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PREFACE

This AGARDograph presents a comprehensive, up-to-date review of the shock-wave boundary-layer interaction
problem. A detailed physical description of the phenomena for transonic and supersonic speed regimes is given based on
experimental observations, correlations, and theoretical concepts. Approaches for solving the problem are then reviewed in
depth. Specifically, these include: global methods developed to predict sudden changes in boundary-layer propertics; integral
or finite-difference methods developed to predict the continuous evolution of a boundary-layer encountering a pressure field
induced by a shock wave; coupling methods to predict entire flow fields; analytical methods such as multi-deck techniques;
and finite-difference methods for solving the time-dependent Reynolds-averaged Navier-Stokes equations used to predict
the development of entire flow fields. Examples are presented to illustrate the status of the various methods and some
discussion is devoted to delineating their advantages and shortcomings. Reference citations for the wide variety of subject
material are provided for readers interested in further study.

% % 3k

Cet AGARDograph présente une revue d'ensemble et mise 4 jour des problémes d’interaction onde de choc/couche
limite, en régime turbulent principalement. Dans une premiére partie, les phénoménes physiques recontrés aux vitesses
transsoniques et supersoniques sont décrits de maniére détaillée en s’appuyant sur de nombreuses observations
expérimentales, des lois de corrélations et certains concepts théoriques. Dans une seconde partie, les différentes approches
utilisées pour modéliser le phénomene sont présentées et discutées en profondeur. Celles-ci comprennent: les méthodes
globales dont I'objectif est de calculer le changement brutal que les propriétés de la couche limite subissent au cours de
l'interaction; les méthodes intégrales ou aux différences finies qui permettent le calcul continu de évolution d’une couche
limite recontrant un champ de pression induit par une onde de choc; les techniques de couplage fluid parfait-fluide visqueux
qui permettent de calculer I'ensemble du champ aérodynamique; les techniques analytiques du type modéle multi-couches, et
enfin les méthodes aux différences finies résolvant les équations de Navier-Stokes moyennées en temps qui sont appliquées a
I'ensemble de I'écoulement. Des exemples d’application sont brievement discutés. L’ouvrage contient un grand nombre de
références couvrant 'ensemble du sujet et destinées a aider le lecteur intéressé par la recherche d’une plus ample
information.

iii



CONTENTS

PREFACE

INTRODUCTION

PART I: A PHYSICAL DESCRIPTION OF SHOCK-WAVE/BOUNDARY-LAYER INTERACTIONS

1 GENERAL COMMENTS
1.1 Introductory Remarks
1.2 The Structure of a Turbulent Boundary-Layer
1.3 Upstream Influence
1.4 References

2 INTERACTION IN TWO-DIMENSIONAL TRANSONIC FLOWS
2.1 Some Specific Characteristics of Transonic Flows
2.2 Importance of Viscous Effects in Transonic Flows
2.3 Phenomenological Description of Transonic Viscous Interaction on an Airfoil
2.4 Scaling Effects in Transonic Flows
2.5 Basic Experimental Arrangements Used in Transonic Interaction Studies
2.6 Transonic Interaction Without Boundary-Layer Separation
2.6.1 The General Flow Structure
2.6.2 Scaling Laws for the Interaction Domain
2.6.3 Development of the Dissipative Layer Properties
2.7 Incipient Shock-Induced Separation in Transonic Separation
2.7.1 Physical Description of Incipient Separation
2.7.2 Prediction of Incipient Shock-Induced Separation
2.8 Interaction with Boundary-Layer Separation
2.8.1 The Outer Flow Field Structure
2.8.2 Correlation Properties of the Wall Pressure Distributions
2.8.3 Development of the Dissipative Layer Properties
2.9 Examination of Certain Turbulence Properties
2.9.1 Introductory Remarks
2.9.2 General Structure of the Turbulence Field
2.9.3 Specific Characteristics of Turbulence in the Interacting Flow
2.9.4 Some Remarks on the Problem of Turbulence Modeling
2.10 References

3 INTERACTION IN TWO-DIMENSIONAL SUPERSONIC FLOWS
3.1 The Four Basic Interactions
3.2 The General Flow Field Structure
3.2.1 The Compression Ramp Flow
3.2.2 The Impinging-Reflecting Oblique Shock
3.2.3 Flow Produced by a Forward Facing Step
3.2.4 The Reattaching Supersonic Flow
3.2.5 Concluding Remarks
3.3 Properties of the Wall Pressure Distribution
3.4 Some Features of Shock-Wave/Boundary-Layer Interaction in Laminar Flows
3.5 Transitional Interactions
3.6 The Free Interaction Concept
3.7 Scaling Properties of the Supersonic Interaction Streamwise Extent
3.7.1 Introductory Remarks
3.7.2 The Upstream Interaction Length. General Properties
3.7.3 Correlation Laws for the Upstream Interaction Length at High Reynolds Numbers
3.7.4 The Upstream Interaction Length in Non-Adiabatic or Axisymmetric Flows
3.7.5 The Separation Length
3.7.6 Concluding Remarks
3.8 Incipient Shock-Induced Separation in Supersonic Flows
3.8.1 Introductory Remarks
3.8.2 Techniques Used for the Detection of Incipient Separation
3.8.3 The Experimental Incipient Separation Limit
3.8.4 Simplified Models for Predicting Incipient Separation in Supersonic Flows
3.8.5 Concluding Remarks
3.9 Development of the Dissipative Layer Properties
3.9.1 The Mean Flow Field

Page

iii




3.9.2 The Turbulent Field
3.9.3 Concluding Remarks

3.10 References

INTERACTION IN THREE-DIMENSIONAL FLOWS

4.1
4.2
4.3

4.4
4.5

Introductory Remarks

Separation in Three-Dimensional Flows

Typical Interactions in 3-D Flows

4.3.1 Interaction at a Swept Corner

4.3.2 The Skewed Shock-Wave Interaction
4.3.3 Obstacle Induced Interaction

4.3.4 Transonic Flow Over a Swept Wing
Incipient Shock-Induced Separation in 3-D Flows
References

PART II: METHODS OF CALCULATION

GLOBAL METHODS

1.1
1.2

1.3

1.4
1.5

Introductory Remarks

Two-Dimensional Interactions

1.2.1 Simplified Boundary-Layer Integral Methods
1.2.2 Control Volume Methods
Three-Dimensional Interactions

1.3.1 General Comments

1.3.2 Simplified Boundary-Layer Integral Methods
1.3.3 Control Volume Methods

Inviscid Shear Layer Analyses

References

METHODS FOR THE CALCULATION OF THE CONTINUOUS DEVELOPMENT OF THE
BOUNDARY-LAYER

2.1
2.2

2.3

24

2.5

Introductory Remarks — The Inverse Mode of Calculation
Integral Methods

2.2.1 Basic Principles and Equations

2.2.2 Methods Using the Mean-Flow Kinetic Energy Equation
2.2.3 Methods Using the Entrainment Equation

2.2.4 Methods Using the Moment of Momentum Equation
Finite-Difference Methods

2.3.1 Earlier Inverse Methods

2.3.2 Carter’s Methods and Derived Methods

2.3.3 Ardonceau’s Inverse Method

2.3.4 Other Inverse Methods

Extension to 3-D Boundary-Layer Flows

2.4.1 General Remarks on Boundary-Layer Separation in 3-D Flows
2.4.2 Integral Inverse Methods

2.4.3 Finite-Difference Inverse Methods

References

INVISCID-VISCOUS INTERACTIVE METHODS

3.1
3.2

33

3.4
35
3.6

Basic Principles
The Problem of the Coupling Conditions
3.2.1 The Various Forms of the Coupling Equation
3.2.2 Subecritical and Supercritical Boundary-Layers
3.2.3 Weak and Strong Interactions
The Problem of the Iterative Procedure
3.3.1 Entirely Supersonic Interactions
3.3.2 Mixed Supersonic-Subsonic Flows
3.3.2.1 Direct, Inverse and Semi-Inverse Methods
3.3.2.2 Convergence Properties of Direct and Inverse Methods
3.3.2.3 Semi-Inverse Methods
Higher Order Methods
Application of Inviscid-Viscous Interactive Methods to Flows Containing Shock-Waves
References

ANALYTICAL METHODS OR MULTI-DECK MODELS

4.1

The Lighthill Multi-Deck Model

Page

82
84
85

90
90
90
93
93
95
98
100
103
105

109
109
110
110
115
123
123
124
124
126
128

130
130
131
131
132
134
136
139
139
140
145
146
146
146
147
148
150

150
153
153
153
155
157
158
158
159

165
166
168

171
171



4.2 Multi-Deck Theories in Laminar Flows
4.2.1 Asymptotic Expansion Methods

4.2.1.1 Stewartson and Williams’ Theory of Self-Induced Separation in Supersonic Flows

4.2.1.2 The Free Interaction Theory in Transonic Flows
4.2.2 The Tu and Weinbaum Non Asymptotic Triple-Deck Model
4.3 Multi-Deck Theories in Turbulent Flows
4.3.1 Asymptotic Expansion Methods
4.3.1.1 The Limiting Process in Turbulent Flows
4.3.1.2 Melnik and Grossman’s Theory for Normal Shock Wave
4.3.1.3 Adamson and Messiter’s Theory for Normal Shock Wave
4.3.1.4 Adamson and Feo’s Theory for Oblique Shock-Wave
4.3.2 Small Perturbation Methods
4.3.2.1 Inger’s Theory for Normal Shock-Wave
4.3.2.2 Bohning and Zierep’s Theory for Normal Shock-Wave
4.4 References

5 REYNOLDS-AVERAGED NAVIER-STOKES CALCULATIONS METHODS
5.1 Introductory Remarks
5.2 Governing Equations
5.2.1 The Reynolds-Averaged Navier-Stokes Equations
5.2.2 The Turbulence Modeling Problem
5.2.3 The Equations for Plane Flow
5.3 Solution Methods and Turbulence Models
5.3.1 Explicit Methods
5.3.2 Hybrid Methods
5.3.3 Implicit Methods
5.3.3.1 Turbulence Models Used in the Implicit Methods
5.3.3.2 A Modified Zero-Equation Model
5.4 Experimental Requirements
5.5 Examples of Navier-Stokes Computations
5.5.1 General Comments
5.5.2 Impinging Oblique Shock-Waves
5.5.3 Supersonic Compression Corner
5.5.4 Glancing Shock-Waves
5.5.5 Normal-Shock-Wave Interaction
5.5.6 Transonic Flows with Shock-Waves
5.5.7 Unsteady Flows
5.6 Concluding Remarks.
5.7 References

ACKNOWLEDGEMENTS

vi

Page

172
172

177
178
178

185

191

194
194
194
194
194
194
195
195
196
196

197
198
198
199
201
203
206
209
210
211
212

216



INTRODUCTION

The interactions of a shock-wave with a boundary-layer can have a significant influeace on aircraft or missile
performance. Drag rise, flow separation, adverse aerodynamic loading, high aerodynamic heating, and poor engine inlet
performance are but a few examples of its deleterious infhience. Although the problem has received much attention and
study, it remains an unresolved fluid mechanics issue. It has been a decade since Hankey and Holden (1975) compiled the
last AGARDograph on the subject. Their publication augmented the very comprehensive review by Green (1970) who
discussed many of the physical aspects of the problem and some of the methods for predicting its behavior, particularly
for the unseparated case (see also the lecture series by Stanewsky, 1973 and by Leblanc, 1976). The 1975 AGARDograph
introduced newly emerging theoretical developments on viscous-inviscid coupling, provided a preliminary look into
numerical simulations of the Navier-Stokes equations,and extensively reviewed the new experimental work on
hypersonic interactions. Since then, rapid developments in computational fluid dynamics and advanced instrumentation
provided new opportunities to investigate this important phenomena, especially for the transonic and supersonic speed
regimes. And, in those intervening years a certain maturation of the subject has taken place. It is the purpose of this
AGARDograph to provide a comprehensive review of the subject in light of these new developments and maturation.
Emphasis is therefore placed on high Reynolds number turbulent flows for the transonic and supersonic speed regimes.

The first part of the report presents a physical description of the phenomenon for transonic and supersonic flows
based on experimental observations, correlations, and theoretical concepts. The second part presents an in-depth review
of various methods used to predict the phenomenon. It begins with methods used to predict the properties of a turbulent
boundary-layer encountering a pressure disturbance due to the presence of a shock-wave. There is some overlap in this
description with the material covered by Green (1970). However, the authors felt this was necessary to fulfill the
requirement of completeness and because of the maturation of some of the concepts. Subsequent discussion deals with
coupling methods involving the modeling of viscous and inviscid regions for the purpose of predicting eatire flow fields.
Then, analytic methods involving multi-deck techniques which provide insight into the physical aspects of the localized
phenomena are reviewed. The discussion ends with methods for solving the tiine-dependent Reynolds-averaged Navier-
Stokes equations now being developed to predict entire flow fields. Turbulence modeling necessary for implementing the
coupling and Navier-Stokes methods are discussed. Examples are presented through out the report to support the
appropriateness of the various methods and to provide an up-to-date status of their development. The authors have
attempted to make the various sections complete and self-consistent in order to facilitate the needs of
some readers who may not want to review the complete subject.
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PART I~ A PHYSICAL DESCRIPTION OF SHOCK-WAVE/BOUNDARY-LAYER INTERACTION

1 - GENERAL COMMENTS
1.1 - Introductory Remarks

In analyzing flows past obstacles, both from a theoretical and a phenomenological point of view, it is customary to
conceptually divide the field into distinct zones consisting of :

i - regions where viscous effects play a negligible role. There the flow is said to behave like a perfect fluid which
means that dissipative effects are (practically) inexistent. In these regions, the fluid motion can be accurately
computed by solving the Euler equations (or a simplified form of these equations if further simplifying
assumptions are verified: e.g. irrotationality...). Frequently, the perfect fluid region is called the "outer" or
"external" flow field.

ii- regions where viscosity must play a predominant role, namely: boundary-layers, wakes, mixing zones..

Except when the Reynolds number is very low, the viscous or dissipative regions are most often thin when
compared to a characteristic dimension of the obstacle (e.g. the chordlength of an airfoil). However, it should be
poiated out that even at high Reynolds number, circumstances can be met where the dissipative zones have a thickness
comparable to that of the obstacle. This is the case when a boundary-layer separates in a situation leading to the
development of a large separated bubble. Such a situation is encountered, for example, when an airfoil is stalled or in a
strongly overexpanded nozzle in which the flow separates far upstream of the exit plane.

In this AGARDograph, we will only consider flows with sufficiently high Reynolds number for the classical Prandtl
boundary-layer concept to be applicable to the incoming flow which will meet the shock-wave. That means that the yet
undisturbed boundary-layer approaching the shock region can be represented in terms of classical boundary-layer
concepts. Also, the conditions will be such that the shock structure has A aegligible thickness when compared to the
various macroscopic scales of the boundary-layer (see Section 1.2 below for more information on the turbulent
boundary-layer structure).

Thus, we shall consider the problem of a shock-wave propagating in a transonic or supersonic stream and that
"interacts" with the boundary-layer developing on an obstacle. Before going into a detailed examination of the so~called
interaction process, it can be useful, for future interpretation of the observed phenomena, to briefly recall the essential
features of a boundary-layer flow.

Basically, a boundary-layer is a thin layer across which the flow velocity decreases from the (high) external value
to zero at the wall where the no-slip condition must be satisfied. At the same time, the Mach number varies from the
outer value Mg to zero. Since the static pressure is transversally constant across it, the boundary-layer can be viewed
as a quasi-parallel flow with variable entropy from one streamline to the other, or which is equivalent, as a quasi-
parallel rotational flow.

Anticipating forthcoming explanations, its seems reasonable to consider that when a shock-wave propagates
through such a dissipative-layer, the viscous forces (resulting both from "true" laminar viscosity and "apparent"
turbulent viscosity) have locally a negligible influence over the major part of the flow. This fact will be experimentally
and theoretically justified in the forthcoming Sections. However, such behavior can be intuitively understood if it is
realized that the shock-wave imparts to the flow such an intense deceleration that - on the macroscopic scale -the
viscous forces become temporarily negligible vis A vis the inertial and pressure forces. (In reality, shock-waves are
viscous phenomena but on a microscopic scale in most usual situations. Thus, for our purpose, shocks will be considered
as perfect discontinuities).

According to the above remarks, for a first and crude schematization of the phenomenon, the shock penetration
into a boundary-layer can be viewed as a perfect fluid problem and some general trends can be inferred without
consideration of dissipative terms. However, it should be pointed out that a purely inviscid flow model necessarily leads
to inconsistencies in the near wall region where viscous terms must be predominant because of the no-slip condition at
the wall (this problem will be discussed in detail in Section 4 of Part ). Nevertheless, this so-called "inner viscous
layer" is excessively thin, especially in turbulent flows, so that its influence can be assumed of secondary importance.

When a shock-wave propagates through a boundary-layer, it "sees" an upstream flow of lower and lower Mach
number as it approaches the wall. The shock must adapt itself to this situation so that it becomes vanishingly weak
when it reaches the place where the Mach number is sonic. Moreover, the "pressure signal" carried by the shock is
necessarily transmitted in the upstream direction through the subsonic inner part of the boundary-layer. Thus, the
pressure rise caused by the shock is "felt" upstream of the point where the shock would meet the surface in the perfect
fluid model, i.e., in a flow without boundary-layer. Conversely, the thickening of the boundary-layer subsonic channel,
resulting from a rise in pressure, generates compression waves in the adjacent supersonic layer. These waves will in turn
weaken the shock wave, according to a mechanism which will be analyzed in more detail in following Sections.

The above simple reasoning shows that a very complex mechanism will take place in such a way that there is a
reciprocal influence between the shock-wave and the boundary-layer. This rapid description takes into consideration
only one aspect of the various phenomena involved in a shock-wave/boundary-layer interaction. Its purpose is to
emphasize the crucial importance of the velocity distribution - and hence the Mach number distribution - of the
incoming boundary-layer. Thus, before going into a more thorough examination of shock interaction problems, it is
certainly useful to recall some basic properties of a turbulent boundary-layer, since this AGARDograph will be mainly
concerned with turbulent flows.




1.2 - The Structure of a Turbulent Boundary-Layer

Experimental observation shows that a "well behaved" or "equilibrium" turbulent boundary-layer has a composite
nature, One successively distinguishes, as schematically shown in Fig. 1.1 :
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Fig. 1.1 — Structure of a well “behaved” turbulent boundary-layer.

i - a viscous sublayer very close to the wall, in which (molecular) viscosity is essential. This sublayer can be
further divided into: a linear sublayer, in contact with the wall, where the velocity is a linear function of the
ordinate y, and a buffer layer which insures a smooth transition with the adjacent non-linear region.

ii - a log-law region. With the use of the conventional profile representation : u/ur= flu;y/v) - where ur= v Ty/p is
a scaling velocity (often called the "friction” velocity) -all well behaved boundary-layers collapse into a single
curve independent of Reynolds number

iii- an outer region which is a wake-like region, that is independent of the Reynolds number but dependent on the
outer flow field, e.g., pressure gradient, ....

A faithful and widely used analytical representation of the velocity distribution across an incompressible turbulent
boundary-layer was given by Coles (1956). It consists in a combination of the law of the wake-law of the wall
(logarithmic region) written in the form :

(1.1) u/u; = (1/K) In (yue/v) + ¢ + @/k) w (y/8)

In this equation, k and C are two constants (usually k = 0.41 and C = 5.1),% is a "form factor" whose value deter-
mines the "strength” of the wake-component (for a flat-plate ¥= 0.55, it increases when the boundary-layer is submitted
to an adverse pressure gradient), and w (y/§) is the "wake function".

For our purpose, it is more convenient to express the velocity ratio in terms of ue, the value of u at the boundary-
layer outer edge. Thus, Eq. 1.1 is written in the form :

u/ug = up/ue (1/K) [In (yuy/v) + ¢ + (i/k) wiy/§)
Writing this equation for y = §, gives :
(1.2) 1= ug/ue [(1/K) In (§up/v) + c + 21/K]

(the function w having been normalized in such a way that its value at y = § is 2).
Combining Egs. 1.1 and 1.2 gives :

(1.3) Wae = 1.+ (1/%) { 1n (y/6) + ¥ [2 - wly/8 )}
In terms of more usual boundary-layer parameters, 7 is determined by the equation :
(1.4) 7=k (ue/ur) (878) - 1

where § is the boundary-layer displacement thickness. Equation 1.3 can also be written in the form :

(1.5) u/ug = 1+ (1/k) (ug/ue) In {y/ 8) - (87 § - u/kue) [2 - wiy/ §)]

which eliminates the singularity presents in Eq. 1.3 at the separation point where j tends to infinity. According to
Coles' formula, at a separation or a reattachment stationu _= 0, which suppresses the logarithmic component of the
orofile representation. £




Introducing the Reynolds number R s= Ye 8and taking Eq. 1.4 into account, Eq. 1.2 can be written :
v

(1.6) L= u/u, [A/K) In (Rgug/uy) + C + 2 (u 8%/u 8 ~ 1/k)]

Remembering that from the definition of the friction velocity (in incompressible flow), one has u,[/ue = (0.5 Cf)1/2,
Eq. 1.6 provides an equation to compute the skin-friction coefficient knowing the Reynolds number R § and the profile
"shape parameter" §%/§.

According to Coles' hypothesis, w(y/§) is a universal function common to all two-dimensional incompressible
boundary-layer flows. This function is determined from correlation of experimental data and, for practical purposes, it
is frequently represented by the following analytical formula :

w (y/g) =1 - cos (ny/6)

It is to be noticed that Eq. 1.1 (or 1.5) is not valid near the wall since the log term tends to minus-infinity when y
approaches zero. However, at usual Reynolds numbers, Eq. 1.1 (or. 1.5) can be utilized for very small values of y/ §
with realistic results still being given for y/ §=0.01. In general, Eq. 1.1 (or 1.5) is sufficient for estimating the boundary-
layer global properties. If one needs more accurate information on the velocity distribution and especially on the
laminar sublayer, more sophisticated analytical representations are available (see Sections 1 and 2 of Part II).

As shown by Maise and Mc Donald (1967) it is possible to derive a good representation of the velocity distribution in
a compressible turbulent boundary-layer by using the Van Driest generalized velocity concept. Thus, in compressible
flows, the velocity profile will be given by :

(1.7) u/ue = (1/a) sin [a (u_r/kue) {In (y/8) - ’7\71[2—w (y/8)1} + s:i.n"1 aj

where a = {0.5r(y-1) Mi/[1+0.5r (v-1) Mi] }1/2 s r being the recovery factor.

However, for an adiabatic wall (i.e., no heat transfer at the wall) and moderate external Mach number Me (Mg <2),
the effect of compressibility on the velocity profile is weak, so that Eq. 1.5 can still be used. The essential difference
with an incompressible flow is that the shape parameter will then be defined with the "incompressible" displacement
thickness :

x 5

%7 Jo - uy ay

and not with the "true" or compressible displacement thickness.

Thus, at a 'i‘ven Mach number, the velocity distribution depends on two—paramglgers : namely, the skin-friction
coefficient and 03/8 (or ) ; or {which is equivalent) on the Reynolds number R§ and § /8.

It is more usual to characterize the shape of the velocity distribution by using the following "incompressible" shape
parameter (or form factor) :

$
Hj=683/8;

where 8 is the "incompressible"” momentum thickness defined as :
8
8y = fo (u/ue) 1 - u/ue) dy

As it is a simple matter to deduce Hj from 5‘}/5 by numerical integrations on the velocity profile, henceforward,
we will definitively adopt Hj as shape parameter (the word "incompressible” being omitted). To conclude, one sees that
the velocity distribution of a so-called "well behaved" or "equilibrium" turbulent boundary-layer is entirely determined
from the knowledge of Hj and R§ (plus perhaps the Mach number: Furthermore, the flow is assumed adiabatic).

As a matter of fact, Hj and R§ are not always entirely independent. For a well-behaved flat-plate boundary-layer,
Hj is a unique function of the Reynolds number (and of the Mach number). There exist several well-known correlation

laws allowing the calculation of Hj from given values of R§ and Meg. They generally lead to nearly identical results, One

of these laws (Clauser, 1954) has be used to compute the variations of H; with R § shown in Fig. 1.2, One notes that for

a flat-plate Hj is weakly dependent on the Mach number. An increase in the Reynolds number provokes a decrease of
the shape parameter, This decrease in Hj reflects a "filling" of the velocity distribution as the Reynolds number rises.

; [ e Fig. 1.2 — Flat plate turbulent boundary-layer — Incompressible
i T W o Ry shape parameter.




For a fixed value of R g, Hj can be varied by submitting the boundary-layer to some external constraint : e.g., a
pressure gradient, injection or aspiration at the wall or rough-wall effect...

The change in the shape of the velocity profile with varying Hj, at constant Reynolds number, is illustrated in Fig.
1.3 (the drawn profiles have been computed by using Eq. 1.5). The higher Hj the less "filled" is the profile and,
consequently, the less the kinetic energy carried. Thus we can already guess that a boundary-layer having a high shape
parameter will be more sensible to adverse external agencies. The importance of the boundary-layer shape parameter,
specially in transonic interactions, seems to have been pointed out first by Panaras and Inger (1977).

To conclude the present Section, the curves traced in Fig. 1.4 give the skin—friction coefficient of an equilibrium
flat-plate boundary-layer. These curves can be helpful for the interpretation of results presented in forthcoming
Sections.
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Fig. 1.4 — Flat plate turbulent boundary-layer —
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Fig. 1.3 — Velocity distribution

in a turbulent boundary-layer

(from Coles law of the wall/law
of the wake).

1.3 - Upstream Influence

Let us consider the case of an oblique shock-wave produced in a supersonic flow by a wedge (or compression ramp).
For this configuration, it is possible to define unambiguously an upstream interaction length Lo as the distance between
the corner which would be the origin of the shock in perfect fluid flow (provided that the deflexion angle is not such
that the shock is detached) and the point where the existence of the shock is first felt in the real viscous flow.

According to previous remarks, L, appears as being essentially a function of the height y*of the subsonic part of
the boundary-layer since this part constitutes the "channel” through which the shock effect can be transmitted in the
upstream direction. Thus, it can be forecasted that for a given external Mach number, i.e., a given shock-strength, the
thicker the subsonic layer, the longer the upstream influence length.

The ordinate y* depends on the external Mach number, on the velocity and temperature distributions across the
boundary-layer as well as on the boundary layer thickness § ( the temperature profile which determines the speed of
sound distribution depends mainly on the thermal situation at the wall). Thus, for a turbulent boundary-layer, the
normalized ordinate y*/ § depends on : Mg, R 5, Hj and on the ratio Tw/Tte of the wall temperature to the external
stagnation temperature.

In order to give some idea of the value of n =y /8 , Fig. 1.5 shows evolutions of  with Mg, Hj and Ty/Tte, the
Reynolds number being kept constant. Examination of these curves leads to the following remarks :

i-ina turb.ulent boundary-layer, the sonic line rapidly approaches the wall as the outer Mach number increases.
Henc:e, it can already be anticipated that the upstream influence length will be much shorter in turbulent flows
than in laminar flows (as shown by the insert of Fig. 1.3, the subsonic layer of a laminar flow is far thicker).

ii- when Hj increases, the velocity profile becomes less filled and, consequently, the subsonic layer is thicker.
Hence, in principle, to a greater Hj will correspond a longer upstream influence length. As Hj decreases when
R¢§ increases for a flat-plate boundary-layer (see Fig. 1.2), we can anticipate a decrease in Ly for increasing
Reynolds number. However, this conclusion should be tempered, since the above tendency is not always
observed at low Reynolds number.

iii- cooling the wall (T/T¢te <1.) reduces the speed of sound throughout the boundary-layer. Consequently, the
Mach number level is raised, especially in the vicinity of the wall: hence, a thinning of the subsonic layer
leading to a reduction of the usptream influence length.
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A more complete examination of the upstream propagation of shock influence will be presented in the forthcoming
Sections, firstly from experimental observations, then by considering theoretical arguments. It will also be seen how the
fullness of the initial boundary-layer profile plays a determinant role in the "resistance" of that boundary-layer to Shock
Induced Separation. This problem will be thoroughly discussed in Sections devoted to Incipient Separation.

A second parameter of influence is the relative importance of the viscous and inertia forces in the lower part of
the boundary-layer. As seen from intuitive arguments and from consideration of the momentum equation, these forces
have contrary effects. The above demonstration puts an emphasis on inertia forces in the sense that the "fullness" for
the incoming boundary-layer profile is presented as playing the essential role in the interaction mechanism. In fact, this
behavior seems to be true only at high Reynolds numbers. At low to moderate Reynolds numbers, the interaction tends
to be dominated by viscous effects, in accordance with the Free Interaction Theory presented in Section 3 below. The
situation is illustrated by Fig. 1.6 which shows the variation of the sonic layer and viscous layer locations with the
Reynolds number for a flat plate turbulent boundary-layer at an outer Mach number of 3 (Settles, 1975). One sees that
at low Reynolds number (R5<5.105), the viscous layer thickness is comparable to that of the sonic layer. But, as the
Reynolds number increases, the relative thickness of the viscous layer decreases rapidly and at Rg> 107, it is an order

of magnitude thinner than the sonic layer. The consequences of this behavior will be commented on in forthcoming
Sections.
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Fig. 1.6 — Flat plate boundary-layer at M = 3 — Location of
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2 - INTERACTION IN TWO-DIMENSIONAL TRANSONIC FLOWS
2.1 - Some Specific Characteristics of Transonic Flows

Broadly speaking, a flow is said to be transonic when in the outer inviscid stream there exist regions where the
Mach number is supersonic and regions where the Mach number is subsonic. This is in contrast to the situation envisaged
in Section 3 below where the external stream remains supersonic throughout the region of interest. Hence, the essential
characteristics of a transonic flow is that the inviscid part of the fluid is governed by equations of motion which are of
the hyperbolic type in some domains - i.e., when the flow is supersonic - and of the elliptic type in other domains - i.e.,
when the flow is subsonic.

An essential feature of these flows is that the transition from supersonic to subsonic Mach number practically
always takes place in an irreversible manner, i.e., by means of a shock-wave (except on shock-free supercritical airfoils
which are specially designed to produce an isentropic compression on their upper surface in order to eliminate wave-
drag, Whitcomb, 1974; Sobieczky et al., 1979).

An immediate consequence of the ellipticity of part of the outer inviscid flow is that the whole flow depends
strongly on conditions prevailing well downstream of the shock interaction region. This fact constitutes a major
difference with entirely supersonic outer streams, the flow structure in this later case being essentially determined by
the upstream incoming state. Then, the influence of the downstream conditions via the boundary-layer is most often
weak, except in the case of large separation.

