. 2.26a in the form of a diagram giving the evolution of the normalized 
interaction length L /6 o as a function of the upstream Mach number MQ (1.09<MO< 1.30) the variation realized for R|S*o 
being between 0.15 x 104 and 1.08 xl05 and the value of the shape parameter Hjo for the whole set of results being 
close to 1.2. I 

First, one observes an excellent grouping of the experimental data points, with a moderate scatter due for the most 
part to the difficulty of accurately defining the length L* from the wall pressure distributions. The influence of the 
Reynolds number, very marked both on the physical extent L* and on the thickness &%, disappears when these two 
variables are normalized one by the other. Thus, it can be concluded that, for a given value of the shape parameter, the 
displacement thickness of the incoming boundary-layer is a proper scale tor the interaction length L .Moreover, it 
appears that the ratio L*75*o is not very sensitive to the effect of the upstream Mach number MQ. In fact, the scatter 
observed when MQ comes close to 1.3 corresponds to a situation very close to separation (see section 2.7.2 below). The 
quasi-invariability of L /6^ with respect to MQ can be easily understood by referring to the brief analysis presented in 
Section 1.3. Raising the upstream Mach number increases the strength of the perturbation, and thus its tendency to 
propagate farther upstream. But, at the same time, the subsonic part of the boundary-layer (which roughly scales the 
upstream influence mechanism) becomes thinner. So that, by virtue of these two compensating mechanisms, L* is 
practically independent of MQ. 
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When the normalization L / 5* is applied to a more complete set of results obtained in various experimental 
facilities and which correspond to very different situations as regards the state of the incoming boundary-layer (i e 
very different Hio) a pronounced scatter of the data points appears, as shown in fig. 2.26b. However^ it is remarkable 
that the experimental pomts are regularly spaced as a function of Hjo. For instance, we observe that iT/ 6* is prac- 
tically mcreased twofold when Hjo passes from 1.2 to 1.4. This increase of L*/ 5+ when Hio is higher can also be easily 
understood by considering the arguments developed in Section 1.3. As we know, when Hio is high, the boundary-layer is 
less filled and, consequently, its subsonic part is thicker. Hence, it seems natural that the distance for the propagation 
of upstream influence be longer. 

^ Considering the above experimental evidence, it could seem rational to scale the interaction length if to the height 
y of the boundary-layer subsonic layer. However, attempts to correlate the data points of Fig. 2.26b with y* failed in 
the sense that there is not a proportionality relation between L and y*. The same conclusion was arrived at'bv 
Hayakawa and Squire (1982) and by Settles et al. (1981). These authors found that y* was also and inadequate 
lengthscale for upstream influence in supersonic shock/turbulent boundary-layer interactions (see Section 3.7.2 below 
for more complete information). 

In order to take the influence of Hio into account, a correlation of the results has been looked for within the 
domam of variation of the parameters involved (namely, 1.15 <iIio 4.50; 1.10 ^o 4.30). The completely empirical law 
shown in Fig. 2.27 leads to a rather satisfactory grouping of the results and makes it possible to predict the streamwise 
extent of the supersonic part of a transonic interaction with reasonable accuracy. 

The  'viscous ramp' simulation. Following the idea of the "viscous wedge", the correlation law for L* can be 
utilized to determine the displacement ^effect resulting from the strong viscous interaction taking place in the shock 
Joot region. The streamwise evolution   5 (x) between the upstream Mach number Mo and a locally sonic state defines a 
viscous ramp   representing, in a schematic way, the complex phenomena involved in the formation of the shock-wave. 

In computing this viscous ramp the two following basic assumptions are made : 

i - the outer inviscid flow undergoes a compression from MQ to the sonic value which is a simple wave process 

induced by the boundary-layer displacement surface. Hence, the "coupling equation" between the outer flow and 
the dissipative layer simply writes : 

(2.1) d 6/dK ■■ tan [ v(Mo) -  v(M)]  := v(Mo) -  ^U) 
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where \(M) is the Prandtl-Meyer function. We can assume that a simple wave type compression is - a priori - 
questionable, since as in Section 2.6.2. the compression waves propagate across a rotational layer. However, as 
experimentally demonstrated by Kooi (1978) a simple wave process is a reasonable assumption (see Fig. 2.28). 

ii  - the evolution M(x) is linear between MQ and M = 1., which has also been rather well confirmed by experiment. 

Along with the correlation law for L , the two above assumptions permit the calculation of the evolution 6 (x) over 
the length L*. This calculation is performed by integrating Eq. 2.1, initial values ^, Hio and MQ being provided by 
upstream conditions. 

Thereafter, knowing 6 (x), the momentum thickness evolution 8(x) can be computed by integrating the von Karman 
equation (see Section 2 of Part U) in which the skin-friction coefficient can be assumed equal to zero, its effect being 
practically negligible in such a rapid interaction process. The knowledge of S at the end of the viscous-ramp, along 
with that of Q specifies the state of the boundary-layer at the end of the supersonic part of the interaction. These 
values can be used to continue a "classical" boundary-layer calculation downstream of the shock region. 

Figure 2.29 gives the shape of viscous-ramps calculated for several values of the upstream Mach number M^, the 
initial shape parameter Hjo being equal to 1.30. This figure also shows the boundary-layer properties at the downstream 
end of Domain I. It should be said that "jump methods", such as those presented in Section 1 of Part H, also permit the 
calculation of such viscous-ramps and of the boundary-layer properties at an appropriate station downstream of the 
shock-wave. 
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Remarks on empirical correlation laws. To conclude this Section on transonic interaction overall properties, 
we want to emphasize that correlation laws, like those presented above, have a restricted range of validity. 
Nevertheless, the search for such scaling properties are of interest for at least two reasons : 

i- these laws are a great help in understanding the physics of the phenomenon by bringing to light the specific 
effects of the main influence factors. This fundamental approach of the problem will be also widely utilized in 
interpreting shock interaction phenomena in entirely supersonic flows; 

ii-empirical correlations can be used to devise simplified methods for the modeling of the strong interaction 
process (e.g. the "viscous wedge" or the "viscous ramp" model). In this respect, they are a valuable substitute for 
more rigorous calculations calling upon more elaborate flow models, like strong viscous-inviscid coupling methods 
or analytical methods (see Sections 3 and 4 of Part II). Presently, the quantitative success of these more 
advanced theories is not always superior, in spite of their higher degree of sophistication. Thus, in many practical 
situations, semi-empirical methods can be helpful. 

2.6.3  Development of the Dissipative Layer Properties 

In this Section we will be relatively brief, a more thorough examination of the evolution of the dissipative layer 
properties during interactions of variable strength - ranging from no sepeiration to large separation - being considered in 
Section 2.8.3 below. 

The effect of a shock-wave of moderate intensity is illustrated by the experimental data given in Figs. 2.30 to 2.32. 
These figures are relative to an interaction taking place in the transonic channel already depicted in Section 2.6.1 (see 
Fig. 2.13). In the present case, the maximum upstream Mach number is equal to 1.25; the value of the local Reynolds 
number at the interaction origin XQ being R6 o = 0.72 x IC*. The boundary-layer has been probed by using a LDV system 
at locations indicated on the "wall" Mach number distribution plotted in Fig. 2.30. One observes that the interaction 
produces : 

i-a distortion of the boundary-layer velocity profiles which is such that - at the beginning of the interaction - the 
retardation of the flow is larger near the wall than in the outer part of the boundary-layer. This behavior is of 
course typical of the effect of a strong adverse pressure gradient. The resulting "emptying" of the normalized 
velocity distribution u/ue = f(y/6),  is  reflected by  a rapid  increase of the shape parameter  Hj,  as shown in 

Fig. 2.31. In the present example, Hj rises to approximately 2, this mciximum value being practically reached at 
Station 3. There, the retardation of the lower part of the boundary-layer flow is at a maximum (see velocity profile 
3 in Fig. 2.30). Fiurther downstream, the retardation effect ceases in the region close to the wall, whereas it still 
continues at the boundary-layer outer edge since the pressure is still rising. This reversal of the tendency is due to 
the action of turbulent viscous forces which eu-e greatly enhanced by the retardation effect (see Section    2.9.4 
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below on turbulence properties). As a consequence of this change in the evolution of the profile shape, the shape 
parameter starts to decrease and, as the boundary-layer "relaxes" towards a new flat-plate situation, Hj tends to a 
value which is near 1.3 -1.4 (see Fig. 2.31). In conjunction with the evolution of Hj, the wall shear stress decreases, 
goes through a minimum and then increases in the downstream part of the interaction. 

ii -  at the same time, the physical thickness of the boundary-layer 6 increases. This growth as well as the rise in Hi 
results in a rapid increase of the boundary-layer displacement thickness 6* (see Fig. 2.31). Also, the   momentum 
thickness 9 increases but moderately in this case. 

The corresponding turbulence intensity profiles of the stream wise component u, are plotted in Fig. 2.32. As a result 
of the interaction phenomenon, the turbulence level increases. It is noticed that the point of maximum streamwise 
turbulence intensity moves off progressively from the wall, in accordance with the distortion of the mean velocity 
profiles. As a matter of fact, the location of the maximum of T^ =<u'>/ue nearly coincides with the inflection point of 
the mean velocity profile, (compare Figs. 2.30 and 2.32) this point being the place where turbulence production is at a 
maximum. 
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Fig. 2.33 - Transonic interaction - Typical rises in boundary-layer 

displacement and momentum thicknesses. 

In mild interactions - as the one considered here - the growth in turbulence intensity is not very important : in the 
present example, the highest local value of Tu rises from 0.12 - just upstream of the interaction - to 0.17 before 
starting to decrease as the boundary-layer relaxes toward a new equilibrium situation. However, the peak value 
increases very rapidly with the shock strength, especially when separation is approached. For example, Tu = 0.23 when 

la^ge sep JatTon ^^' ^ ^^''"°" ^'^''^' '* '''" ^^ ^^^" ^^^^ "^^ reaches values higher than 0.4 in interactions entailing 

Typical rises in the boundary-layer displacement and momentum thicknesses are plotted in Fig 2 33 The 
represented quantities are "jumps" of 6'^and 8 between the interaction origin and the end of the supersonic pa^t of the 
f ^^'f'*?"" <i°"a'". i-e-, the location where the outer Mach number is sonic (extremity of Domain I defined in Section 
i..l.l). These jumps have been computed by using the method discussed in Section 1.2.2 of Part H below. The foUowine 
general trends are observed : '"»«u»e 

i - the amplitude in the jump of integral thicknesses increases with the upstream Mach number M„. The growth of 
the displacement effect becomes quasi "exponential" as Incipient Separation is approached (anticipating the 
toUowing Section, Incipient Separation occurs when MQ is near 1.30); 

ii - also, the larger the jump amplitude is, the larger the shape parameter Hjo is. This proves that a boundary-layer 
IS more sensitive to   destabilizing" agencies when its shape parameter is higher, i.e., when its velocity profile 
at the origui of the process is less filled; 

iii - for a fixed value of M^, the influence of the Reynolds number Rg o is weak. In reality, strong Reynolds number 
ettects frequently observed are in fact due to a change in the shape parameter resulting from a variation in 
R5 o (see Section 1.2 above). 
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To conclude, it should be again stressed that "intrinsic" jump correlations for the boundary-layer properties only 
exist for the supersonic part of the interaction region (Domain I). The evolution downstream of Domain I does not 
depend anymore on upstream conditions alone. It must be computed by considering the influence of the whole flow field 
extending - in principle - to downstream infinity. 

2.7 - Incipient Shock-Induced Separation in Transonic Flows 

2.7.1    Physical Description of Incipient Separation 

As we already know (see Section 2.3 above), the phenomenon of bovmdcury-layer sepeuration is of considerable 
practical importance in transonic flows, since the advent of separation limits the performance of an airfoil, a wing or a 
cascade... It is thus of great interest to be able to predict separation onset, i.e., to find for known properties of the 
incoming boundeury-layer, the shock strength (or which is equivalent, the upstream Mach number MQ) for which a 
separated region first forms at the foot of the shock. 

By definition, Incipient Separation is the situation in which the minimum of the wall shear stress T^ in the shock 
interaction region is exactly equal to zero (see Fig. 2.34). A further increase of the shock strength beyond that point 
leads to a change in the sign of TWI the region where TW is negative being termed separated. 

The direct measurement of the wall shear stress is still a difficult and inaccurate task within an interaction region 
chciracterized by the existence of steep streamwise pressure gradients. For this reason, Incipient Separation is most 

unseparated Flow 

Fig. 2.34 — Definition of incipient separation from wall shear-stress 
distributions. 

often detected from visualisations (surface flow visualisations, schlieren photographs...) or by inspection of the 
evolution of properties easier to measure than the wall shear stress, namely : wall pressure distributions, boundary-layer 
mean velocity profiles, etc. 

As a matter of fact, the essential properties of a boundary-layer as well as the general flow structure are not 
greatly affected in the Incipient Separation situation, occurrence of separation being a rather progressive process. 
However, any further increase of the shock strength or the slight change in outer conditions beyond the Incipient 
Separation state may provoke a very rapid growth of an initially tiny separation bubble. Such a quasi-explosive increase 
of the size of the dissipative region considerably affects the whole flow field and generally leads to a catastrophic loss 
in terms of performance. 

The problem of Incipient Separation in itself may seem academic since we have seen that the onset of separation 
does not entail any really noticeable change in the flow. For this reason, a distinction is frequently made between "true" 
Incipient Separation (some investigators argue that a microscopic sepcurated zone is always present at the foot of a 
shock-wave) and "effective" Incipient Separation. The difference will be discussed in what follows and in Section 3.8. In 
fact, Incipient Separation (or what is detected as the first occurrence of a tiny sepeurated zone) is frequently the 
immediate precursor of more dramatic events, so that the study of "true" Incipient Separation is not lacking in practical 
interest. On the other hand, the concept of "effective" Incipient Separation (also termed Significant Separation) is not 
always clearly and unambiguously defined. 

Before going into the presentation and discussion of criteria proposed for predicting Incipient Separation, let us 
examine the structure of the flow in a situation where separation has just begun to occur. The typical interaction 
considered here takes place in the transonic channel represented in Fig. 2.13. In the present case, the Mach number 
immediately upstream of the shock is equal to 1.30. Figure 2.35 shows mean velocity distributions measured across the 
interacting boundary-layer. By considering these profiles alone, it is difficult to detect the existence of a separated 
zone which, in this situation, must be extremely thin. A deeper insight into the phenomenon is provided by tracing the 
curves of equal probability for the instantaneous streamwise velocity component u to take on negative values. For a 
stream flowing constantly in the downstream direction this probability P(iKO) is equal to zero, whereas it is equal to 
unity if the u component is eilways negative. 

Usually, a turbulent flow is said to be separated when it contains regions where the mean velocity u (in the sense of 
Reynolds averaging) is negative (i.e., streams in a direction opposite to that of the external main stream). According to 
this definition, P(v^O) = 0.5 corresponds to a mean velocity equal to zero and the line on which P(u^O) = 0.5 coincides 
with the locus ii = 0. This line necessarily extends from the separation point to the reattachment point. 

The lines of constant probability traced in Fig. 2.36 b reveal the existence of a region where u is in fact negative 
(shaded area), so that the flow under consideration is actually slightly separated according to the above definition. 
However, the size of the so-called separated bubble which is near the limit of spatial resolution of the instrument, 
appears so small that the present situation practically coincides with Incipient Separation at the shock foot (the reader 
should note that, in Fig. 2.36b, the distance normal to the wall has been greatly dilated for the sake of clarity). 
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One will note that instantaneous negative values of u exist in a region where the mean velocity u is positive. This 
nieans that, m this region, there are instants where the flow near the wall is reversed. This fact may lead to conceptual 
difficulties in the definition of separation in turbulent flows and more particularly of turbulent Incipient Separation. 
The problem was discussed in great detail by Simpson et al. (1977; see also Simpson et al., 1981) who have suggested 
making a distinction between : 

i - fully developed separation (not to be confused with Significant Separation) or time-averaged separation. In this 
situation, the average wall shear stress changes sign and, accordingly, there exists a region where the mean 
value u is negative ; 

ii - intermittent separation which could be defined as the condition in which P (\xiQ) reaches the value 0.2 near the 
wall. 

It should also be noticed that the existence of large velocity fluctuations entailing a change of the velocity 
direction may cause some inaccuracy in the detection of separation by surface flow visualisation techniques. 

The corresponding evolution of the shape parameter is plotted in Fig. 2.36a. One sees that Hi reaches a maximum 
value close to 2.6, which is in fair agreement with the commonly admitted value of 2.5 at a turbulent separation point. 
Thereafter, Hi decreases rather rapidly and tends to a new flat-plate value. 

The streamwise turbulence intensity profiles are plotted in Fig. 2.37. In the present situation, the maximum 
turbulence intensity is above 0.2, a level significantly higher than for the unseparated flow considered in Section 2.6.3 
(see Fig. 2.32). Thus, the advent of separation gives rise to large scale turbulent motions that will be further rapidly 
amplified if the separation bubble has the opportunity to develop (see Section 2.8.4 below). 
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The above comments on the nature of separation in turbulent flows are certainly instructive from a fundamental 
point of view. However, they are still of limited interest for most practical situations. Thus, in what follows we will 
only retain the more usual concept of fully developed separation which we will hereafter term "Separation". 

2-7.2  Prediction of Incipient Shock-Induced Separation 

Introductory remarks. Most of theoretical methods presented in Part H below are, of course, capable of 

Cw thaVhSt ?^^*'r ''"''^ *^7 generally incorporate the calculation of the skin-friction coefficient Cf. We 
know that Incipient Separation, according to the classical definition of separation, is the situation in which the 
streamwise distribution Cf(x) has a minimum exactly equal to zero. 

However, the availability of more empirical criteria may present some advantages for the following reasons : 

i - as already stated above, the more sophisticated theoretical methods do not always give really good quantitative 
results, the essential cause of this deficiency being the inadequacy of the presently used turbulence models and 
hence a law mcorporating a greater dose of empirical information has some chance of being more reliable 
provided It IS applied withm the range of parameters covered by the experiments used to establish this law ;       ' 

ii - correlation laws are most often expressed by simple formulae allowing rapid "short-cut" estimation of the 
occurrence of separation due to strong shock-waves. These shock-waves can be produced either by a back- 

sIcHnr^^s h"^     %    7 :^^"T^^°" ■^^^.""»g f'"™ ^ =°rner or a flare encountered by a supersonic flow (see 
Section 3.8 below for Incipient Separation in supersonic flows). 
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Consequently, In what follows, we will consider "simple" or global methods based on experimental evidence or 
experimental correlation laws from which it is possible to deduce practical separation criteria. 

Definition of certain separation criteria in transonic flows. In 1955, Pearcey made a rather thorough 
analysis of flow phenomena associated with separation on an airfoil. From this very complete study, we will only retain 
the essential conclusions regarding the occurrence of separation. 

According to Pearcey, the surface pressure distribution in the vicinity and downstream of separation can be 
schematiccilly represented as shown in Fig. 2.38 where five characteristic pressure levels are defined, namely : 

© 
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Fig. 2.39 — Transonic interaction — Pearcey's criterion for incipient 

separation (Pearcey, 1955) (pressure levels are defined in Fig. 2.38). 

Fig 2.38- Transonic interaction on an airfoil - 

pressures (Pearcey, 1955). 

Definition of certain 

1 - the initial pressure p^ just before the shock, 
2 - pressure ps at the separation point S, 
3 - pressure pj at the "kink" of the pressure distribution, as defined in Fig. 2.38, 
4 - pressure p  corresponding to sonic local condition, 
5 - pressure p_,„ at the airfoil trailing edge. 

Occurrence of sepeu:ation can be diagnosed by considering the evolution of the normalized pressures pj/pto ^^id 
p~g/pto as functions of po/pto> ^•^- t^^ shock strength (see Fig. 2.39). 

Looking at Fig. 2.39a, one sees that p^/pto first increases in the manner expected for a normal shock when the 
upstream Mach number increases. This rise in p,/pto continues until separation occurs at the shock foot,whereupon 
Po/Pto starts to fall more and more rapidly. At incipient separation, the ratio p2/Po is approximately equal to 1.40 and 
tnis value is therefore interpreted EIS the bare minimum shock strength required to cause separation. 

In correlation with the above evolution of the kink pressure p2, the pressure at the trailing edge first decreases 
very slowly as the shock strength increases with no change in the slope of the curve being noticed at incipient 
separation (see Fig. 2.39b). For a further rise in the upstream Mach number Mg, an abrupt change in the rate at which 
p~„ decreases is seen to occur for a well defined value of Po/pto- "^^^^ "divergence" of the pressure at the trailing edge 
is typical of the development of a large separated bubble. There results a profound modification of the lift coefficient 
curve which then frequently stcurts to decrease. 

The curves drawn in Fig. 2.39a show that this dramatic change in the flow structure takes place when the kink 
pressure p, is equal to the sonic value p . Thereafter, when separation is well established, the ratio Pc/Po remains 
nearly equal to 1.4 which, as seen above, is the value reached by P-,/po at Incipient Sep£u:ation conditions. 

To sum-up, according to Pearcey's analysis, one has to make a distinction between : 

i - true Incipient Shock Induced Separation which is seen to occur for a shock strength such that p,/po = 1.4. In this 
situation, the flow field is not yet greatly altered by the existence of a separation bubble which is still very 
small; 

ii - onset of Effective Incipient Separation which is marked by the sudden development of a large sepeuration bubble 
originating from the foot of the shock. A criterion for the onset of Effective Incipient Separation is that the 
kink pressure pj has become equal to the sonic value p*. Pearcey (1955) gives a plausible physical explanation 
of the abrupt chsuige in the size of the  separation bubble which takes place when p- = p . 

Another way to detect separation on an airfoil has been proposed by Stanewsky (1981). It consists in plotting the 
variation of the boundcury-layer displacement thickness at certain appropriate locations vs. the shock strength, which 
will be represented here by the upstream Mach number MQ. Evolutions of this kind are represented in Fig. 2.40 for the 
three following locations on the airfoil upper surface: upstream of the shock @, immediatetly downstream of it (l) , 
and at the trailing edge. The figure also shows the influence of the manner in which bovmdary-layer transition is 
induced. In fact, as already mentioned in Section 2.4, boundary-layer tripping mainly affects the thickness of the 
boundary-layer at the shock location. The large differences between the corresponding variations of S constitute 
another example of the importance of scaling effects in viscous phenomena on transonic airfoils (see Section 2.4 above). 

However, the main point of interest here is the "kink" in the curves S (MQ) which is observed for a Mach number 
MQ slightly greater than 1.3. This kink, which is made more visible by the plotting displayed in Fig. 2.41, can be safely 
interpreted as an indicator of the fast thickening of a separated region in conjunction with the onset of Effective 
Incipient Separation. One notices that the kink Mach number Mok depends slightly on the state of the incoming 
boundary-layer. In fact, the small differences in MQ^ can be correlated with changes in the shape parameter Hjo. This 
dependence will be discussed more thoroughly below. 
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A third way to characterize conditions at the onset of separation was derived by Alber et al. (1971). These authors 
made their experiments on a bump-on-the-wall arrangement (Type c set-up in Fig. 2.12) and used surface flow 
visualisations to detect separation. Their essential conclusions were derived from a close examination of the wall 
pressure distributions. In the vicinity of the shock and before sepsu-ation has occurred, these distributions exhibit a 
change in slope - a kink - just downstream of the shock. According to Alber and his co-workers, this change in the 
pressure gradient dp/dx should indicate the passage from a Supersonic Interaction Type Flow (Domain I defined in 
Section 2.6.2 above) to a subsonic Trailing Edge Type Flow (Domain n). This behavior, confirmed by many other 
experimental results (Gadd, 1961), is demonstrated by the curve in Fig. 2.42 showing the evolution of the pressure rise 
at the kink p,/po vs. ^the upstream Mach number MQ. The experimental data points fall exactly on the curve 
corresponding to p, = p . Furthermore, it can be shown that the turning angle of the inviscid outer flow during the 
supersonic part of the interaction process (Domain I) czmnot exceed 6.6 deg. Once separation has occurred, the turning 
cingle at the separation point station (where the local Mach number is now greater than unity) remains nearly constant 
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and equal to 6.6 deg. The pressure rise p^/Po calculated from this turning angle by assuming a simple wave type 
compression agrees remarkably well with experiment (see Fig. 2.42). For MQ within the range 1.3-2, the value of ps/po 
thus calculated stays approximately equal to 1.4, which is consistent with Pearcey's result. 

To summarize, Alber et al. have found that Incipient Separation occurs when the Mach number MQ just before the 
shock is such that : 

v(Mo) - v(M = 1) - 6.6 deg. I 

which gives Mj, = 1.32. Furthermore, it is demonstrated that, in the Incipient Separation situation, the local outer Mach 
number at the separation point location is sonic. This property, also noticed by Gadd (1961), is utilized in one of the 
predictive methods explained below. 

It can be seen that the separation criterion of Alber et al. does not include a possible influence of the Reynolds 
number. In reality, we will see that Incipient Separation actually depends on the Reynolds number, although this 
dependence is weak. 

A more thorough experimental program undertaken at ONERA some years ago permitted us to assess more soundly 
the effect of the main parameters acting on the separation phenomenon. In peurticular, the influence of the incoming 
boundary-layer shape parameter was systematically investigated. We already know that HJQ, which represent the 
"fullness" of the initial boundary-layer profile, has a great influence on the streamwise spreading of the shock 
discontinuity. 

These experiments were performed in several facilities simulating different flow situations, namely : 

i    - an actual profile mounted in the center of the test-section (Type a set-up in Fig. 2.12 ; Rodde, 1980); 

ii  - an enlarged profile installed close to the lower wall of the wind-tunnel (Type b set-up ; Gobert et al., 1980); 

iii - a transonic channel of the kind already described in Section 2.6.1 above. In this Type c set-up, high values of 
HjQ were obtained by roughening the wall. 
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Incipient Separation was detected by using a large variety of techniques, including : inspection of the wall pressure 
distributions, surface flow visualisations, Stanton pressure probe, and boundciry-layer probing by conventional probes and 
also Laser Velocimetry. 

The results thus obtained corroborate the fact that Incipient Separation mainly depends on two parameters, 
namely : 

1 - the Mach number MQ on the upstream face of the shock; 

2 - the shape parameter Hjo of the incoming boundary-layer. 

The often more commonly considered Reynolds number effect is for the greatest part included in the variation of 
HiQ. However, one has to be aware that, in principle, these two parameters are not uniquely linked. It is indeed possible 
to  modify  HJQ,  at  a  fixed Reynolds number,  by  the  action  of an external agent 
tremspiration or suction, wall roughness. 

e.g., pressure  gradient,  wall 

The experimental data points, each representing an Incipient Separation situation, are plotted in the plane (MQJHJO) 
in Fig. 2.43. One sees that they all nearly collapse on a single curve defining a boundary between interactions without 
separation and interactions with separation. One notes a rather slow increase in the limit Mach number MQ when Hjo is 
decreasing. This tendency could be anticipated since a lower value of Hjo means a fuller boundary-layer velocity 
profile, hence a greater resistance of the boundary-layer to separation (see considerations of Section 1.3 above). 
However, the effect is not as important as could be conjectured by considering the large influence of the initial shape 
parameter on the extent of the interaction domain (see Section 2.6.2 above). The reason for this behavior will be 
exposed below. 
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in transonic flow. 

The theoretical limit for Incipient Separation computed by using the simplified analysis presented in Section 1.2.2 
of Part n is shown in Fig. 2.44 (full line). One sees that there is a fairly good agreement between experiment and 
theory. In particular, the relatively wesik influence of HJQ on the shock strength leading to Incipient Sepeuration is well 
predicted. 

This weak influence of the initial shape parameter can be easily understood by considering the following 
mechanism : as seen in Section 2.6.2, the interaction length L increases rapidly when Hjo increases, i.e., when the 
boundary-layer velocity profile becomes less filled. Such an increase in L reduces the intensity of the streamwise 
pressure gradient, the supersonic part of the compression being spread over a longer distance. This reduction in the 
magnitude of the adverse pressure gradient allows separation of the boundary-layer to be avoided, or more precisely, to 
be postponed, in spite of a less filled velocity profile at the origin of the interaction which, in principle, signals a 
weciker resistance to separation. 

Exactly the same conclusion was arrived at by Squire and Smith (1980) who studied the interaction of a shock-wave 
with a turbulent boundary-layer disturbed by injection at the wall, with an outer flow entirely supersonic. Also, similar 
behavior was found by Inger emd Zee (1978) in a theoretical analysis applied to transonic flows. 

In Fig. 2.44 one also finds the plotting of the Incipient Separation limits given by : 

i -  the criterion of Alber et al., which, as we already know, does not include any influence of the shape of the 
initial velocity distribution ; 

ii - the two criteria applied by Stanewsky (1981), one of them being Pearcey's criterion. 

A series of experimental emd theoretical studies performed at ONERA tend to substantiate that separation is in 
fact a purely supersonic process (in the sense that it always takes place in Domain I). Under these conditions, the 
downstream pressure level p, has no real importance on the separation phenomenon itself. Thus, if one accordingly 
modifies Pearcey's criterion Tor (true) Incipient Separation by replacing the condition P^/Po = 1-4, by Ps/po = 1-4, with 
for Incipient Separation ps = p*, it is found that the corresponding veilue of MQ is equcil to 1.27. This value is in 
relatively good agreement with the other criteria. 

If the influence of HJQ is assumed to be negligible for practical piurposes, the above results confirm the well known 
Nussdorfer criterion according to which sepeiration first occurs when MQ =1.3 (Nussdorfer, 1956). 
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1.4 

1.2 
True Incipient Separation 

      Theory ( Section 1  Port I ) 

rn/inn     Experiment 
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Fig. 2.44 — Shock induced incipient separation in transonic flow — 

Difference between "true" and "significant" separation. 

\ 

Comparison with the Incipient Separation limit resulting from Inger's analytical model, presented in Section 4 of 
Part n, is shown in Fig. 2.43. With this model, it is possible to separately predict the effect of Hio and the effect of the 
Reynolds number. The theoretical prediction of a gradual increase in the Mach number MQ for Incipient Separation as 
the Reynolds number R& ^ increases, is in agreement with the experimental trend. However, the absolute values of MQ 
limit predicted by this theory are consistently lower than the average experimental value. According to the authors, 
this discrepancy is attributable to the combined effect of the linearized inner deck theory (which overpredicts the 
pressure gradient effect on the skin friction coefficient and hence gives too small an Incipient Separation shock 
strength) and the assumption of a normal shock-wave when in fact, due to viscous effects, the shock is always oblique 
near the wall (see Section 2.6.1 above). The theory predicts a small influence of the shape parameter Hio which is in 
agreement with experiment. 

To conclude this Section on Shock Induced Incipient Separation in transonic flows, we will briefly comment upon 
some results relative to the effect of wall curvature and wall temperature. 

Figure 2.45a shows this influence as computed from Inger's analytical model (Inger and Sobieszky, 1978 ; Inger, 
1981) (designates the radius of curvature of the wall). According to this theoretical model, waU curvature in the range 
0^iSo/(^«0.02 has only a small effect on Incipient Separation. Qualitatively, the effect of curvature is similar to that of 
increasing the shape parameter Hio, the influence of (R/being essentially felt as a modification of the skin-friction 
evolution. 

Other calculations incoporating wall curvature effect were made by Bohning and Zierep (1980) (see Section 4 of 
Part n for more information on this analytical model). Their results are presented in Fig. 2.45b. One sees that with this 
model, the influence of wall curvature is found to be far more important than with Inger's model. Broadly speaking, the 
presence of a convex curvature tends to delay separation. The authors explain this behavior by the fact that the post- 
shock expansion (see Section 2.6.1 above) becomes stronger with increasing wall curvature. This expansion influences 
the development of the flow in the near-wall region in such a way that it counteracts a possible separation. 

A relatively important effect of wall curvature (in the same sense as the one predicted by Bohning and Zierep) was 
also noticed by Gadd (1961). However, new experiments will be necessary to clearly establish the quantitative effect of 
wall curvature and to judge the quality of the various analytical models. 
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Fig 2.45- Transonic interaction — Incipient separation limit — 
Wall cun/ature effect. 

The mfluence of wall temperature as predicted by Inger's is shown in Fig. 2.46. In these results, the shape 
parameter of the mcommg boundary-layer is assumed unaffected by the cooling or the heating of the wall (this 
corresponds to a situation where the wall temperature is changed locally in the interaction domain). One notes that 
cooling the wall tends to mcrease the resistance of the boundary-layer to separation. The same trend is observed in 
supersonic flow (see below). 
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Fixed upstream shape parameter -. Hij, = 1.4 

Fig. 2.46 - Transonic interaction - Incipient separation iimit - 

Waii temperature effect (Inger et ai. 1983). 

2.8 - Interaction With Boundary-Layer Separation 

2.8.1  The Outer Inviscid Flow Field Structure 

When the upstream Mach number MQ becomes noticeably greater than 1.3, a sizeable separation bubble forms at 
the shock foot. This bubble is extremely sensitive to external factors and its streamwise extent can increase 
dramatically as a consequence of a further rise in M,-, or the action of a downstream adverse pressure gradient, such as 
the one existing on a highly rear-loaded airfoil. 

As the size of the separated region increases, the outer inviscid flow develops a well-defined structure typical of 
(extended) separation in transonic flows. This structure was originally described by Ackeret et al. (1946). Moreover, 
much information on the phenomenon was brought to light by the well-known study of Seddon (I960). In fact, it must be 
kept in mind that this structure emerges progressively from the flow pattern observed in a presumed tmseparated 
configuration (see Section 2.6.1 above) so that there is no real discontinuity between external field structures 
respectively associated with unsepeurated and separated flows. 

A transonic interaction strong enough to cause a sizeable separation is characterized by the existence in the outer 
flow of a lambda shock pattern, like the one shown by the interferogram in Fig. 2.4.7. The flow visualized here was 
obtained on a Type d experimental set-up (see Fig. 2.12). In the present case, the upstream Mach number is relatively 
low (MQ = 1.37), nevertheless a large separation bubble forms because of the strong adverse pressure gradient caused by 
the rapid divergence of the chcmnel downstream of the separation shock. The corresponding wall pressure distribution is 
plotted in Fig. 2.47b. One sees that the rapid pressure rise associated with separation is followed by a plateau typical of 
the existence of an extended sepcu:ated zone. 

The interferogram clearly shows the shock system connected to the sepeurated flow as well as the rapid growth of 
the separated boundary-layer. This flow has been carefully probed by using both interferometry and Laser Velocimetry 
(Delery, 1978). The Mach number streamwise distributions in the inviscid field thus obtained are plotted in Fig. 2.48. 
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These measurements have permitted the tracing of the iso-Mach lines shown in Fig. 2.49. This tracing reveals that the 
shock system is composed of : 

i - an oblique shock Ci produced by the coalescence of the compression waves resulting from the strong adverse 
pressure gradient at sepeu-ation ; 

ii - a quasi-normal shock C2 which meets C^ at point I ; 

iii - a third shock C3, emanating from the triple point I (sometimes called a bifurcation point). 

The necessity of this lambda shock pattern comes from the fact that Cj is a "weak" oblique shock (in the sense of 
the weak solution" of the oblique shock theory) whose strength is uniquely a function of the upstream Mach number MQ 
and of the mcommg boundary-layer properties (see the "Free Interaction" concept developed below in Section 3.6). 
Thus, when this shock Ci meets the "strong" quasi-normal shock C3 present in the far outer field there exist behind Ci 
and C3 two States 1 and 3 with different pressures and velocity inclinations. At the meeting point I of the two shocks 
these states are not compatible, as can be seen on the shock polar diagram shown in Fig. 2.50. In order to fulfill the 
conditions for two adjacent flows to be compatible {i.e. having same pressure and same velocity inclination), a third 
State 2, having the pressure and the velocity inclination of State 3, must be introduced. This state is reached through a 
shock-wave Cj, as shown on the shock polar diagram of Fig. 2.50. 
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Fig. 2.49 - Extended separation in a transonic channei flow - 
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Fig. 2.50 - Situation of ttie flow at the triple point I - Flow   4 

Figure 2.51 gives more information on the nature and the strength of the shocks constituting the lambda pattern 
visible on the interferogram of Fig. 2.47. The various Mach numbers M^, Mj, M2 and M3 were directly deduced from 
field measurements whereas the deflections A^have been computed from oblique shock theory. Due to the non- 
uniformity of the supersonic incoming stream, conditions on the front face of shocks Ci and C? are not rigorouslv 
constant. it. & 7 

It is observed that downstream of Cj the Mach number of the outer flow remains everywhere supersonic, its value 
ranging from 1.05 near the boundary-layer edge to 1.15 in the vicinity of the triple point I. Shock Ci has the structure 
of a weak" oblique shock-wave. The Mach number on the downstream face of C2 decreases from nearly 1 at the edge 
of the dissipative layer to 0.91 near point I. The deflection Af across C2 is always other than zero, which shows that C2 
is m fact a strong" oblique shock-wave. The strength of C2 is seen to decrease on approaching the wall. This weakening 
of C2 is partly due to the varying upstream conditions and partly due to the effect of the compression waves generated 
by the growth of the boundary-layer displacement effect. As the boundary-layer edge is approached, the rear shock C2 

Y (mm) 

Fig. 2.51 - Details of tfte lambda shock system - Flow   4 

IVIo = 1.40 
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is weakened to such an extent that it causes no disturbance to the wall static pressure distribution (see Fig. 2.47). In the 
present configuration, the flow is everywhere subsonic downstream of Ci- This situation is not a general property, but is 
here due to the fact that the upstream Mach number is not very high (MQ = 1.37). For higher values of MQ (MO> 1.4), a 
locally supersonic zone may exist downstream of Ci- The extent of this zone (frequently called the supersonic tongue) 
depends on the particulcir conditions for the strong coupling process associated with the deviation toward the wall of the 
reattaching dissipative layer. 

The local conditions at the triple point I are given in Fig. 2.50a, the triple shock solution being represented on the 
shock polar diagram shown in Fig. 2.50b. As a general property of this kind of solution, the flow Mach number after the 
bifurcated shocks Cj and Cz is always greater than the Mach number M3 downstream of the imique shock C3 (the toted 
rise in entropy through successive shocks is always less than the rise through a unique shock leading to the same final 
static pressure). Consequently, the velocity in region 2 is greater than the velocity in region 3, since the stagnation 
enthalpy does not vary through a shock. This discontinuity in velocity leads to the existence of a slip line originating 
from the triple point I and which separates flow regions 2 and 3. This slip line is barely visible on the interferogram of 
Fig. 2.47 (see also Figs. 2.54 and 2.56). The slip line is also called a shear-layer because, in real viscous fluids, the 
velocity discontinuity allowable in perfect fluid theory is in fact replaced by a thin layer across which the flow 
properties vary in a continuous manner. The term vortex sheet is sometimes employed. 

Flow analysis reveals that the shock C3 is also a "strong" oblique shock which induces a deflection Aj =10 deg at 
the triple point I. In the far field above I, Af decreases steadily, as the shock becomes progressively normal. At the 
same time, its strength increases. The streamwise Mach number distributions plotted in Fig. 2.48 show that C3 is 
immediately followed by a post-shock expansion whose amplitude, nearly inexistent at the triple point I, increases as 
one goes farther from the wall. This phenomenon, briefly interpreted in Section 2.6.1 above, is met with in every 
tremsonic flow involving strong viscous-inviscid interaction (other examples will be presented in what follows). 

Another case of a bifurcated shock system associated with large separation in transonic flow is shown in Figs. 2.52 
and 2.53. The present experiments were made by Abbiss et al. (1976) on a Type d test set-up (see Fig. 2.12). The field 
velocity measurements were performed with a Laser Velocimeter. For the flow under investigation, the incoming 
stream is uniform with a Mach number equal to 1.5. The shock forming at this relatively high Mach number causes a 
strong interaction with the tunnel wall boundary-layer. However, as the interaction takes place on a flat wall in a 
channel of constant height, the transverse (vertical) size of the separated bubble is not as large as in the previous 
example. Here, the test section walls produce a confinement effect which tends to restrict the vertical development of 
the separated bubble. 
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Fig. 2.57 — Transonic interaction — Flow structure for 
M.= 1.4 (East. 1976). 

Nevertheless, the general flow structure is essentially the same as the one of the first example. The main 
differences come from the higher upstream Mach number (1.5 instead of 1.37). Consequently, the values of the Mach 
number downstream of the leading shock are higher and one notes the existence of a supersonic region behind shock C2, 
in the vicinity of the boundary-layer edge. Such a region constitutes what Seddon has called the "supersonic tongue". In 
the present situation the supersonic tongue extends downstream for several boundary-layer thicknesses and the outer 
edge of the dissipative layer is the last part of the flow to go subsonic. The supersonic compression is apparently 
achieved without further shock-waves. 

Available experimental data show that the supersonic tongue appears for an upstream Mach number slightly less 
than 1.4. However, its streamwise extension and shape are extremely variable since, for a given value of MQ, the 
structure of the downstream part of the interaction strongly depends on the viscous-inviscid coupling process and on the 
conditions prescribed on the boundaries of the subsonic part of the flow field. To illustrate this point. Fig. 2.54 shows a 
result obtained by Seddon (I960) for an interaction taking place in a Type e experimental set-up (see Fig. 2.12). The 
uniform incoming stream has a Mach number equal to 1.47 and, in this case, the length of the supersonic tongue is 
approximately equal to 13 initial boundary-layer thicknesses. Furthermore, the upstream part of the supersonic tongue 
covers most of the downstream face of shock C2. This finding is in disagreement with the results of Abbiss et al. (1976) 
(as can be seen in Fig. 2.52) and also with those of Kooi (1978) which correspond to nearly the same Mach number (MQ = 
1.46, Kooi's results are presented below). In both the flows analyzed by Abbiss and by Kooi, most of the flow 
downstream of shock C^ is subsonic. The observed differenc 
uncertainties in measurements are not excluded. 

aces  can be  attributed  to, far  field  effects  although 

The progressive change in the flow field structure accompanying an increase in the upstream Mach number M^ is 
particularly well illustrated by the experimental results of East (1976). These experiments were performed for three 
values of the upstream Mach number : 1.3, 1.4 and 1.54, the wind tunnel stagnation pressure being the same for all three 
tests. As the thickness of the incoming boundary-layer remains practically unchanged, the Reynolds number R5 is 
nearly the same for the three interactions. The tests were carried out in a Type d experimental set-up, with the flow 
fields being probed with a Laser Velocimeter. Figures 2.55 to 2.57 show the flow structures as deduced from field 
measurements along with schlieren photographs of these flows. Due to the very high Reynolds number of the present 
experiments, the case where MQ = 1.3 corresponds here to a situation preceding Incipient Separation.We see that the 
compression waves generated by the thickening of the boundary-layer converge and impinge on the quasi-normal shock- 
wave causing it to curve and reducing it to a sonic Mach line at the outer edge of the boundary-layer. The flow 
structure observed is very similar to the one displayed by the interferogram of Fig. 2.47 (see Section 2.6.2 above). There 
is no trace of a supersonic flow behind the shock. 

If the upstream Mach number is increased to 1.4, (see Fig. 2.56) then some of the compression waves coalesce into 
a weak oblique shock (shock Ci) and the lambda pattern arises. No supersonic flow is found downstream of the quasi- 
normal shock C2, but it appears that a narrow region of sonic flow is present at the edge of the boundary-layer. 

A further increase in MQ to 1.54 produces a much larger interaction region with an inviscid flow pattern which has 
become similar to the one analyzed above, except that in the present case a supersonic region exists downstream of 
shock C2 (see Fig. 2.57). I 

We will note that, at the lower Mach number for which separation occurs in East's experiments (Mg = I.4) the 
compression waves coalesce outside the boundary-layer to form the leading shock Ci. At higher Mach number 
(Mo=1.54), the oblique shock Ci forms near the boundary-layer edge. A further increase in MQ will entail a penetration 
of Ci within the boundary-layer. Also, as the upstream Mach number increases, the triple point moves away from the 
wall. 
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2.8.2  Correlation Properties of the Wall Pressure Distributions 

Before considering the evolution of the boundciry-layer in the course of a transonic interaction entailing separation, 
let us briefly examine some properties of the wall pressure distribution. 

As typical examples, Fig. 2.58 shows the wall pressure distributions corresponding to three values of the upstream 
Mach number for which sepcuration takes place, namely : MQ = 1.40, 1.44 and 1.46. These distributions were measured by 
Kooi (1978) on a Type e experimental arrangement (see Fig. 2.12). Due to the small variation in MQ, the Reynolds 
number of these experiments is nearly the same for the three interactions (R 6 o = 2.105). The pressure curves exhibit 
the following features : 

i - at the start of the interaction, there is a steep rise in pressure, the slope of the curve being practically inde- 
pendent of the upstream Mach number ; 

ii - this rapid rise continues approximately up to the separation point. Thereafter, there is a region of more gradual 
increase in pressure (the same trend is observed for entirely supersonic interactions, as will be seen in 
Section 3.3 below) ; 

iii - there are appreciable differences in the shape and in the final level for the three curves, in spite of the rather 
close  values  of  the  upstream  Mach number  MQ. 
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Fig. 2.58 - Transonic interaction - Wall pressure distributions 
(Kooi, 1978). 

downstream of the separation location. The existence of this inflection is typical of an interaction with a 
sizeable separated bubble. Such an inflection (sometimes called a "kink", see Section 3.8 below on Incipient 
Separation in supersonic flows) is in fact the precursor of the pressure plateau associated with extended 
separated flows. Such an example of large separation was given by the interferogram of Fig. 2.47a, with the 
corresponding wall pressure distribution plotted in Fig. 2.47b. 

iv - the downstream level is well below the value which would correspond to the pressure rise through a normal 
shock. A part of the difference comes from the fact that the real shock is curved and bifurcated. However, the 
greatest part is due to the rapid boundary-layer growth during the interaction. This growth results in an 
effective converging channel, the effect being clearly demonstrated by the pressure distribution of the case 
MQ = 1.46. In principle, the downstream level should be the highest for this interaction, whereas it is in fact the 
lowest because of more intense viscous effects. 

Figures 2.59a to 2.59c show the flow structure for the three values of the Mach number MQ. These contours were 
deduced from field measurements made with pressure probes (notice that in Fig. 2.59 the horizontal and the verticeil 
scales are different). The features of these flows are similar to those of the flows represented in the preceding Section. 
For MQ = 1.4, separation occurs, as indicated by surface flow visualisations and skin-friction measurements. However, in 
this case the separation bubble is too small to be detected by pressure probes. When Mg is increased, the extent of the 
separated region grows rapidly. At the same time the displacement effect of the boundary-layer becomes more and 
more important. This growth explains the rapid concomitant change in the outer flow structure, with in this case the 
development of a supersonic tongue. 
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As already pointed out, It is not possible to define simple and universal scaling laws for the downstream part of the 
interaction. The flow actually depends too much on external influences, as demonstrated in particular by the 
experiments of Leblanc et al. (1974). i 

Thus, just as for interactions without separation (see Section 2.6.2 above), correlation laws can only be searched for 
m the initial part of the interaction in which the outer inviscid flow remains supersonic. 

For interactions with separation, it can be experimentally shown that the supersonic part of the process obeys the 
Free Interaction concept introduced by Chapman (1957). This concept (which will be more thoroughly discussed in 
Section 3.6 relative to entirely supersonic flows) states that the separation mechanism depends only on conditions 
prevailing at the origin of the interaction. According to the Free Interaction theory, the wall pressure distribution 
should be correlated by the following "universal" function, which is derived in Section 3.6 below : 

^f =[ P-Po v[5)-v[0l   1/2 
qo '^fo ] 

In the above formula the dynamic pressure qo and the skin - friction coefficient Cfo are relative to the flow at the 
start of the interaction. u(C) is the value of the Prandtl-Meyer function at abscissa ? in the absence of interaction, U(C) 
being the value of this function when interaction occurs. The scaled streamwise distance ? is defined in Section 3 6 
below. 

Figure 2.60 shows a plotting of function (^"computed first from the already cited Kooi experiments at M =14 
secondly from the measurements performed by Vidal et al. (1973) (see also Vidal and Kooi, 1976) at very different 
Reynolds numbers m a large scale Ludwieg tube (the Reynolds number Rez indicated in Fig. 2.60 is based on the shock 
position relative to the leading edge of the flat plate on which the interacting boundary-layer has developed). It is 
observed that the two experimental distributions closely follow the universalf( C) curve given by Carriere (1972). 

A similar good agreement was noticed by Delery et al. (1975) for measurements made on a bump-on-the-wall tvpe 
arrangement, as also shown in Fig. 2.60. 

The above results, chosen among many other experimental results, clearly demonstrate that in transonic flows the 
separation phenomenon is in fact a supersonic process obeying the Free Interaction principle. Specific transonic effects 
are felt more downstream, when the separated bubble develops and leads to a strong interaction mechanism involving a 
mixed hyperbolic-elliptic outer flow field. 

2.8.3  Development of the Dissipative Layer Properties 

Basic interacting transonic flows. Let us now examine the behavior of the turbulent dissipative layer 
submitted to a strong interaction process involving separation. The following discussion will be essentially based on 
experimental results obtained by Delery (1981) in a Type d test set-up (see Fig. 2.12). Four different interactions (which 
can be considered as typical) have been carefully probed by using a two-color Laser Velocimeter. The corresponding 
wall pressure distributions are plotted in Fig. 2.61, in which the diraensionless streamwise distance x is evaluated from 
the start of the interaction under consideration, XQ, and scaled to the displacement thickness 6o of the boundary-layer 
at XQ. The locations of the transverse explorations made across the dissipative layer are also shown in Fig. 2.61. 

Generalized free interaction theory 
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The four aaalyzed flows correspond to the following conditions : 

i - Flow 1 - Interaction without separation (MQ = 1.25, No Separation - NS). For this case, the quasi-normal shock- 
wave IS located near the end of the diverging part of a symmetrical nozzle at a station where the initial 
Mach number is equal to 1.25. This flow case actually does not separate but has been included in this Section 
in order to show the progressive evolution of the phenomena from an    unseparated to a separated situation. 

"  - ^^^2-1" Interaction corresponding to Shock Induced Incipient Separation (MQ = 1.3, Incipient Separation - IS) 
This flow IS produced m the same nozzle as Flow 1, but the shock being slightly farther downstream, the 
upstream Mach number MQ is now equal to 1.30. Considering the value of the shape parameter of the incoming 
boundary-layer (Hjo = 1.30), the present situation nearly coincides with Incipient Separation at the shock. 

ill - Flow 3 - Interaction with Sizeable Separation (MQ = 1.45 - SS). Now the interaction occurs in a symmetrical 
nozzle with a greater maximum area ratio. The shock-wave is at a location where MQ = 1.45, thus 
IcU-ge separated bubble forms. a rather 

Flow4 - Interaction with Large Separation (M^ = 1.37 - LS). This interaction is the one already commented 
upon in Section 2.8.1 where the discussion was focused on the accompanying inviscid flow structure. It takes 
place m ^ asymmetrical channel where a bump is mounted on the lower wall of the wind tunnel test    section 
(see Fig. 2.47). In this case, a large separated bubble forms, despite a lower Mach number than for Flow 3. This 
happens because the bump contour induces a strong adverse pressure gradient. 
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The table below gives the main boundary-layer properties at the origin of each interaction ! 

Flow Mo ^ Q (mm.) 0Q(Tran) Hjo ROo 

1 1.25 0.29 0.15 1.33 2200 

2 1.30 0.36 0.14 1.30 2400 

3 1.45 0.44 0.18 1.30 2500 

4 1.37 0.52 0.27 1.27 3800 

The careful experiments of Kooi (1978) and of Alber et al. (1971) already cited will also be used in the following 
discussion. 

The general mean flow structure. Some of the mean stream wise velocity profiles measured across the 
dissipative layer of Flows 1 to 4 are plotted in fig. 2.62. In the present Section, the mean value of a velocity component 
will be represented by a barred symbol in order to avoid contusion between mean and instantaneous quantities, the 
latter being designated by an unbarred symbol. This distinction is introduced here because of the consideration of the 
flow turbulent properties. 

In Fig. 2.62 the location of the wall has been sketched and the profiles extrapolated to the wall by a broken line, 
which is only a visucil aid. 

For Flows 1 and 2 - which are not separated - one observes a strong retardation of the profiles in the first part of 
the interaction. This effect is particularly important in the vicinity of the wall. Yet, negative values for the mean 
streamwise component were not detected. In the case of Flow 2, if separation occurs it does so close to the wall since it 
was not detected in the measurements. 
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Fig. 2.62 — Mean streamwise velocity distributions 
for flows   1    to   4   . 

The maximum retardation effect is reached at a certain streamwise location; further downstream, turbulent 
viscous forces produce a gradual acceleration of the fluid in the inner part of the boundary-layer. During the whole 
interaction process, the thickness ^   of the boundary-layer is seen to increase steadily. 

For Flows 3 and 4, a rather Icurge reversed flow region is formed, the thickening of the dissipative layer being now 
much more important than for Flows 1 and 2. The maximum negative normalized velocity Um/ug is equal to -0.12 for 
Flow 3 and to -0.22 for Flow 4. In both cases, the bubble lengths are comparable, although the bubble vertical extent is 
much more import2mt for Flow 4 (note the change in vertical scale in Fig. 2.62d). In the case of Flow 4, one observes a 
dramatic increase in the boundcu:y-layer thickness, ^ being practically multiplied tenfold between the origin of 
interaction and the farthest downstream measuring station. 

The structure of the flow within the interacting boundary-layer can be best visualized by the tracing of the mean 
flow streamlines. It should be pointed out that such streamlines are in fact fictitious since they belong to a mean flow 
in the sense of statistical turbulence (i.e. Reynolds averaging). As will be seen below the actual flow is highly 
fluctuating and its instantaneous structure far more complex than the mean orgcmization shown here. However, the 
streamlines thus constructed are conceptually identical to those which would result from a modeling of the flow with 
the classical time averaged Navier-Stokes equations. 

The streamlines traced in fig. 2.63 have been determined as lines of constant value for the normalized mass flow 
(per unit span) : 

m =   /^   (pu/p   a  )   dn      (in mm) 

In the above formula, a^ is the sound velocity for stagnation conditions. The densityP t was determined either 
directly from interferometric measurements or computed from the velocity by assuming constant pressure and constant 
stagnation temperature across the dissipative layer. 

The tracing of the streamlines displays the structure of the interacting boundary-layer. When the flow is separated, 
this layer contains a bubble type region where the streamlines consist of closed curves. The flow which recirculates is 
bounded by what is called the Dividing Streamline (or DSL). This streamline originates from the separation point S and 
stagnates at the reattachment point R. Another particular line is the locus of the points where the streamwise velocity 
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component is equal to zero : this line is the external border of the region in which u is negative. The DSL and the locus 
u = 0 meet at S and R. 

The external border of the boundary-layer has been drawn in fig. 2.63a to 2.63d to show the rapid growth of the 
dissipative part of the flow that takes place during the interaction process. This growth is the consequence of the 
import^t entrainment rate along the boundary-layer edge. It is observed that the rate at which the external non- 
viscous flow feeds the dissipative layer is considerably enhanced by the interaction, especially downstream of the shock 
system. This rise in entrainment rate is a consequence of the huge turbulence production that takes place in the shock 
foot region along with the birth of large scale turbulence structures. 

The subsequent streamwise evolutions of the mass flow m-normalized by its value mQ. at the interaction origin - 
are represented in Fig. 2.64. One notes the steep increase in m which occurs when the flow is separated. 

The entrainment rate is characterized by the entrainment coefficient Cg defined by the relation : 

CE pel dx 

The entrainment coefficient plays a fundamental role in theoretical methods using the Integral Entrainment 
Equation to compute the boundary-layer development (see Section 2.2.1 of Part H). The streamwise variations of Cg for 
Flows 1 to 4 are represented in Fig. 2.65. The plotted data show the following tendencies : 

i - at the very beginning of the interaction, the entrainment coefficient starts to decrease and becomes negative, 
indicating that the mass flow across the boundary-layer  actually decreases at  first. This tendency is also 
displayed by the streamlines traced in Fig. 2.63 which show a contraction of the flow in the first part of the 
interaction ; 

ii- thereafter, the trend is reversed and Cg increases markedly with x-wise distance. A maximum value is reached 
and its magnitude increases in proportion to the strength of the interaction. 

1 
ni-in the downstream part of the interaction, the entrainment coefficient decreases steadily and tends toward the 

value representative of a flat plate turbulent boundary-layer. 
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of the entrainment coefficient 

The "history" of the entrainment rate during an interaction process can be best represented by plotting Cw against 

H'o'::nreVeTabl   f'fl"""' ^T-'""f' °' '"' velocitv distribution across the boundary-'layer, e.g.,'th'e shape P-ameter 
Hi or preferably for flows involving leurge separation gT j = 1 - 1/Hi. 

With   this  kind  of representation,  one  is  led  to  introduce  the  concept  of  "equilibrium"  boundary-layers  which 
generalizes the concept of equilibrium flat plate boundary-layer already defined in Section 1.2. Briefly speaking   an 
mteractmg boundary-layer will be said to undergo an equilibrium evolution if its properties depend only on the following 

.      ^r""^"^    v' "", ^ """'■^^ °^ *^^ P'""''^^^ = ^ "representative" shape parameter, the local Reynolds number and the 
TZ.f^l\T *r^r'"^, !^^* influences, like heat-transfer at the wall, tran'spiration or section effect, "e not 
number nt        T'^ T      r.^' =.°'"P^«,^^'"l"y ^"e<^t« are very weak and - for a given interaction - the keynolds 
number does not vary much so that its mfluence (although not negligible) can be considered as secondary. Thus the 
essential factor IS the shape parameter. ' 
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The curves plotted In Fig. 2.66 show that the evolution of Cg vs. di i form closed loops. This indicates that there is 
not a unique correspondence between Cg andK i during the interactions. Such a trend, which will be observed for other 
flow properties, is typical of evolutions strongly out of equilibrium. This behavior renders the modeling of these strongly 
interacting flows  very difficult, the representation of the non-equilibrium effects being very delicate. 
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Fig. 2.66 - Transonic interaction - Variation of tlie entrainment 

coefficient in tfiepfiase plane (1 — 7/Hi,C£) for flows   1   to   4    . 

Other typical mean flow patterns associated with transonic interaction have been established by Alber et al. (1971) 
whose experiments have already been cited. For that study, the velocity field was measured with classical pressure 
probes. Two interactions were investigated by these authors. 

In the first situation, termed Case A, (see Fig. 67a) the shock is not strong enough to induce immediate separation. 
However, its destabilization effect on the boundary-layer is such that separation occurs at a short distance downstream 
of it, because of the adverse pressure gradient on the rear part of the bump on which the shock forms (this situation is 
one of the variants of Pearcey's Flow Model B, see Section 2.3 above). 

A very slight increase in the shock strength (the peak Mach number MQ varies from 1.32 to 1.34) causes the 
separation point to move from its downstream location to a position just after of the shock foot. This new 
configuration, called Ceise B, (see Fig. 67b) corresponds to the Flow Model A of Pearcey. 
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Fig. 2.67 a — Transonic flow past a bump — Trailing edge 

separation or rear separation - Case A (Aiberetal., 1971). 
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Fig. 267 b— Transonic flow past a bump — Shock induced 

separation or forward separation - Case B (Aiberetal., 1971). 

The streamwise mean velocity profiles for these two cases, as well as the streamlines in the boundary-layer, are 
represented in Fig. 2.67. One sees that the shape of these velocity distributions is very similar to that of the 
profiles measured in Flows 3 and 4. 

The dissipative layer integral properties. The streamwise variations of the dissipative layer displacement 
thickness and incompressible shape parameter for Flows 1 to 4 are shown in fig. 2.68. The variations of the momentum 
thickness and of the kinetic energy thickness are represented in Fig. 2.69. It is recalled that the kinetic energy 
thickness Q* is defined by the formula : 

9  =  /Q   (pu/PgUg)   (l-u2/u2)   dy 

This integral thickness arises in boundary-layer integral methods of calculation employing the Mean Kinetic Energy 
equation (see Section 2.2.1 of Part H). 

The initial intense destabilization of the boundary-layer entails a very fast increase of its displacement effect. The 
shape parameter Hj is seen to reach its maximum slightly upstream of the maximum of 5 , this difference being due to 
the fast growth of the thickness 5. 

The rise in 5 and Hi is spectacular when separation is present. For Flow 4, Hj reaches a very high value which is 
uncertain because of the smallness of the incompressible momentum thickness. For this case, such a high value for Hi 
signifies that the separated flow tends to develop a free-shear layer like structure. This point will be further discussed 
below. 
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Considering Flows 3 and 4, one notes a rapid decrease in Hj as the reattachment process begins, up to the 
reattachment point R. Downstream of R, Hj relaxes more progressively toward a new flat plate value. At the separation 
station S, Hi is close to 2.6 which is the value commonly admitted at a turbulent separation point. It should be said that 
an accurate determination of Hi m this region is difficult because of the intense streamwise gradients accompanying a 
separation phenomenon. At reattachment, Hi is practically equal to 3, this value being known with a better accuracy 
since the steamwise gradients are here much weaker than at separation. The value Hi = 3 at reattachment is also found 
for (incompressible) flows reattaching behind a rearward facing step (Nguyen, 1971). It seems typical of turbulent 
reattachment at low to moderate Mach numbers. 

The momentum thickness is seen to increase steadily during the whole interaction process. This continuous rise is 
readily understandable if one considers the Integral Momentum equation (see Section 2.2.1 of Part H). As a matter of 
fact, m the flows under mvestigation, the pressure gradient is either zero or positive and, except in the separated 
regions where its amplitude is always small, the skin-friction coefficient is also positive. Consequently according to Eq. 
2.4 of Section 2.2.1 of Part H the derivative S /dx is here always positive. It should be noticed that at separation, the 
rise mO  is modest, whereas it is much greater during reattachment. ' 

Another example of variations of boundary-layer integral thicknesses is given in Fig. 2.70 which shows results 
obtained by Kooi in an experimental study already cited. The results demonstrate the rapid increase of the boundary- 
layer displacement effect as soon as the upstream Mach number goes beyond the Incipient Separation limit. 

It should be stressed that the development of the separated boundary-layer depends strongly on the specific flow 
situation and that no general correlation laws can be derived as pertaming to a "typical" transonic shock-wave/turbulent 
boundary-layer interaction. This fact becomes obvious if one compares Kooi's results with those of Delery : for nearly 
the same upstream Mach number -MQ = 1.45 and MQ = 1.46 respectively - very different rises in the displacement 
thickness were found (see Figs. 2.68 and 2.70). The observed discrepancy is partly due to differences in Reynolds 
number, but essentially the cause is the use of different test set-ups. 

As shown by Fig. 2.71, it is also impossible to correlate the length Lg of the separated zone (L. is defined here as 
the x-wise distance between points S and R). The large scatter in the values of h^/S Q found by different experimen- 
talists, comes partly from the techniques employed to determine the length of the separated bubble, but also and 
essentially from the type of conditions prescribed to the outer stream. The only general tendency which can be deduced 
from the above results is a decrease in Ls/6 o with increasing Reynolds number, the upstream Mach number M„ being 
kept constant. This trend agrees with the observation already made of a greater resistance to separation at high 
Reynolds number. ^ 

The influence of thermal conditions at the wall on transonic shock induced separation was investigated by Padova 
et al. (1980). These authors found that the wall pressure distribution was practically insensitive to heat transfer at the 
wall (see Fig. 2.72). However, it should be pointed out that in these experiments the range of variation of the wall 
temperature T„ was relatively narrow :0.85<Tw/Tte< 1.10 (Tje being the external flow stagnation temperature). 
Concerning the  wall shear stress, Padova and his co-workers  found that  in the  fore part of the  interaction,  the 
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Fig. 2.73 — Transonic interaction — Heat transfer effect on skin 

friction distribution - Ri=36 x Iff" - (Padova etal., 1980). 

streamwise distribution of the skin friction coefficient Cf did not depend much on the ratio Tvy/Ttg. But, in the 
separated zone, Cf (x) was found to be extremely sensitive to heat-transfer effect, a small decrease in Tyy/Tte 
producing a large increase in the length of the separated bubble (see Fig. 2.73). This trend is in contradiction with other 
observations which tend to prove that cooling the wall increases the "stiffness" of the boundary-layer and, accordingly, 
its resistance to destabilizing effects (see Section 2.7). Thus, the results of Padova et al. should be confirmed by further 
experiment. The question on wall temperature effect on shock-wave/boundary-layer interaction is discussed in more 
detail in Section 3.7 devoted to supersonic flows. The conclusion is that cooling the wall always reduces the extent of 
the interaction domain. 

Correlation properties of the boundary-layer velocity profiles. As will be explained in Section 3 of Part 
n, calculation methods based on the inviscid-viscous coupling approach frequently employ integral methods to compute 
the development of the boundary-layer. Most often, these methods assume that the dimensionless velocity distribution 
across the boundary-layer in the form u/Ug = f (y/ ,$) depends on a limited number of parameters : namely, the Reynolds 
number R §o, the local Mach number at the boundary-layer edge and a suitable shape parameter such as Hj (only the 
adiabatic case will be considered, otherwise another parameter representing the wall temperature effect should be 
added as well as a representation of the temperature profiles). 

As already seen in Section 1.3, the velocity distribution of an unseparated turbulent boundary-layer can be 
accurately represented by Coles' law of the wake/law of the wall formula. In the case of an incompressible flow, the 
Coles' formula depends on two peirameters: the Reynolds number R gg 3^<i ^ shape parameter which can be Hj. For an 
adiabatic flow (no heat transfer at the wall), the influence of compressibility can be taken into account by employing 
the Van Driest generalized velocity concept. However, as already mentioned in Section 1.3, the influence of 
compressibility on the velocity distribution can be neglected if the local edge Mach number is not too high, say Mg^. 

The Coles' formula has been generalized so that separated profiles cam be represented by including the possibility 
of negative skin-friction (for more information see Section 2.2 of Part H). In order to check this new formula, velocity 
distributions measured in the well-separated flow 4 have been compared to the new Coles' family.^This comparison 
(shown in Fig. 2.74), was made by determining which Coles' profile had the same integral thicknesses  6 and 9 as the 
respective distribution. One sees that the Coles' formula generally agrees closely with experiment. The same good 
correlation is noticed for Flows 1 to 3. 

A similarly good agreement was observed by Mathews (1969) for the shock interaction profiles of Seddon (1960). 
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Fig. 2.74 - Velocity profile representation in a separated 

and reattaching boundary-layer. 

The validity of the Coles' formula in the case of shock separated flows was also checked by Alber et al. (1971). 
They found a very satisfactory correlation with experiment except near the separation point. These authors have also 
demonstrated that the profiles can be likewise faithfully represented by the Turbulent Similar Solutions of Alber (1971), 
as shown in Fig. 2.76. 
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Fig 2.76 - Transonic interaction - Comparison of the velocity profiles with 
Aider similarity solutions  Case B. Flow of Fig 2.67 b (Altxr et a/., 1971). 

laver ,,t^ " ."        " 3 ^T "' "°'' '°*^^"'^ '°^*°<^^ P'°P°^^'^ ^°' computing the interacting boundary- layer utilize, ^s    second" equation, either  the Entrainment Equation or  the Mean Kinetic Energy Equation   TheL 
methq^s^respectively involve a Mass Flow Shape Factor Zj = (« i- «!)/ «1 and a Mechanical Energy Sha% Factor 
hv"thyv=,T,'n       t "^ <i«f;.°^d here with "incompressible" quantities, the compressibility effect being taken into account 
^h.n. f   T °"^^t g«"^"l'^«1 ^^l°"ty <=°"«pt or by suitable supplementary formulae, (other definitions oFthe ab^e 
shape factor may be used ; however, the formulae always involve the three integral thicknesses : ^\, 0i and Q\). 

h^r.rltV^T<^^^'«^ "^^^t^ ""'''* ^^ provided by "closure" relationships expressing the Shape Factors Z; and Ji as 
2^7b sho     t      • . T     ""^ l^^^^.'^' = Hi (fo' i'^stance) and of the Reynolds number. As examples, Figs. 2.77a and 
2 77b show tracings of Jj and Zi agamst the parameter^^j = I/HJ the curves having been computed with the three 
different profiles representat on : i - the Coles' formula, ii - the already cited Alber SimilJ Solutions, m the 
Equilibrium Solutions of Michel et al. (1969). These theoretical curves are compared to evaluations of the shape factors 
made from the experimental profiles of Flows 1 to 4. Concerning the Mechanical Energy Shape Factor, there is very 
close  agreement  between  experiment  and  the  theoretical  curves  which nearly  coincide.  On  the  other  hand,  the 

rotr;^liyefpry:[::i th-ri 'C^ ^^ ^- ^^ ^^°* ^^ '- ^-- ^- ^- - ^^^ —^^-^ ^^ ^^ -definition of the 

n,.f>,n!rr ^'f "^°"'Vl°*'.°^ *^^ correlation for the Shape Factor Hj = (S-5*)/e vs. H which is frequently utilized in 
methods based on the Entramment Equation. The shape parameter H is defined in Section 2.2.3 of Part n. For low Mach 
number flows, it is practically equal to Hj. 

The curves of Fig 2.78 tend to demonstrate that for the strongly interacting flows under investigation, there is not 
^rZ^Hnn n7f^''°° between Hj and H. This is especially true in the first part of the interaction region. A good 
correlation of the experimental point is only observed downstream of the reattachment station. 

To conclude this Section, we will made the following comments on the validity of the generalized Coles' family 
7^^^LZ ^'^Y y "'f . '° interacting bondary-layer calculations. In fact, experiment shows that this family is inadequate imder at least two circumstances : '<»"iiiy 
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Fig. 2.78 - Variation of the entrainment theory parameter 
in  the phase plane (1 - 1/H, HJ for flows   1    to   4   . 

™r. t ^ 1 ^eP^f''°" «'^t'°°- As can be seen by inspection of Eq. 1.5 of Section 1.3, the Coles' 
representation is only composed of the wake-component at a point where the skin-friction v4ishes The 
^ltu7 f T-, r"""*"'" "^^ " """^^y ^1"^^ '° 3, which is substantially higher than th" common^ 
admitted ya^ue of 2 6 at a separation point. On the other hand, the Coles' law fits remarkably w^U the 
experimental reattachment profile whose shape parameter is precisely equal to 3 (see above) 

I f " * , Jf 1 ^fr. ? ^ separated region becomes large . In this case, the dissipative layer has in fact 
a free shear-layer like development m its outer part. Consequently, a velocity law depending on only one shane 
parameter is certainly unable to faithfully represent such a separated flow. P g »" only one shape 
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As a matter of fact, when a large separated zone is forming, the streamwise velocity profiles rapidly tend to 
develop a free shear-layer structure. This behavior is illustrated by plotting the dimensionless velocity (classical in 
turbulent jet studies) ; 

<f = (u - Um)/(ue - Um), where Um is the minimum negative velocity against the scaled ordinate n = I y-yif=0.5Vb    and, 

where b is a conventional mixing zone thickness defined as b = {y(p=0/95~ y<J>=0.5). 

Applied to the separated profiles of Flow 4, this data reduction leads to a very good correlation of the 
experimental results , as shown by Fig. 2.79. The data points collapse into a single curve practically identical to the 
well known solution of Gortler for turbulent mixing (Schlichting, 1968). In what follows, we will see that some of the 
turbulent properties of the separated dissipative layer also exhibit a jet-like (or mixing-like) behavior. 

Fig.  2.79 — Similarity properties of the mean 

streamwise   velocity   profile   in   tfie  separated 

region of flow   4   . 

2.9 - Examination of Certain Turbulent Properties 

2.9.1 Introductory Remeurks 

The present Section is devoted to a discussion of certain turbulence properties of the field resulting from the 
interaction between a shock-wave and a turbulent boundary-layer in transonic flows. In the envisaged situations, the 
interaction phenomenon will be assumed "steady" in the sense that large scale unsteadiness entailing ample shock 
motion is absent. Therefore, the following discussion excludes buffeting phenomena. The really unsteady aspects of a 
transonic shock-wave/turbulent boimdciry-layer interaction will be briefly examined in Section 5.5.7 of Part n. In the 
present Section, we will restrict our attention to "classical" turbulence phenomena which are characterized by a more 
or less random fluctuation of the dissipative field without any significant repercussions on the outer inviscid strem 
which can be considered as steady. This implies that the shock-wave (or the shock system) does not oscillate 
appreciably. In reality, in any interaction, a slight vibration of the shock{s) is always noticed. However, for a "stable" 
interaction, the amplitude of the shock motion remains within the limit of a fraction of the initial boundary-layer 
thickness. In what follows, the mean and fluctuating components of the velocity field will be defined in the sense of 
classical statistical turbulence, i.e., Reynolds averaging. 

Most turbulence properties discussed in this Section are those of Flows 1 to 4. Let us recall that the measurements 
were made by using a two-color LDV system. With this kind of device, the statistical quantities are computed frona a 
sample of N couples of instantaneous values u and v recorded at each probing point in the field. Hence, the following 
expresion holds true for : 

i - the mean values i 
=   (^=1 

u)/N ^U v)/N 

ii- the normal stresses : 
N 
il- (u-u)2]/(N-l) ,'2  = ^^=1  (v-^^/(N-l) 

iii- the shear stress ; 

t^= (u-u)   (v-v)]/N 
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2.9.2  General Structure of the Turbulence Field 

The vertical distributions of the turbulence kinetic energy (scaled to the square of the speed of sound aj for 
stagnation conditions) relative to Flows 2 and 4 are plotted in Fig. 2.80 (the distributions for Flows 1 and 3, not shown 
here,   exhibit   similar  trends).  The  plotted  values  of  the   kinetic   energy  k  have  been   computed by  the   formula 

k = 0j5 {\F^+ v^ + w^) where the spanwise fluctuation term w'2 (in fact, not measured,) has been taken equal to 
0.5 (u''^ + v'^), a reasonable estimation of the true value. 
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Fig. 2.80a — Turbulent kinetic energy distributions for flow   2   ■ 
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Fig. 2.80 b - Turbulent kinetic energy distributions for flow   4   . 

For the two interactmg flows considered here, one notes a very large increase in k taking place in the first part of 
the interaction process, i.e., near the shock foot. In this region, the distributions exhibit a maximum of large amplitude 
which IS well detached from the wall. This behavior is particularly evident for Flow 4 which is the most separated. 

stress 
Let us consider_now the Reynolds shear-stress distributions. For compressible flows, the effective Reynolds shear- 
is is given by puV (assuming that the triple correlation puV     is     negligible).     In     the     transonic     flows     under 

investigation, the change in themean density p across the dissipative layer is small, so that the distribution of -u'v'/a2t 
IS nearly the same as that of puV'/pta^. Thus, for practical purposes, -"SV/a2 can be interpreted as the non-dimensional 
Reynolds shear-stress. 

The distributions of -HV/aZ relative to Flows 2 and 4 are plotted in Fig. 2.81. They are also characterized by the 
existence of a well-defined maximum neatly detached from the wall. For Flow 4 (as also for Flow 3), the maximum 
values of shear-stress and turbulent kinetic energy generally coincide with the location of maximum mean streamwise 
velocity gradient 3 u/ 3 y, as shown in Fig. 2.82. 
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Fig. 2.31a - Reynolds shear stress distributions for flow   2 
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Fig. 2.81 b- Reynolds shear stress distributions for flow  4   . 
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The lines of constant values for the turbulence kinetic energy and the Reynolds shear-stress are traced in Figs. 
2.83a and 2.83b. For Flow 4, one observes that the region where k and -u'v' eu:e at their maximum is close to the 
reattachment point and located somewhat above the Discriminating Streamline. 