Another typical feature of the envisaged transonic flows is that the shock-waves they contain are "normal” shock-
waves, or more exactly, "quasi-normal" shock-waves. The expression "quasi-normal" means that in most transonic
streams, the shocks are strong oblique shock, in the sense of the strong solution of the oblique shock equations (this fact
will be established in Section 2.6). As opposed to this situation, in a Supersonic Interaction the shocks encountered are
most often weak oblique shocks.

For the two kinds of interaction, however, a situation may exist in which shocks belonging to the other family are
also present. For instance, in what is called a transonic lambda shock-system, the leading wave is a weak oblique shock
(see section 2.8.1 below).

2.2 - Importance of Viscous Effects in Transonic Flows

Within the concept of Viscous-Inviscid Interaction, the effect of viscous (or dissipative) regions on the external
inviscid stream can be interpreted :

i - either as a change in the effective body-shape, according to the displacement body concept,

ii - or as a modification of the usual condition enforced on the obstacle, according to the transpiration velocity
concept (for more information, see Section 3 of Part II below).

Thus, for a fixed body geometry and unchanged outer boundary conditions at upstream and downstream infinity,
local alteration of the boundary conditions "seen" by the outer inviscid stream are due to viscous effects, namely:
boundary-layers, wakes....

Hence, considering the fact that in tramsonic flows, the field contains large elliptic regions, any change -even
slight- in the boundary conditions at some specific location may entail dramatic repercussions on the structure of the
whole flow field. This is particularly true for the position of a normal shock on an airfoil or in a transonic channel.
Consequently, it is to be expected that viscous (we will also say "dissipative") effects, and particularly those taking
place when a shock meets a boundary-layer, will be of special importance in transonic {lows.

A demonstrative way to illustrate this point is to compare perfect fluid calculations to experiment. Here, we shall
give a very limited number of such comparisons, many other examples can be found in the literature.

A dramatic example of the importance of viscous effects on a transonic airfoil is given in Fig. 2.1 (Wai and
Yoshihara, 1981b). This case is relative to a supercritical airfoil. Here, experiment is compared to two perfect-fluid
calculations: the first one uses the full potential equation, the second, the small disturbance approximation of this
equation. Both calculations give a flow in which the shock on the upper surface is located practically at the airfoil
trailing-edge; whereas, in reality, the shock occurs at about 30% of the chordlength. Accordingly, on the upper surface,
there is a huge difference between the computed and the measured pressure distributions. Neglecting any inaccuracies
in applying these inviscid methods where shock Mach numbers are above 1.3, the differences between computation and
experiment can be attributed to the neglect of important viscous effects. In the present example, such a large
discrepancy is due to the special shape of the airfoil: its uper surface is nearly flat over the major part of the
chordlength, with a rear part highly cambered. Hence, any alteration of the airfoil contour in consequence of viscous

effects, entails a large displacement of the shock in the perfect fluid calculation. Furthermore, for a highly rear-loaded
airfoil, viscous effects are enhanced by the strong compression taking place in the trailing-edge region (see Section 2.3
below). The agreement between computations and experiment is also very poor on the lower surface. This is a
consequence of the great change in circulation produced by viscous effects. To conclude, Fig, 2.1 shows a schematic
representation of the computed and actual flow fields.
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Fig. 2.1 — Importance of viscous effects on a supercritical airfoil. Fig. 2.2 — Example of viscous effects in a channel flow

The second example, shown in Fig. 2.2, is relative to the flow inside a two-dimensional transonic channel (Délery et
al., 1973). In this arrangement, a circular half-profile (or bump) is mounted on the channel lower wall, the upper wall
being flat (see sketch in Fig. 2.2). The figure shows the "wall" Mach number distributions on the upper and lower walls
(the "wall" Mach number My is computed from the wall pressure by assuming an isentropic relationship and by
considering the stagnation pressure as everywhere constant. Then entropy rise through the shock being here very small,
My is practically equal to the Mach number at the boundary-layer edge, except in the shock foot region where non-
negligible normal pressure gradients may exist).

The bump produces an acceleration of the flow to a velocity which is slightly supersonic near the lower wall, The
supersonic pocket which forms is terminated by a shock located at a place where the Mach number is close to 1.25 in
the immediate vicinity of the bump. One sees that the channel is not choked, the Mach number near the upper wall
remaining subsonic,

The experimental values of My are here compared to distributions computed by solving the full Euler equations
(Laval, 1973). In the upstream part of the channel, where viscous effects are weak (except in the immediate vicinity of
the bump leading edge), agreement between perfect fluid theory and experiment is very good. On the other hand, one
observes a large discrepancy between the computed and measured distributions in the downstream part of the bump as
well as in the subsequent constant section channel. The origin of the discrepancy is to be found in the "strong" viscous
interaction taking place in the shock foot region. This interaction provokes an important thickening of the boundary-
layer with a sizeable modification of the channel "effective" geometry as an obvious consequence.

Before proceeding to a detailed local analysis of Transonic Shock-Wave/Boundary-Layer Interaction phenomena, it
is useful to provide an overview of viscous interactions on a transonic airfoil, so as to emphasize the crucial role played
by phenomena occurring in the shock foot region.

2.3 - Phenomenological Description of Transonic Viscous Interaction on an Airfoil

For an airfoil, viscous effects are of special importance in two regions: in the vicinity of the shock foot and near
the trailing edge, the situation at the trailing edge being obviously strongly dependent on the previous history of the
boundary-layer, which includes its interaction with the shock.

The phenomenological description of the flow development past an airfoil at transonic speed was given nearly
thirty years ago by Pearcey (1955) (see also more recent publications by Pearcey et al., 1968). According to this well-
known and now classical work, interactions entailing flow separation (which are of special importance for practical
purposes) are classified into Type A and Type B separation patterns.

In Type A flows, a moderately strong shock induces a local thickening of the boundary-layer (see sketch in Fig. 2.3).
As the free stream Mach number M, (or incidence) is increased, the shock becomes stronger and a limit is reached
where Incipient Separation occurs at the shock foot (see Section 2.7 on Incipient Shock Induced Separation in transonic
flows).

Thereafter, a separation bubble forms at the shock foot and any further increase in Mach number (or incidence)
beyond that stage results in the growth of the separation bubble. The progressive growth of the bubble is thus a
characteristic feature of this type of flow with the separation point fixed at the shock foot and the reattachment point
moving progressively downstream toward the trailing edge as the overall strength of the shock increases. According to
Pearcey, such a situation does not depend much on the boundary-layer thickness at the shock foot (provided it is fully
turbulent). The reason is that Incipient Separation is weakly dependent on the Reynolds number (see section 2.7.2
below), Furthermore, the growth of the separation bubble, in relation to an increase in the shock strength, is so rapid
that the flow cannot be strongly influenced by scaling effects in the trailing edge region. In this situation, the rapid
divergence of the trailing edge pressure and the correlative change in circulation occur as a consequence of a rapid
bubble growth triggered from the shock foot. This kind of interaction, designated as Type A flow, occurs with moderate
adverse pressure gradient downstream of the shock.

In Type B flows, a very strong recompression takes place in the rear part of the profile. This situation corresponds
to highly rear-loaded airfoils, as is the case with supercritical airfoils (see first example given in the previous Section).
The essential difference between this type and Type A is the inclusion of a second separation in the subsonic flow
approaching the trailing-edge (see Fig. 2.3). This second separation is the classical subsonic, turbulent, rear-separation
occurring in an adverse pressure gradient present on the rear part of an airfoil.
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Fig. 2.4 — Transonic interactions — Shock/boundary-layer interaction
on an airfoil — Variants of type B (Pearcey et al., 1968).

Fig. 2.3 — Transonic Interaction — Schematic representation
of shock / turbulent boundary-layer on an airfoil { Pearcey , 1955 )

As is well known, the separation of a boundary-layer primarily depends on the two following factors:

i - the local adverse pressure gradient imparted to the boundary-layer; or, more exactly, the pressure gradient
scaled to the thickness § of the boundary-layer,

ii - the velocity distribution across the boundary-layer. A destabilized boundary-layer having a high shape
parameter is more likely to separate than one with a low Hj.

The shock effect serves both to thicken the boundary-layer (which increases the intensity of the adverse pressure
gadient) and to increase its shape parameter by "emptying" its velocity distribution. Hence, it is clear that the shock

interaction will "catalyze" the development of a rear separation that was already either incipient or actually present in
the subsonic rear gradients before shock-waves appeared.

In such circumstances, one can expect several variants of the Type B Flow (see Fig. 2.4):

i - the shock interaction produces a bubble at the shock foot, thus a strong destabilisation of the boundary-layer
which thereafter separates near the trailing edge;

ii - the perturbation produced in an interaction without separation is strong enough to promote rear separation;

iii - rear separation is already present in subsonic conditions, but the occurrence of a shock at higher Mach numbers
worsens the situation by provoking a rapid extension of the rear separation.

For all these circumstances, an increase in the upstream Mach number or in the angle of attack, results in the
formation of a large separated zone extending from the shock foot. The formation of this zone can be the consequence
of the merging of the bubble present at the shock foot and of the rear separated zone.

A quantitative example of Type B Flow can be found in a paper by Stanewsky and Little (1971). These authors made
experiments with a simulated airfoil contour installed near the lower wall of a small transonic wind tunnel (type b test

set-up shown in Fig. 2.12). The evolution, with the free stream Mach number M_, of the shock chordwise location and
of the extent of the separated regions are shown in Fig. 2.5.

When M increases, one observes first a displacement of the shock towards the trailing edge. At the same time, the

size of each separated region increases, especially the size of the bubble forming at the shock foot. For M greater
than 0.83, the two separated zones merge and one notices a temporary reversal in the shock motion, probably due to the
large change in circulation which occurs when the airfoil is largely separated. This situation is illustrated by the

schlieren photograph of Fig. 2.6 (acccording to Pearcey, 1955) which shows the flow structure past an airfoil with
severe separation at the foot of the upper surface shock.
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Fig. 2.5 — Example of type B flow — Shock location and develop-

ment of separated regions on a two-dimensional airfoil contour
(Stanewsky and Little, 1971).

Fig. 2.6 — Transonic interaction on an airfoil schiieren photograph
of the flow with severe separation at the foot of the upper-
surface shock (Pearcey, 1955).
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The progressive evolution from an unseparated to a largely separated situation is illustrated by the sequence of
holographic interferograms shown in Fig. 2.7 to 2.9 (according to Johnson and Bachalo, 1978). The sequence corresponds
to an increase of the angle of attack @ for a symmetrical airfoil (NACA 64A010), the free stream Mach number being
kept constant and equal to 0.8. For =0, a shock is already present in the flow, but there is no evidence of separation.
For 0=3.5 deg., one observes an important thickening of the boundary-layer downstream of the shock and it is probable
that separation occurs in a small region near the trailing edge. When o= 6.2 deg., a large separated region emanates
from the shock foot. The situation is similar to the one shown in Fig. 2.6. Processing of the interferograms has
permitted the tracing of the iso-Mach lines in the inviscid flow which are shown in Figs. 2.7 to 2.9. One notes that the
shock induced separation (at = 6.2 deg.) corresponds to a situation where the local Mach number at the boundary-layer
edge, just upstream of the shock, is close to 1.3. This value is in good agreement with the correlation for Incipient
Shock Induced Separation given in Section 2.7.2 below.
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Fig. 2.7 — Transonic flow past an airfoil angle
a_ Infinite Fringe interferogram b Corresponding Mach number contours of attack a= 0 deg. (Johnson, 1978).
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Fig. 2.8 — Transonic flow past an airfoil angle
a_ Infinite fringe interferogram b_ Corresponding Mach number contours of attack &= 3.5 deg. (Johnson, 1978).

D.ﬂ.mmnmﬂ MguQB R o210 |
| / i |
| 75 1,| \ |

Y

d Fig. 2.9 — Transonic flow past an airfoil — Angle of attack
a_ Infinite fringe interferogram b _ Corresponding Mach number contours @=6.2deg. — Separation at the shock foot (Johnson, 1978).

2,4 - Scaling Effects in Transonic Flows

Consideration of viscous effects in transonic flows is also essential for the correct interpretation of wind tunnel
tests made on small scale models. Differences in Reynolds number and "scaling effects" can lead to dramatic
differences between wind tunnel experiments and flight results. This problem has been examined in great detail by
Stanewsky (1981). Here, we will give only two examples of these effects in order to illustrate their crucial importance.

The first example is presented in Fig. 2.10 which shows a comparison between flight tests and wind tunnel
measurements performed at a Reynolds number ten times smaller (Stanewsky and Little, 1971). In wind tunnel
conditions, the boundary-layer on the upper surface is certainly turbulent over the major part of the airfoil,
Nevertheless, its relative thickness §/c (c being the airfoil chordlength) is larger than at higher natural Reynolds
numbers (this is particularly true if tripping devices are used to promote transition). Thus, the scaled streamwise pres-
sure gradients (§/p) (dp/dx) are more intense and, consequently, the viscous effects tend to be more severe in test
conditions than for the full scale airfoil: on the small scale model, the shock is farther upstream and the pressure rise in
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the rear part of the airfoil is more likely to produce separation. As a consequence, the boundary-layer displacement
thickness grows considerably following the jump caused by the shock and the rear separation. On the other hand, at high
Reynolds number, the boundary-layer upstream of the shock is thinner. The relative jump in displacement thickness
across the shock is greater due to a higher Mach number upstream of the shock and the possible presence of a small
separation bubble. However, the increase in boundary-layer displacement thickness down to the trailing edge is more
gradual partly due to the absence of rear separation.

Another example of the fundamental importance of scaling effects is relative to an airfoil whose lift coefficient
was measured as a function of the free stream Mach number M , the model being equipped with different transition
bands (Pearcey et al., 1968). The corresponding results are shown in Fig. 2.11.

The lower chain-dotted curve in Fig. 2.11 corresponds to a coarse transition band located very near the leading-
edge. The upper, full curve, was obtained for a finer band, placed further downstream. In this case, the boundary-layer
is certainly thinner than in the first case. One sees that when M _is lower than 0.65, the two curves are very close.
They start to diverge for M greater than 0.65, the lift coefficient measured with the coarse transition band becoming
more and more inferior to that obtained for a fine, sparse transition band. Such a divergence is due to the difference in
boundary-layer thickness, viscous effects being more severe for the thicker boundary-layer.
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(Stanewsky and Little 1971).

2.5 - Basic Experimental Arrangements Used in Transonic Interaction Studies

The phenomenological discussion of shock-wave/turbulent boundary-layer interaction in transonic flows will be
greatly facilitated by a preliminary short presentation of the experimental arrangements most often employed to study
these phenomena. Such an Introductory Section allows us to avoid a repetitive description of the various test set-ups
utilized to collect the data which will be presented in what follows. As a matter of fact, for transonic flows, it is
particularly important to specify the experimental conditions in which the data were obtained since, as will be seen
later, a transonic interaction strongly depends on the whole flow field configuration. On the other hand, it can also be
of interest to briefly discuss the specific problems encountered in the experimental analysis of transonic interactions.

In this Section, we will consider only two-dimensional test set-ups, since most of the available experimental results
were obtained for nominally two-dimensional flows. Also, we will restrict our attention to experimental arrangements
aimed at the specific study of viscous interaction and not at the simulation of the transonic flow past an airfoil placed
in an unbounded atmosphere. This last problem is extremely difficult to solve. It is the origin of very intensive research
programs which are still underway. Its examination would be beyond the scope of the present AGARDograph.

It is clear that the arrangement allowing the most faithful simulation of interactions taking place on an airfoil
consists in a model airfoil mounted in the center of the flow field, between the two opposite walls of the wind tunnel
test section (Type a test set-up schematically represented in Fig. 2.12). This arrangement has been -and is still- widely
used in research aimed at the improvement of airfoil performance or the design of new airfoil shapes. The first
phenomenological studies of transonic interactions were made essentially with this type of installation. A frequent
drawback of this kind of arrangement is that the Reynolds number is insufficient to insure a fully turbulent boundary-
layer at the shock location. To promote transition,it is thus necessary to employ tripping devices that generally provoke
an "unnatural” thickening of the boundary-layer. This fact leads to the already mentioned scaling-effects (see Section
2.4 above). Furthermore, the tripped boundary-layer may differ markedly from a well behaved turbulent boundary-layer.
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Fig. 2.12 a — Typical experimental arrangements for the study Fig. 2.12b — Typical experimental arrangements for the study

of 2D transonic shock/boundary-layer interaction. of 2D transonic shock/boundary-layer interaction.
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The relatively recent development of pressurized and/or cryogenic wind tunnels tends to overcome this
shortcoming by providing unit Reynolds numbers high enough to insure"natural” transition on small scale models.
Nevertheless, for basic studies necessitating local flow analysis, other types of model arrangements are often preferred
to the complete airfoil so as to have boundary-layers thick enough to be accurately probed by existing techniques. One
variant of the complete airfoil model consists in mounting an enlarged half-airfoil model on the floor of the wind tunnel
(Type b set-up shown in Fig. 2.12). The wind tunnel floor boundary-layer is removed via a bleed system so that a new
boundary-layer will begin at the airfoil leading edge stagnation point. Such an arrangement ensures an airfoil-type flow
over the model and makes it easier to implement instrumentation (it is obvious that only the upper-surface flow can be
simulated). Furthermore, the boundary-layer is thicker thanks to the realization of greater chordlengths, tunnel
blockage being prevented by contouring the facing wall.

A still thicker boundary-layer can be obtained with a bump mounted on a wind-tunnel wall (Type c set-up shown in
Fig. 212). This arrangement has the disadvantage of the tunnel boundary-layer being superimposed on the model
boundary-layer. Furthermore, the wind tunnel boundary-layer has an uncertain origin, so that the Reynolds number and
upstream influence are unlike those of an airfoil boundary-layer. This drawback is not very serious if one is mainly
concerned with a local analysis of shock interaction phenomena. However, one should be careful to use bumps of
sufficiently small relative thickness, otherwise the favorable pressure gradient in the accelerating part of the flow can
be so large that the boundary-layer shape parameter Hj falls to unrealistically small values at the interaction origin
(Délery, 1974). Another disadvantage is that the flow field past the model is rather complex, This fact can lead to
serious difficulties in establishing the proper influence of the "basic" parameters acting on the process: namely, the
initial Mach number M, the local Reynolds number, the curvature of the wall, etc... Also, such flows can be hard to
model with the presently available theoretical methods.

A simpler "basic" configuration can be obtained by positioning a normal shock-wave in the test section of a
supersonic wind tunnel and considering its interaction with the tunnel wall boundary-layer (Type d set-up shown in Fig.
2.12). The initially supersonic flow can be produced either by symmetrical nozzle blocks or by a long bump-like block
mounted on one of the tunnel walls. A second throat, of adjustable cross-section, is frequently placed at the test section
outlet making it possible to position the shock by choking effects in a continuous and precise manner. A more stable
flow is generally obtained by adjusting the second throat in such a way that the shock forms at the end of the diverging
part of the nozzle. The presence of a second throat is also recommended in the preceding arrangements in order to
isolate the flow under study from pressure disturbances generated in the downstream ducts of the wind tunnel.

The Type e test set-up (see Fig. 2.12) is frequently utilized to study the interaction with a boundary-layer whose
origin is well-known and which has developed in a uniform supersonic flow prior to the interaction. This arrangement
consists of a flat-plate above which a shock generator is equipped with a choking flap whose aperture is adjusted in such
a way that a quasi-normal shock-wave stands in the place containing the shock-holder leading edge.

An intrinsic drawback of all nominally two-dimensional experimental models is that, in reality, they are not free of
three-dimensional disturbances produced by side effects, i.e., coming from the interactions taking place with the
boundary-layers of the test section side walls. Such disturbances may have considerable influence in transonic flows
where a very slight change in the effective tunnel geometry "seen" by that part of the flow considered as inviscid (i.e.
the geometry taking into consideration the four wall boundary-layers) can induce dramatic modifications in the flow
field and especially in the shock location.

Moderate three-dimensional effects are not really a problem for a phenomenological discussion of shock-
wave/boundary-layer interaction focussing on typical trends and characteristic scaling laws. On the other hand, even
small side effects affecting a transonic experiment, can render meaningless any comparison with a two-dimensional
calculation.

A complete elimination of side-effects in transonic flows is extremely difficult if not impossible to achieve. To
overcome this major drawback of two-dimensional installations, without sacrificing the simplicity of flows depending on
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Fig. 2.13 — Schematic of the test section arrangement
for investigation of typical transonic interactions.

only two spatial co-ordinates, the best solution is certainly to use an axisymmetric arrangement like the one shown in
Fig. 2.12 (Type f test set-up). This arrangement is in fact the axisymmetric counterpart of the 2-D Type d test set-up.
It is also possible to employ a toroidal bump mounted on a cylinder placed in a cylindrical transonic channel (Type g test
set-up in Fig. 2.12). Then, we would have the axisymmetric counterpart of the bump-on-the-wall arrangement.

A major disadvantage of a totally axisymmetric installation is that it renders both flow visualisation and
measurements with non-intrusive optical techniques difficult (e.g. interferometry or Laser Doppler Velocimetry). This

constitutes a severe shortcoming since transonic flows are extremely sensitive to disturbances generated by "material
probes.
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2.6 - Transonic Interactions Without Boundary-Layer Separation

2.6.1 The General Flow Structure

As will be shown in Section 2.7 on Incipient Shock Induced Separation, this means that the Mach number Mg on the
upstream face of the shock is less than approximately 1.3. The following analysis will be based on experimental
observations made on an arrangement belonging to the Type d test set-up (see Fig. 2.12). These experiments were
performed in a small transonic channel whose main dimensions are given in Fig. 2.13. The wind tunnel was continuously
supplied with dessicated atmospheric air, the stagnation conditions being pt = 95 kPa for the pressure and Ty = 300 K for
the temperature (Délery, 1977).

Figure 2.14 shows interferometric photographs of interacting flows obtained with a long bump mounted on the
channel lower wall, the upper wall being flat. Before interpreting these photographs, let us recall that, for a two-
dimensional flow, the fringes of an interferogram of the kind obtained here -i.e. by using the infinite fringe mode of
operation-'are lines of constant flow density. Hence, if the flow is isentropic, the fringes are also lines of constant
Mach number, constant pressure, etc... This is not true in dissipative or rotational flow regions, such as in boundary-
layers or downstream of a curved shock. However, as already pointed out in Section 2.2, for the transonic flows under
investigation, the entropy rise across the shock is so small that these flows can be considered as irrotational throughout
the field - except of course in the boundary layers.

Mg 1.1 Mo 1.18 M,-126 Rg, = 0.55x10°

Fig. 2.14 — Transonic interaction without separation
interferogram of flowfields.

On the interferograms, the boundary-layer outer edge coincides with the rapid bending of the fringes visible in the
vicinity of the wall. This bending is due to the rapid decrease of density across the boundary-layer. The apparent
thickness of the shock in the main field comes from the aforementioned side effects on the test section windows.

In the sequence of photographs shown in Fig. 2.14, the upstream external Mach number Mg relative to the
interactions taking place on the test section lower wall varies from 1.11 to 1.28. The maximum value nearly corresponds
to the limit for Incipient Shock Induced Separation.

A closer examination of the interferograms reveals the following flow features :

i - when the shock-wave is very weak (Fig. 2.14a), one observes that the discontinuity (which is the trace of the
shock in the outer inviscid stream) continues in the boundary-layer. This indicates a deep penetration of the
shock inside the boundary-layer. In the present case, the unperturbated incoming boundary-layer is supersonic
over approximately half of its thickness in spite of the low external Mach number Mg, This is because of the
"filling" of the boundary-layer velocity distribution by the strong acceleration taking place in the channel,
upstream of the shock (this filling is reflected by a relatively low value for the initial incompressible shape
parameter Hig = 1.3);

ii - when the shock strength is increased (Fig. 2.14b and 2.14c), compression waves are seen to form inside the
boundary-layer. These waves originate from a region close to the wall and converge to a point from which the
quasi-normal shock seems to emanate. There is no special reason for the compression waves to precisely meet
at a point. Nevertheless, interferograms show that the focussing of the waves is nearly punctual. The
spreading of the compression waves in the vicinity of the wall becomes more and more evident as M,

increases. At the same time, one observes an emergence of the shock origin from the interior of the boundary-
layer.

A schematic representation of the flow structure in the shock foot region is. shown in Fig. 2.15. The rise in pressure
produced by the shock propagates upstream through the subsonic part of the boundary-layer. The subsequent
deceleration entails a thickening of this subsoni¢ layer. The corresponding bending of the sonic line generates
compression waves which propagate in the supersonic part of the flow. Hence, in this region, the shock discontinuity is
replaced by a gradual compression.

When the upstream Mach number is very close to unity, the "elliptic leakage" beneath the shock produces a
relatively slight thickening of the boundary-layer subsonic channel. Consequently, the compression waves induced in the
adjacent supersonic part of the flow are very weak so that the shock is only slightly weakened as it propagates in the
boundary-layer. It disappears only upon reaching the sonic line. In the present situation, the observed flow structure
rather closely resembles the flow model of asymptotic theories when considering the limiting process in which the
boundary-layer sonic line is very close to the wall. Then, according to these theories, the shock penetrates deep into the
boundary-layer (for more information on asymptotic theories, see Section 4 of Part II below).

On the other hand, when the incident shock becomes stronger, the thickening of the subsonic layer is more rapid,
with subsequent higher local deflection angles. In these circumstances, the induced compression waves are more
intense. There results a greater weakening of the shock in the boundary-layer structure.
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It should be pointed out that the interaction mechanism cannot be entirely explained in terms of perfect fluid
arguments. As a matter of fact, the neglecting of viscous terms (both laminar and turbulent) in the near wall region
leads to inconsistancies because of the necessity of satisfying the no-slip condition at the wall. In fact, the upstream
influence phenomenon, with the accompanying spreading of the compression at the wall, is a very complex process
involving "strong” interaction between the different layers into which the flow can be divided. A correct picture of the
phenomenon was developed from rational arguments by Lighthill (1953) and by Stewartson and Williams (1969). Their
research led to the so-called "triple-deck” theory which is presented in detail in Section 4 of Part I below. Here, we
will only cite its essential conclusion. The flow through an interaction must be considered as consisting of three layers
or "decks" : the outer potential flow (outer deck), the inviscid rotational flow comprising most of the boundary-layer
(main deck) and the thin viscous sublayer in contact with the wall (inner deck). Upstream influence is viewed as the
result of a self-induced interaction among these three layers. As a consequence of this process, it may be that viscous-
interaction and subsonic forward propagation are mutually responsible for the observed trends (Settles et al., 1981).

A more quantitative picture of the flow in the shock foot region is given in Fig. 2.16 which shows a tracing of iso-
Mach lines determined from measurements performed with a two-color Laser Velocimeter in the transonic chammel
represented in Fig. 2.13.

Before going into a closer examination of the interaction domain, let us briefly consider some properties of the
outer inviscid flow. As already seen, the shock tends to be replaced near the wall by a continuous compression wave
which extends higher and higher in the inviscid flow field as the upstream Mach number increases. The shock starting
from the wave focusing point is generally curved, its structure being that of a "strong" oblique shock.
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Fig. 2.15 — Schematic representation of the flow in a transanic in the shock foot region.
shock-wave/turbulent boundary-layer interaction without Separation.

Mach number streamwise distributions corresponding to increasing distance from the wall are plotted in Fig. 2.17.
They are relative to an interaction whose maximum upstream Mach number is equal to 1.25. One observes a progressive
and monotonic decrease in the Mach number for the region closest to the wall. Farther from the wall, the decrease in
Mach number occurs through the shock discontinuity, the compression jump being immediately followed by an
expansion. Further downstream, the Mach number increases anew before reaching a nearly constant level. The
amplitude of the so-called "post shock expansion" increases with the upstream Mach number (see other examples in
Section 2.8.1 relative to interactions with shock induced separation). This post shock expansion is a typical feature of
the inviscid flow field associated with a transonic shock-wave/boundary-layer interaction, It is also observed in airfoil
flows. The phenomenon is due to an apparent wall curvature effect resulting from the rapid growth of the boundary-
layer displacement thickness in the interaction region (Gadd, 1961 ; Bohning and Zierep, 1980). Because of this growth,
the streamtubes must contract in order to be consistent with the fact that the streamlines are roughly parallel to the
wall at a great distance from it and inclined at a positive angle at the boundary-layer edge. There results an expansion
of the flow in the subsonic part of the flow field. Upstream of the shock, the influence of the boundary-layer thickening
is transmitted along Mach waves and it is thus felt only near the wall.
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2.6.2 Scaling Laws for the Interaction Domain

Some experimental evidence. We will now examine some properties exhibited by the wall pressure distributions in
a transonic interaction. As typical examples Fig. 2.18 shows "wall" Mach number distributions measured in a wind tunnel
allowing large variations of the Reynolds number by adjustment of the stagnation pressure (Laurent, 1977). The
experimental arrangement was a bump-on-the-wall type set-up (Type c set-up in Fig. 2.12). The pressure distributions
plotted in Fig. 2.18 were measured on the flat wall opposite to the bump (in the curves, the streamwise distance is
arbitrarily scaled to the bump chord-length), Figure 2.18a gives results corresponding to a relatively low Reynolds
number R§ (here, RS is computed for sonic conditions, the reference length being the boundary-layer thickness just
upstream of the shock) and varying initial Mach number Mo. Results for a Reynolds number approximately twenty times
greater are plotted in Fig. 2.18b.

A first obvious consequence of viscous interaction phenomena is a smoothing of the pressure distribution in the
shock foot region where a steady rise replaces the discontinuity of perfect fluid theory in the actual flow. This
spreading is of course a direct manifestation of the upstream propagation mechanism briefly discussed in the preceding
Section.
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Fig. 2.18 — Transonic interaction in a channel — Influence of Reynolds number on “wall” Mach number distributions.

One also notes that the lower the Reynolds number, the wider the spreading of the pressure distribution. This

phenomenon is more clearly shown by plotting on the same graph the wall Mach number distributions relative to
different Reynolds numbers R ¢, the initial Mach number M, and shape parameter Hj, being the same. An examination
of these curves (see Fig. 2.19) reveals the following trends :

i - the spreading of the wall pressure distribution strongly depends on the local Reynolds number. The streamwise
extent of this spreading significantly decreases when the Reynolds number increases. Such a trend is a typical
feature of a viscous interaction involving a fully turbulent boundary-layer at high Reynolds number both in
transonic and in supersonic flows (see Section 3 below);

ii - the downstream Mach number level is higher (or, which is equivalent, the pressure level is lower) than the value
corresponding to a shock normal to the wall. In the present situation, the downstream, nearly constant, Mach
number level would be that of a strong oblique shock producing a deflection A‘3°= 5.5 deg. Here, the pressure
rise at the wall falls between the normal shock solution and the level associated with the maximum deflection
compatible with an attached oblique shock. In the present case, the pressure rise is noticeably higher than the
value for sonic condition behind the shock (see shock polar diagram in Fig. 2.20). In some results, the
downstream level nearly corresponds to the sonic conditions after the shock and so some caution should be
exercised in defining precise laws for this pressure recovery.
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Several correlations have been proposed to predict the downstream pressure level (Stanewsky, 1973). For example,
Fig. 2.21 shows a plotting of pressure rises measured on airfoils (Leblanc, 1976). In agreement with the above results,
the data points lie well below the curve representing the normal shock solution. In the correlation shown in Fig. 2.21,
the experimental downstream pressure levels lie between the compression curves respectively relative to the maximum
deflection angle A"?max and to a sonic downstream state for which the deflection is AYsonic.