In order to give a more vivid idea of the variations of the turbulent quantities during the interaction process, Fig. 
2.84 shows the streamwise evolutions of the maximum turbulence kinetic energy level (k)yi euid of the maximum 
Reynolds shear-stress level(-uV')M ^O" each verticeil distribution. 

These plottings demonstrate that there is a very large production of turbulence in the initial part of the 
phenomenon which is the shock foot region. This production is enhanced when separation occurs : then (k)i«i reaches a 
maximum which is between 8 and 9 times the initial level in the undisturbed boundary-layer. For Flows 3 and 4, (k)M 
starts to decrease upstream of the reattachment point R. Downstream of R, the turbulent kinetic energy decreases 
rather slowly and tends very gradually toward a flat plate level. The shear-stress is seen to grow at a relatively slower 
pace than k and reaches its highest level downstream of the point where k culminates. In the separated flows, the 
culmination of (-U'V')M is close to the reattachment point. There, the shear-stress has reached a value which is 10 times 
the maximum initial level. 

(-5VW M,,1.30     (-U'vOnwt 

0002 

300 320 

b _ Reynolds shear stress 

Fig. 2.83 - Lignes of constant value for the turbulence kinetic energy 

and the Reynolds shear stress. 

001 

0.01 

Fig. 2.84 — Streamwise evolution of maximum kinetic energy 

and shear stress. 

The highest turbulent levels are peurticularly high, since for an incompressible mixing zone, the maximum of T^ and 
T(::^) are respectively close to 0.40 and 0.014. The above levels are also significantly higher than the peak values 
reached in an incompressible separated flow where Tu is near 0.16 -0.20 (Tani and luchi, 1964 ; Solignac 1980). 

Similar universal turbulence properties, with compajrable fluctuation intensities, were also found by Seegmiller et 
al.(1978) in a shock induced separation on a thick circular arc airfoil. The distributions of the turbulence quantities, 
along with the mean streamwise velocity profiles, which were measured by Seegmiller and his colleagues with a two- 
color LDV system, are plotted in Fig. 2.85. For this flow, it is likewise noticed that the peak values for the shear-stress 
and the turbulence kinetic energy are located slightly above the Discriminating Streamline and that they generally 
coincide with the location of the maximum velocity gradient. 

Let us now focus our attention on Flow 4 for which the vertical development of the separated dissipative layer is 
the leirgest. We will consider the streamwise fluctuating component u' measured in the region where the flow is 
separated. The distributions of the reduced turbulence intensities<u'>/(<u'>)j^ are plotted against the dimensionless 
ordinate in Fig. 2.86. One sees that these distributions correlate rather well and are in good agreement with results 
relative to a turbulent incompressible mixing-zone (Davis et al., 1963). 

Flow  ®   Mj. 1.37(Large separalkm) 

incompressible jet 

0.8 

a -  Shadowgraph of the flow Field 

09 1 

b _  Mean velocity and turbulence profiles 

Fig. 2.85 - Transonic interaction - Separation on a biconvex profile 
(Seegmiller etai, 1978). 

Fig. 2.86 — Correlation properties of normalized stream- 

wise turbulence — Intensity distributions for flow   4   . 

The similitude properties of the sepeurated dissipative layer are also displayed by the Skewness Factor Sk and the 
Flatness Factor Fj whose distributions are plotted in Fig. 2.87. Over most of their width, the profiles correlate closely 
with measurements made in an incompressible mixing zone (Wygnanski and Fiedler, 1970). The behavior of Sk and Fj 
differs from that of a mixing zone only in the vicinity of the wall where conditions imparted to the flow are obviously 
not the same as those existing at the oute edge of a jet issuing into a quasi-unlimited medium. 
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.i, Jr,^ «spection of these results, it can be concluded that the separated dissipative-layer tends to rapidly develop a 
mixmg-l.ke structure the influence of the low velocity reversed flow being extremely weak. It may also be inferred 
that the mitial state of the boundary-layer has little influence on the development of the shear layeT 

2.9.3  Specific Characteristics of Turbulence in the Interacting Flow ! 

Nevertheless, consideration of the vertical fluctuations shows that the similitude with a mixing layer is far from 
being complete. The essential differences are made visible, in particular, by considering the x-wise variations of the 
maximum RMS values <u' >and < v'>, as shown by Fig. 2.88. For the four interactions under investigation, in the most 
upstream part of the process, the streamwise fluctuations are seen to exceed the vertical fluctuations by more than a 
factor of 3. This result is in contrast to a mixing layer where <u' >is only 30% higher than <v'>. Similar observations 
are reported by Johnson and Bachalo (1978) and Johnson et al. (1981). 
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tr.n«n!^^"'"^l•'' ^^T- i""^,fv  '" ^ *' *° ^^ expected if one considers the production term of the ^ turbulence 
t^:^ P il XterasT "^'' '' """'" ""''' '°" *'^ ^^^^ "' ^ ---P-ssible flow for the sake of simplicUy. ThTs 

P = -2uVj^ 
3y - 2u'2ii 

3x 

HsSSSHHHHH^—^^ "^ 
On the other hand, the production mechanism for v'T- is expressed by ; 

P = -2uV-^     - 2v'2lL 
3y ax 

The derivative 3v/ 3x is everywhere small,  3v7 3y is equal to  3u7 3x (nearly equal for a weakly compressible flow)   so 
netltf "Tt     T *'f' '° """"f""'" ^ production in the first region of the interaction where  3W fx Ts  Iverywhere 
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Such a strong anisotropy of the flow has two important consequences which must be kept in mind when developing a 
theoretical flow model : 

i - the first point concerns the mechanism of turbulence kinetic energy production. As a matter of fact, for an 
incompressible flow and if the contribution involving the derivative 3v/ 3x is assumed negligible, the production 
term of the k transport equation becomes : 

■r.      ~T"i3u    ,-77      -nxdn 

The first term, representing production by shear-stress, is generally predominant in shear-layer and/or boundary- 
layer type flows. For this reason, it is frequently the only term retained in most predictive methods. 

The two production terms of the above expression have been computed for the aforementioned Flows 2 and 3 ; they 
are plotted in Fig. 2.89. One sees that production due to normal stress is as high as production due to shear stress 
over a streamwise distance which is of the order of five times the initial boundary-layer thickness. This region 
roughly coincides with the region of steepest x-wise pressure gradient where there is a general retardation of the 
entire flow field. Further downstream, the normal stress contribution becomes rapidly negligible. 

ii- the second point is relative to the streamwise momentum equation. In the case of an incompressible flow, the 
terms of this equation involving Reynolds stress are the following : 

3y (J?) ■TxC^- 

The normal distributions of these two terms for Flows 2 and 3 are plotted in Fig. 2.90. In the first part of the 
interaction, one sees that the x-derivative of the normal stress can be greater than the y-derivative of the shear-stress. 
Farther downstream, the normal-stress influence is negligible and the "classical" thin shear-layer hypothesis can be 
applied anew. 

Simpson et al. (1977) have made similar observations concerning the importance of normal stress both in the 
turbulence production mechanism and in the momentum equation in the case of a separating incompressible boundary- 
layer (see also Viswanath and Brown (1982) who analyzed a separated trailing-edge flow at a transonic Mach number). 
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2.9.4    Some Remarks on the Problem of Turbulence Modeling 

The aforementioned experimental data obtained by Delery and by Seegmiller and his co-workers can be used to 
guide turbulence model development for use in computer codes that attempt to numerically simulate complicated 
dissipative flows. Most often, simulations based on the Reynolds averaged Navier-Stokes equations utilize a scalar eddy 

diffusivity formed from a product of a modeled length scale and velocity. 

In the present data processing, the eddy diffusivity was deduced from the measured shear-stress and velocity 
profiles by using the relation : 

Vt: 
3 u/3 y 

The distributions of vt thus obtained by Seegmiller et al. are represented in Fig. 2.91a. A general observation is 
that ^ t tends to increase with distance downstream from the separation point and its maximum value tends to diffuse 
outward through the shear-layer, particularly beyond the trailing edge of the profile used in these experiments. Other 
eddy diffusivity distributions are plotted in Fig. 2.92. They correspond to Flow 4 which is the most separated 
(distributions for the other Flows exhibit similar trends). Here the plotted quantity is the eddy diffusivity scaled to the 
product Ue 5, 5 being the local boundary-layer thickness. The same general evolution as in the previous example is 
observed. 

Figure 2.92 also shows a comparison with the following theoretical evaluations of V^ based on : 

i - the models of Alber (1971) and Levy (1978), for the separated flow region ; 
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ii- the model of Michel et al. (1969) for the reattached boundary-layer (in this case, the two above models give 
practically identical results, so they are not all plotted). 

conc?ptrin S Sm r'"" *""'"^^"''^ °°'^^''' '^^ ^^^^ diffusivity is expressed by means of the Prandtl mixing length 

^Mi 

Figure 2.93 shows the distributions of the normalized mixing length 1/ S computed from the data relative to Flows 
2 and 4. One observes that at the beginning of the interaction and in the central part of the dissipative layer, the 
magnitude of l/g is much lower than the usual value 1/6 =0.09 adopted in "classical" boundary-layer calculations. 
Althoughlargeerrorsinthecalculationofau^y from data points can be expected in the outer region of the 
dissipative flow where 3 u^ y tends to zero, 1/6 exhibits in this region a distinct tendency to increase. Such an increase 
was also observed m an mcompressible separated flow by Etheridge and Kemp (1978). It could be due to some memory 
effect in the outer region of the dissipative layer. The inaccuracy of data very near the wall makes it difficult to 
interpret with assurance the experiments in this region. The high values of 1/6 found near the wall at x = 44 and x = 83 
m the case of Flow 4 correspond to the reversed part of the u profile where 8 u/3 y changes signs. The same tendencies 
tor the evolution of 1 were also noticed by Seegmiller et al., as shown by Fig. 2.91b. 

FUt pULe modsl 

o oao 
• 085 
□ OSO 
■ 095 
A 1 

A W5 

O.t 02 0 0.1 02 

' -  Edify <isciiiil( b _ Oimsnsionltjj Prjniill mi>ing lirngtl, 

Fig. 2,91 - Separation on a biconvex profile (flow of Fig. 2.85), 

Eddy viscosity and mixing iengtfi distributions (Johnson et al., 
7981). 

Y(mm) 

15 1 .° 

\'^     X. 173.7 

10 

5 

I 
/ 

n 

0     QOl    002 

Mpjnled pronies 

_ iLBER'j mc^l (1971) 

_ LEVY'S   model (1978} 

„   b.rejltached pn)Files 

; _.^ MICHELKJL model (1969) 

0      001     002       u,6 

Fig. 2.92 - Distributions of dimensionless eddy viscosity - Flow   4 

I ^ no. © M. -i.jOdiKip ent updrdlion ) 

Q5 •' x.2e ; S9 167 ' 222 

■- / :/ 
iHiU 

/ 
W,^ 

7 

0 / / /• /■ 
/'' 

05 

Flow  (4)    Mo -1.37 ( Large separation ) 

IH.)„ 

0 0 0       01      02 

Fig. 2.93 - Distributions of Prandtl's dimensionless mixing length 
in flows  2   and  4   . 

i - the square root of the shear-stress coefficient given by j 

C^  =  -2(pu'v')^/p^u2 I 

where (-p UV)M is the maximum shear-stress at each streamwise location. 
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ii- the "equilibrium shape parameter" J defined as : 

J = 1 - 1/Hi 

According to East and Sawyer (1979), one can introduce a function defined by ; 

G =   (H.   ■ 

which has the ability to remain constant for all equilibrium boundary-layer flows : the value of the constant being that 
corresponding to a "well behaved" flat-plate boundary-layer. As a matter of fact, G is similar to the Clauser parameter, 
the difference being that the conventional Clauser parameter involves the skin-friction coefficient. For an equilibrium 
flat plate bound2iry-layer there is in tact identity between the two functions since then the shear-stress is maximum at 
the wall. 

Consequently, the equation : 

6.55 

specifies the straight line in Fig. 2.95. This line is the locus representative of "equilibrium" boundary-layers, i.e., 
boundary-layers undergoing specific transformations in which there is an instantaneous adjustment between the 
distributions of mean velocity and shear-stress. This adjustment is generally only possible tor very progressive and slow 
stream wise evolutions. 

(l.i.).6.55\~ 
Reatlichrwnt 

Fig. 2.95 — Transonic interaction — Variation of the normalized 

maximum Reynolds shear stress in the phase plane (1 — l/H/, JC.^). 

If one plots/^ against J for Flows 1 to 4 (see Fig. 2.95), the following trends are observed in the course of the 
interaction ; 

i - the "trajectories" (or "images") of the four interactions in the phase plane (J, /^ ) start from a common point 
lying close to the equilibrium locus (it is not exactly on the locus because the incoming boundary-layers are 
slightly out of equilibrium due to the strong acceleration in the first part of the transonic channel). Initially, the 
trajectories run below the equilibrium locus. This indicates that the boundary-layer undergoes what is called a 
"Rapid Interaction Process" in the shock foot region. Then, there is a large departure from equilibrium 
characterized by a "lag" of the shear stress. When the shock is strong enough, sepeiration occurs during this 
phase of the interaction process. 



47 

ii- thereafter, and especially for separated flows, the shear-stress and the shape parameter continue to increase 
ogether ma way typical of a free shear-layer development. This mixing-like evolution could continue until J = 

Xt ^.e.j until jrij= ooj, 

oJ.iri!!^'' °^ ^f'^'l t'^'^V^^ ^^P*-^ Interaction Process, the separating boundary-layer undergoes such an 
^rUi     T^-^r iT '^^''■^' Bradshaw postulated (1972) - the development of the free-sheaf layer is n^ 
rbulenT T 'Tn ^^ '*' mitzal conditions, i.e., the initial boundary-layer properties (provided ft is ful^ 

turbulent). In that phenomenon, production of turbulence continues in proportion to the growth of the large 
scale structures which form near the separation location. Such large scale structures can be seen in the short 
exposure-time interferogram of Fig. 2.96 (Delery, 1980a). 

Fig. 2.96 - Shortexposure time interferogram of a transonic interaction 
with separation - Fiow   4   . 

iii-at some position the shape parameter culminates and starts to decrease. For separated flows, this reversal 

"cr'Lfs'rtil it reac'hes'a"''^'"'"' "'T^'^' """'"^ *''^ ^"""^^ °' *^^ interaction, the sh^i-str's level still ^nw r .r -^^^/^hes a maximum at a stream wise station which nearly coincides with the reattachment 
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3 -   INTERACTION IN TWO-DIMENSIONAL SUPERSONIC FLOWS 

3.1 - The Four BEisic Interactions. 
.       I 

What can be considered as the four basic configurations involving interaction between a shock-wave and a 
boundary-layer in supersonic flows are schematically represented in Fig. 3.1. In what foUows, the incoming outer flow 
will be assumed an uniform flow streaming along a flat sxirface for the sake of simplicity. 

i - the first and most conceptually simple configuration is the wedge (or ramp) flow. Here, a discontinuity in the 
wall direction is the  origin of a shock-wave (Cj) through which the supersonic incoming flow undergoes a 
deflection equal to the corner angle oi : 

ii- the second type of flow is associated with the impingement on the wall of an incident oblique shock (Cj). The 
incoming flow undergoes a deflection ^'fi through (Ci) and the necessity for the downstream flow to be again 
parallel to the wall entails the formation of a reflected shock (C2) issuing from the impingement point I of (Ci). 
The deflection Ay 2 produced by (C2) must be such that Ajf 2 = "Ajf*!. The pressure jumps pl/pO andp 2/p 1 

through each shock are not equal, though not very different ; 

iii-the third flow is induced by a step of height h facing the incoming flow. Such an obstacle provokes the separ- 
ation of the flow at a point S. The very rapid pressure rise accompanying separation , especially in turbulent 
flows, gives rise to a shock-wave (0^) emanating from a place very close to the separation point S. Downstream 
of S, a separated zone develops ; it is characterized by the existence of a bubble of recirculating flow in 
contact with the step. In fact, there is some similarity between wedge flow and flow produced by a forward 
facing step. In the latter case, the separated region is "felt" by the outer inviscid stream as a corner whose 
angle is determined by the displacement effect of the dissipative zone ; 

iv- the fourth situation corresponds to the reattachment downstream of a rearward facing step. The incoming flow 
separates at  the base shoulder  S undergoing  an expansion  with  a (negative)  downward deflection. Further 
donwstream, the flow reattaches on the wall. The resulting positive deviation generates compresion waves 
which coalesce into the so-called "reattachment shock". In contact with the wall, a recirculating bubble is 
trapped, inside which the flow is reversed. 

c . Stap induced iejMration d _ RMtUchment downilrejm of t step 

Fig. 3.1 - Basic shock/boundary-layer interactions 
in supersonic fiow. 

Now we will examine in more detail the general structure of the flow fields resulting from these interactions. 

3.2 - The General Flow Field Structure 

3.2.1 - The Compression Ramp Flow 

Let us first consider the flow structure associated with a compression ramp. Figure 3.2 shows a sequence of 
microsecond spark shadowgraphs visualizing this type of flow for an upstream Mach number equal to 2.85 and a 
Reynolds number (based on the thickness of the incoming boundary-layer) equal to 1.7 x I06 (Settles et al., 1978). The 
four pictures correspond to different values of the corner angle ranging from 8 to 24 deg. (The appearance 'of a second 
ramp in some of the photos is due to optical interference and is not affecting the flow development). 

In the 8 deg. case, a distinct shock-wave is seen to arise from the corner location. This shock-wave forms well 
within the boundary-layer and - as already pointed out in the Section devoted to Transonic Flows - most of the 
boundary-layer behaves like an inviscid (rotational) fluid, viscous forces being negligible compared to pressure and 
mertia forces throughout the major part of the boundary-layer. Furthermore, at the high Reynolds number value of the 
present experiment, the velocity profile of the incoming boundary-layer is very "filled" so that the Mach number slowly 
decreases over the major part of the boundary-layer thickness (see Section 1.1 above). The transition to zero velocity 
at the wall takes place over a very short normal distance and, accordingly, the subsonic layer is extremely thm. These 
features explain why the shock originates from a region very close to the wall. 

From above, the shock is first seen to be curved, the curvature being due to its propagation through a rotational 
layer m which the entropy changes from one streamline to the other. Outside the boundary-layer, the shock is 
rectilinear, since the incoming flow is here uniform. 

For a = 8 deg., the upstream influence is very small, since shock emanates practically from the corner angle. On 
the other hand, for a = 16 and 20 deg., the shadowgraphs reveal a substantial increase of the upstream influence length 
due to an intensifying of the perturbating agency, namely the shock strength. This phenomenon will be studied in more 
detail below. Also, the spreading of the shock near the wall becomes clearly visible. As for transonic flows, the shock is 
seen to result from the coalescence of compression waves induced by the thickening of the low velocity portion of the 
boundary-layer. 

For a - 24 deg., the pressure rise is strong enough to provoke significant separation. The shadowgraph shows the 
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following typical features (part of this shadowgraph is obscured by the aerodynamic fences which were necessary to 
insure flow field two-dimensionality) : 

i - the corner upstream influence has considerably increased ; 

ii- a first shock forms well upstream of the corner. This shock results from an initial turn of the flow at separation; 

iii-an additional compression fan at reattachment merges with the separation shock and reinforces it. 

For flow conditions different from those of the present example, the compression waves at reattachment may 
coalesce into a shock before reaching the separation shock. In this situation, the two shocks meet at a bifurcation point 
I (also called a triple point) and the inviscid flow structure is similar to a double-wedge configuration with a first wedge 
corresponding to the initial turn at separation and a second wedge to the final tvirn at reattachment (see Fig. 3.3a). This 
inviscid flow structure can also be conceived as a double shock system produced by a still air region at a pressure 
superior to that of the incoming flow. The free boundary of this still air region starts from the "separation" point S^ and 
hits the ramp at the "reattachment" point RT, ST and RT not being coincidental with the physical separation and 
reattachment points since the real flow field is more complex than the above perfect fluid model (see Fig. 3.2). The 
model of the second kind is utilized in certain multi-component methods developed to compute lage separated zones in 
turbulent flows (Delery and Masure, 1969). Consideration of these methods would be beyond the scope of the present 
AGARDograph. 

The shock polar construction in Fig. 3.3b shows the local flow situation at point I. In order for the two-flows 
downstream of I be compatible (i.e., have same pressure and same direction), an intermediate state 2' must be 
introduced between the final states 2 and 3. According to the relative position of the shock polars Vi and Vz, the wave 
connecting 2 and 2' is either a shock (most often very weak) or a centered expansion. 

The occurrence of the double-shock system is illustrated in Fig. 3.4 by a plotting of the shock-wave angles B^ and 
6 2 against the corner angle a (Spaid and Frishett, 1972). At low ct, only one shock -(Ci)- of angle 6i,  is now visible. At 
higha , in addition to the main shock (Ci) (which continues above the bifurcation point I), a second shock (C2) of angle 
G2, is now visible. In the present example, this separation shock appears for CIF16 deg. When a increases, 62 first 
increases slightly, then it rapidly tends to a nearly constant value. The constancy of 02 indicates that the strength of 
the separation shock does not depend on downstream conditions, namely the corner angle in this case. In fact, (C2) is 
entirely determined by flow conditions prevailing upstream of separation. Thus, the supersonic separation process is 
perceived        to manisfest        a        behavior        typical        of        a        flow which        Chapman        et al. 
(1957). ccdled a Free-Interaction. 

As will be seen in Section 3.8.2 the appearance of a double-shock system is sometimes used as a detector of 
Incipient Separation. 

The weak influence of viscosity in this kind of flow, when the ramp angle is moderate, is demonstrated by the 
theoretical result shown in Fig. 3.5 (Roshko and Thomke, 1969). This calculation was performed by considering the 
boundary-layer as a rotational inviscid flow and by applying the rotational Method of Characteristics to determine the 
shock shape and the flow over the ramp. To make such a calculation possible, the inner part of the incoming boundary- 
layer must be ignored, the "cut" being chosen in such a way that the Mach number behind the shock remain supersonic. 
This kind of calculation belongs to what will be termed "Inviscid Shear Layer Analyses" in Section 1.4 of Part n. 

One sees in Fig. 3.5 that there is very good agreement between the wall pressure distribution thus computed and 
experiment. In the present case, this is because the low velocity portion of the boundary-layer has a quasi negligible 
influence on the flow field, the inner subsonic layer being excessively thin. 

shock* Ci  CI 

i; bifurMtion point 

a=8lt|. a.16di» 

OL.20dt» a.24iic9.      \ »jll locilJcw 

Fig. 3.2 - Ramp flow - Flowfield shadowgraphs - MQ = 2.85, 
"«(,= 1-7X l(f (Settles etal., 1979). 
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Fig. 3.3 - Ramp flow with separation. 
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Fig. 3.5 - Ramp flow - The rotational inviscid flow model 
(Roshko and Thomke, 19691. 

Fig 34- Ramp flow - Shock wave angles -Mo = 2.85, 
RS^=1.7x1Cf. 
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3.2.2 - The Impinging-Reflecting Oblique Shock | 

In the present configuration, a shock-wave is generated by a "shock-generator" made up of a flat-plate, with sharp 
leading-edge, mchned at an angle a relative to the uniform incoming flow. The planar oblique shock originating from 
the plate leading-edge impinges on a straight wall facing the shock generator. 

The sequence of schlieren photographs shown in Fig. 3.6 (D^lery, 1970) visualizes the shock reflection phenomenon 
for increasing values of the primary deflection A^ =a through the incident shock-wave. In the present example, the 
incoming flow Mach number is equal to 1.93 and the Reynolds number R^^ to 0.75 x 104. The apparent thickness of the 
shock on the photographs is the manifestation of side effects on the test-section windows. The following schlieren 
photographs interpretation closely resembles the schematic flow representations given by Bogdonoff and Kepler (1954) 
more than thirty years ago. JO f       \  7    I 

When the incident shock is weak (as in the first photograph in Fig. 3.6), the general flow structure does not differ 
much from the perfect fluid model. However, a closer look at the picture reveals that complex phenomena take place 
mside the boundary-layer. A schematic, sketch of the observed wave-field is represented in Fig  3 7 

a - a=Sd«^ 

W^ 
b- a.6dig.  (Incipient separation } 

■KjFiiP    l^iF ji^p 
c . a.8d«g.  ( Separation ) d _ a:-lld«g.  ( Separation ] 

\ slip line 

Fig. 3.6 - Incident reflecting shock - Flowfield Schlieren photographs 
Mo= 1.93, Rs^ = 0.7Sx 10\ 

viscom  sublayer 

Fig. 3.7- Shock reflection without boundary-layer separation - 
Schematic representation of the flowfield. 

The incident shock (C^) progressively curves in as it penetrates the boundary-layer because of the decrease in local 
Mach number Correlatively, its intensity weakens and becomes vanishingly small^when the shock reaches the so^^fc line 
On the other hand, the pressure rise through (C1) tends to propagate upstream in the subsonic region e 6 „ of the 
boundary-layer, causing this part to thicken. B       t. 0 o 01 me 

As we already know, the thickening of the boundary-layer subsonic channel generates outgoing compression waves 
dl) that rapidly coalesce to form the reflected shock (C2). The refraction of these waves - like that of the incident 
shocks - as they propagate through the rotational quasi-inviscid layer (1 - d 5 „, induces the secondary wave system (1,). 

InThe s^chlferirpt^tu^l ^ ^""^ '°"''' ""^ ^ expansion waves (I3) which are clearly visible, just behind shock (Czl 

• ^^\l^7 ^^^ incident shocks, the upstream interaction distance is extremely short, so that the above flow pattern 
L^^e'^lecttn rX"'f<^" ""^^ boundary-layer. Thus, at the outer flow scale, the only reflected wave is a shock (C2) with 
a deflection angle A^ equal - but with opposite sign - to that of the incident shock (Ci). In this case the reflection of 
the shock IS said to be " a weak interaction process" in the sense that the (real) viscoirflorct^s;^ resembles the 
mviscid flow solution. This resemblance is also evident when considering the wall pressure distributions plotted in 
r Ig, J.8. 

A very thorough theoretical description of the wave-system resulting from the propagation of a shock in a 
boundary-layer was given by Henderson (1967). In the chosen approach, the shock reflection is reinterpreted as a process 
of shock refraction by a rotational inviscid layer. A large variety of wave patterns was constructed by Henderson. For 
weak interactions, these patterns are generally in good agreement with experimental observations (see examples of 
ftrengthTs'incr'e^ised" However, they start to differ markedly from experiment as soon as the incident shock 

Let us now consider the case of an incident shock strong enough to separate the boundary-layer. The resulting 

nw      7T ^r'M"" 'I VTl'^^V^ *^^ *"° ^^* photographs in Fig. 3.6. A very schematic representation of the observed flow field is sketched in Fig. 3.10. 

The boundary-layer separates at point S, located well upstream of the point where the shock would meet the 
surface If the fluid were inviscid. The rapid pressure rise at separation takes place as a result of compression waves 
propagating at first m the supersonic part of the boundary-layer, then in the outer inviscid stream. These waves 
coalesce to constitute what can be interpreted as the leading reflected shock (C2) through which the outer inviscid 

stream is turned upward from the wall. Shock (C2) intersects the incident shock (Cj) at point H from which emanate the 
two refracted shocks {C3) and (C4). As the entropy rise through (Ci) plus (C4) is generally different from the entropy 
rise through (C2) plus (C3), H is the origin of a slip-line well visible on the last photograph. A shock-polar representation 
of the situation at point H is schematically represented in Fig. 3.11. If one increases the intensity of the incident shock 
a situation can be reached where the two shock polars representing the refracted shock-waves (C3} and (C A) do not 
intersect anymore (see sketch in Fig. 3.12a). Then a Mach stem phenomenon appears with the formation of a quasi- 
normal shock inside the flow field as shown by the flow visualisation of Fig. 3.12b. 
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Fig. 3.8 - Shock reflection witfiout separation - 

An example of weak viscous interaction — IVIQ = 1.93, 
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Fig. 3.9— Examples of rotational inviscid flows 

models, by Henderson (1967). 
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Fig. 3.11 - Schock polar representation of situation at point H 
(see Fig. 3.10). 
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Fig. 3.12 - Shock reflection with occurrence of a Mach stem 
phenomenon. 
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Fig. 3.13 - Incident reflecting shock - Deflection through prin- 

cincipal reflected waves - Mg = 2.5,   R^^ = 4 x 10^ (Green, 

1970). 

After intersection with (Cz), shock (Ci) is bent because of the entropy gradient downstream of (Cz) and the 
compression waves generated by the thickening of the boundary-layer (see Fig. 3.10). Afterwards, (Ci) enters mto the 
separated dissipative layer from which it is reflected into an expansion wave. Thus the impingement of (Cl) on the 
boundary-layer is seen to be similar to a shock reflection at a constant pressure free-boundary, as is the case of the 
outer boundeury of a large separated region. 
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i^Jent^^^rZTrTLZ'tXsZZ^^^^^^ flotr^^' reflection taking place at M„ = 2.5 have shown that the 

resulting compression waves are barely visiblLn the schlf^rerphot'ogr^h: If F^^^^^ ''"''*"° "*  ^'^^-'^°--  ■'^- 

dene''clion"^A7r^fA^'':r ^.l^' TT""""" °' '"P"""°" "* " ^^"'^'^ '^"-"- <^- "^^ -^-t-ted by plotting the 
SSctlon A^^ ""' ^'^^ '^'^°"^' **^^ '^'^'"'^ ^^"-^--l ^^-l^ -=1 *- --P-3ion, respectively, against\'Le primSj 

The plottings of Fig. 3.13, which are due to Green, show the following trends : 

' ■ toLiy ^ '" ""^" ^^^'^' ^^^•^' ^ y^ 2 is nearly equal to A ^1 and the reflection is close to the inviscid flow 

ii- for A y 1 nearly equal to 5 deg., one observes , jump in A ;^ 2 to a value which thereafter is independent of A ^j. 

expansion fan 

Fig. 3.14 ■ Shock-reflection with separation - 

Inviscid flow model. 

"'" A°^f-Cr ^ ^Z^'' iZ^ ^•''"'^^ ^''°" ^??-'°° "reflected expansion visible) to a finite value approximately equal to " J 1. Thereafter, AJp 3 increases as A f 1. r-i- /    H"'" >•" 

The observed jumps in Aj? 2 and A 9^3 were seen to coincide with the occurrence of separation as determined from 
surface oil flows The existence of a reflected expansion seems to be typical of shock-reflection induced sepTattonth^ 

inl-'g!r6.^'"""'"^ ^      ^^ ^ '""'"^°* Separation. Such an Incipient Separation situation is shown by photograph b 

Furthermore the constancy of Af 2, once separation has occurred, indicates that the separation shock strength is 

SaTtlon procesl     "' ''"* shock-wave that causes separation. Such behavior'is also tjical of a Iree- 

In the same nature as the double-wedge (or free boundary) inviscid flow model for a separated wedge flow, one can 

Mearalf-rrePion'Ir """t"' f^^-^*^^^"^ ^^^^ reflected-shock separated flow (see Fig. 3.14)! It consists! a sti l-afr'" 
irfw^Lf t T * P"^''""^ ^^°^^ free-boundary starts from the "separation" point ST. The incident shock 
(Ci) hits the free-boundary at point I which is the origin of an expansion fan cancelling the shl^k pressure ^um^ to 
insure continuity of pressure. There results an abrupt deviation of the free-boundary'which riLs tow^d the waU 
downstream of I and meets it at the "reattachment" point Rj. '•owara tne  wall 

As pointed out by Green (I969), the wave system produced by an incident oblique shock can be thought of as a 
varian of the separated comer flow pattern. In the two cases, there is first a strong interTction wUh outw^d 
deflection of flie outer flow at separation. Further downstream, both for the wedg^e flow ^d f^r the sho^k 
impingement, the interacting boundary-layer "feels" an abrupt change of the external flow dirlct^n relative to the 
nZ\Zf, T '■ '°\'^l--''^-„i'o.'}', - '^- wall that turns of'an anglec(, for the incident shock iMs the outtr 
n°l« tVw       ,     ""rT"?" ^^^^f,"^^^  (see remark above). Thereafter, for the two flows, a similar reattachment 

wall s a facrthaf Th^'th       TT'' ?.%°"*''^ ""^ " ^-^---1-^ turned to become approximately para^^^el to the 
rssentiLl^LtwIentL'to ca^s!"^ "^*'°'^ "^"^ *'^ ''^'''"^ viscous-inviscid coupling concept doVot distinguish 

wall^tTXs'otha: ff,VAT2Trj"3VAr;- T-t^^Tfl'ir^ T "tV'T^'] -^o (provided that the 
that the total deflection th^oigh ouWcL'pLt^^^^ 
the incident shock. Thus, a compression corner of angle 2a and an incident shock of deflection a TeflLtlnrat    a   p°^e 
surface   give   rise    to    two    successive    compressive    interactions    (at    separation    and    reaUachment)    th^   'toT^ 
strength of which is the same. It will be seen in ^Iprtinn ? -k t>.at f„. ^^,„^    4       n 
nearly identical if the overall pressure rises" e equal ' '"° "°"'' '""^ """ P*-^^^"-^^ distributions are 

H2-^, in the sense that the purely inviscid s'olution is nlT^^t^^l^l t^elll fCffeld. - "^"^ -^---"^ 
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Fig.  3.75 - Shock reflection  witti separation - 
An     example    of   strong    viscous    interaction 

Mo=1.93, RSo = 0.75x 10\ 

3.2.3 - Flow Produced by a Forward Facing Step 

The case of flow separation in front of a forward facing step is illustrated by the schlieren photographs in Fig. 3.16 
(Delery and Le Balleur, 1972). They correspond to the same upstream conditions as for the shock reflection example, 
namely : MQ = 1.93 and R ^ = 0.75 x 10^. The photographs are relative to three different heights of the step provoking 
separation of the flow. The most visible features on these photographs are : the incoming boundary-layer, the shear- 
layer that develops along the border of the separated region, the separation shock and the expansion wave originating 
from the reattachment at the step shoulder. The flow, schematically represented by the sketch in Fig. 3.16, is 
characterized by the existence of a large recirculation bubble the size of which is roughly proportional to the step 

height. 

We will not consider here, the complex phenomena at the step shoulder, such a discussion being beyond the scope of 
the present AGARDograph. We will restrict our attention to the separation region. As shown by the photographs, the 
structure of the flow in the vicinity of the separation shock is similar to what has been observed in the preceding 
examples. The essential difference is that the extent of the separated region can be greatly amplified in the present 
situation. 

Perhaps the most striking feature of this kind of flow is the independence of the separation shock angle as well as 
of the direction of the supersonic flow bordering the shear-layer with respect to the step height (see also Zukoski, 
1967) This constancy (for fixed i^stream conditions) demonstrates clearly that the separation process does not actually 
depend on downstream conditions and, particularly, on the obstacle at the origin of the separation of the boundary- 

layer. 

In fact, as will be seen in Section 3.6 below, the separation process (in supersonic flows) is independent of the cause 
that provoked the phenomenon : the separation process itelf is thus identical for ramp induced, impinging-shock induced 
or step induced separation. It depends only on the flow properties at the onset of the phenomenon : hence, the 
expression "Free-Interaction" introduced by Chapman to designate this kind of interacting flow. 

Fig. 3.16 - Supersonic separation in front of a forward facing step 

Influence of the step height Mo = 1-93,  Hj^, = 0.75x 10^. 
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The above separation experiments were also used to analyze in detail the flowfield structure in the shock foot 
lafT'i^^^'',''". i: wall pressure distributions and stream wise velocity profiles were measured (Delery and Le Balleur, 
L Iv, 7 f %^ have been used to compute the development of the separating boundary-layer by the rotational 
Method of Characteristics, i.e., by assuming the flow inviscid. A starting characteristic, originating inside the 
boundary-layer at the point where the local Mach number is equal to 1.05, was first determined from the velocity 
distribution on the iso-Mach line M = 1.05 which was chosen as lower boundary of the flow region assumed inviscid 
tUarriere et aJ., 1975). 

The computed characteristics network is drawn in Fig. 3.17. One sees that there is good agreement between the 
calculated and the experimental location of the line on which M = 1.05. As shown in Fig. 3.18, the computed velocity 
distributions agree also closely with experimental data. 

Fig. 3.17 -Separation in front of a step - Perfect fluid calculation. 
Characteristics network - Mo = 1.93,  Rs   = 0.75 x 10^. 

Fig. 3.18 - Separation in front of a step - Perfect fluid calculation: 
streamwise velocity profiles -Mo= 1-93, ffg^ = 0.75 x 10^. 

In addition, the computed normal pressure distributions, represented in Fig. 3.19, show that large y-wise variations 
of pressure exist within the boundary-layer in the region where the separation shock forms. Further downstream, as the 
free shear layer develops, the pressure tends to become transversally constant throughout the dissipative region The 
same tendencies were noted by Behrens (1971) in a similar flow. 

To sum up, the above calculation, supported by many other observations, clearly establishes the following typical 
features of the separation phenomenon in supersonic flow : 

1 - in this "rapid interaction" process, most of the boundary-layer behaves like an inviscid fluid. This finding 
corroborates observations already made in preceding Sections; 

ii- because of the no-slip condition at the wall, viscous forces must be necessarily predominant in the vicinity of 
the surface. However, in turbulent flows, this viscous "inner layer" is very thin; 

iii-large axial and normal pressure gradients are both present within the separating boundary-layer, except in the 
inner layer" where the classical first-order boundary-layer approximation may certainly apply. 

Such behavior is observed each time the streamwise extent of a strong interaction is of the order of the thickness 
of the incoming boundary-layer. It allows simplifications of the equations of motion leading to the already mentioned 

Inviscid Shear Layer analyses (see Section 1.4 of Part n). This simplified approach has also received a more rational 
justification withm the framework of the "multi-deck" theories presented in Section 4 of Part H. The essential 
conclusions of these theories are already apparent in the above flow description. 

M„1.93 

Y (mm) 

110      X (nin) 

X = 60 mm 

Fig. 3.19 - Separation in front of a step - Perfect fluid 
calculation   -    Transverse   static   pressure   distributions 

Mo = 1.93, ffa   = 0.75X 10^. 
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3.2.4 - The Reattaching Supersonic Flow 

Figure 3.20 shows a schematic representation of a supersonic flow reattaching behind a rearward facing step. In 
this AGARDograph, we do not intend to give a thorough description of the reattachment process, the subject being 
marginal to our main topic. Surveys of the supersonic reattachment problem and of the accompanying base-flow 
problem can be fovmd elsewhere (Delery and Sirieix, 1979 ; Delery, 1983). In the present Section, only the essentieJ 
features of the flowfield will be briefly reviewed with a view to helping in the understanding of the structure of shock 
separated flows. 

Broadly speaking, the turbulent dissipative flow can be divided into five regions (see Fig. 3.20) ; 

i - the first region I is located in the vicinity of the base shoulder S where the incoming boundeury-layer separates. 
In   the   portrayed   situation,    the   boundary-layer   undergoes   at   I   a   Prandtl-Meyer   expansion.   In   other 
circumstances, such as in ramp induced or shock induced separation, the boundcu-y-layer at S is submitted to a 
compression ; 

ii- downstream of S, in region H, a quaisi-isobeiric turbulent mixing-layer develops ; 

iii-region n is followed by a first compression zone HI extending to the reattachment point R ; 

iv- the compression continues downstream of R in region TV until some constant downstream level is reached ; 

V - in contact with the wall, a recirculating bubble V is trapped. Inside this bubble, the flow is reversed, feeding the 
mixing-layer. 

The conservation of the fluid mass contained in what is called the "dead-air" region requires the streamline (j) 
issuing from the separation point S to end up at the reattachment point R. Any streamline above (j) must continue 
beyond R and any streamline below (j) should fold back toward the dead-air due to the existence of the adverse pressure 
gradient in the vicinity of R. Streamline (j) will be called the Dividing StreamLine or DSL. 
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Fig. 3.20 - Supersonic reattachment downstream of rearward 
facing step   -   Schematic  representation   of the flowfield. 
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Fig. 3.21 — Two-dimensional free shear layer — Variation of 
velocity on the dividing streamline (Carpenter and Tabakoff, 

1971). 

As the separated shear layer develops, the velocity Uj on the DSL progressively increases from zero at the 
sepeiration point. This increase, which is due to the action of shear-stress, continues until an asymptotic value is 
reached when the length of the free shear-layer has become very large compared to the initial boundary-layer thickness 
(see Fig. 3.21 giving evolutions of uj computed by Carpenter and Tabakoff, 1971). When the reattachment process 
begins, i.e., when the pressure at the wall starts to rise, the whole flow is decelerated. The velocity on the DSL 
decreases progressively until stagnation at the reattachment point. 

As can be intuitively understood, reattachment depends essentially on the pressure rise that the mixing-layer can 
handle when the external flow turns to become parallel to the wall. Intuitively, this pressure rise is a function of the 
kinetic energy gained by the mixing-layer and, more precisely, of the velocity level reached on the DSL when the 
reattachment process starts. Most of the so-called "component methods" developed to predict separation are based on 
some adequate criterion modeling the flow decceleration on the DSL. In particular, it is frequently assumed that this 
deceleration takes place isentropically on each streamline (Chapman et al., 1957; Korst 1956). As these theories will not 
be reviewed here we will only summeu-ize the main conclusions pertaining to reattachment : 

i - for fixed initial conditions, i.e., for a given pressure in the dead-air region, the higher the pressure rise at 
reattachment, the greater must be the velocity uj on the Dividing Streamline ; 

ii- for fixed initial conditions the greater the velocity uj, the longer must be the mixing layer, i.e., the separated 
zone ; 

iii-as already noticed in the case of transonic flows, the compression at reattachment is more progressive than at 
separation.  Consequently,   the   reattachment   shock,   resulting   from   the   coalescence   of  compression   waves, 
genercdly forms farther from the wall. 

3.2.5 - Concluding Remarks 

We have seen that there is a close similitude between wedge-flow and shock impingement flow. Of course 
differences exist in the details of the phenomena since they correspond to rather distinct situations. Nonetheless, the 
resemblance concerns the main flow features the analysis of which is of the greatest importance for a clear 
understanding of the physics of the phenomenon. 

On the other hand, separation in front of a step and reattachment behind a downward facing step constitute two 
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"basic component flows" into which a shock separated flow can be divided. The main point of this distinction is to 
emphasize specific characteristics which are sometimes hidden when the two phenomena are closely connected in a 
more complex configuration. 

Consequently,  in the  forthcoming Sections  we  will no  longer  make  a strict distinction between the different 
situations which have been envisaged up to here. 

3.3 - Properties of the Wall Pressure Distribution 

The main properties of the wall pressure distributions measured in a supersonic shock-wave/turbulent boundary- 
layer interaction will now be examined by considering typiccil experimental data. 

i - the first example is a wedge flow at an upstream Mach number Mg = 2.95 and a Reynolds number 
Ri5 Q = 0.78 X IQO which was investigated in considerable detail by Settles (1975). The data plotted in Fig. 3.2.2 
show that the pressure at the wall starts to rise upstream of the corner by virtue of the upstream propagation 
mechanism already discussed. The correlation properties of the so-called Upstream Influence Length - or 
Upstream Interaction Length -as defined from the wall pressure distribution will be examined in Section 3.7 ; 

ii- as we already know, when the corner angle a is small, the difference between the inviscid solution and the real 
flow is small. This situation corresponds to what was termed a weak interaction ; 

iii-for the highest values of a, the pressiure curves clearly exhibit three inflection points. This shape is typical of an 
interaction involving a noticeable separation of the boundary-layer. The three inflection points are respectively 
associated with separation, the onset of reattachment and the reattachment compression. Now, as we already 
know, the fully inviscid solution differs considerably from the real flow and such a situation is called a strong 
interaction ;   

iv- in fact, as demonstrated in Fig. 3.23 by results relative to an impinging shock at MQ = I.93 and 
R(S Q = 0.75 X IQS (see the corresponding schlieren photographs of this flow in Fig. 3.6), a separated bubble is 
present before the occurrence of the three inflection points (Delery and Le Balleur, 1972). In fact, as shown by 
experiment, such a "kink" in the wall pressure distribution becomes apparent once the separated region has 
already attained a noticeable size. This behavior may lead to difficulty in the detection of supersonic Incipient 
Separation from inspection of wall pressure distributions (see Section 3.8.2 below) ; 

Fig. 3.22 - Ramp flow - Wall pressure distributions — 
Mo = 2.95, /?§Q = 0,78X l(f (Settles, 1975). 
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Fig. 3.23 — Shock reflection — Wall pressure 
distributions - Mo= 1.93, flg   = 0.75 x Iff. 

V - let us consider the same example of an impinging shock. Examination of the pressure distributions plotted in 
Fig. 3.23 reveals that - for small values of the deflection A^^ through the incident shock - the curves exhibit an 
overshoot to values superior to the level corresponding to the theoretical pressure jump. The amplitude of this 
overshoot progressively shrinks as ACj?^ increases and, in the present case, it is null for Atp 1 = 6 deg. As shown 
by the data plotted in Fig. 3.24, the same phenomenon is observed for a wedge flow in the conditions MQ = 1-95 
and R6^ = 1.89 x IQO (Roshko and Thomke, 1969). Broadly speaking, the overshoot only exists at moderate Mach 
numbers ; it disappears when MQ is approximately greater than 2.5 ; 

vi- the data plotted in Fig. 3.25 were published by Shang et al. (1976). They are relative to a compression ramp and 
to an impinging shock giving the same overall pressure rise as the ramp. The initial conditions are identical in 
the two cases, namely : MQ = 2.96 and R6^ - 105. The left part of the figure shows lines of constant density 
determined from interferometric measurements. Although the structures of the two flows are very different, 
one sees that the two families of wall pressure distributions plotted on the same figure are nearly coincident. 
This observation corroborates Green's statement on the close similarity between the ramp flow and the 
reflected shock flow (see above). 
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Fig.  3.24 -  Ramp flow - Example of pressure overshoot at 
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Fig. 3.25 — Comparison of ramp flow and shock reflection flow 

Mo = 2.96, R£=1 X W (Shangetal., 1976). 

vii-figure 3.26 shows plottings of wall pressure distributions for the same incoming flow separating in front of steps 
of different heights (the corresponding schlieren photographs are shown in Fig. 3.15). For the highest step, the 
pressure curve exhibits the "plateau" typical of an extended separated zone. If these distributions are re-plotted 
in such a way that the origins of the interactions coincide - as is done in Fig. 3.27 - one observes a close 
correlation of the curves on the whole. Also, as demonstrated by Fig. 3.27, a similarly good correlation exists 
between step-induced and shock-induced compressions. Such a coincidence was noticed by Chapman et al. 
(1957), Gadd et al. (1954) and also by Bogdonoff and Keppler (1954). It is a new argument in favor of the Free 
Interaction theory which will be presented in section 3.6. 
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Fig. 3.26 - Separation in front of a step - Influence of the 

step height on the wall pressure distribution - MQ = 193, 
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Fig. 3.27 —Separation in front of a step — Correlation of wall 

pressure distributions. 

wall pressure distributions resulting from flare-induced separation at M^ = 3.96 and high Reynolds number 
(Roshko and Thomke, 1974) are plotted in Fig. 3.28. These results tend to show that the extent of the pressure 
plateau region increases with the flare angle, i.e., with the overall pressure jump [A p]x. As seen in vii, the 
pressure rise to separation does not depend on downstream conditions and is, thus, entirely determined by the 
flow situation at the interaction onset. Consequently, an increase in the overall pressure rise necessarily entails 
a higher pressure rise at reattachment. As seen in Section 3.2.5, this can only be achieved by an increase in the 
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Fig. 3.28 - Flare induced separation - Wall pressure distributions 
Mo = 3.96,   Ri_ = 30x 1(f   (Roshko and Thomke, 1974). 
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velocity on the Discriminating Streamline of the separated bubble. Hence, the length of the separated shear- 
layer must be longer in order to permit a greater acceleration on the DSL before reattachment begins ; 

ix- the pressure distributions plotted in Fig. 3.29 were measured in a compression corner at MQ = 2.7 and for 
relatively low Reynolds numbers Rx varying in the range 1.4 x 106 to 4 x lo6 (Chapman et al., 1957). According 
to these results, there is clearly a visible increase in the streamwise extent of the interaction when the 
Reynolds number increases. On the other hand, as shown in Fig. 3.30, in experiments performed at high 
Reynolds number (R^ of the order of 109, Roshko and Thomke, 1969), there is an obvious decrease in the 
interaction extent with increasing Reynolds number. This reversal in trend will be further commented in the 
forthcoming Sections; 

X - this last typical feature of a turbulent shock-wave/boundary-layer interaction is observed at very high Mach 
numbers. As shown by the curves of Fig. 3.31 which correspond to wedge induced separation at MQ = 9.22, 
(Elfstom, 1971), a hypersonic interaction is characterized by the existence of a large pressure over-shoot tb-it 
follows reattachment. A plausible explanation of this phenomenon can be found by resorting to the double 
wedge inviscid model for ramp induced separation given in Section 3.2.1 above. An inviscid flow of this type was 
theoretically investigated by Sullivan (1963) for hypersonic free stream Mach numbers. In this case, the three- 
shock configuration with its bifurcation point I is very close to the wall (most often, in the real viscous flow, 
the shock system itself is embedded within the boundary-layer). Consequently, the reflected wave starting from 
I strikes the wall at a small distance downstream of the reattachment region. Since, in hypersonic flows, this 
wave IS a rather intense expansion wave, its trace on the wall results in a steep decrease of the pressure 
immediately following the rise at reattachment. 

p a>s R6o 

p. o    26.8 2.381 B' 
•    268 5.701 »« 

A «    26,9 7.88.10' 

i,^8 

.6° 

The extent of the interaction domain decreases 
when the Reynolds number increases 

-0.5 

i. 
P. 

80 

40 

K,.a.22 , p„ 

Q5 X m 

/ *p' 

Q I—ooo°,»^q£^,■!!«■»£!:  
-50 0 

■•■■- 

a>9. 

(inviscid ) 

50 X _ L (mm) 

Fig. 3.30 -  Ramp flow - Reynolds number effect at high 
Reynolds numbers -Mo = 3.93 (Roshkoand Thomke, 1969). 

Fig. 3.31 — Downstream overshoot at high Mach number 
M. = 9.22 (Elfstrom, 1971}. 

3.4 - Some Features of Shock-Wave Boundary-Layer Interaction in laminar Flows 

As already stated in the Introduction this AGARDograph is essentially concerned with turbulent flows and thus we 
do not intend to give ample information on the laminar regime. The aim of this Section is simply to emphasize the main 
differences between turbulent and laminar interacting flows. 

Such differences were already noticed and carefully discussed nearly forty years ago by Liepmann (1946) for the 
case of a transonic flow past a circular arc profile. His experiments demonstrated that a change from laminar to 
turbulent boundary-layer - at a given free stream Mach number - considerably alters the whole flowfield if shock-waves 
are present in this flow. 

In this Section, we will restrict our attention to a limited number of typical examples relative to entirely 
supersonic interactions. 

Figure 3.32 shows a comparison between a laminar and a turbulent interaction having nearly the same upstream 
Mach number (Chapman et al., 1957). The wall pressure distributions clearly exhibit a greater spreading of the 
discontinuity in the case of the laminar boundary-layer. This greater x-wise extension is far beyond the scaling by the 
incoming boundary-layer thickness. Also, the various characteristic pressure rises, in particular the pressure at 
separation, are far less important in laminar flows than in turbulent flows. 

The above differences in the flow behaviors have at least two immediate consequences : 

i - the pressure rise required to separate a laminar boundary-layer is much lower than the pressure rise inducing 
separation of a turbulent boundary-layer. A direct quantitative comparison of the respective sensitivity of the 
two flows to shock-induced separation is difficult, since such a comparison should be made by varying the 
pressure rise while keeping the same Reynolds number for the two flows. However, some information can be 
inferred from the Free Interaction Theory developed in Section 3.6 below. This theory establishes the fact that 
the normalized pressure rise at separation - which can be identified with the pressure ratio necessary for 
Incipient Separation - is nearly five times smaller in laminar flow than in turbulent flow (see Section 3.6 below); 
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i - the x-wise scale of the reattachment domain has considerably shrunk ; 

ii- the associated pressure rise, along with the accompanying pressure gradient, have been greatly amplified. 

The various situations encountered when transition moves in the interaction domain have been thoroughly discussed 
by Gadd et al. (1954). These authors have suggested the various possible configurations schematically protrayed in Fig. 
3.40. In the sequence of sketches, the transition "point" T moves upstream as the strength of the incident shock 
increases. The figure also shows a schematic representation of the corresponding wall pressure distributions. 

Of the same nature, the effect of shock impingement on boundary-layer transition was investigated by Le Balleur 
and Delery (1973). These experiments were performed in a two-dimensional test set-up at an upstream Mach number 
equal to 1.95. The transition location was located by inspection of short-exposure time schlieren photographs. These 
authors found that transition could be moved considerably upstream of its "natural" location by the impact of a 
relatively weak incident shock-wave. Such a displacement is illustrated by the sequence of schlieren photographs of Fig. 
3.41. It was demonstrated that the upstream displacement of transition is a function of the shock intensity and of the 
Reynolds number. The results obtained are represented in Fig. 3.42 which shows the variation of the extent of the 
laminar portion downstream of the shock impingement point I as a function of the Reynolds number computed with the 
boundary-layer momentum thickness at I, with the pressure jump through the incident plus reflected shock as 
parameter. It is seen that independently of the Reynolds number, transition positions itself at the impact point as soon 
as the totcil pressure ratio is greater than 1.4. 

[ incidnt shod dtriKtion ) 

Fig. 3.41 - Effect of shock impingement on boundary-layer 
transition - Short exposure time shadowgraphs. 

Fig. 3.42 — Laminar distance downstream of the shocic 
impingement point. 

3.6 - The Free Interaction Concept 

Some of the experimental results presented in the above Sections tend to demonstrate that the major part of a 
supersonic interacting flow evolving toward separation does not (appreciably) depend on the agency at the origin of 
separation, this agency being either a solid obstacle or an incident shock-wave. That part of the flow independent of the 
downstream situation comprises the compression at separation as well as the development of the pressure plateau for 
largely separated flows. Everything happens as if the flow were entirely determined by its properties at the onset of 
interaction. 

Such flows that are (to a first approximation) free from direct mfluence of downstream geometry were termed by 
Chapman "Free Interactions". Later, a more rational definition of this concept was given within the framework of 
asymptotic theories (see Section 4 of Part n below) and inviscid-viscous interacting methods (see Section 3 of Part H 
below). As a matter of fact, as will be seen below, the interacting flow can be modeled by a couplmg approach whch 
consists in making compatible two flow regions which are respectively represented by boundary-layer quations and Euler 
equations. For a supersonic outer inviscid flow, and within the classical first order boundary-layer concept, the solution 
can be looked for by a purely downstream marching procedure. In this approach, the role of downstream conditions - 
i.e., the perturbating agency - is simply to fix the origin of the interaction. 

The Free Interaction concept permits the derivation of correlation laws explicitly displaying the dependence of the 
phenomenon on such basic parameters as the Mach number and the Reynolds number. Although the character of 
generality of these laws is now questioned (see .Section 3.7 below), the Free Interaction Theory is still of^niport^t 
historical interest since it is at the origin of ideas having led to decisive progress m the modeling of interactmg flows. 
For these reasons, we will present it in some detail. 

The analysis that follows is in fact attributable to Erdos and Pallone (1962), but it was directly inspired from the 
original work of Chapman et al. published in 1957. 

The incoming flow will be assumed adiabatic (no heat transfer at the wall) and initially the outer inviscid stream is 
assumed to be a uniform planar two-dimensional flow. The correlation laws are established by utilizmg two basic 

equations, namely : 

i - the boundary-layer momentum equation written at the wall : 

(3.1) dp/dx= (3T:/3y)w 
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An x-wise integration of Eq. 3.1 from the beginning XQ of the interaction domain, along with the introduction of 
normalized variables, leads to the following equation : 

(3.2) (P-Po)/<10   =   (^^ L/6*q^)   /^;/L(3T/3y)^   («O/T„O)   d(^/L)   =   (TVOL/S^O^   ^l^^'^o/^^ 

""^WQ is the wall shear-stress at the origin of the interaction, L a still undetermined x-wise length scale and fi a 
dimensionless function of the scaled variable (x-xo)/L. 

ii- the second equation is the coupling equation written on the boundary-layer displacement surface (see Section 3 
of Part n below for more information on coupling equations in inviscid-viscous interactive methods). In the 
present analysis, the pressure variation induced in the outer inviscid flow is expressed via the linearized simple 
wave equation. Thus, the coupling equation is written here : i 

0.5   (MQ  -   1)   ^^   (p -po)/(lo  =  'i5*'/<5x I 

Hence, after introduction of normalized quantities : 

'^•^^ (p-Po)/<10   =  2(Mo   -l)'"^  (5Q/L)     d(6*/6o)/d(x/L)   =  2(Mo   -l)"^   ( SQ/L) f^ (x-Xo/L) 

where f2 is a new dimensionless function. 

A multiplication of Eq. 3.2 by Eq. 3.3 leads to the following correlation law for the pressure at the wall : 

(p-Po)/4o   =9^(x-Xo/L)   {2C     )'/'   (Mo  -   1)"'^" 
(3.4) 

L/5g  = k^ ^ .--^/^M^-   1)-^/^ 

c 
where S- l^l^ is assumed to be a universal correlation function, independent of Mach and Reynolds numbers. This 
function has to be determined from experiment. 

Figure 3.43 shows the functions/L and!^ respectively obtained for laminar and turbulent flows by Erdos and 
^t^-^°v"(T-' ^ *^^ representation of Fig. 3.45, the x-wise length scale is the distance from the origin XQ of the station at 
which > reaches the value corresponding to the pressure plateau of an extended separated flow. The following particular 
values of > are found : 

i - at the separation point : 

= 0.81 for laminar flow 
'J. 

■■ 4.22 for turbulent flow 

ii- for the pressure plateau : 

= 1.47 for Icuninar flow 
'J: 

6.00 for turbulent flow 

The above values reflect the fact that pressure rises in a turbulent separation are far more important than 
laminar separation. 

A correlation law for the streamwise scale of separation is obtained by the division of Eq. 3.2 by Eq. 3.3. This gives 
an equation of the form : 

Fig. 3.43 - Free interaction theory - Wall pressure correlation 

functions (Erdos and Pallone, 1962). 
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where the constant k must be determined experimentally. Its value depends on the manner in which a representative 
streamwise scale is defined. The two most adopted scales L are the one used by Erdos and Pallone and the distance 
between the sepziration point and the origin of the interaction domain. 

The above analysis has been generalized by Carriere et al. (1968) and Carriere (1973) in order to take into account 
non-uniformities in the incoming outer flow as well as wall curvature effect in the interaction region. These authors 
have shown that in the most general CEise, the universal correlation function takes the form : 

(3-5) {[(p-p„)/ao][v(x)   -  v(x)]/Cj^}'^'  = TCx-Xo/L) 

where v is the Prandtl-Meyer function for the actual pressure at x and v the value that v would take  at the same x in 
the absence of sepairation. 

At low to moderate Reynolds number (say R 5 < 10^), Eqs. 3.4 or 3.5 most often correlate very well experimental 
wall pressure distributions measured for greatly different situations. Examples of such correlations have already been 
given in Section 2.9.2 relative to transonic flows. Here, we will only give two further examples concerning supersonic 
separation : 

i - the first example is made up of the separated flows considered in Section 3.2. These flows are produced either 
by an upstream facing sep or by a shock reflection. In the present application, the streamwise length scale L is 
the distance XJ-XQ, the separation point location being conventionally defined as the abscissa wherei'i 4.22. 
Figure 3.44 shows that the functionS^permits an excellent correlation of these different separated flows. For 
practical purposes, ^an be accurately computed by the following analytical expression : 

ct. 
•^ (5) = ^ ^n 5" + (bo +bi5) exp (-k^)        with 5 = (x-Xo)/(xs-Xo) 

The coefficients a^, bo) hi and k eire given in Fig. 3.45. 

On the other hand, as shown in Fig. 3.46, the correlation for the length scale is less satisfactory, presumably 
because of the difficulty of accurately determining the separation distance L = Xg - XQ which is always very 
short in turbulent flows (see also Erdos cmd Pcdlone, 1962). 

ii- the second example, shown in Fig. 3.47, is relative to separation in strongly overexpanded axisymmetric 
supersonic  nozzles.  In  this  case,  the   flow before separation is non-imiform  and  the  generalized universal 
function f'alone is capable of correlating the experimental data. 

The Free Interaction Theory has frequently been used as a guide-line for establishing other correlation laws. Among 
these laws, we can cite the correlation of Popinski and Ehrlich (1966) which expresses the plateau pressure coefficient 
Cpp in the form : 

(Cpp) Ry^° = 1.91 (M„2 - l)-°-3°9 

Knowing this, the above equation is, for a flat-plate turbulent boundary-layer, in fact nearly the same as the one of 
Erdos and Pallone. The Popinski and Ehrlich correlation law is compared to various experimental data in Fig. 3.48. 
Other examples of application of the Free Interaction concept will be given in the forthcoming Sections. 

To briefly summarize this part of the text, the Free Interaction Theory predicts that the pressure levels in a 
separation (including the pressure at the separation point and the pressure plateau) : 

i - increase with the upstream Mach number ; this tendency has been well confirmed by experiment ; 

ii- decrease when the Reynolds number increases since the skin-friction coefficient decreases when the Reynolds 
number increjises (see Fig. 1.4) for a flat-plate situation before sepeuration. 

This second tendency is certainly true in laminar flow where it has been corroborated both by experiment and more 
advanced theoretical models. In turbulent flow, it has also been verified by experiment at low to moderate Reynolds 

numbers. 

However, at high Reynolds number (R|5> 10^), severed investigators have found that the pressure rises to separation 
and/or to the plateau tend to become independent of the Reynolds number and even to slightly increase with it. This 
change in the Reynolds number dependence was clearly established by the experiments of Zukoski (1967), Roshko and 
Thomke (1974) and those of Settles (1975). To illustrate this point. Fig. 3.49 shows experimental data and correlations 
for the pressure plateau which depend on the upstream Mach number MQ only (Zukoski, 1967; Werle, 1968). 

The Free Interaction Theory also predicts that the separation length L = (xg- XQ) (or any other characteristic 
streamwise length scale) must increase with the Reynolds number. Although the experimental determination of L is 
delicate, there is strong evidence that for a turbulent flow at high Reynolds number, L actually decreases with 
increasing Reynolds number. This tendency has cJready been noticed in Section 2.7.2. Consideration of Fig. 3.30 
obviously demonstrates that the streamwise extent of the interaction is smaller as the Reynolds number is higher. Many 
experimental results on Incipient Separation of a turbulent boundary-layer at high Reynolds numbers tend also to prove 
that the "stiffness" of the boundary-layer increases with R§ . Experimented results on Incipient Separation in transonic 
flows also led to the same conclusion (see Section 2.8 above). 
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generalized free interaction theory. 

Fig. 3.44 — The free interaction theory — Correlation of 

wall pressure measurements -  Uniform  incoming flow. 

Fig. 3.45 — The free interaction theory — "standard"represen- 

tation  of the generalized wall pressure correlation function. 
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This trend reversal, which occurs when the Reynolds number is sufficiently high, has not yet been completely 
understood. It will be more thoroughly discussed in the following Sections concerned with streamwise scaling laws and 
Incipient Separation in supersonic interactions. 

3.7 - Scaling Properties of the Supersonic Interaction Streamwise Extent 

3.7.1 - Introductory Remarks 

The "intensity" of a shock-wave/boundary-layer interaction can also be characterized by its upstream influence. 
I.e., the distance at which the interaction - or the shock presence - is first felt. This distance is most often measured 
from the wedge corner or from the point where an incident shock would impinge on the wall in the absence of a 
boundary-layer. 

A second point of interest is the separation length which is conventionally defined as the distance of the separation 
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point from a suitably chosen origin, for example, the start of the interaction. 

As in transonic flows, the basic question is : what are the appropriate scaling laws for these characteristic lengths? 
The answer to this question is important, not only for practical purposes, but also for the physical understanding of the 
phenomenon. In particular, clear and accurate information on this subject is of great interest to help in the modeling of 
the phenomenon, especially in turbulent flows where one has still to rely heavily on experiment. 

3.7.2 - The Upstream Interaction Length. General Properties 

Essentially we will consider scaling properties for the upstream interaction length LQ in the case of wedge-flows. 
The main reason for this choice is that most known results concern this type of flow in which LQ is relatively easier to 
measure than in a shock reflection. However, it should be emphasized that general tendencies observed in wedge-flows 
are also similar to shock reflections, since in the inviscid sense there is no essential difference between these two kinds 
of flow as was seen in Section 3.3 (see also section 3.8 below on Incipient Separation). 

The upstream interaction length is most often defined from inspection of the wall pressure distribution. 
Theoretically, the origin of the interaction is at the point where the wall pressure starts to rise. Some investigators 
have adopted this definition (Spaid and Frishett, 1972). Unfortunately, the experimental localization of the true 
interaction origin is difficult and hence inaccurate. For this reason, most investigators have chosen a conventional 
origin obtained by extrapolating to the wall the quasi-linear pressure rise at separation, as is shown in Fig. 3.50 (Settles 
and Bogdonoff, 1973; Roshko and Thomke, 1974; Settles, 1975; Hayakawa and Squire, 1982). 

According to Green (1969), the main parameters likely to influence the extent of a shock-wave/boundary-layer 
interaction are : 

i - the upstream Mach number MQ ; 

ii- the Reynolds number Rfi o ! 

iii-the wedge angle a (or incident shock intensity) ; 

iv- the thickness of the incoming boundary-layer 6 Q- 

If one considers any typical streamwise length LQ scaled to the incoming boundary-layer physical thickness & o, °^ 
displacement thickness 6 Q, there remain the three following influence parameters : MQ, R6 O and°' (or shock strength). 
If we now focus our attention on the dimensionless length LQ/S O, it is generally agreed that - for a fixed value of R6 ^-: 

t _ Upslrtjm inlsraclioci lenglli l> - 5«p»rjlion length 

Fig. 3.50 - Characteristic lengtfis of a supersonic interaction. 

i - LQ/ go increases with afor a fixed Mach number MQ ; 

ii- LQ/ I;O decreases when MQ increases for a fixed angle ^ 

However, there is some controversy over the influence of the Reynolds number. 

On the one hand, there are the experiments made by several investigators (Kuehn, 1959 ; Elfstrom, 1971; Batham, 
1972 ; Spaid and Frishett, 1972) at low or moderate Reynolds number (R go <105), both with tripped and untripped 
boundary-layer. These experiments indubitably show that LJ go increases with the Reynolds number R go- Such a 
tendency is in agreement with the Free Interaction Theory. 

On the other hand, experiments performed at high Reynolds number manifestly show a reversal of this trend. 

interpreted eis resulting from a "filling' 
Reynolds number. 

In what follows, we will present various laws proposed to correlate the upstream influence length at high Reynolds 
number, the case of low Reynolds number being satisfactorily represented by the Free Interaction theory. 
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3.7.3 - Correlation Laws for the Upstream Interaction Length at High Reynolds Numbers 

T-^.    V^,fn^,'^fr""'?^°/*^^'°""^"''^°^'^°'^6°^<i c.°n   the   interaction   length  Lo   was  made  by  Roshko  and 
Thomke (1974) for wedge flows in the Reynolds numLr range 105 <R 106. Somf of the results that they obtai^d 
are plotted in Fig. 3.51 where LQ is arbitrarily scaled to the distance ol the corner from the leading edge of the plate on 
which the incoming boundary-layer develops. A rapid examination of these results leads to the following remarks : 

i - for fixed Reynolds number Re (Re is computed for free stream conditions and with the distance of the wedge 
corner to the plate leading edge) and Mach number M^, the upstream interaction length increases with „,     i e 
with the intensity of the perturbation. It is now clear that the increase in LQ with the shock intensity has to do 
with the fact that a higher back pressure must feed farther upstream through the subsonic part of the boundary- 

ii- for fixed Re and (^, LQ decreases when MQ increases. This trend can certainly be explained by the reduction of 
the relative subsonic layer y*/<^ when MQ is higher. 
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Fig. 3.51 - Upstream interaction length - Influence of Mach number, 

Reynolds number and corner angle (Roshko and Thomke, 1974). 
Fig 3.52 - Upstream interaction length - Influence of deflection 

angle and Reynolds number ~2.84<Mo< 2.95 (Settles, 1975). 

iii- for fixed M   and a  LQ decreases where the Reynolds number increases. As already stated, this tendency can 
also result from a thinning of the subsonic layer. y    '^ 

It should be noticed that the above tendencies are still observed when L^ is scaled to the physical thickness of the 

SSSn ThiTam 'b f'-'"""n*'"'r^ 6S)-This fact proves that 6^ (or «S) alone'Jannot be t^e sea e of 
the interaction. The same behavior was observed in transonic flows (see Section 2.7.2 above). 

upstr^rm'teTa'ct^oHength W6';r ''"'"'^^ ^'^ '°^^°"''"' '^°"^^^*^^^ ^"^^^=^ =°"^^^*^°° '^^ '°' ^^ --^-^<^ 

(3.6) Lo/ «o =   (oi/18.25)2-81 [ lo^Cfo - 1 + (o(/29)2] 

It ia recalled that Cf^ is the skin-friction coefficient at the start of interaction and a the wedge angle   This 
equation correlates experimental data in the range : weuge angie.  inis 

1.98 < Mo < 4.45 I 

105<R 60 < 106 

Conclusions similar to those of Roshko and Thomke were arrived at by Settles (1975) (see also Settles et al 1975) 
who performed experiments on corner flows at high Reynolds number (0.5 x I06 < R . . 7.6 x I06). These e>^er ments 
were made at a nearly constant upstream Mach number (2.84 < Mo < 2.95) both with°a (two-d Insiona ) ramp " 
and an axisymmetric flare model. Figure 3.52 shows the influence of the Reynolds number R 50 on Lo/60       f"r       both 

Tpa^e't  The data c'"'  \""fr  *''°\?'  '^"^"'"^ '^P^*^^"'"  *"""^""  ^^'^  -"^--g  Rejn^olds number  is 
la^l^eLtFt% "°";?,P°"<^'"S *° *!;^"'P "°- f - cross-plotted as LJ 6 „ vs. a with     the     Reynolds    number     as 
parameter in tig. 3.53. These cross-plottings show that, for a given value of Rx     T   / x    ie = „,.„, ,i„,i     c      ^-        r 
(similar behavior is observed for the'flare).\he strictly^mpiriLrfo:mrbefoi°L^stt pr^p^^^^^^^^^ 

(3.7) -0.36 
W 6 o =  0.0092 R-^^^ ^^ (_o.29 „ ) + o.03 

(This equation is only valid for M   J" 3). 

A few years ago Settles et al. (1981) published a more rational discussion of scaling laws for the upstream 
interaction length. A Reynolds number dependence was looked for by a logarithmic plotting of 1 s" against R6Th^ 
quasi-linear curves thus obtained (see Fig. 3.54) demonstrate that the correlation for Lo must be of theTorm •      °' 

(Lo/« o) R^^^ 
o     = constant (for fixed Mn.a). 
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Increasing Reynolds number 

0.5x10';R«„5 7.6.10* 

Fig 3.53 - Upstream interaction length vs ramp angle with 
Reynolds number as parameter 2.84 < Mo < 2.95 (Settles, 1975). 

M„.2.95 

E: ^ 

Fig 3.54 - Upstream interaction length for ramp flow - 
Reynolds number effect (Settles et al. 1981). 

The above equation is valid for Mo-^ 3 and may not apply outside the range of a and R6 o considered by the 
authors. Its main interest is to show clearly and definitively that, if the upstream influence length is scaled to o Q. then 

a R6 o "residual remains". 

The effect of the ramp angle can also be taken into account by the more general formula, nearly identical to Eq. 

3.7 above : 

(3.8) (Lo/«o)l4^^ ' o = 0.9 exp (0.2301 ) 

which, as shown in Fig. 3.55, gives an acceptable correlation of the data. 

Thereafter, the same authors examined the ability of the following lengths to appropriately scale LQ : 

i -  the displacement and momentum thicknesses of the incoming boundary-layer ; 

ii-   the height YLSL °f the laminar sublayer ; 

iii- the height y** of the sonic layer. 
-1/3 

As shown in Fig. 3.56, none of these thicknesses exhibits a Reynolds number dependence in the form^^ R 5 ^.6 o 
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Fig.  3.55 — Correlation law for ramp upstream interaction 
length - Mo~ 3  10^ < R^^^W   10<adeg< 20 (Settles 

etal., 1981). 

6": displacement  thickness 

Q  : momentum thickness 

Y* ; subsonic layer thickness 

YLSL '. laminar sublayer thickness 

Fig. 3.56 - Reynolds number effect on some scales of the 
incoming boundary-layer at M o = 3 (Settles etal., 1981). 

which would be necessary to correlate L^,. In particular, the sonic layer thickness is not the appropriate scale, although 
its dependence on R6 is close to that of Lo- Several other investigators also found that y+ was not a representative 
length scale for the up°stream interaction length (see Hayakawa and Squire (1982) for supersonic flows and, for transonic 
flows, the work of Delery commented in Section 2.7.2 above). 
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The correlation laws given by Eqs. 3.6, 3.7 and 3.8 are only valid tor corner flows in which the incoming boundary- 
layer IS practically always a flat plate boundary-layer. But, experiments in transonic flows have demonstrated that a 
fundamental factor of influence is in fact the shape of the velocity distribution of the incoming boundary-layer ; this 
shape bemg characterized by the "incompressible" shape parameter HIQ. AS we know, for a flat-plate situation, at a 
given Mach number and for a well behaved undisturbed turbulent boundary-layer in adiabatic flow there is a iLiique 
relationship between Hjo and Rfi o (see Section 1). Consequently, a variation in R& „ is equivalent to a variation in Hi„. 
However, if prior to the interaction the boundary-layer has been submitted to a favorable or adverse pressure gradient 
Its profile at the onset of interaction is no longer determined solely by the Reynolds number Rfi „. In this situation the 
above correlations are certainly not valid. ' 

1 
The effect of a change in the shape parameter, independent of the Reynolds number, was examined by Hayakawa 

and Squire (1982). To this end, they disturbed the boundary-layer upstream of the corner by an injection of air through a 
wall made of a porous material. In this case, the boundary-layer profiles have many similarities with the profiles or a 
boundary-layer having undergone an adverse pressure gradient (in the two situations, Hio increases). 

In their experiments, Hayakawa and Squire found that the increase in the upstream interaction length due to 
injection was more rapid than the subsequent thickening of the boundary-layer, i.e., LQ/S O increased with the injection 
"^^^ "^ C '"^^^^.'^. equivalent - with the shape parameter Hj,,. Furthermore, in the present situation LQ/S O increases 
although wall-mjection has provoked a decrease of the skin-friction coefficient. Such a trend is in (apparent) 
contradiction with the restricted correlation laws given by Eqs. 3.6, 3.7 and 3.8. The behavior noticed by Hayakawa and 
Squire fuUy confirms the fact that a fuller initial velocity profile entails a greater "stiffness" of the boundary-layer 
which thus will become more resistant to separation, as will be seen in Section 3.8. 

All the above experimental studies seem to prove that, at high Reynolds number, the wall-shear in itself is of 
secondary importance in strong interaction phenomena. Its role in certain correlation laws is in fact to represent shape 
parameter effect though the relation linking Cfo, Hio and R6 o for a flat-plate boundary-layer. This finding is in 
contradiction with the Free Interaction Theory in which the skin-friction coefficient reflects the crucial role played bv 
the conditions at the wall, according to this model. 