This kind of correlation is sometimes used in viscous-inviscid coupling methods to model the complex interaction
taking place in the shock foot region (Mason et al.,, 1977 see also Wai and Yoshiharo, 1980a)). One of these models
consists in assuming that locally the outer inviscid stream encounters an oblique shock produced by a "viscous wedge"
whose angle, function of My, is given by @

A‘f’w (Mo) =} [ A\fmax (Mo) + ATsonic (Moll
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{Masson et al., 1977). Boundary-layer interaction (Fottner, 1968).

Another correlation for the pressure rise p1/p0 in a transonic interaction is shown in Fig., 2.22 (Fottner, 1968) Here
P /po is plotted as a function of the pressure ratio p /p o relative to the upstream Mach number Mo (p . being the
stagnation pressure). The present correlation, which afso iAcludes data for cascades and nozzle flows, exhifnts a rather
large scatter especially when My is greater than approximately 1.2 (po/pt less than 0.4. For po/pto smaller than 0.36,
one notes a marked modification in the rate of change of p./p with increasing upstream Mach number. This
- A I : .
phenomenon occurs for Mg nearly equal to 1.3 and certainly coincides with shock induced separation.

When M, is less than 1.3 (po/pto greater than 0.36), the data points follow (approximately) the curve corresponding
to maximum shock deflection. Departure from this curve is observed for interactions strong enough to entail separation.
One sees that this takes place when the equivalent wedge deflection angle is roughly equal to 6 deg. This value is close
to the criterion for Incipient Shock Induced Separation discussed in Section 2.7.2 below.

Correlations such as those just presented must be considered with caution. In fact, as already pointed out in Section
2.1, the subsonic flow downstream of the shock is highly dependent on the entire flow field. In these conditions, it is
doubtful that a correlation involving only the upstream Mach number can be of a general character. Furthermore, a
significant "downstream level" cannot always be defined unambiguously, as shown by the data plotted in Fig. 2.23. These
results are Mach number distributions measured on a curved bump which imposes a continuous compression downstream
of the shock. It is clear that in this case it is no longer possible to properly define a downstream level.

Similar effects can also explain the large scatter of the data points plotted in Fig. 2.22 where it is evident that
nozzle data does not correlate with airfoil and blade data. Correlations such as those of Figs. 2.21 and 2.22 apply only
to specific situations, namely airfoil flows in the present case.

Domains of a transonic interaction. Actually, the search for scaling laws requires a closer look at the local
phenomena taking place in the vicinity of the shock. For this task, interferometric visualisation is a precious tool.

Typical evolutions of the wall pressure distribution for interactions occurring on a bump-on-the-wall configuration
are plotted in Fig, 2.24 along with interferometic photographs of the corresponding flow fields. The upstream Mach
number of the most intense interaction shown here is equal to 1.4. Thus, this flow must be slightly separated in the
shock foot region. However, the flow structure is not profoundly altered as long as the extent of the separated bubble is
small. So this configuration is not radically different from a non-separated case.
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| Fig. 2.24 — Transonic interaction — Typical “wall”” Mach
65 25 300 7 .}': = 350 number distributions in a transonic channel.

The above results have been obtained at a practically constant Reynolds number (R<3“o ~ 0.81 x 104, 5’:), being the
displacement thickness of the incoming boundary-layer). The pressure distributions were measured on the flat wall
facing the bump. As in the preceding examples, the rapid increase through the shock wave is followed by a more gradual
compression resulting from flow non-uniformities which are due to the bump curvature adding to the boundary-layer
displacement effect.

A more vivid visualisation of the phenomenon is provided by the enlargement of one of the interferometric pictures
shown in Fig. 2.25. Interpretation of such a picture was discussed in Section 2.6.1. In addition, this interferogram clearly
brings to light the two domains typical of the interaction process :

X Fig. 2.25 — Transonic interaction — Definition of the
" supersonic interaction length.

i - on the one hand, in the most upstream part of the interaction, there occurs a continuous and rapid compression
of supersonic nature and of nearly simple wave type, up to an almost sonic value of the velocity in the outer
inviscid stream. This part of the flow constitutes what we shall call Domain I. One should notice that a truly
simple wave evolution implies a supersonic uniform upstream state, This cannot be the case here since, even for

a uniform outer flow, the supersonic compression starts inside the boundary-layer where the flow is rotational
and hence non-uniform.

ii - on the other hand, downstream of Domain I, the evolution of the velocity field is noticeably less rapid, resulting

from a much slower variation of the boundary-layer displacement effect in the absence of separation. This
second part of the flow constitutes Domain II.

From these considerations, it is clear that general and specific characteristics of the transonic shock-
wave/turbulent boundary-layer interaction phenomena can only be sought within Domain I of supersonic nature. In
Domain I, of subsonic nature, the flow structure (and hence the wall pressure distribution) results from both the

integration of effects extending far downstream and the taking into account of the entire flow and, in particular, the
shape and curvature of the wall.

That is why we shall concentrate on the analysis of phenomena within Domain I and more particularly on the
interaction length. Here L* is defined as the distance between the origin of the interaction (i.e. the point where the
pressure at the wall starts to rise) and the x-wise station where the local pressure is equal to the critical value pr(i.e.
corresponds to a "wall" Mach number equal to unity). The interaction length L' is thus a measure of the extent of the
domain of "rapid" interaction.

The measured wall pressure distributions show that the supersonic part of the interaction process corresponds to a
very steep rise in pressure, whereas the curves tend to be more gradual downstream of the point where local sonic
conditions are reached. This fact was also noticed by Alber et al. (1971) in their experiments made on a bump-on-the-
wall type arrangement. They observed that a close examination of their pressure profiles revealed a change in the
pressure slope (a kink), downstream of the shock, at a point corresponding to sonic condition. They also concluded that
this change in dp/dx indicates a significant modification in the character of the flow from a supersonic interaction type
to a subsonic flow typical of a trailing edge situation.

Factors influencing the streamwise extent of the supersonic interaction length. Among the factors
likely to influence the domain of rapid (or supersonic) interaction, the most commonly investigated are the initial (or

upstream) Mach number M, and Reynolds number Rg*% (here the Reynolds number will be calculated with the
displacement thickness 8%, which is better defined than the physical thickness § o).
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A thorough analysis of these effects was carried out by Délery (1980b) (see also Sirieix et al., 1981) on a bump-on-
the-wall configuration (Type ¢ test set-up of Fig. 2.12). In these experiments, the wall Mach number distribtitions were
practically insensitive to changes in the free stream stagnation pressure, which governed the variations of Rgo.
Furthermore, in this kind of arrangement, the effect on the shape parameter of the strongly favorable pressure gradient
preceding the shock predominates over that of the Reynolds number. It is thus possible to vary independently the three
main parameters Mg, R(S*o and Hjg.

The results obtained are presented in Fig. 2.26a in the form of a diagram giving the evolution of the normaliied
interaction length L. /6*0 as a function of the upstream Mach number Mg (1.09<M<1.30) the variation realized for R¢§o

being between 0.15 x 104 and 1.08 x105 and the value of the shape parameter Hjo for the whole set of results being
close to 1.2.

First, one observes an excellent grouping of the experimental data points, with a moderate scatter due for the most
part to the difficulty of accurately defining the length L**from the wall pressure*distributions. The influence of the
Reynolds number, very marked both on the physical extent L and on the thickness § 0s disappears when these two
variables are normalized one by the other. Thus, it can be concluded that, for a given value of the shape parameter, the
displacement thickness of the incoming boundary-layer is a proper scale for the interaction length L .Moreover, it
appears that the ratio L/8% is not very sensitive to the effect of the upstream Mach number Mo, In fact, the scatter
observed when M, comes close to 1.3 corresponds to a situation very close to separation (see section 2.7.2 below). The
quasi-invariability of Lr/ iy o with respect to Mg can be easily understood by referring to the brief analysis presented in

Section 1.3. Raising the upstream Mach number increases the strength of the perturbation, and thus its tendency to
propagate farther upstream. But, at the same time, the subsonic part of the boundary-layer (which roughly scales *the
upstream influence mechanism) becomes thinner. So that, by virtue of these two compensating mechanisms, L is
practically independent of Mg.
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When the normalization L’(/ 5:, is applied to a more complete set of results obtained in various experimental
facilities and which correspond to very different situations as regards the state of the incoming boundary-layer (i.e.
very different Hj,) a pronounced scatter of the data points appears, as shown in fig. 2.26b. Howevex;z it is remarkable
that the experimental points are regularly spaced as a function of Hjo. For instance, we observe that L/ 6; is prac-
tically increased twofold when Hj, passes from 1.2 to 1.4. This increase of ¥/ §% when Hjo is higher can also be easily
understood by considering the arguments developed in Section 1.3. As we know, when Hjq is high, the boundary-layer is

less filled and, consequently, its subsonic part is thicker. Hence, it seems natural that the distance for the propagation
of upstream influence be longer.

Considering the above experimental evidence, it could seem rational to scale the interaction length r to the height
y of the boundary-layer subsonic layer. However, attempts to correlate the data points of Fig. 2.26b with y* failed, in
the sense that there is not a proportionality relation between L' and y. The same conclusion was arrived at by
Hayakawa and Squire (1982) and by Settles et al. (1981). These authors found that y* was also and inadequate

lengthscale for upstream influence in supersonic shock/turbulent boundary-layer interactions {see Section 3.7.2 below
for more complete information).

In order to take the influence of Hj, into account, a correlation of the results has been looked for within the
domain of variation of the parameters involved (namely, 1.15 Hjo 1.505 1.10 Mg 4.30). The completely empirical law
shown in Fig. 2.27 leads to a rather satisfactory grouping of the results and makes it possible to predict the streamwise
extent of the supersonic part of a transonic interaction with reasonable accuracy.

. s : *
The "viscous ramp” simulation. Following the-idea of the "viscous wedge", the correlation law for L can be
utilized to determine the displacement ‘effect resulting from the strong viscous interaction taking place in the shock
foot region. The streamwise evolution § (x) between the upstream Mach number Mo and a locally sonic state defines a

"viscous ramp" representing, in a schematic way, the complex phenomena involved in the formation of the shock-wave.
In computing this viscous ramp the two following basic assumptions are made :

i - the outer inviscid flow undergoes a compression from Mo to the sonic value which is a simple wave process

induced by the boundary-layer displacement surface. Hence, the "coupling equation" between the outer flow and
the dissipative layer simply writes :

@.1) d §dx = tan [ y(Mo) - v(M] = y(Mo) - M)
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where M) is the Prandtl-Meyer function. We can assume that a simple wave type compression is - a priori -
questionable, since as in Section 2.6.2. the compression waves propagate across a rotational layer. However, as
experimentally demonstrated by Kooi (1978} a simple wave process is a reasonable assumption (see Fig. 2.28).

ii - the evolution M(x) is linear between My, and M = 1., which has also been rather well confirmed by experiment.

*

Along vg_ith the correlation law for L‘, the two above assumptions permit the cf.lculation of the evolution §(x) over
the length I). This calculation is performed by integrating Eq. 2.1, initial values &, Hj, and My being provided by
upstream conditions.

Thereafter, knowing 6*(x), the momentum thickness evolution gx) can be computed by integrating the von Karman
equation (see Section 2 of Part II) in which the skin-friction coefficient can be assumed equal to zero, its effect being
practically negligible in such a rapid interaction process. The knowledge of § at the end of the viscous-ramp, along
with that of § specifies the state of the boundary-layer at the end of the supersonic part of the interaction. These
values can be used to continue a "classical” boundary-layer calculation downstream of the shock region.

Figure 2.29 gives the shape of viscous-ramps calculated for several values of the upstream Mach number My, the
initial shape parameter Hj, being equal to 1.30. This figure also shows the boundary-layer properties at the downstream
end of Domain I, It should be said that "jump methods”, such as those presented in Section 1 of Part II, also permit the
calculation of such viscous-ramps and of the boundary-layer properties at an appropriate station downstream of the
shock-wave.
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Fig. 2.28 — Transonic interaction — Mach number at the start Fig. 2.29 — Transonic interaction — Example of viscous ramp
of interaction computed from the displacement thickness (Kooi, 1978). calculations.

Remarks on empirical correlation laws. To conclude this Section on transonmic interaction overall properties,
we want to emphasize that correlation laws, like those presented above, have a restricted range of validity.
Nevertheless, the search for such scaling properties are of interest for at least two reasons :

i~ these laws are a great help in understanding the physics of the phenomenon by bringing to light the specific
effects of the main influence factors. This fundamental approach of the problem will be also widely utilized in
interpreting shock interaction phenomena in entirely supersonic flows;

ii~empirical correlations can be used to devise simplified methods for the modeling of the strong interaction
process (e.g. the "viscous wedge" or the "viscous ramp" model). In this respect, they are a valuable substitute for
more rigorous calculations calling upon more elaborate flow models, like strong viscous-inviscid coupling methods
or analytical methods (see Sections 3 and 4 of Part II). Presently, the quantitative success of these more
advanced theories is not always superior, in spite of their higher degree of sophistication. Thus, in many practical
situations, semi-empirical methods can be helpful.

2.6.3 Development of the Dissipative Layer Properties

In this Section we will be relatively brief, a more thorough examination of the evolution of the dissipative layer
properties during interactions of variable strength - ranging from no separation to large separation - being considered in
Section 2.8.3 below.

The effect of a shock-wave of moderate intensity is illustrated by the experimental data given in Figs. 2.30 to 2.32.
These figures are relative to an interaction taking place in the transonic chamnel already depicted in Section 2.6.1 (see
Fig. 2.13). In the present case, the maximum upstream Mach number is equal to 1.25; the value of the local Reynolds
number at the interaction origin x5 being RS o = 0.72 x 104. The boundary-layer has been probed by using a LDV system
at locations indicated on the "wall" Mach number distribution plotted in Fig. 2.30. One observes that the interaction
produces :

i~a distortion of the boundary-layer velocity profiles which is such that - at the beginning of the interaction - the
retardation of the flow is larger near the wall than in the outer part of the boundary-layer. This behavior is of
course typical of the effect of a strong adverse pressure gradient. The resulting "emptying" of the normalized
velocity distribution i/Te = £(y/§), is reflected by a rapid increase of the shape parameter Hj, as shown in

Fig. 2.31. In the present example, Hj rises to approximately 2, this maximum value being practically reached at
Station 3. There, the retardation of the lower part of the boundary-layer flow is at a maximum (see velocity profile
3 in Fig. 2.30). Further downstream, the retardation effect ceases in the region close to the wall, whereas it still
continues at the boundary-layer outer edge since the pressure is still rising. This reversal of the tendency is due to
the action of turbulent viscous forces which are greatly enhanced by the retardation effect (see Section 2.9.4
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increases very rapidly with the shock stren
large separation.
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befow on turbulence properties). As a consequence of this change in the evolution of the profile shape, the shape
parameter starts to decrease and, as the boundary-layer "relaxes" towards a new flat-plate situation, H; tends to a

value which is near 1.3 ~1.4 (see Fig. 2.31). In conjunction with the evolution of Hj, the wall shear stress decreases,
goes through a minimum and then increases in the downstream part of the interaction.

ii~ at the same time, the physical thickness of the boundary-layer § increases, This growth as well as the rise in Hj

results in a rapid increase of the boundary-layer displacement thickness 6*(see Fig., 2.31). Also, the momentum
thickness © increases but moderately in this case.

The corresponding turbulence intensity profiles of the streamwise component u, are plotted in Fig. 2.32. As a result
of the interaction phenomenon, the turbulence level increases, It is noticed that the point of maximum streamwise
turbulence intensity moves off progressively from the wall, in accordance with the distortion of the mean velocity
profiles. As a matter of fact, the location of the maximum of Ty =<u™/le nearly coincides with the inflection point of

the mean velocity profile, (compare Figs. 2.30 and 2.32) this point being the place where turbulence production is at a
maximum,
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Fig. 2.33 — Transonic interaction — Typical rises in boundary-layer
Streamwise turbulence intensity profiles.

displacement and momentum thicknesses.

In mild interactions - as the one considered here - the growth in turbulence intensity is not very important : in the

u rises from 0.12 - just upstream of the interaction - to 0.17, before
relaxes toward a new equilibrium situation. However, the peak value
gth, especially when separation is approached. For example, Ty = 0.23 when
it will be seen that Ty reaches values higher than 0.4 in interactions entailing

starting to decrease as the boundary-layer

Mo = 1.30 (see Fig. 2.37). In Section 2.8.4,

Typical rises in the boundary-lazer displacement and momentum thicknesses are plotted in Fig. 2.33. The

and 9 between the interaction origin and the end of the supersonic part of the
the location where the outer Mach number is sonic (extremity of Domain I defined in Section
2.7.2). These jumps have been computed by using the method discussed in Section 1.2.2 of Part II below. The following

i - the amplitude in the jump of integral thicknesses increases with the upstream Mach number M,,. The growth of

the displacement effect becomes quasi "exponential® as Incipient Separation is approached (anticipating the
following Section, Incipient Separation occurs when My is near 1.30);

ii ~ also, the larger the jump amplitude is, the larger the shape parameter Hijg is.
is more sensitive to "destabilizing" agencies when its shape parameter is hi
at the origin of the process is less filled;

This proves that a boundary-layer
gher, i,e., when its velocity profile

iii - for a fixed value of M, the influence of the Reynolds number Rg o is weak. In reality,
effects frequently observed are in fact due to a change in the shape parameter resu
Rg o (see Section 1.2 above).

strong Reynolds number
lting from a variation in
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To conclude, it should be again stressed that "intrinsic" jump correlations for the boundary-layer properties only
exist for the supersonic part of the interaction region (Domain I). The evolution downstream of Domain I does not
depend anymore on upstream conditions alone. It must be computed by considering the influence of the whole flow field
extending - in principle - to downstream infinity.

2.7 - Incipient Shock-Induced Separation in Transonic Flows

2.7.1 Physical Description of Incipient Separation

As we already know (see Section 2.3 above), the phenomenon of boundary-layer separation is of considerable
practical importance in transonic flows, since the advent of separation limits the performance of an airfoil, a wing or a
cascade... It is thus of great interest to be able to predict separation onset, i.e., to find for known properties of the
incoming boundary-layer, the shock strength (or which is equivalent, the upstream Mach number My) for which a
separated region first forms at the foot of the shock.

By definition, Incipient Separation is the situation in which the minimum of the wall shear stress Ty in the shock
interaction region is exactly equal to zero (see Fig. 2.34). A further increase of the shock strength beyond that point
leads to a change in the sign of T, the region where 1 is negative being termed separated.

The direct measurement of the wall shear stress is still a difficult and inaccurate task within an interaction region
characterized by the existence of steep streamwise pressure gradients. For this reason, Incipient Separation is most

unseparated flow
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Fig. 2.34 — Definition of incipient separation from wall shear-stress
distributions.

often detected from visualisations (surface flow visualisations, schlieren photographs...) or by inspection of the
evolution of properties easier to measure than the wall shear stress, namely : wall pressure distributions, boundary-layer
mean velocity profiles, etc.

As a matter of fact, the essential properties of a boundary-layer as well as the general flow structure are not
greatly affected in the Incipient Separation situation, occurrence of separation being a rather progressive process.
However, any further increase of the shock strength or the slight change in outer conditions beyond the Incipient
Separation state may provoke a very rapid growth of an initially tiny separation bubble. Such a quasi-explosive increase
of the size of the dissipative region considerably affects the whole flow field and generally leads to a catastrophic loss
in terms of performance.

The problem of Incipient Separation in itself may seem academic since we have seen that the onset of separation
does not entail any really noticeable change in the flow. For this reason, a distinction is frequently made between "true"
Incipient Separation (some investigators argue that a microscopic separated zone is always present at the foot of a
shock-wave) and "effective" Incipient Separation. The difference will be discussed in what follows and in Section 3.8. In
fact, Incipient Separation (or what is detected as the first occurrence of a tiny separated zone) is frequently the
immediate precursor of more dramatic events, so that the study of "true" Incipient Separation is not lacking in practical
interest. On the other hand, the concept of "effective" Incipient Separation (also termed Significant Separation) is not
always clearly and unambiguously defined.

Before going into the presentation and discussion of criteria proposed for predicting Incipient Separation, let us
examine the structure of the flow in a situation where separation has just begun to occur. The typical interaction
considered here takes place in the transonic channel represented in Fig. 2.13. In the present case, the Mach number
immediately upstream of the shock is equal to 1.30. Figure 2.35 shows mean velocity distributions measured across the
interacting boundary-layer. By considering these profiles alone, it is difficult to detect the existence of a separated
zone which, in this situation, must be extremely thin. A deeper insight into the phenomenon is provided by tracing the
curves of equal probability for the instantaneous streamwise velocity component u to take on negative values. For a
stream flowing constantly in the downstream direction this probability P(K0) is equal to zero, whereas it is equal to
unity if the u component is always negative.

Usually, a turbulent flow is said to be separated when it contains regions where the mean velocity u (in the sense of
Reymnolds averaging) is negative (i.e., streams in a direction opposite to that of the external main stream). According to
this definition, P 0) = 0.5 corresponds to a mean velocity equal to zero and the line on which P(u0) = 0.5 coincides
with the locus i = 0. This line necessarily extends from the separation point to the reattachment point.

The lines of constant probability traced in Fig. 2.36b reveal the existence of a region where U is in fact negative
(shaded area), so that the flow under consideration is actually slightly separated according to the above definition.
However, the size of the so-called separated bubble which is near the limit of spatial resolution of the instrument,
appears so small that the present situation practically coincides with Incipient Separation at the shock foot (the reader
should note that, in Fig. 2.36b, the distance normal to the wall has been greatly dilated for the sake of clarity).
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One will note that instantaneous negative values of
means that, in this region,

Fig. 2.36 — Transonic interaction - Nearly incipient separation situation.

u exist in a region where the mean velocity T is positive. This

there are instants where the flow near the wall is reversed. This fact may lead to conceptual

difficulties in the definition of separation in turbulent flows and more particularly of turbulent Incipient Separation.

The problem was discussed in great detail by Simpson et al. (1977; see also Simpson et al

making a distinction between :

.y 1981) who have suggested

i - fully developed separation (not to be confused with Significant Separation) or time-averaged separation. In this

situation, the average wall shear stress changes
value U is negative ;

ii - intermittent separation which could be defined as
wall.

sign and, accordingly, there exists a region where the mean

the condition in which P (u<0) reaches the value 0.2 near the

It should also be noticed that the existence of large velocity fluctuations entailing a change of the velocity
direction may cause some inaccuracy in the detection of separation by surface flow visualisation techniques.

The corresponding evolution of the shape parameter is plotted in Fig. 2.36a. One sees that Hj reaches a maximum
value close to 2.6, which is in fair agreement with the commonly admitted value of 2.5 at a turbulent separation point.
Thereafter, Hi decreases rather rapidly and tends to a new flat-plate value,

The streamwise turbulence intensity profiles are plotted in Fig. 2.37. In the present situation, the maximum
turbulence intensity is above 0.2, a level significantly higher than for the unseparated flow considered in Section 2.6.3

(see Fig. 2.32). Thus, the advent of separation gives rise to large scale turbulent motions that will be further

rapidly
amplified if the separation bubble has the opportunity to develop (see Section 2.8.4 below).
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The above comments on the nature of se
point of view. However,
only retain the more usua

2.7.2 Prediction of Incipient Shock-Induced Separation

paration in turbulent flows are certainly instructive from a fundamental
they are still of limited interest for most practical situations. Thus, in what follows we will
1 concept of fully developed separation which we will hereafter term "Separation”.

Introductory remarks. Most of theoretical methods presented in Part II below are,
predicting Incipient Separation since they generally incorporate the calculation of the skin-

know that Incipient Separation, according to the classical definition of separation, is
streamwise distribution C¢(x) has a minimum exactly equal to zero.

However,

i- as already stated above,

results, the essential cause of this deficienc
hence a law incorporatin,
provided it is applied wit

ii - correlation laws are most often expressed by simple

occurrence of separation due to strong shock-waves,
pressure or by the flow deflection resulting from a ¢
Section 3.8 below for Incipient Separation in supersonic f1

of course, capable of
friction coefficient Cy. We
the situation in which the

the availability of more empirical criteria may present some advantages for the following reasons :

the more sophisticated theoretical methods do not always give really good quantitative
y being the inadequacy of the presently used turbulence models and

g a greater dose of empirical information has some chance of being more reliable,

hin the range of parameters covered by the experiments used to establish this law ;

formulae allowing rapid "short-cut” estimation of the

These shock-waves can be produced either by a back-

orner or a flare encountered by a supersonic flow (see
ows).
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Consequently, in what follows, we will consider "simple" or global methods based on experimental evidence or
experimental correlation laws from which it is possible to deduce practical separation criteria.

Definition of certain separation criteria in transonic flows. In 1955, Pearcey made a rather thorough
analysis of flow phenomena associated with separation on an airfoil. From this very complete study, we will only retain
the essential conclusions regarding the occurrence of separation.

According to Pearcey, the surface pressure distribution in the vicinity and downstream of separation can be
schematically represented as shown in Fig. 2.38 where five characteristic pressure levels are defined, namely :

®

Pressure at the trailing edge

0451
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Lirue . . .
Py | Inciprent ( significant ) separation Incipient separation
i | I.F Fig. 2.39 — Transonic interaction — Pearcey’s criterion for incipient
1 Duwnairean preswre |

separation (Pearcey, 1955) (pressure levels are defined in Fig. 2.38).

Fig. 2.38 — Transonic interaction on an airfoil — Definition of certain
pressures (Pearcey, 1955).

1 - the initial pressure p, just before the shock,

2 - pressure pg at the separation point S,

3 - pressure 173 at the "kink" of the pressure distribution, as defined in Fig. 2.38,
4 - pressure p” corresponding to sonic local condition,

5 - pressure po. at the airfoil trailing edge.

Occurrence of separation can be diagnosed by considering the evolution of the normalized pressures pp/pto and
Pyg/Pto as functions of po/ptos i-e. the shock strength (see Fig. 2.39).

Looking at Fig. 2.39a, one sees that p,/pto first increases in the manner expected for a normal shock when the
upstream Mach number increases. This rise in p,/pto continues until separation occurs at the shock foot,whereupon
P,/pto starts to fall more and more rapidly. At incipient separation, the ratio p2/po is approximately equal to 1.40 and
this value is therefore interpreted as the bare minimum shock strength required to cause separation.

In correlation with the above evolution of the kink pressure pp, the pressure at the trailing edge first decreases
very slowly as the shock strength increases with no change in the slope of the curve being noticed at incipient
separation (see Fig. 2.39b). For a further rise in the upstream Mach number Mg, an abrupt change in the rate at which
Py decreases is seen to occur for a well defined value of po/pto- This "divergence” of the pressure at the trailing edge
is typical of the development of a large separated bubble. There results a profound modification of the lift coefficient
curve which then frequently starts to decrease.

The curves drawn in Fig. 2.39a show that this dramatic change in the flow structure takes place when the kink
pressure p, is equal to the sonic value p. Thereafter, when separation is well established, the ratio po/po remains
nearly equal to 1.4 which, as seen above, is the value reached by Pz/Po at Incipient Separation conditions.

To sum-up, according to Pearcey's analysis, one has to make a distinction between :

i - true Incipient Shock Induced Separation which is seen to occur for a shock strength such that p,/py = 1.4. In this
situation, the flow field is not yet greatly altered by the existence of a separation bubble which is still very
small;

ii - onset of Effective Incipient Separation which is marked by the sudden development of a large separation bubble
originating from the foot of the shock. A criterion for the onset of Effective Incipient Separation is that the
kink pressure py has become equal to the sonic value p*. Pearcey (1955) gives a plausible physical explanation
of the abrupt change in the size of the separation bubble which takes place when Py =P-

Another way to detect separation on an airfoil has been proposed by Stanewsky (1981). It consists in plotting the
variation of the boundary-layer displacement thickness at certain appropriate locations vs. the shock strength, which
will be represented here by the upstream Mach number M,. Evolutions of this kind are represented in Fig. 2.40 for the
three following locations on the airfoil upper surface: upstream of the shock @, immediatetly downstream of it 5
and at the trailing edge. The figure also shows the influence of the manner in which boundary-layer transition is
induced. In fact, as already mentioned in Section 2.4, boundary-layer tripping mainly affects the t‘l_xickness of the
boundary-layer at the shock location. The large differences between the corresponding variations of ¢ constitute
another example of the importance of scaling effects in viscous phenomena on transonic airfoils (see Section 2.4 above).

However, the main point of interest here is the "kink" in the curves 5'(M°) which is observed for a Mach number
M, slightly greater than 1.3, This kink, which is made more visible by the plotting displayed in Fig. 2.41, can be safely
interpreted as an indicator of the fast thickening of a separated region in conjunction with the onset of Effective
Incipient Separation. One notices that the kink Mach number Mgk depends slightly on the state of the incoming
boundary-layer. In fact, the small differences in Mgk can be correlated with changes in the shape parameter Hjo. This
dependence will be discussed more thoroughly below.
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A third way to characterize conditions at the onset of separation was derived by Alber et al. (1971). These authors
made their experiments on a bump-on-the-wall arrangement (Type ¢ set-up in Fig. 2.12) and used surface flow
visualisations to detect separation. Their essential conclusions were derived from a close examination of the wall
pressure distributions. In the vicinity of the shock and before separation has occurred, these distributions exhibit a
change in slope - a kink - just downstream of the shock. According to Alber and his co-workers, this change in the
pressure gradient dp/dx should indicate the passage from a Supersonic Interaction Type Flow (Domain I defined in
Section 2.6.2 above) to a subsonic Trailing Edge Type Flow (Domain I). This behavior, confirmed by many other
experimental results (Gadd, 1961), is demonstrated by the curve in Fig. 2.42 showing the evolution of the pressure rise
at the kink p,/p; vs. the upstream Mach number My. The experimental data points fall exactly on the curve
corresponding to p, = p . Furthermore, it can be shown that the turning angle of the inviscid outer flow during the
supersonic part of %he interaction process (Domain I) cannot exceed 6.6 deg. Once separation has occurred, the turning
angle at the separation point station (where the local Mach number is now greater than unity) remains nearly constant
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Fig. 2.42 — Transonic flow past a bump — Pressure rise to kink and
separation pressure (Alber et al. 1971).

and equal to 6.6 deg. The pressure rise pg/po calculated from this turning angle by assuming a simple wave type
compression agrees remarkably well with experiment (see Fig. 2.42). For My, within the range 1.3-2, the value of pPs/Po
thus calculated stays approximately equal to 1.4, which is consistent with Pearcey's result.

To summarize, Alber et al. have found that Incipient Separation occurs when the Mach number Mg just before the
shock is such that :

V(M) - V(M = 1) = 6.6 deg.

which gives Mg = 1.32. Furthermore, it is demonstrated that, in the Incipient Separation situation, the local outer Mach
number at the separation point location is sonic. This property, also noticed by Gadd (1961), is utilized in one of the
predictive methods explained below.

It can be seen that the separation criterion of Alber et al. does not include a possible influence of the Reynolds
number. In reality, we will see that Incipient Separation actually depends on the Reynolds number, although this
dependence is weak.

A more thorough experimental program undertaken at ONERA some years ago permitted us to assess more soundly
the effect of the main parameters acting on the separation phenomenon. In particular, the influence of the incoming
boundary-layer shape parameter was systematically investigated. We already know that Hj,, which represent the
"fullness” of the initial boundary-layer profile, has a great influence on the streamwise spreading of the shock
discontinuity.

These experiments were performed in several facilities simulating different flow situations, namely :

i - an actual profile mounted in the center of the test-section (Type a set-up in Fig. 2.12 ; Rodde, 1980);

ii - an enlarged profile installed close to the lower wall of the wind-tunnel (Type b set-up ; Gobert et al., 1980);

iii - a transonic channel of the kind already described in Section 2.6.1 above. In this Type c set-up, high values of
Hj, were obtained by roughening the wall.
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Incipient Separation was detected by using a large variety of techniques, including : inspection of the wall pressure
distributions, surface flow visualisations, Stanton pressure probe, and boundary-layer probing by conventional probes and
also Laser Velocimetry.

The results thus obtained corroborate the fact that Incipient Separation mainly depends on two parameters,
namely :

1 - the Mach number M, on the upstream face of the shock;
2 - the shape parameter Hj, of the incoming boundary-layer.

The often more commonly considered Reynolds number effect is for the greatest part included in the variation of
Hjio. However, one has to be aware that, in principle, these two parameters are not uniquely linked. It is indeed possible
to modify Hjo, at a fixed Reynolds number, by the action of an external agent : e.g., pressure gradient, wall
transpiration or suction, wall roughness.

The experimental data points, each representing an Incipient Separation situation, are plotted in the plane (My,H;,)
in Fig. 2.43. One sees that they all nearly collapse on a single curve defining a boundary between interactions without
separation and interactions with separation. One notes a rather slow increase in the limit Mach number M, when Hj, is
decreasing. This tendency could be anticipated since a lower value of Hj, means a fuller boundary-layer velocity
profile, hence a greater resistance of the boundary-layer to separation (see considerations of Section 1.3 above).
However, the effect is not as important as could be conjectured by considering the large influence of the initial shape
parameter on the extent of the interaction domain (see Section 2.6.2 above). The reason for this behavior will be
exposed below.
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Fig. 243 — Experimental shock induced incipient separation limit
in transonic flow.

The theoretical limit for Incipient Separation computed by using the simplified analysis presented in Section 1.2.2
of Part @I is shown in Fig. 2.44 (full line). One sees that there is a fairly good agreement between experiment and
theory. In particular, the relatively weak influence of Hj, on the shock strength leading to Incipient Separation is well
predicted.

This weak influence of the initial shape parameter can be easily understood by considering the following
mechanism : as seen in Section 2.6.2, the interaction length L' increases rapidly when Hj, increases, i.e., when the
boundary-layer velocity profile becomes less filled. Such an increase in L' reduces the intensity of the streamwise
pressure gradient, the supersonic part of the compression being spread over a longer distance. This reduction in the
magnitude of the adverse pressure gradient allows separation of the boundary-layer to be avoided, or more precisely, to
be postponed, in spite of a less filled velocity profile at the origin of the interaction which, in principle, signals a
weaker resistance to separation,

Exactly the same conclusion was arrived at by Squire and Smith (1980) who studied the interaction of a shock-wave
with a turbulent boundary-layer disturbed by injection at the wall, with an outer flow entirely supersonic. Also, similar
behavior was found by Inger and Zee (1978) in a theoretical analysis applied to transonic flows.

In Fig. 2.44 one also finds the plotting of the Incipient Separation limits given by :

i- the criterion of Alber et al., which, as we already know, does not include any influence of the shape of the
initial velocity distribution ;

ii - the two criteria applied by Stanewsky (1981), one of them being Pearcey's criterion.

A series of experimental and theoretical studies performed at ONERA tend to substantiate that separation is in
fact a purely supersonic process (in the sense that it always takes place in Domain I). Under these conditions, the
downstream pressure level p, has no real importance on the separation phenomenon itself, Thus, if one accordingly
modifies Pearcey's criterion %or (true) Incipient Separation by replacing the condition p,/pg = 1.4, by ps/po = 1.4, with
for Incipient Separation pg = p*, it is found that the corresponding value of Mg is equal to 1.27. This value is in
relatively good agreement with the other criteria.

If the influence of Hjj, is assumed to be negligible for practical purposes, the above results confirm the well known
Nussdorfer criterion according to which separation first occurs when Mg ~1.3 (Nussdorfer, 1956).
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Comparison with the Incipient Separation limit resulting from Inger's analytical model, presented in Section 4 of
Part II, is shown in Fig. 2.43. With this model, it is possible to separately predict the effect of Hjy and the effect of the
Reynolds number. The theoretical prediction of a gradual increase in the Mach number My for Incipient Separation as
the Reynolds number RS , increases, is in agreement with the experimental trend. However, the absolute values of M,
limit predicted by this theory are consistently lower than the average experimental value. According to the authors,
this discrepancy is attributable to the combined effect of the linearized inner deck theory (which overpredicts the
pressure gradient effect on the skin friction coefficient and hence gives too small an Incipient Separation shock
strength) and the assumption of a normal shock-wave when in fact, due to viscous effects, the shock is always oblique

near the wall (see Section 2.6.1 above). The theory predicts a small influence of the shape parameter Hj, which is in
agreement with experiment.

To conclude this Section on Shock Induced Incipient Separation in transonic flows, we will briefly comment upon
some results relative to the effect of wall curvature and wall temperature.

Figure 2.45a shows this influence as computed from Inger's analytical model (Inger and Sobieszky, 1978 ; Inger,
1981) ( designates the radius of curvature of the wall). According to this theoretical model, wall curvature in the range
0¢S o R, <0.02 has only a small effect on Incipient Separation. Qualitatively, the effect of curvature is similar to that of

increasing the shape parameter Hjg, the influence of (K.being essentially felt as a modification of the skin-friction
evolution.

Other calculations incoporating wall curvature effect were made by Bohning and Zierep (1980) (see Section 4 of
Part I for more information on this analytical model). Their results are presented in Fig. 2.45b. One sees that with this
model, the influence of wall curvature is found to be far more important than with Inger's model. Broadly speaking, the
presence of a convex curvature tends to delay separation. The authors explain this behavior by the fact that the post-
shock expansion (see Section 2.6.1 above) becomes stronger with increasing wall curvature. This expansion influences
the development of the flow in the near-wall region in such a way that it counteracts a possible separation.

A relatively important effect of wall curvature (in the same sense as the one predicted by Bohning and Zierep) was
also noticed by Gadd (1961). However, new experiments will be necessary to clearly establish the quantitative effect of
wall curvature and to judge the quality of the various analytical models.
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Fig. 245 — Transonic interaction — Incipient separation limit —
Wall curvature effect.

The influence of wall temperature as predicted by Inger's is shown in Fig. 2.46. In these results, the shape
parameter of the incoming boundary-layer is assumed unaffected by the cooling or the heating of the wall (this
corresponds to a situation where the wall temperature is changed locally in the interaction domain). One notes that

cooling the wall tends to increase the resistance of the boundary-layer to separation. The same trend is observed in
supersonic flow (see below).
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2.8 - Interaction With Boundary-Layer Separation

2.8.1 The Outer Inviscid Flow Field Structure

When the upstream Mach number M, becomes noticeably greater than 1.3, a sizeable separation bubble forms at
the shock foot. This bubble is extremely sensitive to external factors and its streamwise extent can increase
dramatically as a consequence of a further rise in Mg or the action of a downstream adverse pressure gradient, such as
the one existing on a highly rear-loaded airfoil.

As the size of the separated region increases, the outer inviscid flow develops a well-defined structure typical of
(extended) separation in transonic flows. This structure was originally described by Ackeret et al. (1946). Moreover,
much information on the phenomenon was brought to light by the well-known study of Seddon (1960). In fact, it must be
kept in mind that this structure emerges progressively from the flow pattern observed in a presumed unseparated
configuration (see Section 2.6.1 above) so that there is no real discontinuity between external field structures
respectively associated with unseparated and separated flows.

A transonic interaction strong enough to cause a sizeable separation is characterized by the existence in the ocuter
flow of a lambda shock pattern, like the one shown by the interferogram in Fig. 2.4.7. The flow visualized here was
obtained on a Type d experimental set-up (see Fig. 2.12). In the present case, the upstream Mach number is relatively
low (Mg = 1.37), nevertheless a large separation bubble forms because of the strong adverse pressure gradient caused by
the rapid divergence of the channel downstream of the separation shock. The corresponding wall pressure distribution is
plotted in Fig. 2.47b. One sees that the rapid pressure rise associated with separation is followed by a plateau typical of
the existence of an extended separated zone.

The interferogram clearly shows the shock system connected to the separated flow as well as the rapid growth of
the separated boundary-layer. This flow has been carefully probed by using both interferometry and Laser Velocimetry
(Délery, 1978). The Mach number streamwise distributions in the inviscid field thus obtained are plotted in Fig. 2.48.
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These measurements have permitted the tracing of the iso-Mach lines shown in Fig. 2.49. This tracing reveals that the
shock system is composed of :

i - an oblique shock C1 produced by the coalescence of the compression waves resulting from the strong adverse
pressure gradient at separation ;

ii - a quasi-normal shock C; which meets C] at point I ;
iii - a third shock C3, emanating from the triple point I (sometimes called a bifurcation point).

The necessity of this lambda shock pattern comes from the fact that Cj is a "weak" oblique shock (in the sense of
the "weak solution” of the oblique shock theory) whose strength is uniquely a function of the upstream Mach number Mo
and of the incoming boundary-layer properties (see the "Free Interaction” concept developed below in Section 3.6).
Thus, when this shock C1 meets the "strong" quasi-normal shock C3 present in the far outer field there exist behind C1
and C3 two States 1 and 3 with different pressures and velocity inclinations. At the meeting point I of the two shocks,
these states are not compatible, as can be seen on the shock polar diagram shown in Fig. 2.50. In order to fulfill the
conditions for two adjacent flows to be compatible (i.e. having same pressure and same velocity inclination), a third
State 2, having the pressure and the velocity inclination of State 3, must be introduced. This state is reached through a
shock-wave Cg, as shown on the shock polar diagram of Fig. 2.50.
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Fig. 249 — Extended separation in a transonic channel flow — Fig. 2.50 — Situation of the flow at the triple point | — Flow 4 .
Inviscid flowfield structure.

Figure 2.51 gives more information on the nature and the strength of the shocks constituting the lambda pattern
visible on the interferogram of Fig. 2.47. The various Mach numbers Mgy, M3, M2 and M3 were directly deduced from
field measurements whereas the deflections A‘fhave been computed from oblique shock theory. Due to the non-

uniformity of the supersonic incoming stream, conditions on the front face of shocks C1 and Cp are not rigorously
constant.

It is observed that downstream of C{ the Mach number of the outer flow remains everywhere supersonic, its value
ranging from 1.05 near the boundary-layer edge to 1.15 in the vicinity of the triple point I. Shock Cjp has the structure
of a "weak" oblique shock-wave. The Mach number on the downstream face of C2 decreases from nearly 1 at the edge
of the dissipative layer to 0.91 near point I. The deflection AYacross C; is always other than zero, which shows that Ca
is in fact a "strong" oblique shock-wave. The strength of C3 is seen to decrease on approaching the wall. This weakening
of C3 is partly due to the varying upstream conditions and partly due to the effect of the compression waves generated
by the growth of the boundary-layer displacement effect. As the boundary-layer edge is approached, the rear shock Ca
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Fig. 2.51 — Details of the lambda shock system — Flow 4
My =1.40
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is weakened to such an extent that it causes no disturbance to the wall static pressure distribution (see Fig. 2.47). In the
present configuration, the flow is everywhere subsonic downstream of C2. This situation is not a general property, but is
here due to the fact that the upstream Mach number is not very high (Mo = 1.37). For higher values of Mg (Mg> 1.4), a
locally supersonic zone may exist downstream of Cp. The extent of this zone (frequently called the supersonic tongue)
depends on the particular conditions for the strong coupling process associated with the deviation toward the wall of the
reattaching dissipative layer.

The local conditions at the triple point I are given in Fig. 2.50a, the triple shock solution being represented on the
shock polar diagram shown in Fig. 2.50b. As a general property of this kind of solution, the flow Mach number after the
bifurcated shocks C1 and C3 is always greater than the Mach number M3 downstream of the unique shock C3 (the total
rise in entropy through successive shocks is always less than the rise through a unique shock leading to the same final
static pressure). Consequently, the velocity in region 2 is greater than the velocity in region 3, since the stagnation
enthalpy does not vary through a shock. This discontinuity in velocity leads to the existence of a slip line originating
from the triple point I and which separates flow regions 2 and 3. This slip line is barely visible on the interferogram of
Fig. 2.47 (see also Figs. 2.54 and 2.56). The slip line is also called a shear-layer because, in real viscous fluids, the
velocity discontinuity allowable in perfect fluid theory is in fact replaced by a thin layer across which the flow
properties vary in a continuous manner. The term vortex sheet is sometimes employed.

Flow analysis reveals that the shock Cj3 is also a "strong" oblique shock which induces a deflection A =10 deg at
the triple point I. In the far field above I, A)o decreases steadily, as the shock becomes progressively normal. At the
same time, its strength increases. The streamwise Mach number distributions plotted in Fig. 2.48 show that C3 is
immediately followed by a post-shock expansion whose amplitude, nearly inexistent at the triple point I, increases as
one goes farther from the wall. This phenomenon, briefly interpreted in Section 2.6.1 above, is met with in every
transonic flow involving strong viscous-inviscid interaction (other examples will be presented in what follows).

Another case of a bifurcated shock system associated with large separation in transonic flow is shown in Figs. 2.52
and 2.53. The present experiments were made by Abbiss et al. (1976) on a Type d test set-up (see Fig. 2.12). The field
velocity measurements were performed with a Laser Velocimeter. For the flow under investigation, the incoming
stream is uniform with a Mach number equal to 1.5. The shock forming at this relatively high Mach number causes a
strong interaction with the tunnel wall boundary-layer. However, as the interaction takes place on a flat wall in a
channel of constant height, the transverse (vertical) size of the separated bubble is not as large as in the previous
example. Here, the test section walls produce a confinement effect which tends to restrict the vertical development of
the separated bubble.
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Nevertheless, the general flow structure is essentially the same as the one of the first example. The main
differences come from the higher upstream Mach number (1.5 instead of 1.37). Consequently, the values of the Mach
number downstream of the leading shock are higher and one notes the existence of a supersonic region behind shock Cj,
in the vicinity of the boundary-layer edge. Such a region constitutes what Seddon has called the "supersonic tongue". In
the present situation the supersonic tongue extends downstream for several boundary-layer thicknesses and the outer

edge of the dissipative layer is the last part of the flow to go subsonic. The supersonic compression is apparently
achieved without further shock-waves. -

Available experimental data show that the supersonic tongue appears for an upstream Mach number slightly less
than 1.4. However, its streamwise extension and shape are extremely variable since, for a given value of Mg, the
structure of the downstream part of the interaction strongly depends on the viscous-inviscid coupling process and on the
conditions prescribed on the boundaries of the subsonic part of the flow field. To illustrate this point, Fig. 2.54 shows a
result obtained by Seddon (1960) for an interaction taking place in a Type e experimental set-up (see Fig. 2.12). The
uniform incoming stream has a Mach number equal to 1.47 and, in this case, the length of the supersonic tongue is
approximately equal to 13 initial boundary-layer thicknesses. Furthermore, the upstream part of the supersonic tongue
covers most of the downstream face of shock C2. This finding is in disagreement with the results of Abbiss et al, (1976)
(as can be seen in Fig. 2.52) and also with those of Kooi (1978) which correspond to nearly the same Mach number (M, =
1.46, Kooi's results are presented below). In both the flows analyzed by Abbiss and by Kooi, most of the flow
downstream of shock Cj is subsonic. The observed differences can be attributed to, far field effects although
uncertainties in measurements are not excluded.

The progressive change in the flow field structure accompanying an increase in the upstream Mach number M, is
particularly well illustrated by the experimental results of East (1976). These experiments were performed for three
values of the upstream Mach number : 1.3, 1.4 and 1.54, the wind tunnel stagnation pressure being the same for all three
tests. As the thickness of the incoming boundary-layer remains practically unchanged, the Reynolds number R§ _is
nearly the same for the three interactions. The tests were carried out in a Type d experimental set-up, with the flow
fields being probed with a Laser Velocimeter. Figures 2.55 to 2.57 show the flow structures as deduced from field
measurements along with schlieren photographs of these flows. Due to the very high Reynolds number of the present
experiments, the case where Mg = 1.3 corresponds here to a situation preceding Incipient Separation.We see that the
compression waves generated by the thickening of the boundary-layer converge and impinge on the quasi-normal shock-
wave causing it to curve and reducing it to a sonic Mach line at the outer edge of the boundary-layer. The flow
structure observed is very similar to the one displayed by the interferogram of Fig. 2.47 (see Section 2.6.2 above). There
is no trace of a supersonic flow behind the shock.

If the upstream Mach number is increased to 1.4, (see Fig. 2.56) then some of the compression waves coalesce into
a weak oblique shock (shock C1) and the lambda pattern arises. No supersonic flow is found downstream of the quasi-
normal shock Cp, but it appears that a narrow region of sonic flow is present at the edge of the boundary-layer.

A further increase in My, to 1.54 produces a much larger interaction region with an inviscid flow pattern which has
become similar to the one analyzed above, except that in the present case a supersonic region exists downstream of
shock C3 (see Fig. 2.57).

We will note that, at the lower Mach number for which separation occurs in East's experiments (Mg = 1.4), the
compression waves coalesce outside the boundary-layer to form the leading shock Cj. At higher Mach number
(Mo=1.54), the oblique shock Cj forms near the boundary-layer edge. A further increase in Mo will entail a penetration

of C1 within the boundary-layer. Also, as the upstream Mach number increases, the triple point moves away from the
wall.
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2.8.2 Correlation Properties of the Wall Pressure Distributions

Before considering the evolution of the boundary-layer in the course of a transonic interaction entailing separation,
let us briefly examine some properties of the wall pressure distribution.

As typical examples, Fig. 2.58 shows the wall pressure distributions corresponding to three values of the upstream
Mach number for which separation takes place, namely : Mg = 1.40, 1.44 and 1.46. These distributions were measured by
Kooi (1978) on a Type e experimental arrangement (see Fig. 2.12). Due to the small variation in Mg, the Reynolds
number of these experiments is nearly the same for the three interactions (R§o = 2.105). The pressure curves exhibit
the following features :

i- at the start of the interaction, there is a steep rise in pressure, the slope of the curve being practically inde—
pendent of the upstream Mach number ;

ii - this rapid rise continues approximately up to the separation point. Thereafter, there is a region of more gradual
increase in pressure (the same trend is observed for entirely supersonic interactions, as will be seen in
Section 3.3 below) ;

iii - there are appreciable differences in the shape and in the final level for the three curves, in spite of the rather
close values of the upstream Mach number Mg. As Mg increases beyond 1.4, an inflection is observed
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Fig. 2.58 — Transonic interaction — Wall pressure distributions
{Kooi, 1978).

downstream of the separation location. The existence of this inflection is typical of an interaction with a
sizeable separated bubble. Such an inflection (sometimes called a "kink", see Section 3.8 below on Incipient
Separation in supersonic flows) is in fact the precursor of the pressure plateau associated with extended
separated flows. Such an example of large separation was given by the interferogram of Fig. 2.47a, with the
corresponding wall pressure distribution plotted in Fig. 2.47b.

iv - the downstream level is well below the value which would correspond to the pressure rise through a normal
shock. A part of the difference comes from the fact that the real shock is curved and bifurcated. However, the
greatest part is due to the rapid boundary-layer growth during the interaction. This growth results in an
effective converging channel, the effect being clearly demonstrated by the pressure distribution of the case
Mg = 1.46. In principle, the downstream level should be the highest for this interaction, whereas it is in fact the
lowest because of more intense viscous effects.

Figures 2.59a to 2.59c show the flow structure for the three values of the Mach number My, These contours were
deduced from field measurements made with pressure probes (notice that in Fig., 2.59 the horizontal and the vertical
scales are different). The features of these flows are similar to those of the flows represented in the preceding Section.
For Mg = 1.4, separation occurs, as indicated by surface flow visualisations and skin-friction measurements. However, in
this case the separation bubble is too small to be detected by pressure probes. When My is increased, the extent of the
separated region grows rapidly. At the same time the displacement effect of the boundary-layer becomes more and
more important. This growth explains the rapid concomitant change in the outer flow structure, with in this case the
development of a supersonic tongue.
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As already pointed out, it is not possible to define simple and universal scaling laws for the downstream part of the
interaction, The flow actually depends too much on external influences, as demonstrated in particular by the
experiments of Leblanc et al. (1974).

Thus, just as for interactions without separation (see Section 2.6.2 above), correlation laws can only be searched for
in the initial part of the interaction in which the outer inviscid flow remains supersonic.

For interactions with separation, it can be experimentally shown that the supersonic part of the process obeys the
Free Interaction concept introduced by Chapman (1957). This concept (which will be more thoroughly discussed in
Section 3.6 relative to entirely supersonic flows) states that the separation mechanism depends only on conditions
prevailing at the origin of the interaction. According to the Free Interaction theory, the wall pressure distribution
should be correlated by the following "universal” function, which is derived in Section 3.6 below :

T T rPo £)- 9 172
N] _[_Pq_z v(g) fo(ﬁ)]

In the above formula, the dynamic pressure 9o and the skin - friction coefficient Ctq are relative to the flow at the
start of the interaction. V() is the value of the Prandtl-Meyer function at abscissa £ in the absence of interaction, V(&)
being the value of this function when interaction occurs. The scaled streamwise distance § is defined in Section 3.6
below,

Figure 2.60 shows a plotting of functionzg-computed first from the already cited Kooi experiments at My = 1.4,
secondly from the measurements performed by Vidal et al. (1973) (see also Vidal and Kooi, 1976) at very different
Reynolds numbers in a large scale Ludwieg tube (the Reynolds number Rey indicated in Fig. 2.60 is based on the shock
position relative to the leading edge of the flat plate on which the interacting boundary-layer has developed). It is
observed that the two experimental distributions closely follow the universal% (&) curve given by Carriére (1972).

A similar good agreement was noticed by Délery et al. (1975) for measurements made on a bump-on-the-wall type
arrangement, as also shown in Fig. 2.60.

The above results, chosen among many other experimental results, clearly demonstrate that in transonic flows the
separation phenomenon is in fact a supersonic process obeying the Free Interaction principle. Specific transonic effects
are felt more downstream, when the separated bubble develops and leads to a strong interaction mechanism involving a
mixed hyperbolic-elliptic outer flow field.

2.8.3 Development of the Dissipative Layer Properties

Basic interacting transonic flows. Let us now examine the behavior of the turbulent dissipative layer
submitted to a strong interaction process involving separation. The following discussion will be essentially based on
experimental results obtained by Délery (1981) in a Type d test set-up (see Fig. 2.12). Four different interactions (which
can be considered as typical) have been carefully probed by using a two-color Laser Velocimeter. The corresponding
wall pressure distributions are plotted in Fig. 2.61 » in which the dimensionless streamwise distance x is evaluated from
the start of the interaction under consideration, x,, and scaled to the displacement thickness 85 of the boundary-layer
at xg. The locations of the transverse explorations made across the dissipative layer are also shown in Fig. 2.61.
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The four analyzed flows correspond to the following conditions :

i -Flow 1 - Interaction without separation (Mg = 1.25, No Separation - NS). For this case, the quasi-normal shock-
wave is located near the end of the diverging part of a symmetrical nozzle at a station where the initial
Mach number is equal to 1.25. This flow case actually does not separate but has been included in this Section
in order to show the progressive evolution of the phenomena from an unseparated to a separated situation.

ii - Flow 2 - Interaction corresponding to Shock Induced Incipient Separation (Mg = 1.3, Incipient Separation - IS),
This flow is produced in the same nozzle as Flow 1, but the shock being slightly farther downstream, the
upstream Mach number M, is now equal to 1.30. Considering the value of the shape parameter of the incoming
boundary-layer (Hj, = 1.30), the present situation nearly coincides with Incipient Separation at the shock.

iii - Flow 3 - Interaction with Sizeable Separation (Mo = 1.45 - SS). Now the interaction occurs in a symmetrical
nozzle with a greater maximum area ratio. The shock-wave is at a location where Mg = 1.45, thus a rather -
large separated bubble forms.

iv - Flow 4 - Interaction with Large Separation (Mg = 1.37 - LS). This interaction is the one already commented
upon in Section 2.8.1 where the discussion was focused on the accompanying inviscid flow structure. It takes
place in an asymmetrical channel where a bump is mounted on the lower wall of the wind tunnel test section
(see Fig, 2.47). In this case, a large separated bubble forms, despite a lower Mach number than for Flow 3. This
happens because the bump contour induces a strong adverse pressure gradient.
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The table below gives the main boundary-layer properties at the origin of each interaction :

Flow Mg 8 (om0 8 (mm) Hio Rfo
1 1.25 0.29 0.15 1.33 2200
2 1.30 0.36 0.14 1.30 2400
3 1.45 0.44 0.18 1.30 2500
4 1.37 0.52 0.27 1.27 3800

The careful experiments of Kooi (1978) and of Alber et al. (1971) already cited will also be used in the following
discussion.

The general mean flow structuré. gome of the mean streamwise velocity profiles measured across the
dissipative layer of Flows 1 to 4 are plotted in fig. 2.62. In the present Section, the mean value of a velocity component
will be represented by a barred symbol in order to avoid confusion between mean and instantaneous quantities, the
latter being designated by an unbarred symbol. This distinction is introduced here because of the consideration of the
flow turbulent properties.

In Fig. 2.62 the location of the wall has been sketched and the profiles extrapolated to the wall by a broken line,
which is only a visual aid.

For Flows 1 and 2 - which are not separated - one observes a strong retardation of the profiles in the first part of
the interaction. This effect is particularly important in the vicinity of the wall, Yet, negative values for the mean
streamwise component were not detected. In the case of Flow 2, if separation occurs it does so close to the wall since it
was not detected in the measurements,
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Fig. 262 — Mean streamwise velocity distributions
forflows 1 to 4 .

The maximum retardation effect is reached at a certain streamwise location; further downstream, turbulent
viscous forces produce a gradual acceleration of the fluid in the inner part of the.boundary-layer. During the whole
interaction process, the thickness© of the boundary-layer is seen to increase steadily.

For Flows 3 and 4, a rather large reversed flow region is formed, the thickening of the dissipative layer being now
much more important than for Flows 1 and 2. The maximum negative normalized velocity um/ue is equal to -0.12 for
Flow 3 and to -0.22 for Flow 4. In both cases, the bubble lengths are comparable, although the bubble vertical extent is
much more important for Flow 4 (note the change in vertical scale in Fig, 2.62d). In the case of Flow 4, one observes a
dramatic increase in the boundary-layer thickness, being practically multiplied tenfold between the origin of
interaction and the farthest downstream measuring station.

The structure of the flow within the interacting boundary-layer can be best visualized by the tracing of the mean
flow streamlines. It should be pointed out that such streamlines are in fact fictitious since they belong to a mean flow
In the sense of statistical turbulence (i.e. Reynolds averaging). As will be seen below the actual flow is highly
fluctuating and its instantaneous structure far more complex than the mean organization shown here. However, the
streamlines thus constructed are conceptually identical to those which would result from a modeling of the flow with
the classical time averaged Navier-Stokes equations.

The streamlines traced in fig. 2.63 have been determined as lines of constant value for the normalized mass flow
(per unit span) :

m = fg (pu/ptat) dn  (in mm)

In the above formula, a; is the sound velocity for stagnation conditions. The density? ¢ was determined either
directly from interferometric measurements or computed from the velocity by assuming constant pressure and constant
stagnation temperature across the dissipative layer.

The tracing of the streamlines displays the structure of the interacting boundary-layer. When the flow is separated,
this layer contains a bubble type region where the streamlines consist of closed curves. The flow which recirculates is
bounded by what is called the Dividing Streamline (or DSL). This streamline originates from the separation point S and
stagnates at the reattachment point R. Another particular line is the locus of the points where the streamwise velocity
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component is equal to zero : this line is the external border of the region in which u is negative. The DSL and the locus
u =0 meet at S and R.

The external border of the boundary-layer has been drawn in fig. 2.63a to 2.63d to show the rapid growth of the
dissipative part of the flow that takes place during the interaction process. This growth is the consequence of the
important entrainment rate along the boundary-layer edge. It is observed that the rate at which the external non-
viscous flow feeds the dissipative layer is considerably enhanced by the interaction, especially downstream of the shock
system, This rise in entrainment rate is a consequence of the huge turbulence production that takes place in the shock
foot region along with the birth of large scale turbulence structures.

The subsequent streamwise evolutions of the mass flow m-normalized by its value ;no. at the interaction origin -
are represented in Fig. 2.64. One notes the steep increase in m which occurs when the flow is separated.

The entrainment rate is characterized by the entrainment coefficient CEg defined by the relation :

1 dj
CEmWe Tdx

The entrainment coefficient plays a fundamental role in theoretical methods using the Integral Entrainment
Equation to compute the boundary-layer development (see Section 2.2.1 of Part II). The streamwise variations of Cg for
Flows 1 to 4 are represented in Fig. 2.65. The plotted data show the following tendencies :

i~ at the very beginning of the interaction, the entrainment coefficient starts to decrease and becomes negative,
indicating that the mass flow across the boundary-layer actually decreases at first. This tendency is also
displayed by the streamlines traced in Fig. 2.63 which show a contraction of the flow in the first part of the
interaction ;

ii- thereafter, the trend is reversed and Cg increases markedly with x-wise distance, A maximum value is reached
and its magnitude increases in proportion to the strength of the interaction.

ili-in the downstream part of the interaction, the entrainment coefficient decreases steadily and tends toward the
value representative of a flat plate turbulent boundary-layer.
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of the entrainment coefficient.