3-7.4 - The Upstream Interaction Length in Non-Adiabatic or Axisymmetric Flows 

.-./''^.f^^f °%"^11/f/°P«'^ture on Lo was carefully Investigated by Frishett (1971) (see also Spaid and Frishett, 
1972). This author found that cooling the wall can considerably reduce the upstream interaction length as well as the 
separation length. This point will be further discussed in the next Section. 

Concerning the action of geometrical factors, such as axisymmetry. Fig. 3.57 shows a comparison between 
upstream influence lengths obtained respectively for wedge and flare. For a deflection a<14 deg., the values of L^for 
wedge and flare are practica ly identical. They start to diverge whena rises beyond 14 de|. Thus, for the axisymmetric 
model, rea tachment takes place on the flare at a location which is more and more distant from [he symmetry axTs! So 
the separating-reattachmg process becomes a mixed two-dimensional and conical process which significantly departs 
from a planar two-dimensional flow. This departure comes from the very important axisymmetry effect both on the 
shear-layer development and on the reattachment mechanism (Delery, 1983). 

1.2 

6o 
o    RAMP   R5j, = 0.52x10' 

•     FLARE   R5„ = Q59xlO' 

- Comparison of ramp and flare - 
interact/on length (Settles, 1975). 

3.7.5 - The Separation Length I 

Another length which is of interest for characterizing the streamwise extent of the interaction is the separation 
length - or separation distance -. For wedge  flows, L3 is defined as the distance between the corner hinge^d  the 
separation pomt S (see Fig. 3.50). The experimental determination of L, is more delicate th^ tharnfthf.t 
emXed°';o':h?''' ^T^^'^^' necessitates  the  accurate  location of  th^'se^^^Itfon'p^Tn.':  The'tl   u^tecCqTs 
^S^epir^aS: L^ngth.™^ *'°-°"^''^ '^°"'""^"*^'^ ^" ^^="°" '■'' '^^'°-' ^ -''' ^^^ P^-"^ '^-^ --^ basic pTop^ti:: 

f = f°' 'he upstream interaction length, experiments performed at low or moderate Reynolds number tend to prove 
^oLt T^T^^ TJ""^ ^^^°'^' """''"■^- ^^'^ ^""'^^""y *^ illustrated by the results oTspaid ^d Frishett (m2) 
?atham (m^f .    ^ experiments, K, „ varies in the range 3 x 104 - 6 xl04. A similar trend was also observed by 
Thetr" ^ '""^^'^       ^^ ""'^ *^^ Reynolds number is of course in agreement with the Free Interaction 

Spaid and Frishett also found that cooling the wall reduces the separation distance, as was the case for the 
upstream interaction length. The cooling effect is shown in Figs. 3.58 and 3.59. In the second figure t^ represents the 
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Fig. 3.58 - Separation length - Influence of Reynolds number 

and heat transfer at low to moderate Reynolds number (Spaid 
and Frishett, 1972). 
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f/ff. 3.59 — Influence of heat transfer on normalized separation 

length (Spaid and Frishett, 1972). 

value of Lg/5 o measured when heat-transfer is present, normalized by the value of Ls/6 o     in     adiabatic     flow     and 
evaluated at the same R5 ^_ ■pjjg decrease in Lg with wall temperature can be interpreted : 

i - either within the framework of the Free Interaction theory, since a decrease of the ratio Tw/Tr (Tr being the 
wall recovery temperature) provokes an increase of the skin-friction coefficient. As a matter of fact, a scaling 
of Lg by the grouping X = &% Cfo (M^-i)" '      ^ which directly results from the Free Interaction theory, provides 
a good correlation of the data (Frishett, 1971). 

ii- or by an overall contraction of the interaction domain resulting from a thinning of the subsonic layer due to a 
lower temperature level near the wall (see Section 1.3 above). 

The effect of wall temperature on the separation length was also investigated by Kilburg and Kotansky (1969), 
Elfstrom (1971), Holden (1982) and by Back and Cuffel (1976). All these investigators also reached the conclusion that 
wall cooling reduces the streamwise extent of the interaction region. This effect is particularly well illustrated by the 
wall presstire distribution plotted in Fig. 3.60. These distributions were measured in a shock reflection at MQ = 3.18. In 
Fig. 3.60a the wall is adiabatic and one notes an important extension of the interaction, the real flow-field being neatly 
distinct from the perfect fluid model. Particularly, the upstream interaction length is specially important. On the other 
hand, as shown by Fig. 3.60b, cooling the wall shrinks considerably the interaction domain so that the real flow becomes 
close to the inviscid flow model in which at the wall the shock is a perfect discontinuity. Conversely, surfact heating 
increases the size of the separated region, as demonstrated by the tracing of mean flow streamlines shown in fig. 3.61. 
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Fig. 3.61 - Effect of wall cooling and wall heating on incident 

shock reflection - Streamlines pattern (Back and Cuffel, 1976). 

Fig. 3.60 - Effect of wall cooling on incident shock reflection - 

Wall  pressure   distribution   (Kilburg  and Kotansky,   1969). 

Now let us consider adiabatic flow again, but at high Reynolds number. As observed by many investigators (Kessler 
et al., 1970 ; Settles and Bogdonoff, 1973 ; Law, 1974 ; Roshko and Thomke, 1974 ; Settles, 1975) there is a clear 
decrease in the separation length Ls with increasing Reynolds number, in a way similar to what has been observed for 
the upstream interaction length. This fact is clearly demonstrated by the wall pressure distributions plotted in Fig. 3.30. 
From these data (which were obtained for values of R5 o.greater than I06), the decrease in the streamwise extent of 
the interaction domain with increasing Reynolds number is obvious. 

The influence of the Reynolds number as well as of the ramp angle on the separation length was thoroughly studied 
by Settles for an upstream Mach number close to 3. The evolutionsof L^/S „ measured by this author are represented 
inFig. 3.62 vs. the Reynolds number with the ramp angle as parameter. Examination of these plottings leads to the 
following observations : 

i - the decrease of L^/ go with increasing Reynolds number is fully confirmed in the range of variation 5 x 10^  < 

R   o <7.6 x 106. 
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Fig.   3.62 -  Separation length  - Influence of ramp angle 

and Reynolds number at high Reynolds number - MQ = 3 , 

/Settles, 1975). 

ii- the curves seem to asymptote toward zero separation at zero corner angle. This behavior would prove that 
separation is in fact always present at the corner, the size of the separation bubble being initially very small at 
low values of ^ Such an observation tends to confirm Kuehn's suggestion that there is always some separation 
at a wedge, even for vanishingly small ramp angles. However, according to Law (1974), care should be taken in 
interpretmg surface flow visualisations at very small ramp angles. In fact the oil flow technique (like the one 
used by Settles) should only give the approximate location of the separation points as the streamwise location of 
some small value (but not equal to zero) of skin friction. 

iii-as a consequence of point ii), separation is seen to be a very progressive phenomenon. This leads to conceptual 
difficulties in the definition of what is commonly called Incipient Separation. And, as was the case in transonic 
flows, a distinction should be made before "true" Incipient Separation and "effective" Incipient Separation (see 
Section 3.8.1 below). 

To conclude the present Section, it can be said that overall tendencies observed for the upstream interaction length 
are still valid for the separation distance. 

3.7.6 - Concluding Remarks 

To briefly summarize the question of the streamwise scaling of a supersonic interaction, it should be again 
emphasized that the subsonic inner layer certainly plays a major role in the upstream propagation of upstream 
influence. This fact explains the strong dependence of the upstream interaction length (as well as the separation 
distance) on the Mach number distribution across the initial boundary-layer. 

Nevertheless, the actual propagation mechanism involves a complex coupling between the different "decks" 
composing the interacting boundary-layer. Thus, it is highly probable that inviscid-viscous interaction between these 
decks and the subsonic forward propagation are mutually responsible for the observed trends. 

At low Reynolds number, and for a turbulent boundary-layer, the viscous sublayer represents a greater part of the 
total boundary-layer. In these conditions, the interaction must be dominated by viscous phenomena in the near wall 
region, hence the Free Interaction Theory is more likely to prevail. On the other hand, at high Reynolds number, the 
viscous sublayer becomes exponentially thin. Therefore, interaction tends to be controlled by inertia and pressure 

forces, the influence of viscosity being minimized. Furthermore, at high Reynolds number, the subsonic layer is far 

inviscTd m^h^Lm "'"^ sublayer. As a consequence of these two facts, pressure propagation is now essentially an 

3.8 - Incipient Separation in Turbulent Supersonic Flows 1 

3.8.1 - Introductory Remarks I 

As in transonic flows, the knowledge of Incipient Separation conditions is of great practical interest in supersonic 
ajQd/or hypersonic flows. It is recalled that Incipient Separation is traditionally defined as the condition in which the 
shear-stress becomes vanishingly small at some point on the wall, while remaining positive elsewhere. However, as will 
be seen below, this definition can be inadequate for practical purposes in circumstances where a tiny separated zone 
seems to be always present, even for very weak shocks. As already mentioned, Kuehn (I96I) was the first to suggest this 
for a compression ramp geometry case : at the scale of the subsonic inner part of the boundary-layer, the wedge shape 
of the wall should inevitably provoke a local separation. Consequently, as for transonic flows (see Section 2.8 above) we 
will be faced with the necessity of distinguishing between "true" Incipient Separation and "effective" (or significant) 
Incipient Separation, the last situation alone being of real significance for practical applications since it corresponds to 
the onset of most dramatic change in the flow field. 

As we already know, detection of Incipient Separation is a very delicate task. This difficulty partly explains the 
often large discrepancy in the separation limits given by different authors. Thus, before examining the various 
separation criteria published to this day, it can be useful to describe the techniques most often utilized to determine 
Incipient Separation. The majority of these techniques can only be used to detect separation induced by a ramp (or a 
flare) because they call upon some adequate criterion based either on the upstream interaction length or on the 
separation length measured from the hinge of the ramp. Only a rather limited number of these techniques can be 
applied to diagnose separation induced by a shock reflection. In spite of this disparity, in what follows we will not make 
a real distinction between wedge induced and shock induced separation since the Incipient Separation mechanism is 
basically the same in both cases, as will be seen. 

3.8.Z - Techniques Used for the Detection of Incipient Separation 

In principle, direct measurement of wall shear-stress is the best way to detect the existence of a separated region 
as also to locate unambiguously the separation and the reattachment points. In particular this technique has been used 
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hypersonic flows by Holden (1972). The drawback of this approach is that accurate determination of the wall shear- 
stress is a very delicate task is regions of vanishingly small wall shear-stress where strong pressure gradients exist in 
addition. For this reason, direct measurement of skin friction has rarely been utilized to detect Incipient Separation. 

Many investigators working on this problem have preferred a detector beised on inspection of wall pressure 
distributions, pressure at the wall being a quantity easy to measure and generally known with high accuracy. In 
particular a popular detection technique is based on the occurrence of a "kink" - or triple inflection point - in the wall 
pressure distribution (Drougge, 1953 ; Kuehn, 1961 ; Kessler, 1972 ; Rose et al., 1973 ; Law, 1974 ; Settles et al., 1975; 
Hayakawa and Squire, 1982). An example of this technique is shown in Fig. 3.63. Since the occurrence of the kink may 
be difficult to detect, more "objective" variants of this technique have been proposed in particular by Law (1974) and by 
Settles et al. (1975). Several investigators (Spaid and Frishett, 1972 ; Settles et al., 1981) have shown that the separated 
region has to reach a certain minimum size before a kink in the pressure distribution appears. Hence, the method does 
not detect "true" Incipient Separation but the conditions corresponding to the onset of "effective" Incipient Separation. 

Another possibility to define the limit ramp angle corresponding to Incipient Separation is to look for a break or 
inflection in curves of pressure near the corner vs. corner angle « as shown in Fig. 3.64 (Thomke and Roshko, 1969 ; 
elfstrom, 1971 ; Spaid and Frishett, 1972 ; Settles and Bogdonoff, 1983 ; Coleman and StoUery, 1974 ; Hayakawa and 
Squire, 1982). 

X(KMn) 

125 150 

Occurence of 

a  triple inflection ("kink") in the wall pressure distribution 

(Kuehn, 1959). 
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Fig. 3.63 - Incipient separation detection 
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Fig.  3.64 — Incipient separation detection — Ramp flow — 

Plot of corner pressure vs ramp angle (Settles et al.,  1975). 

The limit ramp angle cq can Eilso be determined by considering the variation with a of the normalized upstream 
interaction length LQ/SQ already studied in Section 3.7.2. As shown in Fig. 3.65, Incipient Separation is identified with 
the shcurp change in the curves LQ/SQ VS. a (Kessler et al., 1970 ; Settles and Bogdonoff, 1973 ; Haysikawa and Squire, 
1982). 

Other techniques based on pressure measurements have been developed to detect separation. Among them, we can 
cite the "orifice dam" arrangement allowing the reading of the surface flow direction by means of small obstacles 
placed on the wall (Roshko and Thomke, 1969 ; Reda and Page, 1969 ; Rose, 1973). The existence of a separated region 
has also been looked for by Pitot pressure probing (Drougge, 1953 ; Bogdonoff et al., 1953 ; Seebaugh, 1968 ; Grande, 
1971; Appels, 1975 ; Delery and Lacharme, 1978). 

Incipient Separation has also been detected by means of surface flow visualisation techniques consisting in the use 
of a light coating of oil on the surface. Then one observes whether ridges of accumulation are present that could be 
associated with the stagnation points of separation and reattachment (Reda and Page, 1969 ; Spaid and Frishett, 1972 ; 
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Fig.  3.65 -  Incipient separation detection - Ramp flow - 
Inspection of upstream interaction length (Settles et al., 1975). 

Fig. 3.66 — Incipient separation detection — Ramp flow - 

Inspection of separation length (Settles etal., 1975). 

Delery and Le Balleur, 1972 ; Rose et al., 1973 ; Law, 1974 ; Appels, 1975 ; Hayakawa and Squire, 1982). From surface 
flow visualisation, one can plot the separation distance Lg/'^ Q against the ramp angled . Such plottings (cilready 
analyzed in Section 3.7.5) generally show that separation is present even for very small values of a. In these conditions, 
"effective" Incipient Separation can be identified with the occurrence of the rapid rise in the curves plotted in Fig. 
3.66. Nevertheless, there remains some vmcertainty in the definition of" i, since the separation curves are without 
sharp break. 
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It is also possible to detect separation by a careful processing of flow field pictures obtained by optical methods 
(namely, schlieren and shadowgraph pictures, holographic interferometry). The detection techniques consist in 
examining the change in the shock waves pattern associated with occurrence of separation as discussed in Section 3.4 
above (Drougge, 1953 ; Roshko and Thomke, 1969 ; Spaid and Frishett, 1972 ; Batham, 1972 ; Settles and Bogdonoff, 
1973 ; Coleman and Stollery, 1974 ; Holden, 1974 ; Appels, 1975 ; Law, 1976; Hayakawa and Squire, 1982). 

To conclude, it is to be noticed that most investigators working on the problem of Incipient Separation have jointly 
used several of the above techniques in order to confirm their data. They have generally found good agreement between 
results obtained by optical methods, surface flow visualisations and inspection of wall pressure distributions. However, 
for future work in this field, we should recommend the use of more advanced non-intrusive techniques like Laser 
Doppler Velocimetry which allows very fine and very instructive information on the separation phenomenon (see Section 
2.7.1 above and Simpson et al., 1981). 

3.8.3 - The Experimental Incipient Separation Limit 

Adiabatic, planar two-dimensional flows. i„ what follows, the limit for Incipient Separation will be given m 
the classical form a I = f (R6 ) for varying upstream Mach number MQ, the flow being a planar two-dimensional 
adiabatic flow. The effects ol heat-transfer at the wall and axisymmetry will be considered in separate Sections. 

This representation implies that the phenomenon depends essentially on only three parameters, namely : the 
upstream Mach number, the shock strength and the Reynolds number. As seen in the above Sections, the reality is 
probably more subtle. For example, the incompressible shape parameter Hjo of the incoming boundary-layer is also an 
important factor of influence whose effect is not always taken into account by the Reynolds number. Unfortunately, the 
paucity of data on the specific influence of Hjo makes a proper correlation of the dependence of Incipient Separation on 
Hio very difficult. It is for this reason that we will adopt the traditional form, it being understood that the results are 
restricted to a flat-plate incoming boundary-layer. 

In the case of separation induced by a shock reflection, aj will represent the equivalent ramp angle producing the 
same overall pressure rise as the two successive compressions through the incident and the reflected shock-waves. 
Experiments made by Holden (1972) and by Law (1976) have clearly shown that by considering this effective ramp angle, 
there is no essential difference between ramp-induced and incident shock-induced separation. As a matter of fact the 
pressure rise to Incipient Separation is almost the same in both situations. ' 

As a brief recall of comments made above, experiment clearly shows that 
must be made between : 

like for transonic flows - a distinction 

1 -   true" Incipient Separation which would correspond to the first appearance of a tiny separation bubble. This 
situation is detected only by the most subtle techniques like surface flow visualisations and/or careful schlieren 
photograph processing. For a corner flow case, existence of this limit has been questioned by some investigators 
(Settles et al., 1975) who argue that separation onset is basically a smooth and gradual transition between 
attached' and "separated" flow rather than an abrupt change. Seen from this view-point, the lower limit of the 

phenomenon is practically impossible to detect and "true" Incipient Separation would be a purely academic 
problem ; 

ii- "effective" Incipient Separation or Significant Separation which is observed when the separated bubble has 
reached a size large enough to produce "significant" change in the flow field. As has already been said, this 
state is the immediate precursor of more spectacular events caused by the rapid growth of the separated flow 
region. Effective Incipient Separation is in fact the most important for practical applications. It is the 
situation detected by the less sensitive methods. 

Figure 3.67 shows a plotting in the (R6 ^.a j) piaiie of the limits for "true" and "effective" Incipient Separation for 
the same flow (Rose et al., 1973). One sees that the difference between these two values ofHj can be very large. 

Because of its great practical importance and also because most available results are relative to this limit, in what 
follows we will mainly consider "effective" Incipient Separation and the term "effective" will be henceforth dropped. 

Most of the published data have been plotted in Fig. 3.67. In spite of an important scatter, the following trends can 
be discerned : 

1 - the angle aj (or the pressure jump pj/po) increases when the upstream Mach number MQ increases ; 

ii- at low Reynolds number, aj decreases as R g „ increases. Such a trend is in agreement with the Free Interaction 
theory. 

iii at high Reynolds number, most investigators have noticed a reversal in the Reynolds number influence : i.e., the 
angle aj increases with R go; the variation being rather slow~j ' 

iv- according to other investigators (Settles and Bogdonoff, 1973 ; Settles et al., 1981), the separation angle would 
m fact be independent of the Reynolds number. 

W/i SETTLES tlol. (1975)1 
• SMIOa FRISHETT (1972) 
A KUEKN (19S9) I 
■ ROSHKO & THOMKE (1969) 
_ HOLOEN   (1972) 
i lAW  (1974] 
O DAOUGGE  (1953) 
□ KESSLERitol  (1970) 

Fig. 3.67 - Shock induced incipient separation 
in supersonic flow. 
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It is difficult to be absolutely conclusive about the above tendencies since there is frequently a large uncertainty in 
the experimental determination of the angle oti. Furthermore, some experiments were performed in "uncommon" 
situations. For instance, Kuehn's very careful measurements, as well as those of Kessler et al. (1970), could have been 
compromised by the use of tripped incoming boundary-layers. Thus, these results do not correspond to "normal" 
turbulent boundary-layer. Also, the high Reynolds number experiments of Roshko and Thomke (1969) have utilized the 
tunnel wall boundary-layer and some argue that such a boundary-layer may differ from an equilibrium turbulent 
boundary-layer since it was submitted to a highly favorable pressure gradient prior to the interaction (Holden, 
1972).Further comments on the observed behavior cu-e included in the next Section. 

To close this Section, we will give some information on the effect of heat transfer at the wall and on Incipient 
Sepcuration in axisymmetric flows. 

Effect of Heat-Transfer at the Wall. Experiments performed by Spaid and Frishett (1972) and by Elfstrom (1971) 
clearly show that cooling the wall increases the resistance to separation. For example, Spaid and Frishett found that at 
MQ = 2.9, the Incipient Separation angle increased from 6.5 to 7.5 degrees as the ratio of wall temperature to recovery 
temperature was lowered from 1.05 to 0.47. However, in this field, experimental results are too scarce to provide really 
useable correlation curves. The greater resistance to sepsuration can be interpreted in the same terms as the decrease in 
separation length occurring when the wall temperature is lowered, i.e., cooling the wall reduces the thickness of the 
boundary-layer subsonic part (see Section 3.7.5 above and also Elfstrom's flow model presented in the next Section. This 
model provides a way to predict wall temperature effect which agrees reasonably well with the few available 
experimental results). 

Incipient Separation in Axisymmetric Flows. According to an observation made by Kuehn (1961) and also by 
Colemen and StoUery (1974), the Incipient Separation angle should be slightly higher for axisymmetric external flow 
than for planau- two-dimensional flow. 

In fact. Incipient Separation being a local phenomenon involving the boundary-layer properties in the vicinity of the 
wall, it can be safely conjectured that this process is certainly not very sensitive to eixisymmetrical effect and, in most 
cases, the sepcuration limit is identical to that found in planar two-dimensional flows (see also conclusions about the 
sepcuration distance in Section 3.7.4 above). 

Nevertheless, a sizeable influence can be felt if the upstream development of the bovmdary-layer has been 
significantly influenced by three-dimensional effects. This is the case if the thickness of the incoming boundary-layer is 
not small when compared to the distance of the wall to the symmetry axis. Then, the velocity distribution across the 
boundary-layer can be affected in such a way that the interaction process appreciably departs from a purely two- 
dimensional flow. 

For axisymmetric internal flow (like the flow inside a nozzle). Rose and al. (1973) found a very low Incipient 
Separation pressure rise (see fig. 3.68). However, these authors employed a technique which actually detects the "true" 
Incipient Separation limit. This limit is known to be considerably lower than for "effective" Incipient Separation. So, no 
conclusion can be drawn about a possible (but highly improbable) lower resistance of axisymmetric internal flows to 
sepeuration, except may be for flows with very thick boundary-layers. 
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Fig. 3.68 - Difference tietween "true"and "effective" incipient 
separation (Roseetai., 1973). 

3.8.4 - Simplified Models for Predicting Incipient Separation in Supersonic Flows 

Introductory Remarks. For reasons alreay given in Section 2.8.2 dealing with Incipient Separation in transonic 
flows, we will now present a short review of some correlations or "simple" methods aimed at the prediction of Incipient 
Separation in supersonic flows. In this review, we do not intend to be exhaustive since a great number of such methods 
have been proposed. We will limit our attention to the most typical and the most instructive (for a review containing 
other sepEu:ation criteria see Hahn et al. 1973). 

Criteria Derived from Boundary-Layer Type Analysis or from Fully Empirical Laws. O"^ °^ ^^^ oldest and 
maybe the simplest separation criterion can be derived from the analysis of Reshotko and Tucker (1955) for the effect 
of a pressure discontinuity on a turbulent boundary-layer (see Section 1.2.1 of Part n below). This criterion is simply 
obtained by stating that separation first occurs when, downstream of the discontinuity (which is a compression jump in 
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the present case), the transformed shape parameter H introduced by Reshotko and Tucker (H differs slightly from the 
true   shape parameter Hj) reaches the value representative of the velocity profile at separation, namely : H = 2.2. 

tl,» J°V ^'T *"'"^' shape parameter Hjo (or HQ), this situation arises for a well defined value of the ratio Mi/M„ of 
the Mach numbers on each side of the discontinuity. Hence the separation criterion is expressed by the simple relation : 

Ml/Mo = C 

s'trst'ii'c -"^'vlr °A^'^- "T ""T'" "f'P'^*" ''"•'?^'""* boundary-layer (i.e., Hio = 1.3), Reshotko and Tucker have 
suggested C - 0.762. The Mach number ratio can easily be converted into pressure raito or deflection angle by using 

ft°t,* ;   ^- ^'^'^"* "'*^"°" f ^'^'^*' ^ '""^^'^ ^" *^^ "^'^'''"^ ^^"° Pl/Po when the upstream Mach number Mo mcreases, which is in agreement with experiment. u   ucr wiQ 

Although the Reshotko and Tucker criterion does not display explicitly the influence of the Reynolds number 
™ th?Rl!^nM^^ neglected in their analysis), this influence is actually taken into account via the dependence of Hio 
on the Reynolds number (see Section 1 above). ° 

Seeing that for a well-behaved (or equilibrium) flat plate boundary-layer Hjo decreases when Rfi „     increases,     the 
present criterion predicts greater resistance to separation as the Reynolds number is higher. The pressure rise for 
Incipient Separation calculated by using the analysis of Reshotko and Tucker is given in Fig. 3.69 as a function of R^ 
with the upstream Mach number MQ as parameter. To execute these calculations the equilibrium flat-plate relation 
between Hjo and R5 Q has been utilized. -^ ^  

Todisco and Reeves (I969) also deduced a separation criterion from a theoretical analysis similar in nature to that 
of Reshotko and Tucker. Their criterion likewise predicts a slight increase with Reynolds number of the shock strength 
for Incipient Separation. Another separation criterion was proposed by Gadd (1953) from his momentum integral analysis 
(see Section 1.2.1 of Part H below). This criterion shows no influence of the Reynolds number. 

A separation criterion can also be established from the purely empirical curve proposed by Zukoski for the 
separation pressure (see Section 3.2.4 above and Fig. 3.70). It consists in equating the pressure ratio p,/po with the ratio 
Ps/po where Ps is the pressure at the separation point. It would also be possible to identify p^ / p \,ith the r-.f.' ^ 
Pp/pp corresponding to the plateau pressure. These two procedures define two separation limits^ghich are represented 
m Fig. 3.70. One sees that the curve obtained by equating pi and p    leads to a higher pressure ride for Incipient 

Fig. 3.69- Incipient separation criterion deduced from Reshotl<o 
and Tucker — Discontinuity analysis. 
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Fig. 3.70 - Incipient separation criterion deduced 

from Zukoski's correlation. 

Separation which is m close agreement with the limit given by the Reshotko and Tucker analysis if the value C = 0 762 
IS adopted. Although no experimental justification of this fact can be provided, the lower pressure rise in which mis 
equated to he separation pressure could be identified with the limit for "trie" Incipient^eparation: whereas ?he 
pressure ratio p^/po is which p^ is equated to the plateau pressure could correspond to the limit for "effective" Incipient 
Se^r.'        ':■ *^'* Zukoski's results do not contain any influence of the Reynolds number. ThereforeTthe 

Si^^eter if"ose°toT.7" ^"" "    ^^^ "' '" '"'' "^''^ '"^ " "^*"^''^''" ^"^°"'°§ boundary-layer whose shape 

It must be pointed out that the above Incipient Separation criteria have been experimentally confirmed for high 
Refolds numbers (say R6 o greater than 105) and for upstream Mach numbers that are not too high (say M^    lower 

Another completely empirical separation criterion was proposed by Roshko and Thomke (1974) from their 

vL"atron°of WS" aT^T^^ T*'^^"? interaction length (see Eq. 3.6 in Section 3.7.3 above). Examination of the 
variation of Lo/6 vs. a led these two authors to postulate that separation at a corner occurs when the upstream 
mteraction length is such that L^/S „ = 0.55, independent of Mach and Reynolds numbers. This assurptlon proTdes ^^ 

Ta f^c ro°fTe Ma' T % T'T' *^\«'^--f"<^"- coefficient Cfo. From the well known formulae expressLg c" 
as a functio of the Mach and Reynolds numbers, it as an easy matter to draw Incipient Separation curves according to 
the traditional pottmgai = f (R5 „). AS shown in Fig. 3.71, at high Reynolds number, the correlation with most of the 
experimen al data seems to be at least as good as the agreement among the different data. However, Tws "rrelation 

srf:rfiow'teVni;;i^tuTdtfre:po:d:or;;^   '^^^^*^°"' --' "*'-^" ^^^^^-^ ^^p-^"-- - ^^^^^^^^ ^y 



78 

Korkegi (1975) has proposed a completely empirical Incipient Separation criterion valid only for moderate to high 
Reynolds numbers. This criterion which is given in Section 4.4 relative to three-dimensional Incipient Separation, 
assumes that there is no influence of the Reynolds number, this influence being in fact questionable as seen above. 
Thus, Korkegi's criterion is simply a curve in the plane (R6 o, "'l) °r (R* o, Px/Po)- 

Criteria base on the Free Interaction theory. Several separation criteria have been derived from chapman's analysis 
(see Section 3.6 above). Basically, the pressure rise CcUi be obtained by postulating that separation first occurs when the 
pressure jump through the shock at the corner (or through the incident plus reflected shock) is such that : 

Po 1/2      2       -1/4 
       = 4.22 (2 Cfo)       (MS - 1) 

The constant 4.22 is the value at the separation point of the universal correlation function F introduced by Erdos and 
Pallone (see Section 3.6 above). In other criteria, the value 4.22 is replaced by 6. which corresponds to the plateau 
pressure reached in extended separation. The Incipient Separation pressure rises deduced from the Free Interaction 
Theory are represented in Fig. 3.72. The two families of curves correspond respectively to the values 4.22 and 6. Such 
criteria should not be used at high Reynolds number and Mach numbers that are too high (MQ < 5). 

Several variants of the above criteria have been proposed to try to improve agreement with experimental results. 

Thus, Roshko and Thomke (1966) (see also Holden (1972)) obtained a correlation law from the classical balance 
between the inertial and viscous forces at the wall. In the spirit of Chap>nan's analysis, this relation is roughly 
approximated by : 

n-po Twn 

At high Mach number, the interaction length scale can be estimated as L a MQS Q. Hence, a correlation law of the 

form ; 

P-r    -    Pf, 3 
_^ i^    oc MQ Cfo     is obtained. 

Prtdiclion ( L,/8, .0,55 , T, . Tj  ) 
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Fig. 3.71 — Incipient separation prediction at iiigh Reynolds number 

by Roshko and Thomke 11969). 

Fig. 3.72 — Incipient separation criterion deduced 

from the "free interaction theory". 

A completely empirical improvement of the above law was proposed by Elfstrom (1971) who has plotted the ratio 

foj.- Po)/Po 3^ ^ function of C M 5/2 

For hypersonic flows also, Needham and StoUery (1966]_deduced a correlation law by considering the quantity M^iq 
and the hypersonic viscous interaction parameter>C = M3/c*/Rx (C is the constant of the Chapman-Rubesin viscosity 
law). It is to be noticed that MQCIJ is the hypersonic limit for the pressure jump given by the linearized Prandtl-Meyer 
law. Also, in lamianr flows "V. "^ Mg c f ^^^ go that this correlation is similar to the law of Roshko and Thomke. Having 
found that correlation of experimental data leads to arelation of the form Moaj.'' "X. 1/2, Needham and Stollery finally 
proposed a correlation in which the parameter a^/M    g     i^ plotted against the Reynolds number Rx- 

The correlation laws more or less inspired by the Free Interaction theory are represented in Figs. 3.73 and 3.74. 
They generally correlate data at low to .noderate Reynolds number ; in this range they all predict less resistance to 
separation at iacreasiag Reynolds number. We already know that this tendency is in contradiction with experiment at 
high Reynolds number. 

Furthermore, the above separation criteria predict in fact "effective" Incipient Separation. On the other hand, the 
correlation theory proposed by Appels (1973) is aimed at predicting the limit for "true" Incipient Separation. Appel's 
theory also uses arguments belonging to the Free Interaction concept, but, as true Incipient Separation is identified with 
the birth of a tiny separation bubble, it is assumed that the flow reversal initially occurs in the laminar sublayer. 
Consequently, the phenomenon only involves parameters - or quantities - relative to tiiis sublayer. 
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turbulent flow at moderate Reynolds number (Needham 

andStollery, 1966). 

This analysis, can be seen as a very simplified version of more sophisticated multi-deck theories. Its a^^reecnent 
r'^eprerenred' ^'P'^°* Separation is relatively good, although the Reynolds number effect is apparently not correctly 

^ The inviscid flow model of Elfstrom. In 1971, Elfstrom proposed an attractive flow model for predicting Incipient 
Separation. His method is based oa the Tnviscid Shear Layer type of approach described in Section 1.4 of Part U below 
According to this approach, the interacting corner flow (in fact the method can also be applied to shock reflection), is 
considered as essentially invisciJ, the major part of the boundary-layer behaving like an iavisci.l rotational flow. In 
order for the calculation of such a flow to be possible, the viscous sublayer must be ignored. Furthermore, th^Tuter 
part of the velocity profile (which m fact comprises most of the boundary-layer flow) is extrapolated in its lower part in 
such a way that a (fictitious) slip velocity exists at the wall. The extrapolated profile is 

the continuation of the so-called "inviscid" portion of the boundary-layer, i.e., the region where the turbulent stress 
form the greatest part of the total shear-stress (broadly speaking, this corresponds to the logarithmic and the wake 
regions, see Section 1 above). i- & = wai^c 

Given the properties of the incoming flow (outer Mach number, Reynolds number, boundary-layer shape parameter 
wall-to-external temperature ratio...), the initial Mach number distribution can be computed by utilizing one of the 
available representations of the velocity distribution across a turbulent boundary-layer. In his calculations, Elfstrom has 
used a family of turbulent velocity profiles attributable to Green. 

Thereafter, the corner flow is computed by assuming that the entire flow passes through an oblique shock upon 
turning parallel to the ramp. Although an exact calculation of this flow would be possible by using the rotational Method 
of Characteristics, Elfstrom has chosen a simplified and more rapid version of this method which is very accurate at 
high Mach numbers. ' 

Of course, such an analysis can only be applied if the flow on the ramp remains supersonic. This restriction is not in 
fact overly severe since the subsonic part of a turbulent boundary-layer becomes excessively thin as soon as the outer 
Mach number is greater than three (especially at high Reynolds number). Wall pressure distributions computed with this 
method are generally in good agreeement with experiment. 

Elfstrom has postulated that Incipient Separation conditions correspond to the highest ramp angle for which the 
wall pressure distribution still appears to represent a fully attached flow. This condition Is identified as the ramp angle 
at which the oblique shock becomes detached at the wall in the inviscid flow model. Hence, prediction of Incipiint 
Separation is rather straightforward. The "wall" or "slip" Mach number M^ is first determined from the incoming 
velocity profile as explained above. Then, the turning angle a which produces a detached shock for the Mach number M 
is identified with the Incipient Separation angle ai. "" 

Curvesai = f(R6 Q) calculated by this method for adiabatic wall conditions are represented in Fig. 3 75 Agreement 
with experiment can be considered as remarkable. In particular, the change in the trend with increasing Reynolds 
number is accurately predicted. According to Elfstrom, this reversal in the aj trend with R6 „ closely follows the 
development of the wake component in the velocity profile. A stronger developed wake results in a more energetic 
boundary-layer which is thus more resistant to separation. The profile being fuller, M„ is higher, hence a hfgher 
detached shock limit. As reported by Appels, studies in turbulent boundary-layers (Johnson and Bushnell, 1970) show 
that close to transition the 'strength" of the wake component first decreases with increasing Reynolds number, hence a 
decrease mai in virtue of Elfstrom's model. For higher Reynolds number, the wake component becomes stronger and 

AOJASATIC FLOM NON ADIABATIC FLOW 

Expenmmt  Mo-9 ( Elfstrem , 1971 ) 

o      T, .029 T, T» = maii Umperjtur* 
•      T, .0.49lr Tr = recovery temperiLure 
a      T, = Q68Tr 

F/g. 3.75 ~ Incipient separation in turbulent flow - 

Prediction by Elfstrom's flow model. 
Fig. 3.76 - Incipient separation in turbulent flow - 

Prediction by Elfstrom's flow model. 
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the resistance to separation increases. The Elfstrom flow model also permits the prediction of wall temperature effect, 
as shown in Fig. 3.76. 

3.8.5 - Concluding Remarks 

As briefly explained the interaction between a shock-wave and a boundary-layer is a very complex phenomenon 
involving a delicate balance between inertia forces and viscous forces, especially in the near wall region. 

Perfect fluid models, like those of Elfstrom or Reshotko and Tucker (see also Rose et al., 1968), favor the 
contribution of the inertia and pressure terms. Thus, according to these models, Incipient Separation (as well as 
upstream influence), is essentially controlled by the more or less important filling of the incoming boundary-layer 
velocity and Mach number distributions. This fact explains why increasing the Reynolds number (which fills the velocity 
profile), or lowering the wall temperature (with increases the Mach number near the wall) tend to augment the 
resistance to separation. This interpretation is certainly valid at high Reynolds number where significant viscous effects 
are confined within an exponentially thin sublayer. In this situation, the interaction is controlled by a wall interaction 
layer which is considerably thicker than the viscous sublayer and penetrates some distance into the supersonic portion 
(see Roshko and Thomke, 1974). 

On the other hand, Free Interaction type theories privilege the situation at the wall, i.e., the role played by the 
viscous forces which are dominant in the wall sublayer. Thus, these theories are more likely to give a fair 
representation of reality at (relatively) low Reynolds numbers where the viscous sublayer thickness is a few (up to ten) 
percent of the total boundary-layer thickness. Furthermore, Free Interaction type theories seem more suitable for 
predicting "true" Incipient Separation which is a phenomenon confined to the very near wall region. To conclude this 
still open question of the reversal in trend with increasing Reynolds number, it should be said that Free Interaction 
analyses apply the classical boundary-layer equations to the entire interacting dissipative layer. This model is certainly 
questionable when the shock-wave penetrates deep into the boundary-layer, as is the case at high Mach number in 
particuleir. 

3.9 - Development of the Dissipative Layer Properties 

3.9.1 - The Mean Flow Field 

This Section will be brief since the evolution of the dissipative layer during a supersonic interaction is very similar 
to the evolution observed in transonic flow, the latter having been examined in  detail in Sections Z.7.3 and 2.9.3. 

To begin with, let us consider the behavior of the mean properties. For this purpose, we will first examine 
experimental results obtained by Rose (1973) in an eixisymmetric facility in order to avoid three- dimensional effects 
due to the side wall interactions present in nominally two-dimensional facilities. His experimental arrangement is 
constituted of an axisymmetric nozzle producing a uniform flow whose Mach number is equal to 3.88. A conical incident 
shock-wave is generated by a cone of a 9 deg. half-angle mounted at zero incidence along the nozzle centerline. The 
interaction under study occurs on the nozzle and test-section wall. The strength of the incident shock corresponds 
nearly to Incipient Shock-Induced Separation. The initial Reynolds number R6o is equal to 0.87 x 10°. The interacting 
flow was carefully probed by means of pressure and hot-wire probes. 

The experimentally deduced flow field is represented in Fig. 3.77. The corresponding streamwise evolutions of the 
displacement thickness 6* and of the boundary-layer mass-flow m relative to its initicd value m,, are plotted in Fig. 3.78. 
These results display trends typical of supersonic interactions : 

i - the boundary-layer thickness 6 decreases markedly in the course of the interaction. Here, the relative "jump" 
A 6/6 o between two stations located respectively downstream and upstream of the shock impingement region 
is equal to -0.35 ; 

ii- also, the displacement thickness decreases ; in the present case A 6 / 6 o = -0.35 ; 

iii-by contrast, the boundary-layer mass flow increases sharply. It is clear that the entrainment rate dm/dx is about 
em order of magnitude greater downstream of the interaction than upstream. 

The important rise in dm/dx during the interaction was also noticed in transonic interactions (see Section 2.9.3 
above). It results from the amplification of the turbulent mixing process, especially at the boundary-layer edge. Thus a 
larger amount of fluid is transferred from the outer flow into the boundary-layer. 
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On the other hand, the decrease in 6 and 6*observed in the present shock reflection is in contradiction with the 
tendencies observed in transonic and/or moderately supersonic flows (see Section 2.9.3 above and shadowgraph pictures 
m fig. 2.20). As a matter of fact, the "jump" in 6 and S^can be explained by considering the following expression of the 
mass-flow of a boundary-layer : 

m = pe ug (6 - 6^ ! 

wherep g and ug are relative to local conditions at the boundary-layer outer edge. Hence : 

6=6+ m^ g Ug I 
• 

As just seen, m rises steeply during the interaction. But at the same time, due to the decrease in the outer Mach 
number Mg, [, g ug) also increases, the increase in f) g Ug) being more pronounced as the initial Mach number is higher. 
Thus when MQ is raised, a situation can be reached in which the increase in fc) e^e) outbalances that of m leading to a 
thmnmg of the boundary-layer. The decrease of S'^is a consequence of that of 6 if the interaction is not strong enough 
to sufficiently "empty" the boundary-layer velocity profile. However, it is clear that there is no general rule to decide 
it an interaction will entail a thinning or a thickening of the boundary-layer since the phenomenon depends on many 
more peirameters than the initicd Mach number alone. 

Information on a separating boundary-layer in supersonic conditions is provided by experiments carried out by 
Behrens (1971). This author analyzed with great care the flow produced by a forward facing step placed in a two- 
dimensional uniform supersonic flow (see Fig. 3.16 and Section 3.2.3 above). The initial conditions were as follows : MQ 

= 4. and R^ o = 1-12 x 105. The flow was investigated by means of pressure probes. Moreover, some fluctuation 
measurements were performed by using hot-wires. Some of the streamwise velocity profiles located downstream of the 
separation point are plotted in Fig. 3.79. In this representation, h is the step height and x the distance from the step, 
positive values being upstream distances. The profiles exhibit a region of reversed flow and their shape is similar to that 
of the profiles found in transonic interactions. The x-wise evolution of the following quantites is plotted in Figs. 3.80 
and 3.81. : 

i - the maximum reversed flow velocity 

ii- the reversed mass-flow, i.e. the mass-flow between the wall and the ordinate yo at which the streamwise 
component crosses zero. 

One observes that the reversed flow region is fed by the flow which moves down the step and is sharply turned in 
the upstream direction. This flow is quickly accelerated to a velocity | U(„jiig = 0.37. Thereafter the maximum back-flow 
velocity decreases slowly to zero at the separation point. At the same tame, the reversed mass flow decreases steadily 
in magnitude because of the aspiration or entrainment effect of the forward flow along the u = 0 line (see sketch in Fig. 
3.80). Behrens indeed found that the profiles above the u = 0 line compare very well with boundary-layer profiles 
disturbed by large wall injection, if the injection rate at the wall is identical to the entrainment rate along the 
u = 0 line. 
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Reversed mass flow (Befyrens, 1971). 

3.9.2 - The Turbulent Field 

Accurate information on turbulence behavior in a supersonic interaction is provided by the experiments of 
Ardonceau (1981) (see also Ardonceau et al., 1980). These tests were carried out on a ramp flow with the initial 
conditions : MQ = 2.25 and R6 o = 0.90 x 10^. Three ramp angles were considered :a = 8, 13 and 18 deg. The 
measurements were performed by using both hot-wire and laser velocimetry. The wall pressure distributions for the 
three ramp angles are plotted in Fig. 3.82 and the corresponding mean streamwise velocity profiles in Fig. 3.83. The 
casea = 13 deg. is on the verge of separation and foro(=18 deg., a separated region is clearly seen. These velocity 
distributions exhibit the same general trends as those observed in transonic flows (see Section 2.9.3 above). In 
particular, downstream of reattachment (casea = 18 deg.), the flow is highly accelerated near the wall, which results in 
characteristic profiles including two inflection points. This feature will be interpreted shortly hereafter. 

The profiles of the RMS values_of the streamwise and vertical velocity fluctuations are plotted in Figs. 3.84 and 
3.85. Like in transonic flows, the / i?2 distributions reveal the existence of a very intense mzLximum of velocity 
fluctuations which is more and more detached from the wall as the interaction becomes stronger (i.e.,c<> increases). As 
we already know, the interaction with the shock entails a large increase in the fluctuation level, the production of 
turbulence being higher when the flow is separated. The increase in / v'2 is far less important which leads to the 
development of a strong anisotropy, as was already observed in transonic flows. According to Ardonceau et al. (1980), 
this situation can be explained by the fact that the turbulent kinetic energyjs essentially produced on the u'Z 
component (see Section 2.9.3.4 above) and redistributed on the v'2 and w'2 components mainly through the pressure- 
strain correlation. Due to the very short streamwise extent of the interaction, the tendency to isotropy cannot balance 
the lajce    ^a^ production and values of    'uF^f   v'2 greater than 16 Eire obtained in some regions. 

The leirge increase in the anisotropy which is a typical feature of this kind of interacting flows was also noticed by 
Rose and Johnson (1985) who investigated a shock reflection for the conditions : Mg = 2.9 and R6 o = 1.4 x lO^, the 
deflection through the primary incident shock being equal to 7 deg. The measurements were also performed by using 
both hot-wire and laser velocimetry. No sizeable separation bubMe was observed, the incident shock not being strong 
enough the induce large segaration. However, it was found that / i?^ increased very much, while the transverse 
fluctuation component/T^ remained nearly unchanged during the interaction (see Fig. 3.86). 
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The evolution of the Reynolds shear-stress -ilV has been investigated by several authors, among them : 

i - Rose and Johnson (1975) for the flow situation just described ; f 

ii- Marvin et al. (1975) who considered a shock reflection in an axisymmetric flow. The experimental arrangement 
was made up of a long cone-ogive -cylinder whose axis was aligned with the free stream flow. The incident 
shock-wave was produced by an annular shock-wave generator concentric with the cylinder. The free stream 
Mach number MQ was equal to 7.2 and the Reynolds number R^ „ close to 0.2 x 105. In the cited study, the 
Reynolds shear-stress was evaluated indirectly by the use of mean quantity (il, v, p,p ) distributions to solve 
boundary-layer type equations for the interacting dissipative flow. Direct measurements of -HV were later 
performed on the same arrangement by Mikulla and Horstman (1976) who employed hot-wire techniques; 

iii-also Rose (1973) (see also Rose and Childs, 1974) performed Reynolds shear-stress measurements with hot-wires 
on the shock-reflection flow already considered in the present Section. 

The essential features revealed by these investigations wiU now be briefly summarized. They are in fact similar to 
those found in transonic flows (see Section 2.9.3.4 above). 

i - as a result of the shock-wave/boundary-layer interaction, the shear-stress level is substantially increased (see 
the results of Rose and Johnson plotted in Fig. 3.87) ; 

ii- non-equilibrium effects are especially important throughout the interaction and persist far downstream of the 
interaction region. Importance of these effects is illustrated by the dimensionless mixing-length distributions 
plotted in Fig. 3.88. It is clear that for this kind of flow there is not a unique relationship between the shear- 
stress and the mean velocity gradient. This is obvious for the outer mixing length level (see fig. 3.88). Marvin et 
al. (1975) demonstrated that the distribution is also modified in the near wall region ; 

iii-the Reynolds normal stress terms, normally neglected in boundary-layer analyses, are important within and iust 
downstream of the interaction. 

A consequence of the large increase of the turbulent mixing rate (or Reynolds shear-stress) during the interaction 
IS that the momentum added to the flow near the wall is particularly important. This mechanism explains the rapid 
acceleration of the flow field which occurs in the downstream part of the interaction (see the results of Ardonceau 
above and also those obtained in transonic flows). So that (according to Rose) if another shock-wave/boundary-layer 
mteraction follows closely downstream of the first one, the boundary-layer could sustain a larger pressure rise than the 
initial boundary-layer without separating. 
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3.9.3 - Concluding Remarks 

To conclude this Section, it must be pointed out that the interaction between a shock-wave and a boundary- 
layerraises many other questions on turbulence behavior and involves a large number of complex phenomena. In fact, 
this very difficult subject belongs to the domain of research on fundamental turbulence. Therefore, a close examination 
of this problem would entail long developments that would be beyond the scope of the present AGARDograph. 
Further.nore, the modeling of turbulence in such complicated flows is still far from having received a complete and 
satisfactory solution. 4 ao^ig t'vi prolileiQs unsolved we can mention those relative to : 

i-   the importance of bulk dilation : 

ii- the role of brapiiratare - or density - fluctuations and the correlative problem of modeling of the terms 
involving these'fluctuations in the turbulence transport equations. For a thorough discussion of this question see 
also Rose (1973) for experimental results on temperature fluctuations in a shock-wave/boundary-layer 
interaction ; 

iii-the   theoretical   treatment   of   the  near  wall  region  is  still  in  great  part  conjectural  due  to   the  lack  of 
experimental information on this region. 

In addition, for supersonic and hypersonic flows where the shock penetrates deep into the boundary-layer, a crucial 
problem is that of the effect of a discontinuity on a turbulence field. The first theoretical results on this essential 
question have been obtained byDebieve (1980)' (see sago Debieve, Gouin and Gaviglio (1981)). This author developed a 
discontinuity type analysis allowing the calculation of the jump through the shock wave of all the Reynolds tensor 
components. His analysis leads to simple algebraic expressions relating the Reynolds stress values on each side of the 
shock-wave. This model has been compared with measurements made on a two-dimensional ramp model of an angle a- 6 
dec., th-^ aoitreao Madi ri.uaber being equal to 2.3. Thus, Fig. 3.89 shows a comparison between the computed and the 
.u "asared distributions of /^/u for this case. The calculation is seen to be in close agreement with experiment. 

Fig. 3.89 - Ramp flow - Jump in •TU'^ ttirougii tfie stioclc- 
wave (Debidveetai., 1981). 
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INTERACTION IN THREE-DIMENSIONAL FLOWS 

4.1 - Introductory Remarks 

In reality, as most flows of practical interest are three-dimensional, the two-dimensional case - about which a 
large amount of information is available - may appear as somewhat academic. In factj as pointed out by Green (1969), in 
Aeronautics, real two-dimensional shock-wave/boundary-layer interactions are in practice confined largely to 
axisymmetric flows, e.g., in axisymmetric air-intakes and nozzles and on the flare of launch vehicles or missiles. 

It is only for obvious reasons of simplicity that the majority of theoretical studies on shock/boundary-layer 
interaction are restricted to planar or axisymmetric flows. On the other hand, in the experimental domain, the 
complexity of 3-D flows, especially when separation occurs, renders extremely difficult and costly investigations as 
refined as those performed on 2-D interactions. The probing of a 3-D flowfield is still far from being a routine task in 
spite of the efforts accomplished to develop 3-D instrumentation and to improve the efficiency of the probing 
techniques. 

However, the continuous progress of both computer technology and numerical methods, should permit the 
calculation of more and more complex flows in the near future. As a matter of fact, very promising results have already 
been obtained in the prediction of 3-D shock-separated turbulent flows (Hung and Mc Cormark, 1978 ; Kussoy et al., 
1980, Anderson and Benson, 1983 see also section 5 of Part II). This fast development of computational methods renders 
particularly urgent the accompanying execution of detailed experimental investigations. The aim of these tests is to 
establish a clear physical picture of 3-D interacting flows - the organisation of which is still far from being entirely 
understood - and to provide data with which to assess the theoretical  methods. 

In spite of the great practical importance of the subject, the Section concerned with 3-D interactions will be 
relatively brief for the following main reasons : 

i    -    rather  complete information on 3-D shock-wave/boimdary-layer interactions can be found in a relatively 
recent AGARDograph devoted to 3-D separated flows prepared by Peake and Tobak (1980); 

ii -    the number of detailed and fundamental emalyses on 3-D interactions is still limited ; 

iii -    the general structure and the physical properties of these flows are not yet completely understood. 

The subject will be presented by describing the main features of typical 3-D shock-wave/boundary-layer 
interactions, the turbulent regime alone being considered. These flows cure : 

i - the swept wedge flow ; 

ii - the skewed (or glancing) oblique shock-wave ; 

iii - the blunt fin or cylindrical obstacle ; 

iv - transonic flow over a swept wing. 

However, before going into the physical description of the above flows, it can be helpful to briefly introduce some 
concepts and definitions pertinent to the separation phenomenon in 3-D flows. The reader interested in more complete 
information on this subject is referred to the already cited AGARDograph of Peake and Tobak. 

4.Z - Separation in Three-Dimensional Flows 

Let us first briefly recall the main characteristics of a three-dimensional boundary-layer and define basic concepts 
which will be used in the forthcoming discussion. It is customary to resolve the 3-D bound2Lry-layer in a streamline co- 
ordinates system that is based on the geometry of the external inviscid flow. In this system the first family of co- 
ordinates curves is the projection of the external streamline on the surface of the body and the second family consists 
of the orthogonal trajectories in the surface of the first family. Thus, as shown in Fig. 4.1a, the velocity vector in the 
boundary-layer is resolved into a stream wise component u along the external streamline and a transverse 
component w constituting   the crossflow along the orthogonal trajectories. 

Fig. 4.1 - Main features of a ttiree-dimensional boundary-layer. 

. Velocity diilri 
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In contrast with 2-D and axisymmetric boundary-layer flows in which the velocity vector remains in the same 
plane, the distinctive feature of 3-D flows is the ability to develop such a crossflow under the influence of a pressure 
gradient acting in the transverse direction. Thus the velocity vector in the boundary-layer can be progressively rotated 
resulting in a "skewing" of the viscous flow characterized by the crossflow angle 3 i^etiued in iig. 4.1b. This angle 
measures the deflection between the local streamline and the external streamline. When the distance y from the 
surface tends to zero, the velocity vector reaches a limiting direction which is colinear to the skin-friction vector Tj! 
At the same time, the streamlines tend to a limit position, the so-called "limiting streamline" which is also a trajectory 
of the skin-friction vector field. For this reason, limiting streamlines are also called skin-friction lines. As it will be 
seen below, the skewing of a 3-D boundary-layer can be very important, especially when separation occurs. In that case, 
the angle P^ between the skin-friction line and the external streamline can be close to 90 deg. 

The separation phenomenon has been extensively studied in two-dimensional flows, incompressible as well as 
compressible. But, in the three-dimensional case, what is commonly called "separation" becomes much more difficult to 
characterize and even to define. In fact, there is still some controversy about what separation means in 3-D flows. 

In a 2-D steady stream, it is generally recognized that separation occurs when the wall shear-stress (or equiva- 
lently, the skin-friction coefficient) vanishes at a certain point - the so-called separation point. Beyond that point, the 
wall shear-stress T^ is negative, the velocity distribution along a direction normal to the surface having a portion close 
to the wall where the streamwise component u streams opposite to that of the outer main flow. 

In most 3-D flows, such a definition becomes insufficient and useless because, on general 3-D surfaces, there is no 
privileged direction along which the sign of the wall shear-stress has an intrinsic significance (except in very special 
situations, such as a plane of symmetry or the case of an infinite swept wing). 

The first attempt to give a rational and universal definition of 3-D separation can probably be ascribed to Maskell 
(1955). However, the most decisive progress is this field was brought about by the cogitations of Lesendre (1952 1977) 
and of LighthiU (1963). » y y    ,   ym 

Legendre has shown that nearly all the observed surface flow patterns belonging to what are called separated flows 
can be interpreted m a rational and simple way by introducing a very limited number of elementary singularities into 
the family of skin-friction lines of an isolated obstacle. 

The singularities envisioned are isolated singular points on the surface where both the skin-friction vector and the 
surface vorticity vanish. These singular points are of two kinds : nodal points and saddle points. Among the nodal points 
(or nodes), one is led to distinguish between : 

i " nodes of attachment or separation where all the skin-friction lines - except one - have a common tangent (see 
Fig. 4.2a). In some circumstances - for example at the stagnation point of an axisymmetric body at zero angle 
of attack - the nodal point becomes an isotropic node (see Fig. 4.2b) ; 

ii - focus (of attachment or separation) where there is no longer a common tangent line. An infinity of 
streamlines spiral around such a point (see Fig. 4.2c). 

i _ node b _ isotropic  node c . focus d _ saddle point 

Fig. 4.2 - Three-dimensional separation - Singular point in skin friction lines pattern. 

Only two skin-friction lines can run through a saddle- point (see Fig. 4.2d) : all the other skin-friction lines "avoid" 
the smgular pomt. After bending, the skin-friction lines tend to take the direction of the two particular skin-friction 
lines. These two hnes act as barriers in the field of skin-friction lines, making one set of these lines inaccessible to the 
adjacent set. 

Simple topological rules dictate the number of nodes and saddle points that can exist on the surface of the same 
obstacle. The difference between the number of nodes and the number of saddle points is necessarily equal to two In 
these conditions, a flow will be said separated if its skin-friction line pattern contains more than two nodes. Since the 
skm-friction lines coming from two nodes of the same nature (attachment or separation) cannot cross, a singular point - 
which IS necessarily a saddle point - must be placed somewhere between these two points. Hence, it is concluded that 
any separated three-dimensional flow has at least one saddle point through which run two particular skin-friction lines 
One of these lines is the separation line. Thus the so-called separation line delimits two domains on the surface flow' 
The skm-friction Imes belonging to each of these domains run asymptotically into the separation line. This means that 
they never cross the separation line and that they have no contact with it. 

From this standpoint, the two dimensional case represents a very particular situation. It would correspond to a 3-D 
separated flow m which the separation line is rectilinear and is the locus of an infinite number of saddle points The 
separation point would be the trace of this separation line on the plane perpendicular to it that contains the 2-D flow 
As a matter of fact, careful surface flow visualizations of nominally 2-D flows reveal that in the vicinity of separation 
or reattachment, the structure of the surface flow is very complex. This is illustrated by the experimentally determined 
surface patterns shown m Figs. 4.3 and 4.4. The first example is relative to ramp-induced separation in a 2-D supersonic 

mn'Ihln      /T,^     l^lLi "^^f""^ v° ^"P^'-^°°i= reattachment behind an axisymmetric downstream  facing step 
(Roshko and Thomke,  1965 ; see also the experiments of Ginoux,  1962). In both cases, the surface flow exhibits a 
repetitive pattern looking like a succession of saddle-points regularly distributed on the separation or reattachment 

t'alTo        M ^   °°' * *° ^'°^^ ^^^^ two-dimensionality is in fact an abstraction without real existence in the 
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Fig. 4.3 - Two-dimensional ramp flow — Surface flow pattern 

(Settles etal., 1978). 

M„.2.09 

Fig. 4.4 — Reattacfiment behind an axisymmetric downstream facing 

step surface flow pattern (Roshkoand Thomke, 1965). 

Recently, Tobak aind Peake (1981) suggested a modification to the above definition of 3-D separation in order to 
take into account some experimental observations that seem to contradict the original definition. These authors have 
proposed making a distinction between : 

i   -    global separation which corresponds to the existence of a saddle point through which runs what they call a 
global separation line, 

ii -     and local separation where the sepauration line has its origin at a nodal point of attachment, for instance. 

Nevertheless, in both cases, the separation phenomenon is characterized by the existence of a particular skin- 
friction line - the separation line - that "separates" the skin-friction lines into two sets. 

In a sepeiration phenomenon, the skin-friction lines converge asymptotically towards the separation line from either 
side of this line. A reattachment process can be defined in the same terms, but now the skin-friction lines diverge from 
the reattachment line. 

In spite of this relatively clear definition, there is still some controversy about the origin of separation in 3-D 
flows. For example, some investigators claim that a separation line can form without necessarily originating from a 
singular point where the wall shear-stress vanishes (see Wang, 1983 and Hornung, 1983). Here, we will not enter into this 
dispute, but we will retain the following fact that is now commonly recognized : the system of singular points (nodes 
and saddle points) actually constitutes what Peake and Tobak have called a "flow grammar whose finite number of 
elements can be combined in myriad ways to describe, understand, and connect the properties common to Eill three- 
dimensional viscous flows". 

In order to illustrate the above considerations, Figs. 4.5 to 4.7 give examples of skin-friction line patterns for 3-D 
separated flows. The first example (see Fig. 4.5) is a separation produced in a subsonic flow by a cylindrical obstacle 
mounted perpendicularly to a flat plate, (similar separation will be considered in Section 4.3.3 for a supersonic incoming 
flow). The left- hand part of the figure shows the surface flow pattern determined ejcperimentally by East and Hoxey 
(1971) ; its right-hand part shows the same pattern as computed by the inverse 3-D boundary-layer method presented in 
Section 2.4.3 of Part II (Delery and Formery, 1983). The two surface flow patterns clearly exhibit the formation of a 
saddle- point contained in the plane of symmetry of this flow. The separation line originates from this point and appears 
evidently as an asymptote to the skin-friction lines. The second example (see Fig. 4.6) shows the occurrence of 
separation on a wing-like surface under infinite swept wing conditions. In this case, the flow is invariant along a 
particular direction which is here parallel to the wing leading edge. Flows of this kind are said to possess a cylindrical 
symmetry along a direction z . This property is expressed mathematically by stating that the derivatives along z are 
equal to zero. Cylindrical symmetry leads to considerable simplifications in the equations of motion which take a quasi 
two-dimensional form, although the solution may retain a strongly three- dimensional character, as will be shown in the 
forthcoming examples. For this reason, the assumption of cylindrical symmetry is frequently made in predictive 
methods. The experimental results shown in Fig. 4.6 were obtained by Van den Berg and Elsenaar (1972) ; they also 
correspond to an incompressible flow. In the case of cylindrical symmetry, the separation line is rectilinear and parallel 
to the direction z , the saddle-point singularity being in effect at negative infinity. 

SurFace flow pattern 

Surface  Tlow  pattern saddle point 
external streamlines 
skin Triction lines 

t_U, .Sims-' 
Experiment   ( East  and Hoxey , 1971   ) Computation ( Delery and F{fmery,1963 I 

Fig. 4.5 — Three-dimensional separation in front of a cylindrical 

obstacle in incompressible flow. 
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    skin Triction lines 

measurement stations 

separation line 

U..35rtn-i 
Experiment (YdenBerj and Elseiaar, 1972 )        CompuUlion ( Delery  and Formery , 1983 ) 

Fig. 4.6 — Three-dimensional separation on an infinite swept wing 

in incompressible flow. 
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Fig. 4.7 — Computed flow pattern over an infinite swept wing 
in transonic flow. Fig. 4.8— ne swept corner configuration. 

The last example (see Fig. 4.7) is purely numerical. The calculation simulates separation on an infinite swept wing 
m transonic flow, the boundary-layer being turbulent. This calculation was made by using the already cited inverse 
boundary-layer method. It shows a case of separation followed by reattachment in what can be called a bubble-tvne 3-D 
separation.  i^-^ 

The above examples exhibit trends typical of separation in 3-D turbulent flows which will be observed in the 3-D 
shock-wave/boundary-layer interactions examined in what follows. To summarize, these features are the following : 

i - in the separated region, the external streamlines (i.e., the streamlines at the boundary-layer edge) are only 
slightly deflected (see Fig. 4.5 to 4.7), whereas the skin-friction lines turn abruptly on approaching the 
separation line. Thus, the surface flow pattern could give a misleading impression that the entire flowfield is 
highly skewed from the streamwise direction, which is not the case. In fact, the major part of the boundary- 
layer flow has not yet been strongly affected in the separation region. It continues to stream in a direction 
differing slightly from that of the incoming flow. Most of the flow turning takes place over a thin resion of 
low energy fluid close to the wall. 

" " ^, 3-D separation, the wall shear-stress - or more exactly the modulus of the wall shear-stress vector 
I Tw I - generally does not vanish on a separation line, except of course at a node or a saddle-point. Thus it is 
clear that the vanishing of the wall shear-stress cannot be used as a criterion - or even a definition - for 
separation m 3-D flows. The only property identifiable with separation seems to be the passage of iT^^I 
through a mmimum. However, this property is a frequently made observation which has no rationkl 
justification. The unique feature of the wall shear-stress at a separation line is that the component 
of Tw normal to tne separation Ime vanishes, but this property results simply from the definition of a 
separation line. It is of no help in identifying separation from wall shear-stress measurements. 

iii - the separation phenomenon is characterized by a very rapid turning of the skin-friction lines when they 
approach the separation Ime from upstream. This could give the impression that they are tangent to the 
separation Ime. On the other hand, the tendency towards the separation line from downstream as well as the 
tendency towards a reattachment line is far more progressive. 

To conclude, it should be said that the consideration of the surface-flow pattern plays an important role in the 

stTuc'turrnf tirr fr*'°'lf ^'"^ separated flows. Surface flow patterns are of the greatest help in understanding the 
^h.Hn 1       !      T-^\t   ""P,^"°f "^ ^^^°"t'^^' tl^^y Pl^y ^ r°le comparable to that of optical methods (schlieren or shadowgraph pictures) m the study of two-dimensional interactions. ks^nxieren or 

4.3 - Typical Interactions in 3-D Flows. I 

4.3.1 - Interaction at a Swept Corner 

This first flow is produced by a corner (or ramp) of angle a swept at an angle X in relation to the incoming 
supersonic flow which is assumed uniform for the sake of simplicity (see Fig. 4.8). It is clear that X = 0. corresponds to 
W !    ■ "^^Z "^ <^°"«'f ^f d •" ^"'"e detail in Section 3 above. Thus, with the present configuration, by progressively 

from . r   H' ""^ "?' ' ^ '"■°" ^''°' '' '' P°'"^'" *° "'^'^ ^ "°" ^^'"^*i°" i" ^^'-^ there is a con muous fransition from a two-dimensional mteraction to mteractions where 3D effects become more and more pronounced. 

The corresponding change in the surface flow pattern is illustrated by the photographs shown in Fig. 4.9. These 
experiments were carried out by Settles and Perkins (1979) at an upstream Mach number of 3 and for a Reynolds number 
range between R6o = i.8o x io6 an<i 6.E3 x lo6. The flow patterns presented here are relative to an S a = 24 deg 
Also, a case where a = 16 deg and X = 30 deg. is presented. When the corner is swept, the surface flow pattern reveafs 
l.J.rZ"^ .: separation line and of a reattachment line originating both from the corner apex. Except Tn the apex 
region, this pattern has a close resemblance to the computed pattern of Fig. 4.7. Its essential features^e 
schematically represented in Fig. 4.10. Their examination reveals the following properties : ^""^""^^   features   are 

' " IZT^J speaking, the flow can be divided into two regions. Near the apex, the flow tends to develop a 
conical structure ; the distance separating the separation line from the reattachment line increases 
progressively with the distance 5 from the apex. Figure 4.11 a shows a very schematic representation of the 
projected streamlines m a vertical plane perpendicular to the corner hinge. Due to the spreading of the 
separated flow, the lateral outflow within the recirculation increases with ? in such a way that an extra 
fiom 'th into the recirculation. The reattachment stream surface thus passes over the surface springing 
from   the   separation Ime  (the reverse  situation  would be  observed if  the  extent  of  the  separation  were 
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At a certain disteince 5c i^o'^ the apex, the flow develops a cylindrical pattern, in the sense that it is 
invariant along directions parallel to the corner hinge line (the flow possesses a cylindrical symmetry). The 
length required for the inception of a cylindrical flow increases with the sweep angle ^ (all other parameters 
being kept fixed). Also, at a given X , ^^ increases when a is increased. Obviously, the cylindrical symmetry 
is not always observed for such flows. Its establishment necessitates a sufficient spemwise size of the 
experimental arrangement. As we already know, for a cylindrical flow, all derivatives peu:allel to the corner 
are zero. In particular, the lateral flow within the separation bubble is constant. Thus, the projected 
streamlines constitute a closed "recirculation bubble" (see Fig. 4.11b). 

)-'^j- 

*-.^')'t 

^^ 

a = 16df^ 

ReaUachment line 

Corner line 

Separation line 

Reattachment line 

Corner line 

Separation line 

limit of uostream influence 

Fig. 4.9 — Swept comer flow — Surface flow patterns 

(Settles and Perkins, 1979). 

Fig.  4.10 - Swept corner flow - Scfiematic represen- 

tation of the skin friction line pattern  (Settles and 

Perkins, 1979). 

60     Xdeg. b _ Plane B . Cylindrical  fla» 

Fig.   4.12  —  Swept corner flow — Deviation of skin 
friction  line in  the separated region -  4/ defined in Fig. 4.10 

Fig. 4.11 — Swept corner flow — Schematic representation 

of the projected streamlines in plane perpendicular to the corner hinge. 

ii - as shown in Fig. 4.10, let us define the angle ^ as the deflection of the skin-friction lines in the central part 
of the separated region (also called the secondary flow region). As shown by the experimental data points 
plotted in Fig. 4.12, ^ starts immediately to deviate from pure flow reversal (4* = 0 deg.), as soon as a small 
amount of corner sweep is added to the initially 2-D interaction. In the present case, the skin-friction lines 
of the secondary flow appear to approach asymptotically a situation in which they are inclined at 10 deg. to 
the corner line at the higher sweep amgles. 

iii - the wall pressure distributions measured along a line z = constant (see Fig. 4.8) for a = 16 deg.and varying 
sweep angle X aj:e plotted in Fig. 4.13. A striking feature of the interaction is that the pressure distribution 
does not change at all from the 2-D case for sweep angles up to 10 deg, although, at the same time, the flow 
in the vicinity of the wall is strongly affected, as shown by the rapid variation of 4* (see Fig. 4.12). When X is 
greater than 10 deg, the pressure rise at the wall starts to spread progressively both in the upstream and in 
the downstream directions. 

Let us now consider scaling properties of the upstream influence. In the present situation, the interaction 
propagates both in the x streamwise and in the spanwise directions, so that one must consider the two interactions 
lengths XQ and Zg defined in Fig. 4.10. It is clear that the interaction length scales must necessarily come from the 
incoming flow since the corner geometry has no significant dimension. However, the appropriate scales will, in 
principle, depend also on the two angles X and a. The 2-D analysis of Settles et al (1981) (see Section 3.7.2 above), can 
be extended to 3-D interactions for which it leads to a very good correlation for the lengths XQ and ZQ , as shown in Fig. 
4.14. It is to be noticed that, for the corner angle a = iO deg. cylindrical symmetry is reached within the test section 
only for X less than 50 deg. and if a = 24 deg. for X less than 40 deg. The problem of the spanwise propagation of the 
swept-corner influence in the apex region has been analytically investigated by Stalker (I960, 1982). By using the small 
perturbation approach of the Lighthill triple deck model (see Section 4.1 of Part II), this author found that this influence 
propagates at an angle (relative to the corner hinge line) determined by the sweep angle, the properties of the 
boundary-layer (namely its velocity profile) and the upstream Mach number. It does not however depend on the 
boundary-layer thickness. This theory is restricted to weak disturbances and to non-separated flows. 

As we know, when cylindrical symmetry exists, the interacting flow is in fact a quasi 2-D flow. Then, purely 2-D 
correlation properties can frequently be applied by considering the flow quantities normal to the sweep angle (see, for 
example Stalker, I960). Thus, Settles and his co-workers have found that the Roshko and Thomke (1974) correlation 
given in Section 3.7.2 above, works satisfactorily well when the normal components of the Mach number, the Reynolds 
number and 6o ^e used. This kind of transposition is also applied in order to derive 3-D Incipient Shock-Induced 
Separation criteria (see Section 4.4 below). 
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Fig. 4.13 - Swept corner flow - Wall pressure distributions 
(Settles and Perkins, 1979). 
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Fig. 4.14 - Swept corner flow ~ Streamwise and spanwise scaling 

of upstream influence lengths (Settles et al., 1981). 

interaction with separation at a swept corner was also investigated by Bachalo and Holt (1975). These authors used 
a symmetric model formed by making two oblique, symmetric cuts in a plane compression corner. Their experiments, 
which include boundary-layer surveys, were carried out both in laminar and turbulent flows. 

4.3.2 - The Skewed Shock-Wave Interaction 

This kind of flow is schematically represented in Fig. 4.15. A planar shock-wave is generated by a plate with a 
sharp ieadmg-edge set at an angle of attack aQ- in variants of this arrangement, the shock is generated by a ramp. 

In the present situation, one considers the shock-wave/boundary-layer interaction taking place on an adjacent flat 
plate perpendicular to the shock generator. This kind of flow is also termed "Glancing Shock-Wave/Boundary-Laver 
Interaction and is identical to the so-called "Sharp Fin-Induced Shock/Boundary-Layer Interaction". In pratice, such 
phenomena occur, for example, on the side plate of supersonic two-dimensional mixed or external compression inlets or 
on the wing surfaces of aircraft with highly swept wings in supersonic flight. 

This type of 3-D interaction has been more intensively studied than the other types ; presumably because of its 
greater practical importance... and also because it is amenable to relatively simple analyses. Most of these analyses, 
discussed m Section 1.3 of Part II, assume that the flow is cylindrical in a direction parallel to the freestream shock. 
I his assumption permits a rather straightforward extension of purely 2-D theories. 

Let us first examine the skin-friction pattern resulting from an interaction of this kind. For this purpose, we will 
use experiments performed by Oskam et al. (1976). Many other experimental results can be found i^ the literature 
(Stanbrook, I960 ; Lowrie,1965 ; West and Korgegi, 1972 ; Law, 1975; Peake and Rainbird, 1975 ; Cousteix and 
Houdeville 1976 ; Oskam et al., 1977 ; Degrez and Gmoux, 1983). In the present case, the mcoming turbulent flow Tas 
an outer Mach number equal to 2.95. Figures 4.16a and 4.16b show photographs of oil flow patterns obtained for two 

Iti^t to he H^en°tl''°^nT^       '^^ ^"^ °^"^"^^' '^^' ^°' *^^ '°^" "^^"^ "^""G (ao = 4 deg.), the skin-friction lines 
•?>,   lu ^'^ <l^"^f ^'i *^" upstream of the calculated shock position (from mviscid flow theory) which nearly coincides 

with  the  shock location  m  the  outer  mviscid stream.  The  maximum  deflection angle  of the  skin-friction lines is 

3e°?"t tacfl-,!." ^° ^"^:' "'';"'' ''n^'^""* '^'""^ *^^ '''°''^ generator angle but is well below the shock wave 
angle 0. In tact, tne present surface flow pattern is typical of a 3-U boundary-layer midergoing a moderate 
compression. The adverse pressure gradient causes the slower moving fluid in the bottom part of the bouidary-layer to 
deflect to larger angles than the faster moving fluid in the outer portion of the boundary-layer 

- shock generator 

a - Oj = 4 deg. ^  Unseparated flow b _ ttf = 10 deg.  -  Separated flow 

Fig. 4.16 - Skewed shock wave - Surface flow patterns on side wall 
(Oskam etal., 1976). 

generator 
Fig. 4. IS - The skewed shock wave (or glancing shock) configuration. 
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The surface flow pattern also reveals the existence of a reattachment line (R)close .to the trace of the shock 
generator. In the present situation, the two lines (S) and (R) originate from a region very close to the shock generator 
leading edge. In this region, the size of the surface phenomena is too small to be resolved by the oil technique, so that 
the singular point(s) at the origin of the separation and reattachment lines cannot be observed. 

A tentative representation of this kind of interacting flow was postulated by Kubota and StoUery (1980). In this 
model, (see Figs 4.17a and 4.17b) a first corner vortex forms. Also, the inner part of the shock generator boundary-layer 
is pushed under the sidewall boundary-layer. When separation occurs (see sketch in Fig. 4.17b), the skin-friction lines of 
this flow constitute the pattern observed downstream of (S). A separation sheet emanates from (S) where the two 
families of skin-friction lines meet. Then the sheet rolls up into a vortex. 
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Fig. 4.17 — Skewed shock wave — Schematic representations 

of the flowfield (Kubota and Stollery, 1980). 