The "history" of the entrainment rate during an interaction process can be best represented by plotting Cg against
a parameter characterizing the shape of the velocity distribution across the boundary-layer, e.g., the shape parameter
Hj or preferably for flows involving large separationéc i=1-1/Hj.

With this kind of representation, one is led to introduce the concept of "equilibrium” boundary-layers which
generalizes the concept of equilibrium flat plate boundary-layer already defined in Section 1.2. Briefly speaking, an
interacting boundary-layer will be said to undergo an equilibrium evolution if its properties depend only on the following
"main" parameters in the course of the process : a "representative" shape parameter, the local Reynolds number and the
outer Mach number (assuming that influences, like heat-transfer at the wall, transpiration or suction effect, are not
present). In the case of Flows 1 to 4, compressibility effects are very weak and - for a given interaction - the Reynolds
number does not vary much so that its influence (although not negligible) can be considered as secondary. Thus the
essential factor is the shape parameter.
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The curves plotted in Fig. 2.66 show that the evolution of Cg vs.¢{ i form closed loops. This indicates that there is
not a unique correspondence between Cg, and}¥ ; during the interactions. Such a trend, which will be observed for other
flow properties, is typical of evolutions strongly out of equilibrium. This behavior renders the modeling of these strongly
interacting flows very difficult, the representation of the non-equilibrium effects being very delicate.
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Fig. 2.66 — Transonic interaction — Variation of the entrainment
coefficient in the phase plane (1—1/Hj, Cg) forflows 1 to 4

Other typical mean flow patterns associated with transonic interaction have been established by Alber et al. (1971)
whose experiments have already been cited. For that study, the velocity field was measured with classical pressure
probes. Two interactions were investigated by these authors.

In the first situation, termed Case A, (see Fig. 67a) the shock is not strong enough to induce immediate separation.
However, its destabilization effect on the boundary-layer is such that separation occurs at a short distance downstream
of it, because of the adverse pressure gradient on the rear part of the bump on which the shock forms (this situation is
one of the variants of Pearcey's Flow Model B, see Section 2.3 above).

A very slight increase in the shock strength (the peak Mach number M, varies from 1,32 to 1.34) causes the
separation point to move from its downstream location to a position just after of the shock foot. This new
configuration, called Case B, (see Fig. 67b) corresponds to the Flow Model A of Pearcey.
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The streamwise mean velocity profiles for these two cases, as well as the streamlines in the boundary-layer, are
represented in Fig. 2.67. One sees that the shape of these velocity distributions is very similar to that of the
profiles measured in Flows 3 and 4.

The dissipative layer integral properties. The streamwise variations of the dissipative layer displacement
thickness and incompressible shape parameter for Flows 1 to 4 are shown in fig. 2.68. The variations of the momentum
thickness and of the kinetic energy thickness are represented in Fig. 2.69. It is recalled that the kinetic energy
thickness e* is defined by the formula :

6 = /3 (pu/peug) (1-u?/ud) dy

This integral thickness arises in boundary-layer integral methods of calculation employing the Mean Kinetic Energy
equation (see Section 2.2.1 of Part II).

The initial intense destabilization of the boundary-layer entails a very fast increase of its displacement effect. The
shape parameter Hj is seen to reach its maximum slightly upstream of the maximum of § , this difference being due to
the fast growth of the thickness §.

The rise in § and Hj is spectacular when separation is present. For Flow 4, Hj reaches a very high value which is
uncertain because of the smallness of the incompressible momentum thickness. For this case, such a high value for Hj
signifies that the separated flow tends to develop a free-shear layer like structure, This point will be further discussed
below.
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Considering Flows 3 and 4, one notes a rapid decrease in Hj as the reattachment process begins, up to the
reattachment point R. Downstream of R, Hj relaxes more progressively toward a new flat plate value. At the separation
station S, Hj is close to 2.6 which is the value commonly admitted at a turbulent separation point, It should be said that
an accurate determination of Hj in this region is difficult because of the intense streamwise gradients accompanying a
separation phenomenon. At reattachment, Hj is practically equal to 3, this value being known with a better accuracy
since the steamwise gradients are here much weaker than at separation. The value Hj = 3 at reattachment is also found
for (incompressible) flows reattaching behind a rearward facing step (Nguyen, 1971). It seems typical of turbulent
reattachment at low to moderate Mach numbers.

The momentum thickness is seen to increase steadily during the whole interaction process. This continuous rise is
readily understandable if one considers the Integral Momentum equation (see Section 2.2.1 of Part o). As a matter of
fact, in the flows under investigation, the pressure gradient is either zero or positive and, except in the separated
regions where its amplitude is always small, the skin-friction coefficient is also positive. Consequently according to Eq.
2.4 of Section 2.2.1 of Part II the derivative & /dx is here always positive. It should be noticed that at separation, the
rise in® is modest, whereas it is much greater during reattachment.

Another example of variations of boundary-layer integral thicknesses is given in Fig. 2.70 which shows results
obtained by Kooi in an experimental study already cited. The results demonstrate the rapid increase of the boundary-
layer displacement effect as soon as the upstream Mach number goes beyond the Incipient Separation limit.

It should be stressed that the development of the separated boundary-layer depends strongly on the specific flow
situation and that no general correlation laws can be derived as pertaining to a "typical” transonic shock-wave/turbulent
boundary-layer interaction. This fact becomes obvious if one compares Kooi's results with those of Délery : for nearly
the same upstream Mach number -Mg = 1.45 and Mo = 1.46 respectively - very different rises in the displacement
thickness were found (see Figs. 2.68 and 2.70). The observed discrepancy is partly due to differences in Reynolds
number, but essentially the cause is the use of different test set-ups,

As shown by Fig. 2.71, it is also impossible to correlate the length Lg of the separated zone (Lg is defined here as
the x-wise distance between points S and R). The large scatter in the values of Ls/S o found by different experimen-
talists, comes partly from the techniques employed to determine the length of the separated bubble, but also and
essentially from the type of conditions prescribed to the outer stream. The only general tendency which can be deduced
from the above results is a decrease in Lg/8 o with increasing Reynolds number, the upstream Mach number M, being
kept constant. This trend agrees with the observation already made of a greater resistance to separation at high
Reynolds number.

The influence of thermal conditions at the wall on transonic shock induced separation was investigated by Padova
et al. (1980). These authors found that the wall pressure distribution was practically insensitive to heat transfer at the
wall (see Fig. 2.72). However, it should be pointed out that in these experiments the range of variation of the wall
temperature Ty, was relatively narrow : 0.85< Ty/Ti& 1.10 (Tte being the external flow stagnation temperature).
Concerning the wall shear stress, Padova and his co-workers found that in the fore part of the interaction, the
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and shape parameter for flows 1 to 4 .
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on the length of separated region (Kooi, 1978).
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Fig. 2,72 — Transonic interaction — Heat transfer effect on wall
pressure distribution— R; = 36 x 10° — (Padova et al., 1980).

Fig. 2.73 — Transonic interaction — Heat transfer effect on skin
friction distribution — Ry = 36 x 10° — (Padova et al., 1980).

streamwise distribution of the skin fric'tion coefficient Cg¢ did not depend much on the ratio Ty/Tte. But, in the
separated zone, Cg (x) was found to be extremely sensitive to heat-transfer effect, a small decrease in Tw/Tte
producing a large increase in the length of the separated bubble (see Fig. 2.73). This trend is in contradiction with other
observations which tend to prove that cooling the wall increases the "stiffness" of the boundary-layer and, accordingly,
its resistance to destabilizing effects (see Section 2.7). Thus, the results of Padova et al. should be confirmed by further
experiment. The question on wall temperature effect on shock-wave/boundary-layer interaction is discussed in more

detail in Section 3.7 devoted to supersonic flows. The conclusion is that cooling the wall always reduces the extent of
the interaction domain,

Correlation properties of the boundary-layer velocity profiles. As will be explained in Section 3 of Part
1I, calculation methods based on the inviscid-viscous coupling approach frequently employ integral methods to compute
the development of the boundary-layer. Most often, these methods assume that the dimensionless velocity distribution
across the boundary-layer in the form u/u, = £ (y/ §) depends on a limited number of parameters : namely, the Reynolds
number R o, the local Mach number at the boundary-layer edge and a suitable shape parameter such as Hj (only the
adiabatic case will be considered, otherwise another parameter representing the wall temperature effect should be
added as well as a representation of the temperature profiles).

As already seen in Section 1.3, the velocity distribution of an unseparated turbulent boundary-layer can be
accurately represented by Coles' law of the wake/law of the wall formula. In the case of an incompressible flow, the
Coles' formula depends on two parameters: the Reynolds number R §, and a shape parameter which can be Hj. For an
adiabatic flow (no heat transfer at the wall), the influence of compressibility can be taken into account by employing
the Van Driest generalized velocity concept. However, as already mentioned in Section 1.3, the influence of
compressibility on the velocity distribution can be neglected if the local edge Mach number is not too high, say Meg2.

The Coles' formula has been generalized so that separated profiles can be represented by including the possibility
of negative skin-friction (for more information see Section 2.2 of Part II). In order to check this new formula, velocity
distributions measured in the well-separated flow 4 have been compared to the new Coles' family. This comparison
(shown in Fig. 2.74), was made by determining which Coles' profile had the same integral thicknesses § and gas the

respective distribution. One sees that the Coles' formula generally agrees closely with experiment. The same good
correlation is noticed for Flows 1 to 3.

A similarly good agreement was observed by Mathews (1969) for the shock interaction profiles of Seddon (1960).
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Fig. 2.74 — Velocity profile representation in a separated
and reattaching boundary-layer.

The validity of the Coles' formula in the case of shock separated flows was also checked by Alber et al. (1971).
They found a very satisfactory correlation with experiment except near the separation point. These authors have also
demonstrated that the profiles can be likewise faithfully represented by the Turbulent Similar Solutions of Alber (1971},
as shown in Fig. 2.76.
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Fig. 2.76 — Transonic interaction — Comparison of the velocity profiles with
Alber similarity solutions. Case B. Flow of Fig. 267 b (Alber et al., 1971).

As will be seen in Section 2.2 of Part I, most integral methods proposed for computing the interacting boundary-
layer utilize, as "second" equation, either the Entrainment Equ;itio;x or the Mean Kinetic Energy Equation. These
methods respectively involve a Mass Flow Shape Factor Z;=(8 -85/ ‘Si and a Mechanical Energy Shape Factor
Jj = ei/ i which are defined here with "incompressible" quantities, the compressibility effect being taken into account
by the Van Driest generalized velocity concept or by suitable supplementary formulae. (other definitions o£ the above
shape factor may be used ; however, the formulae always involve the three integral thicknesses : 51, 9; and 9j).

The theoretical models must be provided by "closure” relationships expressing the Shape Factors Z; and J; as
functions of the "basic" shape parameter : H; (for instan%%) and of the Reynolds number. As examples, Figs. 2.77a and
2.77b show tracings of J; and Zj against the parameter 0% j = 1/Hj the curves having been computed with the three
different profiles representation : i - the Coles' formula, ii ~ the already cited Alber Similar Solutions, iii - the
Equilibrium Solutions of Michel et al. (1969). These theoretical curves are compared to evaluations of the shape factors
made from the experimental profiles of Flows 1 to 4. Concerning the Mechanical Energy Shape Factor, there is very
close agreement between experiment and the theoretical curves which nearly coincide. On the other hand, the

relatively large scatter observed in the Zj vs. Hj plot is in great part due to the uncertainty in the definition of the
boundary-layer physical thickness i

Figure 2.78 shows plots of the correlation for the Shape Factor Hj = (§ -6)3/9 vs. H which is frequently utilized in

methods based on the Entrainment Equation. The shape parameter H is defined in Section 2.2.3 of Part II. For low Mach
number flows, it is practically equal to H;.

The curves of Fig. 2.78 tend to demonstrate that for the strongly interacting flows under investigation, there is not
an unique correlation law between Hj and H. This is especially true in the first part of the interaction region. A good
correlation of the experimental point is only observed downstream of the reattachment station,

To conclude this Section, we will made the following comments on the validity of the generalized Coles' family

which is frequently used in interacting bondary-layer calculations. In fact, experiment shows that this family is
inadequate under at least two circumstances :
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i-at and in the vicinity of the separation station. As can be seen by inspection of Eq. 1.5 of Section 1.3, the Coles'
representation is only composed of the wake-component at a point where the skin-friction vanishes. The
corresponding shape parameter H; is nearly equal to 3, which is substantially higher than the commonly
admitted value of 2.6 at a separation point. On the other hand, the Coles' law fits remarkably well the
experimental reattachment profile whose shape parameter is precisely equal to 3 (see above).

ii~ when the vertical extension of the separated region becomes large . In this case, the dissipative layer has in fact
a free shear-layer like development in its outer part. Consequently, a velocity law depending on only one shape
parameter is certainly unable to faithfully represent such a separated flow.
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As a matter of fact, when a large separated zone is forming, the streamwise velocity profiles rapidly tend to
develop a free shear-layer structure. This behavior is illustrated by plotting the dimensionless velocity (classical in
turbulent jet studies) :

¢ = (u - uy)/(ue ~ um), where uy, is the minimum negative velocity against the scaled ordinate n= (y~yuf=o_5) /b and,
where b is a conventional mixing zone thickness defined as b = (y(f)=0 /95~ y?=0.5)_

Applied to the separated profiles of Flow 4, this data reduction leads to a very good correlation of the
experimental results , as shown by Fig. 2.79. The data points collapse into a single curve practically identical to the
well known solution of Gértler for turbulent mixing (Schlichting, 1968). In what follows, we will see that some of the
turbulent properties of the separated dissipative layer also exhibit a jet-like (or mixing-like) behavior.
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Fig. 279 — Similarity properties of the mean
streamwise velocity profile in the separated
region of flow 4 .

2.9 ~ Examination of Certain Turbulent Properties

2.9.1 Introductory Remarks

The present Section is devoted to a discussion of certain turbulence properties of the field resulting from the
interaction between a shock-wave and a turbulent boundary-layer in transonic flows. In the envisaged situationms, the
interaction phenomenon will be assumed "steady" in the sense that large scale unsteadiness entailing ample shock
motion is absent. Therefore, the following discussion excludes buffeting phenomena. The really unsteady aspects of a
transonic shock-wave/turbulent boundary-layer interaction will be briefly examined in Section 5.5.7 of Part II. In the
present Section, we will restrict our attention to "classical" turbulence phenomena which are characterized by a more
or less random fluctuation of the dissipative field without any significant repercussions on the outer inviscid strem
which can be considered as steady. This implies that the shock-wave (or the shock system) does not oscillate
appreciably. In reality, in any interaction, a slight vibration of the shock(s) is always noticed. However, for a "stable"
interaction, the amplitude of the shock motion remains within the limit of a fraction of the initial boundary-layer
thickness. In what follows, the mean and fluctuating components of the velocity field will be defined in the sense of
classical statistical turbulence, i.e., Reynolds averaging.

Most turbulence properties discussed in this Section are those of Flows 1 to 4. Let us recall that the measurements
were made by using a two-color LDV system. With this kind of device, the statistical quantities are computed from a
sample of N couples of instantaneous values u and v recorded at each probing point in the field, Hence, the following
expresion holds true for :

i - the mean values ¢ _ N
u) /N : e (r§=1 v) /N

ii~ the normal stresses :

3= o = 2
W= [ D2/ v [ e

iii- the shear stress:

N
u'v' = [r21=1 (v-@) (v=v)1/N
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2.9.2 General Structure of the Turbulence Field

The vertical distributions of the turbulence kinetic energy (scaled to the square of the speed of sound at for
stagnation conditions) relative to Flows 2 and 4 are plotted in Fig. 2.80 (the distributions for Flows 1 and 3, not shown

here, exhibit similar trends). The plotted values of the kinetic energy k have been computed by the formula
k= 0.5 (02 + v2 + w'2) where the spanwise fluctuation term w'2 (in fact, not measured,) has been taken equal to
0.5 ('JZ + -\;'7'), a reasonable estimation of the true value.
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Fig. 2.80 b — Turbulent kinetic energy distributions for flow 4 .
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Fig. 2.80 a — Turbulent kinetic energy distributions for flow 2 .

For the two interacting flows considered here, one notes a very large increase in k taking place in the first part of
the interaction process, i.e., near the shock foot. In this region, the distributions exhibit a maximum of large amplitude
which is well detached from the wall, This behavior is particularly evident for Flow 4 which is the most separated.

Let us consider now the Reynolds shear-stress distributions. For compressible flows, the effective Reynolds shear-
stress is given by pu'v' (assuming that the triple correlation pu'y’ is negligible). In the transonic

flows _under
investigation, the change in the mean density p across the dissipative layer is small, so that the distribution of —u'v'/azt
is nearly the same as that of pu'v'/ptaz. Thus, for practical purposes, -u'v'/a? can be interpreted as the non-dimensional
Reynolds shear-stress.

The distributions of -u'v'/aZ relative to Flows 2 and 4 are plotted in Fig. 2.81. They are also characterized by the
existence of a well-defined maximum neatly detached from the wall. For Flow 4 (as also for Flow 3), the maximum

values of shear-stress and turbulent kinetic energy generally coincide with the location of maximum mean streamwise
velocity gradient 3T/ 57y, as shown in Fig. 2.82.
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The lines of constant values for the turbulence kinetic energy and the Reymolds shear-stress are traced in Figs.
2.83a and 2.83b. For Flow 4, one observes that the region where k and Su'v' are at their maximum is close to the
reattachment point and locatéd somewhat above the Discriminating Streamline.

In order to give a more vivid idea of the variations of the turbulent quantities during the interaction process, Fig.
2.84 shows the streamwise evolutions of the maximum turbulence kinetic energy level (k))f and of the maximum
Reynolds shear-stress level{u'v')y for each vertical distribution.

These plottings demonstrate that there is a very large production of turbulence in the initial part of the
phenomenon which is the shock foot region. This production is enhanced when separation occurs : then (k)) reaches a
maximum which is between 8 and 9 times the initial level in the undisturbed boundary-layer. For Flows 3 and 4, (k)M
starts to decrease upstream of the reattachment point R. Downstream of R, the turbulent kinetic energy decreases
rather slowly and tends very gradually toward a flat plate level. The shear-stress is seen to grow at a relatively slower
pace than k and reaches its highest level downstream of the point where k culminates. In the separated flows, the
culmination of (-u'v')yf is close to the reattachment point. There, the shear-stress has reached a value which is 10 times

the maximum initial level,
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Fig. 2.83 - Lignes of constant value for the turbulence kinetic energy Fig. 2.84 — Streamwise evolution of maximum kinetic energy
and the Reynolds shear stress. and shear stress.

The highest turbulent levels are particularly high, since for an incompressible mixing zone, the maximum of T,; and
T(=gy) are respectively close to 0.40 and 0.014. The above levels are also significantly higher than the peak values
reached in an incompressible separated flow where Ty, is near 0.16 -0.20 (Tani and Iuchi, 1964 ; Solignac 1980).

Similar universal turbulence properties, with comparable fluctuation intensities, were also found by Seegmiller et
al.(1978) in a shock induced separation on a thick circular arc airfoil. The distributions of the turbulence quantities,
along with the mean streamwise velocity profiles, which were measured by Seegmiller and his colleagues with a two-
color LDV system, are plotted in Fig. 2.85. For this flow, it is likewise noticed that the peak values for the shear-stress
and the turbulence kinetic energy are located slightly above the Discriminating Streamline and that they generally
coincide with the location of the maximum velocity gradient.

Let us now focus our attention on Flow 4 for which the vertical development of the separated dissipative layer is
the largest. We will consider the streamwise fluctuating component u' measured in the region where the flow is
separated. The distributions of the reduced turbulence intensities<u’>/(<u’>)y are plotted against the dimensionless
ordinate in Fig. 2.86. One sees that these distributions correlate rather well and are in good agreement with results
relative to a turbulent incompressible mixing-zone (Davis et al., 1963).
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The similitude properties of the separated dissipative layer are also displayed by the Skewness Factor Sk and the
Flatness Factor F) whose distributions are plotted in Fig. 2.87. Over most of their width, the profiles correlate closely
with measurements made in an incompressible mixing zone (Wygnanski and Fiedler, 1970). The behavior of Sk and F)
differs from that of a mixing zone only in the vicinity of the wall where conditions imparted to the flow are obviously
not the same as those existing at the oute edge of a jet issuing into a quasi-unlimited medium.
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for the streamwise fluctuating component — Flow 4 .

From inspection of these results, it can be concluded that the separated dissipative-layer tends to rapidly develop a
mmixing-like structure, the influence of the low velocity reversed flow being extremely weak. It may also be inferred
that the initial state of the boundary-layer has little influence on the development of the shear layer.

2.9.3 Specific Characteristics of Turbulence in the Interacting Flow

Nevertheless, consideration of the vertical fluctuations shows that the similitude with a mixing layer is far from
being complete. The essential differences are made visible, in particular, by considering the x-wise variations of the
maximum RMS values <u'>and <v">, as shown by Fig. 2.88. For the four interactions under investigation, in the most
upstream part of the process, the streamwise fluctuations are seen to exceed the vertical fluctuations by more than a
factor of 3. This result is in contrast to a mixing layer where <u'>is only 30% higher than <v'>. Similar observations
are reported by Johnson and Bachalo (1978) and Johnson et al. (1981).
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Fig. 2.88 — Streamwise variations of the maximum longitudinal
and vertical turbulence intensities for flows 2 3 and 4 .

The initially large increase in u'? is to be expected if one considers the production term of the u'@ turbulence
transport equation, which will be written here for the case of an incompressible flow for the sake of simplicity. This
term P is written as :

scawiiy:Ivy 20U
P= -Zu'v'-r -2uwesn
y ax
In the first part of the interaction process, the contribution involving the streamwise derivative of T is as large as the

term involving the strain rate 33/ 3y (see below). This is a consequence of the strong retardation of the whole
dissipative flow. Thus, P is here the sum of two large positive terms.

On the other hand, the production mechanism for v'2 is expressed by :

P=-2 'v'j. o 272&

The derivative 9%/ 3x is everywhere small, 37/ 3y is equal to 3T/ 9x (nearly equal for a weakly compressible flow), so
that the second term tends to decrease v' production in the first region of the interaction where 94/ 3x is everywhere
negative. Further downstream, a larger and larger part of the viscous layer is accelerated by shear-stress effect. This
fact explains the later growth of v'e,
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Such a strong anisotropy of the flow has two important consequences which must be kept in mind when developing a
theoretical flow model :

i - the first point concerns the mechanism of turbulence kinetic energy production. As a matter of fact, for an
incompressible flow and if the contribution involving the derivative 3v/ 3x is assumed negligible, the production

term of the k transport equation becomes :

The first term, representing production by shear-stress, is generally predominant in shear-layer and/or boundary~
layer type flows. For this reason, it is frequently the only term retained in most predictive methods.

The two production terms of the above expression have been computed for the aforementioned Flows 2 and 3 ; they
are plotted in Fig. 2.89. One sees that production due to normal stress is as high as production due to shear stress
over a streamwise distance which is of the order of five times the initial boundary-layer thickness. This region
roughly coincides with the region of steepest x-wise pressure gradient where there is a general retardation of the
entire flow field, Further downstream, the normal stress contribution becomes rapidly negligible.

ii- the second point is relative to the streamwise momentum equation. In the case of an incompressible flow, the
terms of this equation involving Reynolds stress are the following :
3 9
Ty @) -, @2 -v?)
The normal distributions of these two terms for Flows 2 and 3 are plotted in Fig. 2.90. In the first part of the

one sees that the x~derivative of the normal stress can be greater than the y-derivative of the shear-stress.

interaction,
"classical" thin shear-layer hypothesis can be

Farther downstream, the normal-stress influence is negligible and the
applied anew.

Simpson et al. (1977) have made similar observations concerning the importance of normal stress both in the
turbulence production mechanism and in the momentum equation in the case of a separating incompressible boundary~
layer (see also Viswanath and Brown (1982) who analyzed a separated trailing-edge flow at a transonic Mach number),
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2.9.4 Some Remarks on the Problem of Turbulence Modeling

The aforementioned experimental data obtained by Délery and by Seegmiller and his co-workers can be used to
guide turbulence model development for use in computer codes that attempt to numerically simulate complicated
dissipative flows. Most often, simulations based on the Reynolds averaged Navier-Stokes equations utilize a scalar eddy

diffusivity formed from a product of a modeled length scale and velocity.

In the present data processing, the eddy diffusivity was deduced from the measured shear-stress and velocity
profiles by using the relation :

_-u'v'

Vt=——=0"
tT e uey

The distributions of  thus obtained by Seegmiller et al, are represented in Fig. 2.91a. A general observation is
that )¢ tends to increase with distance downstream from the separation point and its maximum value tends to diffuse
outward through the shear-layer, particularly beyond the trailing edge of the profile used in these experiments. Other
eddy diffusivity distributions are plotted in Fig. 2.92. They correspond to Flow 4 which is the most separated
(distributions for the other Flows exhibit similar trends). Here the.plotted quantity is the eddy diffusivity scaled to the
product ug g, § being the local boundary-layer thickness. The same general evolution as in the previous example is

observed.

Figure 2.92 also shows a comparison with the following theoretical evaluations of V¢ based on @

i - the models of Alber (1971) and Levy (1978), for the separated flow region ;
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ii- the model of Michel et al. (1969) for the reattached boundary-layer (in this case, the two above models give
practically identical results, so they are not all plotted).

In certain algebraic turbulence models, the eddy diffusivity is expressed by means of the Prandtl mixing length

concept, in the form :
=12 | 2u
e gyl

Figure 2.93 shows the distributions of the normalized mixing length 1/ § computed from the data relative to Flows
2 and 4. One observes that at the beginning of the interaction and in the central part of the dissipative layer, the
magnitude of 1§ is much lower than the usual value 1/§ =0.09 adopted in "classical" boundary-layer calculations.
Although large errors in the calculation of§ Tfp y from data points can be expected in the outer region of the
dissipative flow where3 G/3 y tends to zero, 1§ exhibits in this region a distinct tendency to increase. Such an increase
was also observed in an incompressible separated flow by Etheridge and Kemp (1978). It could be due to some memory
effect in the outer region of the dissipative layer. The inaccuracy of data very near the wall makes it difficult to
interpret with assurance the experiments in this region. The high values of l/(S_found near the wall at x = 44 and x = 83
in the case of Flow 4 correspond to the reversed part of the u profile where 3 u/s y changes signs. The same tendencies
for the evolution of 1 were also noticed by Seegmiller et al., as shown by Fig. 2.91b.
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inflows 2 and 4 .

In the core of the layer, 1/§ increases steadily with downstream distance and reaches values well in excess of 0.09
for the most downstream probing station. This fact demonstrates that turbulence has a structure different from that of
an equilibrium flat plate boundary-layer. The importance of the "memory" effect in the course of the interaction is also
illustrated by Fig. 2.94 which shows the distributions of the following quantities G/, Tu and Tyy measured at ¥ = 308,
Le., far downstream of the reattachment point which is located at X = 150. These profiles are compared to the well
known results of Schubauer and Klebanoff (1951) relative to an incompressible "well behaved" flat-plate boundary-layer.
The shape parameters of the two flows are equal to 1.4 and their Reynolds numbers are very close. Consequently, the
mean reduced velocity profiles u/ue are nearly identical. On the other hand, as can be seen in Fig. 2.94, the
distributions of turbulent quantities differ appreciably., In particular, the shear-stress profile of the transonic
interaction has a wake-like shape over its major part, the high values of shear-stress found in the central part of the
boundary-layer being the remnant of the mixing-type structure which developed during separation.

A synthetical overview of the entire history of the interacting boundary-layer, starting from the process onset at

Xg to the far downstream state, can be reflected by considering the evolution in the "phase plane" of the two following
variables :

i~ the square root of the shear-stress coefficient given by
T

[ [ 2
c 2(pu'v )M/peu(E

where {p u'v')y is the maximum shear-stress at each streamwise location,
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ii- the "equilibrium shape parameter" J defined as :
J=1-1/H;

According to East and Sawyer (1979), one can introduce a function defined by :

G = (H; - 1/ (Hi/o.slT) = J//o.scT = 6.55

which has the ability to remain constant for all equilibrium boundary-layer flows : the value of the constant being that
corresponding to a "well behaved” flat-plate boundary-layer. As a matter of fact, G is similar to the Clauser parameter,
the difference being that the conventional Clauser parameter involves the skin-friction coefficient, For an equilibrium
flat plate boundary-layer there is in fact identity between the two functions since then the shear-stress is maximum at
the wall.

Consequently, the equation :

J/ /o.sd; = 6.55

specifies the straight line in Fig. 2.95. This line is the locus representative of "equilibrium" boundary-layers, i.e.,
boundary-layers undergoing specific transformations in which there is an instantaneous adjustment between the

distributions of mean velocity and shear-stress. This adjustment is generally only possible for very progressive and slow
streamwise evolutions.
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maximum Reynolds shear stress in the phase plane (1 — 1/H;, J C.).

If one plots ¥ Gr against J for Flows 1 to 4 (see Fig. 2.95), the following trends are observed in the course of the
interaction :

i - the "trajectories” (or "images") of the four interactions in the phase plane (J, v"C;) start from a common point
lying close to the equilibrium locus (it is not exactly on the locus because the incoming boundary-layers are
slightly out of equilibrium due to the strong acceleration in the first part of the transonic channel). Initially, the
trajectories run below the equilibrium locus. This indicates that the boundary-layer undergoes what is called a
"Rapid Interaction Process" in the shock foot region. Then, there is a large departure from equilibrium

characterized by a "lag" of the shear stress. When the shock is strong enough, separation occurs during this
phase of the interaction process.
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ii- thereafter, and especially for separated flows, the shear-stress and the shape parameter continue to increase
together in a way typical of a free shear-layer development. This mixing-like evolution could continue until J =
1. (i.e., until Hi= =),

As a matter of fact, during the Rapid Interaction Process, the separating boundary-layer undergoes such an
overwhelming perturbation that - as Bradshaw postulated (1972) - the development of the free-shear layer is not
significantly influenced by its initial conditions, i.e., the initial boundary-layer properties (provided it is fully
turbulent). In that phenomenon, prodiction of turbulence continues in proportion to the growth of the large
scale structures which form near the separation location. Such large scale structures can be seen in the short
exposure-time interferogram of Fig. 2.96 (Délery, 1980a).

Fig. 2.96 — Shortexposure time interferogram of a transonic interaction
with separation — Flow 4 .

iii~at some position,the shape parameter culminates and starts to decrease. For separated flows, this reversal
means the onset of the Reattachment Process. During this phase of the interaction, the shear-stress level still
increases until it reaches a maximum at a streamwise station which nearly coincides with the reattachment
point. In the course of the reattachment process, the trajectories in the (T/Cq) plane bend and cross the
equilibrium locus at a point which is all the farther from the origin as the separated region is larger.

iv- downstream of reattachment (and in the absence of a new destabilizing agency) the trajectories point toward a
"final point" located on the equilibrium locus. During this Relaxation Process, the representative points lie
above the equilibrium locus and, at some instant, a new situation of maximum departure from equilibrium is
reached. Downstream of reattachment, it is to be noticed that the representative points seem to collapse onto a
common trajectory tending toward the equilibrium locus.