Wall pressure distributions measured by Oskam and his colleagues are plotted in Fig. 4.18. These distributions were 
measured along the Xg direction defined by the sketch in Fig. 4.18. The different curves correspond to increasing values 
of the shock generator angle WQ (the distance Xg is normalized by the boundary-layer thickness 6 Q at the beginning of 
the pressure rise). A key feature of the plotted distributions is that the upstream extent of the interaction measured 
from the shock location ( Xg = 0.) and along the chosen direction is largely independent of the shock strength. However, 
a careful reconsideration of the problem of upstream influence by Dolling and Bogdonoff (1981) has shown that with this 
kind of plotting, the influence of shock strength is masked. This fact is demonstrated by the correlation curves 
represented in Fig. 4.19. Here, the streamwise influence length XQ is plotted against the distance E, for different shock 
strengths (C is the distance from the shock generator leading edge measured along the free stream shock-wave). 
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Fig. 4.18 - Skewed shock wave - Wall pressure distributions 

along a line Y-constant (Oskam etal., 1976). 
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Fig. 4.19 — Skewed shock wave — Streamwise upstream interaction 

length (Dolling and Bogdonoff, 1981). 

In fact, the length XQ has no particular physical significance. A more correct scaling of the phenomenon is 
obtained by considering the distance LQ normal to the free stream shock. Now, with LQ, the influence of the shock 
strength is clearly visible as shown by the data points plotted in Fig. 4.E0. Furthermore, a good correlation of the shock 
strength effect can be obtained by normalizing the normal distance LQ with a "normal Mach number function" MR 
defined as the ratio of the normal Mach number M^o = MosinG to a "reference" normal Mach number (here, the value of 
M„„ corresponding to ttQ = 2 deg.). As shown in Fig. 4.21, the collapse of the data for various aG on a single curve 
demonstrates the essential role played by the normal flow in the determination of certain basic properties of this kind 
of interaction. 
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Fig. 4.20 -Skewed shock wave - Normal upstream interaction 

length (Dolling and Bogdonoff, 1981). 
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Similar to the case of the swept ramp, a typical feature of the skewed shock/boundary-layer interaction is the 
large extent of upstream influence, even for very weak shock-waves. This behavior is clearly demonstrated by the 
variation of LQ with UQ plotted in Fig. 4.22. One observes the three following tendencies : 

i        -  the normal interaction length LQ becomes important as soon as BQ is different from zero ; 

ii      -  the increase of Lg with ttQ is moderate ; 
■ 

iii    -  the upstream interaction length is typically an order of magnitude or more greater than that occurring in 2- 
D interactions (with the same incoming flow conditions). 

Also, Dolling and Bogdonoff (1981) found that the functional dependence of L^ on the Reynolds number and the 
mcommg boundary-layer thickness is the same as that observed in bofh unswept and swept compression corners. 

Lu and Settles (1983) have examined the similarity properties of the interaction produced by a fin swept at an 
angle X (see sketch in Fig. 4.23). As demonstrated by data plotted in Fig. 4.23, this flow obeys a conical similarity 
prmciple irrespective of fin sweepback or angle of attack. Also, scaling laws for Reynolds number and normal Mach 
number effects already mentioned (see Figs. 4.14 and 4.21) are seen to apply well to the present interaction. 
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Fig. 4.22 - Skewed shock wave - Normal interaction iengtft as 

function of shock wave strength (Doiling and Bogdonoff, 1981). 
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Fig.  4.23 — Skewed shock wave produced by a swept fin  — 

Scaling of normal upstream interaction length (Lu and Settles, 

1983). 

Mn-T^T ^*''"'=*"''^ °^ three-dimensional separation produced by a skewed shock-wave was also investigated by Korkegi 
(1976) who gave a detailed description of the flow region between the interaction origin and the shock generator. Thus, 
for increasing shock strength, Korkegi proposed the sequence of flow patterns represented in Fig. 4.24 : 

i    - sketches a and b correspond to  the situations ah:eady analyzed. In a, the shock strength is not sufficient to 
induce separation ; in b separation occurs. 

ii - as the separated region grows in size due to a progressively stronger shock, the "reverse flow" can also 
separate. Then, a secondary separation region develops within the primary one (see Fig. 4.24c). In the sketch, 
(S) and (R) are respectively the primary separation and reattachment lines and (Sj) and (Rj), the secondary 

\iJL[L^[m:_  \\\IY   I   IU.I/: 

d. secondary incipient 

Legend    (1)    skin-friction lines 
I 1)    wall  shear stress component  normal  to lines  of interaction 
15)   streamline projection on surface normal to lines of interaction 

Fig. 4.24 - Skewed shock wave - Schematic representation of the 

fiowfieid (Korkegi, 1976). 
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Fig. 4.25 — Skewed shock wave — Typical surface pressure and surface 

heating profiles. 
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The figure also shows (very schematically) the wall shear-stress component T^^ normal to the lines of interaction 
defined in the sketch. As these lines have practically the direction of the separation and reattachment lines (the flow 
being assumed conical), Twn changes sign on (S), (R) and (Si), (Rj). Also, the streamlines projected on the surface 
normal to lines of interaction are represented. 

The above region is the siege, not only of high pressure rises, but also of high heating rates in non-adiabatic flow 
conditions (for example, in the case of a reentry vehicle flying at hypersonic Mach numbers). Typical surface pressure 
and surface heating distributions along a spanwise direction are schematically represented in Fig. 4.25. As the free 
stream enters the interaction region, it is compressed through a first pressure rise. This increase may result in an initial 
pressure peak or plateau. The first compression is generally followed by a much higher pressure peak occurring between 
the shock-wave and the shock generator (see the curves of Fig. 4.18 corresponding to high angles UQ ). The surface 
heating distribution increases more slowly and reaches a peak value located also between the shock-wave and the shock 
generator. 
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Several empirical correlations have been proposed for predicting the main features of the above pressure and 
heating distributions. For instance, Neumann and Hayes (1977) gave the following formulae to represent peak pressure 
(second highest peak ppi,^ ) aind peak heating hp^Csee Fig. 4.25) 

Ppk 

Po 

ST. 

= (M„ sine)"P 
pk 

STn 
= (MQ sine - 1) NST + 0.75 

where ST„k is the Stanton number, STQ being the value of ST at the origin of interaction. The exponent np and the 
coefficient NST are functions of X/i>^ given in Figs. 4.26a and 4.26b. Similar empirical laws have been proposed by 
Scuderi (1978). For the problem of kinetic heating due to skewed shock-wave/turbulent boundary-layer interaction, see 

also Degrez (1981). 
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Fig. 4.26 - Skewed shock wave - Correlations for higher peak pressure 

and peak heat transfer (Neumann and Hayes, 1977). 

4.3.3 - Obstacle - Induced Interaction 

The third configuration envisaged consists of a blunt cylindrical obstacle - which can be a fin with rounded leading 
edge - mounted perpendicularly to a flat plate on which a turbulent boundary-layer develops. For the sake of simplicity, 
the incoming flow will be assumed uniform. The flow resulting from an obstacle-induced shock-wave/boundary-layer 
interaction is the supersonic counterpart of the well known incompressible 3-D separating flow analyzed in great detail 
by East and Hoxey (1971). Part of the surface flow pattern is shown in Fig. 4.5. 

When the obstacle is sufficiently tall and the flow supersonic, very high values of pressure, pressure gradients and 
heat transfer are measured both on the obstacle and in its vicinity on the flat plate. Such high values are not found for 
small protuberances, but in this case, the disturbance caused by the obstacle can persist for hundreds of protuberance 
heights downstream. Thus, this kind of flow is of great practical importance and has been the object of several specific 
investigations (Price and Stallings, 1967 ; Westkaemper, 1968 ; Korgegi, 1971 ; Winkelmann, 1972 ; Kaufman et al., 
1972 ; Dolling et al. , 1979). 

The present 3-D flow is excessively complex emd depends on a leurge number of parameters : the dimensions (three 
lengths), shape and orientation (sweep) of the obstacle, free stream Mach number and Reynolds number, the undisturbed 
velocity profile of the incoming boundary-layer and its thickness 6 Q- Because of this complexity, detailed information 
on such interactions is still scarce and fragmentary. Therefore,, the structure of the flow, as well as its general 
properties, are still far from being completely elucidated. Thus, the present Section is restricted to a brief presentation 
of the most typical flow features. 

The overall structure of the outer flow ahead of a fin with circular leading-edge is revealed by the shadowgraph of 
Fig. 4.27a . The present experiments were carried out by Dolling et al. (1979) at an upstream Mach number Mg = 3 and 
at high Reynolds number. The shadowgraph visualizes the trace in the symmetry plane of the shock system at the foot 
of the fin. This system consists essentially of a bow shock and of a separation shock originating in the inner part of the 
boundary-layer well ahead of the fin. The interaction between the bow shock and the separation shock results in a 
complex system made more visible by the sketch in Fig. 4.27b. The represented schema of the shock structure was 
designated Type IV by Edney (1968). This structure includes a triple point I, a Mach stem and also a supersonic jet 
embedded in a subsonic region. At high Mach number, the peak impact pressure of this jet can be extremely high, as can 
be the local heat transfer. The structure represented in Fig. 4.27b is not proper to all fin induced flows but corresponds 
to particular conditions. However, its main components - the bow shock, the separation shock and the Mach stem - are 
encountered in every such flow. 

impinging shock 

-plane oF symmetry shock 

i . Shadowgraph of the flowfield b - Schematic of shock structure 

Fig. 4.27 - Obstacle induced flow - Shock structure ahead 

of the obstacle (Dolling et al., 1979). 
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An example of surface flow pattern is shown in Fig. 4.28. It was obtained by Sedney and Kitchens (1977) at 
Mo - 2.5. In this experiment, the obstacle is a circular cylinder with a height equal to 2.67 times its diameter. The most 
visible features of the pattern are : 

I. 

i    -    the saddle-point singularity S constituting the "separation point" in the plane of symmetry. One sees very 
clearly the pattern of skin-friction lines that tend asymptotically into the separation line passing through S ; 

ii - the reattachment point and the corresponding reattachment line close to the obstacle (these features, of a 
much smaller scale, are barely visible on the photograph) ; 

iii - two oil accumulation dots, downstream of the cylinder. They are the traces on the surface of two tornado- 
like vortices. These vortices spring from focus-type singular points in the skin-friction lines pattern, then 
bend over into the free stream direction and continue as the trailing edge pair. 

the photograph also shows the traces of the bow shock and of the Mach stem. 

R„ = 3 X 10' m-' 

Fig. 4.28— Obstacle induced flow — Surface flow pattern 

of 3 two-vortex configuration (Sedney and Kitchens, 1975). 
Fig. 4.29 - Obstacle induced flow - Surface flow pattern 

of a six-vortex configuration (Sedney and Kitchens, 1975). 

The present case is an example of flow with two horseshoe vortices that surround the front part of the obstacle and 
then continue downstream in a direction parallel to that of the free stream. Here, the streamwise extent of the large 
vortex is about 25 times that of the small one. For a given cylinder geometry, at fixed Mach number MQ, the number of 
such vortices may change considerably with the Reynolds number. Thus, Fig. 4.29 shows the surface flow pattern of a 
six-vortex configuration. On the photograph, (S) is the primary separation line, (Si) and (S2) the secondary separation 
lines, (R), (Ri) and (R2) being the corresponding reattachment lines. Also, flows with four vortices were observed by 
Sedney and Kitchens. In each case, (S) and (R) are always present, but the structure between them changes. 
The change in the flow structure occurs for rather small variations in Reynolds number and are perfectly repeatable. 
According to Sedney and Kitchens, this suggests that there may be a delicate balance in the flow which is upset by 
changing the Reynolds number so that one structure easily changes to another. Tentative representations of the flow off 
the surface in the symmetry plane are shown in Fig. 4.30. The sketches correspond to a two-vortex and to a six-vortex 
flow m the case of a small obstacle (then, there is no attachment on the obstacle). They are not to scale and the 
streamwise dimensions are magnified compared to vertical dimensions for clarity. For the same reason, the traces of 
the shocks are omitted. Because of symmetry, there is no flow across a symmetry plane, but there is flow out of or into 
it, so that streamlines being tangent to it can appear to end in a side view of this plane. 

- Two-vortex conriguration 

Fig. 4.30 - Obstacle induced flow - Schematic representation of flow 

off the surface in the symmetry plane (Sedney and Kitchens, 1977). 

^^^^'^:^^^:snS'::\Z..^^,i::Z^^^ ration has been studied by 

These distributions were measured for five different values of 60/D. One observes that thellstrihuHn^^' 
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Sedney and Kitchens also showed that for cylindrical obstacles, the primary separation distance Lg - i.e., the 
distance between the obstacle leading edge and primary separation point S (see above) - depends mainly on D, 
on the obstacle height h and on the tree stream Mach number MQ ; but it only depends very weeikly on the 
thickness 6Q (see the correlation curves in Fig. 4.3E). This result also raises the question of the distinction 
between "small" and "large" protuberances. More precisely, a protuberance will be considered as "large" if it 
produces the "asymptotic results", a condition occurring when further increases in the Jieight of the 
protuberance do not change the extent of the disturbance field. The two situations are sketched in Fig. 4.33. 
In particular, when the "asymptotic height" h = h^ is reached, the upstream influence length, the primary 
separation distance and the height hj of the triple point location no longer depend on h. Experimental 
observations show that the "shock root" and in paurticular the location of the triple point are independent of h 
provided that h a hj. The question of the scaling of the asymptotic height was carefully discussed by Dolhng 
and Bogdonoff (1981) who arrived at the conclusion that the proper scale for h^ is the diameter D of the 
obstacle. 
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Fig. 4,31 - Obstacle induced flow 

Wall pressure distribution on the plane of symetry 

( Dolling and al, 1979 I 

a _ Large cylinder b - Small cylinder 

Fig. 4.33 - Obstacle induced flow - Schematic of shock structure 
for a) "large" and b} "small" cylinders (Dolling and Bogdonoff, 1981). 
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Fig. 4.32 - Obstacle induced flow - Variation of primary separation 

distance (Sedney and Kitchens, 1977). 
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Fig. 4.34 — Obstacle induced flow - Correlation for the primary 

separation distance (Sedney and Kitchens, 1977). 

Similar behavior was noticed by Sedney and Kitchens (1977). This property is a direct consequence of the 
character of the flow in the so-called "inner region" where it is fovmd that the influence of the free stream 
boundary-layer is of second order. In principle, a universal value for h^, only function of D, cannot be 
specified, since ha depends also on the Mach and Reynolds numbers. However, the correlation curves of 
Sedney and Kitchens given in Fig. 4.34 show a relatively small variation of the ratio ha/D with MQ and the 
Reynolds number. The value of ha/D is close to 2.5 for the two cases considered. Furthermore, for the same 
cases, the normalized "asymptotic" primary sepeiration distance L^/D is nearly equal to 2.2-2.3, this level 
being practically independent of the Reynolds number, provided that the regime be fully turbulent. The above 
value of Lg/D has been confirmed by several other investigators (Stanbrook, I960 ; Voitenko et al., 1966 ; 
Young et al., 1968). On the other hand, in laminar and transitional flows, Ozcan found that Lg depends 
strongly on the Reynolds number. In laminar flow regime, Lg increases when the Reynolds number increases, 
whereas in transitional flow regime, the trend is reversed. We have seen that the same tendency is observed 
in two-dimensional flows (see Section 3.7 above) ; 

ii - at a large spanwise distance from the fin, there is an outer region in which the properties of the interaction 
are independent of leading edge blunting. As shown by Dolling (1982), in this region the scaling laws of the 
phenomenon are identical to those of the sharp fin (see previous Section)), i.e., depend primarily on the 
incoming boundcu:y-layer properties. 

In reality, the flowfield in the vicinity of the obstacle leading edge is characterized by a highly unsteady shock 
wave structure, as found both by Dolling and Bogdonoff (1981) in turbulent flow regime, and by Ozcan (1982) at low 
Reynolds number. This is not the place to discuss in detail this aspect of the phenomenon which is not yet well known. 
However, it should be kept in mind that the above considerations pertain in fact to a mean flow which has no real 
existence. 

4.3.4 - Transonic Flow Over a.Swept Wing 

The flow past a swept wing at transonic speed can be extremely complex, especially when separation occurs. This 
flow depends on many parameters : the freestream Mach number Moo, the Reynolds number, the shape and size of the 
wing, its angle of attack a and its sweep angle ^. A thorough description of such a complex flow would be beyond the 
scope of the present AGARDograph. The interested reader can find detailed information on this subject in the existing 
literature (Rogers and Hall, 1960 ; Squire et al., 1961 ; Monnerie and Charpin, 1975). In what follows, we will restrict 
ourselves to a rapid description of the shock system which forms on the wing upper surface at high subsonic Mach 
numbers. 
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The wing configuration considered for this description has been studied in great detail by Schmitt and Manie (1979). 
It is a rectangular wing equipped with a symmetrical profile having a relative thickness of 0.105. The sweep angle'5' of 
this wing can be varied continuously from 0 deg. to 60 deg., thus allowing a complete examination of the flow pheno- 
mena over a large range of sweep angles. The present tests were all carried out for a Reynolds number R^ = 2.5 10^ 
(geometrical quantities are defined in Fig. 4.35). 

Let us first consider flow evolution with the sweep angle at fixed freestream Mach number - M<» = 0.84 - and angle 
of attack -a - 4 ueg. ihe wall pressure distributions measured at two spanwise stations for different values of f are 
plotted in Fig. 4.35. The rapid pressure rises on these distributions indicate the shock-wave locations. 

At J = 0 (no sweep), a quasi-normal shock stands approximately at mid-chord. In this case, the flow can be 
considered as two-dimensional over the major part of the wing, three-dimensional effects being important only near the 
wing tip and the wing root. For f = 30 deg., one observes at the spanwise station Y/b = 0.45 a double compression, the 
flow remammg supersonic behind the first compression. Only one shock is observed in the most outboard section at 
Y/b = 0.75. Surface flow visualizations do not show separation. For "f = 40,50 and 60 deg., only one shock is visible. This 
shock is just about parallel to the wing leading-edge and it moves upstream as the sweep angle is increased. At the same 
time, the Mach number peak value decreases so that the shock weakens. The traces of the shocks on the wing surface, 
as determined from pressure measurements, are shown in Fig. 4.35. At T = 30 deg., the shock system exhibits a typical 
lambda pattern. Then, in the inboard part of the wing, two shocks form. Through the first shock - or forward shock - the 
flow undergoes a supersonic-supersonic compression, whereas it becomes subsonic behind  the second - or rear - shock. 

Now, let us examine the flow evolution with the freestream Mach number M», at fixed sweep angle and angle of 
attack (a = 4 deg.). The first evolution, reflected by the wall pressure distributions plotted in Fig. 4.36, corresponds 
to r- 0 deg. For the section located nearly at mid span (Y/b = 0.60), the evolution is similar to that of a two- 
dimensional airfoil, with a progressive displacement of the shock towards the trailing edge as the freestream Mach 
number is raised. At the same time, the shock becomes stronger and induces separation, as indicated by the rapid 
change of the trailing edge pressure. On the other hand, near the wing tip (Y/b = 0.95), a two-shock system is observed 
due to the locally strong three-dimensional effects. For T = 50 deg. (see Fig. 4.36b), the flow downstream of the shock 
IS supersonic only beyond Mco = 0.92. Then, a lambda shock pattern forms, like for ^ = 30 deg., Mco = 0.84. In this case, 
separation does not occur, as can be deduced from the constancy of the trailing-edge pressure. 
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Fig. 4.35 - Swept wing in transonic fiow - Ctiordwise pressure 
distribution  on  upper surface — Sweep angle effect (Sctimitt 

and Manie, 1979). 
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Fig. 4.36 - Swept wing in transonic flow - Chordwise pressure 

distribution on upper surface - Free stream Mach number effect 

(Schmitt and Manie, 1979). 

To conclude, the last example of results illustrates the changes in the flowfield for variable angle of attack 
. J being kept fixed. The corresponding wall oressure distrihntion.q ai-s r,lr,ttori ir, T?;^,  A in ,„j ..i u„-i. 1 ..;_' 

M„ 
and Jbeing kept fixed. The corresponding wall pressure distributions are plotted in Fig. 4.37 and theThock'locations on 
h»%r"^ planform are represented in Fig. 4.38. When a is increased, the shock moves towards the trailing edge and 
becomes stronger. The lambda pattern appears as soon as u = 2 deg. Thereafter, the intersection point of the two shocks 
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Fig. 4.37 - Swept wing in transonic flow - Chordwise pressure 

distribution on upper surface - Angle of attack effect (Schmitt 

and Manie, 1979). 
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Fig. 4.38 - Swept wing in transonic flow - Upper surface shock 

pattern (Schmitt and Manie. 1979). 
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After this rapid overview, we will now examine some properties of the shock-wave/boundary-layer interactions 
that occur on such wings. The experimental results chosen for this purpose were obtained in a pressurized transonic 
wind-tunnel on a wing similar to the one used above to analyze the overall flow structure. The experimental 
arrangement is schematically represented in Fig. 4.39. The cylindrical wing, mounted on one of the tunnel side walls, 
can be set at variable sweep angles. It is equipped with a supercritical profile. Pressure orifices are located along three 
sections of the wing, as indicated in Fig. 4.39. The present experiments (Mignosi et al. , 1980 ; Dor and Seraudie, 1982) 
were carried out at a freestream Mach number Ma. = 0.90. Boundary-layer transition is promoted by a tripping band 
located at the chordwise station X/C = 0.05. In these conditions, a shock-wave nearly parallel to the wing leading edge 
forms at X/C = 0.15. 

We will focus our attention on the region close to the wing tip where row N° 3 of pressure taps is located (see Fig. 
4.39). Let us first examine surface flow patterns forming in this region, slightly downstream of the leading edge. The 
first photograph of Fig. 4.40 shows the pattern obtained when the angle of attack a is equal to 2 deg. One observes that 
the skin-friction lines, which tend to become perpendicular to the leading edge in the most upstream part of the flow, 
are strongly deflected in the shock foot region. They continue downstream of the shock and tend progressively to adopt 
the direction of the outer flow. Let us now consider the surface flow pattern obtained when a = 4 deg. In this case, it is 
clearly visible that the skin-friction lines coming from the leading-edge region do not "cross" the shock anymore. In the 
shock foot region, these lines are abruptly bent and converge into a separation line (S). Downstream of (S), the skin- 
friction lines also converge asymptotically into the separation line. Along (S), the surface flow streams towards the wing 
tip. A reattachment line is also visible. Downstream of it, the surface flow is progressively deflected in the direction of 
the trailing edge. The computed pattern represented in Fig. 4.7 closely resembles the present observation. In particular, 
it clearly shows that the outer flow, at the boundary-layer edge, is weakly deflected by the shock, whereas the surface 
flow is highlv skewed. For greater clarity, the experimental skin-friction line patterns are schematically represented in 
Fig. 4.40. 

M, . 0.90 
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Fig. 4.39 - Transonic interaction on a swept wing - Wing installation 

in the tunnel test-section (IVIignosietal., 1980). 

a = 2 d«3 - Interaction without separition 

Fig. 4.40 a - Transonic interaction on a swept wing ■ 
Surface flow pattern (Mignosi et al., 1980). 

a . 4 dtg _ lnter«:tioo with separation 

Fig. 4.40 b— Transonic interaction on a swept wing - 
Surface flow pattern (Mignosi etal., 1980). 

The "wall" Mach number distributions along row N° 3 are plotted in Fig. 4.41. The Mach number Mg immediately 
upstream of the shock increases steadily with the angle of attack. In the present cases, the downstream level is always 
supersonic. The shock-wave is nearly planar and practically normal to the wing, so that it is possible to define a 
"normal" Mach number. This property will be utilized to deduce a criterion for Incipient Shock-Induced Separation in the 
following Section. Chordwise evolutions of the boundary-layer global properties {displacement and momentum 
thicknesses, incompressible shape-parameter) are represented in Figs. 4.42 and 4.43 for a sweep angle of 30 deg. They 
correspond to the cases of a non-separated and of a separated boundary-layer at the shock foot. In the first case, the 
normal Mach number is equal to 1.28, in the second case it is equal to 1.36. The integral quantities have been computed 
with the total velocity. In fact, except in the separated bubble, the skewing of the flow is small so that the boundary- 
layer is nearly two-dimensional. The present evolutions of 6 *, 6 and hj are very similar to those observed in purely two- 
dimensional flows. 
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Fig. 4.41 — Transonic interaction on a swept wing — "Wall" Mach 
number distribution along row   3   (see Fig. 4.39). 
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(Mignosi etal., 1980). 

4.4 - Incipient Shock-Induced Separation in 3-D Flows. 

Information on Incipient Shock-Induced Separation in three-dimensional flows is still very scarce when compared to 
the abundance of results on two-dimensional flows (see Section 3.8 above). This scarcity is certainly due to the 
complexity of 3-D separated flows and also to the difficulty in defining 3-D Incipient Separation. 

Three-dimensional separation is detected experimentally by inspection of the skin-friction lines pattern. In 
practice, this pattern is obtained by oil flow pictures but which are often difficult to interpret. The oil pattern is 
determined by many forces, including surface tension, gravity and buoyancy, as well as wall shear- stress and pressure 
gradient. The response of the oil film itself depends on the oil physical properties : viscosity, density, ... The difficulties 
of interpretation explain in part the large scatter of the experimental results. Furthermore, there is still some 
controversy over the way of defining separation from inspection of a skin-friction lines pattern (see Section 4.2 above) 
This fact also contributes to the discrepancy in the Incipient Separation limits published by different authors. 

What follows is restricted to separation induced by a skewed shock-wave on a side wall normal to it. Result on 
other types of interaction are practically non existent.   

r^ ^ ^M °^^ '™°*^^'^g^' °"^ °f t^e fi'st Incipient Separation criteria for three-dimensional flows was proposed by Mc 
Cabe (1966). This author assumed that Incipient Separation occurred when the skin-friction lines turned parallel to the 
mviscid shock direction. Then by applying his simple theoretical model for the 3-D shock/boundary-layer mteraction, 
Mc Cabe was able to compute the conditions leading to Incipient Separation (see Section 1.3.3 of Part II for a brief 
presentation of Mc Cabe's theory). 

Korkegi   (1973)   showed   that  at  high  Mach number 
approximated by the very simple equation : 

-   and   for Y  =   i'4  -  Mc  Cabe's  separation  limit  could  be 

M. •'Gi = 0.364 (in radians) (4.1) 

where M is the Mach number of the undisturbed incoming flow and a^j the angle of the shock generator m the 
Incipient Separation condition on the side plate. However, Korkegi found thereafter that a better agreement with 
experiment was obtained by changing the constant to 0.3, thus the criterion becomes : 

(4.2) '^o CQI = 0-3 (in radians) 

At the same time, Korkegi (1975) proposed a correlation for 2-D Incipient Separation that takes into account most 
of the available experimental results presented in Section 3.8.3 above. This correlation, given here for purposes of 

twTpT '^r t^^l^' .^°^.'^' *'"^ °"'y ^°' ^'^^ ^^^"^^ °^ '^^ Reynolds number R6o. Furthermore, it is assumed 
rZu \'^ !   I- I    ^^ ' ■'' '"""^"" "'^ Incipient Separation is practically negligible. TTiis assumption is not 
really m contradiction with experiment, the influence of the Reynolds number at high R6o not being obvious - and even 
n^r.r^'v'h . to the large experimental scatter. Thus, Korkegi's correlation's a Unique curve in the (M^, ad" 
plane which is traced in Fig. 4.44a. It is assumed valid for the range 105 1R6„1IO7. The pressure rise for Incipient 
Separation corresponding to Fig. 4.44a is shown in Fig. 4.44b along with two empirical formulae adequate for rough 
estimates in adiabatic flow conditions. ^ 

The two 3-D Incipient Separation criteria proposed by Mc Cabe (Eq.4.1) and by Korkegi (Eq. 4.2) are represented in 
*ig. 4.45a. They are m good agreement with the experimental results of Kubota and Stollery (1980) and those of 
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(Kubota and Stollery, 1980). 

According to Kubota and Stollery, the Incipient Separation definition adopted by Mc Cabe (and by Korkegi) would 
be inadequate since there are experiments which show that the surface flow can be deflected through angles exceeding 
the shock-wave angle before the formation of a true separation line. Thus, as explained above, true Incipient Separation 
actually occurs when the skin-friction Imes converge and merge asymptotically into a separation line or what Kubota 
and Stollery call a "convergence line". In fact there is no contradiction with the definition of Mc Cabe : the difference 
comes from the observation that the true separation line is not necessarily parallel to the inviscid shock, as postulated 
by Mc Cabe. 

The Incipient Separation conditions detected by using this second definition are plotted in Fig. 4.45b (this 
compilation was made by Kubota and Stollery). Since the turning angle of the surface flow can be higher than the shock 
angle before a separation line is formed, this definition - in principle more exact - leads to values of the limit angle aQj 
significantly higher than those given by Mc Cabe's criterion. The presently available experimental results show no 
influence of the Reynolds number. For well established turbulent flow regime, this influence - if it e-ists - is certainly 
wecik cind well within the scatter of the data points. 

Goldberg (1969) has proposed an approximate criterion for 3-D Incipient Separation induced by a glancing shock 
wave which consists in applying the 2-D criterion with the Mach number normal to the inviscid shock. Consideration of 
the results plotted in Fig. 4.45 suggests a still simpler criterion consisting in adopting for UQI ^^^ value ttQI = 8 deg., 
independent of the Mach number ^md Reynolds number. 

Whatever the definition adopted, the above results show that the pressure rise for 3-D Incipient Separation by a 
skewed shock-wave is far less important than for Z-D ramp (or shock reflection) induced separation and the gap widens 
with increasing Mach number. This greater sensitivity of 3-D flows was also noticed by Myring (1977) as a result of his 
simplified analysis presented in Section 1.3.3 of Part II. Thus, as pointed out by Korkegi (1975) as well as by Goldberg 
(1969), it is the skewed shock-wave interaction with the side wall turbulent boundary-layer in rectangular diffusors or 
inlets that first leads to separation and to possible flow breakdown for compression angles (or pressure rises) which may 
be well below the incipient values for the two-dimensional case. 

It should also be emphasized that Incipient Separation in 3-D flows depends certainly on the kind of interaction 
considered (see Myring and Goldberg). Thus the above results are, in principle, applicable only to a skewed shock-wave 
normal to a flat plate. For other types of interacting flows - like swept corner or oblique skewed shock - the Incipient 
Separation conditions should be different. 

Now we will give some information on Incipient Separation on a swept wing in transonic flows. This problem was 
carefully studied by Dor and Plazanet (1982) on the experimental arrangement shown in Fig. 4.39. In their 
investigations, the Incipient Separation situation was detected by interpretation of surface flow patterns and inspection 
of wall pressure distributions. They arrived at the conclusion that Incipient Separation occurred when the Mach number 
normal to the shock was equal to 1.33. No noticeable influence of the Reynolds number or of the shape parameter of the 
incoming boundary-layer was noticed, mainly because of the limitations of the test set-up. The value 1.33 for the 
normal Mach number is close to the value of the Mach number for Incipient Separation in 2-D transonic flows (see 
Section 2.7 above). 
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PART II. - METHODS OF CALCULATION 

GLOBAL METHODS 

1.1.  —  Introductory Remarks 

With very few exceptions, the main purpose of the methods considered in this Section is the prediction of the change in the boundary-layer 
properties (integral thicknesses, shape parameter) across a shock-wave of insufficient strength to induce separation. The case of a separated flow 
IS only considered by Hammitt {see Section 2.2.2) and by Baker {see Section 2.2.6). For most of the methods, the limit of validity coincides 
with incipient separation, the prediction of this limit being a secondary, but important, objective of these approximate theories. 

The interaction problem is generally formulated in the following terms: 

- an initial state is given at a Station 1 which coincides with the beginning of the interaction domain. Thus, Station 1 is located at the point 
where the wall static pressure starts to rise or at the point where an incident oblique shock-wave meets the boundary-layer edge At Station 1 
the following quantities are known: inviscid nowfield properties (i.e. Mach number M,„ pressurep„ density p,., etc.) and boundary-layer 
characteristics. These characteristics may consist of the full velocity distribution, if it is available, or more frequently of global quantities like 
momentum and displacement thicknesses, shape parameter and, eventually, skin-friction coefficient. These quantities generally result from a 

classical boundary-layer calculation which has been performed in the region upstream of the shock location. Very frequently this calculation is 
made by one of the many available integral techniques which are very popular owing to their rapidity and practicality; 

- a downstream Station 2 is defined at the end of the interaction domain where the inviscid flow properties are prescribed (i. e Mach number 
M,2, pressure P2, density p^^, etc.). These quantities may result from an inviscid flow calculation or be given by experimental 
correlations. Definition of the final state at Station 2 is often less obvious than the choice of the initial conditions. As a matter of fact if there is 
generally no ambiguity involved m defining the start of interaction, especially in turbulent flows, the end of the process is often far from being 
unambiguously defined. Thus, the fixing of the downstream Station 2 can sometimes be arbitrary. This is more particularly true in transonic 
shock-wave/boundary-layer interactions; 

- the problem is to compute the boundary-layer properties at Station 2, i.e., the distorted profile or more global quantities: momentum and 
displacement thicknesses as well as a parameter characteristic of the shape of the velocity distribution, etc. This information could then be used as 
mput for a new classical boundary-layer calculation downstream of the interaction region. Other quantities like the streamwise extent of the 
interaction domain are also of interest. 

Many of the approximate methods developed to predict the downstream boundary-layer properties rely on discontinuity analysis. According 
to this approach, the interaction process is considered as a "black-box" with State 1 as input and State 2 as output. The details of the phenomenon 
are ignored or crudely represented. 

The rather simple flow model on which these methods are constructed is inspired by experimental evidence and incorporate more or less 
empirical information. This fact explains the relatively good quantitative success of discontinuity analyses together with the very "rapid" character 
of the interaction process which allows drastic simplifications (mainly the neglecting of viscous effects). The counterpart of this kind of approach 
IS a rather limited range of validity, so that the method to be used depends on the flow situation to be treated: oblique shock reflection or quasi- 
normal shock-wave, transonic, supersonic or hypersonic conditions, etc. 

rellt'rd-^''''™''™'"^ methods founded on a discontinuity analysis belong to one or the other of the following two families, which are, in fact, closely 

- boundary-layer integral methods; 

- control volume methods. 1 

(Sect^n i*'")""* '"■"^"' '"""^ °^ "'^ ^"''""^ ^""'y'^' ^y ""' considering two-dimentional flows (Section 1.2), then three-dimensional flows 

In Section 1.4, we will envisage a rather different approach which was termed by Green (1969) "the inviscid shear-layer analysis" In this 
approach, the local flow properties are computed by considering the interacting boundary-layer flow as a wholly inviscid stream. 

n^Mt^^H'^t^'f™-""'""/' ^^^^'if'ly concerned with turbulent boundary-layers. In principle, it would be possible to apply certain of the following 
methods to laminar situations by making appropriate changes (velocity profile representation, entrainment rate, skin friction law etc) However 
use of such analyses in laminar flows is questionable for several reasons: owcvci, 

- some assumptions valid in turbulent flows do not hold true for laminar flows: for instance (as seen in Section 3.4 of Part I) interaction 

IXl:itnra^ryrjusla'b"le;'™"" "" '" '"^'"'™'' '"' " ' ^°"^^^"'="^^' '"^ "^^'^^''"^ °' ^'^^°"^ f°^-' -''''^' '^ f-''-""^ -''^ - 

- except in very low Reynolds number flows, or for very weak shocks, interaction with a shock-wave generally provokes separation of the 
Ln^ysTs; '" '      simultaneously induces transition.    This phenomenon is difficult to model withfn the framework of a discont^uity 

<!..,Jn ^^"^- "'" '"""'''^ '""' r °'' ^T^ '"'"'°''' ^°' computing a purely laminar interaction [(solution of the full Navier-Stokes equations {see 
Section 5), viscous-inviscid coupling techniques {see Section 3)], so that the use of discontinuity analyses is of no real interest. 



110 

In order to simplify the presentation of the different methods, the flow will be assumed adiabatic (no heat transfer at the wall). In principle, 
these analyses could be generalized to non-adiabatic flows by addition of the energy equation. However, this extension has rarely been carried out 
and will not be discussed here.    In fact, it leads to difficult problems for properly taking into account heat transfer at the wall. 

For adiabatic flows at moderate Mach numbers (say Mj<4), it is frequently assumed that stagnation enthalpy is everywhere constant 
(isoenergetic flow). This hypothesis leads to some simplifications of the calculation without affecting appreciably the accuracy of methods which 
involve more "severe" simplifying assumptions. 

1.2.   —  Two Dimensional Interaction 

1.2.1.  - Simplified Boundary-Layer Integral Methods 

General comments. - A first way to devise an approximate analysis treating the interaction between a shock-wave and a turbulent boundary- 
layer is to use a simplified form of the Prandtl equations. The key hypothesis of this approach is to assume that viscous forces have no time to 
play an appreciable role during the rapid interaction process which is essentially controlled by pressure and inertia forces. Of course, such an 
assumption is not true very close to the wall, however in a turbulent boundary-layer the "viscous-layer" is so thin that it appears legitimate to 
consider that the whole process is only weakly affected by viscosity. This conclusion certainly does not hold true for laminar flows, as has already 
been pointed out in the introductory remarks. The resolution of the simplified version of the boundary-layer equations is made by considering an 
integral form of these equations since the use of the local partial differential equations would require a special treatment of the wall region in order 
to satisfy the no-slip condition (see Section 1.4 below on Inviscid Shear Layer analyses and Section 4 on Multi-Deck theories). Practically all the 
existing boundary-layer integral methods can be modified in order to give a global description of the shock/boundary-layer interaction. Nevertheless, 
we will here consider only three methods which are the most popular and have been specifically designed to treat the interaction problem. 

For all these theories, the approaching boundary-layer is considered as an input to the problem (this means that we know its integral properties 
which are most often: the momentum thickness 9, the displacement thickness 5* and the "incompressible" shape parameter HJ. The Mach number 
M, 1 at the boundary-layer edge just upstream of the shock as well as the downstream value M^j are also given. The problem is to compute the 
downstream state (i. e., 62, 5J, H, 2, etc.) for a boundary-layer that has been submitted to a "rapid" pressure change from p^ to P2 (rapid meaning 
that the interaction length, or the distance between Station 1 and 2, is of the order of a few 5i). It is to be noticed that the sign of the pressure 
change (Pi-p,) does not matter and thus the boundary-layer methods may also be applied to a concentrated expansion resulting, for example, 
from a change in the slope of a wall or from separation at a base shoulder, the flows being of course supersonic. For an adiabatic flow, the 
problem has three unknown quantities; two integral thicknesses and a shape parameter (other quantities of interest, like the skin friction coefficient, 
may generally be deduced from the previous quantities by appropriate relations). Thus, one needs three equations. In all the methods, two of 
these equations are integral forms of Prandtl's equations, the first one being as always the well known Von Karman equation (with the wall shear 
stress omitted). The third relation (or "closure" assumption) is obtained by assuming that the velocity distributions in the boundary-layer belong 
to a one parameter family, i. e., are fully specified by the knowledge of only one shape parameter. Thus, the various methods differ one from the 
other by the use of a different second integral equation and a different velocity profile family. 

These basic principles of calculation also underlie methods which compute the details of the phenomenon by a continuous streamwise integration 
of integral boundary-layer equations {see Section 2). 

Reshotko and Tucker's method (1955). - This analysis being among the oldest methods (Tyler and Shapiro, 1953; Crocco and Probstein, 1954; 
Mayer, 1955), it is nevertheless still widely used to predict boundary-layer change resulting from the action of a concentrated pressure gradient 

(compression as well as expansion). 

The authors start from the following boundary-layer equations where the shear stress term is omitted: . - 

— continuity: 

a(p») ^ ^CpfJ^Q ■'-■- ■''■       ^ (11) 

dx dy 

— momentum: 1 

du du        dp .     . ,1   -1% 
pu 1-pD—= -—. (1-2) 

dx dy        dx 

It is assumed that the total enthalpy h, is constant throughout the dissipative region, which impHes adiabatic conditions (no heat transfer at the 
wall) and an external Mach number M^ which is not too high (up to 4 approximately; for this value the change in h, is nearly equal to 4%). With 
the assumption /i, = Const., the energy equation is not needed. 

Equations 1.1 and 1. 2 are first cast into an "incompressible" form by using a Stewartson type transformation; 

dX=P^dx, 

where a is the speed of sound, e designates the situation at the boundary-layer edge and t, the stagnation conditions. 

Thus, one obtains; 

^ + ^=0, (1.3) 
dX    dY 

U^+K^=t/,^. (1.4) 
BX        8Y dX 
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The "compressible" and the "incompressible" quantities (capital letters) are related in the following way: 

— velocity: 

Mach number: 

momentum thickness: 

shape parameter: 

u^^U. 

M.= i^, 

Pe", 

H = H+'^~^M^^(H+\). 

(1.5) 

(1.6) 

It is to be noticed that the shape parameter H, computed with the transformed thicknesses, differs from the usual "incompressible" shape 
parameter H, defined by: 

K,JYi-ii).,/r£(i-ii),,, 
Jo  V ",/ Jo  "A "e/ 

Thereafter, two integral equations are deduced from the transformed equations 1. 3 and 1,4. 

The first is the Von Karman equation without the skin friction term: 

dX U,   dX (1.7) 

The second, following the general integral formulation developed by Tetervin and Chia Chiao Lin (1951) is obtained by multiplying I 4 by 
the normal co-ordmate Y before integration between y = 0 and 7=6. Furthermore, if a power-law velocity profile family is assumed, one obtains 
the equation: 

dH _     H(H^-\)(H-\) 1 dV, 

dX 2 U,dX' (1.8) 

Knowing that U, = «„ M„ Eqs. 1. 7 and 1.! 
before (1) the pressure discontinuity: 

can be formally integrated to give the following relations which link the values after (2) and 

where f{H) and g (H) are the functions: 

M,:, f(H2) 
M., f(HS 
0, giH,) 

©1 gifi^y 

H' exp [!/(/? + 1)] 

(1.9) 

(1.10) 

- (//^-I)"^(H+1) 

g{H) = {{H^-\y'^(H+\)exp[-li{H + l)]}IH\ 

Application of this method is straightforward and very rapid smce the solution is explicit and expressed by analytic forms: initial values H, 9, 
bemg given, along with the Mach number M,., one computes first H, and 0, by 1.5 and 1.6. Then, knowing the downstream Mach number M '■ 
H, and 0, are deduced from 1.9 and 1.10.    Finally, formulae 1. 5 and 1.6 give the "compressible", or true downstream quantities H, and 9,. ' 

Since viscous terms are entirely neglected, the method does not indicate any direct influence of the Reynolds number, except via the value of 
the incompressible shape parameter H, i which, indeed, is a function of the local Reynolds number (see Section 1, in Part I). 

The authors applied their analysis to predict   the shock-induced separation limit by simply letting the limit value for H„ corresponding to 

'J'^^Z T'^"°K' .'i"'r '° ^- ^- ^''"'' ^°' ' ^'™" "P'"'"'" '''"P" P''^'"""'^^ "- '' '^ P°^^''''« ^y "^i"g Eq. 1.9 to compute the Mach number 
ratio M,,/M.„ which leads to separation. For a form factor H, = 1.286, which corresponds to a transformed seventh-power law velocity profile 
It has been found that M. JM,, =0.762. In fact, as has already been pointed out, H does not coincide with the "true" shape parameter H Thus 
a more rigorous application of the method should take this fact into account in order to predict separation. Nevertheless, the conclusion drawn 
by the authors remains valid: the lower the form factor H, the greater must be the pressure rise capable of provoking separation. This tendency 
has been wholly confirmed by experiments at sufficiently high Reynolds numbers {see Section 3.8 of Part I). 

Applications of Reshotko and Tucker's analysis are presented in Figures 1.1 and 1.2. They deal with oblique shock reflection for varying 
primary deflection angle Aq> at a constant upstream Mach number Af„= 1.92. The "jumps" in the boundary-layer momentum thickness 9 (Fig 1 1) 
and shape parameter H, (Fig. 1.2) are well predicted as long as the incident shock intensity is not too high. The example of Acp = 6 3 deg nearly 
corresponds to Incipient Separation. In this situation, the present model underestimates the change in the boundary-layer properties Also in 
lZZLn^Pj>"TT f'^™"'\'^8'™" '° represent the "relaxation" of H, downstream of the shock impingement. Another example' of 
now '"^^'" " ^'™" '" ^'"•*°" 3.8.5 of Part I as curves giving the Incipient   Separation limit in supeLn.e 
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in a shock reflection-Mo = 1.92 ;Rf,   = 0.85 x 10^. 

Cadi's method (1961). - In 1961, Gadd proposed quite a thorough analysis of the shock turbulent boundary-layer interaction problem in 
transonic flows. In fact, this analysis pertains also to coupling methods or to analytical methods since its aim is to compute both the boundary- 
layer and the external inviscid flow according to an interactive technique. However, we have decided to present it in this section because one of its 
essential merits was to propose a simple method for calculating the effects of the sharp adverse pressure gradient on the velocity profile of a 
turbulent boundary-layer. 

We will be very brief concerning the calculation of the part of the flow considered to be inviscid since much more sophisticated methods are 
now available. In Gadd's very simplified analysis, the interaction domain is divided into an upstream region and a downstream region. The 
upstream part extends from the undisturbed initial state to the shock position. There, the boundary-layer thickening induces compression waves 
which propagate into the supersonic flow. This compression wave region is of the simple-wave type, with the Mach waves emanating from the 
edge of the boundary-layer intersecting the shock-wave and being terminated by it (see Fig. 1.3). This terminating shock is vanishingly weak at 
the edge of the boundary-layer, so that the latter is not called upon to support any discontinuous jump of pressure. 

The downstream part of the interaction extends from behind the shock to downstream infinity. The two inviscid flowfields are computed by 
making crude simplifying assumptions in order to obtain rather simple equations which will not be given here. . 

The interacting dissipative layer is computed by assuming that the static pressure is transversally constant. Following the basic principles of 
other analyses, two equations are used. The first one is obtained by assuming that the rate of entrainment of fluid into the boundary-layer from the 
external flow is the same as just upstream of the region of interaction (this rate is assumed to be equal to zero in the upstream part of the interaction, 
which is the zero-entrainment hypothesis of many global analyses.) 

The second equation is the Mean Flow Kinetic energy equation (see Section 2.2.1 below) written under the assumption that the non-dimensional 

shear-work integral ( — ) <i>' remains constant in the interaction region. 
Jo PeK Sy\uJ 

The problem is "closed" by supposing that the boundary-layer velocity distributions can be represented by power-taw profiles thoughout the 
interaction domain. 

Thus, for a prescribed distribution of Mach number at the boundary-layer edge, the problem has two unknown quantities (the power-law 
exponent n and the boundary-layer thickness 8) which can be computed by solving the above two equations. 

The skin friction coefficient (the knowledge of which is of interest for predicting, incipient separation) is computed by using the boundary-layer 
momentum integral equation. 

The simultaneous solving of these boundary-layer equations and of the inviscid flow equations, along with a matching condition written at 5, 
enables Gadd to compute the whole interaction process. In particular, he could deduce from his calculations a limit for Incipient Shock Induced 
Separation. 

This theory is not in very good quantitative agreement with experiment, mainly because of the rather crude simplifications involved in the 
transonic inviscid flow calculation. However, it has played and important role in the development of ideas which led to the much more advanced 
analytical methods which are presently used to compute transonic shock-wave/turbulent boundary-layer interaction (see Section 4 below). 

Green's method (1969). — This author does not employ a compressibility transformation but solves the problem in natural co-ordinates. 

A first relation is derived from the Von Karman integral equation written with a skin friction coefficient Cy equal to zero; 

dx        u^ dx     p^dx 

This may be rearranged: 

d(lnp,u,e)=-(H+l)d(lnu,). (1.11) 

A second equation is obtained by assuming that the boundary-layer mass flow remains unchanged during the interaction process (zero entrainment 
hypothesis).    This is simply expressed by: 

dx il}"" dy] = 0. (1.12) 

Introducing the new "shape parameter" H, defined by: 

9 Jo p.", 
dy = 

5-5* 
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and taking 1.11 into account, 1.12 is written: 

<i(ln//,) = (H+l)<i(ln«J (1.13) 

The conventional shape-parameter H = 6*/e which appears in equations 1.11 and 1.13 is not really representative of the shape of the velocity 
profile (contrary to H,), since it is a strong function of the Mach number Af^. 

A more convenient parameter, which depends only sUghtly on the Mach number, is the transformed shape parameter. 

H* = ('H-I^MA/I+I^M; 

For flows with constant stagnation temperature, H* is identical to Reshotko and Tucker's "incompressible" shape parameter H (see above). 

Finally, equations 1.11 and 1.13 take the following forms: 

d(lnp,u,9)=-(H*+l)rf(lnM.), 
d(lnHO = (H* + l)d(lnM,). (1.14) 

This system can be solved for the downstream values 62 and HJ provided that a law f/, = H, (H*, M,) is available. Such a law can be 
empirical or computed from velocity profiles belonging to a one parameter family (Coles, 1956; Mellor and Gibson, 1966; Michel et al., 1969; 
Alber, 1971). In fact, experimental results as well as calculations using power-law profiles, have shown that H, varies only slightly with the Mach 
number, so that, for a first approximation, H^ may be taken as a unique function of H*. If this simplification holds true, integration of system 1.14 
between State 1 and final State 2 leads to relations of the form: 

-'(5;-4 H*2 

Panaras' method (1976,  1980,  1981).   -  More recently, a method was proposed by Panaras which uses the    following simplified integral 
equations: 

— momentum; or Von Karman equation; 

- Mean Flow Kinetic Energy equation (see Section 2.1 below) 

where: 

is the boundary-layer energy thickness and: 

dS* 

dx \ u^ dx     p, dx I       u, dx (1.15) 

JoP.«A     K 
iy. 

JoP.uA''.      / 

is the enthalpy thickness. 



116 

Pinckney's method for oblique shock-wave (1965). - This method, as well as the next one, were devised essentially to compute the effects 
resulting from the reflection of an oblique shock-wave for conditions entirely supersonic. In fact, Pinckney's method does not use a control 
volume approach.    Nevertheless, we think that it is more suitable to consider it in the present Section than among boundary-layer analyses. 

Fig. 1.7 - Pinckney's model for oblique shock reflection. 

The aim of this method is to introduce a simplified shock pattern which resembles the one observed on schlieren photographs and to treat the 
boundary-layer as a one-dimensional supersonic stream in a manner similar to Hammitt's analysis. Figure 1.7 is a typical schematic flowfield. The 
incident shock C, enters the boundary-layer at Station 1. There, the true horizontal velocity distribution is replaced by a power law profile whose 
exponent n is determined in such a way that the approximate distribution yields the same mass flow as the real one (the thickness 6, and the Mach 
number M i being identical). Then the boundary-layer flow (whose velocity distribution is now depicted by a power-law profile) is represented by 
a one-dimensional stream which has the same thickness 5i and the same mass, momentum and energy than the real now. If E designates quantities 
pertaining to the one-dimensional stream, we must have the following relations; 

P£"£=        P"' 
Jo 

(1.21) 

for the mass; 

PE + PE "l=Pe+ P«' 
Jo 

(1.22) 

for the momentum; 

Jo 
PEUEC,T,^= I    puh<j(j)-H^^u' 

<■ 

(1.23) 

for the energy. 

It is to be noticed, that: 

Jo   Pe".     \5/ iPe       Jo   PeUe      VS/ 11,       Jo   Pe»l      \^ J 

can be computed once for all as functions of the exponent n and of the external Mach number M^, if the wall is adiabatic (a modified Crocco's law 
is then used).    Solving 1.2! to 1.23 we can compute the equivalent Mach number M^ which is given implicitly by: 

/(JWi.) = 
M,(mK)""(n/(n-H)-Ky-l)/2M,^Ti/r|,)^- 

(H-yMj(p/(pJ 
(1.24) 

where: 

/(M^) = M^( H-^M^y'/d-fyMl). 

The pressure p^ is then calculated by: 

PE :(l-^yM,^<p/(pJ/(l+yM|). (1.25) 

The fictitious pressure p^ differs from the real pressure p„ but in fact, the difference is generally small. 
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Knowing the properties of the incoming one-dimensional stream, we can then proceed to the construction of the shock pattern. 

For a given value of the denection .];. induced in the free stream by the incident shock C„ one chooses a value «1< of the deflection provoked 
by C, m the boundary-layer (vj, will be determined by a trial and error method). The reflected shock C, springs from the wall at point 0 wh.ch is 
upstream of the pomt wh^e C, would impmge against the wall in the case of an inviscid flow. The deflection across C, is put equal to 4- + vl;' 
where ii is an angle mtroduced to take into account the entrainment effects at the boundary-layer edge.    Experimental data show that ^^,' can be 
approximated by: 

v|(' = 2°       if   v|(23°, j 

2 
v|('=-i|;       if   i|,<3° 

The origin 0 of shock C, is positioned so that the incident and the reflected shocks intersect at a point / whose height Y, has a well determined 
value,    the crux of the treatment is an empirical correlation giving y, by a relation of the form YJL, =fi&p/q^ J where: 

- Ap is the total pressure jump associated with the reflection; 

- q. 1 'he dynamic pressure of the upstream flow; I 

- L, a length defined on Figure 1.7. ', 

Now, it is supposed that downstream of / the flows which were previously above and below I have undergone identical deflections If these 
flows have the same Mach number (as is supposed), then their direction must be ^■. Thus, it is necessary to impose at D, an expansion of angle ^' 
m order to make the flow parallel to the wall. (In fact, the difference ^ is small and is an empirical refinement of the flow model- the expansion I' 
IS a geometric reqmrement and not the constant pressure reflection of the incident shock.) 

It appears that the geometric construction which has been made implies the existence of a void region downstream of 0. 

After the shock interaction, the pressure in the one-dimensional equivalent flow is assumed constant, and the pressures , in a Section 3 
sufficiently far downstream is given by: >- i-a 

Pe3 _PEIPE3P,2 

Pel        PelPElPEl *■'' ^^' 

The ratio -^ results from shock calculation, and ^and^ are computed by relation 1  25 
Pi!' Pel Pei 

The right v|; deflection is obtained when the pressure/;^3 given by 1.26 equals the pressure corresponding to the reflection of shock C, in the 
absence of boundary-layer.    Thus, it is postulated that the pressure downstream of the interaction tends towards the perfect fluid solution. 

When the solution has been converged, the boundary-layer downstream characteristics are computed at a Station 4 whose distance L, results 
from an empirical correlation: L^/6,=/(M.„ v|;). There, it is supposed that the one-dimensional mass flow is equal to the mass flow at D 
through a section including the height of a void region, which leads to the relation: 

(Pi!"£)o8D = (P£«t)4 54- (1.27) 

Knowing Af^^-M^3, p^^ =p^, and JVf.4, p^^ (given by the perfect fluid calculation) equation 1.24 allows the calculation of «■ that is to sav 
defines the shape of the velocity distribution.    The thickness 8^ is given by equation 1.27. 

Seebaugh, Paynter and Childs' method for oblique shock-wave. (1968). - In 1968, Seebaugh et al. proposed a rather simple model for predicting 
shock reflection in supersonic flows. In contrast with the previous analysis, their method relies completely on control volume arguments Its 
objective IS to predict the change in boundary-layer properties during the shock reflection, including the effect of boundary-layer bleed OriKinallv 
velocity distributions were represented by power-law profiles and a Dorodnitsyn-Howarth transformation was used in order to simplify the equations 
by reducing their density dependence.    And in fact, the analysis led to simple algebraic equations which could be easily solved. 

In a subsequent analysis, Mathews (1969) used a law of the wail/law of the wake profile to replace the power-law profile. Mathews also 
allowed for boundary-layer mass entrainment in the interaction region. More recently Sun and Childs (1974, 1976), further improved the method 
by introducing a more refined wall-wake velocity profile for turbulent isoenergetic compressible boundary-layer flow. These authors have treated 
axisymmetr^c as well as two dimensional flows. They have also considered the case of successive oblique shock-wave/turbulent boundary-layer 
interactions.    Such interactions may occur, for example, in engine inlets of supersonic aircraft. 

dimel^ILT ""' P'^f "'.°"'>; '^' '"'"' ^^^"' ^.^^^'°" °f Secbaugh's method, but, for the sake of simplicity, we will restrict ourselves to the two- 
R^ure 1  S     TT' "" t° an axisymmetric situation being rather straightforward.    The flow model used m the analysis is  shown in 
rXnTj t Ir ""^""""g/hock C, meets the boundary-layer edge at the Station 1 where all the conditions are assumed to be known The 

throulh he in.--H"''\ r "^f, ".-^""f ^^-'''y-,-' '^e Station labelled 3. Surface 2 is the stream surface of the inviscid flowfield which passe 
hnrntv^ intersection of C, with the boundary-layer edge at Station 3. Note that Surface 2 intersects the incident shock-wave outside the 
boundary-layer edge.    The distance A, is introduced to allow for mass entrainment into the boundary-layer during the course of interaction. 

Considering the control volume drawn in Figure 1.8, the equation for the conservation of mass may be expressed in the form: 

f«3 pi+ij I 
I    pudy=\ pudy + mg, (,28) 

while the x-momentum equation may be written: 

pu dy=\ pu'dy+p,(&^ + A,)-p,&,^\ P2dy-Lx„ + 1,^ , (1.29) 
-if 
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Fig. 1.8 — Seebaugh et at. 's model for oblique shock reflection. 

Fig. 1.9 — Sun and Childs flow model for successive oblique 

shock reflections. 

where T„ is the average wall shear stress between Stations 1 and 3 (•C„=-(T„,+T„J)), mg the boundary-layer mass bleed rate, /g, the  x-momentum 

of the bleed flow and L the shock-wave/boundary-layer interaction length. The pressure terms are determined from the inviscid flow calculation; 
Pi and P3 are assumed constant but p^ may vary along the stream surface 2 if the flow is not uniform. The distance Aj is determined by assuming 
an entrainment rate equal to that for the flow upstream of the interaction. It is to be noticed that the introducing of A^ makes it necessary to use 
an iterative process to construct the stream surface 2. 

The velocity distributions at Stations 1 and 3 are given by a wall-wake velocity profile expressed in the form (Sun and Childs, 1973): 

1     .   ,        .      ^ 
= —p;sm {arc sm   /CT 

k\ut    6       V      5 
21n   1-1-   1  -\  1 -I-cos 71- 

ku*\ 6 
(1.30) 

where: 

n/;£ = -^{(u*/u,)-(l/fc)ln(6u./vJ-5.H-0.614/k}. 

In these expressions: 

2       "'V 2       ' 
/c = 0.4 (Von Karman constant); 

u*- van Driest's generalized velocity; 

V = kinematic viscosity; 
u, = friction velocity; 

n = coefficient of the Coles wake function. 

For a given external Mach number M,, the profile defined by equations 1.30 is a function of two parameters; the Reynolds number and a 
"shape parameter" which can be ujuf, for example. 

The first step of the method consists in finding the best representation of the given boundary-layer distribution at Station 1 by means of 
equation 1.30.    This is done by a least-squares fit and yields x^^. 

Then, knowing the mass bleed rate nig, and with a suitable representation of the magnitude of /g„ equations 1.28 and 1.29 constitute a 
system for the two unknowns 83 and T„ 3 (which define the shape of the profile at Station 3). This system is solved by a suitable iterative 
method. It is obvious that the x-momentum of the bleed flow depends on the manner in which the bleed flow is accomplished. The analysis has 
been applied to three bleed models: porous wall suction, slot suction and scoop suction {see Fig. 1.8). 

For the porous wall model, the x-momentum of the bleed flow /g, is neglected. With slot suction, /g, is assumed equal to the momentum of 
the extracted fluid when it enters the control volume, i. e.: 

Jo 
dy. 

where 5g is determined from: 

pudy. 

For scoop suction, the control volume encloses only that part of the boundary-layer which passes downstream. 

The method has been generalized in order to compute successive oblique shock reflections according to the model shown in Figure 1.9. Regions 
extending from Station 1 to Station 3 and from Station 5 to 7 are computed by using the control volume analysis; between 3 and 5, a "classical" 
boundary-layer calculation is made. The wall static pressure distribution needed for this calculation is provided by an inviscid flow solution which 
is obtained in such a way as to allow for the effects of the first shock/boundary-layer interaction. 

An example of application of Sun and Childs' method is given in Figure 1.10. It corresponds to two successive interactions provoked by the 
impingements of two oblique shock-waves generated by a double cone centerbody, the flow being axisymmetric. For this case, the predicted 
boundary-layer properties are in good agreement with the experimental values. 



119 

double cone 
Y[mtn)         ^_centertiody                  E^   experimental 2 

   predicted 

reflected shKlt^wawe 0 

6*lmm) 

0 
• •: °*o 0 

0® ® 
.)—r 

cr.io' 

60 60 
b -  Wall preiiure distributi 

re. 
0.2 L 

0.1 LJ ill 

100 60 80 X(«m) 
c - Boundary ■ la)>er properties 

Fig. 1.10 - Successive oblique shocl^-wave interactions 
Sun and Childs flow model. 

Delerys method for transonic interaction (1977). - The two former control volume methods are in fact applicable to entirely supersonic 
situations where an oblique shock meets a turbulent boundary-layer. At sufficiently high Mach number, in the absence of extended separation 
and with the condition that no shock detachment or Mach stem phenomena occur, it is a rather simple task to construct a realistic inviscid shock 
system associated with the interaction.    Furthermore, the initial and the downstream states may generally be defined unambiguously. 

In transonic flows, the situation is not so clear: the inviscid shock structure depends strongly on viscous interaction effects and the scheme of a 
shock wave normal to the wall (as it would be in perfect fluid How) is far from reflecting the reality. In fact (see Section 2 of Part I) the quasi 
normal shock forms at a certain distance from the wall. Near the surface, the viscous displacement effect entails a progressive compression through 
converging supersonic compression waves which coalesce into the transonic shock. 

The location of the initial station of a jump method is always well defined, since it is generally taken at the point where the wall static pressure 
stars to rise. By contrast, the choice of the downstream station is not so obvious. Indeed, the wall pressure distribution general " shows a 
TZ^ rather slow increase after the very steep compression associated with the supersonic part ot the interaction (i.e. the evolution fror^ 
the initial supersonic state, of Mach number M., to a locally sonic situation where M=l.; see Section 2.7.2 of Part I on scaling laws in transonic 
interactions). Downstream of the point where M= I, the flow has an elliptic character and consequently depends strongly on conditions far from 
the interaction doniain (trailing egde flow for an airfoil, width to length ratio in the case of a channel flow, etc.).    Thus it doesn't seem feasible t" 

^^^t.;^L::^l^T"''^'"""""" ^""-"-^ •" ''°*""^^^'" ^-^^"--^ ^''"''■'■<'"^- '^"-p'- °f ^ «-■ -^-- -- 

r.c, 7^^ ^''"Plified boundary-layer integral methods may be applied to interactions in transonic flows.    They generally give good quantitative 

bo,l»     r' "      ,.    V i' "°' '°u ''™"^-    ''"' "*"=" ""= "P^'"^" ^^'^'^ "•""''" g°- beyond 1.2, they syltematicalfy undefpredictthe rapL 
boundary-layer growth which occurs between M., = 1.2 and the Mach number leading to Incipient Shock Induced Separation. ^ 

Inrinl'Ti ^"*°''P^^f/"^^ ^''^ ha^. been developed in order to improve the prediction in the Mach number range extending from M , = 1 2 to 
Incipient Separation, this domain being of great interest for practical applications. "' 

In this method, one considers: 

- an uspstream State 1 corresponding to the flow situation in front of the shock; [ 

- a downstream State 2 defined somewhere behind the shock and which will be specified later. | 

Let M, 1, p„ p. „ »,, be the conditions at boundary-layer edge in 1 and M, „ p„ p, „ u,, corresponding values in 2. 

Applying conservation relations between 1 and 2 one obtains: 

- for the mass: 

\udy=\ 'p«rf>'-HK„,p,,«,, (8,-81), 
Jo Jo (1) 

for the x-momentum (the effect of wall shear stress is neglected): 

\uUy=\   'pa'd^ + X„p,,«,^(8,-8,)-S,(p,-p,). 

(1.31) 

(1.32) 

deterllnedc^efS" ' "' ' '""'""' '" ""'" "''' -'—-' effect taking place during the interaction process. K^ is an empirically 

Equations 1.31 and L 32 with K„,= l are identical to the first two equations used by Khneberg (1968) to compute the supercritical- subcritical 
jump of his viscous-inviseid interaction theory.    Equation 1. 31 written with K„ = 0 corresponds to the zero entrainment hypothesis! 

In fact, the mass flux does not remain constant during the interaction process.    This is demonstrated by Figure 1.11 wich shows measured 
xc n'm'th 7 ^b-k-wave/boundary-layer interactions of various strength.    One generally observes'a s'ubstantial incre se of T mass 

except m the case of very weak shocks. A careful processing of these experimental data (obtained by using holographic interferometrv thu 
without perturbation of the flow fields) allowed the determination of ^. The values obtained for K„ are plotld in'Se 2 a fun Ls o 
th Mach numbers ratio M^^IM,,. They exhibit a rather large scatter, mainly due to the difficulty of defining the physical thickn ss 8 o^ th 
boundary-layer A constant average value K„ = 0.5 is proposed. It corresponds to an incompressible shapi parameter H.= l 24 In fact 
application of this jump method has shown that K, is a function of H,    This dependence may be taken into account by the simple formula! 

K„ = 0.5 Hi/1.24 I 
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Fig. 1.12 ■ global entrainment coefficient 

in a transonic interaction without separation. 

For numerical solution, equations 1. 31-1. 32 are more conveniently written in the following forms: 

P.2".2(82-8!) = P..".i(8i-5r) + 'f.P.i».i(82-5iX 

P.2"f 2(82-81-62) = ?,, »,^(8,-8.f-ei) + X„p,,»fi(82-8,)-52(p,-p,). 

(1.33) 

(1.34) 

If the values of the external Mach numbers M„ and M,^ are specified, equations 1.33-1.34 which contain three unknown quantities (S^, 6f, 
62) may be solved, provided that the boundary-layer velocity profiles belong to a family depending on only one shape parameter. The adopted 
family is represented by an equation similar to Coles (1956) law-of-the wall/law-of-the wake (for more details, see Section 1.1 of Part I). It is 
supposed that there is no Mach number effect on velocity profile shape, which is well verified in the transonic domain and even for Mach numbers 
ranging up to 2. This fact is demonstrated by Figure 1.13 which shows a comparison between adopted profiles and velocity distributions measured 
downstream of a transonic shock wave. 

In the application of the present discontinuity analysis, the downstream state (2) is defined as the location where the sonic condition is reached, 
i.e. Mj2 = l- This choice is dictated by the fact that only the supersonic part of the interaction obeys similitude rules of the "free interaction" 
type, as defined by Chapman (1958) (see Section 3.6 of Part I). 

320      325      331      33S 

Fig. 1.13- Velocity profiles representation 

in a transonic interaction without separation. 
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Fig. 1.14 — Transonic interaction 

Examples of application of Deiery's jump method. 

The input of the calculation is: the Mach number M,, and the boundary-layer properties at Station 1 (usually the thicknesses 5? and 9, plus 
the shape parameter ff,,). 

The downstream Mach number M,^ being given, equations 1.33-1.34 are solved taking the velocity profile equation into account to obtain 
the boundary-layer conditions at Station 2 (displacement and momentum thickness, shape parameter, skin-friction). These conditions can be used 
to initiate a "classical" boundary-layer calculation downstream of the shock quasi-discontinuity. 

The length L* of the interaction region, i. e. the stream-wise 
law (see Section 2. 7.2 of Part I): 

distance between Stations 1 and 2, may be obtained from the empirical correlation 

L* = 70(H,,-l)8t. 

Some applications of the above method have already been given in Section 2.7.3 of Part I to illustrate the jump in the boundary-layer 
momentum and displacement thicknesses throughout a transonic interaction. Further examples relative to interactions occurring in a transonic 
channel are presented in Figure 1. 14. Downstream of the jump region, the boundary-layer has been computed by an integral method usmg the 
Mean Flow Kinetic Energy Equation (see Deiery's method in Section 2.2 below). 

The existence of a correlation law for the supersonic interaction length L* makes it possible to develop a simplified theory for predicting 
Incipient Separation in transonic flows.    This theory will be presented in this section, although it is not exactly a control volume type analysis. 
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The present theory rests on the following basic assumptions 

Fig. 1.15 - Baker's model for transonic shock-wave/boundary-layer 

interaction. 

(i) the point of Incipient Separation necessarily appears at the end of the supersonic part of the compression; i. e. coincides with an outer state 
locally sonic. The separation limit is thus defined by the conditions of coincidence of the points where the wall shear-stress T„ vanishes and where 
M= 1.    This very heuristic approach is based on a number of experimental observations (see Section 2. 7 of Part I). 

(ii) the evolution of the dissipative layer submitted to the compression from M,i to M=l is represented by means of the classical first order 
boundary-layer equations; 

(iii) in these equations, the Reynolds shear-stress is computed by an algebraic turbulence model calling upon the mixing-length concept (Michel 
et al, 1969). 

The principle of the method is as follows. For given initial conditions H, ^ and M,i, the above correlation law for L* provides the dimensionless 
extent L*/8f of the interaction domain. Hence it is possible to deduce the Mach number distribution M(X/8?) in the supersonic part of the 
interaction this distribution being approximated by a linear law linking M^i and M = \. Thereafter, starting from a suitable initial velocity profile 
at the origin of the interaction, the boundary-layer equations are integrated by using a finite difference method with the above Mach number 
distribution prescribed as the outer boundary condition along the boundary-layer edge. Due to the proximity of separation, this calculation must 
be made according to an inverse procedure in which the prescribed quantity is the wall shear stress streamwise distribution i^iX) (see Section 2.3 
below). With this kind of procedure, the outer Mach number is the result of the calculation, thus in order to satisfy the given distribution 
M(Xm\ one must at each x-wise integration step iterate on T„ until the outer Mach number resulting from the boundary-layer calculation 
coincides with the assigned value. 

The shape factor H, i and the Reynolds number R^ 
made until assumption (i) above is verified. 

being kept constant, a second iteration loop on the initial Mach number M,,, has to be 

The value of M^, thus found gives the transonic shock strength leading to Incipient Separation. 
Section 2.7.2 of Part I. 

This theory is compared to experiment in 

Baker's method for transonic interaction (1980). - This method has been specifically designed to predict turbulent boundary-layer development 
throughout a normal shock wave interaction. It has many points in common with Delery's analysis but incorporates refinements which allow, in 
particular, the prediction of the interaction length which is no longer an empirical input. It also claims to be able to predict boundary-layer 
characteristics at the end of a separated region. 

Two kinds of control volume are used (see Fig. 
part of the flow. 

1.15): one - CV1 - to model unseparated flow; the other — CV 2 - to model the separated 

The control volume CV 1 is made up of two regions: an upstream region, of length /;, which originates at Station 1 where the wall pressure 
distribution starts to rise. It ends at Station 1' located at the intersection of the initial boundary-layer edge with the leading Mach wave of the 
compression wave system. In this part of the interaction domain, the thickness S is assumed constant. The downstream region, of length /j, 
extends from Station 1' to Station 2. For flows without separation. Station 2 is at the point where the Mach number at the edge of the boundary- 
layer is equal to 1. If separation occurs. Station 2 is fixed at the separation point, and has to be determined in an iterative manner until the skin 
friction at Station 2 vanishes. Between Stations 1 and 2, the boundary-layer will be assumed to grow hnearly with distance. Then, a further 
control volume - CV 2 - is drawn between Station 2 and a downstream Station 3 which is made to coincide with the reattachment point. Between 
Stations 2 and 3, the boundary-layer is also presumed to grow linearly. 

We will now present the analysis for CV 1.    Its application to CV2 entails only minor modifications which will be indicated later. 

The following conservation equations are written: 

—  for mass: 1 

pudy=\    pudy + p^u^Cg 
Jo Jo 

(1.35) 

— for x-momentum: 

pu^dy=\    pu'-dy+p,5,~p,S^ + ~(j,^+p^)(5^-B,) + p,iP,Ccl--py,C^, 
Jo Jo I 2 

(1.36) 

In these equations: / = /i -I- /j; p, and u^_ are respectively average density and average velocity at boundary-layer edge; Q an average entrainment 
coefficient between Stations 1 and_2; and C; an average skin friction coefficient. Pressures p^ and pj are assumed transversally constant and equal 
to the edge values.    Coefficients C^ and C^ are approximated by the following formulae: 

CE.'.+ ^(QI+Q2)'2   I//, 

C/=2(C/,+C,2). 
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p, and i7, are defined like C^.    Therefore, Q, p„ u, are weighted averages of their respective values between Stations 1 and V, and their average 
values between Stations I' and 2.    (The inviscid flow is assumed to remain unchanged between Stations 1 and 1'.) 

A geometric relation, necessary to compute /, is obtained by applying the free interaction principle. That is, the inviscid flow undergoes a 
simple wave compression along the boundary-layer displacement surface between Stations I and 2.    Thus we have: 

— =tan(v.,-v,). (1.37) 
dx 

where v is the well known Prandtl-Meyer angle. 

On a first approximation, equation 1.37 may be written: 

R* —S*     1 
^^-^ = -tan(v.i-v,,), • ■ (1.38) 

Finally, the length l^ will be given by: 

/i = 8i/tanai        where    ai = sin"'(l/Mji). •■ 

The system of equations 1.35-1.36 is "closed" by making the following assumptions: 

— the boundary-layer velocity profiles are assumed to be of the power-lav/ form; 

- density throughout the boundary-layer is computed by using the Crocco relation between temperature and velocity; 

— the formula of Green (1972) is used to specify the entrainment coefficient; 

- the skin friction coefficient is determined from the Winter and Gaudet (1970) skin friction relations as modified by Green et al. 
(1973).    However, an empirical correction had to be introduced to obtain better agreement with experiment in the "free interaction" region. 

For a given initial state (upstream Mach number M ^ „ boundary-layer velocity profile at Station 1 it is now possible to compute flow conditions 
at Station 2 and interaction lengh /. 

If the skin friction at Station 2 is found negative. Station 2 is no longer determined by the condition M^2 = l, but has to be defined in an 
iterative manner until Cf^ = 0. 

Afterwards, the previous analysis is applied to CV2 (separated region) with the following adaptations: 

— for CV2 the "free interaction" principle does not apply. Thus, in order to compute the interaction length, it is necessary to prescribe the 
pressure distribution; 

- the position of Station 3 is found in an iterative manner until the skin friction Cj^ falls to zero; i. e.. Station 3 becomes the reattachment 
position and the boundary-layer parameters are known at this point. 

This analysis can be easily modified to represent effect of mass bleed at the wall (injection or suction). If the fluid in injected (extracted) 
perpendicular to the surface, equation 1. 36 remains the same since there is then no streamwise change in the momentum flux. It is only necessary 
to add an extra term in the equation of conservation of mass 1. 35 which will represent mass bleed rate (see Seebaugh et aPs method above). 

The author has also included in his analysis extra terms for modeling the outflow of mass and momentum from the sides of the control 
volume. Such an outflow would result from three dimensional effects. These correction terms are added in order to make more significant 
comparisons with experimental data distorted by three dimensional parasitic effects. The latter are due, in the main, to the interaction between the 
channel side wall boundary-layers and the shock system. 

The present method relies on sound physical evidence for the modeling of the supersonic (or non-separated) part of the interaction. So it can 
be considered as a reliable and rather simple tool for predicting the overall flow properties in this region. Introduction of the skin friction is not 
essential for the calculation of the boundary-layer thickness at Station 2 since the contribution of Cj. to the x-momentum balance is practically 
negligible. The main interest of knowing Cj-^ is to be able to predict Shock Induced Separation. However C^^ does not result from equation 1.36 
but is deduced from the shape of the velocity distribution at Station 2. 

Perhaps the weakest point of this method is the use of simple power-law profiles which seem inappropriate for representing highly retarded or 
separated boundary-layer flows. 