To end this Section on certain turbulent aspects of transonic interactions and in order to illustrate the highly
fluctuating character of these flows, Fig. 2.97 shows tracings of the lines of constant value for the probality of the
instantaneous velocity component u being negative. These contour lines are relative to Flows 1 to 4. They have been
computed from histograms of u (for the sake of clarity, the vertical co-ordinate has been greatly dilated).

One observes that, even for the presumed unseparated Flows 1 and 2, instantaneous negative values of u occur in
regions where the mean velocity u is positive. On the other hand, for Flows 3 and 4, the probability P (u <0) is never
equal to 1. in the reversed part of the flow. This means that u is varying continuously from negative to positive values
even in the most separated case.
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3 - INTERACTION IN TWO-DIMENSIONAL SUPERSONIC FLOWS
3.1 - The Four Basic Interactions.

What can be considered as the four basic configurations involving interaction between a shock-wave and a
boundary-layer in supersonic flows are schematically represented in Fig. 3.1. In what follows, the incoming outer flow
will be assumed an uniform flow streaming along a flat surface for the sake of simplicity.

i - the first and most conceptually simple configuration is the wedge (or ramp) flow. Here, a discontinuity in the
wall direction is the origin of a shock-wave (Cjp) through which the supersonic incoming flow undergoes a
deflection equal to the corner angle @ :

ii~ the second type of flow is associated with the impingement on the wall of an incident oblique shock (Cj). The
incoming flow undergoes a deflection Aj"l through (C1) and the necessity for the downstream flow to be again
parallel to the wall entails the formation of a reflected shock (C2) issuing from the impingement point I of (C1).
The deflection 4, produced by (C2) must be such that Ajp 2= -Ayl. The pressure jumps pl/p0 andp 2/p 1

through each shock are not equal, though not very different ;

tii-the third flow is induced by a step of height h facing the incoming flow. Such an obstacle provokes the separ-
ation of the flow at a point S. The very rapid pressure rise accompanying separation , especially in turbulent
flows, gives rise to a shock-wave (Cj) emanating from a place very close to the separation point S. Downstream
of S, a separated zone develops ; it is characterized by the existence of a bubble of recirculating flow in
contact with the step. In fact, there is some similarity between wedge flow and flow produced by a forward
facing step. In the latter case, the separated region is "felt" by the outer inviscid stream as a corner whose
angle is determined by the displacement effect of the dissipative zone ;

iv- the fourth situation corresponds to the reattachment downstream of a rearward facing step. The incoming flow
separates at the base shoulder S undergoing an expansion with a (negative) downward deflection. Further
donwstream, the flow reattaches on the wall. The resulting positive deviation generates compresion waves
which coalesce into the so-called "reattachment shock". In contact with the wall, a recirculating bubble is
trapped, inside which the flow is reversed.

¢ . Step induced separation d . Reattachment downstream of a step

Fig. 3.1 — Basic shock/boundary-layer interactions
in supersonic flow.

Now we will examine in more detail the general structure of the flow fields resulting from these interactions.
3.2 - The General Flow Field Structure

3.2.1 - The Compression Ramp Flow

Let us first consider the flow structure associated with a compression ramp. Figure 3.2 shows a sequence of
microsecond spark shadowgraphs visualizing this type of flow for an upstream Mach number equal to 2.85 and a
Reynolds number (based on the thickness of the incoming boundary-layer) equal to 1.7 x 106 (Settles et al., 1978). The
four pictures correspond to different values of the corner angle ranging from 8 to 24 deg. (The appearance of a second
ramp in some of the photos is due to optical interference and is not affecting the flow development),

In the 8 deg. case, a distinct shock-wave is seen to arise from the corner location. This shock-wave forms well
within the boundary-layer and - as already pointed out in the Section devoted to Transonic Flows - most of the
boundary-layer behaves like an inviscid (rotational) fluid, viscous forces being negligible compared to pressure and
inertia forces throughout the major part of the boundary-layer. Furthermore, at the high Reynolds number value of the
present experiment, the velocity profile of the incoming boundary-layer is very "filled" so that the Mach number slowly
decreases over the major part of the boundary-layer thickness (see Section 1.1 above). The transition to zero velocity
at the wall takes place over a very short normal distance and, accordingly, the subsonic layer is extremely thin. These
features explain why the shock originates from a region very close to the wall,

From above, the shock is first seen to be curved, the curvature being due to its propagation through a rotational
layer in which the entropy changes from one streamline to the other. Outside the boundary-layer, the shock is
rectilinear, since the incoming flow is here uniform.

Fora = 8 deg., the upstream influence is very small, since shock emanates practically from the corner angle. On
the other hand, for o = 16 and 20 deg., the shadowgraphs reveal a substantial increase of the upstream influence length
due to an intensifying of the perturbating agency, namely the shock strength. This phenomenon will be studied in more
detail below. Also, the spreading of the shock near the wall becomes clearly visible. As for transonic flows, the shock is
seen to result from the coalescence of compression waves induced by the thickening of the low velocity portion of the
boundary-layer.

Fora = 24 deg., the pressure rise is strong enough to provoke significant separation. The shadowgraph shows the
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following typical features (part of this shadowgraph is obscured by the aerodynamic fences which were necessary to
insure flow field two-dimensionality) :

i - the corner upstream influence has considerably increased ;
ii~ a first shock forms well upstream of the corner. This shock results from an initial turn of the flow at separation;
iii-an additional compression fan at reattachment merges with the separation shock and reinforces it.

For flow conditions different from those of the present example, the compression waves at reattachment may
coalesce into a shock before reaching the separation shock. In this situation, the two shocks meet at a bifurcation point
I (also called a triple point) and the inviscid flow structure is similar to a double-wedge configuration with a first wedge
corresponding to the initial turn at separation and a second wedge to the final turn at reattachment (see Fig. 3.3a). This
inviscid flow structure can also be conceived as a double shock system produced by a still air region at a pressure
superior to that of the incoming flow. The free boundary of this still air region starts from the "separation” point ST and
hits the ramp at the "reattachment” point RT, ST and RT not being coincidental with the physical separation and
reattachment points since the real flow field is more complex than the above perfect fluid model (see Fig. 3.2). The
model of the second kind is utilized in certain multi-component methods developed to compute lage separated zones in
turbulent flows (Délery and Masure, 1969). Consideration of these methods would be beyond the scope of the present
AGARDograph.

The shock polar construction in Fig. 3.3b shows the local flow situation at point I. In order for the two-flows
downstream of 1 be compatible (i.e., have same pressure and same direction), an intermediate state 2' must be
introduced between the final states 2 and 3. According to the relative position of the shock polars I'i and T, the wave
connecting 2 and 2' is either a shock (most often very weak) or a centered expansion.

The occurrence of the double-shock system is illustrated in Fig. 3.4 by a plotting of the shock-wave angles 81 and
0 7 against the corner angle a (Spaid and Frishett, 1972). At low @, only one shock ~(C1)- of angle 81, is now visible. At
higha , in addition to the main shock (C1) (which continues above the bifurcation point I), a second shock (C7) of angle
07, is now visible. In the present example, this separation shock appears for =16 deg. When o increases, 62 first
increases slightly, then it rapidly tends to a nearly constant value. The constancy of 87 indicates that the strength of
the separation shock does not depend on downstream conditions, namely the corner angle in this case. In fact, (Cp) is
entirely determined by flow conditions prevailing upstream of separation. Thus, the supersonic separation process is
perceived to manisfest a behavior typical of a flow which Chapman et al.

(1957), called a Free-Interaction.

As will be seen in Section 3.8.2 the appearance of a double-shock system is sometimes used as a detector of
Incipient Separation.

The weak influence of viscosity in this kind of flow, when the ramp angle is moderate, is demonstrated by the
theoretical result shown in Fig. 3.5 (Roshko and Thomke, 1969). This calculation was performed by considering the
boundary-layer as a rotational inviscid flow and by applying the rotational Method of Characteristics to determine the
shock shape and the flow over the ramp. To make such a calculation possible, the inner part of the incoming boundary-
layer must be ignored, the "cut" being chosen in such a way that the Mach number behind the shock remain supersonic.
This kind of calculation belongs to what will be termed "Inviscid Shear Layer Analyses" in Section 1.4 of Part IL.

One sees in Fig. 3.5 that there is very good agreement between the wall pressure distribution thus computed and
experiment. In the present case, this is because the low velocity portion of the boundary-layer has a quasi negligible
influence on the flow field, the inner subsonic layer being excessively thin.
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3.2.2 - The Impinging-Reflecting Oblique Shock

In the present configuration, a shock-wave is generated by a "shock-generator" made up of a flat-plate, with sharp
leading-edge, inclined at an angle g relative to the uniform incoming flow. The planar oblique shock originating from
the plate leading~edge impinges on a straight wall facing the shock generator.

The sequence of schlieren photographs shown in Fig. 3.6 (Délery, 1970) visualizes the shock reflection phenomenon
for increasing values of the primary deflection AY =a through the incident shock-wave. In the present example, the
incoming flow Mach number is equal to 1.93 and the Reynolds number R§_ to 0.75 x 104, The apparent thickness of the
shock on the photographs is the manifestation of side effects on the test-section windows. The following schlieren
photographs interpretation closely resembles the schematic flow representations given by Bogdonoff and Kepler (1954)
more than thirty years ago.

When the incident shock is weak (as in the first photograph in Fig. 3.6), the general flow structure does not differ
much from the perfect fluid model. However, a closer look at the picture reveals that complex phenomena take place
inside the boundary-layer. A schematic sketch of the observed wave-field is represented in Fig. 3.7.

4_0=5deg b_ a.6dg (lncipient separation )

\Lstip line i A
€ G-Bdeg. ( Separation ) d. @-deg ( Separation ) viscous sublayer

Fig. 3.6 — Incident reflecting shock — Flowfield Schiieren photographs Fig.3.7- 'S;",’fk I E: tection wi thous; balfm:a?;./:,}fr/ separation —
Mo=1.93, Rs, = 0.75x 10°. chematic representation of the flowfield.

The incident shock (C1) progressively curves in as it penetrates the boundary-layer because of the decrease in local
Mach number. Correlatively, its intensity weakens and becomes vanishingly small when the shock reaches the sonic line.
On the other hand, the pressure rise through (Cq) tends to propagate upstream in the subsonic region £§ ¢ of the
boundary-layer, causing this part to thicken.

As we already know, the thickening of the boundary-layer subsonic channel generates outgoing compression waves
{11) that rapidly coalesce to form the reflected shock (C2). The refraction of these waves - like that of the incident
shocks - as they propagate through the rotational quasi-inviscid layer (1 - ¢) § o, induces the secondary wave system (l13).

These last waves are reflected by the sonic line as expansion waves (13) which are clearly visible, just behind shock (Ca)y
on the schlieren picture,

For very weak incident shocks, the upstream interaction distance is extremely short, so that the above flow pattern
is embedded well within the boundary-layer. Thus, at the outer flow scale, the only reflected wave is a shock (Cp) with
a deflection angle A¥ equal - but with opposite sign - to that of the incident shock (Cy). In this case, the reflection of
the shock is said to be " a weak interaction process" in the sense that the (real) viscous flow closely resembles the
inviscid flow solution. This resemblance is also evident when considering the wall pressure distributions plotted in
Fig. 3.8.

A very thorough theoretical description of the wave-system resulting from the propagation of a shock in a
boundary-layer was given by Henderson (1967). In the chosen approach, the shock reflection is reinterpreted as a process
of shock refraction by a rotational inviscid layer. A large variety of wave patterns was constructed by Henderson. For
weak interactions, these patterns are generally in good agreement with experimental observations (see examples of

Henderson's results in Fig. 3.9). However, they start to differ markedly from experiment as soon as the incident shock
strength is increased.

Let us now consider the case of an incident shock strong enough to separate the boundary-layer. The resulting

typical wave pattern is visualized by the two last photographs in Fig. 3.6. A very schematic representation of the
observed flow field is sketched in Fig. 3.10.

The boundary-layer separates at point S, located well upstream of the point where the shock would meet the
surface if the fluid were inviscid. The rapid pressure rise at separation takes place as a result of compression waves
propagating at first in the supersonic part of the boundary-layer, then in the outer inviscid stream. These waves
coalesce to constitute what can be interpreted as the leading reflected shock (Cp) through which the outer inviscid

stream is turned upward from the wall. Shock (C5) intersects the incident shock (C1) at point H from which emanate the
two refracted shocks (C3) and (C4). As the entropy rise through (C1) plus (C4) is generally different from the entropy
rise through (C3) plus (C3), H is the origin of a slip-line well visible on the last photograph. A shock-polar representation
of the situation at point H is schematically represented in Fig. 3.11. If one increases the intensity of the incident shock,
a situation can be reached where the two shock polars representing the refracted shock-waves (C3) and (C 4) do not
intersect anymore (see sketch in Fig. 3.12a). Then a Mach stem phenomenon appears with the formation of a quasi-
normal shock inside the flow field as shown by the flow visualisation of Fig. 3.12b.
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Fig. 3.9 — Examples of rotational inviscid flows
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1970).

After intersection with (C2), shock (C]) is bent because of the entropy gradient downstream of (Cp) and the

compression waves generated by the thickening of the boundary-layer (see Fig. 3.10). Afterward
arated dissipative layer from which it is reflected into an expansion wave. Thus the impingement of (C1) on the
be similar to a shock reflection at a constant pressure free-boundary, as is the case of the

sep

boundary-layer is seen to

outer boundary of a large separated region.

s, (C1) enters into the
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Field measurements made by Green (1970) in a shock reflection taking place at Mg = 2.5 have shown that the
incident shock and reflected expansion turn the flow toward the wall at an angle twice as large as the deflection
through the incident shock alone. As this total downward turning is greater than the upward turning through the
separation shock (see below and Fig. 3.14), downstream of the expansion fan, the outer stream flows toward the surface.
At the same time, the thickness of the dissipative layer decreases. Afterwards, the external stream is progressively
turned of an angle A 4 to become parallel to the wall. Simultaneously, the boundary-layer reattaches at point R. The
deviation accompanying the reattachment process is far more progressive than the deflection at separation. The
resulting compression waves are barely visible on the schlieren photographs of Fig. 3.6.

As was suggested by Green (1970), occurrence of separation at a shock reflection can be detected by plotting the

deflections A2 and Ap3 through the leading reflected shock and the expansion, respectively, against the primary
deflection A .

The plottings of Fig. 3.13, which are due to Green, show the following trends :

i- when A p1 is small (A 1< 5 deg.), A )o 2 is nearly equal to A w1 and the reflection is close to the inviscid flow
model ;

ii- for A ¢ 1 nearly equal to 5 deg., one observes a jump in A » 2 to a value which thereafter is independent of A .
. ’,/
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Fig. 3.14 - Shock-reflection with separation —
Inviscid flow model,

iii- for AYL =5 deg., ASO 3 jumps from zero (no reflected expansion visible) to a finite value approximately equal to
AY 1. Thereafter, Aj) 3 increases as Af 1.

The observed jumps in A¥ o and AS” 3 were seen to coincide with the occurrence of separation as determined from
surface oil flows. The existence of a reflected expansion seems to be typical of shock-reflection induced separation, the
expansion appearing suddenly with Incipient Separation. Such an Incipient Separation situation is shown by photograph b
in Fig. 3.6.

Furthermore, the constancy of AY 2» once separation has occurred, indicates that the separation shock strength is
independent of the strength of the incident shock-wave that causes separation. Such behavior is also typical of a Free-
Interaction process.

In the same nature as the double-wedge (or free boundary) inviscid flow model for a separated wedge flow, one can
also imagine a similar model schematizing the reflected-shock separated flow (see Fig. 3.14). It consists in a still-air (or
"dead~air") region at constant pressure whose free-boundary starts from the "separation" point ST. The incident shock
(C1) hits the free-boundary at point I which is the origin of an expansion fan cancelling the shock pressure jump to
insure continuity of pressure. There results an abrupt deviation of the free-boundary which runs toward the wall
downstream of I and meets it at the "reattachment" point RT.

As pointed out by Green (1969), the wave system produced by an incident oblique shock can be thought of as a
variant of the separated corner flow pattern. In the two cases, there is first a strong interaction with outward
deflection of the outer flow at separation. Further downstream, both for the wedge flow and for the shock
impingement, the interacting boundary-layer "feels" an abrupt change of the external flow direction relative to the
local wall direction : for the wedge flow, it is the wall that turns of an anglec(, for the incident shock it is the outer
flow that turns of an angle A({{(-r A%I‘_Q,Zo(' (see remark above). Thereafter, for the two flows, a similar reattachment
process takes place. During this process, the outer flow is progressivley turned to become approximately parallel to the
wall, It is a fact that the theoretical methods using the classical viscous-inviscid coupling concept do not distinguish
essentially between the two cases.

Furthermore, for the shock impingement, the net angular deflection of the outer stream is zero (provided that the
wall is flat). Thus one has AY 1+ AY 5 + A 3+ AY 4 =0; hence (AP1+89 g =-(AY 2+ AP 3) = 200 = 20. It is seen
that the total deflection through outgoing compression waves is nearly equal to twice the primary deflection through
the incident shock. Thus, a compression corner of angle 20 and an incident shock of deflection o reflecting at a plane
surface give rise to two successive compressive interactions (at separation and reattachment) the total
strength of which is the same. It will be seen in Section 3.3 that for these two flows, the wall pressure distributions are
nearly identical if the overall pressure rises are equal.

When shock reflection induces separation, there is a large difference between the perfect fluid solution and the
real (viscous) flow, This difference is obvious from the schlieren photographs ; it is also evident if one compares the
inviscid and real wall pressure distributions plotted in Fig. 3.15. Such a flow will be termed a "strong interaction
process”, in the sense that the purely inviscid solution is now far from portraying the true flow field.
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Fig. 3.15 — Shock reflection with separation —
An  example of strong viscous interaction
Mg=1.93, Rs,=0.75x 10°.

3.2.3 - Flow Produced by a Forward Facing Step

The case of flow separation in front of a forward facing step is illustrated by the schlieren photographs in Fig. 3.16
(Délery and Le Balleur, 1972). They correspond to the same upstream conditions as for the shock reflection example,
namely : Mg = 1.93 and R Sloks 0.75 x 10%. The photographs are relative to three different heights of the step provoking
separation of the flow. The most visible features on these photographs are : the incoming boundary-layer, the shear-
layer that develops along the border of the separated region, the separation shock and the expansion wave originating
from the reattachment at the step shoulder. The flow, schematically represented by the sketch in Fig. 3.16, is
characterized by the existence of a large recirculation bubble the size of which is roughly proportional to the step
height.

We will not consider here, the complex phenomena at the step shoulder, such a discussion being beyond the scope of
the present AGARDograph. We will restrict our attention to the separation region. As shown by the photographs, the
structure of the flow in the vicinity of the separation shock is similar to what has been observed in the preceding
examples. The essential difference is that the extent of the separated region can be greatly amplified in the present
situation.

Perhaps the most striking feature of this kind of flow is the independence of the separation shock angle as well as
of the direction of the supersonic flow bordering the shear-layer with respect to the step height (see also Zukoski,
1967). This constancy (for fixed Upstream conditions) demonstrates clearly that the separation process does not actually
depend on downstream conditions and, particularly, on the obstacle at the origin of the separation of the boundary-
layer.

In fact, as will be seen in Section 3.6 below, the separation process (in supersonic flows) is independent of the cause
that provoked the phenomenon : the separation process itelf is thus identical for ramp induced, impinging-shock induced
or step induced separation. It depends only on the flow properties at the onset of the phenomenon : hence, the
expression "Free-Interaction” introduced by Chapman to designate this kind of interacting flow.

-

——li 1

Fig. 3.16 — Supersonic separation in front of a forward facing step
Influence of the step height Mo =193, Rs,=0.75x 10°.
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The above separation experiments were also used to analyze in detail the flowfield structure in the shock foot
region. In particular, wall pressure distributions and streamwise velocity profiles were measured (Délery and Le Balleur,
1973). These data have been used to compute the development of the separating boundary-layer by the rotational
Method of Characteristics, i.e., by assuming the flow inviscid. A starting characteristic, originating inside the
boundary-layer at the point where the local Mach number is equal to 1.05, was first determined from the velocity
distribution on the iso-Mach line M = 1.05 which was chosen as lower boundary of the flow region assumed inviscid
(Carriére et al., 1975).

The computed characteristics network is drawn in Fig. 3.17. One sees that there is good agreement between the
calculated and the experimental location of the line on which M = 1.05. As shown in Fig. 3.18, the computed velocity
distributions agree also closely with experimental data.

Fig. 3.17 —Separation in front of a step — Perfect fluid calculation. Fig. 3.18 — Separation in front of a step — Perfect fluid calculation:

Characteristics network — Mo = 1.93, Rs, = 0.75x 10°. streamwise velocity profiles — Mg = 1.93, Rg, = 0.75 x 10°.

In addition, the computed normal pressure distributions, represented in Fig. 3.19, show that large y~wise variations
of pressure exist within the boundary-layer in the region where the separation shock forms. Further downstream, as the
free shear layer develops, the pressure tends to become transversally constant throughout the dissipative region. The
same tendencies were noted by Behrens (1971) in a similar flow.

To sum up, the above calculation, supported by many other observations, clearly establishes the following typical
features of the separation phenomenon in supersonic flow :

i - in this "rapid interaction" process, most of the boundary-layer behaves like an inviscid fluid. This finding
corroborates observations already made in preceding Sections;

ii- because of the no-slip condition at the wall, viscous forces must be necessarily predominant in the vicinity of
the surface. However, in turbulent flows, this viscous "inner layer" is very thin;

iii-large axial and normal pressure gradients are both present within the separating boundary-layer, except in the
"inner layer" where the classical first-order boundary-layer approximation may certainly apply.

Such behavior is observed each time the streamwise extent of a strong interaction is of the order of the thickness
of the incoming boundary-layer. It allows simplifications of the equations of motion leading to the already mentioned
Inviscid Shear Layer analyses (see Section 1.4 of Part II). This simplified approach has also received a more rational

justification within the framework of the "multi-deck" theories presented in Section 4 of Part II. The essential
conclusions of these theories are already apparent in the above flow description.
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Fig. 3.19 — Separation in front of a step — Perfect fluid
calculation — Transverse static pressure distributions
Mo =193, Rs,=075x 10°,
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3.2.4 - The Reattaching Supersonic Flow

Figure 3.20 shows a schematic representation of a supersonic flow reattaching behind a rearward facing step. In
this AGARDograph, we do not intend to give a thorough description of the reattachment process, the subject being
marginal to our main topic. Surveys of the supersonic reattachment problem and of the accompanying base-flow
problem can be found elsewhere (Délery and Sirieix, 1979 ; Délery, 1983). In the present Section, only the essential
features of the flowfield will be briefly reviewed with a view to helping in the understanding of the structure of shock
separated flows.

Broadly speaking, the turbulent dissipative flow can be divided into five regions (see Fig. 3.20) ¢

i - the first region I is located in the vicinity of the base shoulder S where the incoming boundary-layer separates.
In the portrayed situation, the boundary-layer undergoes at I a Prandtl-Meyer expansion. In other
circumstances, such as in ramp induced or shock induced separation, the boundary-layer at S is submitted to a
compression ;

ii- downstream of S, in region II, a quasi-isobaric turbulent mixing-layer develops ;

iii-region II is followed by a first compression zone IIl extending to the reattachment point R ;

iv- the compression continues downstream of R in region IV until some constant downstream level is reached j

v - in contact with the wall, a recirculating bubble V is trapped. Inside this bubble, the flow is reversed, feeding the
mixing-layer.

The conservation of the fluid mass contained in what is called the "dead-air" region requires the streamline (j)
issuing from the separation point S to end up at the reattachment point R. Any streamline above (j) must continue
beyond R and any streamline below (j) should fold back toward the dead-air due to the existence of the adverse pressure
gradient in the vicinity of R. Streamline (j} will be called the Dividing StreamLine or DSL.

7

N X
0 w8
107 10" 1 10 10 10
Fig. 3.20 — Supersonic reattachment downstream of rearward
facing step — Schematic representation of the flowfield. Fig. 3.21 — Two-dimensional free shear layer — Variation of
velocity on the dividing streamline (Carpenter and Tabakoff,

1971).

As the separated shear layer develops, the velocity u; on the DSL progressively increases from zero at the
separation point. This increase, which is due to the action”of shear-stress, continues until an asymptotic value is
reached when the length of the free shear-layer has become very large compared to the initial boundary-layer thickness
(see Fig. 3.21 giving evolutions of uj computed by Carpenter and Tabakoff, 1971). When the reattachment process
begins, i.e., when the pressure at the wall starts to rise, the whole flow is decelerated. The velocity on the DSL
decreases progressively until stagnation at the reattachment point.

As can be intuitively understood, reattachment depends essentially on the pressure rise that the mixing-layer can
handle when the external flow turns to become parallel to the wall. Intuitively, this pressure rise is a function of the
kinetic energy gained by the mixing-layer and, more precisely, of the velocity level reached on the DSL when the
reattachment process starts. Most of the so-called "component methods" developed to predict separation are based on
some adequate criterion modeling the flow decceleration on the DSL. In particular, it is frequently assumed that this
deceleration takes place isentropically on each streamline (Chapman et al., 1957; Korst 1956). As these theories will not
be reviewed here we will only summarize the main conclusions pertaining to reattachment :

i - for fixed initial conditions, i.e., for a given pressure in the dead-air region, the higher the pressure rise at
reattachment, the greater must be the velocity uj on the Dividing Streamline ;

ii- for fixed initial conditions the greater the velocity uj, the longer must be the mixing layer, i.e., the separated
zone ; :

iii-as already noticed in the case of transonic flows, the compression at reattachment is more progressive than at
separation. Consequently, the reattachment shock, resulting from the coalescence of compression waves,

generally forms farther from the wall.

3.2.5 - Concluding Remarks

We have seen that there is a close similitude between wedge-flow and shock impingement flow. Of course
differences exist in the details of the phenomena since they correspond to rather distinct situations. Nonetheless, the
resemblance concerns the main flow features the analysis of which is of the greatest importance for a clear
understanding of the physics of the phenomenon.

On the other hand, separation in front of a step and reattachment behind a downward facing step constitute two
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"basic component flows" into which a shock separated flow can be divided. The main point of this distinction is to
emphasize specific characteristics which are sometimes hidden when the two phenomena are closely connected in a

more complex configuration.

Consequently, in the forthcoming Sections we will no longer make a strict distinction between the different
situations which have been envisaged up to here.

3.3 - Properties of the Wall Pressure Distribution

The main properties of the wall pressure distributions measured in a supersonic shock-wave/turbulent boundary-
layer interaction will now be examined by considering typical experimental data.

i - the first example is a wedge flow at an upstream Mach number Mg = 2.95 and a Reynolds number

Rg 0= 0.78 x 106 which was investigated in considerable detail by Settles (1975). The data plotted in Fig. 3.2.2
show that the pressure at the wall starts to rise upstream of the corner by virtue of the upstream propagation
mechanism already discussed. The correlation properties of the so-called Upstream Influence Length - or
Upstream Interaction Length -as defined from the wall pressure distribution will be examined in Section 3.7 H

ii- as we already know, when the corner angle o is small, the difference between the inviscid solution and the real
flow is small. This situation corresponds to what was termed a weak interaction H

iii-for the highest values of a, the pressure curves clearly exhibit three inflection points. This shape is typical of an
interaction involving a noticeable separation of the boundary-layer. The three inflection points are respectively
associated with separation, the onset of reattachment and the reattachment compression. Now, as we already
know, the fully inviscid solution differs considerably from the real flow and such a situation is called a strong

interaction ;

iv- in fact, as demonstrated in Fig. 3.23 by results relative to an impinging shock at Mg = 1.93 and
Rg o =075 x 105 (see the corresponding schlieren photographs of this flow in Fig. 3.6), a separated bubble is
present before the occurrence of the three inflection points (Délery and Le Balleur, 1972). In fact, as shown by
experiment, such a "kink" in the wall pressure distribution becomes apparent once the separated region has
already attained a noticeable size. This behavior may lead to difficulty in the detection of supersonic Incipient

Separation from inspection of wall pressure distributions (see Section 3.8.2 below) ;
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Fig. 3.23 — Shock reflection — Wall pressure
distributions — Mo = 1.93, Rg,=0.75 x 10°.

v - let us consider the same example of an impinging shock. Examination of the pressure distributions plotted in
Fig. 3.23 reveals that - for small values of the deflection Abol through the incident shock - the curves exhibit an
overshoot to values superior to the level corresponding to the theoretical pressure jump. The amplitude of this
overshoot progressively shrinks as ASOI increases and, in the present case, it is null for AW 1 = 6 deg. As shown
by the data plotted in Fig. 3.24, the same phenomenon is observed for a wedge flow in the conditions Mg = 1.95
and R § o = 1.89 x 106 (Roshko and Thomke, 1969). Broadly speaking, the overshoot only exists at moderate Mach

numbers ; it disappears when My, is approximately greater than 2.5 ;

vi- the data plotted in Fig. 3.25 were published by Shang et al. (1976). They are relative to a compression ramp and
to an impinging shock giving the same overall pressure rise as the ramp. The initial conditions are identical in
the two cases, namely : Mg = 2.96 and R§ _ = 105. The left part of the figure shows lines of constant density
determined from interferometric measurements. Although the structures of the two flows are very different.
one sees that the two families of wall pressure distributions plotted on the same figure are nearly coincident.
This observation corroborates Green's statement on the close similarity between the ramp flow and the

reflected shock flow (see above).
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Fig. 3.24 — Ramp flow — Example of pressure overshoot at
small angle — Mo = 1.95, Rs, = 1.89 x 10° (Roshko and
Thomke, 1969).
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Fig. 3.25 — Comparison of ramp flow and shock reflection flow
Mo=2.96, Rg=1x 10" (Shang et al., 1976).

vii-figure 3.26 shows plottings of wall pressure distributions for the same incoming flow separating in front of steps
of different heights (the corresponding schlieren photographs are shown in Fig. 3.15). For the highest step, the
pressure curve exhibits the "plateau” typical of an extended separated zone. If these distributions are re-plotted
in such a way that the origins of the interactions coincide ~ as is done in Fig. 3.27 - one observes a close
correlation of the curves on the whole. Also, as demonstrated by Fig. 3.27, a similarly good correlation exists
between step-induced and shock-induced compressions. Such a coincidence was noticed by Chapman et al.
(1957), Gadd et al. (1954) and also by Bogdonoff and Keppler (1954). It is a new argument in favor of the Free
Interaction theory which will be presented in section 3.6.
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Fig. 3.26 — Separation in front of a step — Influence of the
step height on the wall pressure distribution — Mg = 1.93,
Rs,=0.75x 10°.
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Fig. 3.27 — Separation in front of a step — Correlation of wall
pressure distributions.

wall pressure distributions resulting from flare-induced separation at Mg = 3.96 and high Reynolds number

(Roshko and Thomke, 1974) are plotted in Fig. 3.28. These results tend to show that the extent of the pressure
plateau region increases with the flare angle, i.e., with the overall pressure jump [_A p]T. As seen in vii, the
pressure rise to separation does not depend on downstream conditions and is, thus, entirely determined by the
flow situation at the interaction onset. Consequently, an increase in the overall pressure rise necessarily entails
a higher pressure rise at reattachment. As seen in Section 3.2.5, this can only be achieved by an increase in the
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Fig. 3.28 — Flare induced separation — Wall pressure distributions
My =396, Ry =30x 10° (Roshko and Thomke, 1974).
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velocity on the Discriminating Streamline of the separated bubble. Hence, the length of the separated shear-
layer must be longer in order to permit a greater acceleration on the DSL before reattachment begins ;

ix- the pressure distributions plotted in Fig. 3.29 were measured in a compression corner at Mg = 2.7 and for
relatively low Reynolds numbers Ry varying in the range 1.4 x 106 to 4 x 106 (Chapman et al., 1957). According
to these results, there is clearly a visible increase in the streamwise extent of the interaction when the
Reynolds number increases. On the other hand, as shown in Fig. 3.30, in experiments performed at high
Reynolds number (Ry of the order of 109, Roshko and Thomke, 1969), there is an obvious decrease in the

interaction extent with increasing Reynolds number. This reversal in trend will be further commented in the
forthcoming Sections;

x - this last typical feature of a turbulent shock-wave/boundary-layer interaction is observed at very high Mach
numbers. As shown by the curves of Fig. 3.31 which correspond to wedge induced separation at Mg = 9.22,
(Elfstom, 1971), a hypersonic interaction is characterized by the existence of a large pressure over-shoot that
follows reattachment. A plausible explanation of this phenomenon can be found by resorting to the double
wedge inviscid model for ramp induced separation given in Section 3.2.1 above. An inviscid flow of this type was
theoretically investigated by Sullivan (1963) for hypersonic free stream Mach numbers. In this case, the three-
shock configuration with its bifurcation point I is very close to the wall (most often, in the real viscous flow,
the shock system itself is embedded within the boundary-layer). Consequently, the reflected wave starting from
I strikes the wall at a small distance downstream of the reattachment region. Since, in hypersonic flows, this
wave is a rather intense expansion wave, its trace on the wall results in a steep decrease of the pressure
immediately following the rise at reattachment.
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Fig. 3.30 — Ramp flow — Reynolds number effect at high Fig. 3.31 — Downstream overshoot at high Mach number

Reynolds numbers — My = 3.93 (Roshkoand Thomke, 1969). M. =89.22 (Elfstrom, 1971).

3.4 - Some Features of Shock-Wave Boundary-Layer Interaction in laminar Flows

As already stated in the Introduction this AGARDograph is essentially concerned with turbulent flows and thus we
do not intend to give ample information on the laminar régime. The aim of this Section is simply to emphasize the main
differences between turbulent and laminar interacting flows.

Such differences were already noticed and carefully discussed nearly forty years ago by Liepmann (1946) for the
case of a transonic flow past a circular arc profile. His experiments demonstrated that a change from laminar to
turbulent boundary-layer - at a given free stream Mach number - considerably alters the whole flowfield if shock-waves
are present in this flow.

In this Section, we will restrict our attention to a limited number of typical examples relative to entirely
supersonic interactions.

Figure 3.32 shows a comparison between a laminar and a turbulent interaction having nearly the same upstream
Mach number (Chapman et al., 1957). The wall pressure distributions clearly exhibit a greater spreading of the
discontinuity in the case of the laminar boundary-layer, This greater x-wise extension is far beyond the scaling by the
incoming boundary-layer thickness. Also, the various characteristic pressure rises, in particular the pressure at
separation, are far less important in laminar flows than in turbulent flows.

The above differences in the flow behaviors have at least two immediate consequences :

i - the pressure rise required to separate a laminar boundary-layer is much lower than the pressure rise inducing
separation of a turbulent boundary-layer. A direct quantitative comparison of the respective sensitivity of the
two flows to shock-induced separation is difficult, since such a comparison should be made by varying the
pressure rise while keeping the same Reynolds number for the two flows. However, some information can be
inferred from the Free Interaction Theory developed in Section 3.6 below. This theory establishes the fact that
the normalized pressure rise at separation - which can be identified with the pressure ratio necessary for
Incipient Separation - is nearly five times smaller in laminar flow than in turbulent flow (see Section 3.6 below);
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i - the x-wise scale of the reattachment domain has considerably shrunk ;
ii~ the associated pressure rise, along with the accompanying pressure gradient, have been greatly amplified.

The various situations encountered when transition moves in the interaction domain have been thoroughly discussed
by Gadd et al. (1954). These authors have suggested the various possible configurations schematically protrayed in Fig.
3.40. In the sequence of sketches, the transition "point" T moves upstream as the strength of the incident shock
increases. The figure also shows a schematic representation of the corresponding wall pressure distributions.

Of the same nature, the effect of shock impingement on boundary-layer transition was investigated by Le Balleur
and Délery (1973). These experiments were performed in a two-dimensional test set-up at an upstream Mach number
equal to 1.95. The transition location was located by inspection of short-exposure time schlieren photographs. These
authors found that transition could be moved considerably upstream of its "natural" location by the impact of a
relatively weak incident shock-wave, Such a displacement is illustrated by the sequence of schlieren photographs of Fig.
3.41. It was demonstrated that the upstream displacement of transition is a function of the shock intensity and of the
Reynolds number. The results obtained are represented in Fig. 3.42 which shows the variation of the extent of the
laminar portion downstream of the shock impingement pointI as a function of the Reynolds number computed with the
boundary-layer momentum thickness at I, with the pressure jump through the incident plus reflected shock as
parameter, It is seen that independently of the Reynolds number, transition positions itself at the impact point as soon
as the total pressure ratio is greater than 1.4.
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Fig. 3.41 — Effect of shock impingement on boundary-layer

d ; Fig. 3.42 ~ Laminar distance downstream of the shock
transition — Short exposure time shadowgraphs.

impingement point.

3.6 - The Free Interaction Concept

Some of the experimental results presented in the above Sections tend to demonstrate that the major part of a
supersonic interacting flow evolving toward separation does not (appreciably) depend on the agency at the origin of
separation, this agency being either a solid obstacle or an incident shock-wave. That part of the flow independent of the
downstream situation comprises the compression at separation as well as the development of the pressure plateau for

largely separated flows. Everything happens as if the flow were entirely determined by its properties at the onset of
interaction.

Such flows that are (to a first approximation) free from direct influence of downstream geometry were termed by
Chapman "Free Interactions". Later, a more rational definition of this concept was given within the framework of
asymptotic theories (see Section 4 of Part II below) and inviscid-viscous interacting methods (see Section 3 of Part II
below). As a matter of fact, as will be seen below, the interacting flow can be modeled by a coupling approach which
consists in making compatible two flow regions which are respectively represented by boundary-layer quations and Euler
equations. For a supersonic outer inviscid flow, and within the classical first order boundary-layer concept, the solution
can be looked for by a purely downstream marching procedure. In this approach, the role of downstream conditions -
i.e., the perturbating agency - is simply to fix the origin of the interaction.

The Free Interaction concept permits the derivation of correlation laws explicitly displaying the dependence of the
phenomenon on such basic parameters as the Mach number and the Reynolds number. Although the character of
generality of these laws is now questioned (see .Section 3.7 below), the Free Interaction Theory is still of important
historical interest since it is at the origin of ideas having led to decisive progress in the modeling of interacting flows.
For these reasons, we will present it in some detail.

The analysis that follows is in fact attributable to Erdos and Pallone (1962), but it was directly inspired from the
original work of Chapman et al. published in 1957.

The incoming flow will be assumed adiabatic (no heat transfer at the wall) and initially the outer inviscid stream is
assumed to be a uniform planar two-dimensional flow. The correlation laws are established by utilizing two basic
equations, namely :

i - the boundary-layer momentum equation written at the wall :

(3.1) dp/dx = (3 ¢/ 3Vw
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An x-wise integration of Eq. 3.1 from the beginning X, of the interaction domain, along with the introduction of
normalized variables, leads to the following equation :

(3.2) (p-po)/ap = (7, L/6(a,) fﬁéIjL(ar/ay)w (88/7y0) &lx/L) = (tyoL/85a,) £1(x=xo/L)

Tw,, is the wall shear-stress at the origin of the interaction, L a still undetermined x-wise length scale and f1a
dimensionless function of the scaled variable (x-xo)/L.

ii- the second equation is the coupling equation written on the boundary-layer displacement surface (see Section 3
of Part II below for more information on coupling equations in inviscid-viscous interactive methods), In the
present analysis, the pressure variation induced in the outer inviscid flow is expressed via the linearized simple
wave equation. Thus, the coupling equation is written here :

2 1 .
0.5 (My = 1) /2 (p -py)/qq = as*/ax
Hence, after introduction of normalized quantities :

35
(3.3) (p-po)/ap = 2(Mp ~1)% (8%/1)  a(s*/63)/a(x/1) = 2(mg -1)"2 (83/L)1, (x-x /1)

where f; is a new dimensionless function.

A multiplication of Eq. 3.2 by Eq. 3.3 leads to the following correlation law for the pressure at the wall :

RN -1/y
(p-pg)/a, = Flx-x, /1) (2C. ) (Mg = 1)
(3.4) P9/ /9 0 £
-1/4

-1
L/e* = k(M2

2
-1
: e g )

o
where f= f1f2 is assumed to be a universal correlation function, independent of Mach and Reynolds numbers. This
function has to be determined from experiment.

Figure 3.43 shows the functions(JZI: and% respectively obtained for laminar and turbulent flows by Erdos and
Pallone, In the representation of Fig. 3.45, the x-wise length scale is the distance from the origin xo of the station at
which% reaches the value corresponding to the pressure plateau of an extended separated flow. The following particular
values of ¥ are found :

i - at the separation point :

~ = 0.81 for laminar flow
Js

= 4.22 for turbulent flow

ii- for the pressure plateau :

~ = 1.47 for laminar flow
Js

= 6.00 for turbulent flow

The above values reflect the fact that pressure rises in a turbulent separation are far more important than in a
laminar separation.

A correlation law for the streamwise scale of separation is obtained by the division of Eq. 3.2 by Eq. 3.3. This gives
an equation of the form :

L/8y = kC;l/Z (12 - 1)~/
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Fig. 3.43 — Free interaction theory — Wall pressure correlation
functions (Erdos and Pallone, 1962).
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where the constant k must be determined experimentally. Its value depends on the manner in which a representative
streamwise scale is defined. The two most adopted scales L are the one used by Erdos and Pallone and the distance
between the separation point and the origin of the interaction domain.

The above analysis has been generalized by Carriére et al. (1968) and Carriére (1973) in order to take into account
non-uniformities in the incoming outer flow as well as wall curvature effect in the interaction region. These authors
have shown that in the most general case, the universal correlation function takes the form :

3.5) {[(p-po)/qol[\’)(X) = \»(X)]/Cfo}l/2 = 7(x—x0/L)

where v is the Prandtl-Meyer function for the actual pressure at x and 3 the value that y would take at the same x in
the absence.of separation.

At low to moderate Reynolds number (say R 8o < 105), Eqs. 3.4 or 3.5 most often correlate very well experimental
wall pressure distributions measured for greatly different situations. Examples of such correlations have already been
given in Section 2.9.2 relative to transonic flows. Here, we will only give two further examples concerning supersonic
separation :

i- the first example is made up of the separated flows considered in Section 3.2. These flows are produced either
by an upstream facing sep or by a shock reflection. In the present application, the streamwise length scale L is
the distance xg-xo, the separation point location being conventionally defined as the abscissa whered'= 4.22.
Figure 3.44 shows that the functionF permits an excellent correlation of these different separated flows. For
practical purposes, ¥can be accurately computed by the following analytical expression :

(-\/
-f’ (g)= Z ap gt + (bg +b1g) exp (k) with ¢ = (x-x0)/ (xs-%o)

The coefficients a,, bg, b1 and k are given in Fig. 3.45.

On the other hand, as shown in Fig. 3.46, the correlation for the length scale is less satisfactory, presumably
because of the difficulty of accurately determining the separation distance L = X5 - Xo which is always very
short in turbulent flows (see also Erdos and Pallone, 1962).

ii- the second example, shown in Fig. 3.47, is relative to separation in strongly overexpanded axisymmetric
supersonic nozzles. In this case, the flow before separation is non-uniform and the generalized umiversal
function ¥ alone is capable of correlating the experimental data.

The Free Interaction Theory has frequently been used as a guide-line for establishing other correlation laws. Among
these laws, we can cite the correlation of Popinski and Ehrlich (1966) which expresses the plateau pressure coefficient
Cpp in the form :

(Cpp) RY10 = 1,91 (M2 - 170399

Knowing this, the above equation is, for a flat-plate turbulent boundary-layer, in fact nearly the same as the one of
Erdos and Pallone. The Popinski and Ehrlich correlation law is compared to various experimental data in Fig. 3.48.
Other examples of application of the Free Interaction concept will be given in the forthcoming Sections.

To briefly summarize this part of the text, the Free Interaction Theory predicts that the pressure levels in a
separation (including the pressure at the separation point and the pressure plateau) :

i - increase with the upstream Mach number ; this tendency has been well confirmed by experiment ;

ii- decrease when the Reynolds number increases since the skin-friction coefficient decreases when the Reynolds
number increases (see Fig. 1.4) for a flat-plate situation before separation.

This second tendency is certainly true in laminar flow where it has been corroborated both by experiment and more
advanced theoretical models. In turbulent flow, it has also been verified by experiment at low to moderate Reynolds
numbers.

However, at high Reynolds number (R6> 105), several investigators have found that the pressure rises to separation
and/or to the plateau tend to become independent of the Reynolds number and even to slightly increase with it. This
change in the Reynolds number dependence was clearly established by the experiments of Zukoski (1967), Roshko and
Thomke (1974) and those of Settles (1975). To illustrate this point, Fig. 3.49 shows experimental data and correlations
for the pressure plateau which depend on the upstream Mach number M, only (Zukoski, 1967; Werlé, 1968).

The Free Interaction Theory also predicts that the separation length L = {xg- xo) (or any other characteristic
streamwise length scale) must increase with the Reynolds number. Although the experimental determination of L is
delicate, there is strong evidence that for “a turbulent flow at high Reynolds number, L actually decreases with
increasing Reynolds number. This tendency has already been noticed in Section 2.7.2. Consideration of Fig. 3.30
obviously demonstrates that the streamwise extent of the interaction is smaller as the Reynolds number is higher. Many
experimental results on Incipient Separation of a turbulent boundary-layer at high Reynolds numbers tend also to prove
that the "stiffness" of the boundary-layer increases with Ry . Experimental results on Incipient Separation in transonic
flows also led to the same conclusion (see Section 2.8 above)?
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3.7 - Scaling Properties of the Supersonic Interaction Streamwise Extent

3.7.1 - Introductory Remarks

67

y high, has not yet been completely
g Sections concerned with streamwise scaling laws and

The "intensity" of a shock-wave/boundary-layer interaction can also be characterized by its upstream influence,
i.e., the distance at which the interaction ~ or the shock presence - is first felt. This distance is most often measured

from the wedge corner or from the

boundary-layer.

point where an incident shock would impinge on the wall in the absence of a

A second point of interest is the separation length which is conventionally defined as the distance of the separation
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point from a suitably chosen origin, for example, the start of the interaction.

As in transonic flows, the basic question is : what are the appropriate scaling laws for these characteristic lengths?
The answer to this question is important, not only for practical purposes, but also for the physical understanding of the
phenomenon. In particular, clear and accurate information on this subject is of great interest to help in the modeling of
the phenomenon, especially in turbulent flows where one has still to rely heavily on experiment,.

3.7.2 - The Upstream Interaction Length. General Properties

Essentially we will consider scaling properties for the upstream interaction length L, in the case of wedge-flows.
The main reason for this choice is that most known results concern this type of flow in which L, is relatively easier to
measure than in a shock reflection. However, it should be emphasized that general tendencies observed in wedge-flows
are also similar to shock reflections, since in the inviscid sense there is no essential difference between these two kinds
of flow as was seen in Section 3.3 (see also section 3.8 below on Incipient Separation).

The upstream interaction length is most often defined from inspection of the wall pressure distribution.
Theoretically, the origin of the intéraction is at the point where the wall pressure starts to rise. Some investigators
have adopted this definition (Spaid and Frishett, 1972). Unfortunately, the experimental localization of the true
interaction origin is difficult and hence inaccurate. For this reason, most investigators have chosen a conventional
origin obtained by extrapolating to the wall the quasi-linear pressure rise at separation, as is shown in Fig. 3.50 (Settles
and Bogdonoff, 1973; Roshko and Thomke, 1974; Settles, 1975; Hayakawa and Squire, 1982).

According to Green (1969), the main parameters likely to influence the extent of a shock-wave/boundary-layer
interaction are :

i - the upstream Mach number Mg ;

ii- the Reynolds number R§ o ;

iii-the wedge anglea {or incident shock intensity) ;

iv- the thickness of the incoming boundary-layer S .

If one considers any typical streamwise length L scaled to the incoming boundary-layer physical thickness 8§, or

displacement thickness § o, there remain the three following influence parameters : Mg, R§ o and @ (or shock strength).
If we now focus our attention on the dimensionless length Lo/8 o, it is generally agreed that - for a fixed value of R§ -

Purfist Tild thery fﬁ'""'“ |
|

2 _ Upstream interaction length b _ Separation fength

Fig. 3.50 — Characteristic lengths of a supersonic interaction.

i- Lo/ go increases with ( for a fixed Mach number Mg ;
ii- Lo/ 50 decreases when Mg, increases for a fixed angle
However, there is some controversy over the influence of the Reynolds number.

On the one hand, there are the experiments made by several investigators (Kuehn, 1959 ; Elfstrom, 1971; Batham,
1972 ; Spaid and Frishett, 1972) at low or moderate Reynolds number (R §0 < 105), both with tripped and untripped
boundary-layer. These experiments indubitably show that Lo/ §o increases with the Reynolds number R so- Such a
tendency is in agreement with the Free Interaction Theory.

On the other hand, experiments performed at high Reynolds number manifestly show a reversal of this trend,
Lo/ §o decreasing with increasing Reynolds number (Hammitt and Hight, 1959 ; Roshko and Thomke, 1974 ; Settles,
1975; Settles et al., 1975). The same tendency was chserved in transonic flows (see Section 2.7.2 above) ; it was then
interpreted as resulting from a "filling" of the initial boundary-layer profile which is a consequence of a rise in the
Reynolds number.

In what follows, we will present various laws proposed to correlate the upstream influence length at high Reynolds
number, the case of low Reynolds number being satisfactorily represented by the Free Interaction theory.
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3.7.3 - Correlation Laws for the Upstream Interaction Length at High Reynolds Numbers

A systematic survey of the influence of My, R o and aon the interaction length L, was made by Roshko and
Thomke (1974) for wedge flows in the Reynolds num%er range 105 (R ,, 109, Some of the results that they obtained
are plotted in Fig. 3.51 where L, is arbitrarily scaled to the distance o? the corner from the leading edge of the plate on
which the incoming boundary-layer develops. A rapid examination of these results leads to the following remarks :

i~ for fixed Reynolds number R¢ (R¢ is computed for free stream conditions and with the distance of the wedge
corner to the plate leading edge) and Mach number Mg, the upstream interaction length increases with qy l.es,
with the intensity of the perturbation. It is now clear that the increase in Lo with the shock intensity has to do
with the fact that a higher back pressure must feed farther upstream through the subsonic part of the boundary-

layer ;

ii- for fixed R and as Lo decreases when Mg increases. This trend can certainly be explained by the reduction of
the relative subsonic layer y*/ % when My, is higher.
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Reynolds number and corner angle (Roshko and Thomke, 1974}, angle and Reynolds number — 2.84 < M, < 2.95 (Settles, 1975).

iii- for fixed Mg and o, L, decreases where the Reynolds number increases. As already stated, this tendency can
also result from a thinning of the subsonic layer.

It should be noticed that the above tendencies are still observed when Lo is scaled to the physical thickness of the

boundary-layer 8, (or to its displacement thickness 8%). This fact proves that 8o (or 63) alone cannot be the scale of
the interaction. The same behavior was observed in transonic flows (see Section 2.7.2 above).

Roshko and Thomke (1974) have proposed the following completely empirical correlation law for the normalized
upstream interaction length Lo/ 84 ¢

(3.6) Lo/ 8o = (/18.25)2:81 [107Cy, - 1 + (¢/29)2]

It is recalled that Cg, is the skin-friction coefficient at the start of interaction and o the wedge angle. This
equation correlates experimental data in the range :

1.98 < My < 4.45
105<Rg, < 100

Conclusions similar to those of Roshko and Thomke were arrived at by Settles (1975) (see also Settles et al.1975),
who performed experiments on corner flows at high Reynolds number (0.5 x 106 < R §o< 1.6 x 100). These experiments
were made at a nearly constant upstream Mach number (2.84 < Mg < 2.95) both with a (two-dimensional) ramp model
and an axisymmetric flare model. Figure 3.52 shows the influence of the Reynolds number R 5 on Lo/ 8¢ for both
models. From this figure a consistent trend of decreasing upstream influence with increasing Reynolds number is
apparent. The data corresponding to the ramp flow are cross-plotted as L,/ § o vs. g with  the Reynolds number as
parameter in Fig. 3.53. These cross-plottings show that, for a given value of R § 4, Lo/ § ¢ is a very regular function of o
(similar behavior is observed for the flare). The strictly empirical formula below has been proposed by Settles for Lo/ § o

-0.36
3.7 Lo/8o = 0.0092 RS exp (-0.29 o ) + 0.03

(This equation is only valid for My, 3).

A few years ago, Settles et al. (1981) published a more rational discussion of scaling laws for the upstream
interaction length. A Reynolds number dependence was looked for by a logarithmic plotting of Lo/8 o against R§ o+ The
quasi-linear curves thus obtained (see Fig. 3.54) demonstrate that the correlation for Lo must be of the form :

/8 1/3
Lo/® o) R éo = constant (for fixed Mg, ®).
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Increasing Reynolds number
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Fig. 3.53 — Upstream interaction length vs ramp angle with Fig. 3.54 — Upstream interaction length for ramp flow —
Reynolds number as parameter 2.84 <My < 2.95 (Settles, 1975). Reynolds number effect (Settles et al. 1981).

The above equation is valid for Mg¥" 3 and may not apply outside the range of® and R§ o considered by the
authors. Its main interest is to show clearly and definitively that, if the upstream influence length is scaled to $ oy then

a R§  "residual remains”.
The effect of the ramp angle can also be taken into account by the more general formula, nearly identical to Eq.
3.7 above :
1/3
. Lo/S
(3 8) ( O/ O) RS - 0.9 exp (0-23(1 )
which, as shown in Fig. 3.55, gives an acceptable correlation of the data.
Thereafter, the same authors examined the ability of the following lengths to appropriately scale L :
i- the displacement and momentum thicknesses of the incoming boundary-layer ;
ii- the height Y1 g1, of the laminar sublayer ;

iii- the height y® of the sonic layer.

As shown in Fig. 3.56, none of these thicknesses exhibits a Reynolds number dependence in the form* R-51/3.6 o
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etal., 1981).

which would be necessary to correlate L, In particular, the sonic layer thickness is not the appropriate scale, although
its dependence on R§ _ is close to that of Lo. Several other investigators also found that y* was not a representative
length scale for the upstream interaction length (see Hayakawa and Squire (1982) for supersonic flows and, for transonic
flows, the work of Délery commented in Section 2.7.2 above).
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The correlation laws given by Egs. 3.6, 3.7 and 3.8 are only valid for corner flows in which the incoming boundary-
layer is practically always a flat plate boundary-layer. But, experiments in transonic flows have demonstrated that a
fundamental factor of influence is in fact the shape of the velocity distribution of the incoming boundary-layer ; this
shape being characterized by the "incompressible" shape parameter Hj,. As we know, for a flat-plate situation, at a
given Mach number and for a well behaved undisturbed turbulent boundary-layer in adiabatic flow there is a unique
relationship between Hj, and R§ o (see Section 1). Consequently, a variation in R§ o is equivalent to a variation in Hjq.
However, if prior to the interaction the boundary-layer has been submitted to a favorable or adverse pressure gradient,
its profile at the onset of interaction is no longer determined solely by the Reynolds number R§ 4. In this situation, the
above correlations are certainly not valid.

The effect of a change in the shape parameter, independent of the Reynolds number, was examined by Hayakawa
and Squire (1982). To this end, they disturbed the boundary-layer upstream of the corner by an injection of air through a
wall made of a porous material. In this case, the boundary-layer profiles have many similarities with the profiles or a
boundary-layer having undergone an adverse pressure gradient (in the two situations, Hjq increases).

In their experiments, Hayakawa and Squire found that the increase in the upstream interaction length due to
injection was more rapid than the subsequent thickening of the boundary-layer, i.e., Lo/S o increased with the injection
rate or - which is equivalent - with the shape parameter Hjo. Furthermore, in the present situation Lo/S o increases
although wall-injection has provoked a decrease of the skin-friction coefficient. Such a trend is in (apparent)
contradiction with the restricted correlation laws given by Egs. 3.6, 3.7 and 3.8. The behavior noticed by Hayakawa and
Squire fully confirms the fact that a fuller initial velocity profile entails a greater "stiffness" of the boundary-layer
which thus will become more resistant to separation, as will be seen in Section 3.8.

All the above experimental studies seem to prove that, at high Reynolds number, the wall-shear in itself is of
secondary importance in strong interaction phenomena. Its role in certain correlation laws is in fact to represent shape
parameter effect though the relation linking C¢,, Hj, and R§ o for a flat-plate boundary-layer. This finding is in
contradiction with the Free Interaction Theory in which the skin-friction coefficient reflects the crucial role played by
the conditions at the wall, according to this model.

3.7.4 - The Upstream Interaction Length in Non-Adiabatic or Axisymmetric Flows

The effect of wall temperature on Lo was carefully investigated by Frishett (1971) (see also Spaid and Frishett,
1972). This author found that cooling the wall can considerably reduce the upstream interaction length as well as the
separation length. This point will be further discussed in the next Section,

Concerning the action of geometrical factors, such as axisymmetry, Fig. 3.57 shows a comparison between
upstream influence lengths obtained respectively for wedge and flare. For a deflection ag14 deg., the values of Lo for
wedge and flare are practically identical. They start to diverge whenq rises beyond 14 deg. Thus, for the axisymmetric
model, reattachment takes place on the flare at a location which is more and more distant from the symmetry axis. So,
the separating-reattaching process becomes a mixed two-dimensional and conical process which significantly departs
from a planar two-dimensional flow. This departure comes from the very important axisymmetry effect both on the
shear-layer development and on the reattachment mechanism (Délery, 1983).
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interaction length (Settles, 1975).

3.7.5 - The Separation Length

Another length which is of interest for characterizing the streamwise extent of the interaction is the separation
length - or separation distance -. For wedge flows, Lg is defined as the distance between the corner hinge and the
separation point S (see Fig. 3.50). The experimental determination of Ls is more delicate than that of the upstream
interaction length, because it necessitates the accurate location of the separation point. The various techniques

employed to this end being thoroughly commented in Section 3.82 below, we will just present here some basic properties
of the separation length,

As for the upstream interaction length, experiments performed at low or moderate Reynolds number tend to prove
that Lg increases with the Reynolds number. This tendency is illustrated by the results of Spaid and Frishett (1972)
shown in Fig. 3.58. In these experiments, Ry  varies in the range 3 x 104 - 6 x104, A similar trend was also observed by

Batham (1972). Such an increase of Lg with the Reynolds number is of course in agreement with the Free Interaction
Theory.

Spaid and Frishett also found that cooling the wall reduces the separation distance, as was the case for the
upstream interaction length. The cooling effect is shown in Figs. 3.58 and 3.59. In the second figure Lg represents the
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and Frishett, 1972).

value of Ly/§ 5 measured when heat-transfer is present, normalized by the value of Lg/§ , in adiabatic flow and
evaluated at the same R§ _ The decrease in Lg with wall temperature can be interpreted :

i - either within the framework of the Free Interaction theory, since a decrease of the ratio Ty/Ty (Tr being the

wall recovery temperature) provokes an i{ﬁfease of the skin-friction coefficient. As a matter of fact, a scaling
of Lg by the grouping A = 8% Cfo (Mg“” , which directly results from the Free Interaction theory, provides

a good correlation of the data (Frishett, 1971).

ii- or by an overall contraction of the interaction domain resulting from a thinning of the subsonic layer due to a
lower temperature level near the wall (see Section 1.3 above).

The effect of wall temperature on the separation length was also investigated by Kilburg and Kotansky (1969),
Elfstrom (1971), Holden (1982) and by Back and Cuffel (1976). All these investigators also reached the conclusion that
wall cooling reduces the streamwise extent of the interaction region. This effect is particularly well illustrated by the
wall pressure distribution plotted in Fig. 3.60. These distributions were measured in a shock reflection at Mg = 3.18. In
Fig. 3.60a the wall is adiabatic and one notes an important extension of the interaction, the real flow-field being neatly
distinct from the perfect fluid model. Particularly, the upstream interaction length is specially important. On the other
hand, as shown by Fig. 3.60b, cooling the wall shrinks considerably the interaction domain so that the real flow becomes
close to the inviscid flow model in which at the wall the shock is a perfect discontinuity. Conversely, surfact heating
increases the size of the separated region, as demonstrated by the tracing of mean flow streamlines shown in fig. 3.61.
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Now let us consider adiabatic flow again, but at high Reynolds number. As observed by many investigators (Kessler
et al,, 1970 ; Settles and Bogdonoff, 1973 ; Law, 1974 ; Roshko and Thomke, 1974 ; Settles, 1975) there is a clear
decrease in the separation length Lg with increasing Reynolds number, in a way similar to what has been observed for
the upstream interaction length. This fact is clearly demonstrated by the wall pressure distributions plotted in Fig. 3.30.
From these data {which were obtained for values of R§ o greater than 106), the decrease in the streamwise extent of
the interaction domain with increasing Reynolds number is obvious.