The modeling of the separated flow (control volume CV 2) is much more tentative and far too coarse to give a realistic description of the flow 
phenomena. 

Two applications of Baker's analysis are shown in Figure 1.16 They concern transonic interactions experimentally studied by Kooi (1978) 
{see Section 2.9 of Part I). The momentum thickness as well as the skin-friction coefficient are relatively well predicted but agreement for the 
thickness ratio H = 8*/9 is less satisfactory. 

To conclude this Section on two-dimensional flows, Figure 1.17 shows a comparison of some of the above analyses. As suggested by 
Green (1969), the ratio (pe"e9),/(p,u^e)2 is plotted vs. the ratio of the upstream Mach number to the downstream Mach number M^JM^^- Except 
for Panaras'method which overpredicts the shock effect, the various analyses are in close agreement with experiment for M^JM^2 less than 
1.3. As the shock becomes stronger, they all tend to underpredict its effect, especially when the situation is close to Shock-Induced Incipient 
Separation. It should be said that the results plotted in Figure 1.17 do not display any influence of the initial shape parameter H, i, which as we 
know plays a considerable role.    Thus the present results are representative of an "average" value of H,, close to 1.4. 
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1.3.   —  Three Dimensional Interactions 

1.3.1.  —  General Comments 

As we know, for 2-D boundary-layer the essential and more useful features of the flow are determined by the knowledge of 3 "integral" 
thicknesses; namely 6, 5* and 6 (other quantities of interest, like the skin-friction coefficient may be deduced from these thicknesses by ad-hoc 
relations). An assumption concerning the shape of the velocity distribution provides a link between 8, 8* and 6 so that for adiabatic flow, only 
two equations are needed to solve the problem. 

In a 3-D isoenergetic boundary-layer flow, one generally considers the following integral thicknesses: 

8.= fYi-4^V.   si^f- "^ dy. 

Jo PeVl JoP.yA Ve) 

where U and W are respectively the streamwise and crosswise boundary-layer velocity components (i. e., V is the component in the direction of the 
local external velocity vector at the boundary-layer edge, W being directly perpendicular to U). 

Thus the problem possesses 7 unknown quantities: the 6 above integral thicknesses, plus 8. (The skin-friction coefficients are supposed to be 
expressed as functions of the previous quantities by appropriate formulae.) 

In the most usual approaches, integral as well as control volume, the number of unknown quantities is reduced to three by assuming that 
streamwise and crosswise velocity distributions are each defined by only one shape-parameter: one for the V component and one for the W 
component. In this manner, only three equations are needed to determine the remaining unknown quantities which are: one thickness and the two 
shape parameters. Most often, these equations are the streamwise and crosswise integral momentum equations plus the integral form of the 
continuity equation, also called the entrainment equation (see Section 2.4.2 below). 

We have retained here, three discontinuity analyses which have been proposed for treating 3-D shock-wave/turbulent boundary-layer 
interactions.    The first two are simplified boundary-layer integral methods; the third is a control volume analysis. 

These three methods share the following assumptions: 

(i) a velocity component in a direction parallel to the shock is assumed to exist, but the now properties in a direction parallel to the incident 
shock are considered as constant (the flow is said to be cylindrically symmetric); 

(ii) the downstream inviscid flow properties are known from oblique shock theory; 

(ii) the now is assumed isoenergetic (this assumption is not essential, it simply makes it possible to avoid considering the energy equation); 

(iv) viscous forces and mass entrainment have negligible effects. 

Thus these methods differ from each other essentially by the velocity profile families adopted in order to derive the "closure" relationships. 

In what follows, we consider the rectangular cartesian axes x and z as lying in the body surface, the z-axis being parallel to the shock which is 
assumed to be rectibnear. The ^--axis is normal to the body surface. According to assumption (i), the formulations will be restricted to the case of 
cylmdncally symmetric shock interactions, i. e., conditions along the z-axis are assumed invariant. 
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1.3.2.  - Simplified Boundary-Layer Integral Methods 

Cousteix and Houdeville's method (1976). - This method belongs to the class of simplified boundary-layer integral methods. Taking into 
consideration assumptions (i) to (iv) above, the boundary-layer integral equations take the following forms: 

— momentum integral equation for the ;c-direction: 

d{p,VlQ,,) + btp,UJU, = 0, , (1.39) 

— momentum integral equation for the z-direction: 

d{p,UlQ,,) = 0, (1.40) 

— entrainment equation: 

d[p,[7,(8-8?)] = 0. (1.41) 

As a consequence of the cylindrically symmetry assumption, thicknesses 5J, Bj^ and 6,2 do not appear in the integral equations. 

Equations 1.39 to 1.41 have to be integrated between Station 1 where the velocity U,, and the boundary-layer characteristics are known, and 
Station 2 where the velocity U, j 'S prescribed by oblique shock theory. These three equations, which contain 4 unknown quantities (namely 5, 5f, 
9ii and S^i), must be completed by closure assumptions. Cousteix and Houdeville have obtained the closure relations by using "self similar" 
solutions of the 3-D boundary-layer partial differential equations (Cousteix and Houdeville, 1976, see Section 2.4.2 below). 

To derive these solutions, the following basic assumption is made: the turbulent shear stress is supposed to be parallel to the mean velocity 
gradient and is thus represented by introducing an isotropic eddy viscosity.    This viscosity is expressed by a mixing length model. 

The self similar solutions make it possible to express the various thickness ratios as well as the skin-friction and entrainment coefficients as 
functions of: 

— two shape parameters; 

— the external Mach number M,; 

— the local Reynolds number R^. 

Thus, for known initial conditions at Station 1, solution of equations (1.39-41) gives the boundary-layer properties at Station 2, the downstream 
Mach number M, 2 being prescribed. 

Myring's method (1975, 1977). - This method is similar to Cousteix and Houdeville's analysis. The difference lies in the closure relations 
employed. 

For streamwise velocity profiles, Myring uses semi-empirical relations which correlate the "shape parameters" Hi and H* involved in his 
formulation {see Green's method in Section 1.2.1). 

For cross/low velocity profiles, he uses the two-layer triangular model developed by Johnston (1957). This representation involves the cross 
flow angle p, which is the angle between the external streamline and the skin-friction line. In order to evaluate (3, values of the streamwise skin- 
friction coefficient C^ are needed. At the start of interaction, Cf is determined by the well known Ludwieg-Tillmann skin-friction law evaluated at 
the Eckert reference temperature.    In the region of a strong adverse pressure gradient, Myring uses a special law deduced from his experiments (1967). 

Although this analysis could be applied to compute the change in the boundary-layer integral properties, the author seems to have developed it 
essentially with a view to predicting the effects of sweep on condition at separation. 

In this analysis, the separation hne is defined as the skin-friction line which runs parallel to the line of the shock (for more details on three 
dimensional shock-wave/boundary-layer interaction (see Section 4 of Part I). This condition fixes the angle P at separation, i.e., fixes one of the 
parameters used to describe the boundary-layer. It is thus possible to determine the external velocity (or, the pressure coefficient which is 
equivalent) at the position of the separation line (this type of resolution is similar in nature to Inverse Methods presented in Section 2). 

1.3.3.  - Control Volume Methods 

Paynter's method (1980). — This method, which is a control volume analysis, has been proposed for computing the change in boundary-layer 
properties across a weak glancing shock/boundary-layer interaction (GSBLI). This phenomenon occurs, for example, on the sideplates of supersonic 
two-dimensional mixed or external compression inlets or on the wing surfaces of aircraft with highly swept wings in supersonic flight. GSBLI 
arises when oblique shock generated by a deflection imparted to the flow meets the boundary-layer of a wall approximately normal to the shock 
generating surface. The proposed analysis is restricted to weak GSBLI; i. e., interactions in which there is no coalescence of the skin-friction lines 
towards a sepation line (Peake, 1976). In this case, the skin-friction lines (or streamlines very near the wall) undergo a deviation which begins 
upstream of the oblique shock front. Their final turning angle is generally greater than that of the streamlines at the boundary-layer edge. (See 
Section 4 of Part I for a phenomenological discussion of 3-D shock-wave/turbulent boundary-layer interaction.) 

In the present method, it is supposed that the incoming boundary-layer is two-dimensional. The downstream boundary-layer properties are 
computed by performing a control volume analysis which generalizes the 2-D method of Seebauch et al. (See above). 

The basic assumptions made are listed above in Section 1.3.1 (in particular, the flow is assumed cylindrically symmetric). 

The closure relations are provided here by considering that the velocity components normal and tangential to the shock, both upstream and 
downstream of the interaction region, are represented by power-law profiles. It is also assumed that the static pressure downstream of the 
interaction region, at Station 2 of the control voliraie, is constant normal to the wall. 
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The control volume is shown in Figure 1.18.    The view AA is in a plane normal to the wall and to the shock.    With the notations already 
used, we can write the following balance equations: 

— continuity (zero entrainment assumption): 

f»2 f»i 
pu(i;'=       pudy, 

Jo Jo 
(1.42) 

jx-momentum: 

%u^dy=\  ' pu^dy+p,S,-p2b^+p{52~5i), 
Jo Jo 

(1.43) 

— z-momentum: 

f«2 f«l 
I     pwudy = 

Jo Jo 
p wudy. (1.44) 

The term p which appears in equation 1.43 is the average pressure acting on the upper surface of the control volume. It is computed by 
representing rather crudely the true pressure distribution in the interaction domain. This analysis is made in plane AA, normal both to the wall 
and to the shock. 

u = velKJty in X dirccliofl 

w . velocity in Z ijireclton 

upper surfjce oF CV ^^   -- '   ■ 

streamline in inviscid region^ 

shoct 

'C® 

'^'B- I-''8-Paynter's model for glancing shock/boundary-layer 
interaction. 

One considers: ; 

- first, a supersonic compression from the upstream State 1 to locally sonic conditions.    This process is supposed to be isentropic; 

- second, a subsonic compression from the sonic state p* to the final pressure p^ (p^ results from oblique shock relations). 

In addition, it is supposed that there is no thickening of the boundary-layer during the course of the supersonic part of the process (i. e., the 
"free interaction" domain) and that compression from p* to p^ occurs in such a way that the shape of the curve p(xH) (I being the interaction 
length) is parabohc.    Thus pjp^ is given by: 

— =0.67^+0.33 l + (Y-l)/2.M,^sin"9 
l+(y-l)/2 Pi Pi 

By combining equations 1.42 and 1.43 and expressing p^u^ in terms of Mach number and pressure, one arrives at: 

PiM,2 l+(r-l)/2M|;"|'^'sm 
1+(Y-1)/2M^J        sine 

(e_a)IJ   P"/?«"»''0/8) {PilPi-plPi+PilPibMl^sin^i^-a)] 

\\   pulp,uJ(ylS)\ 

Jo 
d(ylh) 

l-p/Pi + yMjiSin^e 
Jo 

dO/8) 

= 0.   (1.45) 

Combining equations 1.42 and 1.44 yields: 

l+(y-l)/2M.^ 
1+(T-1)/2M^ 

P«/Pe«= 
.Jo 

d(ylS) 

P"/p.". 
Jo 

d(y/8) 

M, 2 cos (9 - a)        p uw/p^ u, w, d (ylS) 

i e        puwlp^u^wjiyjb) 

(1.46) 
M^ I cos ( 

Assumption concerning the velocity profiles leads to the following representations: 

— normal velocity: 

u        y 

tangential velocity: 

"e     \5 

— = ll 

where x= 1 indicates that the profile is upstream of the shock and x = 2 indicates that the profile is downstream of the shock. 
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Finally equations 1.45 and 1.46 constitute a system for the two unknown rti^ and «22.' this system is solved iteratively. Thereafter, 
equation 1.42 may be used to compute 82. 

The previous analysis can be successively applied to cope with multiple GSBLI consisting of shocks of opposite families or shocks of the same 
family (Paynter, 1981). 

Mc Cube's theory for the prediction of Incipient Separation (1966). - In 1966 McCabe proposed a rather simple theory for predicting the onset 
of separation in a situation where an oblique shock-wave interacts with the boundary-layer formed on a surface which is normal to the plane of the 
shock. This theory applies to turbulent flows and is largely inspired by experimental evidence. In a 3-D interaction taking place on a flat plate, 
there exists a transverse pressure gradient in a direction perpendicular to the incoming parallel stream. This pressure gradient will deflect the 
slower moving layers of the boundary-layer at a larger angle than the faster moving layers. Consequently, in the shock foot region, the direction 
of the flow changes continuously throughout the boundary-layer: the inner streamlines are more deflected than the outer streamhnes. This may be 
described as a "twist" of the boundary-layer. Now, following Myring's idea [see Section 1.3.3 above), it is postulated that separation first occurs 
when the streamline direction at the surface is parallel to the shock-wave. The flow direction close to the surface is computed by resorting to 
vorticity transport arguments. The basis of the theory is to assume that all vorticity in the boundary-layer upstream of the shock is convected 
with the free stream velocity. Furthermore, it is assumed that viscosity has no effect during the (rapid) interaction process. Henceforth, it is not 
necessary to stipulate zero slip velocity at the wall. The wall streamline direction is determined by considering the calculation around a circuit 
moving with the fluid from upstream to downstream of the shock. The fact that this circulation does not alter with time, plus oblique shock 
equations and appropriate simplifications allow the author to compute the change in flow direction across the boundary-layer. Hence, an Incipient 
Separation limit can be determined as a function of the upstream Mach number and shock sweep angle. The shape of the incoming velocity 
profile is not taken into account, which constitutes a drawback to this kind of theory. 

A comparison with experiment of the Incipient Separation limit predicted by McCabe's analysis is given in Section 4 of Part 1 devoted to the 
physical description of shock-wave/boundary-layer interaction in three-dimensional flows. 

1.4.  - Inviscid shear layer analyses 

As we know, viscous forces often play a negligible role in the largest part of a turbulent dissipative layer undergoing a rapid interaction 
involving either compression or expansion. The phenomenon is controlled essentially by pressure and inertia forces. Thus the key hypothesis in 
Inviscid Shear Layer analyses is the constancy of entropy on each streamline: the interacting boundary-layer is considered as a rotational inviscid 
stream.    This assumption leads to two different methods of calculation. 

The first method pertains more or less to discontinuity analysis, since it consists in computing a downstream state 2 from a known initial 
velocity distribution at Station 1 and prescribed static pressures p, and pj- Flow evolution between Stations 1 and 2 is ignored. The basic 
principle of the method is to divide the shear layer into N streamtubes of thickness Ay„ (this thickness may vary from one streamtube to the other) 
over which the flow properties are considered as constant. By assuming that each streamtube undergoes an isentropic compression (or expansion) 
between Stations 1 and 2 and making use of the continuity relation (conservation of mass), one may construct the downstream velocity distribution 
at 2 (provided that the static pressure is transversally constant at Stations 1 and 2). 

No restrictive assumption has to be introduced concerning the shape of the velocity profiles and this technique is rather general, in the sense 
that no boundary-layer approximations are made. However the calculation requires that the total pressure of the streamtube exceed the static 
pressure P2 or at least be equal to it. For a compression, this condition is not fulfilled near the wall and a way is therefore needed to deal with the 
inner part of the initial boundary-layer in which total pressure is less than the final static pressure. This difficulty can be circumvented if suction 
is performed at the wall in such a manner as to insure that the low energy fluid be continuously sucked away (for more details on this special but 
interesting case, see Green, 1969). 

No problem of this kind exists for a rapid expansion where pj is lower than /),. Indeed, the method gives very good results in the prediction 
of boundary-layer change across a centered expansion wave (Murthy and Hammitt, 1958; Kirk, 1959; Carriere and Sirieix, 1960; Nash, 1962; 
Weinbaum, 1966; Delery and Masure, 1969). 

The second approach consists in performing an exact calculation of the rotational shear layer throughout the interaction zone. Calculation of 
this kind can be made without any special difficulty if most of the shear flow remains supersonic. Then the equations of motion are of hyperbolic 
nature and can be solved by a downstream marching process.    The Method of Characteristics is very well suited for such calculation. 

Naturally, there is a problem with the subsonic part of the boundary-layer. Nonetheless, if the Mach number of the external inviscid stream 
is high enough (say greater than 2), the subsonic region of a turbulent boundary-layer is very thin compared to its total thickness 8 (see Section I 
of Part I), so that the influence of the subsonic inner layer can be neglected in a first level approximation. 

This kind of analysis has been used with very good quantitative success for expansion occurring at a sharp corner or at a base shoulder. In 
these circumstances, the subsonic layer is laminated so that its influence actually decreases. 

One of the first applications of the inviscid rotational approach to shock-wave/turbulent boundary-layer interaction was made by Thomke and 
Roshko (1969). The inviscid model was applied to the compression over a wedge, the initial external Mach number being approximately equal to 
4, In this model, a small, inner portion of the boundary-layer profile was ignored and the outer portion was considered simply as a supersonic, 
rotational stream that interacts inviscidly with the ramp (see Fig. 1.19). The lower edge of this layer is defined by a Mach number M„> 1 and is 
taken to be at the wall itself. Calculations were performed by using a rotational Method of Characteristics code. This implies that the Mach 
number M„ on the lower boundary-layer be high enough (or the wedge angle sufficiently small) to preserve supersonic flow on the ramp. The 
starting conditions were provided by the measured incoming boundary-layer profile where the "cut" Mach number was determined from empirical 
considerations. The computed wall pressure distribution agreed very well with the measured one as can be seen in Figure 3.5 of Section 3.2.1, 
Part I.    Other examples of this kind of computation can be found in Section 3.2 of Part I. 

This kind of calculation was later improved by Rosen, Roshko and Pavish (1980) in order to take account of the influence of the inner layer 
and to deduce a rational basis for determining the Mach number M„. The basic principle of this improved method consists in applying to the 
inner layer a control volume analysis similar in nature to those presented above (see Section 1.2.2). The chosen control volume is shown in 
Figure 1.20. The static pressure is assumed constant across the inner layer, and the entrainment as well as the viscous forces are assumed negligible 
at its outer edge. , 
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for inner layer determination. 

Three equations are obtained by writing conservation of mass, of momentum is the direction of the initial flow and of momentum in the 
direction normal to the mcoming flow. This basic system is supplemented by the assumption that the velocity distributions belong to a family of 
profiles dependmg essentially on only one shape parameter. In this analysis, the thickness S, of the incoming inner layer as well as the streamwise 
extent Ax (see in Fig. 1.20) are unknown. Thus, two additional relations are required; they are obtained from matching pressure and velocitv at 
the interface between the two layers. 

Examples of application of this improved analysis are presented in Figure 1.21. The two computed cases are relative to ramp flows at the 
same upstream Mach number of 3.93 but with different ramp angles. Agreement with the experiments of Roshko and Thomke (1969) is very 
good except for the downstream part of the wall pressure distribution which is, in fact, affected by disturbances coming from the external flow. 

f K'!°'fv'^"'?^^ f^ ^"'f" ^'^^*'' ^""^ ''''° "'^^ *^ rotational inviscid approach to compute the interaction between an oblique shock and a 
turbulent boundary-layer in hypersonic flows. Here, the lower edge of the outer portion of the layer was defined by a characteristic break in the 
measured initial Mach number profile. The inviscid part of the flow was computed by the Method of Characteristics. In a first version of their 
method, the authors made the assumption that the thickness of the viscous (and partly subsonic) inner layer remains unchanged during the shock 
reflection (i.e., no interaction effect between the two layers was considered). In an improved version (Rose, 1970; Rose et al 1972) a more 

oulertnlTscWflow'"        '*'' "'"*■    " '"'=°"'P°'''"^'* ^ ^^^ simplified interaction mechanism between an inner laminar viscous sublayer and the 

tnrh.^rr"'"' ILT^ calculations are given in Figure 1.22.    They concern shock reflections in hypersonic flows for a laminar case and for a 
omnuted hv rn H        1 f no^^ '.   ^'"''"'"' with experiment is good, especially in the laminar case.    The laminar interaction has also been 

computed by Goodwin et al. (1977) by usmg a method belonging to the category of viscous-inviscid interactive methods (see Section 3 below). 

.nnHt1'""''/T'^'n ""^^ ''^^^'°P^'! by Elfstrom (1971), but without any interactive effect between the two layers. This theory was essentially 
for nc,nr,% "f '^'"TT '''^'"''""™ °''' ^ wedge-compression corner in hypersonic turbulent flow. It was also used to derive a criterion 

flows   El   trom^mo^T? "1^'' l^T'    ^' f™ " '^'="°" ''"' ''^" ' ''^™'^'' '° '""^'P"'"' ^^P"-''™ '" two-dimensional supersonic 
(sarM     greaTer thani)   ™' "'^ '" agreement with experiment provided that the free stream Mach number be high enough 

The ideas underlying Inviscid Shear Layer analyses result in great part from experimental observations. This demonstrates the quasi negligible 
effect of viscous forces in turbulent flows submitted to rapid interaction. ncgiigioie 

sati,f?H'° FT; tv'""' ^°"^''""'' necessarily play a dominant role in the immediate vicinity of the wall in order for the no slip condition to be 
re! ! 1 r      f ,.        V      "'" '"'""'^ '""'""* "'°'^'' '''"'' '"""'^'''y '° inconsistancies which cannot always be ignored.    A more 
reahsic solution of the problem necessitates that one resort to a more refined theoretical examination of the flow structure. This is precisel^he 
object of the multi-deck theories which are presented in Section 4. precisely tne 
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2.   -  METHODS FOR THE CALCULATION OF THE CONTINUOUS DEVELOPMENT OF THE BOUNDARY-LAYER 

2.1.   —  Introductory Remarks.    The Inverse Mode of Calculation 

The present Section is concerned with the use of Prandtl's equations to compute the continuous evolution of the boundary-layer in the course 
of interaction with a shock-wave. 

Application of the classical boundary-layer concept is in fact not feasible for this situation since the purely inviscid solution leads to a 
discontinuity in the wall pressure distribution. The existence of such a discontinuity implies an infinite pressure gradient which would provoke the 
breakdown of the boundary-layer calculation even for a vanishingly weak shock. Consequently, a trouble free boundary-layer calculation 
necessitates a "smoothing" of the wall pressure discontinuity. In reality as explained in Part I, this smoothing results from the shock-wave/boundary- 
layer interaction phenomenon itself. Therefore, a complete and real prediction of the interaction within the framework of the boundary-layer 
concept requires the use of a coupling (or matching) technique. In this kind of technique, the boundary-layer and the flow considered as inviscid 
are computed simultaneously and made compatible by satisfying appropriate "matching conditions". Such methods of calculation, which pertain 
to the weak interaction and strong interaction concepts, will be presented in the next Section. 

Before considering interactive analyses, we will first discuss the ability of boundary-layer methods to properly predict flow evolution during an 
interaction. Within this limited perspective, the shock is considered as a rapid but continuous process. The input of the boundary-layer calculation 
is a smoothed wall pressure distribution (as long as the boundary-layer does not separate [see below]) which may result from measurements or be 
provided by an inviscid flow calculation using a shock capturing technique which produces an artificial smearing of discontinuities. 

If the shock-wave is of insufficient strength to induce separation, any boundary-layer method can be used in conjunction with the properly 
smoothed pressure distribution. There exists a large number of such methods (finite difference as well as integral methods); it would be out of 
place to mention them here. They generally give acceptable results as long as the shock-wave is not too strong. A difficulty with this kind of 
calculation is the correct smoothing of (or filling in the blanks if the data points are too sparse) the pressure distribution in the shock foot 
region. If the shock is weak enough (say MoSl.2 in transonic flows), the final result (i.e., boundary-layer quantities downstream of the shock 
region) is not very sensitive to the shape of a "reasonably" smoothed curve. However, if the shock strength is increased, the pressure gradient 
becomes steeper and the boundary-layer calculation is more sensitive to the shape of the adopted pressure distribution. A badly defined compression 
may lead to the breakdown of the calculation announcing a separation which does not actually occur. One of the merits of the Discontinuity 
Analyses (see Section 1 above) as well as of the Multi-Deck theories (see Section 4 below) is to avoid this problem by providing a local treatment 
for the shock foot region. Furthermore, Discontinuity Analyses can incorporate empirical refinements rather simply which improves the prediction 
in circumstances where "classical" boundary-layer methods can deviate markedly from experiment (for example, in the case of interactions just 
before Incipient Separation conditions in transonic flows). 

If separation occurs (or is likely to occur) in the course of the interaction, some adjustment of the classical boundary-layer methods is required 
in order to avoid the breakdown of the calculation in the vicinity of the separation point. Some improvements of the physical model also have to 
be introduced in order to adequately represent the highly destabilized boundary-layer. 

In what follows, attention will be focused on boundary-layer methods which incorporate such adaptations and which are commonly used in 
calculations of shock-wave/turbulent boundary-layer interactions by interactive techniques. The distinctive feature of these methods is their ability 
to compute unseparated as well as separated boundary-layer flows and to work either in the direct mode or in the inverse mode. This capacity 
allows them to continuously join a separated state to an unseparated state and vice versa. 

In the classical, or direct, formulation of the boundary-layer problem, Prandtl's equations have to satisfy initial conditions (i. e., initial velocity 
and temperature distributions) and a prescribed streamwise pressure distribution (if the flow is non-adiabatic, the wall temperature must also be 
imposed. For the sake of simplicity, only the adiabatic case will be considered in what follows). The solution of these equations (by finite 
difference or integral methods) provides the streamwise evolution of the boundary-layer. The main quantities of practical interest are most often 
the displacement and momentum thicknesses, a representative shape-parameter and the skin-friction coefficient. 

In the inverse mode, one prescribes the streamwise variation of a quantity pertaining to the boundary-layer development; for instance, the skin 
friction coefficient or the displacement thickness (other quantities can also be chosen). In this case, one of the results of the calculation is the 
pressure distribution imparted to the boundary-layer. 

For many years the inverse mode was used for "design" purposes. In this case, the aim of the inverse calculation is to furnish a pressure 
distribution p (x) leading to the maximum pressure recovery which can be sustained by the boundary-layer without separating. Thereafter, an 
inverse inviscid flow calculation (i. e., a calculation with the pressure distribution p (x) imposed as boundary condition) gives the shape of the object 
(airfoil, turbomachine blade or diffusor wall, etc.). 

However, an essential merit of the inverse mode is to render possible the use of the boundary-layer equations in separated flow situations by 
avoiding the separation point singularity encountered in direct mode calculations. 

As is now well known, in 2-D steady flows, computation of a boundary-layer (laminar or turbulent) satisfying a prescribed distribution of 
pressure p (x) [or external velocity u^ (x)] is not generally possible if law p (x) results in separation of the boundary-layer. The numerical difficulties 
which are then encountered on approaching separation are linked to the existence of a singularity of Prandtl's equations at the point where the 
wall shear stress vanishes. This singularity manifests itself when the pressure p is imposed as boundary condition. For laminar flows, the nature 
and the origin of this singular behavior have been extensively analyzed by Goldstein (1948), Stewartson (1958) and Brown (1965). To our 
knowledge, such a local analysis has not yet been carried out for turbulent flows. 

Singularity at separation in the direct mode is also met when using integral methods of calculation. Here, the singularity manifests itself in 
the vanishing of the principal determinant made up of the coefficients of the system of ordinary differential equations governing the boundary-layer 
development (most often two equations are used, see Section 2.2.1 below). 

The impossibility to perform a conventional boundary-layer calculation until separation and to continue it beyond that point is not attributable 
(as was originally thought) to the failure of the boundary-layer concept. In fact, this impossibility denotes the establishment of a "strong interaction" 
regime between the boundary-layer and that part of the flow considered as inviscid. Consequently, the pressure distribution p (x) can no longer be 
independently prescribed, as is the case for "weak interaction" regime. In this case p(x} results from the strong coupling mechanism between the 
viscous layer and the outer inviscid flow. Such a mechanism establishes itself when the boundary-layer undergoes a strong destabilization, like in 
a shock-wave/boundary-layer interaction. The notion of strong coupling was originally introduced by Crocco and Lees (1952). It permits the 
determination of an inviscid external flow and of the accompanying boundary-layer in such a way that the distribution p (x) resulting from the 
calculation ensures a smooth passage of the solution through the separation (and/or reattachment) point. 
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In a more restricted perspective, the calculation of a 2-D boundary-layer including a separated bubble can be performed without encountering 
any singularity at separation (or reattachment) by use of the inverse mode, as has already been pointed out. The capacity to compute separated 
boundary-layers by means of an inverse technique has at least a double advantage (besides the "design" purpose): 

- on the one hand, it permits the application of coupling methods to subsonic and transonic flows. In these cases, due to the ellipticity of 
the mviscid stream, the boundary-layer and the external flow must be calculated independently and made compatible by overall successive 
iterations. The situation is different for entirely supersonic external streams; for then it is possible to satisfy the compatibility conditions at each 
step of a purely downstream marching process, provided the boundary-layer calculation is made entirely parabolic in the downstream direction (see 
Section 2. 3 on Finite Difference Methods and Section 3 on Coupling Methods); 

- on the other hand, when compared to the solving of the full Navier-Stokes equations, it may provide an effective and economical 
computational tool for defining and criticising models of turbulence applicable to strongly interacting flows. 

In what follows, we will present boundary-layer type methods which are used in transonic and/or supersonic flows where separation resulting 
from the interaction with a shock-wave is likely to occur (or actually occurs). Only methods working for turbulent flows will be considered since 
the turbulent regime is the most likely to exist in shock/boundary-layer interactions. Most of the existing methods are restricted to 2-D flows as 
only a very limited number of methods are available for treat 3-D boundary-layer flows. 

We will first consider integral methods (Section 2.2) which are often used in coupling algorithms because of their rapidity Then finite 
difference methods (Section 2.3) will be presented. These last methods allow a more local description of the flow and the use of more sophisticated 
turbulence models, even though it be at the cost of longer computing times, of course. 

2.2.  —  Integral Methods 

2.2.1.  - Basic Principles and Equations 

The basic principle underlying nearly all existing integral methods is to describe the boundary-layer development by means of two integral 
equations.    It is thus possible to compute the streamwise variation of two characteristic quantities, namely: 

- a length scale measuring the boundary-layer thickness. The most often retained thicknesses are: either the displacement thickness or the 
momentum thickness; 

- a shape-factor which represents the shape of the boundary-layer velocity profiles. The knowledge of this shape factor (also called form- 
factor of form parameter) allows the determination of all the other integral thicknesses when only one of them is known (of course the external 
Mach number as well as thermal conditions at the wall must also be known). 

The resolution of the system of ordinary differential equations necessitates additional or "closure" relationships which consist of: 

- an appropriate velocity profile family; 

- a turbulence model or ad-hoc formulae to evaluate the viscous terms. 

Thus the two-equation integral methods permit the prediction of two quantities of main interest, namely: the skin friction or momentum loss 
due to viscous forces, and the displacement effect which is at the origin of the viscous-inviscid interaction mechanism. 

The taking into account of thermal effects would require, in principle, an integral form of the energy equation. However most of the 
methods employed to compute shock-wave/boundary-layer interaction make use of Crocco's integral to relate the temperature and the velocity 
profiles. Moreover, it is also frequently assumed that the stagnation enthalpy is constant across the boundary-layer. This assumption does not 
entail large errors provided the flow is adiabatic (absence of heat transfer at the wall) and the Mach number M, at the boundary-layer edge is 
moderate (the variation of stagnation enthalpy across an adiabatic boundary-layer is approximately equal to 4% when M =2). In what follows 
we will not consider the energy equation. " 

Let us consider the turbulent boundary-layer equations of a 2-D compressible steady flow assumed adiabatic: 

— continuity: 

3(p») , g(pti) 
^r^"^=" I (2.1) 

— streamwise momentum: - 

du du        dp      d 
pu—H-pij—= - —-t- — 

ox Cy        dx     By 
^5«1 ■ I (^' + ^)^J- ! (2.2) 

In these equations all the symbols are relative to mean quantities (Reynolds' averaging) and ^ is the turbulent eddy viscosity defined by: 

du   
H,    — = -p« v' I   ■ 

dy ; 

As already stated, the energy equation is replaced by Crocco's integral which for adiabatic flows is written:    f 

7 y_l / „2\ I 
— = !+'•——MM 1 -\       (r: recovery factor). ' (2.3) 

The most widely used integral equations are the following. 
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The first one is the Von Karman momentum equation which can be written: 

1 j™ "I    /^ 
'-, (2.4) 

dx       \_\       8 / Uc dx     pg dx 

or, if the flow at the boundary-layer edge is isentropic: 

dx    V       9 Ju^dx      2 

The second (or complementary) equation differs according to the author's preference.    Three kinds of equations are commonly used. 

(i) The Mean-Flow Kinetic Energy Equation also called the Mechanical Energy Equation. 

This equation is obtained by multiplication of equation 2.2 by u prior to integration in the y direction, which gives: 

"ie'+e'fA^ + l^V^^^^B^ ■ (2-5) 
dx \ u, dx     Pg dx}      u,   dx 

or, for an isentropic external flow: 

^ + f3 + 2^-MA«!^=D 
dx      V 9* / u, dx 

Thicknesses 9* and 9** as well as the Shear-Work Integral D are defined in Section 1.2.1 above (D is also termed the dissipation integral). 

(ii) Integral Continuity Equation also called the Entrainment Equation. 

This equation results from integration of the continuity equation between >' = 0 and >' = 8, which gives: 

d (8 - S*)     (8 - 8*) d (p, uJ _ d5     v,_ ^^^ p gj 
dx pjU,       dx dx     u. 

or for an isentropic external stream: 

^»-(8-8*)(l-Mf)i-^ = ^-£^=C.. 
dx u, dx     dx     «e 

The coefficient Q represents the rate at which the external flow enters the boundary-layer.    It is sometimes called Head's entrainment 
coefficient (1958).    It has been demonstrated by Michel et al. (1969): 

d8     D, _       1   /' 5T ^ .       - (2 1) 
dx     Ug PgUg\5u/,.5 

which clearly shows that the entrainment coefficient is strongly related to turbulence properties at boundary-layer edge, 

(iii) The Moment of Momentum Equation. 

It is obtained by multiphcation of equation 2.2 by >< prior to integration from >' = 0 to >' = 8, which leads to the following equation: 

rn     du     a« p5(p«) . duj     , p    , „ ON }pu—-—\   -^dTi-p.u.-^Udy^-     zdy. (2.8) 
Jo I     dx     dxjo    8x dx] Jo 

The Moment of Momentum Equation may prove superior to the Mean-Flow Kinetic Energy Equation due to difficulties in evaluating 
numerically the Shear-Work Integral in the latter. 

In what follows, the retained methods are classified according to the second equation they use (all of them employ the Von Karman 
equation).    In this review, only the distinguishing features of the methods are presented, i. e.: 

- the velocity profile family (if any) used to evaluated the different thickness ratios; 

— the essential formulae giving the viscous terms. 

2.2.2.  -  Methods Using the Mean-Flow Kinetic Energy Equation 

It seems that the first integral method especially devised to compute separated flows at transonic speed should be accredited to Klineberg and 
Steger (1972). The method was restricted to laminar flow so we will not consider it in much detail here. It also incorporated the calculation of 
the airfoil wake which could be either laminar or turbulent. In this method, the basic integral equations were transformed into an equivalent 
incompressible form. The various profile quantities, as well as the skin friction coefficient and the shear-work integral, were deduced from 
boundary-layer and wake-like similarity solutions (Klineberg 1968; Klineberg and Lees (1969). 
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The method proposed by Delery (1975) to compute a separated turbulent boundary-layer is formulated directly in the compressible (physical) 
plane.    The velocity profiles belong to a family derived from Cole's law-of-the-wall/law-of-the-wake formula, which is here written in the form: 

u 
1 + ^^in^- 

0.41 U,    8 
2.24 

U, 
0.41 [/, (2.9) 

where^ = ^ I Cj., I is defined with an incompressible skin friction coefficient and can be negative to accomodate separated flows.    The ratio 

8f/5 involving the "incompressible" displacement thickness; 8; 
Jo  V «e 

dy can be considered as a shape-factor.    The "wake" function / (y/6) 

is a polynomial function of {y/Sy^ defined from a correlation of turbulent'velocity profiles measured in the separated and reattaching zone behind 
a downstream facing step (Noi, 1971). Reasoning for the (fictitious) incompressible state, U, is a function of 8f/6 and of the Reynolds number 
Rj. However by fitting equation 2.9 with the well known law-of-the-wall, it is possible to derive the following relation between these three 
parameters: 

8f 
8 

1 
'l24 1     UXOAI     \   '   U,  J 0.41 J 

+ 1. (2. 10) 

Thus the profiles depend essentially on only one parameter: the shape-factor 8f/8. The Reynolds number is a secondary parameter since it is 
a function of 8 and u, (plus the fixed stagnation conditions). The effect of compressibility on the shape of the dimensionless velocity profiles u/u, 
was assumed negligible. This assumption has been well verified experimentally for adiabatic flows, the external Mach number of which is not too 
high (M„<3). Thus equation 2.9 is assumed valid for compressible boundary-layer at moderate Mach numbers. The true or "compressible" 
skin friction coefficient is deduced from Cj-, by using the relation: 

.T-1 M; 

which gives a good correlation for the compressibility effect if the flow is iso-energetic. It is to be noticed that equation 2.9 is not valid in the 
immediate vicinity of the wall since the logarithmic term tends to infinity when y^O. Nevertheless, equation 2.9 can be applied very close to the 
wall, down to >'/8 = 0.01.    The part of the profile below this ordinate is approximated by a linear evolution. 

The above velocity profile representation is sufficient to compute the various thickness ratios involved in the formulation. However, 
formula 2.9 is not accurate enough to permit a realistic calculation of the shear-work integral from an eddy viscosity model and the slope du/dy 
evaluated by differentiating equation 2.9. It is more appropriate to compute D with an equation given independently of the velocity profile 
representation. Initially,!) was deduced from Alber's turbulent similarity solutions (1971). In a subsequent version of the method, O was 
evaluated with a more accurate and more convenient expression derived by Le Balleur {see Section 2.2.3 below). This expression gives the shear- 
work integral coefficient CQ in the form: 

Pe"e 
:[\C,\\u,\ + 0.0\&(l-u,)'] 

1 
H-0.53(7-l)/2Mj 

Here the "wake velocity" Up is simply: 

«,.= 1.-2.24- 

(The wake velocity is the velocity which would exist at the wall if U, were set equal to zero in equation 2.9.    It corresponds to a slip velocity in 
the absence of the logarithmic component.) 

More recently,  Whitfield, Swafford and Jacocks {19&1) have proposed a method which uses a very sophisticated boundary-layer velocity 
family.    This family is represented, in incompressible flow by (see also Whitfield, 1979 and Swafford, 1981): 

u _u,   S 

u,     «^0.09 
tan"'(0.09y+)-|- 1- 

u,0.18 

where: 

S = sgn(C^,), and 

tanh"2[a(y/e)'']. 

V    u>,e' 

(2.11) 

The profiles defined by equation 2.11 depend on three quantities: H„ C;^ and \R,\ (a and h can be evaluated if the three previous parameters 
are known).    In fact, the number of parameters is reduced to two by adopting a correlation law giving Cj-, as a function of H, and \R^,. 

In compressible flows, the profiles are still represented by equation 2.11 with "incompressible" values related to compressible ones by the 
following relationships: 
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For the purpose of defining integral thicknesses at high Reynolds number, equation 2.11 can be conveniently replaced by the following 
formula: 

"   ...("■)„  , ,_(^ tanh"^ [0(7/9)"], (2.12) 

in which (u^Ju, is a fictitious "slip velocity" representing the outer limit of the first term of equation 2.1! (i.e., the limit of this term when 
Y* -> oo). F^or separated flows, the second representation has an advantage in that («,)„ represents the maximum reverse flow velocity which can 
be correlated more easily than the skin-friction, which for separated flows is very small and difficult to measure. Thus, a correlation is provided 
which gives (U|)„/«e as a function of H,. 

Also, a correlation is given to compute the energy integral thickness parameter 6f/9, as a function of H„ although such a correlation is not 
strictly necessary since SfjQ, can be computed from equation 2.11 (or 2.12).    Such a correlation is only useful for saving computer time. 

The shear-work integral D is evaluated by using the Cebeci-Smith (1974) two-layer eddy viscosity turbulence model and the analytical velocity 
expression for du/dy. However, the numerical results thus obtained can be reproduced very closely by a two-term approximation of D as the sum 
of an inner and of an outer contribution.   The integral thus becomes: 

In the inner region (contribution D,), the shear is assumed constant and equal to the wall value; in the outer region (contribution Do)' i' >s 
computed by using Clauser's eddy viscosity model (1954).    The shear-work integral coefficient thus computed can be approximated as: 

^D~^Di~^^D 'jL+2/cn^'i^Y-       with    K=0.0168. (2,13) 
0.18 V3   H:   J   2 

The above expression is an excellent correlation law for boundary-layer flows evolving in near equilibrium conditions. It is inadequate for 
flows undergoing a rapid interaction process, as is the case of a shock-wave/boundary-layer interaction. We know that in this case non-equilibrium 
effects are particularly important (see Sections 2.9 and 3.9.2 of Part I). So, in a more recent version of this method, Whitfield and Thomas (1983) 
proposed modeling these effects by means of a relaxation-type equation for the outer contribution £)„. This equation, which is derived from 
arguments similar to those employed by Green et al. in their "Lag Entrainment Method" {see below), is written; 

8  d(Cj,„)    , ,,^   Ni/3_/^   -.1/31 

dx 
-mcoo)i'i-iCooy'i< 

where the term (CO^JEQ is given by equation 2.13. >. is a known function of the shape-parameter. The authors assume that the near wall region 
responds much more rapidly than the outer region so that its contribution D, to the shear-work integral can be computed by the equilibrium 
expression 2.13. 

The above method is applied to compressible flows by relating compressible integral thicknesses to their incompressible counter-parts by means 
of suitable velocity-temperature relations. 

In the method proposed by Thiede (1976) for computing separated turbulent boundary-layer a correspondence is first established between 
physical (or compressible) thicknesses and incompressible thicknesses. This transformation makes use of Crocco's relation to link the temperature 
and the velocity profiles {see equation 2.3 above). The closure relations are thus deduced from a one parameter incompressible profile family. This 
family is made up of the "lower branch" turbulent similar solutions of Alber (1971) i.e., velocity distributions including a reversed flow region. The 
shear-work integral coefficient (in the incompressible plane) is given by an equation which contains an empirical term representing non-equilibrium 
effects: 

In the above formula Equilibrium Quantities are relative to similar solutions; IT is the pressure gradient parameter defined as: 

U, dx Jo V       U, 

and (Co)£(2 is a function of the "incompressible" shape-parameter H resulting from the transformation (it is recalled that H differs from the "true" 
incompressible shape-parameter H,, see Section 1.2.1 above). 

2.2.3.  —  Methods Using the Entrainment Equation 

A very sophisticated and popular integral method using Head's entrainment concept has been proposed by Green, Weeks and 
Brooman (1972). This method was developed to compute (turbulent) compressible boundary-layers submitted to a rapid evolution involving strong 
out-of-equilibrium effects.    In this method the entrainment equation is written in the form: 

rftf _ dH 
lx~ dHi 

Q-H,#-(H+1)«^ 
2 u.dx 

(2.14) 

where: 

H=-     —I I- — \dy is a pseudo incompressible shape-factor which is a weak function of the Mach number {see also Section 1.2.1 above) and: 
QJOPA       "e/ 

ejo Pe«< 

,      5-5* 
dy=  

e 
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The entrainment coefficient C^ is given by a differential equation representing 
(or expansion).    This equation is written: 

'lag" effects which are likely to occur in a rapid compression 

3^ 
dx 

■ =F 
2.8 {(c,Y^i-c\"] + 

u, dx 
-KM. 

u, dx J 

where/(MJ is a known function of the Mach number M„H=~ and C, is the skin-friction coefficient computed with the shear-stress T at a 
U 

conventional value of yjh in the boundary-layer.    The above equation for Cj is developed from the equation for the shear-stress that Bradshaw et 

al. (1967) derived from the turbulence kinetic energy equation.    Quantities (Q^Q and j-^)     are relative to equilibrium flows 
V u. dx JcQ 

These flows are defined as flows in which the shape of the velocity and shear-stress profiles do not vary with the streamwise distance x The 
other closure formulae are obtained from the following considerations: 

- appropriate relations are provided to express H^ and H as functions of H; 

- the skin-friction coefficient jwdetermined from H and R, by a relation involving a flat plate skin friction C. given by the correlation of 
Winter and Gaudet (1970): 

- the equilibrium values (CJ^g and I --^ )     are deduced from results concerning equilibrium flows and by applying equations 2.4 and 

2.14 to an equilibrium boundary-laye^for which dH/dx = 0.    These operations provide algebraic relations allowing the calculation of equilibrium 
quantities from the knowledge of C^ H, H, H, and the external Mach number M,. 

The method also incorporates factors representing extraneous influences on the turbulence structure: longitudinal curvature, lateral strain, 
dilatation, momentum inbalance due to departure from two-dimensional flow. 

Modifications of the method concerning essentially the shape paramater relations have been introduced by East, Smith and Merryman (1977) 
to improve the prediction in highly separated flows. 

In the method developed by Michel, Quemard and Cousteix (1977) the closure relationships are deduced from "self-similar" solutions of the 
compressible turbulent boundary-layer equations. These solutions are obtained via a procedure analogous to Alber's approach. This procedure 
consists in making restrictive assumptions regarding the streamwise evolution of the boundary-layer. Then the partial differential equations reduce 
to ordinary differential equations, the solutions of which constitute a family of velocity profiles depending on a limited number of parameters. In 
the present case, the similar solutions are derived by using a mixing length model to express the turbulent shear stress: 

T = n 
du 

Ty' 
-pF^P 

In the above relation ;/8 is taken to be a universal function of yj?, which is of the form: 

' =0.085 tanhf^^^ 
5 V 0.085 8 

The viscous sub-layer correction function f is a modified form of the Van Driest damping function.    It is written: 

F= 1.—exp 
26/en' 

(here/c = 0.41). 

In compressible flows, the self-similarity hypothesis consists basically in saying that the dimensionless profile uju, depends only on ylh; i. e.: 

Then the boundary-layer equations are reduced to ordinary differential equations with y/S as independent variable.    Their solutions depend on 
three parameters: the Mach number M„ the Reynolds number R, and a pressure gradient parameter.    In the integral method, the profiles are 

unhooked   trom the actual pressure gradient and characterized in fact by Clauser's shape parameter: 

G = iH,-l.)l[H:/Cj7,] 

Consequently, the various thickness ratios intervening in the integral formulation, as well as the skin friction and entrainment coefficients are 
computed from the self-sirailar solutions and expressed as functions of M^, R^ and G. 

The method has been extended to take into account three-dimensionality (see Section 1. 3 about "jump" methods for 3-0 shock-wave/turbulent 
boundary-layer interaction) wall curvature and free stream turbulence. These extensions are made by a suitable generalization of the mixing- 
length model (Cousteix et al., 1974; Cousteix and Houdeville, 1977). ^ 

r...l^^ "lt^°^ '''""T'' ^^ ^'^f'"' ('981) applies to laminar, transitional and turbulent flows.    Here, we will consider only the turbulent 
case since this regime is the most likely to occur in shock-wave/boundary-layer interactions met in most practical situations. 

(r.hJ^'Jn^.t'"\r'^Z "''^'""''^°'^ ^'^' '^^ momentum and the entrainment equations which are integrated directly in the compressible 
physical) plane. In addition to the assumption of a constant stagnation enthalpy, it is assumed that compressibility has no effect on the shape of 

fte dimensionless velocity distributions. These distributions are represented by a formula similar to equation 2 9 [see Section 2 2 2 above 
However the present method introduces two inprovements in the representation of the profiles: • uve; 

-  the wake component of the Coles'law is given by the formula: 

mi 
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which coincides with the asymptotic far wake solution if the turbulent eddy viscosity is modeled by using a mixing length relation (Quemard and 
Archambaud, 1976). Thus the method can also be applied in a rather continuous manner and with only minor changes to the turbulent wake 
which follows turbulent boundary-layer separating at a trailing edge; 

- an adaptation of the wake component is introduced to extend Coles' relation to largely separated boundary-layers. In fact, it can be shown 
that equation 2.9 together with the usual forms of the wake component lead to unbounded negative velocities when H, becomes very large. To 
avoid this unphysical behavior, the wake function, designated here by /, takes the following form: 

Ooxy',       /(-^ 

b-y" 

This means that the velocity distribution includes a zone of constant return velocity below y=y* and has the usual wakelike shape above 
y=y*. The reduced ordinate >'*/5 is a prescribed function of the shape-factor 8f/8. This function is empirically defined to generate realistic 
profiles for a continuous variation of Hj (or5f/5) from the attached flat plate value (or the wake value) to the value corresponding to the turbulent 
isobaric mixing, i. e., a largely separated boundary-layer. 

The skin-friction coefficient results from the adjustment of the velocity distribution (see equation 2.10 in Section 2.2.2 above) with the wall 
law when H, is greater than 1.6. The compressibility effect on Cf is represented by the relation given by Michel et al. (1972). For H, smaller 
than 1.6 the Michel et al. law is preferred because of its superior accuracy. 

Non equilibrium effects are taken into account by expressing the entrainment coefficient in the form: 

CE = ^(X)(C£)£5. 

The equilibrium value (C^)^Q is deduced from known equilibrium turbulent boundary-layer properties; whereas X(x), which characterizes departure 
from equilibrium, is a function of the streamwise distance x.    This function is computed by integrating simplified turbulence transport equations. 

At high Reynolds number (CE)!^ is given by the following relations: 

-  ifH,gl.6, 

(CA« = 0.053(,.-J)-0.182-^, ^ 

where the reduced "wake-velocity" u^ju, is related to the shape-factor 5f/5 by: 

u„     , 2.22 Sf/S 

u, l.-H.22j'/5 

-  if H,.< 1.6, the Michel e( a/, formula is employed, i.e.: 

(C,),e = 0.074 5^ - 0.548 -^. C,. 

The departure from equilibrium, represented by the "one-dimensional" function X(x), is computed by first assuming that the velocity profiles 
representation remains unaffected.   Then, from the definition of the entrainment coefficient and the relation 2.7 of Section 2.2.1 above, we get: 

T(x,y)      _      Q(X)__^^^^ 

The following additional approximation is introduced: 

^(x,y)   _   T(X) 

\^(x,y)]EQ    PWka' 

where T(X) is a turbulent shear-stress level depending on x alone and characterizing an "average" turbulent state of the boundary-layer at 
station x. This "one-dimensional" shear-stress is computed by using very simplified transport equations for an average turbulence kinetic energy fc, 
an average dissipation rate E and T. These equations are derived from Launder and Hanjalic's transport^equations (1972) by making simplifications 
which reduce them to ordinary differential equations for the "one-dimensional" turbulent variables k{x), e(x) and T(X). This approach bears 
some similarity to Green's lag entrainment method {see above). 

2.2.4.  -  Methods Using the Moment of Momentum Equation 

In the method of Kuhn and Nielsen (1973), a Stewartson transformation is first applied to reduce the equation of the compressible boundary- 
layer to those of an incompressible boundary-layer. Thus the velocity profiles found to be valid for incompressible flows can also be used to 
compute compressible flows. The adopted velocity profiles are represented by a function which is a modification of Coles' family with a laminar 
sublayer added and the wake function approximated by a cosine.    This formula, which involves incompressible values, is written: 

-^ = .^[2.5 1n(l. + y*)-l-5.1-(3.39y+-t-5.1)exp(-0.37y+)]-h^^ 
Y 

-COS|  Tt — 
8 

(2.15) 
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where y*=|C/,| y/v. The friction velocity U, is modified to accomodate separated flows and can be positive or negative (see equation 2.9 in 
Section 2.2.2 above). (7p is the wake-velocity {see Section 2.2.2 above). The exponential term and the additional unit in the logarithmic term 
provide a smooth transition from the turbulent flow to the wall through a laminar sublayer. There are three parameters involved in equation 2.15: 
U„ Uf and 6. However, U^ can be eliminated by evaluating equation 2.15 at Y=5 which gives an equation similar to equation 2.10, but here 
unlike other methods, U^ is eliminated instead of (7,. 

The shear-work integral is computed by using equation 2.15 for dU/dY and an eddy viscosity model which is an extension of the two-layer 
model used by Kuhn{1971), In the inner layer of attached flows, the eddy viscosity parameter p=l-|-v,/v is represented by an exponential 
expression based  on the law-of-the-wall.    In the outer layer, v, is represented by Clauser's expression along with an intermittency function : 

v, = kyU,b*. 

The Klebanoff intermittency function y is approximated by: 

y = [l + 5.5(| 

In order to represent the decrease of the "constant" k noticed in strongly retardated flows, k is calculated by: 

/c = 0.0I3 + 0.0038exp(-/'/15), 

where P is the dimensionless pressure gradient parameter: 

For separated flows, the value of k at separation is retained, but the length scale of the eddy viscosity is changed. In accordance with Alber'< 
analysis, the conventional displacement thickness is replaced by the displacement thickness based on the profile above the l/ = 0 line: 

Substitution of equation 2.15 into the two basic integral equations expressed in their incompressible form leads to the following system: 

— momentun equation: 

,    dV,     ^    db     ,    dU, 

dx dx dx 

— moment of momentum equation: 

dU,     ^    d5     .    dU^ V r» dv 
— +^12^+^22 - = - P^dY. 
dx            dx            dx £/.8\ 0    dY 

Thus the easier way to use Kuhn and Nielsen's method in an inverse calculation is to prescribe the friction velocity U which is in fact 
equivalent to prescribing the skin-friction coefficient. However the method of integration can be modified without difficulty to introduce the 
displacement thickness 8* as a working variable (5* being a known function which can be expressed in terms of U 8 and [/ ) The use of 6* is 
generally more convenient for viscous-inviscid calculations. In such calculations, the displacement thickness plays a key role in'the various coupling 
(matching) equations which can be written (see Section 3.2.1 below). 

The authors have extended the method to compressible axisymmetric flows by making use of the Probstein-EUiot transformation in order to 
Nielsln  j^""'*"^"'*^^' equations an almost two-dimensional form before applying the compressible-incompressible transformation (Kuhn and 

More recently Gerhart (1979) proposed a method which is formulated in the physical plane. The velocity profiles are also represented by a 
modilied torm of Coles law which allows for compressibility and possible reversed flow (Alber and Coats, 1969; Mathews et al, 1973): 

I 
-sin^ 

where: 

\.+r{y-\)l2Ml' J\c;\ "        ^ 

The main profile parameters are X and u^.    However, following the now classical procedure, equation 2.16 written at v = 5 results in a relation 
between k and Up.    Thus, the profiles in fact depend essentially on only one parameter, hke in the preceding methods. 

The shear-work integral D is evaluated by differentiation of 2.16 and by using a mixing length expression for the turbulent eddy viscosity     The 
total (laminar plus turbulent) shear-stress is thus written: 

T=U-l-p/^F^ 

which allows for negative shear in regions of reversed flow.    A continuous distribution of mixing length / identical to the Michel et al. expression 
IS used {see Section 2.2.3 above). 
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The Van Driest exponential damping term is expressed by: 

F=l. —exp y 
26v p        pdx J 

which avoids the singular behavior at the separation point of the original Van Driest formula in which F=0 everywhere if T„ = 0.    When the 
boundary-layer separates, the damping effect of the wall is removed and a different formulation of the mixing length is adopted: 

—  above the zero velocity point (;'g>'o); i- e., the outer edge of the reversed flow region: 

while below the zero velocity point {y<yo). 

i^Lylyo- 

For an equilibrium attached boundary-layer, the value of /„/5 is rather well determined as: /„/8 = 0.09. However, for a boundary-layer 
undergoing a strongly out of equilibrium evolution like in a shock-wave/boundary-layer interaction the ratio /„/8 does not remain constant but 
decreases markedly (Simpson et ah, 1981; Delery, 1981) ((see Section 2.9 of Part I). The author proposes different possibilities to model this 
evolution. 

The first and simplest way is to use an algebraic formulation, following the approach of Alber (1968). The relation adopted for /„/S has a 
form similar to Kuhn and Nielsen's formula (Kuhn and Nielsen, 1975) : 

= 0.055-l-0.035exp(-p/5). (2.17) 

The parameter |3 is related to the local "equilibrium" shape-factor and is not taken to be equal to the reduced pressure gradient, according to 
its original definition.    Thus P is calculated from: 

G = 6.iyp+T8T-1.7. 

where G is the Clauser defect shape-factor defined above (see Section 2.3.2). 

Another possibility is to use a differential equation (see Green's lag entrainment method as well as Le Balleur's method in Section 2.2.3 
above) which can be derived from the turbulence kinetic energy equation.    In the integral form this equation is: 

1 P a f du 

I'Sy' 
-(u" 'I dy—     psdy. (2.18) 

where k is the turbulence kinetic energy and E the turbulence dissipation rate. Following results of McDonald and Camarata (1968), Bradshaw 
et al. (1967), and Collins and Simpson (1976), the different terms involved in equation 2.18 can be modeled and expressed as functions of M^, X, 6, 
Up, /„/8 provided that a formula is available to compute the length scale L for the dissipation. 

The following expressions were used by Gerhart: ■ 

-  for attached boundary-layers: 

L     L^      ^l 0.41 ;; 
- = ^^tanh  
5       S \hjhh 

I.-I-5.5 

for separated boundary-layers: 

-(S-.l'o) 

For a non-equilibrium situation, L„/8 cannot be considered as constant and a formulation of the form: 

^ =0.05-H0.04exp(-p/4), 

is proposed. 

According to the author's conclusion, equation 2.18 does not give better results than the much simpler algebraic expression. 
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2.3.  —  Finite Difference Methods 

2.3.1. Earlier Inverse Methods 

To our knowledge, the first inverse method using a finite difference technique to solve the boundary-layer equations was published by Catherall 
and Mangier in 1966. The method was applied to an incompressible two-dimensional laminar boundary-layer and the case of a prescribed 
displacement thickness was considered. The equations are written in terms of a stream function and the vorticity. A transformation is introduced 
m which the independent variables are simply connected to the inviscid stream function and velocity potential. The stream function >|; is expressed 
as the sum of two functions: one representing the inviscid solution, the other - H - the viscous modification to the inviscid now so that if H is 
made to decay as we move from the body into the main stream, the solution will merge into the external potential flow solution. This function H 
IS directly related to the displacement thickness 8*. Thus the method incorporates two important features of inverse formulations that were 
developed afterwards: 

— elimination of the unknown pressure gradient by introducing the vorticity co; 

- use of a modified stream function which allows the prescribed displacement thickness to figure explicitly in the equations to be solved as well 
as in the boundary conditions. 

These two essential features will be presented in more detail below. 

Catherall and Mangier presented applications which showed that it is indeed possible to compute a boundary-layer past the point of vanishing 
skin friction and also past the point of reattachment. 

The numerical method was carried out by using an entirely parabolic procedure marching always in the downstream direction Consequently 
numerical difficulties were encountered in the reversed flow region where the calculation developed instabilities. Nevertheless, the integration was 
continued by decreasmg the convergence criterion at each station. As the authors pointed out, this difficulty is to be expected because the region 
of reversed flow should actually be integrated in the upstream direction with boundary conditions provided from downstream. This problem will 
be discussed in more detail below. 

The case of a prescribed wall shear was treated in 1972 by Keller and Cebeci for an incompressible laminar boundary-layer The equations 
are reduced to the familiar dimensionless form: 

—- +f—~ - 
5n'    ^Ti^ 

P® = 2^ 
Bf ay    d'fdf 

(2.19) 

where/(ti, ^) is proportional to a stream function, ^^0 is a transformed streamwise variable, ri&O measures distances normal to the wall and P(y 
IS the pressure gradient parameter.    When the ^-derivatives are put equal to zero this equation reduces to the well known Falkner-Skan equation. 

The inverse problem results from requiring that the wall shear be specified, meaning: 

feO) = S©. (2.20) 

Specification of both Pd) and S{Q would result in an over-determined problem: thus, a solution is obtained by solving equation 2 19 (with 
appropriate and classical boundary conditions) where P(y is considered as an "eigenvalue" which is determined so that 2 20 can be satisfied In 
brief, the procedure consists m treating the unknown distribution as an "eigenvalue" which is approximated by a Newton iteration scheme based 
on satisfying equation 2.20. For iteration, a standard boundary-layer flow problem is solved which may lead to severe difficulties if separation 
occurs. The numerical scheme uses a two-point finite difference method (Keller and Cebeci, 1977a and b) plus Newton linearization The linear 
system is then solved by the block elimination method. 

In 1976  Cebeci extended this method to compressible and turbulent boundary-layer, although the method was still restricted to non-separated 
flow {see Section 2.3.4 below). 

A more elaborate analysis capable of properly accounting for negative wall shear was proposed in 1974 by Klineberg and Steger As it was 
restricted to laminar incompressible flows, we will not consider it in much detail. We will only comment on some of its essential features which 
have been incorporated in future methods. 

The problem is here formulated in primitive variables («, v, p) with a transformation that keeps the boundary-layer neariy uniform in thickness 
in the computation domain. 

The boundary-layer equations are solved subject to the following boundary conditions (in the inverse mode): 

du J=0, u, u = 0. 
Sy 

=hix): y-» 00, «-»«,,. 

Here, h(x) is a prescribed function and «.. must be determined as part of the solution process. The pressure gradient is deduced from the 
momenturn equation evaluated at the surface. The computational domain may contain a zone of reversed flow. But the boundary- aye has to 
be attached both in the entrance and in the outgoing section in order to have a well posed problem (see sketch below). 

iUjched flow        sepiDted flo* blending 

1*15 **i "T* • • t •    a005«SsO.OI5 

f-J H W^    -0.01 « ii « 0.01 

no condition     j 

downstream boundary 

ZJ 
surface : ij = V . 0 ■(■^L.r(«) 
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One of the essential features of the method is the use of differencing schemes which allow the information to propagate in accordance with the 
local flow direction. Thus, in the part of the boundary-layer where the stream flows in the downstream direction, a backward difference scheme is 
used, whereas a centered scheme is employed in reversed flow regions. A blending formula is employed in the intermediate zone to enhance the 
iteration process.    This formula is not otherwise fundamental. 

The possible existence of a reversed flow where the scheme is centered precludes-in principle-the use of a simple forward marching procedure, 
but necessitates an iterative method consisting of successive sweeps of the computational domain until convergence is reached. For this purpose, 
both point and line Successive Underrelaxation were used.    The relaxation procedure was initiated by assuming a Blasius profile everywhere. 

The major result of this study was to demonstrate that regular solutions of the boundary-layer equations in separated regions could be found 
by the inverse technique provided the reversed flow region is correctly treated in order to avoid the numerical difficulties met by Catherall and 
Mangier. The authors have also developed a local analysis which proves that regular flows are characterized by an integrable saddle-point type 
singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. This singularity is removed by 
specifying the wall shear-stress distribution and computing the pressure gradient as part of the solution. 

However, numerical applications made by Klineberg and Steger [and also by Carter (1975)] have shown that discontinuous solutions may be 
found for highly separated flows. Then the computed value of the pressure gradient tends to become discontinuous at a point located downstream 
of separation. Correspondingly, the normal velocity increases rapidly. This phenomenon is certainly not an indication of a possible breakdown 
of the boundary-layer equations since highly separated flows are computed without any discontinuity by methods in which the displacement 
thickness is prescribed. It is more probably due to possible branching phenomena associated with the existence of two reversed flow solutions 
having the same wall shear-stress but corresponding to different pressure gradients. These two solutions are found when solving the Falkner-Skan 
equation (Stewartson, 1954). - 

2.3.2.  - Carter's Method and Derived Methods 

We will now expose in more detail a method which works for compressible and turbulent boundary-layer flows and which is commonly used in 
transonic flow calculations. This method, proposed by Carter was first formulated for laminar incompressible flows (Carter and Wornom, 
1975). Then it was extended to incompressible turbulent flows (Carter, 1978) and later to compressible turbulent flows. It is basically designed to 
make inverse calculations with prescribed displacement thickness. However, it can be applied to the case of specified wall shear stress distribution 
at the cost of minor changes.    Two versions of the method have been successively proposed by Carter: 

- the first uses as dependent variables the stream function (|/ and the vorticity co (more exactly the pseudo vorticity a) = duldy); 

— the second method employs primitive variables. 

Formulation with Variables (m, v|/). For the sake of simplicity, the basic principles of the method will be exposed by considering an incompressible 
turbulent boundary-layer.    Extension to compressible flow is rather staightforward and will be considered thereafter. 

Starting from the boundary-layer equations, the unknown pressure p (or edge velocity u,) is first eliminated by taking the j'-derivative of the 
momentum equation.    Introducing the vorticity a^du/dy and taking the continuity equation into account, the co transport equation is obtained: 

u hi;— = —r[(v-l-v,)co]. (2.21) 
8x       dy     dy^ 

The turbulent shear-stress has been modeled with the eddy viscocity concept (this is not essential, more sophisticated modeling can be 
envisaged); thus: 

^-^       Su 
— U  V  =V,  =V,(0 

ey ■ 

In order to eliminate the edge velocity from the outer boundary condition it is convenient to introduce the stream function \|/ so that: 

3v|; Svl; ■ ■•   . 
u=—,        v= . 

dy dx 

Equation 2.21 is now written : 

5(0    dii dm _ d^ 

dx     dx dy     dy 
u~ [(v-Hv,)co]. (2.22) 

A "modified stream function" ijf is defined by letting (i/ is also called the "perturbation stream function"): 

^ = i/-u(y-i'') (2.23) 

Considering the definition of the displacement thickness 8*, it can be easily verified that $ -► 0 when >■ -► co.    Thus, introduction of \j/ has a 
double advantage: 

- first, the prescribed displacement thickness figures explicitly in the equations.    Consequently, there is no need for an iterative or shooting 
technique as would be required by a "classical" formulation; 

— second, $ has "convenient" boundary conditions, since vp is zero both for y = Q and JJ -> o). 

Differentiating 2.23 with respect to y gives: 

^=co(5*->.). (2.24) 
dy 

Thus, the inverse problem consists in solving equations 2.22-23 along with the boundary-conditions: 

«(x, 0) = ^i(x, 0) = 0, ^2.25) 
(a(x,y),^{x,y)^0       for   >>-> oo. 
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the distribution of 5* being prescribed. 

When the wall shear-stress is imposed the condition is simply: 

m{x, 0} = a>^{x)       (a given function of x). 

Applications in compressible flov/. - In order to extend the above formulation to compressible flows with a minimum change in the numerical 
treatment, Delery (1980) has applied a compressible-incompressible transformation similar to Stewartson's transformation The new independent 
variables X and Y are defined in such a way that: 

dX= "ePe 

'foPo 
dx, 

SY_ a.p 

where a^ (sound velocity) and po are relative to a constant reference state.    Letting: 

P« = Po Pf=-PoT- 
ox 

and making the assumption that the stagnation enthalpy remains constant throughout the flowfield (iso-energetic flow), one obtains the followine 
quasi-incompressible form for the two governing equations: 

dX        dY        ' dX      pJY 
(ti + ti,) 

p 8U' 

p^sy. 

^ = y\t-U(Y-A*)       with   ^{X,Y) = ii{x,y), 

where the compressible (physical) and incompressible (transformed) quantities are related by the retations: 

P V "o Po        3x 
u=^U,       „=P°teK-^[/ 

and: 

M, 

The "incompressible" displacement thickness A* is defined as: 

Jo    V U,y 

and we have the following relation between A* and the physical displacement thickness 8*: 

-\dY 

»-fiPlR*_Izl A»=:i!^8 
"oPo 

M ^f7i-^ 
Jo V     ul 

dY. 

dU 
Introducing the transformed vorticity Q= —, the equations to be solved are: 

dY 

dX    JxdY~~pJdY 
(^-^^,)-K-n 

Po   . 

dY 
=(A»-y)n, 

(2.26) 

(2.27) 

along with the usual boundary conditions 2.25. 

The transformed vorticity equation is not entirely "incompressible" since density and viscosity remain in the Right Hand Side Total 
elimmation of p and ^ would reqmre very restrictive assumptions concerning the compressibility effect on the turbulent eddy viscosity Such a 
restriction is not recommended if one wishes to use realistic turbulence models. The essential merit of the transformation is to give equations in 
which there is only one term involving density. 

One should note that A* must be determined iteratively from 2.27, since the input of the calculation is in fact 8*. In practice this iteration is 
included in the iterative cycle of the calculation procedure (see below). 

It is also possible (as was done by Kawai, 1977), to perform the calculation directly in the compressible (physical) plane. Then differentiating 
with respect to y, the x-momentum equation yields: 

where: 

8pdu So     d\itda>       dp        d^ 
"^ir+P" u~a= —[(n-l-n,)(o1, 

dydx dx     dxdy       dx       dy^ (2.28) 

du 
(0= — 

dy 

The equation for the modified stream function is now written: 

--=(8*__>,)/pto + uJ'j    from \l( = ij/-pu(;;-8* 
(2.29) 
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The above system has to be supplemented by the energy equation which will not be written here since its solution does not need any special 
procedure. Furthermore, in transonic adiabatic flows, the stagnation enthalpy can be assumed constant. This avoids the solving of the energy 
equation. 

Method of Numerical Solution. - In his first publication (1975), which concerned only laminar boundary-layer. Carter envisaged two 
computational schemes: 

- for a prescribed displacement thickness, a Crank-Nicolson scheme is employed in the forward flow region and a centered scheme in the 
reversed flow region; 

- for prescribed wall shear, the computational molecules are similar to those used by Klineberg and Steger (see above). 

In a further extension of the method to turbulent flows. Carter considered only the second kind of computational scheme which is employed 
both for prescribed displacement thickness and prescribed wall shear. In fact use of the Crank-Nicolson scheme m this case leads to oscillations of 
the numerical solution. 

Thus, the two following computational molecules have to be considered for calculating turbulent boundary-layer: 

m-1 

pn+1 

n-1 m_1 

0   n+1 

n_l 

The discretization is most often established for a variable step size in the >'-direction to allow for mesh refinement near the wall as is essential 
when calculating turbulent flows. Generally, the grid is varied at a constant rate Ay„ = K&y„^i where K is close to unity in order to maintain 
second order accuracy (usually X=1.04 to 1.09). About 60 to 80 points are distributed across the boundary-layer in such a way that several 
points lie in the viscous sublayer. More recently. Carter e! al. (1982) proposed a composite >'-transformation which allows the simultaneous 
capture of the two turbulent length scales: i. e., boundary-layer total thickness and wall layer thickness. Basically, the transformation consists in 
the addition of two co-ordinates: an inner co-ordinate N, based on the approximate analytical velocity representation proposed by Whitfield (1979) 
and an outer co-ordinate JVo deduced from an approximate fit to the Clauser correlation. There results an adaptative grid procedure which 
enlarges the inner rei;ion, therefore permitting a uniform mesh to be used in the computation plane. 

Linearization and discretization of the to transport equation 2.22 at point (m, n) leads to the linear equation: 

(2.30) 

where A„, B„, C„ and D„ are coefficients which due to the non-linear character of the problem depend on the solution. 

The equation for ^ (equation 2.23) is discretized at the middle point between n and (n+l).    This gives a relation of the form: 

if™. „ = $™. „+i + £n(«™, „ + i+»™, n)- (2-31) 

The velocity component u is computed from co by using the trapezoidal rule. 

Repeated application of equation 2.30 across the boundary-layer results in a tridiagonal system which is conveniently solved by Thomas' 
algorithm.    A recurrence formula of the form: 

--D' + C:a„ (2.32) 

is obtained at each streamwise station m. 

In a similar way equation 2.31 can be combined with equation 2. 32 to obtain a recurrence relation for the stream function: 

The coefficients D'„ and C'„, which are a combination of A„, B„, C„ and D„ are computed recursively from the outer boundary to the wall, with 
the outer boundary condition a)(x, co) = 0 imposed by setting DJ, = C;, = 0 (N denotes the grid point at the outer edge). 

Equation 2. 32 is then used to compute all the co„ „ provided that the starting value at the wall o)„ j is known. This value is deduced from 
an implicit procedure consisting in a combination of equation 2.32 written for « = 2 with equation 2.31 evaluated for n = 2 and in which the 
boundary condition \|;(x, 0) = 0 is imposed. Proceeding in a similar way, K„ and L„ are computed from the outer edge to the wall with the 
boundary condition (S){x, oo) = \]}(x, oo) = 0 imposed by setting Kf, = Lfi = 0. 

Due to the non-linearities of the governing equations, the above procedure has to be iterated at each station m until a convergence criterion is 
satisfied.    A slight underrelaxation has generally to be applied. 

In a relaxation or successive sweeps procedure, as the one used by Klineberg and Steger (see above), starting (initial) values of co and $ are 
guessed at each point of the computational domain. At the upstream border, the y distributions of to and ^ are prescribed. At the downstream 
boundary, the flow is assumed attached; hence it is unnecessary to impose any conditions here. The columns (m = const.) are computed successively 
beginning at the upstream boundary and continuing to some point downstream of reattachment. Since there exists a region of separated flow, this 
sweep procedure must be repeated iteratively until satisfaction of a convergence criterion. 
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When the amphtude of the negative velocity in the reversed flow region is small, it is possible to use a forward-marching procedure everywhere 
without too much loss of accuracy. As is well known, such a method of calculation leads to instabilities when the integration proceeds in a 
direction opposite to that of the local flow. Nevertheless, the calculation can be stabilized by setting the convection term udu/dx (or uda>/dx) in 
the jc-momentum equation equal to zero when u is less than zero. This approximation is often called the FLARE approximation from Fluege- 
Lotz and Reyhner who introduced it for the first time (1968). The FLARE approximation permits a substantial reduction in computer time and 
storage capacity. This time-gain is of great interest for coupling methods where many successive inviscid now/boundary-layer calculations are 
often necessary, especially when separation occurs (Carter and Wornom, 1975). 

We will say only a few words about Kawai's method, since his numerical procedure is very similar to the one employed by 
Carter.    Equations 2.28 and 2.29 are linearized in the form: 

[3p ~| 5« 5co 

dy J dx dx m -j2 -)T 

dy^ dy 
u + [p] CO 

where the bracketted terms are considered as the constant coefficients.    A modified Thomas algorithm is used in order to treat implicitly the du/dx 
derivative.    The recurrence formulae are now: 

'i'm. , =-K, + i-. »„, „-1 + M„ W„   „_ 1. 

Coefficients a„, b„, d„, K^, L„ and M„ are computed recursively starting from the boundary-layer outer edge. 

This method was applied by Kawai to laminar flows, but it can be extended without difficulty to turbulent flows as was done by Delery. In 
this case, second order backward difference schemes are recommended. Kawai's method leads to more complicated algebra than methods using 
compressible-incompressible transformation. However, the overall computing time is comparable since it does not entail repeated exchanges 
between the incompressible and the physical planes. 

Formulation with Primitive Variables. Carter (1978) has extended his inverse method to compressible flow through the use of the Levy-Lees 
compressibility transformation. 

The following new independent variables are introduced: 

5=        P.«ell. 
Jo 

.ml ^dy. 

(2.33) 

(In reality, the transformation used by Carter also includes a factor allowing the mapping of an axisymmetric flow into a two-diraensionam flow: 
for the sake of simplicity, this factor has been discarded here.) 

The transformed continuity and x-momentum equations are written: 

2^^-.F+^=0. 
Si,        dn 

25ff + K^=P(6-f^)+A 
ai,        dr\ dr\ 

where: 

l[\+'- 
yi,\dF 

nJs^ 

(2.34) 

and: 

A dx  ^mj p,u,nA   3x     Jl\) 

(Carter's formulation also takes into consideration the energy equation which will not be considered here for reasons exposed above.) 

In the transformed plane, the relation between the stream function/and the perturbation stream function /becomes: 

'-'-'{\: edri 

The stream function / satisfies the boundary conditions: 

Finally a second change of variables is introduced: 

7(4,0)=/(^, oo) = 0. 

Tl=-=^^-ri       or ^Kr^4«' 
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where m = p^Uj8* is the "perturbation mass flow", i.e., the loss of mass flow in the inviscid stream resulting from the existence of the boundary- 
layer.    With the new variables, the perturbation stream function is written: 

,^_    7=/-Z^(n-l+h),      ^ (2.35) 

where: 

h=\  (e-i)dn- 
Jo 

This relation is similar to the above relation 2.27 which can also be written: 

' ' V        "oPo 

the only difference being in the scaling of the y co-ordinate. 
This similarity is to be expected since the crux of all compressible-incompressible transformation methods lies in the correspondence: 

Jo Pe 

The final equation to be solved is equation 2.34 and the relation obtained by differentiating equation 2.33 with respect to y (plus the energy 
equation in Carter's pubUcation).    These equation are: 

1 = 4^(1-^-.)^, 

n^F—-m-Lm7+mFi^-'^+h)]^="'"^i^-F')+-^ 
di,        dt, ^ dr] dr\ 

Carter solves the inverse problem for a prescribed perturbation mass flow m (x) instead of the displacement thickness. This choice [which is 
particularly convenient since the grouping p.UeS* appears in the definition of the perturbation stream function (equation 2.35)] presents, in fact, 
more essential advantages when the inverse calculation is used in a viscous-inviscid coupling method {see Section 3.2.1). 

Method of Numerical Solution. - The governing equations are solved by using the Crank-Nicolson finite difference scheme with Newton 
linearization. In the present formulation, Newton linearization is used on non-linear terms to accelerate the convergence of the iterative process at 
each streamwise location. In the reversed flow region, the FLARE approximation is introduced to prevent instabihty while preserving the usual 
rapid forward-marching scheme (see above). 

In order to facilitate comparison with the numerical method employed in the (co, $) formulation, let us designate by 5M, 5i]; and 5p the change 
in the dependent variables at a given point between two successive column iterations; that is: 

where q is the iteration index   it is recalled that P represents the unknown pressure gradient parameter: |1 = «,— 

The linearized finite difference form of the governing equations are written as: 

5'!'™, n-Sl^m. „-l+^»(5"m. n-5"™, n-l) = e„ (2.36) 

and: 

^„8"„, „-i-l-B,8u„, „-l-C„5u„. „ + ,-l-D„il/„. „ = £„ + H„5p. (2.37) 

Repeated application of equations 2.36 and 2.37 across the boundary-layer results in a system of block tridiagonal linear system which is 
solved by the following recurrence formulae: 

?,u„,„ = E'„-}i'„h^-A'„bu„„^^, (2.38) 

S*!'™, „ = e;-S;5p-R;8u„, „+i. (2.39) 

The recurrence coefficients are computed from the wall where 8u„. i = 6ili'„, i = 0 to the boundary-layer edge. In the inverse mode, the 
perturbation in the edge velocity 8u„, « and in the pressure gradient parameter 5p are computed from formulae and relations derived from: 

- equation 2. 39 where the boundary condition h^„_ N = 0 is imposed; 

- equation resulting from the x-momentum equation written at the outer edge where the >'-derivatives must cancel out, thus: 

du 

Hence the four relations: 

5"m, ^-l=£iv,-l-Wi,-i8P-^^-l5"m, W 

^n,. iV - 1 = Pw (5"m, N " 5"m. iV - l) " 2». 
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which permit the determination of 5u„ ^ and 8|3.    These edge values allow the starting of the recurrence formulae 2. 38 and 2.39 which are swept 
from the boundary-layer edge to the wall. 

It is to be noticed that in this method the unknown pressure gradient parameter p is treated implicitly in the numerical procedure This 
treatment avoids the numerical difficulties which are met at the separation (or reattachment) point by other methods also using primitive variables 
m which p IS determined explicitly by a shooting technique {see Keller and Cebeci's method above as well as Arieli and Murphy's method below). 

Remarks. - Formulation of the direct and/or inverse boundary-layer problem in primitive variables may present some advantages: 

- the possibility of a resolution either in the direct mode or in the inverse mode is far easier than for the (m, ^) formulation. In a direct 
calculation, u, and p are known, thus 8«„, « = 5p = 0 and the back substitution process begins by using equations 2.38 and 2.39. The ability of a 
boundary-layer calculation to easily switch from the direct to the inverse mode and vice versa is essential for coupling techniques. 

As a matter of fact, it is preferable to treat weak interaction regions in direct mode, whereas strong interaction regions must be computed in 
the inverse mode (for more detail, see Section 3): 

- the use of primitive variables avoids the complication of solving for the unknown surface vorticity as is required by the (to, ^) formulation. 

In some applications (Carter, 1979, 1981), especially when large separated zones form or for very rapid compressions (as in shock-wave/boundary- 
layer interactions), the Crank-Nicolson scheme produces streamwise oscillations of the solution. Then it is advantageous to employ a fully implicit 
backward difference scheme.    This of course does not change the basic principles of the method. 

2.3.3. Ardonceau's Inverse Method 

A different way of solving the inverse problem in primitive variables was proposed in 1981 by Ardonceau. His method is quite general since 
It applies both to laminar and compressible turbulent flows. The problem is formulated in the compressible plane with primitive variables and can 
deal with a large variety of prescribed quantities; 

— pressure p (x) (direct mode); 

— displacement thickness 6* (x); 

— skin friction coefficient Cj (x); 

— perturbation mass flow m {x); 

— edge normal mass flow: p^ D, (x). i 

The x-momentum and energy equations are discretized by using a second order centered difference scheme to represent the >'-derivatives This 
scheme allows for a variable y-step in the case of turbulent flows. When the flow is attached, the x-derivatives are approximated by a second 
order backward difference scheme. For separated flows, a global iteration procedure similar to the one of Klineberg and Steger (see above) is 
employed but with a more refined discretization of the form: 

Bu _F+l du 

dx        2   dx 
F-\du 

b      2   dx 

with: 

5x 

du 

dx 

3"„. n-4u„-i, „ + U„_2, 

2 Ax 

2 Ax 

The function F which insures a blending between the forward and backward schemes is defined as: 

1.—expl 

This progressive transition between the two schemes avoids oscillations of the line «(x, j) = 0 during the iteration on the non-linear terms. The 
reference velocity u„ is chosen sufficiently small so as not to allow downstream influence on well attached profiles. 

The discretized x-momentum and energy equations results in a block (2x2) tridiagonal matrix of dimension NxN (N being the number of 
grid points in the boundary-layer) plus: 

- one column containing the discretized unknown edge gradient: p^u,—; 
'  ' dx 

- one row which expresses the prescribed boundary-condition in a discretized form. 

In this formulation, the boundary condition (prescribed quantity) is treated implicitly (like in Carter's method) thus avoiding numerical 
difficulties at separation (or reattachment). 

The resolution of the above matrix is made by a substitution algorithm derived from Thomas' algorithm. The velocity i;-component is given 
by the continuity equation integrated from the wall to the outer edge by means of a Crank-Nicolson scheme. As in the above methods an 
Iteration is made at each streamwise step in order to cope with the non-linearities of the problem. 
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2.3.4.   -  Other Inverse Methods 

In 1974, Horton proposed an inverse method for a separating laminar boundary-layer with prescribed wall shear {see also Horton, 1975). The 
boundary-layer equation in the form 2.19 is used {see Section 2.3.1 above). The method of solution consists in replacing the t, derivatives by 3- 
or 4-point Lagrange baclcward difference formulae. This results in an ordinary differential equation for dfldr\ at each ^. The inverse problem is 
solved with condition 2.20 prescribed at the wall. The solution procedure uses a shooting technique on p with Newton's method to enhance 
convergence. The author was able to compute separation and reattachment with non evidence of any singular behavior and found no numerical 
instabilities in the reversed flow region although the forward marching procedure was used everywhere without, seemingly, the FLARE 
approximation.    This result is in contradiction with calculations made by other authors. 

In 1972 Klemp and Acrivos presented an original method for integrating the boundary-layer equations through a region of reversed flow. Their 
basic idea consists in dividing the flow into two-domains: a region I in which the flow is reversed and a region II where u is everywhere 
positive. Along the line >' = r(x) separating I and II u = 0. For a given boundary location r(x), the boundary-layer equations are integrated 
separately in I and II in the appropriate flow direction by using standard numerical techniques. The solution is obtained by iteration on r{x) until 
the slopes dujdy along r(x) become identical in flows I and II. The authors applied this technique to the problem of the flow over a finite 
stationary flat plate, the surface of which moves at a constant velocity in the opposite direction of the free stream. The pressure gradient being 
assumed to be zero the method was in fact worked in the direct mode and, consequently, the singularity at separation (and reattachment) was not 
avoided. In spite of this limited and non-conclusive calculation, Klemp and Acrivos' method is to be retained. It has received an interesting 
application by Cebeci et al. {see below). 

As already mentioned, in 1976, Cebeci published an inverse technique for compressible laminar and turbulent boundary-layers. His method 
applied to prescribed wall shear as well as to prescribed displacement thickness but it was restricted to non-separated flows. The method was 
formulated in primitive variables with the unknown pressure gradient kept in the x-momentum equation. The boundary-layer equations are solved 
by using at two-point finite difference method (Keller, 1970). The unknown pressure gradient is determined explicitly at each streamwise station 
by an outer iteration loop using Newton's method. 

In 1979 Cebeci, Keller and Williams (1979) extended the above method to separating boundary-layer flows (their formulation is restricted to 
incompressible laminar flows but it could be easily transposed to compressible turbulent flows). The method, which is worked out for a prescribed 
displacement thickness, employs the Box Scheme along with the FLARE approximation in separated regions. The equations being written with 
primitive variables, the inverse problem is treated as a non-linear "eigenvalue" problem for the pressure gradient. Althoug the FLARE approxima- 
tion allows a fully forward marching procedure, the approximate reversed flow thus computed is corrected by a downstream-upstream iteration 
similar in nature to the one introduced by Klemp and Acrivos {see above). 

In 1980 Arieli and Murphy proposed an inverse method which solves the compressible laminar and turbulent boundary-layer equations written 
in primitive variables. A Levy-Lees transformation (see equations 2. 33 in Section 2.3.2 above) is applied mainly to permit the computational 
domain to grow in the streamwise direction following to some extent the growth of the boundary-layer. A stream function / is introduced so that 
an equation similar to equation 2.19 is obtained (differences arise from the presence of the turbulent eddy viscosity). The total enthalpy is assumed 
constant (the energy equation is not solved). The partial differential equation is integrated by using the generalized Galerkin's method (for details 
see Murphy, 1973). In the present case, the stream function/, the velocity dfldr\ and the shear d^f/dr\^ are approximated by Taylor's series 
between adjacent mesh points in the T| direction assuming a constant fourth derivative d^ f/dx]* across the interval (r|„, ri„+i). The streamwise 
derivatives are approximated by: 

df     u 
— backward difference at nodal points where: — = —^0.01; 

— central difference near the zero-velocity line; i. e., at nodal points where: —0.01 g5/75r| gO.Ol; 

— forward difference when the flow is reversed and —< —0.01. an 

Iterative sweeping is used so that convection in the region of backflow can be properly taken into account. 

The inverse mode is solved with prescribed wall shear or prescribed wake centerline velocity if the method is applied to compute a wake flow. 

In reality, this method is a pseudo-inverse method in the sense that it incorporates an iterative procedure on the prescribed quantity which is 
varied until the computed pressure distribution coincides with the pressure distribution imparted to the boundary-layer. Thus the present method 
is in fact a direct technique which uses the inverse mode to avoid (in a manner which is not clear) the singulariry at separation (or 
reattachment). Basically, the iterative process employs a Newton-Raphson iteration procedure in which the "sensitivity" functions are evaluated 
by solving a set of perturbation equations. 

2.4.  —  Extension to 3-D Boundary-Layer Flows 

2.4.1.  —  General Remarks on Boundary-Layer Separation in 3-D Flows 

Like for 2-D flows, any boundary-layer method (integral as well as finite difference method) can be used in 3-D transonic or supersonic shock- 
wave/boundary-layer interaction as long as the compression is not too intense. It must also be sufficiently spread out to maintain local conditions 
far from the onset of separation. This is not the place to cite these methods. As in 2-D flows, we will restrict our attention to methods which 
incorporate special procedures enabling them to work in situations where separation occurs or is likely to occur. Such situations generally 
correspond to the breakdown of classical methods. 

As we already know, the calculation of a 2-D boundary-layer which undergoes an interaction leading to separation or to a nearly separated 
state is not possible in the direct mode (except in the very improbable situation where the prescribed pressure distribution would satisfy regularity 
conditions ensuring a smooth passage of the solution through the separation point). In 3-D boundary-layer calculations, numerical difficulties are 
also met when the prescribed external flowfield entails a destabilization of the boundary-layer towards a state where the 3-D separation phenomenon 
is likely to occur. Physically, this situation is evidenced by a rapid deviation of the wall streamlines (also called skin friction lines) which tend to 
become asymptotic to what is called the separation line (for more information on separation in 3-D flows see Section 4 of Part I). A local 
mathematical analysis of boundary-layer equations is far more complicated in 3-D flows than it is in 2-D flows. To our knowledge, no analysis 
similar to Goldstein's study has been undertaken for 3-D boundary-layers. 
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Nonetheless, very instructive results were obtained by Cousteix and Houdeville within the context of an integral method of solution (1981). They 
showed that singularities appear as a consequence of the focusing of the skin friction lines. These lines form in fact a family of characteristic lines 
of the quasi-linear system of first order partial differential (integral) equations applied to the boundary-layer. Such a focusing occurs in the vicinity 
of a separation line but must not be confused with the separation phenomenon itself. In direct mode calculations, the approach of the singularity 
leads to quasi unbounded and unrealistic growth of the boundary-layer thickness. In fact, this unphysical behavior can be avoided by extending 
the inverse concept to 3-D boundary-layer flows. In three dimensions, two quantities must be prescribed since now the inverse problem involves 
two unknown quantities, namely the two external velocity components in the surface.    The prescribed quantities may be: 

- either the streamwise and crosswise displacement thicknesses (which is the more convenient choice for coupling methods of calculation); 

— or the wall shear-stress components. 

Indeed the 3-D inverse concept has been successfully worked out within the context of integral methods. Applications for incompressible 
nows have been presented by Cousteix and Houdeville (1981), Stock (1980) and Blaise (1982). These computations have shown that it is possible 
to extend the use of the boundary-layer equations to the immediate neighbourhood of a separation line and even beyond it. 

2.4.2. Integral Inverse Methods 

To our knowledge, applications of 3-D inverse boundary-layer calculations using an integral formulation have been restricted to incompressible 
flows. The essential reason for this restriction is probably the lack of accurate experimental data on 3-D separated compressible flows, these data 
being necessary to test an inverse method. Nevertheless, it should be worthwhile to briefly present the existing methods since their extension to 
compressible flow would be generally straight-forward. The three methods cited above which apply to turbulent now use the two global momentum 
equations plus the entrainment equation. These equations are written below in streamline co-ordinates. The x-axis coincides with the projection 
on the surface of the external streamline. The z-axis is orthogonal to the streamline in a plane tangent to the surface, the v-axis being normal to 
the surface. 

In the equations, djds and djdn represent (\lh,)(dldx) and {\lh^)(dld2); h, and ft, are the metric coefficients of the employed co-ordinate 
system.    K, and K, are the geodesic curvatures of the x and z lines; they are related to the metric coefficients by the formulae: 

h^ /12 dx 
K,= 

hi hi dz 

streamwise momentum: 

~ds r-"('^f->5^-..(^f--)-'(;^.f--)«.«..-'^ A 

crosswise momentum: 

entrainment: 

--   20.K.e.,(H..).^.ejA^_,Uc,,2, 
ds dn V, dn 

3s \U, ds J     dn       ^\ U, dn        V     ds     U,       ^ 

. ^J!^. '"'^P' 'hicknesses figuring in the above equations have been defined in Section 1.3 (for an incompressible now p/p = 1) The thickness 
ratio H is defined as H = S*/e,,. Generally speaking, the above system possesses ten unknowns. In the direct mode, these unknowns are the six 
integral thicknesses, the two skin-friction coefficients and the entrainment coefficient. In the inverse mode, the two external velocity components 
are unknowii so that two quantities pertaining to the boundary-layer development must be prescribed. In the cited methods, these input quantities 
are the two displacement thicknesses 8* and 8f.    But it is obvious that other quantities can be prescribed, for example the skin friction coefficients. 

Classically  the above system of three equations must be supplemented with "closure" relationships to express thickness ratios as well as the 
skin-triction and entrainment coefficients. 

In Cousteix and Houdeville's method, the closure relations are deduced fiom similarity solutions of the 3-D boundary-layen partial differential 
equations (Michel et al, 1972; Cousteix and Houdeville, 1981).    These solutions are obtained by using an isotropic eddy viscosity model such that: 

dU         dV T,=^—-pc/'K'=(m-^)'i^; 
dy dy 

dW         dW 
T:Z = H-^-PW K' = (n-|-n,)—, 

dy dy 

where the turbulent eddy viscosity is expressed with the mixing length concept: 

■    (dW 

\Ty with   - =0.085 tanh 
5 

0.41 y\ 

00858/ 

and incorporates a damping function of the form: 

F= I —exp 
1 

/tp with    x = (T:l + xiyi^. 
26x0.41 xn' 

The use of the similarity solutions permits the expression of the closure relations as functions of the three parameters: 

G = 
H-\ 

R,..= p.t/.e.i T= 
8|/6 
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thus reducing the number of unknowns to three. 

In the method proposed by Stock (1980), the closure relations are deduced by considering two velocity profile representations: 

- the streamwise velocity distributions are represented by the Coles family extended to flows describing separated profiles (see above); 

- the method being restricted to infinite swept wing conditions, (or cylindrical flow) it is assumed that the velocity profile in the spanwise 
direction can be represented by a flat plate velocity profile. Knowing the angle a between the chordwise direction and the external velocity vector 
at the same time as the streamwive velocity profile, the crossflow profile can be computed from a simple geometric construction. 

The entrainment coefficient is evaluated with the lag-entrainment formulation (see Section 2.3 above). 

2.4.3.  —  Finite Difference Methods 

The finite difference inverse method developed by Formery (1981; see also Formery and Delery, 1981; Delery and Formery, 1983) extends to 
3-i) flows the basic principles underlying Carter's method (see Section 2.3.2 above). In order to simplify the presentation, we will restrict ourselves 
to the case of a 3-D boundary-layer developing on a flat plate. It will also be assumed that the Reynolds shear-stresses can be expressed in terms 
of an isotropic eddy viscosity \i,. This assumption is not essential, more sophisticated turbulence modeling can be envisaged. Let us consider a 
cartesian co-ordinate system 0 xyz set up in such that axes 0 x, 0 z are in the surface and O >> is perpendicular to the surface. The 3-D turbulent 
boundary-layer equations relative to the mean motion (Reynolds' averaging) are written; 

contmuity: 

streamwise momentum; 

crosswise momentum: 

djpu) ^ d(pv) ^ Sjpw) ^^ 

dx dy dz 

du du du dp      B 
pu \-pv Ipw— = 1  

dx dy dz dx     dy 

dw         dw          dw         dp      d 
pu hpi) hpw = 1  

dx dy dz dz     dy 

(li + li,) — 
8y 

^dw 
(H + ft) — 

8y. 

(2.40) 

(2.41) 

The energy equation will be replaced here by the assumption that the stagnation enthalpy is constant throughout the flowfield. As we know 
(see Section 2.2.1 above), this assumption does not entail large errors provided the flow is adiabatic and the Mach number M^ at the boundary- 
layer edge moderately supersonic.    However, consideration of the energy equation would not modify the basic principles of the method. 

One introduces vectors il and A defined as; 

il = curl V,        pV = curlA. 

The components of Q and A along the axes Oy. Ox, Oz are designated respectively by Qi, fij. ^^3 and A^, A^, Ay Introduction of the 
potential vector A automatically satisfies the continuity equation. Without loss of generality (except for possibility of mass injection at the wall) 
vector A - which is defined to within an arbitrary gradient - is chosen in such a way that: 

A^(x,y, z) = 0,       A^(x, G,z) = Ai(x, 0, z) = 0. 

Within the boundary-layer approximations the following relations hold true; 

dw     du                     dw 
**1 ^ ,           "2 — ' 

dx     dz                     dy dy 

a^3             _3^3     dA^ 

dy'        '"'     5x       dz' 

dA, 
pw=-—- 

dy 
pu 

By taking the ^--derivative of equations 2.40-2.41 in order to eliminate the unknown pressure p, one obtains the new system: 

dil, Sn, 3^2      ^ du      ^ dw     (dp       Sp\ dpdw       dpdw      S^„„.„^r,^ n A'>\ pu—^ + pv—^-+pw—^--pil^—-pil^—-I U—+W--   n^-u ——-w —— = -—[(H-I-H,)U2] (2.42) 
dx dy dz dx dx     \  dx       dz J dy dx        dy dz     dy^ 

an, Sn, dn^      ^ du      ^ dw     [dp       dp\ dpdu       dpdu      8\,„.„^rn n 4-<^ pU'^+pv—^+pw—^-pQ^—-pCi^~-\u~-+w— m^-u — —-w — ^ = —[(p + V.,)ai] (2.43) 
dx dy dz dz dz      \  dx        dz J dy dx        dy dz     dy' 

By definition, the streamwise and crosswise displacement thicknesses Ai and Aj are expressed by the following relations in the computation 
reference system (the displacement thicknesses expressed in the external streamlines co-ordinate system are defined in Section 1. 3 above): 

Jo    KVe       PeVj Jo    P.l'A 

Jo  \V.     PeVj        Jo   P.KA Sy ) 
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where K  represents the velocity modulus at the boundary-layer edge.    It can be readily shown that the "modified stream functions" A, and A 
deimed by relations: ^ ^ 

A2 = A2 + puA2Cosa-pw{y-A2sma), 

'43 = ^3 + P«0'-AiCosa)-pwAisina, 

where a is the angle between the external velocity V, and axis 0 x satisfy the boundary conditions: 

(2.44) 

(2.45) 

A2 = A^ = 0       when   y = 0, 

A2,A^-*0       when   y-^co. 

Thus  the use of A^ and A, permits the generalising to the 3-D case of the modified stream function $ of Carter's 2-D inverse method (^ee 
Section 2.3.2 above).    By taking the >'-derivative of equations 2.44 and 2.45, one obtains: 

—^=pn2(y-A2Sina)-Fpfi3A2Cosa-FA2u —cosa-wCv-A, sina) — 
">" dy dy 

eA 
--^ = pn^ A, sin a-F pn3(>'-A, cosa)+ M 0-A, cos a)-f'- Ai wsin a ey 

dp 

dy dy 

(2.46) 

(2.47) 

The inverse problem consists in solving equations 2.42-43-46-47, the unknown functions of which are n„ £)„ A, and A,     The boundary 
condiUons of the problem are: 2     3'    2 3- w^iKxaty 

at the wall: 

>' = 0;        ^2 = ^3 = 0,       u = v = w = 0: 

— at the external boundary: 

>'->aD;        fi2 = ^3 = '42 = ^3 = 0. 

Components u, u, w of velocity are easily computed from n2, fi3, .42 and .43. 

In the proposed method, the inverse problem can be solved according to one or the other of the following sets of prescribed quantities: 

- displacement thicknesses 6» and 5f (A; and A2 are immediately deduced from 5f and 8f); 

- components of the skin friction vector; or which is equivalent, the skin-friction coefficients C,^ and C; . 

For the numerical resolution, equations 2.42-43-46-47 are linearized and discretized according to the computational molecule shown below: 

M   V 

m_2         m-1 
O O  

p-V 
P-2 

n+1 

pm,n,p 

n_1 

hv Z^^r'^ ^J ^ ""'J^^lr '^^P "'"^1" *' y-'^"^''^'°" *° P^™i' -"^^h refinement in the vicinity of the wall.    The x and z-derivatives are evaluated 
by second order forward difference schemes.    The ^^-derivatives are computed by a centered scheme. evaluated 

Discretization of equations 2.42 and 2.43 at point P- "• " and of equations 2.46 and 2.47 at P' of co-ordinates (mAx   v nAA ,lnna 

Tach   omn", 1 "'V:""^""'/:'' '" """" "^ """^''^ ^"""P^"^"'^ " ^"'^ '^ '^^ '° ^ "-" ^^^'^ °f alg b af qua^ons'wliiS',^toled at 
each computation station (m, p) by using a generalization of Thomas' algorithm [for detail, see Formery, 1981].    When the displacement  hcknete 
are P escribed, a special procedure must be used to compute the components of vorticity at the wall in order to start rrecurZceSatt^n^T^^^ 
adopted method is an implicit procedure which generalizes to 3-D flows the method briefly described in Section 2 3 2 above     ThetotZe leld 
to a Imear system of two equations allowing the computation of ^2 and n, for y = 0     When the skin friction vtfnrir^Jt.-tir,^ V 
is a bit more simple since then ^2 and n, at the wall are practically%qual t^ the prescribed quantint" '"'"'''"' computation 

The computation is stabilized in the region where u and w change sign thanks to the FLARE approximation. 

Another finite difference method was proposed more recently by Radwan and Lekondis nPRIl     Tn .Ki. ™„fi,„^   ,u       ■   ■.■ 

Applications of the Formery-Delery method are given in Section i 7 nf Part T     n,,o «f n,„™ „ » ■   • . 
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3. - INVISCID-VISCOUS INTERACTIVE METHODS 

3.1. — Basic Principles 

The basic idea of most Inviscid Viscous Interactive (IVI) methods (also called coupling methods) consists in splitting the flowfield into: 

— an external or outer region where viscous forces (laminar as well as turbulent stresses) are assumed to play a negligible role; 

— one or several inner region(s) in which the dissipative effects are essential.    These regions are boundary-layers, wakes, mixing zones, etc. 

The usual coupling approach is a substitute for the solving of the full time-averaged Navier-Stokes equations for flows in which dissipative 
effects are confined within regions small in size when compared to a characteristic length scale of the problem (chord length of an airfoil, blade to 
blade distance of a cascade, etc.). 

Thus, in the coupling approach, the external flow has to satisfy the much simpler Euler equations (which are frequently replaced by the 
potential equation if the inviscid flow is, or is assumed to be, irrotational); whereas the dissipative zones are modeled according to various 
approaches differing in their level of sophistication: 

— the full Navier-Stokes equations can be applied to the whole inner region, as is done in what is called the multi-domain approach (see 
Section 5); 

— analytical methods based on asymptotic expansion or perturbation techniques are sometimes employed (see Section 4); 

— the most popular models, however, make use of the Prandtl equations which are solved either by finite difference techniques or, more 
frequently, by integral methods (see Section 2). 

Mixed procedures can in fact be envisaged: for instance, boundary-layer equations are applied to the major part of the viscous flow, except in 
small regions where the validity of these equations is questionable (shock foot region, trailing edge flow, largely separated zone, etc.). These sub- 
domains are represented by more refined analyses using either analytical techniques or numerical solution of the full Navier-Stokes equations. 

In what follows, we will only consider viscous-inviscid coupling methods using the classical Prandtl equations to represent the boundary-layer 
flow. More refined approaches, still in the development stage, will be briefly evoked in Section 3.4. This presentation will also be restricted to 
isoenergetic and steady flows. Neither do we intend to discuss viscous-inviscid coupling methods in general. These methods involve many 
problems, the consideration of which is beyond the scope of the present AGARDograph. Thorough examination of the coupling approach can be 
found elsewhere (Le Balleur, 1978, 1980; Lock and Firmin, 1981). The present review will concentrate on points which are of critical importance 
when applying couphng methods to shock-wave/boundary-layer interaction problems, with emphasis being put on turbulent regime. 

Briefly speaking, development of a viscous-inviscid interactive technique requires the following elements: 

(1) an accurate and fast solver of the inviscid flow equations. These qualities are especially important when computing shock-wave/boundary- 
layer interactions since a meaningful "capturing" of the interaction necessitates local mesh sizes smaller than the thickness of the incoming boundary- 
layer; 

(2) an accurate (i.e., physically realistic) method with which to compute dissipative flow regions; 

(3) representative and convenient compatibility relations between the outer and the inner flow regions. The compatibility generally results in a 
coupling equation, the form of which may lead to difficult problems in transonic and/or supersonic flows. 

(4) an efficient iterative procedure to insure a fast convergence of the interactive calculations between the two flow regions. 

Point 1 is a very broad domain, the examination of which would be beyond the scope of the present AGARDograph. Point 2 has been 
developed in Section 2.    Points 3 and 4 will be discussed in what follows. 

3.2. — The Problem of the Coupling Conditions 

3.2.1. — The Various Forms of the Couphng Equation 

Basically, the inviscid-viscous couphng problem consists in the calculation of two flows, described by different equations, which must satisfy 
boundary conditions (at infinity and on the body surface) and be "compatible" along their common free boundary 8(;c). Conditions to be satisfied 
on 5(x) are continuity of pressure and flow direction.    It is usual to choose as free boundary 5 some conventional outer edge of the boundary-layer. 

In what follows, we will neglect wall curvature effects and consider the classical boundary-layer system of co-ordinates where axis Ox is in the 
surface. 

Integration along >> of the boundary-layer continuity equation gives the flow deviation [S^JBL induced at 8 by the boundary-layer, viz.: 

mi   ^"e.'i^*    (S-5*) d(p.«.) 
[%\BL# — = -  (3.1) 

Ue      dx        p,u,        dx 

In this above equation, 8* is the conventional boundary-layer displacement thickness (more sophisticated viscous-inviscid models involving 
"defect formulation" will be briefly presented in Section 3.4). 
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Thus, the two flows must satisfy, at each streamwise distance x, the following conditions: 

\j)(x)]f = \p{x)]f,   (the" designates perfect fluid quantities) (3.2) 

and: 

[e6]=[e6W. (3-3) 

Equation 3.1 constitutes what is called the coupling relation. Other forms of this equation are often preferred. To facilitate the inviscid 
calculation, an analytical approximate report of condition 3.1 at some distance of the free boundary is carried out. As demonstrated by Lighthill 
(1958), this is done by considering a continuation of the external inviscid flow into the region occupied by the boundary-layer. By making a Taylor 
expansion in the vicinity of 5 while, neglecting second order terms and assuming that p and u for this fictitious flow can be regarded as constant 
across the boundary-layer and equal to their outer edge values (which is consistent with the standard boundary-layer approximations), one arrives 
at: 

Pe»(y) = Pe''e + (.0-y)- dx 

Since it is assumed p, = Pj and u^ = u^, combining this relation with equation 3.1 yields: 

,^+(6._^)J^''lM^. (3.4) 
dx PgUg      dx 

From equation 3.4 we can immediately draw two alternative conclusions: 

— when >' = 5*, we obtain: 

r v_~\   _d5* 
Li7,Js.     dx 

(3.5) 

which is a no slip condition on the displacement body. 

— when y = 0, we have: 

J^~IP.KS% (3-6) 
p,«e dx 

which corresponds to a condition of fluid injection at the wall (this condition is also known as the transpiration velocity concept). 

When relations 3.5 and 3.6 are used, conditions at the boundary-layer edge p^, u, are generally identified with inviscid flow quantities j5, u 
which are computed either on the displacement body or on the wall. There is a certain degree of inconsistency in making this identification which 
is justified only if the continuated inviscid flow remains practically constant in the >>-direction. Although this is not true in strong interaction 
processes, nevertheless the above identification provides a simple way to take into account static pressure variation across the boundary-layer (Le 
Balleur and Mirande, 1975). This fact is only an empirical observation and a formulation of the "overlapping" problem free of any approximation 
can be made by redefining boundary-layer integral quantities from the "defect formulation" concept (see Section 3.4 below). 

Coupling equations 3.1, 3.5 and 3.6 are in principle equivalent within the boundary-layer approximations. The reality is more subtle and in 
fact they correspond to different interpretations of the viscous-inviscid interaction problem. 

Use of equation 3.1 makes the problem similar to the classical multi-domain approach - or "patching approach" - in the sense that the two 
flows are distinct and can be considered as really "existing" on each side of the free boundary. In fact, these streams satisfy different equations 
(the Euler and Prandtl equations respectively) so that only continuity of quantities can be satisfied at 6: the derivatives are discontinuous. 

Coupling equations 3.5 and 3.6 imply an overlapping of the two streams. The boundary-layer flow is no longer contiguous to the inviscid 
stream and the existence of the boundary-layer is essentially "felt" by the outer flow as an alteration of the inviscid no-slip condition on the body 
surface. This is particularly true when the coupling condition is written on the wall: then there is no longer a "geometrical" constraint via 8 or 8* 
between the two flows. The formulation involving an overlapping between the two streams is often termed "matching" method and acquires its 
full significance when the defect formulation is introduced. 

Differences between the patching and the matching approaches are immaterial in low subsonic flows and the various coupling relations give 
nearly identical results. However, in supersonic and transonic interacting flows, consideration of different coupling equations leads to dramatic 
change in the behavior of the solution. This problem - which is of the outmost importance when applying the interactive concept to compute 
shock-wave/boundary-layer interactions-will now be discussed. 
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3.2.2.   -  Subcritical and Supercritical Boundary-Layers 
ii 

The coupling problem will be discussed by considering first the local boundary-layer equations in order to make it clear that this problem is 
inherent m the boundary-layer approach and is not a consequence of the use of an integral method of solution. In a second part, the problem will 
be formulated with integral concepts and it will be seen that similar conclusions are then reached. 

Local Analysis. - Weinbaum and Garvine (1968) have for the first time established the following equation giving flow deflection \B], at the 
boundary-layer edge (see also Carriere et al., 1975) : 

e-«|+C, I ,3.7) 

where: 

"I+CT-I) 

ipk M^ Sy 
C--   ■   r'+(T-l)M^ d-z^ 

In the above expressions, M is the local Mach number in the boundary-layer, p the pressure and y the ratio of specific heats. It is assumed 
that e IS zero at the wall.    Equation 3.7 is obtained by combination of the boundary-layer equations along with the classical hypothesis: dp/8y. 

For a wake flow, the inner limit e can be set equal to zero since velocity is non-zero on the axis >' = 0 (except at a "separation" or "reattachment" 
station). A difficulty arises in boundary-layer flows since then B and C are singular in the limit e^O (M = 0 at y = 0}. However in turbulent 
flows, the problem can be circumvented by taking for e the thickness 8 of the viscous sublayer, the normal velocity at 5 being asymptotically equal 
to zero to all orders 6" as shown by Mellor (1972) (see also Section 4.3. 1 on analytical methods). An other way to avoid the singularity is to 
consider a fictitious slip-velocity at the wall equal to the "wake velocity" of the Coles' composite law. In fact, behaviors to be discussed depend 
mainly on the more or less important "filling" of the velocity profile. For a turbulent boundary-layer, this filling is essentially represented by the 
wake component 

For a supersonic boundary-layer (or wake), integral B may be either positive or negative, as is intuitively obvious if one considers the change 
of sign of the integrand at the some point of the velocity profile. Drastically different responses of the boundary-layer in a free interaction process 
correspond to this change in the sign of B.    To see this, let us consider a perturbation of equation 3.7 near flat-plate conditions (dpldx = Oy then- 

dx 

I 

dp 

Consequences: 

- if B is positive, an increase in 9^. i. e., a thickening of the boundary-layer {S~dS*ldx), corresponds to pressure rise. By analogy with one- 
dimensional perfect fluid theory, the boundary-layer is then said to be subcritical, in the sense that it behaves (in an overall a global manner) like a 
subsonic flow; ' 

- if B is negative, an increase in 6^ is associated with a negative pressure gradient. In this case, the boundary-layer is said to be supercriiical 
since It behaves like a supersonic flow. 

The above terminology was introduced in 1952 by Crocco and Lees in their pioneer paper on viscous-inviscid interaction. 

A laminar boundary-layer is most often subcritical, a supercritical state being encountered only in hypersonic flows or for highly cooled surfaces 
in the latter, very low temperature levels close to the wall entail low local speed of sound and accordingly high Mach number; thus B is more 

likely to be negative). For a turbulent boundary-layer, in which the Mach number profile is much fuller, transition from subcritical state to 
supercritical state occurs approximately for M. = 1. 3 for a conventional flat-plate profile (H, = 1. 3). One sees that supercritical behavior is met as 
soon as the transonic flow regime is reached. 

I: 

The essential feature of a supercritical state is that the boundary-layer cannot undergo an interaction process with smooth tendency towards 
separation, 1. e., a process in which the pressure p, the thickness 8* and the shape parameter H, all increase. Such a behavior is only possible for a 
subcritical flow. For a supercritical boundary-layer, the onset of an interaction process leading to separation requires a preliminary transition - or 
jun,p- to subcritical conditions. Various analyses have been proposed to connect a given upstream supercritical state to the associated downstream 
subcritical state^ These jump models have been formulated within the context of integral methods. In a manner similar to normal shock theory 
they use a set ot equations expressing the conservation of appropriate global quantities across the jump (Crocco;1954; Klineberg, 1968; Hunter and 

We will not comment any further about the "jump" theory, such a discontinuity in the boundary-layer evolution being artificial and physically 
meaningless. It must be clear that the sub-and supercritical states are not "real" properties of the dissipative layer but are a consequence of the 
model (inadequate as a result of over simplification) adopted to depict the viscous-inviscid interaction. The subcritical-supercritical behavior which 
IS met when the coupling conditions are written at 8 is probably a consequence of the neglect of pressure variation across the boundary-layer As 
a matter of act, ma formulation using couphng at 8, Holden (1969) was able to compute smooth interaction in turbulent supersonic flows (no 
jump needed), provided that normal pressure gradients were introduced and computed with the help of the integral ^--momentum equation (these 
calculations were made within the context of an integral method). q      "" kincsc 

li 

Le Balleur (1977) has shown that it is possible to write the coupling on the displacement body or at the wall in a manner similar to equation 
idfry-b "er)   ""^ ^ continuation of the inviscid flow below the boundary 8, one can write (if the pressure p is assumed constant across the 3.7. 

boundary-layer) 

IP dxj.     M^ (3.8) 
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Within the classical boundary-layer approximations, M can be considered as constant and equal to M,.    Combination of equations 3.7 and 
3.8 gives: 

for the coupling on the displacement body (>' = 6*): 

dx 

where; 

yp 

f'-M^-l,        P J 1^ 
dy 

The second integral figuring in B* is always negative since M is always greater than M. The first integral may be positive if the boundary- 
layer flow remains supersonic below the displacement surface. As a consequence, B* is less likely to be negative than B (see equation 3.7). In 
fact, for a flat-plate turbulent boundary-layer (//,= !. 3), B* changes sign near M^~2. One sees that coupling on the displacement surface does 
not suppress supercritical behavior (in turbulent flows); it only postpones the critical limit to higher Mach numbers. 

for the coupling at the wall 0' = 0): 

00 = ^0— +'' dx 

with: 

dy. 

As is easily seen, BQ 'S always positive (since M is always greater then M). Thus coupling at the wall leads to a formulation of the viscous- 
inviscid problem in which the boundary-layer always behaves as a subcritical flow, whatever the external Mach number may be. There is no longer 
a need for an artificial jump to initiate an interaction process. 

Criticity Within the Context of Integral Methods. - The same above conclusions can also be drawn by consideration of an integral method of 
solution for the interaction problem. In a general way, the coupling relation {see equations 3.1, 3.5 and 3.6) is expressed by means of an 
ordinary differential equation involving boundary-layer global characteristics (5*, H,) and the edge velocity (or the edge Mach number). On the 
other hand, x-wise variations in boundary-layer integral properties are related to change in edge conditions by ordinary differential integral equations 
generally two in number (see Section 2.2 above). Thus, the interaction process is formulated via a system of three equations for three unknown 
quantities, namely: a thickness, 5* for instance, a shape parameter H, and the velocity (or Mach number) at boundary-layer edge. This system can 
be written in the condensed form: 

d5* 

dx . 
CfU 

dH, 
8*—' = f 

dx 
e.. 

8* du. 

«,  dx 

(3.9) 

with y = h, 8* or 0 according to the coupling relation envisaged. Function /is the Entrainment coefficient, or the Shear-Work integral or the 
Shear Stress integral depending on the "second" equation employed. Coefficients of matrix A depend only on the Mach number M^ and on the 
velocity distribution shape parameter. Denoting by D the determinant of matrix A, and applying Cramer's rule, system 3.9 leads to a relation of 
the form: 

„ 1   du,     , „      , 

u, dx 

D. 
One sees that a relation similar to equation 3.7 is obtained in such a way that the same conclusions can be drawn by discussing the sign of 
When equations 3.1 is used, the vanishing of D corresponds exactly to the Crocco-Lees critical point(Crocco and Lees, 1952). 

Integration of system 3.9 is not possible at the point where D vanishes, except if regularity conditions are locally satisfied. These conditions 
are obviously that d, 9,4-^2 = 0 *hen D = 0 (It can be shown that if u^ is regular, 8* and H, are also regular, see Carriere et ai, 1975). The critical 
point corresponds to a saddle-point singularity and is similar to the throat singularity of a one-dimensional perfect fluid flow. 

The existence of a critical point (with associated subcritical and supercritical states) has also important repercussions in boundary-layer 
calculations using the inverse mode. 

One of the ways to perform an inverse calculation, consists in solving system 3.9 for prescribed 6, (as we know, see Section 2 above, other 
inverse procedures are possible). As quoted above, integration of 3.9 is not possible if D = 0. The diagram shown in Figure 3.1 gives in the 
plane (//,, MJ the locus of the points where D vanishes for the three types of inverse input 6^. It can be seen that the critical boundaries are not 
very sensitive to the "second" equation employed (the present calculations have been made with the velocity profiles defined by equation 2.9 in 
Section 2 above). Concerning an inverse integral method, the following conclusions can be drawn for a turbulent boundary-layer starting from an 
initial flat-plate situation: 

— if 05 is prescribed, supercritical behavior is met as soon as M^^^ 1.3; 

dS* 
— if 65.= (i. e. the displacement thickness) is prescribed supercritical behavior appears for M^>2; 

dx 

— if9„=—(pjUj6*)/pjUj (i.e., the "perturbation mass flow", see Section 2.3.2 above) is prescribed, there is no risk of "criticity": the 
dx 

boundary-layer always responds as a subcritical flow. 
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Fig. 3.1 - Integra/ coupling method - Critical curves. 

method'''""" ^^ numerical experiments, the above conclusions remain valid when the boundary-layer equations are solved with a finite difference 

Conclusions Concerning the Coupling Formulation. - To summarize the coupling problem in transonic and/or supersonic flows, 

- coupling at boundary-layer edge is not recommended (and is now rarely used) for the following reasons: 

(i) this technique necessitates the location of the boundary-layer edge, hence difficulties can be met in performing the outer inv.scid flow 
calciilation. Furthermore, boundary conditions for the outer field have to be imposed on an ill-defined boundary which moves in the course of 
the Iterative procedure; 

n..hl"* ^"P««=rit.cal response appears in the transonic range (for a turbulent regime), leading to severe numerical difficulties.    In principle, this 

SaUveTayers' '''°"'"* '°   ^^      °"^'' boundary-layer formulations but at the cost of a greater complexity in the calculation of the 

- coupling on the displacement body has long been considered as the most natural way to take viscous effects into account. Nevertheless the 

frMT2Tfora trbulett'rS^me)' '™'^ "'"""" '"" ^^'"^ <^°'nP'i'^^'«^ '^e inviscid flow calculation; and supercritical behavior is to be expected 

- coupling at the wall does not suffer from these disadvantages since: 

(i) the effective body geometry "seen" by the inviscid stream remains unchanged during the iterative procedure; 

(ii) the response of the boundary-layer is always subcritical. 

,.n»",°r™''' "'^ ,"'1.°'' '' '^°"P""g ^'5"^''°" «"-'"en at the wall may be questionable as a means of representing viscous effects due to large 
separated zones.     n this case the displacement body concept seems more appropriate to correctly depict reality.    Secondly, when the inviscid Tow 

n.rr'fl'^H     ,'"'"' """i" '''"'"""^ *"'"'' '^ "^'^'^"''^^ ""'=" <^°'"P"''"g i""=™^l "°-^)^ P™W-" arises in the determm^g of th" entropy of the fuid entering into the computation domain when the coupling relation gives a positive mass injection 

,h„, f°»°w">g Sections, we will mainly consider viscous inviscid calculations in which the dissipative layers remain subcritical  in the sense 

not too h"gT(M!s°2)     ' ""''      '°"^'"' "' *' "'" °' °" "^ d-placement body for turbulent flows where the Mach number i! 

3.2.3. - Weak and Strong Interactions 

In viscous-inviscid interacting flows, one has to distinguish between weak and strong interaction regimes. 

invk.^""f ,'""™TK" '■'^''"' 't'''V° "'" *''™ "'^ "°* properties (body pressure distribution, for instance) are essentially imposed by the 
invscid solution. This means that there are only small differences between the real (viscous) flow wall pressu e distribut on and the preLure 

^ution InTnc^'l , ' TT^ '°'"''°"- '" '"'^ '^"'=' "'^ --'deration of viscous effects is merely a (small) co JL^to the in" c d 
follows ' " "'''"''' '° ""''' '"' ^'"'"'""^ "'^"^ ^"'* "'^ P^*^' """^ calculations.    The computation chain is as 

(1) Perfect Fluid -. (2) Boundary-Layer (direct mode) - (3) Perfect Fluid with corrected boundary conditions at (or near) the wall ^ Stop. 

When the iteration loop is limited to one cycle, the compatibility conditions are not strictly satisfied except the 6,. condition (most often weak 
interactions are computed with the displacement body concept). However, for a truly weak interaction regime the error on thpreZe d strlbmion 
IS very small and, as has been shown by numerical experiments, further iterations do not substantially improve the slt^on The weak in rac on 
behavior corresponds to the classical Prandtl boundary-layer concept.    In terms of the triple-deck asymptotic theoryT"- S ction 4 below)    he 

solutircTitLTSonfoTve"^^^^^^^^ solution becomes completely unreahstic.    This means that this 

of a thin and'attached bour^dary'-l yer In h Sse there e:^sts'a stmnf'd? T'''"^'f°''""r"* "'"" "^ "°' '^°"P^'''"^ "'"^ "''= --'-- 
that it is strictly necessary to iterate the calculat ons of the two re.fon T.ml '^rn,™''. '" '^f "''°"^ '"" ""= '"'''"'^ P''"^ °f '^e flow, so 
conditions are satisfied). The stronHnte ac fon rLll dorsno, Zl H f^^'^i'''"''''-^''' '""^ « '■etched (i. e., until all the compatibility 
demonstrated by the triU-deck theofy n ^c, it co'esnonds to a f , r f th" ^''".''''f7" °[ "^^ boundary-layer concept itself. This is well 
deck theory, there is no longer a definite ILS between the two flot w . T"' '"" boundary-layer approach. In terms of the triple- 
the boundary-layer and the outer invisdd steam^^ ™'- "'"' '"""' 'mportance, the pressure distribution is determined, both by 

shock-wtlboXSS^^^^^^       '"'"''""" ^™''^'" ^'°"^ *"' "^ -"-^^''' -- ■' - obviously the only mteraction regime pertaining to 
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3.3. — The Problem of the Iterative Procedure 

3.3.1. - Entirely Supersonic Interactions 

The earlier coupling methods were apphed to fully supersonic outer flows and, most often, used a coupling condition written at 5 (see equation 
3.1). In particular, these methods were developed to compute shock/boundary-layer interactions arising at a wedge or when an oblique shock 
impinges on a wall. The external inviscid flow was generally determined by assuming a Prandtl-Meyer compression which gives a simple and local 
relation between the flow direction at 5 and the pressure gradient dp/dx (the tangent-wedge relation was also employed). Use of the Prandtl- 
Meyer law restricts application of the theory to simple wave flows; i. e., to two-dimensional and initially uniform flows. Such a restriction could 
be alleviated by using the general Method of Characteristics. In this case, a precise localization of the outer edge of the boundary-layer is essential 
for the computation of the inviscid stream. On the contrary, the location of 8 is without importance when the Prandtl-Meyer law is employed to 
determine the outer flow (this of course is not true for the evaluation of the deflection [6]^ induced by the boundary-layer). In these theories, the 
boundary-layer development was calculated by a variety of techniques: integral, finite difference, Galerkin methods, etc. The laminar as well as 

the turbulent regimes were both considered. 

As the equations describing the outer flow are hyperbolic whereas those applied to the dissipative layer are parabolic in the downstream 
direction (in separated regions, the FLARE approximation renders the flow parabolic in the downstream direction everywhere), the most immediate 
method of solution is to use a downstream marching procedure. In this procedure, the compatibility conditions {see equations 3.2 and 3.3) are 
satisfied at each streamwise step so that singularities at separation and/or reattachment are avoided. However, the problem of the interacting 
boundary-layer envisaged as an initial value problem is ill-posed. Some downstream condition is needed to insure unicity of the solution and thus a 
well-posed problem {see Garvine, 1968; Neyland, 1970; Werle et ai, 1973). This downstream condition restores the ellipticity of the real problem 
which apparently was lost by the use of Prandtl equations. 

Handled as an initial value problem, the viscous-inviscid formulation may be summarized in the following terms: for an imposed perturbatmg 
agency (i.e., shock strength) and a given boundary-layer initially unperturbated: 

- if the flow is subcritical, a self-induced destabilization process (H^, 8* and p rise at the same time) can be initiated at any abscissa Xo- The 
principle of solution consists in interating on Xo until the condition prescribed downstream is satisfied (usually, this condition is the return of the 
solution to a flat plate or weak interaction situation); 

- if the dissipative flow is supercritical, a self-induced compression can only take place after an initial jump from the supercritical state to the 
corresponding subcritical state. Now, the proper solution is found by iterating on the abscissa XQ of the jump until the downstream condition is 
fulfilled. This condition can be the continuous return to a supercritical situation which requires the passage of the solution through a "throat" 
where regularity conditions must be satisfied in a manner similar to the behavior of the inviscid flow solution in a converging-divergmg nozzle (for 
more details see Ai, 1970 and Carriere et al, 1975). This throat is in fact the Crocco-Lees critical point {see also Stollery and Hankey, 1970 for a 
discussion of the problem of subcritical-supercritical boundary-layer). 

In fact, there are no fundamental differences between the above two cases since a change in the coupling equation renders a supercritical flow 
subcritical.' The essence of the above methods is the fact that the problem is conceived as a two-point boundary value problem which is essentially 
solved by shooting techniques. Such techniques can become tedious and time consuming, especially when large separation bubbles form. Methods 
belonging to this type have been proposed for laminar flows by Bray et al. (1960), Reyhner and Flugge-Lotz (1966), Lees and Reeves (1964), 
Nielsen et al (1966), Holt (1966), Klineberg and Lees (1969), Alziary de Roquefort (1969), Leblanc et al., (1971), Gautier and Ginoux (1973). The 
turbulent case has been treated by Alber (1967), Alber and Lees (1968), Todisco and Reeves (1969), Klineberg et al. (1972), Aymer de la Chevalene 
and Leblanc (1978). (These lists of authours are not exhaustive). Most of these methods employ an integral formulation to compute the dissipative 
layer. We will not comment any further on these methods which are now rather out-dated and which have been discussed in the preceding 
AGARDograph on Shock-Wave/Boundary-Layer Interaction. Rather we will focus our attention on new techniques of solution which have been 

developed in the meantime. 

Integration of the interaction equations by a purely downstream marching process is ill posed as an initial value problem in the sense that any 
error encountered at the initial station will grow exponentially in the x-direction (i. e., will cause a "branching") and thus will produce a solution 
unrelated to the correct initial conditions. To overcome this weakness, it is necessary to specify directly the downstream condition in terms of some 
constraint which may be either the pressure level itself or the return of the downstream pressure to its weak interaction value. The implicit 
treatment of the downstream boundary condition results in sweeping or relaxation techniques in which the computation plane is swept iteratively 
until convergence is achieved on the wall pressure distribution, for instance. In this relaxation procedure, the downstream boundary condition is 

enforced at each iteration step. 

To our knowledge, the first application of this kind of technique was made to laminar flow by Werle and Vatsa (1973).    Thereafter, Bertke, 
Werle and Vatsa (1974) extended the method to turbulent flows {see also Werle et ai, 1975). 

In these techniques, the coupling is expressed on the displacement body (equation 3.5 of Section 3.2.1 above) and the change in the outer 

flow pressure via a relation of the form: 

dpJdQ^ ^ d'&* 

dx      \ dx      dx^ 

where 6, is the slope of the surface.    The above relation may be provided by linear theory, tangent wedge or the unified tangent wedge laws (Cox 
and Crabtree, 1965).    Thus, the boundary-layer x-momentum equation is written in the form: 

8u du        Jdd,     d'8 
pu—-l-pD—= -/  — + -7-2   ;     , 

8x dy \ dx      dx'' )    dy 
(H + li,) — 

dy 
(3.10) 

(we will not consider here the energy equation which does not receive any special treatment).    Equation 3.10 can be expressed in the following 
more condensed form which explicitly displays the influence of the boundary-layer: 

(11+ 11,)^ dx 
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The turbulent viscosity n. is modeled by a classical algebraic two-layer description.    The boundary-layer equations are integrated by a standard 
finite difference method (Blottner, 1970) and the viscous-inviscid interaction problem is solved with the following boundary conditions: 

upstream station XQ. 

"(.Xo<y)       and       d&*/dx   prescribed, 

downstream station: 

dS* 
or 

d'S 
rf7 dx^ (3.12) 

concept: 
Numerical solution of equation 3.11, along with the prescribed boundary conditions, is accomplished by using Alternating Direction Impli. 
epts.    It proceeds at two amyicia/(ime/ere/s.    The first one is from (" to ("+<"^'= ("-I-At/2: 

(^ + H,)-   [ -KBr"™   (^j -A(g.(. + (.«i)_§,(.))LB„ + ,.,2, 

and the second from t"+<"2> to 1"+'= ("+<'"'-i-Al/2: 

Sy. 

+(1/2) 
+ B» + (l/2) J2§«Y+1        2 ,      , 

 r (g»(n+l)_5.(» + (l/2)h 
dx^ I At ' (3.13) 

Basically, in the first step the viscous properties (i. e., velocity and temperature profiles) are determined; while the second step serves to update 
the disp acement thickness contribution to the inviscid pressure gradient. Equation 3. 13 will reduce to a tridiagonal set of algebraic equations in 
finite difference form which can be solved by the Thomas algorithm, downstream condition 3. 12 being taken into account. The time-like march is 
allowed to proceed until a steady state is achieved. 

The first time-step corresponds in fact to a classical direct mode boundary-layer calculation, since for this step the pressure-or which is 
equivalent d S^/dx -is prescribed, the streamwise distribution of S* being that computed at time level n. Accordingly, a special arrangement of 
the numerical method has to be introduced to overcome the Goldstein type singularity at separation and reattachment. This point is certainly a 
weakness of this kind of calculation in which the boundary-layer is always computed in the direct-mode. 

A method similar 'n nature, but without the drawback of the singularities inherent in the direct mode, has been proposed by Aymer de la 
Chevalerie and Leblanc (1979) for laminar interactions. The method incorporates an inverse finite difference technique for the calculation of the 
separated boundary-layer^ The inverse procedure is worked with the skin friction prescribed, and is a generalization of the method developed by 
Klmeberg and Steger( 1974), (see Section 2.3.1 above). cvciupcu uy 

3.3.2.  — Mixed Supersonic-Subsonic Flows 

3.3.2.1. — Direct, Inverse and Semi-Inverse Methods 

nrJir'"^ or relaxation techniques are not essential when the outer now is entirely supersonic.    They only appear as more convenient and 
probably more efficient than shooting techniques.    However, the formulation of the viscous-inviscid interaction problem has to be reconsidered 

march n»r,hnHTr T'f'"' '",        ' '"'''""■  u" ""' '^"=' " '^ "° '°"«^^ P°^^''''^ '" '^°'"P"'^ 'he external stream by a downstream marching method or to use simple formulae to compute the pressure from the local flow angle. 

nrnnlrl ^\'^^'f supersonic-subsonic situation  computation of the perfect fluid flow requires relaxation or time-marching methods in order to 

fheTolltfhil'ir 'T       K        ,      ' '""'"""^ °" '" *' '™""'" °' ''^ '^"-P"'^'-"^' domain.    In this way it is no longer possible to fulfill 
the compatibility conditions by a streamwise progression since outer flow quantities at a station x depend on downstream conditions.    In fact  the 

conver Jn!^''' 'v     H ' T'Z^ "°"^;' '° ^ '°™''""='' """'"'"'' '"'^ '" ""■" '''''"^'"'^ '° ^" "^^^'i^e process which is repeated until convergence is achieved. I.e., until conditions 3.2-3 are satisfied. 

To achieve this goal, various arrangements of the calculation strategy can be envisaged: j 

(i) Direct Methods (see diagram in Fig. 3.2).    The iteration loop starts with given surface boundary conditions (i.e., conditions at or near the 
body according to equations 3. 1  3.5 or 3. 6).    These conditions are known from the previous iteration step.    An inviscid flow calculation provide 
a pressure distribution p(x) which is then fed into the boundary-layer calculation.    This last calculation furnishes new boundary-conditionrefx 

b"n SVf^Tra'ttrars "T^l ""^""^^ '' ''''' ' '"'' -"' '''"'-' '^ ^' ^^ -"°" '^^^ ^^ *^ ^°"-- ^'-^-^'P 

e"+'(x)=F[e"(x)]. I (3 ,4) 

In the above equation, F is an operator involving perfect fluid and boundary-layer calculations, 

mode.' " '''" """ '" '""'''^ ^"^^' '""''°'' ''''''''' ''°"" '' '''°" "' ^'=P''^^"°" "^'^"^^ ^i"^'^ 'he boundary-layer is always computed in the direct 

(ii) Inverse Methods (see diagram in Fig. 3.2).- Now, both flows are computed by inverse methods. The iteration loop is as follows- for a 

rrwh^ch"" ''.■^'"''""°" " W (- - ''-.^ 'he body surface, according to the coupling relation retained), an inverse inviscid fl'ow c I u atron gle 
oieLtorL "' ^ "" '"'"' houndary-layer calculation; hence a new pressure distribution pix)...    The inverse fixed p^m 

p"*'(x) = Gb"(x)]. I (3   ,5) 

RjnJoT^^mrt^lT^r'^''^^' "''"'' *' "°' T" '"*'"* '° *'^'' '"'«^«^'i°" ^^gi°"^ °' 'o accelerating flows (Ardonceau and Alziary de 
Roquefort   1980).    So that when computing a complete and complex flowfield, (the flow past an airfoil, for example) it is necessarv to use 

^^nT^^,TV"i T"' "I'"-    '"''"• " ''" '''"'"'' '''f"^"" '° °''"''" ^ ^-""'h '^-"-"on between regions whe e th   invis  d flow ha been calculated either by direct or by inverse methods. "vibciu now nds 
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(iii) Semi-Inverse Methods (see diagram in Fig. 3.2). In this method, the perfect Huid How is always computed in the direct mode, whereas 
the boundary-layer is computed either in the direct mode, in "well" attached now regions, or in the inverse mode if separation occurs (or if the 
dissipative now is highly destabilized). According to the present procedure, the same e(x) distribution is fed both in the boundary-layer and m the 
inviscid flow calculations. Two pressure distributions are thus obtainedwhich coincide when convergence is reached. Here, a new iteration cycle 
is started by "guessing" a new 9(x) distribution from the "error" p(x)~p(x). 

9 (outer velocity angle ) e 

y 

/ )< ̂  
p-p 

p 

a _ Direct mode b - Irverse mode c . Semi-Inverse mode 

Fig. 3.2- The various iteration paths in coupiing aigorithms. 

The three above coupling techniques are said to be explicit in the sense that the boundary-layer and the inviscid stream are computed in turn, the 
one after the other. The supersonic methods cited in the preceding Section were in fact implicit coupling procedures, since in these methods the 
two streams were determined simultaneously. In the latter case, use of the Prandtl-Meyer law (or the tangent wedge relation) to find the external 
pressure makes the implicit formulation very easy. Extension of the implicit procedure to elliptic external flows, with a view to obtaining higher 
convergence rates, has been proposedby Veldman (1979, 1981). In essence his method is as follows in the case of a strictly incompressible 
flow: the outer velocity distribution u^ix) is computed by using Cauchy's integral which involves the displacement thicknesj distribution. This 
integral constitutes the interaction law. Discretization of the interaction law results in an algebraic relation involving 5* and u, at every grid point 
i(i=l, /) along the body surface. This relation is added to the discretized boundary-layer equations to obtain a system which is solved at each 
streamwise station x, {i varying from 1 to I). Due to the fact that the interaction law contains values of 5* downstream of the computation 
station x, (the problem is here elliptic), it is necessary to perform several upstream-downstream sweeps in order to properly account for the ellipticity 
of the problem. The essential feature of the present method is to use an interaction law (or coupling equation) at iteration number n, and for 
station x,, which involves both &f and u^i at the same iteration number. 

This is in contrast to: 

— direct methods where i?/' is computed from 8*'"""; 

— inverse methods where 5*'"' is computed from i?/"". 

Such a quasi-simultaneous procedure avoids difficulties incurred when either fully direct (as in Werle and Vatsa's method, see above) or fully 
inverse modes are used. We will not comment any further on Veldman's method since its applications have been hitherto restricted to incompressible 
flows. 

3.3.2.2. Convergence Properties of Direct and Inverse Methods 

Fixed Point Methods. - The relationship implicit in equations 3.14 and 3.15 can be viewed conceptually, in simplified form, as representing 
curves or traces in the (p-Q) space, such as depicted in Figure 3.3. This graph may also be interpreted as the situation at one particular point of 
the computation grid along the couphng surface.    The two curves represent respectively: 

- relation between p and 9 satisfying the inviscid flow equations; 
- relation p (6) resulting from boundary-layer calculations. 

The intersection point of these two curves is the desired matching point. It is clear that an iteration path based on successive perfect-fluid 
boundary-layer calculations using simple fixed point iterations, such as those defined by equations 3.14 and 3.15 may be either converging or 
diverging according to the local shape of the two "response" curves {see diagrams in Fig. 3.3). The classical and well-known method used to 
insure the convergence of the iteration process or to enhance its convergence rate is to employ underrelaxation. 

The process consists in replacing equations 3.14 and 3.15 respectively by: 

6" *' (x) = 9" (x) + m { F [9" (x)] - 6" (x)}, 

p" *' (x) =p" (x) -KB { G [p" (x)] -p" (x)}, 

where the underrelaxation coefficient co is mot often determined empirically from trial and error.    Effect of underrelaxation in the plane p-9 is 
shown in Figure 3.4. 

6 ( outer velocity angle ) 

Direct (Tode converges - Inverse mode diverges b _ Inverse mode converges - Direct mode diverges 

Fig. 3.3 — Convergence properties of direct and inverse modes. 

Fig. 3.4 — Effect of underreiaxation on a diverging 

direct mode caicula tion. 
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A rational approach to the stabihty problem of coupling algorithms was published in 1978 by Le Balleur and has led to important results 
allowmg, in particular, a more rigorous way to define the optimum relaxation coefficient. Basically, Le Balleur's method relies on an approximate 
linear, stability analysis (a very similar analysis of this problem has been given by Wigton and Holt, 1983). 

Let us first consider the direct mode and imagine that a harmonic perturbation 5e(x, 0) = e exp (iXx) is imposed on the converged d*(x 0) 
distribution This distribution is the one for which the outer and the inner fiows have been made compatible (i.e., they satisfy equations 3' 2- 
3) Let 8»(x, 0) be the resulting velocity perturbation of the inviscid flow {u is scaled to some reference velocity, say the velocity at upstream 
infinity UJ.    5u{x, 0) is estimated with the help of the linearized small disturbance equation for the perturbation potential (p(x, y) : 

(1^M^)^ + 5|=0, \ 

where M is the local unperturbated Mach number.    Knowing that: 89= ^ and 8«= g, it can be shown that 8B and 6u, along the boundary ^ = 0 

(i. e., on the body surface) are related by: 

5ff(x, 0) = iyi"^rjH^8u(x, 0) ■ (3.16) 

if the flow is locally subsonic, 

8B (x, 0) = - JM' -1 bU(x, 0) ! 

if the flow is locally supersonic. 

Now let us consider the response of the boundary-layer to the perturbation 8«(x, 0) in the external velocity. This response is given by 
equation 3. 7 (sec Section 3.2.2 above) which will be written here in a slightly different form involving velocity instead of pressure: 

dx 

Hence for the perturbation angle: I 

89(x, 0) = iXB8i7(x, 0)       where    B = B'/i7. (3.17) 

Thus we arrive at the following relations giving the response 86 (x, 0) of the boundary-layer as function of the perturbation 85 (x 0) of the 
converged boundary condition: ^ ■   ; "■ 

8e(x, 0)=—8g(x, 0)       if   M<\, 
p ■ 

8e(x, 0)=-—8B(x, 0)       if   M>1, 

where: ' 
^=J]W^ I 

Letting: 

\^D=-r-       if   M<\    or    Ho= if   M>1 

(Ho IS the amplification coefficient of the coupling mechanism), one can see that the classical chain iteration will converge only if iu„l <I a 
condition which corresponds to a damping of the oscillations. The restriction |no| <1 must be satisfied for every wave number X If Ihe 
perturbation IS not made up of a simple sinusoid, it can be decomposed into simple harmonics by the Fourier analysis. The condition lu„a)| <1 
must be satisfied for all the wave numbers X contained in the spectrum of the perturbation. In reality, due to the x-discretization of the computation 
methods, the numbers X constitute a finite set of discrete values lying in the range: 

~<-x<^, \ 
L~   - hx 

where Ax is the mesh size and L the length of the computation domain. ' 

A very similar analysis can be made for the inverse problem by considering a perturbation 8« (x, 0) of the external velocity.    Now the boundary- 
layer response is given by: ^^^.-luaij 

8u(x, 0) = ^,8!7(x, 0). 

It is readily verified that Ho and n, are such that: 

l»oIi; = l 
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The above analysis leads to very useful conclusions regarding the convergence properties of the direct and inverse modes: 

- in direct iteration, a small mesh size (X„„ is large) tends to degrade the convergence properties by increasing the amplification factor 
IP-D C^max) I ■ The converse is true for an inverse iteration: convergence is deteriorated by an enlargement of the computation domain. This latter 
finding has been confirmed by calculations made by Melnik and Chow (1976); 

- in "well" attached flows, S is small (it is recalled that S depends only on the shape of the velocity distribution in the boundary-layer and 
on the edge Mach number). Consequently, the direct mode is more appropriate for computing these flows. On the other hand, when the 
boundary-layer is separated or strongly destabilized, B is large and the inverse mode becomes preferable. The above situations are illustrated in 
Figure 3.3. When the slope at the matching point P of the boundary-layer response curve is small (Fig. 3.3a), i. e., when the flow is attached, the 
direct mode is more likely to give convergence. On the other hand, when this slope is increased, which corresponds to a destabilized boundary- 

layer, the inverse mode has a natural tendency to converge (see Fig. 3. 3fc). 

Meauze and Delery (1983) have developed a coupling method for computing the flow in a transonic channel in which shock/boundary-layer 
interactions with large separation occur. The aim of this research is the extension of coupling techniques to the prediction of the flow in supersonic 
axial compressors. Due to the necessity to determine a flow with choking conditions, the outer inviscid stream is computed by solving the full 
Euler equations with a time marching method (Viviand and Veuillot, 1978). This method can be worked out either in the direct mode (i.e., with 
slip condition on the body surface) or in the inverse mode (i.e., with prescribed pressure along a free boundary, Meauze, 1980). The turbulent 
boundary-layer is computed by a direct-inverse finite difference method (Delery and Le Balleur, 1980, see Section 2.3.2). The coupling conditions 
are written on the displacement body in order to satisfy the mass flow conservation in the channel. The iteration procedure can be performed 
according to the fully Inverse or Direct modes or to the Semi-Inverse mode. 

In situations where the Inverse mode tends to diverge, an underrelaxation coefficient is computed at every grid point situated on the coupling 
surface. Reasoning is made in the (5*-MJ plane (the boundary-layer edge Mach number M^ is in fact equivalent to the pressure p of Figure 
3.3). Let mpp and mg^ be respectively the slopes of the Perfect Fluid and Boundary-Layer response curves at the (desired) matching point P. If 
in the vicinity of P these response curves are assumed to be rectilinear, it is clear that convergence of the fixed point iteration is insured provided 
that mpflmBL> L In these circumstances, it can be readily demonstrated that the iteration is made to converge by choosing the relaxation coefficient 

CO in such a way that: 

2m pp 

At every iteration cycle, the slopes mpp and m^^ are determined by assuming rectilinearjesponse curves. The perfect-fluid slope is evaluated 
by considering that locally the inviscid stream is one-dimensional with a Mach number Mpp equal to the average Mach number of the two- 
dimensional inviscid flow.    Then, by applying the equation for mass flow conservation, one obtains: 

dMpp _(\+(-i-\)l2Mlp)     Mpp 

dh* (\-MIP) (A-h*)' 

where A is the cross section of the channel. 

The slope m^^ relative to the boundary-layer is computed by considering a simplified Von Karman equation where the skin friction is neglected 
(in a manner similar to the method used by Carter, see below).    This equation is written: 

'^+e(H + 2-M.^)-i-^^=0       where    m.= I^M^ 
dx 1-l-m, M^   dx 2 

By considering the approximate relation H = Hi + aMl where a = 0.4, one has: 

d5* __ S* 

H l+m. 
(3.18) 

In the above equation, M^ is the local Mach number at the boundary-layer edge and H is provided by the boundary-layer calculation. 

Equation 3. 18 is also employed in the Semi-Inverse mode to guess the new 5* distribution from the mismatch AM, between the perfect-fluid 
and the boundary-layer calculations (see below). 

The Newton Method. - As was suggested by Brune et al. (1975) convergence of the coupling iteration can also be achieved by using the Newton 
method. Let us consider a computation grid on the coupling surface where the points are characterized by index j. Any perturbation AB of the 
boundary condition for the inviscid flow will produce changes in pressure Ap at every point i. These changes can be expressed in a linearized 
form: 

{Ap;} = [P,.]{A5j}, (3.19) 

v/here the Pij art tiie inviscid flow influence coefficients. 

Similarly, one can write a linearized expression for the changes in boundary-layer deviation 6 due to changes in surface pressure p : 

{A9,} = [By]{Ap,}. (3.20) 

The situation at iteration number n being defined by: {pj", {5,}", {p;}", {9,.}", the problem is to estimate values of pressure and deviation at 
iteration («-l-1) in such a way that: 

{5,}"*'= {9,}"^'. 
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Thus, we arrive at the following system: 

{A^.} = [P,,r{Aff,}, 

{Ae,} = [B,,r{A/>,}, 

{/7,}" + {ApJ = {p,}" + {Ap,}, 

{5J" + {ASJ = {e,.}" + {Ae,}, 

which allows, in principle, the calculation of the perturbation values {Ap,}, {AS,}, {^p■} and {AG,}. I' 

The above process is depicted schematically in Figure 3.5. Conceptually, the perturbation equations 3. 19-20 define tangent lines to the 
inviscid now and boundary-layer solution curves. In essence, the method is seen to be equivalent to approximating these solution curves by 
straight Imes locally tangent to the starting points and to solving for the point at which these tangent lines intersect 

6" ■,    ^^Starting point of Boundary-Layer calculation 

\   \,                        result of second iteration cycle 

\ iXA          v^ 
V—--^^-^p^^^'^ 
/A ^/^"^^^ 

/       y^   \_result of first iteration cycle 

y^^Starting point oF PerPect  Fluid calculation 

Fig. 3.5- Newton method for coupling probiem 

(Bruneetal., 1974). 

If non-linear effects in P,, and B, are moderate (i.e., if the solution curves are nearly straight), convergence of the method may be 
rapid. However, each cycle is very complex since it requires inversion of full matrices. This is why relatively few examples of this approach have 
been reported for transonic flow calculations (T/iierfe, 1976). vv     '■ 

3.3.2.3. Semi-Inverse Methods 

Fixed Pomt Methods. - Now the problem is to "guess" a new e(x) distribution from the difference (or "error") in pressure ^p=p(x)-p(x) 
m such a way that ^p cancels out at convergence. This kind of iteration procedure was first proposed by Kuhn and Nielsen (1973) in the 
wIT^mn '°"H A ""'"" ^';°^'^-7^«/'"^''"'«'" boundary-layer interactions. At that time, a rather empirical way to iterate on the e(x) distribution 
liability Ssis     '"°''' ' examination of the convergence properties of the Semi Inverse algorithm can be made by resorting to Le Balleur's 

Let 9*(x, 0) and u'(x, 0) = «(^ 0) be the converged values on the coupling boundary and e"(x, 0), ?(x, 0), u(x, 0) the corresponding values at 
now POTH "IH 'r'"'"' '1'','" l\' Semi-Inverse procedure S"(., 0) = e"(x, 0), barred quantities being relative to the Md 
now).    Considering the subsonic case, the local linear analysis leads to the following relations; 

- for the inviscid flow (see equation 3.16): 

e"(x,o)-e'(x,o)=Pfi^-l^ 
Xyu" dx     u*   dx )■ 

for the boundary-layer flow {see equation 3. 17): 

8°(x, 0)-8*(x, 0) = B* 1   du"      1   du*'^ 

^ u" dx     u*  dx ) 

Combination of the two above equations gives: 

1  di?      I   du"     /X      1 \ 
tf dx     u' dx     VP     B*J ^ '   " 

If convergence is to be achieved at the (n -I-1) th iteration, we must have: S" +' (x, 0) = 6* (x, 0), hence: 

5-(X, 0)-e-(x, 0)=-?!P-f 1 '^ - 1 ^^ 
XB*-^\u" dx     u" dx)' 

For the supersonic case a similar calculation gives: 

S" + '(x, 0)-e"(x, 0)=; PB*'     ( \   d^u-      1   d'u' 
X^B*^-t-^\u'  dx^      «"  dx^ I' 

(3.21) 
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A relaxation coefficient must generally be introduced and the (n +1) th values are taken to be: 

9" +' (x, 0) = 9" (x, 0) + CO [5" +' (^, 0) - 0" (x, 0)]. 

It is to be noticed that this Semi-Inverse iteration method requires only the knowledge of the error on the pressure gradient so that integration 
of u (x) [or p (x)] is not necessary. This property may facilitate a zonal switch between Semi-Inverse iteration which is used in separated regions 
and Direct iteration which is more appropriate for attached flows. 

More recently, Carter (1979, 1981) {see also Whitfield et al, 1981) proposed a rather simple updating procedure which takes the following 
form when coupling conditions are expressed on the displacement body: the updated displacement thickness 5*'"+" is deduced from the mismatch 
of the viscous and inviscid velocities by: 

The updating procedure including a relaxation coefficient can be written; 

§.(™ + i)^5«w + (0g.w( ^^l). (3.22) 

A similar expression can be obtained if one considers the simplified Von Karman equation where the skin friction has been omitted. In this 
case, one can write: 

AS*=-(H,. + 2) —Au, 
u 

thus, if: 

Au = u" — u", 

A8' = 8*'"*"-5*<"', 

one gets: 

g.(-+i) = g«(") + (H. + 2)6*<"'C^-iy (3.23) 

Comparison of equations 3.22 and 3.23 shows a close resemblance in relating an increment in u to that in 5*. Estimation of §*<"+" by 
equation 3.23 is not in principle entirely rigorous since the momentum integral equation expresses change in u and 8* in the streamwise direction, 
whereas those in equation 3.23 refer to change between successive iteration cycles. Carter found that overrelaxation could be used in equation 
3.22 (o)>l) to accelerate the convergence of the iteration process. The similarity between equations 3.22 and 3.23 offers an explanation since, 
even with overrelaxation, it has been observed in these calculations that: 

co<Hi + 2, 

H, being always greater than 1. 

It can be easily demonstrated that, for subsonic flows. Carter's and Le Balleur's approaches are essentially equivalent. Differentiating 
equation 3.22 with respect to x gives (after some approximations): 

"* =(05*'"'    -—-^ 
dx dx \ «° dx     u° dx J 

The above equation is identical to equation 3.21 applied to couphng on the displacement body   in this case e(x, 0) = 
dS* 
dx 

provided that: 

C05—    ^*P 
?.B*-P 

In supersonic or transonic flows. Carter uses coupling on the body surface. As seen in Section 3.2.1, the effect of the boundary^layer is then 
felt by the outer inviscid flow as mass bleed (positive or negative) along the body surface. In this case, the boundary-layer calculation of the 
iteration cycle is made by specifying the perturbation mass flow: m = p^ u^ 8* (see Section 2.3.2 about boundary-layer calculation by inverse methods), 
and the same updating procedure as for coupling on the displacement body is employed which gives: 

= m — 

Application of the Newton Method. - The Newton iteration method can also be used to enhance convergence of the Semi-Inverse 
algorithm. Most often, the method is employed in a much simpler form than the initial version proposed by Brune et al. (1975) {see above). For 
example, Gordon and Rom (1981) have devised a matching procedure based on the assumption that the relation between {ApJ and {AS,} and the 
one between {Ap,} and {Aej are two-dimensional. This means that for each station, {ApJ depends only on {AS,} (and not on {ABj}, j/i) and 
{ Ap,} depends only on {A9,.}. The procedure consists essentially in keeping only the diagonal of matrices [Py] and [BJ. The guessed displacement 
thickness (coupling is expressed on the displacement body) has to be underrelaxed rather strongly to prevent oscillations. 

In 1976, Alziary de Roquefort proposed an updating procedure in which only two diagonals in the boundary-layer influence matrix [By] (i and 
i— 1) were retained.    The method worked satisfactorily for laminar shock-wave/boundary-layer interactions. 
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More recently, Ardonceau (1981, see also Ardonceau, Alziary and Aymer, 1980) published a method which worked efficiently both for 
(supersonic) laminar and turbulent shock/boundary-layer interaction. Its principle consists in representing the perfect fluid and the boundary-laver 
sensitivity functions by: ■'    ■' 

- for the perfect fluid: 1 

which is the linearized Prandtl-Meyer law: 

— for the boundary-layer: 

P?-?!/!) =/'?-(l/2| +-4/'oo (5"* ' - e"),. 

+ 5(9""-9"),. 

(3.24) 

(3.25) 

where the influence coefficient S=(^-^^ ) is approximated by f ^") and estimated numerically. 
\        Oii       /i-(i/2) \db*/i 

Discretization of equations 3.24 and 3.25, where p"*' is set equal top'*', results in a recursive relation allowing the calculation of p'*' This 
calculation is started from the most downstream station where the pressure is prescribed as the downstream boundary condition of the viscous- 
inviscid interaction problem (w Section 3.3.1 above).    Thereafter, the updated displacement thickness distribution is computed from 3 24 or 

3.25 1 the case where 9= -— j.    An underrelaxation of/)"+' is required when separation occurs. 

3.4.   — Higher Order Methods 

In the above formulation of the viscous-inviscid interaction problem, it is always tacitly assumed that the classical boundary-layer concept 
remains valid. According to this concept, the fluid properties in the dissipative layer (velocity, density, etc.) tend towards constant values when 
y^ CO, and accordingly, the transverse pressure gradient is assumed to be zero. The limit values are identified with the inviscid fiow properties 
along the coupling surface, which may be the outer edge S, the displacement body or the solid body itself. This approach leads to some 
inconsistencies which may be the source of inaccuracies when the external inviscid flow is far from being transversally constant, as is the case in a 
shock-wave/boundary-layer interaction. Consequently, the pressure can no longer be considered as independent of y inside the boundary-layer In 
these circumstances, coupling on the displacement body or on the surface appears as a more or less empirical way to take into accoum the 
transverse variation of the pressure. On the other hand, it now seems clear that the assumption 5p/3>. = 0 is at the origin of the artificial supercritical 
behavior {see Section 3.2.2 above). Therefore the "classical" formulation leads to an unsatisfactory situation even if the prediction it gives is 
irequently correct. 6    ■>   o 

R„11e!!l'igX9> '"°^^"8°'°"^f°™"l'''i°" °f 'he viscous-inviscid interaction concept can be made by introducing a "defect formulation" (see Le 
Balleur 1982). Basically, this approach consists in considering the difference between the real fluid, with viscous effects near the wall and the 
external mviscid fluid continued to the wall.    If /designates a real flow property and /the corresponding inviscid property, one has: 

lim (/-/) = 0>.- with   /= {u, V, p, p] 

It is possible to write the full Navier-Stokes equations in terms of the difference between viscous and inviscid properties     However   for 

LTTequaZnsls'obtahied" ''"      "'""'""' ^^ ""^^^^ "'" '""' ""'^ °^ -"^g^i'^de analysis as in Prandtl equations.    Then, the following 

d(pu~pu) ^ a(pi;-pn) ^ 
dx 

a(pu'-pt?)     d{puD-puv) 

Sx dy 

dy 

d{p-p) ^ dz 

dx dy' dy 

In the classical (first order) boundary-layer theory, the overbarred quantities are considered as independent of y; they are now (fictitious) 

I'^h ; Inheloc^Hnvtrirs-        "" """°" °' ''' '°''^'"' ''"'"""^ "" '"'™'*"^^''-    '^''"^ "^f"'""- '^'^^ '"'° ™' *e variation 

S*Pe>',=       [pu(x,y)-pu(x,y)]dy        {Vl = ul + vl), 
Jo 

{8* + Q)p^Vl=\    lpu^(x,y)~pP(x, y)]dy,    etc. 
Jo 

We will not comment any further about the "Defect Formulation" which is still in the development stage. 

It is also possible to improve the representation of viscous effects in high Reynolds number flows by introducing a "splitting" between a 

tTnow TZT "VX'T" ""' '' ":' '"^' °' '''' '"''' "°" ^"'^^'" 'h^-"^^'™^ '■" 'he viscous-inviscid interactive con e^'envi   led up 
o now, the splitting ,s made between regions).    There results what is called a composite representation of the presure or of the velocity field     Such 

netrnKhL 1H ^1°"°"^' I' °°'^' T." "-"'^^ <""' '"'^ "^ •^"""^ ^"'^ '^"^^ f'^^^).    Further development concern ng these relatfvet new methods would be beyond the scope of the present AGARDograph. iciaiiveiy 
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3.5. — Application of Inviscid-Viscous Interactive Methods to Flows Containing Shock-Waves 

A large number of calculations based on IVI methods has been published, these methods now being routinely used for practical purposes {see 
in particular AGARD CP-291, 1980). So in this Section we will only present typical examples caling upon methods which have been discussed in 
the preceding Sections. 

First, we will consider entirely supersonic flows. The first calculations shown in Figure 3.6 were performed by Werle and Vatsa (1974). They 
are relative to laminar interactions at a compression corner. These results are compared to Navier-Stolces calculations of Carter (1972) and to the 
well known experiments of Lewis et al. (1968). The best agreement —both with Navier-Stokes and measurements - is obtained for a free stream 
Mach number M„ equal to 4 (case a).    The relatively large discrepancy observed at M„ = 6.06 (case b) cannot be explained. 

10 atj 

Experiment ( Lewis etdl , 196S ) 

Werle and VHM [ 1974) 

CarUr (1972). 

. Navier.Stakes calculation 

Fig. 3.6 — Ramp flow — Laminar boundary-layer — Ini/iscid- 

viscous interactive calculations of Werle and Vatsa (7974) 
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f/gr. 3.7 — Ramp flovj — Turbulent boundary-layer — 
Comparison of several coupling calculations. 

The following example is a ramp flow in turbulent regime. The results presented in Figure 3.7 were obtained by three coupling techniques 
(Ardonceau et al, 1980; Le Balleur, 1980 and Werle and Bertke, 1976). These calculations are compared to the experimental results of Law (1973) 
which clearly exhibit the existence of an extended separated zone. In the Ardonceau et al. method, the boundary-layer is computed by a finite 
difference method with the turbulence represented by an equilibrium two-layer model. This can explain the too large an increase in pressure given 
by this method because-as we know from experimental evidence (see Section 2.9 of Part I)-classical equilibrium turbulence models always 
overpredict considerably the "stiffness" of the boundary-layer thus leading to too intense pressure gradients. On the other hand the poor 
performance of the Werle ant Bertke calculation probably comes from the writing of the coupling conditions on the displacement thickness in a 
situation where the incoming boundary-layer is highly "supercritical" (see Section 3.2.2 above). Another example of application of an IVI method 
to a supersonic ramp flow in turbulent regime is given in Section 5 dealing with Navier-Stokes calculations. 

The forthcoming calculations are relative to transonic airfoil flows. It is clear that such calculations involve many aspects of the coupling 
problem, for example the modeling of the viscous wake influence. However, a good representation of the shock-wave/boundary-layer interaction(s) 
is essential to the achievement of a satisfying prediction. 

The first example shown in Figure 3.8 is a calculation performed by Tai (1974) in which the boundary-layer is assumed to remain laminar 
down to the profile trailing edge. This boundary-layer has been computed by an integral method using the Mean Flow Kinetic Energy equation 
(see Section 2.2 above) along with a compressible-incompressible transformation and similar solutions. Coupling conditions are expressed at the 
boundary-layer outer edge 8 which always gives a subcritical response in laminar (except if the wall is highly cooled, see Section 3.2.2 
above). Agreement with the experiments of Graham et al (1945) is very good over the major part of the profile. In particular the large shock 
spreading at the wall which is typical of laminar interactions is well predicted. Agreement is not so satisfactory in the downstream part of the 
profile, presumably because of possible transition in the experimental case. 

viscous interaction 
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Mfiic pressure 
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.compression waves 

nviscid-viscous 
interaction 
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0 0,5 1 

a _   Surface pressure distribution 

NSCi 0015 Airfoil M„.0.729       a.4d.) 

Fig. 3.8 - Transonic airfoil flow - Laminar boundary-layer - 
Inviscid-viscous interactive calculations of Tai (1974). 

In the following examples, the boundary-layer is turbulent over the major part of the airfoil and especially in the shock foot region, 
shown in Figures 3.9 and 3.10 concern the RAE 2822 airfoil which was carefully tested by Cook, et al (1979). i 

Calculations 

In the calculation performed by Melnik et al. (1983)-see Figure 3.9a-as also in the one of Le Balleur (1983)-see Figure 3. lOd-the outer 
inviscid flow is computed by solving the full potential equation in conservative form. Coupling conditions are written at the wall according to the 
transpiration velocity concept. On the other hand in Whitfield et al. calculations (1983)-see Figure 3.9fe-the inviscid flow is determined from 
the Euler equations and the transpiration velocity concept is also used (Whitfield et al. have also made calculations with coupling on the displacement 
surface. They found that the results were very close, the difference in shock location being approximately the same as the distance between grid 
points).    In Melnik et al.'s calculations, the boundary-layer is computed by the lag-entrainment method (see Section 2.3 above). 
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Fig. 3.9 - Transonic airfoil flow - Examples of inviscid-viscous 
interactive calculations. 
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Fig. 3.10 - Transonic flow past an airfoil - Comparison of several 
coupling calculations (origin of calculations and exp. in the Proc. of 

tfte 1980-81 AFOSR-HTTIVI-Stanford Conference). 

To conclude the section on flow past airfoils, Figure 3.10 shows a comparison involving four coupling methods applied to the same flow 
ro^Z T'TI ° ^7Pf^"°"\^"'' experiment can be found in the Proceedings of the 1980-1981 AFORS-HTTM Stanford Conference on 
Complex Turbulent Flows). In the Smith et al.'s calculation, the boundary-layer is computed by the already mentioned lag-entrainment method 
the inviscid now being determined from the full potential equation in non conservative form. , emrainment metnoa, 

,h   r^"'f ^'," '^°^' " '=''''^"'!'i°" P«'-f°™ed by Carter (1981) on the transonic axisymmetric bump tested by Bachalo and Johnson (1979)     Here 
he boundary-layer IS computed by a fmite difference technique along with the Cebeci-Smith two-layer algebraic turbulence model (1974)     It 
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Fig. 3.11 ~ Transonic interaction over an axisymmetric circular 
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rnle^ThlT '"'' '."'"'P''' °[ '^^ calculations are relative to internal flows at transonic velocities for which viscous effects play an essential 

M auze an^Dele n983rthetnv' 'H n'" '"n'r channel flow discussed in great detail in Section 2.8 (Flow 4). In this calculation'performed by 
Meauze and Delery (1983) the mviscid flow is determined by solving the Euler equations and the boundary-layer is computed by a finite difference 
method along with an algebraic model based on the mixing length concept (Michel et al., 1972). The geometry of thcTaLe is sketch dn 
Figure 3.12.    Its upper wall is made of a flat plate and a long bump is mounted on its lower wall. sKetcnea m 
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Inviscid-viscous interactive calculations of Calvert (1983) 
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The second example of channel flow is due to Calvert (1982, 1983). It is relative to the flow in a supersonic cascade. In this calculation the 
boundary-layer is computed by the lag-entrainment method and both Inverse and Semi-Inverse coupling techniques are also used. The results 
given in Figure 3.14 are in reasonable agreement with experiment. 

To conclude this Section it must be stressed that in making Inviscid-Viscous Interactive calculation in flows containing shock-waves, care 
should be taken to insure that the grid spacing in the shock foot region is small enough to correctly capture the interaction process (a spacing of 
the order of the displacement thickness of the incoming boundary-layer is necessary). Such a high mesh refinement can lead to problem of 
computer storage capacity and to extensive computer time. For this reason, some authors have proposed to represent the shock foot region by a 
local crude schematization of the interaction zone like the viscous wedge model briefly discussed in Section 2.6.2 of Part I. A more thorough 
information on this point can be found in the AGARD CP-291 (1981). 
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4.  -  ANALYTICAL METHODS OR MULTI-DECK MODELS 

4.1.  -  The Lighthill Multi-Deck Model \ 
li 

The essential features of an interacting boundary-layer were established in 1953 by Lighthill (1950, 1953) who examined the question of 
upstream propagation in the interaction of an oblique shock-wave with a boundary-layer. Both laminar and turbulent cases were 
considered. Lighthill recognized that the interaction takes place over a short distance, when compared to a length scale representative of the 
boundary-layer development, (for instance the boundary-layer thickness). As a consequence, Lighthill showed that the boundary-layer flow develops 
a two-layer structure comprising {see Fig. 4. 1): 

- a thick outer-region covering most of the boundary-layer and where the viscous forces can be neglected. In this region, the flow is 
essentially driven by pressure and inertia forces which become predominant because of the rapid variations in the streamwise direction occurring in 
the mteraction domain. Thus, this part of the flow is considered as an imiscid rotational stream (the rotation having been created in the incoming 
unperturbated boundary-layer). 

- a viscous sublayer in contact with the wall. This layer must be introduced since the neglect of viscous forces down to the wall leads to a 
situation where the flow in the immediate vicinity of the wall is unable to sustain any positive pressure gradient (this point was briefly brought up 
in Section 1.4 concerning Inviscid Shear Layer Analyses). It is obvious that the zero velocity streamline cannot overcome a pressure rise by a 
purely inviscid mechanism. 

Lighthill proposed a solution to the interaction problem by using a small perturbation approach. For the part of the flow considered as 
inviscid, he derived what is today a classical equation governing the disturbance pressure field: 

[,-M^(v)]^-2^^^^iWMi:^ + ^=0 I 
dx"- Mo(y)     8y      dy^ 

\ shock wave --   ^ reflected waves 

      —     \              ' ^ y external inviscid region 

1.  outer boundary-layer ]. i„x^ai roUlional flov 

J6v  
1        2_-viscixjs iublayer } laminar boundary-layer 

Zslip or'cuitofT' Mach number M, . M„ (y. 6,) ^'j?- 4.? - The Lighthill two-layer model of Strong interaction. 

In the above equation, M^ (y) is the Mach number distribution in the undisturbed flow which includes the major part of the incoming boundary- 
layer. 

At the outer edge of the boundary-layer (j' = 8o), the solution must match the incoming and reflected disturbances which are assumed to satisfy 
the Hnearized supersonic inviscid flow equations. 

The tangency condition ii' = 0 (equivalent to —=0 I prescribed at the wall for a boundary-layer flow considered as wholly inviscid, would 

necessarily lead to dp'/8x = 0. Thus, the inner condition for the outer inviscid flow necessitates the consideration of the solution for the viscous 
sublayer. 

This inner region is here analyzed by considering the density in the sublayer as constant and dp'/dy = 0. The formulation of the perturbation 
problem leads to an equation for the normal disturbance velocity D' (for more details, see Section 4. 3.2.1 below). Lighthill showed that the 
essential result was that the effect of the sublayer on the outer flow is exactly as if this layer were replaced by a solid wall located at a distance 
y*>0. This important finding is analogous to the properties of the displacement thickness in ordinary boundary-layer theory. Now the condition 
v' = 0 for the outer flow is imposed at a distance y* from the wall where Ma(y)¥=0. The difficulty arising from M„->0 when v' = 0 has been 
overcome. 

We will not give any further details on Lighthill's theory,  since its essential principles will be exposed in a more developed form in 
Section 4.3.2.1 concerning Inger's analysis.    We will only add that solutions in the two layers are obtained in closed form by using Fourier's 
decomposition in the x-direction.    These solutions have permitted the establishment of important results governing the scaling of the interaction 
region.    Thus, it was shown that in laminar flows and for a supersonic external stream (which means M„ not be too close to unity), the streamwise 

Ar 
extent of the interaction Ax scaled to the distance L of the interaction from the leading edge is such that: ~—=0{R~^'*).    Here R is the Reynolds 

number computed with L and external flow unperturbated quantities. This result implies A;c/8o = 0 (R"") since 8o/L = 0 (R""^). The above 
scaling laws confirm the general order of magnitude of ten boundary-layer thicknesses found experimentally for the distance of upstream influence 
in laminar interactions without separation. 

The considerable reduction in Ax for a turbulent interaction was shown to be partly due to differences in skin friction coefficient (i. e. the 
initial slope of the velocity profile which measures its resistance to retardation effects) and partly due to differences in the width of the part of the 
boundary-layer where the Mach number is low (a turbulent profile is much "fuller" than a laminar profile). 

The first tendency linked to the shear stress level at the wall is in agreement with the conclusions of the Free Interaction theory which is well 
verified at low to moderate Reynolds numbers whereas the second finding corroborates the behavior observed at high Reynolds number where the 
boundary-layer becomes more resistant as its velocity distribution is more "filled" {see Sections 3.6 and 3. 7 of Part I). 

The cited papers of Lighthill have had a considerable influence on subsequent theoretical research on the shock-wave/boundary-layer interaction 
problem as well as on the accompanying self-induced separation phenomenon {see below). Let's recall Stewartson's words about one of Lighthill's 
papers: "In our view, this (final) paper of Lighthill is the key to the whole problem of self-induced separation and any other theory or approximate 
method which does not build on it is incomplete and cannot provide a full understanding of the phenomenon" (Stewartson and Williams, 1969). 
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In the following Sections we will first present multi-deck methods for laminar flows by considering in some detail the basic Stewartson and 
Williams theory for self-induced separation in supersonic flows. In laminar flows, multi-deck theories generally use matched asymptotic expansion 
methods of solution. In this sense, they are valid in the limit situation where a small parameter e is tending towards zero (in the present case 
E = R~"*, thus the limit corresponds to a Reynolds number R tending to infinity). The exception among these theories is the non-asymptotic 
theory of Tu and Weinbaum {see Section 4.2.2 below). 

Multi-deck theories for turbulent flows are reviewed in Section 4.3. These theories use both asymptotic expansion methods and linearized 
perturbation techniques, the latter being directly inspired from Lighthill's pioneer work. 

4.2.  —  Multi-Deck Theories in Laminar Flows 

4.2.1.  —  Asymptotic Expansion Methods 

4.2.1.1. - Stewartson and Williams' Theory of Self Induced Separation in Supersonic Flows. In 1969, Lighthill's multi-deck theory was developed 
into a rational theory for laminar shock-wave/boundary-layer interaction by Stewartson and Williams. These two authors retained the full non- 
linear boundary-layer equations to describe the sublayer behavior. About at the same time, similar approaches were proposed by Neiland (1970) 
and Sychev (1972). Such analyses make use of asymptotic expansion techniques and focus on the self induced separation phenomenon which results, 
for instance, from impingement of an oblique shock-wave strong enough to induce separation. The problem is conceived as a Free-Interaction 
problem in the sense that it deals with the spontaneous and rapid change of the initially undisturbed boundary-layer velocity profile by interaction 
with the main stream outside. The Free-Interaction concept, which leads to self-induced separation, was originally introduced by Chapman (1958) 
to characterize a process by which a boundary-layer departs from its initially weali interaction regime as a consequence of some downstream 
constraint (shock impingement, for example). From a physical standpoint, a simple explanation has been given by Chapman that basically a cycle 
can be set up in which the growth of the boundary-layer produces an adverse pressure gradient in the outer stream which promotes further growth 
of the boundary-layer. Thus the interaction is entirely determined by the outer inviscid stream characteristics and the incoming boundary-layer 
properties.    It does not depend on the triggering agent, hence the denomination of/ree-interaction or se//-induced separation. 

The Free Interaction concept is more thoroughly discussed in Section 3. 6 of Part 1 by resorting to experimental evidence.    I 

Let us go back to Stewartson and Williams' theory which considers a laminar boundary-layer developing on a flat plate in a supersonic 

stream.    Let L be the distance from the leading edge of the free interaction zone and assume that the Reynolds number: R= is large. 

Thus the boundary-layer is well established and its velocity distribution is determined by the Blasius equation suitably generalized to compressible 

flows. I 

Following Lighthill's idea, and by using asymptotic expansion arguments, the free interaction zone is shown to develop a triple deck structure 
consisting of (see in Fig. 4. 2): 

— an upper-deck which is the external inviscid stream; ■ I 

— a middle-deck or main-deck which comprises most of the boundary-layer; 

— a lower-deck which is in fact Lighthill's viscous subalyer. 

Let us first consider the solution for the main-deck, i. e., that part of the flow normaly including most of the boundary-layer. 

Defining £ = «""" as the small parameter, it is shown by asymptotic expansion arguments {see also Lighthill's result in Section 4.1 above) that 
a consistent approach to the interaction problem impose the following scaling for the main-deck: 

— length scale in the x-direction: Ax = O (e^) L = 0 (R " ^'*) L; 

— length scale in the j'-direction: Ay = 0 (E*) L. 

0(£l) 

Fig. 4.2— The triple-deck structure of a free interacting 

laminar boundary-layer. 

In fact Ay is 0 (5o), 8o being the physical thickness of the undisturbed boundary-layer which would exist at x = L in the absence of interaction. 

The solution is expressed as a function of the stretched variables: 

x = (x-L)/E'i„ 

y=ylz*L 

which are defined in such a way as to be of order unity in the major part of the interacting boundary-layer. The solution has the form: 

u=Vo(y) + zu^(x, y)-^z^u.^(x, y)-¥ . . ., (4.1) 

v = z}vi(x,y)-\-f?V2(x,y)-¥..., (4.2) 

p=p^ + s^Pi(x,y)+..., (4.3) 

p = Ra(y) + &Pi(x,y) + E'p2(x,y)+ . . . (4.4) 
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where all quantities have been made dimensionless by introducing appropriate scales (i7„, p„) and where Uo(y) is the streamwise velocity profile of 
the incoming boundary-layer. 

At this step, three remarks may be made: I 

(i) in the absence of interaction we would have: u=V„{y) + E^u^{x, y) since in this case — =0(1). 
dx 

Now the streamwise variation of u is much more rapid, because — =0{E~^); 
dx 

(ii) the expansion for v begins with term O(E^) from the continuity equation. In a "normal" boundary-layer i) = 0 (i? "2) = 0 (E"), i e is 
much smaller; 

(iii) the expansion for the pressure p omits term 0 (e) for reasons which will be seen later. ' 

Substitution of expansions 4.1 to 4.4 into the full Navier-Stokes equations shows that leading viscous terms are O (1) while the leading inertia 
term is O (E ^) in the x-component of the momentum equation. This means that Uy and «2 are given by inviscid equations. Similar results are 
demonstrated for n, and DJ by consideration of the >'-component of momentum. 

The following equations are obtained for u„ D, and pj (for the sake of simplicity, higher order terms will not be considered here): 

«„Wt/o(y)^+«„CP)^,^^^=0, 
ox dy 

^-1-^=0, 
dx      dy 

^y 1! 

The solutions of the above equations, satisfying Ui -»0, x-♦ oo are simply: 

«. = ^.W^. I (4.5) 
dy 

■'i = -i^o(y)     j-    ■ I (4.6) 

A^ (x) is a function, so that A, (-oo) = 0, which is determined by matching with the upper-deck (external inviscid flow). 

If y-> CO, then Ui -. 0, so that to 0 (E) the main stream is undisturbed. Hence Pi (x, oo) = 0 and as dpjdy vanishes in the boundary-layer, 
then Pi =0.    There is no need to have a term 0 (e) in the expansion for p. 

Let us now consider the outer inviscid irrotational flow or upper-deck. In this flow the length scales in the x and y directions must be 
comparable. This is true if the flow is frankly supersonic (M^ not too close to unity), i.e., if the slope of the characteristics (Mach waves): 
(A^«-l) "^ is 0(1). In a transonic stream, the vertical and horizontal scales have to be different since then (M^-1)""^ tends to infinity (see 
Section 4.2.1.2 below).    For the present situation, the stretched variables in the upper deck are: 

y=>'/£^L=Ej,     x=i. Ii 

Matching conditions with the main-deck show that the pressure must be of the form (see above): 1 

p=p^ + E^P:,(X, Y)+... \ 

Substitution in the Navier-Stokes equations leads to the well known Prandtl-Glauert equation: 

(Mi-l)^-^=0 I (4 7) 

In the limiting process y-> 00, r->0, PJW 0)=P2(-X). ' 

Using a linearized simple wave equation (derived from equation 4.7) and writing conditions at order E^ connecting D, and v. yields (in the 
limit y -> oo): 

V,      dA, JMI^X \ 

1 
Hence; 

/M't-\ f« 

ypooM 

which is the relation that determines X, (x). 
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The solution of the (inviscid) main-deck cannot satisfy the no-slip condition at the wall. This fact is readily seen by considering the y-*0 
limit of equations 4.5 and 4.6. Consequently, an inner-layer - the so-called lower-deck - must be introduced in order to satisfy this 
condition.    The thickness of the lower-deck is a fraction E of the Blasius' boundary-layer thickness.    The characteristic length scales are now: 

— ~E^ L in the x-direction; 

— ~e'L in the y-direction. | , 

In order to match with the main deck solution, the velocity components u and v are taken to be of the order e l/„ and £^ U„ respectively while 
the pressure variation is 0(e^p„). i 

Accordingly, it is demonstrated that the Navier-Stokes equations reduce to conventional incompressible boundary-layer equations (for a thermally 
insulated wall).    It is convenient to write: 

y = e^ZL,        x=L + e^XL    {X=x). ■    ..     ■ 

Then, to order E the equations for the lower-deck are written: 

-du     -du dp C     d^u 

dX      dZ        dX    Ro(0) 3Z^ 

du      dv 
— + — =0. 
dX    dZ 

(C is the constant of the Chapman viscosity law). 

The above system has the following boundary conditions: 

(i) X-> 00 u = ZU'(0) which express the condition that u must join smoothly the undisturbed flow for which: 

Uo(y) = U'o{0)y + 0{y'')       [U'o 
dy 

(ii) Z -> 00, 

u-ZU'o{0)^A,{X)U'„{0) = J^- 

which is the matching condition for the main-deck {see equations 4.1 and 4. 5). 

p^{t)dt 

(4.9) 

(4.10) 

U'oiOl (4.11) 

(iii) Z = 0, u = D = 0 which is the no-slip condition at the wall. 

Furthermore, it is established that p^Pj, i. e., the pressure is the same as in the main-deck. 

As shown by Stewartson and Williams, the main-deck is completely passive. Physically speaking it displaces the streamlines outwardly in the 
boundary-layer and simultaneously tansmits the pressure perturbation unchanged from the base of the upper-deck to the lower-deck. The stream- 
tubes divergence in the main-deck is neglected.    The solution in the main-deck is simply represented by an outward shift of the Blasius profile. 

The function A^ix) can be interpreted as representing the slip velocity at the base of the main-deck corresponding to the inviscid perturbation 
of the upstream Blasius' profile by the induced pressure gradient. Alternatively, ^i(x) can be regarded as a displacement thickness {see 
equation 4. 8). 

In its final form, the problem is formulated by introducing new dependent and independent variables in such a way that the influence of the 
flow parameters is rendered explicit.    This permits the calculation of a universal Free-Interaction solution in similarity variables.    In particular, it 

is shown that the dimensionless pressure change Ap = (p—p„)/-p„ U% in a Free Interaction has the form: 

Ap' 
{Mi-iyi- 

V, w. 

where X, = 0.332 results from Blasius' solution. At separation, Piix) has a well defined and fixed value which is 0(1). Furthermore the theory 
demonstrates that the dimensionless pressure changes A/)(M^-l)"*i?''''>.""^ C""* must collapse into a single curve when plotted against the 
dimensionless streamwise distance X^ defined in Figure 4.3 (In fact, the X, co-ordinate used in Figure 4. 3 incorporates a modification introduced 
by Curie (1961) to better represent wall temperature effect, see Section 3.4 of Part I). One sees that the use of these reduced variables leads to a 
very good correlation of wall pressure distributions measured in ramp-induced separations for very different flow conditions (Lewis et al. 
1967).    Thus the asymptotic theory confirms the similarity laws established by Chapman's introduction of the Free Interaction concept. 
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Experiments of Lewis et al.  (1967 ) 

0 1 2 

P = (P-P.)(Mi,l)J-Rl/[V2p,Ui(0.S64)icJ-] 

X, = ( 0.332 )T(T./T,)-5-(Re)rC-i(Mi,l)ix + Xo 

0-4 0.6 

Fig. 4.4 - The Stewanson and Williams theory of laminar self induced 

separation (Stewartson and Williams, 1969). 

Fig.   4.3  -   The  stewartson  and  Williams  theory of laminar 
self-induced separation - Wall pressure correlation including 

Curie's modification. (Stewartson and Williams, 1969). 

Applications of the First Order Theory. - In the original work of Stewartson and Williams, the lower-deck equations 4 9-10 along with the 
boundary conditions, were solved by a finite difference method (Clenshaw, 1966). A stream function v|/(X, Z) was introduced and, by differentiating 
the governing equations with respect to Z in order to eliminate the pressure term, a fourth order equation for ^\, was obtained The integration 
was imtiated at a distance A-<0 by perturbing the trivial solution of the problem u = ZU'„{0), d=0 and p = 0. The outer boundary condition was 
approximated by a condition at a large finite value of Z. The integration proceeded in the downstream direction, the problem being treated as an 
mitiai value problem. This method of integration is basically the same as the one described in Section 2.3.2 above. At that time the published 
calculations concerned only the self-induced separation region, including the very first part of the reversed flow region, the original calculations did 
not exhibit instabilities or non-uniqueness downstream of the separation point, which is rather surprising since a purely downstream marching 
process was used (see Section 2.1 above). In fact, further investigation showed that the stability was illusory (Stewartson 1974) since a correct 
treatment of the reversed flow should take downstream conditions into consideration. However, a stable forward marching procedure is possible 
for cases with small separated flow by using the FLARE approximation in which the term udu/dX is neglected whenever «<0 {see Section 2 3 1 
above).    The ulterior and more convincing numerical experiments of Williams (1975) were made by using the FLARE approximation. 

A comparison with experiment of a calculation made by Stewartson and Williams is presented in Figure 4.4. The agreement with experiment 
is poor presumably because of numerical inaccuracy but also and more certainly because the limit condition R'"« -. 0 is not satisfied bv the 
present experiments.    This point is discussed in what follows. 

■ 
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Fig. 4.5- The triple-deck scaling laws for laminar interaction 
at a wedge corner 

Fig 4.6- Application of tfie triple-deck theory to a laminar corner 

flow by Rizzetta, Burggraf and Jenson (1978). 
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An asymptotic theory for extended laminar separation has been developed by Burggraf (1975).    The flow model consists basically of three 
different regions each having their own appropriate length scale {see in Fig. 4.7): 

(i) the separation zone, the mathematical structure of which is the one given by Stewartson and Willams {see Section 4.2.1.1 above); 

(ii) the shear-layer leaving the separation region; the structure of this shear-layer has been described by Neiland (1971) and more fully by 
Stewartson and Williams (1973) {see also Stewartson, 1974); 

The matching of these three domains permits the calculation of interactions induced by supersonic ramps set at an angle which is greater than 
the limit value a*. 

Calculations made by Burggraf are presented in Figure 4. 8. The first one is relative to separation induced by a forward facing step and the 
second, to ramp induced separation at M^ = 2.55.    In the second case, agreement with experiment is only moderate. 

Very instructive comparisons between the triple-deck theory and the (ordinary) interacting boundary-layer model {see Section 3 above) have 
been made by Burggraf et al (1979). In this work, the triple-deck calculations use the method of Rizzetta, Burggraf and Jenson (1978) whereas 
interacting boundary-layer calculations employ Werie and Vatsa's method (1974) {see Section 3 above). As we know, the "classical" interacting 
model considers the boundary-layer as a unique layer for which the complete boundary-layer equations are applied. Thus this last model includes 
the asymptotic triple-deck theory. i 

Experimenl { Chapman et aL, 1958 )    !       y- 

M. . 2.55 inviscid wedge        oO° 

extrapolated 
reattachment point 

 1- 
plateau pfesiurc   ^      a 

separation.^^^ ~~^s^oT^^oooOoo \_experiment 
point 

equivalent wedge surface, ttp - R 

Fig. 4.7 — Flow geometry for interaction with large separation 

at a wedge corner in laminar flow. 

-10 0 10       X 0 

a _ Separation induced by a forward facing step 

50 Xfmro)     100 

b - Ramp induced separation 

Fig. 4.8 — Application of asymptotic expansion method 

to extended laminar separation by Burggraf (1975). 

In the above mentioned comparisons, the two methods have been applied to the supersonic compression ramp problem. Some of these 
comparisons are presented in Figure 4.9 which shows that the asymptotic theory indicates the correct qualitative trend but is quantitatively accurate 
only at very high Reynolds numbers (R>10'). A cause of inaccuracy at moderate Reynolds numbers (R^IO^-IO') may be the ignoring of 
streamlines divergence in the main-deck (Werle and Vatsa, 1974). The weak point of the asymptotic theory is the fact that it is accurate for very 
high Reynolds numbers (R~10') for which a laminar regime is very improbable in most usual circumstances where the wall condition is adiabatic 
(or nearly adiabatic).    It is only for extremely cooled walls that transition can be delayed to very high Reynolds numbers. 

The triple-deck equations have also been solved by Napolitano, Werle and Davis (1979) by using an Alternating Direction Implicit numerical 
technique. This technique is similar to the approach used by Werie and Vatsa to solve the supersonic interacting boundary-layer equations {see 
Section 3.3.1 above). The triple-deck theory is here applied to a flow passing a parabolic hump on a flat plate. The subsonic case is also 
considered, in which case the pressure-displacement condition is given by a Cauchy integral. 

Other improvements of the numerical technique have been proposed by Napolitano and Vacca (1980). 

Comparisons of the asymptotic triple-deck theory to numerical solutions of the full Navier-Stokes equations have been made by Hussaini, 
Baldwin and McCormack (1980). In reality, these calculations were performed essentially to study the accuracy of the numerical schemes employed 
to solve the Navier-Stokes equations (influence of the grid size); the asymptotic theory was, in fact, used as a test bed. The main conclusion 
drawn from the comparisons was that the asymptotic scahng laws can be of value for suggesting mesh resolution fine enough to correctly capture 
the interaction phenomenon. 

-10 0 X     10 -10 OX       10 

a -  Wall  pressure distribution b - Wait shear stress distribution 

Ramp  induced separation ( a = 2.5 ) 

Fig. 4.9— Comparison between asymptotic model and interacting 

boundary-layer model (Burggraf et al., 1979). 

Applications of the Second-Order Theory. - In the preceding applications of the asymptotic theory, only the leading terms in the expansions 
were retained. Extension of the method to include second-order terms was made by Brown and Williams (1975). In this case, the solution 
depends on the thermal conditions at the wall (it is recalled that the inner-layer is incompressible to first-order). Brown and Williams solved the 
Free Interaction problem for the adiabatic case, but they did not present results for the flowfield inside the separation bubble. A second-order 
asymptotic solution with separated region was obtained by Ragad and Nayfeh (1978, 1980) for the supersonic flow over a compression corner. Now, 
as has already been pointed out, the density is no longer constant in the inner-layer and the solution in the main-deck contains four undetermined 
functions Ai{x), A2ix), Piix) and PjCx). Two equations relating these functions are provided by the matching with the upper-deck. Hence, 
At {x) and Ajix) can be expressed in terms of p-^ix) and p^ix). The latter functions are determined from matching with the lower-deck. The 
basic principle of the method of solution is as follows: 

(i) solving the first-order problem («i, ?;, Pi): I    , 

(ii) solving the second-order density (pj); 

(iii) solving the total solution (u, v, p). 



177 

T A-«7"T^'"'^' method employed by Ragad and Nayfeh is similar to the one used by Rizzetta et ai, i.e., the problem is formulated for 
, A f J,.\?'^!^ t difference ,s m the use of a more accurate discretization scheme [the truncation error is O(Ax^) for the x-derivatives 

instead of 0(Ax)] Calculations are made for both adiabatic and non-adiabatic wall conditions. The results obtained are rather disappointing- 
when conipared with Nav.er-Stokes calculations, the second-order expansion is found to be less accurate than the first-order expansion According 
nnHktnrhlHTh '\^'^T ^^^''"^^^ '" '^e matched asymptotic expansion version of the triple-deck theory lies in the expansion of the basic (i.e. 
netlidh e fn """"'^"/-'^^^^ "7 '" P°«'«^^ °^ *« '^''"^^^^^ co-ordinate. The stream-tube divergence in the main-deck is likewise probably no 
negligible for moderate Reynolds numbers since 8 is then not very small. 

4.2.1.2. - The Free Interaction Theory in Transonic Flows. The scaling laws defined in Section 4.2.1.1 fail when the upstream Mach number 
M„ IS close to unity and the theory then needs reconsideration. The origin of this failure lies in the use of the linear supersonic theory to relate 
the pressure and the flow deflection just outside the boundary-layer {see equation 4.7 in Section 4.2.1.1 above). As is well known the linear 
theory is not valid when M^ is close to one. In fact, according to the transonic small-disturbance theory, the changes in pressure are now of the 
same order as the two-thirds power of the flow deflection angle. Taking this condition into consideration, Messiter, Feo and Melnik (1971) derived 
the scaling laws appropriate for transonic flows {see also Stewartson, 1974) 

(i) streamwise scale: Ax~0{e'^'^)L: 

(ii) vertical scales: 

— upper-deck: Ay^ ~ O (e*") L; I 

— main-deck: Ay„ ~ 0 (e*) L; 

— lower-deck: A>',~0(E^'"')L. j 

In the present situation, the vertical and the streamwise length scales in the upper-deck are no longer of the same order: Aj„/Ax~0 (E"*")- 
one sees that Ay, > Ax, which is consistent with propagation of disturbances near sonic conditions. 

Apart from the change in scaUng laws, the flow structure at transonic speeds is basically the same as in supersonic flows: the main-deck still 
behaves as an inviscid rotational layer which is in fact the inviscid continuation of the Blasius' boundary-layer. Its role is simply to transmit the 
external pressure field unchanged to the lower-deck. The lower-deck is still represented, to first-order, by the incompressible boundary-layer 
equation. The major change is in the upper-deck where the transonic small-perturbation equation is now used instead of the linear supersonic 
theory. As we know, to first-order, the flow in the upper-deck is irrotational. It is thus possible to introduce a velocity potential m which has to 
satisfy the equation: 

ox 

where the transonic interaction parameter K„ is of the form: 

K„~(Mi-l)E-»'^ I' 

Brilliant and Adamson (1974) have also derived scaling laws for the transonic Free Interaction. The problem considered by these authors 
concerns the renection of a weak oblique shock-wave in a transonic flow where the Mach number in the upper-deck always remains greater than 
one (the case where the shock is normal far from the boundary-layer has been treated by Brilliant, 1971). The shock strength envisaged by 
Brilliant and Adamson was too weak to induce separation. The problem of a transonic interaction with separation has been solved by Bodonyi 
and Kluwick (1977). They also restricted themselves to the simpler situation where the outer flow remains entirely supersonic (in this case 
equation 4.12 has simple-wave solutions). The lower-deck equations were solved by using a finite difference method with centered differences iii 
the .F-direction and backward differences in the x-direction. Instabilities in the reversed How region were prevented with the help of the FLARE 
approximation. 

4.2.2.  - The Tu and Weinbaum Non Asymptotic Triple-Deck Model 

I 

In order to avoid the limitations of the asymptotic expansion approach, a non asymptotic triple-deck model for laminar supersonic boundary- 
layer interaction was proposed by Tu and Weinbaum (1976). In this model, the lower-deck is described by the complete boundary-layer equations 
including the energy equation (a Prandtl number of unity is assumed).    The inner solution has to satisfy the following boundary conditions: 

(i) at the wall u = v = 0 and prescribed temperature (or absence of heat transfer); 

(ii) at the outer edge 5 = E8: continuous matching both in value and slope with the profile description in the main deck. 

Here also, the main-deck is an inviscid rotational fluid with dp/dy = 0, but the stream-tubes divergence is taken into account. An integrated 
pressure/stream-tube area relation is derived which couples the viscous displacement effect at the edge of the inner layer to the interaction pressure 
imposed by the outgoing wave system of the external flow at the boundary-layer outer edge.    This relation, which is also considered in Section 3.2.2, 

tan6.-tanej=-l^f^d^, | (4,3. 
yp dxJi    M^ I v-*-'j; 

I, 

fllnction VTM)^1 T "°" ^"^^' ^' ^ ^"'' ^ respectively.    The pressure in the external flow is related to 9. through the use of the Prandtl-Meyer 

1 
e.W-e„=v(Mj-v(M.). 

expre'L^d^lThrrelmTunctio"'," '^ ' ""•" ^''' '''''''' "" "° ''"^"^^"''" '^ -^''-   ^'^"--4" can be more conveniently 

tane.-tane,= -Aj^(l)-pM!(^iiO^[^(^,,,i.,^ | 

(here R is the perfect gas law constant). 
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The fluid in the main-deck being assumed inviscid, the Mach number and temperature distributions at any streamwise station x can be 
calculated from known initial profiles and initial pressure Po by considering an isentropic evolution from p^ to p along each streamline (it is recalled 
that the pressure is assumed to be transversally constant). This kind of calculation is in fact an "Inviscid Shear-Layer Analysis" of the type 
described in Section 1.4. Consequently, for a specified value of Po and initial Mach number profile, the integral on the Right Hand Side of 
equation 4.14 is only a function of the local interaction pressure p and of the definitions S and 5 of the sublayer and boundary-layer edges. 

The viscous sublayer is computed by a Polhausen type method. The distributions are approximated by a fourth-order polynomial for the 
reduced velocity u/uj and a third-order polynomial for the reduced stagnation enthalpy S/Sg. The coefficients of these polynomials are determined 
in a classical way by boundary and compatibility conditions. The remaining unknown thickness 5 is computed by integration of the momentum 
integral equation. 

The interacting boundary-layer can be computed by solving the equations appropriate to each layer along with boundary conditions to be 
satisfied at the wall as well as at their common boundaries. The pressure is obtained through the interaction equation 4.13 connecting the flow at 
the outer edge of the sublayer and the flow turning angle in the outer inviscid stream. Calculation of shock-wave/boundary-layer interaction in 
which a downstream condition must be satisfied is made by a shooting technique (see Section 3.3.1 above). 

Theoretically, a difficult problem with this kind of method could be the determination of the sublayer thickness So at the origin of the 
interaction domain. However, according to the authors' numerical experiments, the choice of hjh„ does not greatly affect the results provided 
that SQ/SQ is not too small and the external Mach number not too high. 

The Tu and Weinbaum theory is compared to experiment in Figure 4.10. The first case corresponds to a shock reflection at a free stream 
Mach number M„ equal to 2 (Hakkinen et al., 1959). The second case is a ramp flow with separation at Af„ = 6.06. Agreement with experiment 
is certainly better than in calculation using asymptotic theory. 

The method proposed by Tu and Weinbaum is of course free of certain limitations inherent in the existing asymptotic expansion theories (for 
example the neglecting of the stream-tube divergence in the main-deck). Nevertheless, from a fundamental point of view (i. e., excluding computation 
time considerations), the expediency of the present two-layer model is questionable since this model is in fact contained (as well as the asymptotic 
expansion versions of the triple-deck model) in the "classical" interaction theories which employ finite difference methods for computmg the viscous 
layer {see Section 2. 3 above). In these last theories, the complete Prandtl equations are applied to the entire boundary-layer so that the exactness 
of the mathematical model is greater than in the present versions of multi-deck approaches. 
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Fig. 4.10 - The Tu and Weinbaum non asymptotic triple-deck model 

(Tu and Weinbaum, 1976). 

4.3. 

4.3.1. 

Multi-Deck Theories in Turbulent Flow 

Asymptotic Expansion Methods 

4.3.1.1. - The Limiting Processes in Turbulent Flow. Formal asymptotic methods have also been applied to the shock-wave/boundary-layer 
interaction problem in turbulent flows. Most of the existing theories consider interaction with normal shock-waves. Recently, Melnik (1980) 
presented a review of these theories and the conclusions developed in the present Section are largely inspired by his paper (for a general survey of 
the problem, see also Adamson and Messiter, 1980). 

The limiting processes pertaining to the interaction of shock-wave with a turbulent boundary-layer have been clearly establised by Melnik and 
Grossman (1974).    The limit conditions must be: 

(i) the shock is weak and nearly normal to the flat plate coincident with the axis >■=0.    This means an upstream Mach number M„ =: 1; 

(ii) the Reynolds number is high, so that the boundary-layer velocity profile is "full".    This profile can be represented by a conventional form 
of the law-of-the wake/law-of-the wall {see Section 1.1 of Part I): 

"oW Uo{y) = l-^■ 
).4l«eL      V IVHi 

where n and w are Coles' wake parameter and wake function.    A high Reynolds number implies small skin-friction or, small reduced friction 
velocity uju^ which is the same thing.    Thus the large Reynolds number limit is expressed in terms of the small parameter: 

U^ 
(weak compressibiHty effects). 

Consequently, the solutions to be found are characterized by the double limit: 

M„-i-l,       E->0. 

The limiting process is in fact more precisely defined by the parameter x, such that: 

(M^-O 
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(Mj,-1) being proportional to the shock strength (in the limit M„ -► 1), x, is a measure of the ratio between the velocity jump across the 
shock and the velocity defect in the boundary-layer.    Various limit cases can be distinguished according to the value of x,: 

(a) M^ -► 1 E -► 0, in such a way that x, = 0(\); 

(b) M„ -► 1, E -> 0, in such a way that Xt -* 0; j 

(c) Af ^ -► 1, e -► 0, in such a way that x, -► oo. 

A fourth situation can be considered in which M„ 5^ 1 (supersonic case) and £ -»0; thus: 

(d) M^/I, E-► 0, in such a way that x, -» 00. 

The four above limit processes can be interpreted as corresponding to the following flow situations sketched in Figure 4.11; 
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Fig. 4.11 — Turbulent shock-wave/boundary-layer interaction — 
Flowfield structure variation with shocit strength (Melnil<, 1980). 

(a) weak shock-wave: here the velocity change across the boundary-layer is of the same order as the velocity change across the shock- 
wave. Consequently, as the velocity profile is "full", the sonic line is in the main part of the boundary-layer. The shock-wave penetrates the 
boundary-layer and terminates somewhere in the supersonic zone as shown in Figure 4.11b; 

(b) very weak shock-wave: the Mach number M„ is close to one and the defect E is "large" [compared to (M„-1)]; thus the sonic line is near 
the outer edge of the boundary-layer. The shock-wave which is weakened by compression waves generated by the boundary-layer thickening does 
not penetrate into the boundary-layer; 

-1); in consequence, the sonic line is close to the wall.    The (c) moderate shock strength: now the velocity defect is small compared to (M, 
shock wave is nearly straight and penetrates deep into the boundary-layer; 

(d) strong shock-wave: the sonic line is very close to the wall so that the shock penetrates practically the entire boundary-layer and seems to 
emanate from the wall itself. Such a situation corresponds to supersonic or hypersonic oblique shock-waves. For these cases, a very good 
description of the flowfield is provided by supersonic inviscid rotational calculations {see Section 1.4 on Inviscid Shear-Layer analyses). 

The different theories used to treat cases a to c are reviewed in the following Sections. Case a [weak shock limit, x, = 0{\)] has been analyzed 
by Melnik and Grossman (1974, 1975, 1977); case b (very weak shock-wave, x,->-0) by Adamson and Feo (1975); and case c (moderate shock 
strength, Xi-> =» and M„ -> 1) by Adamson and Messiter (1977, 1980; see also Messiter and Adamson, 1978) and Adamson, Liou and Messiter 
(1980). 

4.3.1.2. - Melnik and Grossman's Theory for Normal Shock-Wave   Let's recall that this theory applies to the case: 

(Mi-1)/E = x,^0(l). 

On the basis of formal asymptotic analysis, it can be demonstrated that this limit corresponds to the asymptotic flow structure shown in 
Figure 4.12. Upstream of the interaction domain, the boundary-layer develops a classical two-layer structure of the law-of-the-wall/law-of-the 
wake form. In this region, the thickness SQ of the incoming boundary-layer scales with the friction velocity. This means that if L is a characteristic 
length scale of the upstream region (the distance from the leading edge of an airfoil for instance): 

5„ 0(E). 

Ofe-"') 

impinging normal 
shock wave 

inviscid region 

0(e) outer (defect) 
layer 

blending layer 

0(e) 
outer layer 

0(e'^) 

0(ec) ill 1 ayer sublayer 

o(i: OCE^O 0(1) 

weak interaction strong interaction weak interaction 

Fig. 4.12 — The IVIelnik and Grossman theory for weak shock- 

wave Asymptotic flowfield structure (Melnik and Grossman, 

1974). 



180 

The sonic line being well within the boundary-layer, it is assumed that the vertical extent of the interaction is 0(8o). It results from 
consideration of the slope tana = (M^-l)""^ of the characteristics in the supersonic incoming flow that the streamwise length scale of the (strong) 
interaction domain is given by [since Xt = 0{l)]: 

Ax = £"^8„ = 0(e"^)L, (4.15) 

As a consequence of this scaling, it can be established that in the interaction region, the boundary-layer develops a three-layer structure 

consisting of: 

{a) an outer inviscid rotational flow, extending over most of the boundary-layer, the length scale of which is: Ay = 0 (e) L.    This layer is called 
the "main-deck" in triple-deck terminology; 

(fc) a conventional wall-layer which has to be introduced in order to satisfy the no-slip condition at the wall.    This layer is a continuation of 
the upstream wall-layer, the length scale of which is classically given by: 

Ay = I'D. 

P0w»,( 
= O (ee) L. 

Following Mellor (1972), e is defined by: 

Po^V^L 

E^R 
= 0 (£''«■-'"), 

E = 0(lnR)-', 

from the skin friction law in the approaching boundary-layer. 

By virtue of this scahng, it can be demonstrated that inertia and pressure forces play a negligible role in the wail layer (except near separation 
conditions) even though the streamwise pressure gradient might be large in the interaction region. A consequence of this finding is that the 
displacement effect of the wall-layer is negligibly small, so that the wall-layer cannot significantly influence the solution in the outer inviscid region (in 
contrast to Inger's theory, see below). 

(c) a blending-layer between the outer and the wall layers. This intermediate layer must be introduced because of the mismatch in both the 
Reynolds stress and streamwise velocity between the outer and the wall layer solutions (The mismatch results from the "freezing" of the Reynolds 
stress in the outer region, whereas the Reynolds stress in the wall layer adjusts itself instantaneously to change in skin friction. Thus the two 
regions cannot overlap.) It can be demonstrated that the vertical velocity in the blending layer is two orders of magnitude less than it is in the 
outer layer so that the blending layer likewise does not influence the outer solution.    The vertical scale of the blending-layer is: 

A;' = E""L. 

We will now briefly present the methods of solution for each of the three layers. 

In the outer inviscid layer (main-deck), the solution is represented by the expansions: 

U="'^^=\+EU,(x,y)+..., 
fJoe 

_v{x,y) 

where the stretched variables x and y are such that: 

:E"^DI(X, y)+ . 

y = e. (4.16) 

The undisturbed (or initial) boundary-layer profile is represented by: 

Uo(y)=l+EUo(y), 

where: 

UoO) = 

1 

0.41 
In 

5oy'*'''"'Uoy. 
if   0<j'S8o 

(4.17) 

0        if   >'>5o 

The perturbation field being irrotational (this can be demonstrated), a disturbance velocity  potential (p, is introduced in such a way that: 

ox 

Substitution of 4.18 and 4.19 in the Navier-Stokes equations leads to the following equation for (p,: 

{..,»..«i,[..<,>t]}^-^=.. 

(4.18) 

(4.19) 

(4.20) 
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The above equation is in fact similar to tlie one used by Inger in the outer potential flow region (see Section 4,3.2  1 below) if one repla 
u/Uo, in equation 4.26 by EUi = Uo(j) + d<(>JBx and makes the appropriate scaling for x and y (i.e., relations 4.16). 

Equation 4,20 is supplemented by boundary conditions imposing that: 

3(Pi , _ vanish far upstream (x -► oo); 
ox 

the solution match the prescribed normal shock conditions for y ^ oo, 1. e.: 

dx 

0   for x<0    and   >'->oo, 

2X, 

(y+l)ML 
for x>0    and   y -^ oo. 

(the origin x = 0 is located in the plane of the undisturbed normal shock); 

- the vertical component DI = B<Pi/dy vanish at the wall. This latter condition results from the conclusion that the wall layer and the blending 
layer have no displacement effect (see above). 

It is to be noticed that Uo(y) in equation 4.17 tends to infinity when ^-^O (the logarithmic term in equation 4.17 is obviously not valid very 
near the wall)_and a special treatment has to be applied to equation 4.20 in the immediate vicinity of the surface. In fact, the (unphysical) 
singularity at >' = 0 of the representation adopted for the unperturbated velocity profile removes the inadequate behavior at the wall of an entirely 
inviscid solution (see Section 4.1 above).    The physical significance of such an "error compensating" mechanism is certainly questionable. 

Thereafter, the pressure disturbance results from the standard small disturbance relationship: 

Pi = -d(f)jex. 

Equation 4.20, along with the appropriate boundary conditions, is solved by use of the Murman-Cole (1971) non-conservative finite difference 
method. 

The treatment of the blending and wall-layers involves rather compUcated algebra so we will restrict ourselves to a presentation of the essential 
results. 

In the blending-layer, the independent variables are stretched according to: 

x = e-^'^xjL;       y = E-^'^y/L. 

It can be demonstrated that the inertia and Reynolds stress terms in the streamwise momentum equation are of the same order and the 
subsequent analysis leads to the following conclusions: 

- to second-order, the pressure is constant across the blending layer; 

- at transonic speeds, the blending layer is a parallel stream (no transverse velocity component) to third-order. 

Thus this layer does not influence the outer deck. 

The wall-layer is treated by introducing the usual scaling: 

}"=y   = ——,       u   =        where   u,(x)^   ' * 
m,(x) u,(x) '      VPH.W' 

Pw M, Mw W and u, (x) are local wall properties. 
Ii 

The equations describing the wall-layer are: i 

t       H Su*     .     „, , 
- + -^^ = 1 + 0(E'). [, (4.21) 

from the momentum equation (equation 4.21 expresses the well known property that the total stress, laminar plus turbulent, is constant across the 
wall layer), and: 

'   which is a mixing length equation for the Reynolds stress incorporating a damping factor D(y*).    The two above equations 4.21 and 4.22 are 
supplemented by expressions giving density and molecular viscosity. 

It is established that: j 

— the pressure is constant across the wall layer to all orders: 

- the D component of velocity is exponentially small: the wall-layer has no influence on the outer solution, as has already been stated. 

In order to match the wall-layer to the blending-layer, only the fully turbulent solution of the wall-layer is required.    This solution is obtained 
by dropping the viscous term in equation 4.21 and setting D = 1 in equation 4.22.    It has the familiar form: 

u* = -^lny*+B(x;£), \ 
0.41    ^ ^ '   '' 
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where B{x; e) = B„ = 5m incompressible Hows. It is seen that the velocity profile in the wall-layer depends solely on wall properties: p^(x), n„(x), 
T„(x). These properties result from the wall pressure p^(x) impressed by the outer layer [p„(x), (x„(x)l and from the matching of the three layers 
K(x)]. 

To sum up briefly: in the analysis of Melnik and Grossman just presented, the pressure field is defined by a purely inviscid solution which is 
not influenced by any displacement effects due to the existence of a viscous sublayer. Acting viscous forces are confined within a very thin wall 
layer which does not interact with the outer flow.    This finding is in contradiction with Lighthill's original model. 

Calculations performed by Melnik and Grossman are shown in Figure 4.13. They are relative to a transonic interaction inside a circular pipe 
which was studied experimentally by Gadd(1961). The computed streamwise pressure distributions at increasing distance from the wall are 
represented in Figure 4.13a. They clearly exhibit the post-shock expansion observed in most transonic flows at a certain distance from the wall 
(see Section 2.6. 1 of Part I). The general flow structure is depicted in Figure 4.13fc by the tracing of the shock-wave, the sonic line and the 
compression waves forming upstream of the shock as a consequence of the interaction mechanism. This tracing is made in the plane of the 
stretched variables x and y so that the streamwise scale is dilated by the factor {Mi-iy"\ A comparison with measured wall pressure 
distribution is presented in Figure 4.13c. 

c _ Comparison with experiment 

-10       0       10  «; 

Fig. 4.13 — Application of the melnil< and Grossman theory 

for turbulent interaction (Melnik and Grossman, 1974). 

4.3.1.3.   -  Adamson and Messiter's Theory for Normal Shock-Wave 

As already mentioned {see Section 4.3.1.1 above), the case considered by Adamson and Messiter corresponds to moderate shock strength 
i. e., M -► 1 and uju, -»0 in such a way that x, -> QO. This limiting process means that in the incoming boundary-layer, the sonic line is very close 
to the wall (because the velocity profile is very "filled").    As a consequence, the shock wave penetrates deep into the boundary-layer. 

The flow structure which results from this situation is represented schematically in Figure 4.14. In a classic manner, the flow now comprises 
an outer inviscid region and a boundary-layer region, the latter being divided into an inviscid rotational part and a viscous near-wall region. 

outer inviscid  Flow region 

inner inviscid flow region 

near wall regie 

Fig. 4.14 — The Adamson-Messiter-Liou theory for moderate strength 

shock-wave structure of the inviscid part of the flowfield (Adamson 

etal., 1980). 

The boundary-layer inviscid part must in turn be divided into: 

(i) an outer domain which is scaled by the thickness SQ of the undisturbed boundary-layer and a corresponding Ax in the x-direction. In this 
region one sees a normal shock entering the velocity defect part of the boundary-layer; 

(ii) an inner region which is scaled by the distance 5, from the wall of the sonic line in the undisturbed boundary-layer. The streamwise 
extent of this region is 0(A*x) with A*x<tAx. Here, the thickening of the subsonic layer, due to upstream influence, produces compression 
waves in the supersonic part of the flow. These converging waves coalesce to form the shock-wave which becomes progressively normal. Thus, 
the length scale Ax* is a measure of the upstream influence of the interaction; Ax* itself depends on the thickness 8, of the subsonic part of the 
incoming boundary-layer. Because in this case x, -* <», 'he sonic line is assumed to be in the logarithmic portion of the velocity profile and, 
consequently, 5, is exponentially small compared to 5. It can be demonstrated that the upstream influence 0(A*) is also exponentially small 
compared to SQ. 

The near-wall region is excessively thin throughout the interaction domain if separation does not occur. Therefore the conclusions of the 
analysis given in Section 4. 3.1.2 above remain valid. There is no transverse pressure gradient across the viscous region and (to the order 
considered) there is no displacement effect impressed on the outer inviscid regions, i. e., v (x, 0) = D» (X,0) = 0 (to the order considered). The pressure 
field is entirely defined by the behavior of the inviscid flow, consideration of the wall region being necessary only to determine surface properties 
(the skin friction coefficient, for instance). 
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First, let us consider the solution for the outer inviscid flow which as we know includes most of the boundary-layer. To the scales 8 and Ax 
of this region, the inner-layer is vanishingly small, and one sees a normal shock entering the boundary-layer which is represented by the velocity 
defect layer. To order e, the incoming velocity is uniform and the shock is therefore planar. In fact, in the boundary-layer domain of the outer 
region, there are variations from a uniform incoming velocity so that the shock shape must be corrected in a manner which will be seen later. 

In the present Section, the authors' original conventions will be adopted. The velocity is here scaled to the speed of sound in the external 
upstream flow and the small parameter E is defined by (see in Fig. 4.15): 

where (7„, is the (reduced) outer flow velocity upstream of the shock-wave.    The second small parameter is the dimensionless friction velocity u 
such that: U,<^E. ' 

The stretched variables y and x are defined by: 

M = Mp>l 

y=yl^o'      x=xlAx. 

U~(l + e)- 

M~M„«1 -y.i 

U^1 + e + u.rUo, (y)         / U„    1     +UTu','''(y;e)+UT*,«(x,y;E) 
1 +e 

u.[.«>=e«l                   / 
_5hotk-WSW   :  XS=0(UT/C) 

1 '   1 
-, 1, .,t. 

_ inner region ; y = 0 ( e"'"^'"') 

x = (l-M^)-5-X_ 
5o 

Fig. 4.15 - The Adamson-Messiter-Liou theory - Asymptotic 
representation of "outer" flow (Adamson etal., 1980). 

It is already known (see Section 4.3.1.1 above) that 8o/L = 0 (u,).    Furthermore, asymptotic expansion arguments yield: 

Ax = {7+l)"^e"'u,L, 

which is similar to the scaling given by equation 4.15 (y-l-1)"^ being 0(1). 

The upstream velocity field is represented by: 

f =l+E + ","0l(>') 
K=0 (4.23) 

One seeks a downstream solution of the form: 

(4.24) 

plus similar expressions for p, p and T.    Expression 4.24 satisfies shock jump relations to O (e^) in the external nowfield. 

?''"'; "' '' ^'r""^? *'" «he shock-wave penetrates down to the wall and propagates through an undisturbed upstream flow defined by 
ation 4.23.    The solution to be found is entirely in the subsonic domain and does not comprise any transonic region (since only the flow 

downsueam of the normal shock has to be determined).    It can be shown that a potential <p. exists for the perturba'on lelocity component 
«i (X, y) and v^ (x, y), the governing equation for cp; being: 

equation ' 

a>i     ^>i^o 
dP        37 

This means that the Laplace equation holds true downstream of the shock.    The boundary conditions of the proble 

(■) "T^(^' 0) = 0, 0<x<oo (no displacement effect of the visous sublayer); 

(ii) lim-^ 
5<pi 

= 0, 0<x<oo; 

(iii) -~(0, >■) = -2Uoi CF), 0<j'< 00 (shock jump relation); 

(iv) limj, „-ii(x, ;;) = 0, 0<_i'<oo. 
dx 

A sojution can be found by inspection: it con_sists of a source distribution along £=0 (i.e., along the shock-wave) which gives the proper value 
of 5(p,/ax and IS symmetric m;-so that !;,=0 at >' = 0.    The solution for the pressure distribution on the wall is given by: 

I   ^      1 4YU,X  f* U„. (n) 

It     Jo  x^ + r|^ I 

the integral being along the shock-wave. 

the inner sottion" *^' *' '°'""°° ^°' '*"* '"''''"''* ''^''*''"" " '"^'^""''"''^ singularity as x, y^ 0.    This singularity is removed by introduction of 
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As we know, in the inner region the stretched variables are: 

x*=x/A*x,      y*=ylK 

The flow velocity leaving the shock must have variations from sonic value of the same order.    Hence, one can write the following asymptotic 
expansions: 

[;=i+u,uf(x*, >'*)+... 

V=ViVt(x*,y*)+. . . 

(and similar expressions for p, p, T). 

The scales of the inner layer are found to be: 

A* = «y^5,, Vl=«, 

It is seen that the inner region problem is similar to the problem treated by Melnik and Grossman for what they called the main-deck {see 
Section 4.3.1.2 above), but now the vertical scale is the thickness 5, of the subsonic part of the boundary-layer instead of the thickness 5o of the 
incoming boundary-layer. Such a similarity is a direct consequence of the fact that 8o and 8, are of the same order in Melnik and Grossman's 
analysis. 

The inner problem (along with proper boundary conditions which include i)J' = 0 at the wall and matching conditions with the outer solution) 
leads to non-linear equations. Hence, a numerical solution would be called for in general (as was done by Melnik and Grossman). However 
analytical results can be derived for the form of p„ (and T J at the beginning of the interaction. 

As we have seen, the outer solution is determined by assuming that the shock is planar and contained in the plane x = 0. The exact shock 
shape is found afterwards from the equation: 

dy      [U]' 

where x,(y) is the shock position at any value of y, and [U] and [F] are the velocity discontinuities across the shock. 

To sum up the procedure for the flow considered as inviscid, one can say that the inner solution describes perturbations about the undisturbed 
boundary-layer flow, while the outer solution describes perturbations about a different boundary-layer flow, downstream of the shock-wave. 

The treatment of the viscous part of the flow is like Melnik and Grossman's analysis. Two layers are considered in which the Reynolds stress 
is modeled by using a mixing length hypothesis including Van Driest's damping factor.    These two layers are: 

(i) a Reynolds stress sublayer (called the blending-layer by Melnik and Grossman, see above), which is a parallel stream (no vertical component 
to the order considered); 

(ii) a wall layer where the only terms retained are the Reynolds and viscous shear stress terms. 

An expression for T„(X) is obtained which shows the correct behavior with a minimum value for T„ in the course of the interaction. Thereafter 
it is possible to calculate the corresponding values of R and M,„ for which (T„)„|„=0, yielding the condition for Incipient Separation. 

As pointed out by Adamson and Messiter (1977), the basic difference in structure of the two kinds of boundary-layers explains the necessity of 
a three-layer structure for an interaction with a turbulent boundary-layer (i. e., an outer rotational inviscid layer plus two viscous layers: the wall 
and the blending-layers), as opposed to the two layers required for laminar flows. In laminar regime, a boundary-layer has a one layer structure 
and so one needs consider only a viscous sublayer. On the other hand, a turbulent boundary-layer has a two-layer structure and so two layers 
must be considered in the interaction region. 

Figure 4.16a shows a computed streamwise pressure distribution outside the boundary-layer for a transonic interaction occurring at a curved 
wall. Agreement with experiment is relatively good. Mach number at incipient separation vs. Reynolds number for flow over a flat plate is 
shown in Fig. 4.16b. The rise in shock strength along with Reynolds number is in qualitative agreement with experiment, although the computed 
limit gives a Mach number too low {see Section 1.1.2 of Part I). 

4.3.1.4 Adamson and Feo's Theory for Oblique Shock-Wave 

The problem considered by Adamson and Feo is the interaction between a weak oblique shock-wave and an unseparated turbulent boundary- 
layer. A solution is looked for in the double limit as the Reynolds number tends to infinity and the Mach number tends to unity. With the same 
notations as in the previous Section, the two small parameters are defined as: 
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The limiting process envisaged is E -► 0, «, -► 0 in such a way that e/u, -► 0: this case corresponds to a situation where the sonic line is near the 
outer edge of the boundary-layer. 

Matched asymptotic expansion arguments show that the perturbated flow develops the classical multi-deck structure consisting of: 

(i) an outer transonic non viscous layer, the vertical length scale of which is: 

A = 0(«fE-')L; !' 

(ii) the outermost layer of the boundary-layer which coincides with the velocity defect region. To the order considered, the flow in this region 
is inviscid.    Its vertical length scale is: 

Ay = 0{u,)L       or       A>' = 0(8o)    since    «, = 0(8„/L); ] 

(iii) a Reynolds stress layer (or blending-layer) for which: 

I 

(iv) a wall-layer for which {see Section 4.3.1.2 above): 

A>' = 0[«,-'exp(-l/u,)]L. ! 

The longitudinal scale A.x is the same for the four layers: 

Ax = 0(uJe-"2)L. I' 

Evidently, if u, = 0 (E), these length scales become identical to the ones introduced in Section 4.3.1.2. 

The subsequent analysis of the different zones shows that, to the order considered and for the hmiting process envisaged, the static pressure 
remains transversally constant across the boundary-layer. Furthermore, it is demonstrated that the two inner layers play no role in the interaction 
mechanism. The progressive pressure rise resulting from the interaction is entirely determined by a coupling between the outer inviscid flow and 
the velocity defect region of the boundary-layer. This interaction is controlled by the following "coupling relation" (written with dimensionless 
and stretched variables): 

'-hlV^if"      j ! 
     j "oi'^y- |. (4-25) 

In this equation, D, is the vertical component of the disturbance velocity at the boundary-layer edge. Pi is the pressure perturbation and u^i 
represents the velocity defect of the unperturbated incoming velocity profile, i. e.: 

Uoi=u-'(U-VoJ. J 

It is to be noticed that equation 4.25 is in fact a linearized form of the basic coupling equation discussed in Section 3.2.1. 

The solution is thus determined by computing an external inviscid flow which satisfies the following matching (or boundary) conditions, in the 
limiting process y,„„^, - co, y„„„, - 0: I ' 

(i) equality of pressure in the two domains; 

(") ''iouier = i'i inn., given by equation 4.25. ' 

This method of solution is very similar to the coupling methods presented in Section 3. The wall pressure distribution is in fact calculated by 
using only the two outer regions and the solution is in reality a turbulence Free Interaction solution in the sense of the laminar Free Interaction 
theory (see Section 4.2.1.1 above). 

Adamson and Feo have made numerical applications for situations where the outer flow remains supersonic at all points (in this case the 
pressure in the outer flow is determined by the Prandtl-Meyer law). The present model yields a solution in which all of the shock induced flow 
variation occurs upstream of the shock impingement point. Physically, speaking this is due to the absence (to the order considered) of displacement 
effects arising from the inner regions. As shown by equation 4.25, the shape of the velocity distribution (i.e., the velocity defect UoJ which 
contributes to the coupling mechanism with the outer inviscid flow is assumed unaltered by the interaction process. Consequently, the analysis 
implies that there is not the possiblity of a large increase of the boundary-layer thickness through a process in which the velocity distribution is 
distorted as is the case in a compression. As opposed to the laminar case, the fluid does not turn back towards the wall in the post shock region 
due to a mechanism in which the pressure continues to rise while the thickness of the boundary-layer decreases as a consequence of the "refilling" 
of the velocity distribution. The only possible solution is a continuous increase of pressure upstream of the shock impingement point: ahead of 
the shock. Pi increases until it reaches a value equal to the final pressure after interaction. Then Pi rises through the shock and decreases the 
same amount through the centered expansion fan to insure continuity of pressure. 

4.3.2. - Small Perturbations Methods 

4.3.2.1.   -  Inger's Theory for Normal Shock-Wave 
■ 

The analytical method developed by Inger (see Inger and Mason, 1976; Inger, 1976; Inger, 1980 a and 1980 fc) is in fact a generalization of 
Lighthill's earlier work {see Section 4.1 above). It consists of a triple-deck model, the equations of which are solved by perturbation 
techniques.    The triple-deck structure is composed of (see in Fig. 4.17): 

(i) an outer inviscid and irrotational flow (the incident shock is assumed weak so that it produces a negligible entropy change); 

(ii) a rotational inviscid boundary-layer flow; 

(iii) a thin shear-disturbance sublayer. 
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turbulent boundary-layer interaction. 

We will now briefly examine the nature of the disturbance flow problem in each of the three basic decks. 

Outer potential flow region.  — The perturbation velocity components u', v' and the pressure perturbation ;;' have to satisfy the following 
equations: 

ML-I+(Y+I)«' 

5/ 

.Mi 

dv'     du' 

8x      8y 

du'     dv' 

Bx      dy 

I-ML-2 
Voe  \Sx^ 

(4.26) 

(4.27) 

(4,28) 

Equation 4.26 results from the continuity equation and assumption of constant entropy; equation 4.27 is the irrotationality condition and 
equation 4.28 is a combination of the two momentum equations. The third term within the square brackets of equations 4.26 and 4.28 must be 
retained in the transonic case. Then these equations automatically include the supersonic-subsonic shock jump conditions to this order of 
approximation.    If the term is omitted, equation 4.28 reduces to the familiar Prandtl-Glauert equation. 

It is assumed that such a small disturbance solution may be carried out for all x on the upper region j' S 5o where 5o is the thickness of the 
undisturbed boundary-layer.    The boundary conditions of the problem are the following; 

(i) usual far-field conditions as ;' -► oo; 

(ii) other conditions are prescribed along the streamline which coincides with the boundary-layer edge. To the same order of approximation, 
this border is taken to be the edge of the undisturbed boundary-layer of which the thickness 5o is considered as constant in the interaction 
domain.    Thus along j' = 5o, both v' and p' are required to be equal to their middle-deck counterparts at >' = 5o. 

Middle rotational-disturbance flow deck. — In this part of the flow, the shear stress (turbulent as well as laminar) is considered as "frozen" 
along each streamline; i.e., disturbances of the viscous forces (not the viscous forces themselves) are ignored. Furthermore, the streamwise changes 
which would occur if the boundary-layer were not disturbed are neglected. This means that the properties of the undisturbed boundary-layer are 
assumed functions of y only. 

Thus, the disturbance field caused by a weak shock-wave is one of a small perturbation of the incoming non-uniform boundary-layer 
profile.    Such a disturbance field is governed by the equations; 

[""'fey)]. X-Mliy) d(p'/po) 

dy' 

jMliy)       dx 

du' 8p'/8x     d Uo v' 

dx p„[/o       dy  [/„' 

2 dMo8p'    /^    ^^,    lu'Miy'p' 

Afo  dy   dy     \ "        (7„    ) dx^ 
= 0, 

(4.29) 

(4.30) 

(4.31) 

where UQ (y) and Af„ (y) are the velocity and Mach number profiles of the incoming boundary-layer. 

The first equation is a result of the particle-isentropic continuity and energy equations; equation 4.30 is the perturbed x-momentum equation; 
and equation 4.31 is a generalization of Lighthill's well known pressure perturbation equation for non-uniform flow {see Section 4.1 above). The 
difference lies in the non-linear correction term that accounts for possible transonic effects within the boundary-layer. These effects include the 
diffracted impinging shock above the sonic level of the incoming boundary-layer profile. Use of equation 4.31 provides an account of any 
transverse pressure gradient that develops across the interacting boundary-layer. 

Equations 4.29 to 4. 31 are supplemented by boundary conditions requiring that: 

(i) disturbances vanish far upstream (i. e., x -► co); 

(ii) p' and v' match the outer-flow conditions along )' = 8(,; 

(iii) v' is equal to zero at a normal distance >>„.„ which is determined by the matching with the inner deck solution. It is seen that y^^„ is an 
effective wall position for the middle deck on which the Mach number is different from zero, since >'„,fr>0. As previously established by Lighthill 
(see Section 4.1 above), this displaced lower boundary removes the singularity which would exist if the D' = 0 condition were applied at ^' = 0. The 
way to determine >>„ ,,„ is explained in what follows. 
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The normal disturbance velocity at 80 is given by ^'-integration of equation 4. 29, yielding: 

= 0 

,YPo   Mo(Tl) 

The lower limit of the integral represents the inner-deck contribution to the total streamline displacement effect. 

The displacement thickness growth A5* along the interaction can be computed from the boundary-layer integral continuity equation. This 
yields the following formula: 

,5.w=r'^,,+(5„-6.)rM^ij:(.,o).    '/ ',   (4.32, 

In the above expression, the streamwise pressure gradient is evaluated at the wall, the pressure being here assumed independent of y, which is 
consistent with the "classical" displacement concept. 

The inner shear-disturbance layer. - In the original work of Lighthill, the interaction problem was treated by considering that the inner-layer 
is entirely contained within the laminar sublayer of the turbulent velocity profile. This simplifying assumption may be incorrect at high Reynolds 
number where the laminar sublayer tends to be extremely thin. Inger's theory avoids this limitation by taking into account the entire law of the 
wall which expresses that the total shear stress (i. e., laminar plus turbulent) is constant in the wall region. 

The perturbation equations are established within the following (main) hypotheses: I 

(i) the influence of density perturbation on the sublayer disturbance flow is neglected (for adiabatic flows, with low to moderate external Mach 
numbers, the undisturbed and perturbation flow Mach numbers are both quite small within the shear disturbance sublayer). 

(ii) the density is assumed constant, compressibility effects being adequately represented by the Eckert reference temperature method. According 
to this method, incompressible relations are used with quantities based on wall recovery temperature. 

(iii) due to the extreme thinness of the inner-layer, the normal pressure gradient is neglected. I 

Under the above assumptions, the disturbance field is governed by the following equations: 

— continuity: 

8u'     dv' 
Tx*Ty='-' ! ('-''^ 

— momentum: 

,, du'       dUo I   dp'„      8 , ,        8u' 
1^0—+''-r^ = -p + -(Vow + 2ero)— (4.34) 

dx dy Po„ dx      dy dy \ 

i 
The doubling of the turbulent shear stress disturbance term results from inclusion of the eddy viscosity perturbation. 

The eddy viscosity is expressed by the well known relation: 

'dU„ \ er, = U41y 1 — exp 
26 v„ 

. I (4.35) 
dy 

which includes the Van Driest damping factor. 

Equations 4.33 and 4.34, along with 4. 35 are to be solved subject to the following boundary conditions: 

(i) all disturbances vanish at upstream infinity; i.e. u'(x, y) = 0 when x-* —oo; 

(ii) no-slip condition at the wall; i.e. u' = !)' = 0 at >' = 0; .   . i 

(iii) at a certain distance 85^, sufficiently far from the wall, u'(x, y) must tend to the inviscid solution u;„.(x, y) along the bottom of the middle- 
deck.    This latter perturbation u-„,(x, y) is governed by the continuity equation 4. 33 plus: 

,, au;„,    , dUo       I dp' 
Vo^+vl„,—^ = -p. (4.36) 

ox dy p„^ dx \ 

The distance &SL is defined as the height where the total shear disturbance (oc du'/dy) of the inner solution vanishes to a desired accuracy. 

For the inner sublayer, the pressure distribution p^(x) is prescribed.    In fact p„(jc) results from the matching with the other decks. 

Following Lighthill's, idea it proves convenient to derive from 4.33 and 4. 34 an equation involving only the normal disturbance velocity field 
v'(x,y): 

(4.37) 

This equation is to be solved subject to the boundary conditions: 

(i) vanishing of perturbation at downstream infinity; 
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(ii) at the wall: 

v'(.x,0)- 
8v'(x,0) 

Sy 
■0; 

(111) a third boundary condition is obtained by writing the momentum equation at the wall which leads to: 

1      dV„. 
Sy' Pow^Ow  dx^ 

(iv) the fourth boundary condition is the equivalent for v' of condition: 

'^uj-^-.j-^yc 
dx Sy' dy' 

along with the vanishing of the total disturbance shear, i. e.: 

8y' 

From the solution for v'{x, y) in the inner-deck, it is possible to deduce a boundary condition for the middle-deck in terms of an effective wall 
position >'„eff7^0. The distance y„^([ is obtained by "back projection" or more exactly "back extrapolation" of the external inviscid behavior of 
[)' {x, y). This extrapolation is carried out down to the ordinate y where »,„, (x, y) (extrapolated) vanishes. Physically speaking, y„ ^f, represents 
the total mass defect height due to the shear stress perturbation field and hence the effective wall position "seen" by the overlying inviscid middle- 
deck disturbance flow.    This process provides the following non-singular boundary condition for the middle deck solution: 

Sy 
0'w.ft) = !';nv(>'w.ff)=0 at     Uo{y^,„>0}. 

Uo(v) 

UolYweff) 

Once the v' (x, y) field is known, the accompanying streamwise velocity (and hence the disturbance shear stress) may then be found from 
equation 4.34. 

The three sets of equations 4.26-28, 4.29-31, 4.33-37 describing the various decks along with: 

— prescribed behavior at infinity, 

— wall boundary conditions, 

— matching conditions, 

constitute a "closed" problem which can be solved by any appropriate method. Following Lighthill's original work, Inger employs a technique of 
solution involving an a x-wise Fourier transform. This procedure leads to rather complicated mathematical expressions which will not be given 
here. 

The original Inger method has been improved upon several times over in order to take into account surface curvature effect (Inger and 
Sobieczky, 1978), background pressure gradient effect (Panaras and Inger, 1977), suction or blowing effect (Inger and Lee, 1978; Inger, 1979) and 
also to represent more faithfully shock penetration into the boundary-layer in low transonic flow regime (Inger, 1979). This method has also been 
incorporated into viscous/inviscid interactive calculations of the flow past transonic airfoils (Stanewsky et al., 1981). Knowing the boundary-layer 
properties just upstream of the shock (deduced from a "classical" boundary-layer calculation performed from the leading edge), the method permits 
the calculation of boundary-layer change during the course of the interaction.    It is thus possible to deduce from this calculation: 

(i) the local evolution of the displacement thickness {see equation 4.32 above). This evolution defines a "viscous ramp" which models the 
boundary-layer displacement effect as seen by the external non viscous stream; 

(ii) the downstream properties of the boundary-layer which are fed as initial conditions into the new 
downstream of the shock interaction region. 

"classical" calculation performed 

We will now present some applications of Inger's theory which clearly show the specific influence of the essential parameters playing a role in 
transonic shock-wave/turbulent boundary-layer interactions. 

Assessment of the theory is first established by the comparisons with experimental results (Ackeret et al, 1946) shown in Figures 4.18 and 
4.19. The wall pressure distributions plotted in Figure 4.18 exhibit the differences occurring between the wall and the boundary-layer edge. In 
particular, the post-shock expansion {see Section 2.6.1 of Part I) is well predicted by the theory, in spite of some discrepancies with measurements 
in this part of the field.    Also, the rise in the boundary-layer displacement thickness is correctly predicted, as shown in Figure 4.19. 
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Fig. 4.19 — Application of Inger's flow model. Rise in the boundary- 
layer displacement thickness {Inger and Sobieczki, 1978}. 

Figure 4.20 shows a parametric study of shock strength effect for fixed initial shape parameter (H,o=1.40) and Reynolds number ( 
i?8. = 3.5x 10*). It is clear that an increase in the upstream Mach number provokes a more severe destabilization of the boundary-layer with a 
higher increase in the displacement thickness and in the shape parameter and a larger dip in the skin-friction distribution which becomes negative 
for :Wo = 1.3. The following figure (Fig. 4.21), shows a parametric study of initial shape parameter effect for fixed upstream Mach number 
(Mo= 1.2) and Reynolds number (Rg. = 4 x 10^). The present theoretical results are in full agreement with the experimental trends discussed Part I: 
namely, an increase in //,„ (which means a less "filled" incoming profile) entails a greater jump in the boundary-layer thickness and a more 
important spreading of the pressure rise at the wall. The streamwise evolution of the skin-friction is very characteristic of behavior already 
discussed in Section 2.7 of Part I devoted to Shock-Induced Incipient Separation in transonic flows. At first when W,o increases, the boundary- 
layer tends to separate more readily, its profile becoming less "energetic". However, one observes a trend reversal due to the wider spreading of 
the compression when H, „ is high. There results a weakening of the adverse pressure gradient and this effect is such that the boundary-layer is 
less hkely to separate in spite of a less filled velocity distribution. 
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initial shape parameter effect for fixed initial Mach number (Inger, 1980). 

The last examples presented here show parametric studies of wall temperature and Reynolds number (see Fig. 4.22). As we already know 
(see Section 3.75 of Part I), cooling the wall increases the "stiffness" of the boundary-layer which then offers a greater resistance to separation. Of 
course, heating the wall has the contrary effect. This behavior is clearly demonstrated by the skin-friction distributions represented in 
Figure 4.22b. On the other hand, the wall pressure distribution is only slightly affected by thermal conditions at the wall. Moreover, the 
resistance to separation increases with the Reynolds number as shown in Figure 4.22c. 

Inger's theory has also been employed to determine a limit for Incipient Shock Induced Separation. This limit is computed as a function of 
the main innuence parameters: upstream Mach number Mo, shape parameter H, „. Reynolds number R^^ and also wall curvature (Inger, 1981). The 
validity of the limit thus calculated is discussed in Section 2.7.2 of Part I. Influence of wall temperature on transonic Shock Induced Separation 
is also discussed in Section 2.7.2 of Part I by resorting to Inger's theory results. 
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wall temperature and Reynolds number (Inger 1978b). 
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4.3.2.2. Bohning and Zierep's Theory for Normal Shock-Wave {1976 a and b) 

The flow model adopted in the present theory is again the triple deck model and the subsequent analysis has much in common with Inger's 
theory as well as with the basic work of Lighthill. 

Schematically, Bohning and Zierep's theory proceeds as follows: 

(i) the outer-deck consists of a transonic inviscid flow with a shock-wave becoming normal far from the wall. This flow is computed by a 
classical method.    For curved wall, Oswatitsch and Zierep's method (1960) is employed; 

(ii) in the main-deck the viscous forces are neglected. This zone, which comprises most of the boundary-layer, is described by the well known 
Lighthill perturbation equations for a parallel and rotational inviscid stream. Here, these equations are written in terms of the pressure 
perturbation p' and the vertical velocity component v', which gives: 

[l-MjO')]f-PoCv)l/oO')~+PoO')'^"' = 0. 
ox cy ay 

PoMt/oW^ + f =0. 
Ox      oy 

The above equations are solved with the following boundary conditions: 

— vanishing of vertical disturbance velocity at upstream and downstream infinity; 

— prescribed pressure distribution p'(x) along the outer boundary >' = S„ of the main-deck. This pressure distribution is imparted by the 
external flow; 

— zero vertical velocity on an inner boundary y = S>0 which constitutes the outer edge of the viscous sublayer. 

Closed form solutions of the above problem are obtained for velocity distributions in the undisturbed boundary-layer that can be approximated 
by power law functions (these solutions make use of confluent hypergeometric series); 

(iii) the inner viscous layer is treated by using a simplified boundary-layer formulation in which the flow is considered as a parallel stream. The 
inner-layer analysis serves mainly to fix the thickness 8 which is determined once and for all from the properties of the undisturbed incoming 
flow.    The determination of 8 is based on the fact that, in the adopted viscous sublayer analysis, the gradient of wall shear stress dxjdx at a fixed 

position Xn presents a minimum when 8 is being varied.   Therefore, the condition -^\ —-        =0 is regarded as a defining equation for 8.    The 
<58L dx J;,=o 

scaled inner thickness 8/8o thus determined is a function of the Reynolds number R^ and of the exponent n of the undisturbed velocity profile 
representation.    This dependence can be represented by the relation: 

8/6„ = 1.14(/?8)- for    5.10^<R.<5.10^ 

The overall solution procedure is as follows, S/Sj being known from undisturbed conditions: in the first step, a pressure jump (Oth order 
pressure distribution) is imposed at the outer edge of the boundary-layer. Then the problem for the main-deck is solved. This yields the vertical 
velocity component v' at the outer edge of the boundary-layer. In the second step, this v' distribution is imposed as a boundary condition for an 
inviscid external flow calculation which furnishes a new pressure distribution along the main-deck outer edge. This whole procedure can be 
repeated iteratively until convergence is achieved. 

The present flow model has also been used to find the limit for Incipient Shock Induced Separation as a function of: the external Mach 
number, the Reynolds number and wall curvature (Bohning and Zierep, 1978 and 1981). These predictions are discussed in Section 2.7.2 of 
Parti 

Examples of flow structures computed by Bohning and Zierep are presented in Figure 4.23 a which shows tracings of lines of constant density 
for two cases having the same upstream Mach number but differing by the curvature of the wall. The pattern corresponding to infinite radius of 
curvature (flat wall) is in good qualitative agreement with interferograms of transonic interactions presented in Section 2.6.1 of 
Parti. Figure 4. 23 ft shows streamwise pressure distributions at different distances from the wall. The post shock expansion phenomenon is 
very clearly demonstrated, this effect being enhanced by convex curvature. 

0 10 20     8 
Curved wdll 

t -   Lines of constant density 

Mo-U     R5.= I.5ilO'    4.0.0083 

P' 

Streamwise pressure distributions 

Fig. 4.23 — Application of Boiyning and Zierep flow model 
(Bohning and Zierep, 1976 a). 
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5.      REYNOLDS-AVERAGED NAVIER-STOKES CALCULATION METHODS 

5.1. — Introductory Remarks 

A potentially powerful approach to predicting turbulent shock wave boundary-layer interactions, including those involving separation is to 
solve the Reynolds-averaged Navier-Stokes equations. For practical reasons, such an approach is favored over direct simulation of the time- 
dependent, unaveraged Navier-Stokes equations because the three-dimensional, widely varying scales of turbulence present impossible requirements 
for even the largest and fastest computers (Chapman, 1981). Consideration of this former approach became possible in the early 1970's when 
large, fast computers became available. While the technology required to provide adequate engineering solutions is still evolving, techniques have 
advanced rapidly and matured sufficiently to warrant their consideration in specific practical 2-dimensional applications now and certainly for the 
more general 3-dimensional applications during this decade. An obvious advantage of such an approach is that the entire viscous and inviscid 
portions of the flow are captured simultaneously, and the potential exists for focusing directly on turbulence modeling, which is an important 
pacing item for the successful development of this method and other finite difference methods already discussed. A disadvantage is the long 
computing time and large storage limitations of current computers, which has hampered attempts to focus directly on turbulence modeling without 
considering numerical resolution and accuracy. As it now stands, the competing elements of turbulence modeling, numerical resolution, and 
accuracy must all be considered in any evaluation of our ability to compute flows with strong interactions induced by shock waves (Marvin, 
1982).    This is particularly true for three-dimensional flows, which are the interesting ones from the viewpoint of practical applications. 

Methods for solving the governing equations and various turbulence modeling approaches are reviewed in this section first. Subsequently the 
physical characteristics of the shock interactions being studied with these methods as derived from experiment are described briefly. More complete 
descriptions can be found in Part I. Examples of computations are then compared with experiment and in some instances with other methods 
also discussed previously to provide an assessment of progress. 

5.2. — Governing Equations 

5.2.1. — The Reynolds-Averaged Navier-Stokes Equations 

The time-dependent Navier-Stokes equations, supplemented by mass conservation and suitable gas-law relationships, describe the turbulent 
motion of a continuum fluid. Solutions to the equations for turbulent flows of practical interest are virtually impossible using today's computers 
because turbulence is three-dimensional and has an enormous range of length and time scales. The difficulty can be circumvented by rewriting the 
equations for another set of variables, obtained by suitable averaging. For compressible flows, this has been accomplished by introducing 
mass-weighted variables, decomposing them into their mean and fluctuating components, and averaging over a time that is long relative to the 
largest turbulent time-scale (see Rubesin, 1973). The resulting set of equations is commonly referred to as the Reynolds-averaged form of the 
Navier-Stokes equations. 

5.2.2. — The Turbulence Modeling Problem 

In the process of deriving the averaged form of the equations physical information on the turbulent motion itself is lost. Furthermore, the 
formalism results in a new set of equations that has more unknows, and an equation-closure problem arises. Usually, this is referred to as the 
turbulence-modeling problem. Introducing supplemental equations for the mean turbulence motion itself obtained by deriving moments of the 
original equations, does not alleviate the problem, but does help to provide a means to introduce more information on the turbulence. Necessarily 
then, turbulence modeling becomes an integral, important part of the overall numerical modeling process. A general description of various 
turbulence modeling concepts used for applications in aerodynamic flows, taken from Marvin (1982) is shown in Table I. Two broad classes are 
eddy viscosity models and Reynolds stress transport equation models. Features that distinguish models of either class or models within the same 
class arise through the particular closure technique, i. e., expressing modeled quantities in terms of the mean velocity field or in terms of the mean 
turbulent field. To date, solutions to the shock interaction problem using the Reynolds-averaged Navier-Stokes equations have invoked the 
effective viscosity idea of Boussinesq (1877). 
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5.2.3. — The Equations for Plane Flow 
Table I - Turbulence modeling concepts using single-point closure. 

The governing equations in mass-average variables and supplemental equations used in some of the eddy viscosity models are written for plane 
flow in vector form as follows: 
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The last two equations are the supplemental equations providing the velocity (k)"^ and length scales required in higher-order eddy-viscosity 
models^ In the column vectors, qr, and qry are the laminar-plus-turbulent heat-flux vectors; T„, T,, are the laminar-plus-turbulent normal stresses- 
T,, IS the lammar-plus-turbulent shear stress; and q,^, g„, and q,^ are flux vectors associated with the field variables 

The stress terms and flux vectors are: 

2     /  5u     Bv\ 

= k dT dk ds 

(5.3) 

where/) is the hydrostatic pressure; 2/3 pk is the pressure associated with the turbulence; kr is the thermal conductivity, including the turbulent 
diffusivity; and pe is the turbulent eddy viscosity.    The functional forms of the source functions H depend on the choice of the turbulence model. 

5.3.— Solution Methods and Turbulence Models | 

5.3.1. — Exphcit Methods [ 

Development of methods for solving the mass-weighted form of the Navier-Stokes equations began after MacCormack (1971) used an explicit 
time-marching scheme to solve the laminar form of the equations. In this second-order-accurate method the equations are discretized and advanced 
in time such that: 

Cr+' = L (At) [/?,,.. I (5.4) 

The L (At) term is replaced by a sequence of time-split, one-dimensional operators, for example, 

where L^ solves the parts of equation (5. 1) given by: 

and Ly solves that part given by: 

Lm = Lj^y,iAt)Lj^\ \ (5.5) 

dU dG „ 
— + — =0 
dt      dx 

dU     OF 
 h — 
dt      By + -=" , (5.6) 

The operators are advanced in time to a steady state, if one exists, according to a predictor-corrector sequence of steps. A numerical method 
stability criterion exists that limits the time-step used to advance the solution. Typically, in high-Reynolds-number turbulent flows the limiting 
time-step occurs m comoutational sweens normal tn thi> Qurfa^s     Tt ic „;„»„ K„. " time-step occurs in computational sweeps normal to the surface.    It is given by: 

A, g Ay  
'^]v\+c+{(VJAx) + {VJAy)}' \ ^^'^ 

where c is the sound speed and F. and V, represent viscous terms. The Ay step interval has to be very small to resolve the wall region of a 
turbulent boundary layer, and the permissible time-step presents severe limitations and hence long computing times. Nevertheless, many solutions 
ot shock-separated flows were reported using this method in the mid-1970's. 

Zero Equation Turbulence Models. - Given the severe time-step restriction of the method and computer storage limitations, most investigators 
chose simple zero-equation eddy-viscosity models that use mean-flow information to close the governing equation. These two-layer eddy-viscositv 
models employed Prandtl s mixing-layer hypothesis in the inner layer. 

,, ,du     dv, 

'dy    8x' 
where: 

/ = 0.4;'(l-exp^'-*), 

A* =26, 
(5. 

(5.9) 

In the outer region, either a mixing-length value was chosen, based on some length scale such as boundary-layer thickness, for example, 

' = '„.,> I 

or Clauser's eddy-viscosity formulation was chosen with an intermittency factor, for example, 

E„„,„ = 0.0168»„„5?'/[l + 5.5(>'/8)'], \ (5.10) 
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where u„„ is the maximum velocity achieved in the boundary layer and 8* is the kinematic displacement thickness. The turbulent heat flux is 
modeled through a turbulent Prandtl number. To date, this latter aspect of modeling has not been altered. As will be shown later, solutions with 
these formulations fail to give entirely satisfactory predictions, although they qualitatively reproduce many experimentally observed features. Most of 
the shortcomings were earlier blamed on turbulence modeling, but not many of the studies reported effects of grid dependence or numerical 
smoothing which in retrospect may have been as important as the model. 

Attempts to Modify Zero Equation Turbulence Models. - Even though computing times were excessive (several hours on a CDC 7600 
computer) attempts were made to modify the turbulence model and some improvement in the solutions to complex separated-flow problems was 
demonstrated. Two approaches are worth noting. One used experimental data to guide modifications to the mixing length constants in the 
turbulence model (Marvin et al, 1975), and the other attempted to relax the outer eddy viscosity to account for the fact that turbulence does not 
adjust immediately to rapid changes in the mean flow (Shang et al., 1976; Baldwin and Rose, 1975); for example, 

pE = p£o + [pe,<,-peo](l-exp'"-''>'n (S-H) 

where (pE)o and 5o are undisturbed values ahead of the interaction region, (pe),, is the usual unmodified value given by equation (10), and a is a 
relaxation length obtained by a best-fit comparison of final computed results with experiment. It is obvious that both attempts rely heavily on 
experimental data over a wide range of conditions which limits their generality. However, these studies illustrated the potential of the numerical 
simulations and encouraged development of faster computing methods and better turbulence models. 

At this point, the numerical algorithm development research branched. MacCormack (1976) developed his more efficient explicit hybrid 
method and Beam and Warming (1978) and Briley and McDonald (1977) developed their implicit schemes. Also, turbulence-modeling improvement 
studies using higher-order eddy-viscosity models followed in the wake of the hybrid-method development, and improvement studies for algebraic 
eddy-viscosity models, mostly from a computational compatibility standpoint, followed in the wake of the factored-implicit scheme of Beam and 
Warming (1978). 

5.3.2. - Hybrid Methods 

The time-step efficiency of the MacCormack explicit method was improved by combining the advantages of implicit numerical stability with 
physical insight of the wave-propagating property of the fluid. Conceptually, this was accomplished by further splitting of the >'-operator, L,, into 
hyperbolic and parabohc parts, 

Z.,(AO = L,,(At)L„(At). (5.12) 

The hyperbolic operator contains the convective and pressure terms in the column vector G such that: 

^ + ^=0. (5.13) 
dt       dy 

In the prediction solution to Gj, pressures and velocities are obtained by the method of characteristics in a manner that eliminated the speed of 
sound from the time-step limit such that: 

A,= ^. (5.14, 

Since the finest portion of the mesh is usually confined to the wall-bounded region where v is small, the stability bound of the allowable time-step 
is much less restrictive than that given by equation (5.7). The corrector step is applied as before. The parabolic operator L,p is treated implicitly 
and, therefore, unconditionally stable with regard to time advances. The programming for the hybrid method is complicated by the necessity of 
using characteristics relations in the prediction step for the hyperbolic operator. However, decreases in computing times by an order of magnitude 
or more relative to the purely explicit method were achieved. Such decreases encouraged some investigators to apply higher-order eddy-viscosity 
models (e.g., see Viegas and Horstman, 1979), and others to move forward in the computation of three-dimensional flows (e.g., see Hung and 
MacCormack, 1978). 

Higher Order Eddy Viscosity Turbulence Models. - Higher-order eddy-viscosity turbulence models were introduced into the hybrid method by 
expanding the column vectors to include the turbulent kinetic-energy and length-scale equations in equation (5.2). The one-equation model from 
Rubesin (1976), two-equation model from Jones and Launder (1971), and the two-equation model from Wilcox and Rubesin (1980) have been 
examined for a range of different problems. The full equations describing the implementation of these models in the hybrid algorithm are given in 
Viegas and Horstman (1979). ModeUng constants developed for incompressible flows have usually been used but some modifications have also 
been reported. See Viegas and Horstman (1979) and Liou and Coakley (1981). Authors have reported mixed results, but conclude overall that 
the higher order models produce improvements. 

5.3.3. - Implicit Methods 

Concurrently, development of implicit methods was undertaken. For our purposes, the factored-implicit scheme of Beam and Warming (1978) 
will be briefly described. The method is an extension of their earlier development of an inviscid-flow solver, and, for convenience, the essential 
elements of the method will be discussed in that context. Time-differencing of equation (5. 1), where F and G contain only inviscid terms, is 
accomplished by the unconditionally stable scheme given by: 

2 
-O(At)', (5.15) 

where: 
dU        fdF    dG 

,       + — 
dt V 3x     Sy 
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In this form, however, the system of equations is nonlinear and contains a large system of algebraic equations; as a result, the advantage of 
unconditional stability might not result in solution times significantly smaller than the times for explicit schemes. However, they linearized the 
equations while maintaining temporal accuracy by a Taylor-series expansion of the nonhnear terms.    For example, they let: 

F'*' = F-+(^~J(U'*'-U') + 0{At)\ ^ (5.16) 

Substituting this expression and a similar one for G, writing the resulting in a delta form Air = U"*^-Lr, and employing spatial factorization, the 
final form of the equation was written as: i 

/H /+ A!7''=-A( h—    . I (5  17) 
V       2   dx )\       2   8y J \dx     dyj | ^        ' 

The solution is marched in time to a steady state, if one exists, through a three-step sequence as follows: 

, , Al dA"\ (dF    BG 

2   dx J \dx     dy 

\       2    dy J 1 

Results from this procedure compared favorably with those of the hybrid method for the same test problems. Refinements to this method and 
other implicit solvers have been developed on a continuing basis; see for example, Briley and McDonald (1977) and Coakley (1983). MacCormack 
(1982) has recently reported a new mixed, explicit-implicit scheme which reduces the computation times and the complex programming problems 
associated with his hybrid method. 

I, 

Turbulence Models Used in the Implicit Methods. - Solutions using the implicit scheme developed by Beam and Warming (1978) have usually 
been obtained by employing zero-equation turbulent models and the thin layer approximation to the full equations; for example, see Baldwin and 
Lomax (1978). The thin-layer approximation neglects derivatives of the viscous stresses in the flow direction. Baldwin and Lomax (1978) argue 
that this is computationally acceptable for even large separated flow regions because the accuracy of these derivatives in the discretized form of the 
full equations is questionable since the aspect ratio of computational cells in the near-wall viscous regions is usually very much less than unity for 
grids used to resolve turbulent layers. Briley and McDonald (1977), McDonald (1982), and Coakley (1983), however, have employed higher-order, 
two-equation models and the full equations. 

A Modified Zero-Equation Model. - The development of an improved turbulence model was initiated to circumvent a shortcoming of the 
Clauser outer-eddy-viscosity formulation (equation 5. 10), arising because in many instances the inviscid regions in complex flows have a nonuniform 
velocity field, and determination of the viscous-layer edge needed to evaluate 8* in the model becomes difficult. The outer eddy viscosity was 
redefined as: 

e<,„,„ = 0.0168CiF„ 

where: 

1-1-5.5 (2)' (5.19) 

fw.ke =>'™.^ma.       Or    C^j^^^U^i„/f„„    the Smaller. j (5.20) 

The values of f„„ and y^^^ are determined from: I 

In wakes, the exponential part of F(y) is set to zero. The F„„ is the corresponding value of Y at F„„; [/,,„ is the difference between the 
maximum and minimum total velocity at a fixed x-station. The constant C^ was determined to have a value of 1.6 ensuring that the resulting skin 
friction computed for a flat plate was equivalent to the value obtained from the original Cebeci-Smith model formulation. In order to have a 
correct value of eddy viscosity for a far-wake, C^, was taken to be 0.25. For two test problems involving shock-wave interaction, the model gave 
results that were improved relative to those of the simple two-layer zero-equation model and more or less comparable to those achieved with the 
relaxation formulation given by equation (11). However, recent studies suggest that a certain degree of caution be exercised in applying this 
model. It requires modification of constants for Mach number changes, the function Fiy) is not always a smoothly varying one, and the choice of 
f™. is problem-dependent.    See for example Deganni and Schiff (1983) and Visbal and Knight (1983). 

5.4.— Experimental Requirements I, 

The emergence of these methods for computing complex, turbulent flows places stringent requirements on experiments used to assess their 
development. In addition to the traditional role of providing basic understanding of the controlling mechanisms, they must also provide guidance 
for modeling approximations an provide sufficient detail so that accurate checks of computational output can be made. See Khne et al (1981) 
and Marvin (1982). 
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The experimental data used to assess the development of computer codes used to solve the mass-averaged Navier-Stokes equations vary in 
completeness and accuracy because the flows are complicated by the presences of shock waves or separation or both, and because many investigators 
used instrumentation techniques that were themselves in developmental stages. Nevertheless, a series of bench-mark experiments can be identified 
to assist in the process. A number of those available for the problems involving shock boundary layer interactions are cited in Tables Il-VII along 
with citations of studies in which computations are reported. Information is given on test conditions, grid size, and type of turbulence model 
employed. Grid size alone is not the only criterion for assessing computational resolution, however, because grid stretching and special refinement 
in regions of rapid flow changes are important techniques commonly used by most investigators. But the size provides some measure for 
comparison between various computations. Likewise, the eddy viscosity turbulent models listed are only broadly categorized because they usually 
differ in detail as a result of programming decisions made by the various investigators. Some of the experiments conducted before 1981 are noted 
in the tables; they were recently reviewed by an independent evaluation committee and ascertained to contain the most comprehensive data sets for 
code validation (see Kline et al., 1981).    There is a continuing need for additional experimental data. 

5.5. Examples of Navier-Stokes Computations 

5.5.1. General Comments 

Tables II-VII illustrate the variety of flows that have already been computed with the methods and turbulence models discussed in the previous 
sections. Due to space limitations of this publication, examples from all the studies cannot be incorporated herein. What we will provide next 
are some examples, classified according to flow phenomena, which illustrate the essential accomplishments and shortcomings of the 
computations. The physical characteristics, as deduced from experimental evidence, will be introduced first and then the computations will be 
compared with experiment (and where possible with other more approximate methods discussed earlier in this paper). 

Two broad classes of flows will be discussed: those where the flow field upstream of the interaction is supersonic, where the shock wave 
position and strength are "fixed" by external means or geometry and where the interaction only weakly affects the entire upstream flow through 
the elliptic properties of the subsonic regions in the viscous boundary layer {see Tables II-V and VII); and, those where the flow upstream of the 
shock wave is transonic and where the shock wave position and strength are "free" and they depend on the interaction since it affects a substantial 
region of the entire flow through the elliptic properties of the inviscid as well as viscous regions of the flow {see Table VI). The latter cases take 
longer to compute, are more sensitive to boundary conditions, and must be examined even more carefully than the others. 
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Table III — Benchmark flows for evaluating Navier-Stokes computations: 
compression corners. 

Table II — Benchmark flows for evaluating Navier-Stokes computations: 

impinging oblique shock waves. 
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Table IV — Benchmark flows for evaluating Navier-Stokes computations: 

glancing shock waves. 
Table V - Benchmark flows for evaluating Navier-Stokes computations: 

impinging normal shock waves. 
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5.5.2. - Impinging Oblique Shock Waves 

Physical Characteristics. - Sketches showing the important features of two-dimensional obhque shock-wave interactions are shown in 
Figure 5.1. For a purely inviscid flow the uniform upstream flow processed by the incoming shock wave is uniformly turned toward the surface 
and then straightened agam by the reflected shock. The corresponding surface-pressure signature is shown. Analytic expressions are available to 
predict this rather simple situation. The presence of a boundary layer confounds the problem, and the resulting flow-field characteristics depend 
on the strength of the incoming shock wave. 

In the weak interaction, the shock wave penetrates the turbulent boundary layer and turns more steeply toward the surface as it encounters the 
lower speeds within the viscous layer. It reflects from the viscous layer through a series of compression waves that coalesce into a reflected shock 
wave.    A uniformly increasing surface-pressure signature is found, whose overall rise is nearly equivalent to the inviscid jump. 

In the strong interaction, the shock wave also penetrates the viscous layer, but that layer cannot overcome the pressure rise, and separation 
takes place. The viscous layer is turned above the separation through a series of compression waves that coalesce into what is called a separation 
shock which is later weakened by expansion waves emanating from the viscous flow accelerating over the separation bubble. Downstream, where 
the bubble terminates, a series of compression waves coalesce into a reflected shock where the flow aligns itself with the surface. The corresponding 
surface pressure is characterized by a smooth pressure rise and an inflection region characteristic of separation. Also, it is usually assumed that 
the separation is closed by a dividing streamline that separates the mass entrained in the region from the outer flow and that a recirculating region 
is present. In actuality, the turbulence-flow probably leads to unsteadiness within this separated region, but how much influence this has on the 
mean characteristics is not understood at this time and further study is warranted. Above the separated region an island of very high peak 
pressure exists near the bifurcation associated with the intersection of the incoming and separation shocks. The extent (scale of the interaction) 
depends on the boundary layer thickness, flow Reynolds number, and Mach number. 

Shock-Capturing Capability of the Numerical Methods. - One of the first considerations in computing such flows is the ability of the 
computation to resolve shock waves. As reported by Metha and Lomax (1982), the solution methods discussed previously are all capable of 
capturing shock waves. However, the degree of shock sharpness depends on the numerical method and computational mesh. An example, taken 
from Coakley (1983), which illustrates what can be achieved with a reasonably good numerical method and a uniform mesh, is shown in 
Figure 5.2. Pressures along the solid surface and at a location about midway up in the mesh above the surface are shown for the case of an 
obhque wave inclined at 29° at a free-stream Mach number of 2.9. Similar results would be displayed in pressure distributions normal to the 
surface as the shock wave was traversed. The mesh used in this example is typical of the mesh dimensions used in the Navier-Stokes codes out in 
the mviscid regions of the flow. The point to note is that the numerical method requires at least several mesh points to capture the pressure jump 
associated with the waves. From results such as these, it is easy to deduce that for solutions to the strong-interaction problems, in which separation 
and reflected-shocks occur, mesh choice will have an influence on how well the flow is modeled and further that a certain amount of shock 
"smearing" will always occur in practice. What seems to be missing in studies reported in the literature on shock-separated flow problems is an 
assessment of this effect on the results. 
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Fig. 1 — Physical characteristics of 2-dimensional oblique 

shock-wave interaction 

M = 2.9, li = 29 

D   COMPUTATION 

x.yMESH 160 K 201 

dPl MUM I Ml I 

JffB.l.l.i.r.NIII.IIIM.tj-^jp 

III! tl ECQfF- 

5^ 
rWjT.I l.l.M l-l I |.|.|.|.|.|.|.| IIM-I I II 1 I 

I Ill-Ill N IIIM-IM I ^t^ 

fig. 2 - Modeling of an inviscid oblique shock-wave interaction. 

A Comparison of Computation and Experiment (l-Dimensional). - Many of the first computations of separated turbulent flows were directed 
toward solving the two-dimensional, strong impinging-shock interaction problem {see Table I). Turbulence modeling was reported to have a strong 
influence on the results. The bench mark experimental flow of Kussoy and Horstman (1975) was computed with an explicit numerical method 
and will be used to illustrate how this flow is simulated numerically. The experimental apparatus was axisymmetric and thus eliminated 
three-dimensional effects now known to be present in other "two-dimensional" experiments. 

Pressure contours from the experiment and two computations are shown in Figure 5.3. The experimental contours show the presence of the 
incident-, separation-, and reflected-shock waves as evidenced by the closely spaced contour levels. An island of very high pressure exists above 
the separation near the intersection of the incident and separation shocks. The computations were made with zero-equation eddy-viscosity models 
and the equations were solved down to the wall; the 0-equation model consisted of the mixing-length formulation given by equations (5 8) 
and (5.9), and the modified mixing-length model was determined from data analysis (Marvin et at., 1975). The grid was chosen to allow reasonably 
accurate shock capture in the outer regions, and in the viscous region a fine mesh was placed near the wall to resolve the turbulent boundary 
layer. The eddy viscosity from the baseline model is too high in the interaction region and as a consequence the computation only predicts the 
existence of a reflected shock wave. 
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Fig. 4 — Modeling of a plane strong oblique shock-wave interacting 

with a flow-aligned cylinder: surface pressures on windward and 
leeward planes. 

On the other hand, the modified model, which results in lower eddy viscosities, gave a better simulation of the experimental flow. In addition 
to the reflected shock wave, the presence of a separation shock is evident, but it appears to be weaker and smeared compared with the 
experiment. This deficiency in the calculations is probably a result of two things: the grid, which is still probably not fine enough to resolve the 
flow in the region of the island of high pressure, and the modified turbulence model, which still gives a small separation bubble height relative to 
the experimental one. Surface skin friction and heat transfer were not accurately predicted within the separated zone, although the model 
modification did improve the results. In this instance, the model modification was experiment-dependent, and, therefore, not extendable to the 
other conditions of Mach number and Reynolds number. 

Although advances in numerical methods that improved computational efficiency provided the opportunity for investigating improvements in 
turbulence modeling, there has not yet been a significant advance in the ability to predict the flow detail within a separated region. What is 
known is the zero-equation eddy-viscosity models developed for attached flows must be modified or abandoned in favor of other approaches to 
provide a physically plausible representation of the flow and that the model must provide some mechanism for altering the effective viscosity in the 
interaction zone. Two approaches have provided some improvement: modifying the zero-equation model eddy viscosity (Baldwin and Lomax, 
1978) and using two-equation eddy-viscosity models (Viegas and Horstman, 1979). 

The former approach, which is advantageous from the viewpoint of computational efficiency, has been used extensively in three-dimensional 
computations in which computer storage and speed make application of higher-order models less attractive. 

A Comparison of Computation and Experiment Ci-Dimensionat). - Results of a recent study by Brosh et al. (1983) of a three-dimensional shock 
interaction are worth examining because they illustrate current limitations. The flow field is sketched in Figure 5.4. A plane shock impinges on 
a cylinder aUgned with free-stream flow. Separation occurs on the windward surface because of shock interaction, and on the leeward surface 
because, in part, of the cross flow imposed by the windward portion of the free stream being processed by the oblique shock. On the windward 
plane of symmetry the shock interaction is similar to that depicted in Figure 5.2, but the separation is not closed, and the mean flow within it is 
not a result of recirculation fed by downstream flow reattachment. (There has been some speculation that such open separations may be modeled 
appropriately with zero-equation eddy-viscosity models.) 

A cursory examination of the computed results using the Baldwin and Lomax (1978) turbulence model indicates that many of the features 
observed experimentally are simulated, for example, surface-pressure distributions (Fig. 5.4) and the initial separation line. More detailed 
examination, however, shows deficiencies that result from both turbulence modeling and grid resolution. In Figure 5.5, the windward plane flow 
field, determined by flow-field surveys, is sketched, and comparisons with static-pressure profiles are shown. Grid resolution in the region outside 
the viscous zone leads to significant shock smearing, and no separation shock is predicted. 

In Figure 5.6, the surface skin-friction directions from the computations are compared with a photograph of oil-flow patterns on a iVlylar 
sheet that had been placed around the cylinder and then "unwrapped" and photographed after the test. On the windward plane (0 = 0), a single 
separated line is predicted, whereas a double separation line is evident in the experiment. It is likely that the deficiencies of the computation are 
caused by the combination of a poor turbulence model, which gives an effective viscosity that is too high, and poor numerical resolution of the 
shock system, which causes a local weakening of any shock structure. As the flow proceeds around to the leeward, a single line of separation is 
predicted, whereas a double line of separation is measured. The turbulence model of Baldwin and Lomax (1978) is unlikely to predict secondary 
separations without modification and, in addition, the azimuthal grid spacing may have been too coarse. See Deganni and Schiff (1983). Hence 
grid resolution and turbulence modeling must both be improved before definitive conclusions can be reached on the modeling of three-dimensional, 
impinging-shock, separated flows. 



201 

101       (El      (Fl 

LOCATION AND EXTENT    VM    \ \     ^ 

\        WEDGE CORNER 
EXPANSION 
FAN 

(b) STATIC PRESSURE SURVEY 

Fig. 5 — Modeling of a plane strong oblique shock-wave inter- 
acting with a flow-aligned cylinder: a) Windward symmetry- 

plane flow field interpretation from experiment; bj Comparison 

of experimental and computational static pressure surveys in the 

windward symmetry-plane. 50 52 54        56 58 60        62 64 66 
X, cm 

(b)   EXPERIMENT 

Fig.  6 - Modeling of a plane strong oblique shock-wave interacting 

with   a   flow-aligned   cylinder:   comparison   of   experimental  and 

computational skin friction lines. 

5.5.3. — Supersonic Compression Corner 

Physical Characteristics. - The physical characteristics and corresponding wall pressures for a two-dimensional compression corner are sketched 
in Figure 5.7. For the inviscid flow situation a single shock forms, and the pressure rises abruptly to the level predicted by wedge-flow 
relations. The presence of a boundary layer complicates the flow, as depicted for two situations, the weak and strong interactions. In the weak 
interaction, a series of compression waves form within the boundary layer as it encounters the pressure rise and they coalesce with the shock 
formed in the inviscid flow, which is required to turn the flow in the direction of the ramp. The corresponding pressure rise shows a smoothing of 
the pressure at the beginning and end of the interaction. For the strong interaction, the boundary layer cannot withstand the pressure rise and it 
separates. Compression waves that coalesce into a shock wave form near the forward portion of the separation bubble as the outer viscous flow 
negotiates the pressure rise. 

Experimentally, the separation shock-angle is found to be independent of the corner angle. If the separation is large enough and the free-stream 
Mach number high enough, a second shock will form downstream when the flow over the separated region reattaches and turns in the direction of 
the ramp. The separation and recompression shocks coalesce with the outer shock wave. The corresponding pressure rise shows inflection over 
the separated region and the upstream influence is more pronounced than in the weak case. Conceptually, the flow in the closed separated region 
is divided from the outer flow, and mass is entrained and recirculated through the reattachment process. However, as reported by Dolling and Or 
(1983), there is experimental evidence of unsteadiness in this process. The characteristic scale of the interaction depends on the boundary-layer 
thickness and free-stream Mach number. 

A Comparison of Computation and Experiment (2-Dimensionat). - Computations of corner flows have been reported, as indicated in 
Table III. Different numerical methods and turbulence models have been employed. A comparison of two of the more recent Navier-Stokes 
computations with experiment is shown in Figure 5.8. Two cases are shown, one near incipient separation (weak interaction) and one with 
separation (strong interaction). In one computation, an implicit algorithm and the thin-layer form of the equations were used with the modified 
zero-equation model of Baldwin and Lomax (1978) which was described eariier. In the other, the MacCormack hybrid algorithm and the full 
equations were used with the two-equation turbulence model of Wilcox and Rubesin (1980). Metha and Lomax (1982) stated that these different 
numerical schemes should yield similar results if comparable grids are used and care in carrying out the computation is exercised. Accepting that 
premise, the differences between these calculations mainly reflect differences owing to turbulence modeling. 
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In both the weak and strong cases, the pressure predicted using either model agree reasonably well with the data, and this reflects the common 
observation that the pressure rise can be estimated, for engineering purposes, using any of the eddy-viscosity models. However, differences occur 
in the viscous regions. The modified zero-equation model predicts skin-friction values that are much too low downstream of the weak interaction, 
and this manifests itself more critically in the strong-interaction case by predicting reattachment too far downstream and velocity profiles that do 
not compare well with experiment. See also Visbal and Knight (1983). On the other hand, velocity profiles and shape factors in the downstream 
region are predicted better by the two-equation model, even for the strong-interaction case in which skin friction is somewhat overpredicted (see 
Marvin, 1982). It is thought that the failure of the two-equation model to predict the skin friction downstream of reattachment resides in the 
low-Reynolds-number modeling terms developed to allow integration to the wall, but this should be investigated further and in light of the 
experimental observations on unsteadiness.    See Dolling and Or (1983). 

Also shown for comparison is the computation of LeBalleur (1982). He used the method described previously in which an inverse integral 
boundary layer solution including lag entrainment based on the turbulent kinetic energy equation is coupled to an inviscid Prandtl-Meyer outer 
solution. [LeBalleur (1982) believes the simple inviscid outer solution may be a limitation that should be relaxed in favor of an Euler solution.] This 
method also reproduces the overall pressure rise through the interaction; but seriously underpredicts the skin friction much in the same fashion as 
the 0-equation turbulence model solution from the Navier-Stokes implicit solution. This similarity may reflect the inability of 0-equation turbulence 
modeling to provide adequate simulations of the viscous region of these flows. 

The change of separation and reattachment locations with Reynolds number based on boundary layer thickness are compared in Figure 5.9 
with the locations from the Navier-Stokes solutions using the 2-equation model. The two distinct data sets were obtained by positioning the 
corner at two different locations in the facility and the varying Reynolds number by changing the total pressure of the tests. The trend in variation 
of these locations is predicted although the extent of upstream influence and length of separation are not. Results from the other two computations 
are not shown because the integral method failed to predict any significant separation and because the Navier-Stokes solution with the 0-equation 
turbulence model gave reattachment locations that fell out of the range of the graph as can be easily inferred from the skin friction comparison. The 
latter discrepancy is typical of the Baldwin-Lomax turbulence model as discussed previously. 
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A Comparison of Computation and Experiment (3-Dimensional). — Three-dimensional compression corner flows have also been studied. Teng 
and Settles (1984) performed a series of experiments which identified two distinct flow regimes depending on the combination of sweep and 
compression angles. (See the geometry sketch in Table III.) They classified the flows as either having asymptotically cylindrical or conical 
upstream influence. Typical surface skin friction line topologies are shown in Figure 5.10a and the boundary defining the two regions is shown 
in Figure 5. lOfc. Cylindrical symmetry means that the upstream influence line (I) runs parallel to the swept corner line, whereas conical symmetry 
means that the upstream influence and corner lines belong to a family which have a common origin. Both regimes develop following an initial 
inception zone near the apex. In subsequent publications by Settles and Horstman (1984) and Horstman (1984) computations from a full 
3-dimensional Navier-Stokes code using the implicit-explicit method of MacCormack (1981) were compared with these experiments. Isotropic 
eddy viscosity models were employed. In that first publication both the 0-equation turbulence model [equations (5.8) and (5. 10)] and the 
2-equation turbulence model of Jones and Launder (1971) were used and comparisons made for a single flow case with conical influence. As 
might be expected on the basis of results for 2-D compression corners, the resulting pressure distributions from either turbulence model were 
essentially indistinguishable and most of the flow features were captured qualitatively with either model. However, the authors indicated a 
preference for the 2-equation model formulation, mainly on the basis of observations that the upstream influence length was predicted somewhat 
better, and that the Reynolds number scaling predicted with this model was consistent with experimental observations, and on the knowledge that 
2-dimensional compression corners with separation were probably predicted better as shown in the previous section. In the second publication, a 
parametric study using the 2-equation Jones-Launder turbulence model was made to determine whether the computations could define the boundary 
between cylindrical and conical influence. The practical implementation of this numerical study was made possible by extending the wall functions 
developed by Viegas and Rubesin (1983) to 3-dimensional flow and thus eliminating the time consuming task of integrating the model equations to 
the wall. [Further discussion on the wall function treatment of Viegas and Rubesin (1983) is given in a subsequent section.] Indeed, the resulting 
computations were successful in predicting the boundary of the two types of flow as shown in Figure 5. lOi. Furthermore, combining observations 
from the experiments and the computations the authors have now established that the boundary is most probably associated with shock detachment 
and not separation; cylindrical influence associated with attached shock waves and conical associated with detached waves. While the computations 
are impressive with respect to their ability to predict the qualitative features of the flow and have helped explain some of the experimental 
observations, deficiencies remain, particularly when separation is present. Grid resolution, flow unsteadiness, and modeling are certainly contributing 
factors in this regard. 
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5.5.4. — Glancing Shock Waves 

Physical Characteristics. - Some bench mark experiments depicting the essential features of glancing shock flows are available for verifying 
computations {see Table IV). Geometries for two of these are sketched in Figure 5.11 along with surface skin-friction lines and shock-wave 
structures which help to describe the general physical characteristics of the flows. 

The sharp leading-edge shock generator can result in both weak and strong interactions. In the weak case, the shock interacts with the 
incoming boundary layer and causes simple flow-turning, with the lower momentum fluid near the wall undergoing larger turning than the higher 
momentum fluid at the boundary-layer edge. Far from the generator leading edge, the shock pattern formed by the component of the Mach 
number normal to the shock wave might appear as a weak shock, as sketched in Figure 5.11. In the strong interaction, the boundary layer cannot 
overcome the pressure gradient, and a separation line forms ahead of the shock wave and a reattachment line forms downstream. Skin-friction lines 
accompanying such characteristics are sketched in the figure (see Peake and Tobak, 1980). In this case, the component of the Mach number 
normal to the shock wave is larger, and the interaction is stronger and a shock wave with the characteristic lambda foot emanating from the 
compression waves forms near the separation line. In contrast to the two-dimensional, normal-shock-wave case, the flow in the separation region 
is not closed and continued recirculation of the shock-processed fluid does not occur. In this sense, the swept shock flows are probably more 
steady than the two-dimensional flows. Furthermore, the flow relief owing to the third dimension causes the boundary layers to separate sooner 
and to have correspondingly larger upstream influence than the two-dimensional flows. The scale of these interactions is determined mainly by 
the incoming boundary-layer thickness and Mach number. 
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VIEW ALONG B 

Fig. 11 — Physical characteristics of glancing shock-wave interactions: 

a) Sharp leading edge; bj Blunt leading edge. 

In the case of the blunt leading edge, a bow shock wave is formed and a strong interaction takes place. Separation and reattachment lines 
form ahead and downstream of the bow shock wave. A horseshoe vortex forms as a result of the presence of the blunt generating surface and it 
streams around it. The shock wave in the plane of symmetry can form a lambda foot near the separation line for the strongest interactions and 
an inviscid shear layer emanates from the bifurcation point. The scale of the interaction is determined by the bluntness of the generator, because 
the shock standoff position and the horseshoe vortex scale are proportional to it. 

A Comparison of Computation and Experiment. — Surprisingly, numerical simulations of these glancing shock-wave flows using rather coarse 
grids and a simple turbulence model provide adequate predictions of experimental data in contrast to the impinging-shock-wave and corner-flow 
results discussed in previous sections. To illustrate this point for the sharp-generator case, typical comparisons of computation and experiment are 
shown in Figures 5.12-5. 14. The computations by Horstman and Hung (1979) were made with the MacCormack hybrid method along with a 
two-layer, zero-equation, mixing-length eddy-viscosity model [equations (5. 8) and (5. 10)], modified by Hung and MacCormack (1978) to account 
approximately for the flow in the comer formed at the intersection of the generator and the plate. 
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Fig.  12 - Modeling of a glancing shock-wave interaction from 
a   sharp   leading-edge   wedge:  a)   Pressures  along streamwise 

direction; b) Skin friction along streamwise direction. 
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The axial variations of pressure and skin friction (Fig. 5.12) and the span-wise variation of pressure and heat transfer (Fig. 5.13) agree with 
the measurements except in the corner where modeling is undoubtedly incorrect. Differences in the axial variations at the farthest downstream 
location are caused by locating the computational boundary there. Although not shown here, agreement with mean-velocity profiles was also 
reported.    Similarly good comparisons of surface and flow-field quantities have been reported for wedge angles to 12° and Mach numbers to 6. 

Surface skin-friction lines from the computations are shown in Figure 5.14. Locations of the main features of this strong-interaction case are 
noted. The separation and reattachment lines were determined by examining cross-flow velocity vector plots oriented in a plane normal to the 
center of the vortex formed by the interaction. They correspond closely to the converging and diverging lines usually associated with the separation 
and reattachment locations (Peake and Tobak, 1980). , 

!• 
Several factors are believed responsible for the good agreement between computations, in which coarse grids and a simple mixing-length 

turbulent model are used, and experiment. First of all, the normal component of the Mach number is not large and therefore the shock-wave 
structure is not so difficult to capture. (In the example shown M«= 1.3.) Secondly, the separated-flow region is not closed and highly turbulent 
fluid is not recirculating. And, as a consequence of the latter, the flow within the separated region is probably more steady than that within a 
two-dimensional separated region. 

The strong interactions resulting from a blunt generator have been recently computed by Hung and Kordulla (1983). The computations were 
made using a finite-volume version of the newest implicit-explicit method of MacCormack (1982) with the zero-equation turbulence model of 
Baldwin and Lomax (1978) modified in the same manner as the sharp-generator case to account for the presence of the generator wall. Some 
example comparisons of these computations with the experimental data of Dolling and Bogdonoff (1982) are shown in Figures 5.15 
and 5.16. Surface pressures along the flat plate and along the generator surface are shown. It can be inferred from these comparisons that the 
scale of the interaction, including its upstream influence on the oncoming flow and its height relative to the oncoming boundary-layer thickness are 
probably being predicted quite well, although no flow-field data are available to verify such a conclusion. 

The predicted particle paths which represent streamlines in the plane of symmetry are shown in Figure 5.17 to illustrate the resolution of the 
flow-detail within the horseshoe vortex. A secondary vortex formed at the junction between the blunt generator and the plate (see Hung and 
Kordulla, 1983).    The separation region formed by the horseshoe vortex is open and the vortex streams around the blunt generator. 

Most of the features observed in oil-flow photographs taken during the experiment also compare favorably, at least qualitatively, with these 
computations. Again, it may appear surprising that the computations are doing so well, considering the grid resolution and simplicity of the 
turbulence model. However, the scale of the interaction is set mainly by the blunt leading edge of the generator, in contrast to the two- and 
three-dimensional, impinging-shock cases (e. g. see Fig. 5. 5 and 5. 6) in which no physical scale other than boundary-layer thickness is present. 

Further study of this blunt generator case is needed to determine whether important quantities, such as heat transfer or skin friction, can be 
predicted. It should also be mentioned that an unsteady shock-wave structure was found experimentally and that no such unsteadiness was found 
in the computation. 
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Fig.  15 — Modeling of a glancing shock-wave interaction from a 
blunt-plate generator: a) Pressures on the flat plate in the plane 
of symmetry; b) Pressures on  the flat plate off the plane of 

symmetry. 
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Fig.   16 — Modeling of a glancing shock-wave interaction from a 
blunt-plate generator: a) Pressures on the blunt-plate generator; 
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Fig.  17 — Particle paths that depict streamlins in the plane of symmetry 
ahead of the generator from computations of a glancing shock-wave inter- 

action from a blunt-plate generator. 
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5.5.5. — Normal-Shock-Wave Interaction 

Physical Characteristics. - Some of the physical characteristics are depicted in Figure 5.18. The Schlieren photographs and Mach contours 
from the two-dimensional experiment of East (1976) are shown. At the lowest Mach number, a weak interaction develops and very little change 
in the normal-shock-wave structure occurs. A thickening of the subsonic layer takes place during the movement of the viscous-layer from the 
supersonic to the subsonic regions. A small foot to the normal shock wave appears through a series of weak compression waves. The resulting 
wall-pressure distribution appears as a smoothing of the inviscid pressure jump, as we have seen previously for the weak-interacting, impinging 
oblique-shock flows. 

Increasing the Mach number strengthens the pressure rise, and eventually the boundary-layer can no longer pass through without 
separating. The thickening of the viscous layer occurs sooner (farther upstream) and the series of compression waves can eventually coalesce into 
a distinct oblique, separation shock forming the so-called lambda foot. This oblique shock will intersect the normal shock wave at a bifurcation 
point. The losses through the normal shock wave are larger than those through the oblique shock wave and, therefore, the static pressure 
downstream of the normal shock wave is higher than that of the flow downstream of the oblique shock wave and a second rearward-running shock 
will form at the bifurcation to equalize the disparity. 

At-the higher Mach numbers, existence of a supersonic "tongue" has been observed {see for example, Kooi, 1978). At the bifurcation point 
there is a difference in total pressure between the flow processed by the normal and compound shock systems and a shear layer (a discontinuity 
surface sometimes referred to as a vortex layer) forms. Corresponding surface-pressure distribution will show a steep rise in pressures ahead of 
separation, a decrease in the pressure gradient over the region of separation, and gradual increase to a level somewhat below the inviscid jump 
pressure for a normal shock. 

A Comparison of Computation and Experiment (Small Separation). — A certain degree of success has been achieved in modeling the 
moderately strong normal-shock interaction where separation is rather small or nonexistent. A more recent example is illustrated in Figures 5.19 
and 5.20. Computations using the MacCormack hybrid method and the two-equation eddy-viscosity model of Wilcox and Rubesin (1980) were 
reported by Om et al. (1982). The grid (Table V) was chosen in order to provide adequate capture of the shock structure and to resolve the 
near-wall region of the turbulent boundary-layer. In Figure 5.19, pressure-distributions and velocity-profile shape parameters are compared with 
the experiment reported by Om et al. (1982) for a range of Mach number and Reynolds number. The experiment was performed in an axisymmetric 
test section so that three-dimensional effects could be eliminated; therefore, a high degree of confidence can be placed in the experimental trends 
that are observed. 
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Fig. 18 — Physical ctiaracteristics of normal shock-wave interactions: a) Weak shock; b) Moderately strong shock; c) Strong shock. 
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Fig. 20 - Modeling of a moderately strong normal shock-wave interaction ■ 
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a) Mach contours from the computation 
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b) Mach contours from the experiment 

The effects of Mach number and Reynolds number are predicted by the computations, except possibly in the immediate vicinity of the shock 
at the highest Mach numbers. Mach contours are compared in Figure 5.20 for the highest Mach number case. For the most part the shock 
structure is also predicted by the computations. The shock is weakened because of viscous-layer thickening near the separation, and a series of 
compression waves coalesces into the normal shock. A smaller region of supersonic fiow is predicted. One would not expect to capture any 
discontinuity surface in total pressure that would lead to a so-called vortex layer because the grid is too coarse. The extent of separation in the 
prediction is somewhat smaller than that of the experiment. 

Influence of Turbulence Model Selection. - Studies have shown that the turbulence model has an influence on the predictions for these normal 
shock flows (Viegas and Horstman, 1979). An illustrative example from that study is shown in Figure 5. 21. Although the turbulence model has 
httle influence on the prediction of the overall pressure rise, models that use information on the turbulent kinetic energy changes through the shock 
wave to form the velocity scale of the eddy viscosity provided better estimates of the skin friction and the development of the boundary-layer shape 
parameters. As reported by Mateer and Viegas (1979), trends with Reynolds number over a wide, practical range are also predicted with those 
higher-order eddy-viscosity models. However, even these higher-order models have to be applied with caution when wall skin friction or heat 
transfer is being predicted, because the low-Reynolds-number functions, required when integrating the equation system from a wall boundary out 
into the flow field have not always been developed adequately. 

The reader is referred to a recent paper by Viegas and Rubesin (1983) in which that aspect of higher-order eddy-viscosity modeling for the 
moderately strong, normal-shock problem is studied. Figure 5.22 summarizes the main points from that study. When integrating from the wall 
boundary, only the Wilcox-Rubesin model gives skin-friction predictions that compare reasonably well with experiment. (Note the scale change in 
Figures 5.22a and b.) In developing this model's low-Reynolds-number functions, particular attention was given to ensure that modeling was 
adequate for attached, large adverse-pressure-gradient flows. 

On the other hand, the model of Jones and Launder (1971), with its original formulation of the low-Reynolds-number terms, and one developed 
by Chien (1982) to minimize computational stiffness encountered when applying the model of Jones and Launder, do not have the same degree of 
success. However, they did provide adequate predictions of surface-pressure and velocity-profile shapes. Wall functions were developed by Viegas 
and Rubesin (1983) for all these models to eliminate the need for integration to the wall. Uniformly successful predictions of the skin friction was 
achieved with all models, as shown in the second part of Figure 5.22. It is interesting to note that McDonald (1982) also reported predictions of 
this experimental data. He used an implicit numerical scheme with a different grid along with the Jones and Launder (1971) turbulence model. He 
employed their low Reynolds number formulation and integrated to the wall. His predicted pressures and skin friction agree with those reported 
by Viegas and Rubesin (1983) when they used the same model with integration to the wall. It is encouraging that two different numerical methods 
give essentially the same results using the same turbulence model because more credence can be placed on conclusions regarding the attributes of 
the various models. 

O        EXPERIMENT 

     0-EQ. 

 2-EQ. 
COMPUTATION 

.002 

.001 

1.000 
(b)   , 

\                 1 1                  1                 1                  1 

% 
« 1 

-10 10 

XQI/SQ 

15 20 25 

O EXPERIMENT,  m^. 1.48 
  WILCOX RUBESIN MODEL I 

O  JONES-LAUNDER MODEL  [cOMPUTATIOMS 
  CHIEN MODEL 

Fig. 21 — Effect of turbulence modeling on moderately strong normal 

shock-wave interactions: a) Surface pressure: bj Skin friction. 

Fig.   22 - Effects of low-Reynolds-number-term  treatment in 2-eq. 

models used to predict moderately strong normal shock-wave inter- 

actions:a) Integration to the wall;b) Wall-function treatment 



208 

In addition to developing the wall functions for the two-equation models, the study of Viegas and Rubesin (1983) also showed that the 
computer code became more robust and converged faster. Together with the savings in grid points near the wall and the advantage of robustness, 
computational times using wall functions were decreased by nearly one order of magnitude over those using integration to the wall boundary. 

A Comparison of Computation and Experiment (Large Separation). - Although the axisymmetric bench mark experimental flows have the 
advantage of minimizing three-dimensional effects, they are limited to moderately strong interactions because the flow is confined and separation 
extent is limited. Therefore, one must exercise caution in generalizing these results for two-dimensional situations, in which for the same free-stream 
Mach number, separation may be considerably larger. In those cases, predictions from computations are not as good. To illustrate this aspect, 
unpublished computations by C. C. Horstman of the Ames Research Center for the experiment reported by Delery (1983) are presented in the next 
figures. 

In the experiment by Delery, a region of supersonic flow was achieved in an asymmetric channel formed by having a bump on one wall of a 
rectangular test section. In addition to forming a lambda shock foot, a separated region developed which closed downstream of the junction 
formed by the bump and the channel wall. Although the flow was choked across the channel, the significant viscous interaction effects only 
occurred on the bump-wall side. The computations were made using the new implicit-explicit method of MacCormack (1982) along with the 
two-equation turbulence model of Jones and Launder (1971). Both walls were treated viscously, but the grid resolution was rather coarse on the 
far wall where interaction effects were small.    The equations were integrated to the wall. 

An interferogram taken of the flow above the bump-wall is shown in Figure 5.23. Mach contours determined from the interferogram are 
also shown. They can be compared with the computed contours using two different turbulence models. The unmodified models of Jones and 
Launder (1971), with the low-Reynolds-number formulation of Chien (1982), predicts a region of separation smaller than that found 
experimentally. As a result, the shock structure also differs in that the computed lambda foot of the shock is weaker and the zone of supersonic 
flow smaller. As mentioned previously, the low-Reynolds-number functions of the turbulence model may be affecting these calculations, but at the 
time they were made, that weakness of this model had not been reported. Horstman made another computation using modification to the model 
that had provided some improvements in other separated-flow computations (see Horstman, 1983) to see if the correct flow field could be 
predicted. The results, shown in Figures 5.23 and 5. 24, provide a better comparison for the Mach contours and extent of separation and pressure 
recovery through the interaction. It is worth noting that these flows also have unsteady aspects that may influence our ability to model the 
separated region. 
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Fig. 24 — Modeling of strong normal shock-wave interactions: 
surface pressures. 
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Fig. 23 — Modeling of Strong normal st)ock-wave interactions: 

comparison of shock structure from experiment and computation. 

The velocity and turbulence profiles that develop in the shear layer during this strong normal-shock-wave interaction behave like those that 
develop downstream of a rearward-facing step (Seegmiller et al, 1978; Delery, 1983). They are illustrated and compared with the computations of 
Horstman in Figure 5.25. In step flow studies (Driver and Seegmiller, 1982; and Driver et al., 1983) which eliminates uncertainties in separation 
location and the complicating presence of unsteady shocks, were not found to work as well as Reynolds-stress models for predicting the flow within 
the separated region. The latter models remove the assumption that the stresses respond immediately to changes in the strain rate and therefore 
constitute a more plausible physical description in the case of strong interactions. The latter models are only now being implemented in compressible 
Navier-Stokes codes (see Vandromme et al, 1983). 
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5.5.6. - Transonic Flows with Shock Waves 

Physical Characteristics. - The flow field structure in the vicinity of the shock wave formed in transonic flows is essentially the same as that 
discussed in the previous section and will not be described again here. However, the elliptic character of the transonic flows precludes knowing 
a priori the shock strength or position even in the inviscid regions of the flow except in very weak interaction cases. Therefore computations must 
include a larger extent of the flow domain up- and down-stream of the shock wave and other viscous effects away from the vicinity of the shock 
wave may have a significant influence, e. g., an airfoil near wake. i 

A Comparison of Computation and Experiment. - Development of computational methods employing the Navier-Stokes equations for airfoils 
and wings has been under intense development over the past decade. Some of the first computations for a non-lifting airfoil were undertaken by 
Deiwert and reported in McDevitt et al. (1975). The explicit time-marching code of MacCormack was used, grids were coarse, and turbulence 
modeling was identified as an impediment to accurate solutions for instances where separation was present such as near trailing-edges for subcritical 
flow and at shock waves for supercritical flow. Computation times were excessive. Since then, more efficient numerical methods have evolved 
and additional benchmark flows have become available which provide additional opportunities to assess progress. See Table VI. Two examples 
will be discussed. The flows are two-dimensional and were chosen as test cases for the AFSOR/HTTM-Stanford Conference (Kline et a/., 1980, 
1982). The first is an airfoil flow without separation. The next is an axisymmetric flow over a circular arc bump where separation forms at the 
shock wave. 

Mehta's Navier-Stokes calculations (1983) of the unseparated airfoil flow are among the most accurate ones known to the authors. A 
comparison with the experimental pressure distribution is shown in Figure 5.26. Mehta employed the implicit method of Beam and Warming 
(1978), an O-grid, and used a 0-equation turbulence model. The experimental lift coefficient was matched closely by performing calculations at 
various angle of attack as recommended by the data evaluators (Kline et al., 1980). As the comparison shows, the solutions are sensitive to grid 
fmeness. Computation and experiment agree only for the finest grid. It was necessary to cluster grid in the vicinity of the shock wave to capture 
it^and resolve the viscous interaction near its foot. Also, he found it necessary to locate his first point away form the wall below a position where 
y* = i in order to provide skin friction results that were independent of this first grid point position. 

Accuracy evaluation, not computational efficiency, was the primary motivation for Mehta's Navier-Stokes computations. Actually, coupling 
methods which employ integral boundary layer procedures together with potential now solvers presently provide the best practical methods for 
predicting unseparated airfoil flows. See for example, Kline et al. (1982). However, Coakley (1983) reports accurate results with a coarser grid 
and convergence within two to three hundred time steps which appears to make the accuracy and computational efficiency of his Navier-Stokes 
computations competitive with the coupling methods. 

A comparison of the airfoil loads from the most recent Navier-Stokes computations and two coupling method computations taken from Kline, 
et al. (1982) are given in the tabulation of Figure 5. 27. The upper portion of the table gives the values measured in the experiment and suggested 
corrected values for interference effects. The couphng method computations and the Navier-Stokes computations of Mehta and Coakley were 
made by matching the Hft coefficient. They predicted the experimental drag to within about 10 drag counts and their angle of attack differed by 
less than 0.25° with the corrected experimental value. The differences are within the range of experimental accuracy and so the predictions 
probably represents the best that can be done today for unseparated airfoil flows. The friction drag accounts for less than half of the total and 
varies little between these methods indicating an insensitiveness to differences in turbulence modeling. Coakley (1983) tested the sensitivity of his 
solutions to turbulence model choice. His results indicate that while the total drag is insensitive to the choice significant differences in the local 
values of skin friction occur on the airfoil suction side downstream of the shock wave. But there the level of skin friction is small and doesn't 
contribute much to the total friction drag. Kordulla made his Navier-Stokes calculations at the uncorrected experimental angle of attack and they 
predict somewhat higher lift, which might be expected. But, the total drag is overpredicted by an amount not expected from the differences in 
mcidence angle.    He did not speculate on the causes for this discrepancy.    However, far field boundary position may be influencing his results. 
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The next example is the transonic, shock-induced separated flow studied experimentally by Johnson et al. (1980). The flow developed over a 
circular arc section which was formed on the outer diameter of a long hollow cylinder whose axis was aligned in the flow direction. The 
axisymmetric configuration was chosen to eliminate 3-dimensional experimental effects which can be present in airfoil studies. The pressure 
distribution is compared with several computations in Figure 5.28. The Navier-Stokes computations are taken from Johnson and Horstman 
(1984) and reflect improvements to their previously reported calculations. The implicit-explicit scheme of MacCormack (1981) was used and two 
turbulence models were employed: the 0-equation Cebeci-Smith model and the 2-equation Jones-Launder model with terms added to account for 
curvature effects. Another computation reported by Carter (1982) is also shown. He employed the inverse finite difference boundary-layer 
procedure discussed previously and coupled it to a fully conservative potential flow solver. The Navier-Stokes and coupling procedure computations 
that employ the same 0-equation turbulence model agree with one another but not with the data downstream of the shock wave where the flow is 
separated. The 2-equation model Navier-Stokes solutions agree somewhat better with the experiment downstream of the shock wave, but evidently 
more improvements in the turbulence model are necessary if the proper pressure plateau is to be predicted. The mean and fluctuating velocity 
profiles from the 2-equation model solutions are compared with the data at several selected stations in Figure 5.29. Agreement is reasonably 
good, except just downstream of the shock wave where the shear and turbulent kinetic-energy is overpredicted and turbulence model improvement 
is needed. 
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Fig. 29 - A comparison of computation and experiment for a transonic 

flow with shoclr-induced separation: velocity and turbulence profiles. 

Fig. 28- A comparison of computation and experiment for a transonic 
flow with shock-induced separation: Pressure distribution. 

5.5.7. Unsteady Flows 

The time accurate methods described previously can be applied, at least in principle, to unsteady flows. To date, rather successful calculations 
of some unsteady flows with relatively narrow frequency bands have been undertaken. Readers are referred to a recent summary paper by Deiwert 
and Bailey (1983) for a detailed discussion.    Here we will mention only the essence of the underlying assumptions and give one illustration. 

In order to use the time-dependent, mass-averaged form of the equations, the averaging time must be small relative to the aerodynamic time 
scale of interest, but large relative to the time scale associated with the turbulence. Chapman (1979) compared the known non-dimensional 
frequency range of many typical aerodynamic flows with those of large scale turbulent eddies for a range of Mach numbers. The results are 
reproduced in Figure 5.30. The mean frequency of the large scale eddies corresponds to their mean-burst frequency scaled on boundary-layer 
thickness. It depends weakly on length Reynolds number. All of the unsteady aerodynamic flows noted have characteristic frequencies that are 
one to two orders of magnitude smaller than those of the large scale eddies. Hence it should be possible to employ the usual steady-flow turbulence 
models and accurately simulate the time varying aerodynamic changes with the Reynolds-averaged form of the Navier-Stokes equations. These 
arguments have been used in part to justify the remarkably good results from computations of buffet onset due to shock induced separation [Levy 
(1978), Levy and Bailey (1981)], aileron buzz [Steger and Bailey (1980)], dynamic stall [Deiwert and Bailey (1983)], and oscillating airfoils [Chyu 
and Kuwahara (1982)]. 

AIRFOIL BUFFET 

CIRCULAR ARC BUFFET 

AILERON BUZZ 

SUPERCRITICAL 
DIFFUSOR 

Fig. 30 — Comparison of frequency range of unsteady flows 

with mean frequency of large-scale turbulent eddies. 
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To illustrate what has been achieved some of Levy's results are given in Figures 5.31 and 5.32. He computed the flow over an 18% thick 
biconvex airfoil at zero incidence undergoing self excited periodic oscillations caused by coupling of shock-induced and trailing-edge separation. A 
comparison of shadowgraphs from the experiment and Mach contours from the computations taken from Seegmiller et al. (1978) is shown in 
Figure 31. The times represent fractions of the dimensionless periodic cycle time of the oscillating flow. Comparisons between the experiment 
and computations are made at different times to illustrate that the computations reproduce the physical characteristic of the experiment even 
though the actual frequency of oscillation differed by about 20 percent. A comparison with the surface pressure variation at four different locations 
on the airfoil is shown in Figure 5. 32. The oscillations on the upper and lower surfaces are a half period out of phase with each other. The 
frequency of oscillation from the computation differs by about 20 percent, but the wave forms and peak pressures compare quite well. Comparisons 
of velocity profiles in the viscous shear layer also show good agreement.   See Marvin et al. (1979). 
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Fig. 32 — Comparison of computation and experiment for an unsteady 
flow involving shock-induced separation: surface pressure time histories. 

Fig. 31 — Comparison of computation and experiment for an unsteady 
flow involving shock-induced separation: shadowgraphs and computed 

Mach con tours. 

5.6. — Concluding Remarks 

The mass-averaged Navier-Stokes computer codes in use today are still in their developmental stages. They represent a compromise between 
the choice of numerical algorithm, grid, and turbulence model. The compromise is dictated by constraints of numerical efficiency and the lack of 
an adequate turbulence model. Provided that the adequate safeguards are used to ensure numerical resolution, it is apparent that the computations 
employing eddy-viscosity turbulence models can give a qualitatively good representation of many two- and three-dimensional, complex aerodynamic 
nows involving shock wave and separation. Although flow details within separated regions cannot be predicted with complete confidence the 
solutions can now provide a bridge for connecting computations on either side of embedded separated regions. 

Of the work remaining in developing these codes into predictive tools, proper physical modeling remains paramount. The challenges of better 
numencal accuracy and resolution along with better turbulence modeling are areas for further exploration. With regard to the latter it is clear 
that some distinct advantages are gained by employing higher-order turbulence models. For example, they provide unambiguous, albeit approximate 
determinations of the length and velocity scales needed to,define an effective viscosity, and they provide inherent means to allow turbulence to 
adjust Itself appropriately to rapid changes in the mean flow. Whether they can be improved to provide completely adequate modeling or whether 
they must give way to Reynolds stress modeling is a debatable issue, the resolution of which requires additional study. 

More has to be done to determine the causes and effect of flow unsteadiness in shock wave interactions and its importance in modeling both 
two- and three-dimensional flows. And, more has to be done experimentally to define flow field structures and critical parameters, to gain further 
understanding of modeling, and to provide well-documented bench mark tests against which progress can be gauged 
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methods developed to predict sudden changes in boundary-layer properties; integral or 
finite-difference methods developed to predict the continuous evolution of a boundary-layer 
encountering a pressure field induced by a shock wave; coupling methods to predict entire 
flow fields; analytical methods such as multi-deck techniques; and finite-difference methods 
for solving the time-dependent Reynolds-averaged Navier-Stokes equations used to predict 
the development of entire flow fields. Examples are presented to illustrate the status of the 
various methods and some discussion is devoted to delineating their advantages and 
shortcomings. Reference citations for the wide variety of subject material are provided for 
readers interested in further study. 
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