The influence of the Reynolds number as well as of the ramp angle on the separation length was thoroughly studied
by Settles for an upstream Mach number close to 3. The evolutionsof Lg/8 , measured by this author are represented
inFig. 3.62 vs. the Reynolds number with the ramp angle as parameter. Examination of these plottings leads to the
following observations :

i - the decrease of L/ 50 with increasing Reynolds number is fully confirmed in the range of variation 5 x 106 <
R g0 <7:6% 106.
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ii- the curves seem to asymptote toward zero separation at zero corner angle. This behavior would prove that
separation is in fact always present at the corner, the size of the separation bubble being initially very small at
low values of , Such an observation tends to confirm Kuehn's suggestion that there is always some separation
at a wedge, even for vanishingly small ramp angles. However, according to Law (1974), care should be taken in
interpreting surface flow visualisations at very small ramp angles. In fact the oil flow technique (like the one
used by Settles) should only give the approximate location of the separation points as the streamwise location of
some small value (but not equal to zero) of skin friction.

iii-as a consequence of point ii), separation is seen to be a very progressive phenomenon. This leads to conceptual
difficulties in the definition of what is commonly called Incipient Separation. And, as was the case in transonic
flows, a distinction should be made before "true" Incipient Separation and "effective" Incipient Separation (see
Section 3.8.1 below).

To conclude the present Section, it can be said that overall tendencies observed for the upstream interaction length
are still valid for the separation distance,

3.7.6 - Concluding Remarks

To briefly summarize the question of the streamwise scaling of a supersonic interaction, it should be again
emphasized that the subsonic inner layer certainly plays a major role in the upstream propagation of upstream
influence. This fact explains the strong dependence of the upstream interaction length (as well as the separation
distance) on the Mach number distribution across the initial boundary-layer.

Nevertheless, the actual propagation mechanism involves a complex coupling between the different "decks"
composing the interacting boundary-layer. Thus, it is highly probable that inviscid-viscous interaction between these
decks and the subsonic forward propagation are mutually responsible for the observed trends.

At low Reynolds number, and for a turbulent boundary-layer, the viscous sublayer represents a greater part of the
total boundary-layer. In these conditions, the interaction must be dominated by viscous phenomena in the near wall
region, hence the Free Interaction Theory is more likely to prevail. On the other hand, at high Reynolds number, the
viscous sublayer becomes exponentially thin. Therefore, interaction tends to be controlled by inertia and pressure
forces, the influence of viscosity being minimized. Furthermore, at high Reynolds number, the subsonic layer is far

thicker than the laminar sublayer. As a consequence of these two facts, pressure propagation is now essentially an
inviscid mechanism.

3.8 - Incipient Separation in Turbulent Supersonic Flows

3.8.1 - Introductory Remarks

As in transonic flows, the knowledge of Incipient Separation conditions is of great practical interest in supersonic
and/or hypersonic flows. It is recalled that Incipient Separation is traditionally defined as the condition in which the
shear-stress becomes vanishingly small at some point on the wall, while remaining positive elsewhere. However, as will
be seen below, this definition can be inadequate for practical purposes in circumstances where a tiny separated zone
seems to be always present, even for very weak shocks. As already mentioned, Kuehn (1961) was the first to suggest this
for a compression ramp geometry case : at the scale of the subsonic inner part of the boundary-layer, the wedge shape
of the wall should inevitably provoke a local separation. Consequently, as for transonic flows (see Section 2.8 above), we
will be faced with the necessity of distinguishing between "true" Incipient Separation and "effective" (or significant)
Incipient Separation, the last situation alone being of real significance for practical applications since it corresponds to
the onset of most dramatic change in the flow field.

As we already know, detection of Incipient Separation is a very delicate task. This difficulty partly explains the
often large discrepancy in the separation limits given by different authors. Thus, before examining the various
separation criteria published to this day, it can be useful to describe the techniques most often utilized to determine
Incipient Separation. The majority of these techniques can only be used to detect separation induced by a ramp (or a
flare) because they call upon some adequate criterion based either on the upstream interaction length or on the
separation length measured from the hinge of the ramp. Only a rather limited number of these techmiques can be
applied to diagnose separation induced by a shock reflection. In spite of this disparity, in what follows we will not make
a real distinction between wedge induced and shock induced separation since the Incipient Separation mechanism is
basically the same in both cases, as will be seen.

3.8.2 - Techniques Used for the Detection of Incipient Separation

In principle, direct measurement of wall shear-stress is the best way to detect the existence of a separated region
as also to locate unambiguously the separation and the reattachment points. In particular this technique has been used
in
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hypersonic flows by Holden (1972). The drawback of this approach is that accurate determination of the wall shear-
stress is a very delicate task is regions of vanishingly small wall shear-stress where strong pressure gradients exist in
addition. For this reason, direct measurement of skin friction has rarely been utilized to detect Incipient Separation.

Many investigators working on this problem have preferred a detector based on inspection of wall pressure
distributions, pressure at the wall being a quantity easy to measure and generally known with high accuracy. In
particular a popular detection technique is based on the occurrence of a "kink" - or triple inflection point - in the wall
pressure distribution (Drougge, 1953 ; Kuehn, 1961 ; Kessler, 1972 ; Rose et al.,, 1973 ; Law, 1974 ; Settles et al., 1975;
Hayakawa and Squire, 1982). An example of this technique is shown in Fig. 3.63. Since the occurrence of the kink may
be difficult to detect, more "objective" variants of this technique have been proposed in particular by Law (1974) and by
Settles et al. (1975). Several investigators (Spaid and Frishett, 1972 ; Settles et al., 1981) have shown that the separated
region has to reach a certain minimum size before a kink in the pressure distribution appears. Hence, the method does
not detect "true" Incipient Separation but the conditions corresponding to the onset of "effective” Incipient Separation.

Another possibility to define the limit ramp angle corresponding to Incipient Separation is to look for a break or
inflection in curves of pressure near the corner vs. corner angle o as shown in Fig. 3.64 (Thomke and Roshko, 1969 ;
elfstrom, 1971 ; Spaid and Frishett, 1972 ; Settles and Bogdonoff, 1983 ; Coleman and Stollery, 1974 ; Hayakawa and
Squire, 1982).
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Fig. 3.63 — Incipient separation detection — Occurence of
a triple inflection (“kink”) in the wall pressure distribution
(Kuehn, 1959).

Fig. 3.64 — Incipient separation detection — Ramp flow —
Plot of corner pressure vs ramp angle (Settles et al., 1975).

The limit ramp angle of can also be determined by considering the variation with  of the normalized upstream
interaction length Lo/ § o already studied in Section 3.7.2. As shown in Fig. 3.65, Incipient Separation is identified with

the sharp change in the curves Lo/ § o vs. o (Kessler et al., 1970 ; Settles and Bogdonoff, 1973 ; Hayakawa and Squire,
1982).

Other techniques based on pressure measurements have been developed to detect separation. Among them, we can
cite the "orifice dam" arrangement allowing the reading of the surface flow direction by means of small obstacles
placed on the wall (Roshko and Thomke, 1969 ; Reda and Page, 1969 ; Rose, 1973). The existence of a separated region
has also been looked for by Pitot pressure probing (Drougge, 1953 ; Bogdonoff et al., 1953 ; Seebaugh, 1968 ; Grande,
1971; Appels, 1975 ; Délery and Lacharme, 1978).

Incipient Separation has also been detected by means of surface flow visualisation techniques consisting in the use
of a light coating of oil on the surface. Then one observes whether ridges of accumulation are present that could be
associated with the stagnation points of separation and reattachment (Reda and Page, 1969 ; Spaid and Frishett, 1972 ;
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Fig. 3.65 — Incipient separation detection — Ramp flow — Fig. 3.66 — Incipient separation detection — Ramp flow —
Inspection of upstream interaction length (Settles et al., 1975). Inspection of separation length (Settles et al., 1975).

Délery and Le Balleur, 1972 ; Rose et al., 1973 ; Law, 1974 ; Appels, 1975 ; Hayakawa and Squire, 1982). From surface
flow visualisation, one can plot the separation distance Lg/ 8 o against the ramp angle® . Such  plottings (already
analyzed in Section 3.7.5) generally show that separation is present even for very small values of . In these conditions,
"effective" Incipient Separation can be identified with the occurrence of the rapid rise in the curves plotted in Fig.
3.66. Nevertheless, there remains some uncertainty in the definition of* 1, since the separation curves are without
sharp break.
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It is also possible to detect separation by a careful processing of flow field pictures obtained by optical methods
(namely, schlieren and shadowgraph pictures, holographic interferometry). The detection techniques consist in
examining the change in the shock waves pattern associated with occurrence of separation as discussed in Section 3.4
above (Drougge, 1953 ; Roshko and Thomke, 1969 ; Spaid and Frishett, 1972 ; Batham, 1972 ; Settles and Bogdonoff,
1973 ; Coleman and Stollery, 1974 ; Holden, 1974 ; Appels, 1975 ; Law, 1976; Hayakawa and Squire, 1982).

To conclude, it is to be noticed that most investigators working on the problem of Incipient Separation have jointly
used several of the above techniques in order to confirm their data. They have generally found good agreement between
results obtained by optical methods, surface flow visualisations and inspection of wall pressure distributions. However,
for future work in this field, we should recommend the use of more advanced non-intrusive techniques like Laser

Doppler Velocimetry which allows very fine and very instructive information on the separation phenomenon (see Section
2.7.1 above and Simpson et al., 1981).

3.8.3 - The Experimental Incipient Separation Limit

Adiabatic, planar two-dimensional flows. In what follows, the limit for Incipient Separation will be given in

the classical formag=f (R6 ) for varying upstream Mach number My, the flow being a planar two-dimensional
adiabatic flow. The effects of heat-transfer at the wall and axisymmetry will be considered in separate Sections.

This representation implies that the phenomenon depends essentially on only three parameters, namely : the
upstream Mach number, the shock strength and the Reynolds number. As seen in the above Sections, the reality is
probably more subtle, For example, the incompressible shape parameter Hjo of the incoming boundary-layer is also an
important factor of influence whose effect is not always taken into account by the Reynolds number. Unfortunately, the
paucity of data on the specific influence of Hjo makes a proper correlation of the dependence of Incipient Separation on
Hjo very difficult. It is for this reason that we will adopt the traditional form, it being understood that the results are
restricted to a flat-plate incoming boundary-layer.

In the case of separation induced by a shock reflection, O will represent the equivalent ramp angle producing the
same overall pressure rise as the two successive compressions through the incident and the reflected shock-waves.
Experiments made by Holden (1972) and by Law (1976) have clearly shown that by considering this effective ramp angle,
there is no essential difference between ramp-induced and incident shock-induced separation. As a matter of fact, the
pressure rise to Incipient Separation is almost the same in both situations.

As a brief recall of comments made above, experiment clearly shows that - like for transonic flows - a distinction
must be made between :

i - "true" Incipient Separation which would correspond to the first appearance of a tiny separation bubble, This
situation is detected only by the most subtle techniques like surface flow visualisations and/or careful schlieren
photograph processing. For a corner flow case, existence of this limit has been questioned by some investigators
(Settles et al,, 1975) who argue that separation onset is basically a smooth and gradual transition between
"attached" and "separated" flow rather than an abrupt change. Seen from this view-point, the lower limit of the

phenomenon is practically impossible to detect and "true" Incipient Separation would be a purely academic
problem ;

ii- "effective" Incipient Separation or Significant Separation which is observed when the separated bubble has
reached a size large enough to produce "significant" change in the flow field. As has already been said, this
state is the immediate precursor of more spectacular events caused by the rapid growth of the separated flow
region. "Effective" Incipient Separation is in fact the most important for practical applications..It is the
situation detected by the less sensitive methods.

Figure 3.67 shows a plotting in the (R§ ,,® 1) plane of the limits for "true" and "effective” Incipient Separation for
the same flow (Rose et al., 1973). One sees that the difference between these two values of 01 can be very large.

Because of its great practical importance and also because most available results are relative to this limit, in what
follows we will mainly consider "effective" Incipient Separation and the term "effective" will be henceforth dropped.

Most of the published data have been plotted in Fig. 3.67. In spite of an important scatter, the following trends can
be discerned :

i - the angle of (or the pressure jump p/po) increases when the upstream Mach number M, increases 5

ii- at low Reynolds number, o] decreases as R § o increases. Such a trend is in agreement with the Free Interaction
theory.

iii at high Reynolds number, most investigators have noticed a reversal in the Reynolds number influence ; i.e., the
angle of increases with R §o; the variation being rather slow ;

iv- according to other investigators (Settles and Bogdonoff, 1973 ; Settles et al., 1981), the separation angle would
in fact be independent of the Reynolds number,
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It is difficult to be absolutely conclusive about the above tendencies since there is frequently a large uncertainty in
the experimental determination of the angle 0f, Furthermore, some experiments were performed in "uncommon"
situations. For instance, Kuehn's very careful measurements, as well as those of Kessler et al, (1970), could have been
compromised by the use of tripped incoming boundary-layers. Thus, these results do not correspond to "normal"
turbulent boundary-layer. Also, the high Reynolds number experiments of Roshko and Thomke (1969) have utilized the
tunnel wall boundary-layer and some argue that such a boundary-layer may differ from an equilibrium turbulent
boundary-layer since it was submitted to a highly favorable pressure gradient prior to the interaction (Holden,
1972).Further comments on the observed behavior are included in the next Section.

To close this Section, we will give some information on the effect of heat transfer at the wall and on Incipient
Separation in axisymmetric flows.

Effect of Heat-Transfer at the Wall. Experiments performed by Spaid and Frishett (1972) and by Elfstrom (1971)
clearly show that cooling the wall increases the resistance to separation. For example, Spaid and Frishett found that at
Mg = 2.9, the Incipient Separation angle increased from 6.5 to 7.5 degrees as the ratio of wall temperature to recovery
temperature was lowered from 1.05 to 0.47. However, in this field, experimental results are too scarce to provide really
useable correlation curves. The greater resistance to separation can be interpreted in the same terms as the decrease in
separation length occurring when the wall temperature is lowered, i.e., cooling the wall reduces the thickness of the
boundary-layer subsonic part (see Section 3.7.5 above and also Elfstrom's flow model presented in the next Section. This
model provides a way to predict wall temperature effect which agrees reasonably well with the few available
experimental results).

Incipient Separation in Axisymmetric Flows. According to an observation made by Kuehn (1961) and also by
Colemen and Stollery (1974), the Incipient Separation angle should be slightly higher for axisymmetric external flow
than for planar two-dimensional flow.

In fact, Incipient Separation being a local phenomenon involving the boundary-layer properties in the vicinity of the
wall, it can be safely conjectured that this process is certainly not very sensitive to axisymmetrical effect and, in most
cases, the separation limit is identical to that found in planar two-dimensional flows (see also conclusions about the
separation distance in Section 3.7.4 above).

Nevertheless, a sizeable influence can be felt if the upstream development of the boundary-layer has been
significantly influenced by three-dimensional effects. This is the case if the thickness of the incoming boundary-layer is
not small when compared to the distance of the wall to the symmetry axis. Then, the velocity distribution across the
boundary-layer can be affected in such a way that the interaction process appreciably departs from a purely two-
dimensional flow.

For axisymmetric internal flow (like the flow inside a nozzle), Rose and al. (1973) found a very low Incipient
Separation pressure rise (see fig. 3.68). However, these authors employed a technique which actually detects the "true"
Incipient Separation limit, This limit is known to be considerably lower than for "effective" Incipient Separation. So, no
conclusion can be drawn about a possible (but highly improbable) lower resistance of axisymmetric internal flows to
separation, except may be for flows with very thick boundary-layers.
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3.8.4 - Simplified Models for Predicting Incipient Separation in Supersonic Flows

Introductory Remarks. For reasons alreay given in Section 2.8.2 dealing with Incipient Separation in transonic
flows, we will now present a short review of some correlations or "simple" methods aimed at the prediction of Incipient
Separation in supersonic flows. In this review, we do not intend to be exhaustive since a great number of such methods
have been proposed. We will limit our attention to the most typical and the most instructive (for a review containing
other separation criteria see Hahn et al. 1973).

Criteria Derived from Boundary-Layer Type Analysis or from Fully Empirical Laws., One of the oldest and
maybe the simplest separation criterion can be derived from the analysis of Reshotko and Tucker (1955) for the effect

of a pressure discontinuity on a turbulent boundary-layer (see Section 1.2.1 of Part II below). This criterion is simply
obtained by stating that separation first occurs when, downstream of the discontinuity (which is a compression jump in
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the present case), the transformed shape parameter H introduced by Reshotko and Tucker (H differs slightly from the
"true" shape parameter Hj) reaches the value representative of the velocity profile at separation, namely : H = 2.2,

For a given initial shape parameter Hjo (or _ﬁo), this situation arises for a well defined value of the ratio M1/M, of
the Mach numbers on each side of the discontinuity, Hence the separation criterion is expressed by the simple relation :

Mi/Mg=C

where C is a function of Hj,. For "usual" flat-plate turbulent boundary-layer (i.e., Hjo = 1.3), Reshotko and Tucker have
suggested C = 0.762. The Mach number ratio can easily be converted into pressure raito or deflection angle by using
shock tables. The present criterion predicts an increase in the pressure ratio pl/p, when the upstream Mach number Mo
increases, which is in agreement with experiment.

Although the Reshotko and Tucker criterion does not display explicitly the influence of the Reynolds number
(viscous terms are neglected in their analysis), this influence is actually taken into account via the dependence of Hjq
on the Reynolds number (see Section 1 above).

Seeing that for a well-behaved (or equilibrium) flat plate boundary-layer Hj, decreases when Rg ¢ increases, the
present criterion predicts greater resistance to separation as the Reynolds number is higher, The pressure rise for
Incipient Separation calculated by using the analysis of Reshotko and Tucker is given in Fig. 3.69 as a function of R§
with the upstream Mach number M, as parameter. To execute these calculations the equilibrium flat-plate relation
between Hj; and R§ o has been utilized.

Todisco and Reeves (1969) also deduced a separation criterion from a theoretical analysis similar in nature to that
of Reshotko and Tucker. Their criterion likewise predicts a slight increase with Reynolds number of the shock strength
for Incipient Separation. Another separation criterion was proposed by Gadd (1953) from his momentum integral analysis
(see Section 1.2.1 of Part II below). This criterion shows no influence of the Reynolds number.

A separation criterion can also be established from the purely empirical curve proposed by Zukoski for the
separation pressure (see Section 3.2.4 above and Fig. 3.70). It consists in equating the pressure ratio PyPo With the ratio
Ps/Po Where pg is the pressure at the separation point. It would also be possible to identify p; / Py . with the ratio
pp/po corresponding to the plateau pressure. These two procedures define two separation limits which are represented
in Fig. 3.70. One sees that the curve obtained by equating pl and Pp leads to a higher pressure ride for Incipient

L [l [T
5 e
_/ Reshotko & Tucker ( Rg,-10%)
4 3 X L\ _——
Separation
L B
— -
2 R true separation”
-
=] \__P’; “effective separation”
et [
R,
0 o Il RATREPUIT USR] 0 M
i1} 1 o ¢} i1y 1 2 3 4 5
Fig. 3.69 — Incipient separation criterion deduced from Reshotko Fig. 3.70 — Incipient separation criterion deduced
and Tucker — Discontinuity analysis. from Zukoski’s correlation.

Separation which is in close agreement with the limit given by the Reshotko and Tucker analysis if the value C = 0.762
is adopted. Although no experimental justification of this fact can be provided, the lower pressure rise in which pIis
equated tot he separation pressure could be identified with the limit for "true" Incipient Separation : whereas the
pressure ratio py/po is which pyis equated to the plateau pressure could correspond to the limit for "e{fective" Incipient
Separation. It is clear that Zukoski's results do not contain any influence of the Reynolds number. Therefore, the
Incipient Separation curves given in Fig. 3.70 are in fact valid for a "standard" incoming boundary-layer whose shape
parameter is close to 1.3

It must be pointed out that the above Incipient Separation criteria have been experimentally confirmed for high
Reynolds numbers (say R§ o greater than 105) and for upstream Mach numbers that are not too high (say My  lower
than 4).

Another completely empirical separation criterion was proposed by Roshko and Thomke (1974) from their
correlation law for the normalized upstream interaction length (see Eq. 3.6 in Section 3.7.3 above). Examination of the
variation of Ly/S  vs. @ led these two authors to postulate that separation at a corner occurs when the upstream
interaction length is such that L,/§ o = 0.55, independent of Mach and Reynolds numbers. This assumption provides an
equation to compute 0 as a function of the skin-friction coefficient Cg,. From the well known formulae expressing Cgq
as a functio of the Mach and Reynolds numbers, it as an easy matter to draw Incipient Separatiion curves according to
the traditional plotting 01 = f (R§ o). As shown in Fig. 3.71, at high Reynolds number, the correlation with most of the
experimental data seems to be at least as good as the agreement among the different data. However, this correlation,
as well as the previous ones, are unable to predict the decrease of 01 for increasing R§ o at low Reynolds number. The
criterion L,/S 5 = 0.55 should give "effective”" Incipient Separation, and "true" Incipient Separation, as detected by
surface flow technique would correspond to Lo/S o = 0.05.
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Korkegi (1975) has proposed a completely empirical Incipient Separation criterion valid only for moderate to high
Reynolds numbers. This criterion which is given in Section 4.4 relative to three-dimensional Incipient Separation,
assumes that there is no influence of the Reynolds number, this influence being in fact questionable as seen above.
Thus, Korkegi's criterion is simply a curve in the plane (R$§ o, @) or (RS o, P¢/Po)-

Criteria base on the Free Interaction theory. Several separation criteria have been derived from chapman's analysis
(see Section 3.6 above). Basically, the pressure rise can be obtained by postulating that separation first occurs when the
pressure jump through the shock at the corner (or through the incident plus reflected shock) is such that :

Py ~ P / -1/4

1/2
=422 (2Cgo) | ME-1)

9

The constant 4.22 is the value at the separation point of the universal correlation function F introduced by Erdos and
Pallone (see Section 3.6 above). In other criteria, the value 4.22 is replaced by 6. which corresponds to the plateau
pressure reached in extended separation. The Incipient Separation pressure rises deduced from the Free Interaction
Theory are represented in Fig. 3.72. The two families of curves correspond respectively to the values 4.22 and 6. Such
criteria should not be used at high Reynolds number and Mach numbers that are too high (Mg < 5).

Several variants of the ahove criteria have been proposed to try to improve agreement with experimental results.
Thus, Roshko and Thomke (1966) (see also Holden {(1972)) obtained a correlation law from the classical balance

between the inertial and viscous forces at the wall. In the spirit of Chapwman's analysis, this relation is roughly
approximated by :

PI - Po 'TWO
L 8o

At high Mach number, the interaction length scale can be estimated as L « My § . Hence, a correlation law of the
form :

P17 Py 3 . .
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Fig. 3.71 — Incipient separation prediction at high Reynolds number Fig. 3.72 — Incipient separation criterion deduced

by Roshko and Thomke (1969). from the “free interaction theory”,

A completely empirical improvement of the above law was proposed by Elfstrom (1971) who has plotted the ratio
(pr~ Po)/Po as a function of C'ig M5</)_2

For hypersonic flows also, Needham and Stollery (1966) deduced a correlation law by considering the quantity Moog
and the hypersonic viscous interaction parameter X = M3YC#/Rx (C* is the constant of the Chapman-Rubesin viscosity
law). It is to be noticed that My ¢ :}:s the hypersonic limit for the pressure jump given by the linearized Prandtl-Meyer
law. Also, in lamianr flows X =MgCs = 5o that this correlation is similar to the law of Roshko and Thomke. Having
found that correlation of experimental data leads tcifzrelation of the form Mga = X 1/2, Needham and Stollery finally
proposed a correlation in which the parameter qf/M™'g is plotted against the Reynolds number Rx.

The correlation laws more or less inspired by the Free Interaction theory are represented in Figs. 3.73 and 3.74.
They generally coreelate data at low to moderate Reynolds number ; in this range they all predict less resistance to
separation at increasing Reynolds number. We already know that this tendency is in contradiction with experiment at
high Reynolds number.

Furthermore, the above separation criteria predict in fact "effective” Incipient Separation. On the other hand, the
correlation theory proposed by Appels {1973) is aimed at predicting the limit for "true" Incipient Separation. Appel's
theory also uses arguments belonging to the Free Interaction concept, but, as true Incipient Separation is identified with
the birth of a tiny separation bubble, it is assumed that the flow reversal initially occurs in the laminar sublayer.
Consequently, the phenomenon only involves parameters - or quantities - relative to this sublayer.
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Fig. 3.73 — Correlation law for incipient separation —
Turbulent flow at moderate Reynolds number (Elfstrom, 1971).

Fig. 3.74 — Correlation law for incipient separation — Laminar
and turbulent flow at moderate Reynolds number (Needham
and Stollery, 1966).

This analysis, can be seen as a very simplified version of more sophisticated multi-deck theories. Its agreement
with measured Incipient Separation is relatively good, although the Reynolds number effect is apparently not correctly
represented.

The inviscid flow model of Elfstrom. In 1971, Elfstrom proposed an attractive flow model for predicting Incipient
Separation. His method is based oa the Tnviscid Shear Layer type of approach described in Section 1.4 of Part I below.
According to this approach, the interacting corner flow (in fact the method can also be applied to shock reflection), is
considered as essentially inviscid, the aajor part of the boundary-layer behaving like an inviscid rotational flow. In
order for the calculation of such a flow to be possible, the viscous sublayer must be ignored. Furthermore, the outer
part of the velocity profile (which in fact comprises most of the boundary-layer flow) is extrapolated in its lower part in
such a way that a (fictitious) slip velocity exists at the wall. The extrapolated profile is

the continuation of the so-called "inviscid" portion of the boundary-layer, i.e., the region where the turbulent stress
form the greatest part of the total shear-stress (broadly speaking, this corresponds to the logarithmic and the wake
regions, see Section 1 above).

Given the properties of the incoming flow (outer Mach number, Reynolds number, boundary-layer shape parameter,
wall-to-external temperature ratio...), the initial Mach number distribution can be computed by utilizing one of the
available representations of the velocity distribution across a turbulent boundary-layer. In his calculations, Elfstrom has
used a family of turbulent velocity profiles attributable to Green.

Thereafter, the corner flow is computed by assuming that the entire flow passes through an oblique shock upon
turning parallel to the ramp. Although an exact calculation of this flow would be possible by using the rotational Method
of Characteristics, Elfstrom has chosen a simplified and more rapid version of this method which is very accurate at
high Mach numbers.

Of course, such an analysis can only be applied if the flow on the ramp remains supersonic. This restriction is not in
fact overly severe since the subsonic part of a turbulent boundary-layer becomes excessively thin as soon as the outer
Mach number is greater than three (especially at high Reynolds number). Wall pressure distributions computed with this
method are generally in good agreeement with experiment,

Elfstrom has postulated that Incipient Separation conditions correspond to the highest ramp angle for which the
wall pressure distribution still appears to represent a fully attached flow. This condition is identified as the ramp angle
at which the oblique shock becomes detached at the wall in the inviscid flow model. Hence, prediction of Incipient
Separation is rather straightforward. The "wall" or "slip" Mach number My is first determined from the incoming
velocity profile as explained above. Then, the turning anglea which produces a detached shock for the Mach number My
is identified with the Incipient Separation angle (38

Curvesog = f(R§ o) calculated by this method for adiabatic wall conditions are represented in Fig. 3.75. Agreement
with experiment can be considered as remarkable. In particular, the change in the trend with increasing Reynolds
number is accurately predicted. According to Elfstrom, this reversal in the af trend with R6 3 closely  follows the
development of the wake component in the velocity profile. A stronger developed wake results in a more energetic
boundary-layer which is thus more resistant to separation. The profile being fuller, My is higher, hence a higher
detached shock limit. As reported by Appels, studies in turbulent boundary-layers (Johnson and Bushnell, 1970) show
that close to transition the "strength" of the wake component first decreases with increasing Reynolds number, hence a
decrease inqy in virtue of Elfstrom's model. For higher Reynolds number, the wake component becomes stronger and
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Fig. 3.75 — Incipient separation in turbulent flow —
Prediction by Elfstrom’s flow model,

Fig. 3.76 — Incipient separation in turbulent flow —
Prediction by Elfstrom’s flow model.



80

the resistance to separation increases. The Elfstrom flow model also permits the prediction of wall temperature effect,
as shown in Fig. 3.76.

3.8.5 - Concluding Remarks

As briefly explained the interaction between a shock-wave and a boundary-layer is a very complex phenomenon
involving a delicate balance between inertia forces and viscous forces, especially in the near wall region.

Perfect fluid models, like those of Elfstrom or Reshotko and Tucker (see also Rose et al., 1968), favor the
contribution of the inertia and pressure terms. Thus, according to these models, Incipient Separation (as well as
upstream influence), is essentially controlled by the more or less important filling of the incoming boundary-layer
velocity and Mach number distributions. This fact explains why increasing the Reynolds number (which fills the velocity
profile), or lowering the wall temperature (with increases the Mach number near the wall) tend to augment the
resistance to separation. This interpretation is certainly valid at high Reynolds number where significant viscous effects
are confined within an exponentially thin sublayer. In this situation, the interaction is controlled by a wall interaction
layer which is considerably thicker than the viscous sublayer and penetrates some distance into the supersonic portion
(see Roshko and Thomke, 1974).

On the other hand, Free Interaction type theories privilege the situation at the wall, i.e., the role played by the
viscous forces which are dominant in the wall sublayer. Thus, these theories are more likely to give a fair
representation of reality at (relatively) low Reynolds numbers where the viscous sublayer thickness is a few (up to ten)
percent of the total boundary-layer thickness. Furthermore, Free Interaction type theories seem more suitable for
predicting "true" Incipient Separation which is a phenomenon confined to the very near wall region. To conclude this
still open question of the reversal in trend with increasing Reynolds number, it should be said that Free Interaction
analyses apply the classical boundary-layer equations to the entire interacting dissipative layer. This model is certainly
questionable when the shock-wave penetrates deep into the boundary-layer, as is the case at high Mach number in
particular.

3.9 - Development of the Dissipative Layer Properties

3.9.1 - The Mean Flow Field

This Section will be brief since the evolution of the dissipative layer during a supersonic interaction is very similar
to the evolution observed in transonic flow, the latter having been examined in detail in Sections 2.7.3 and 2.9.3.

To begin with, let us consider the behavior of the mean properties. For this purpose, we will first examine
experimental results obtained by Rose (1973) in an axisymmetric facility in order to avoid three- dimensional effects
due to the side wall interactions present in nominally two-dimensional facilities. His experimental arrangement is
constituted of an axisymmetric nozzle producing a uniform flow whose Mach number is equal to 3.88. A conical incident
shock-wave is generated by a cone of a 9 deg. half-angle mounted at zero incidence along the nozzle centerline. The
interaction under study occurs on the nozzle and test-section wall. The strength of the incident shock corresponds
nearly to Incipient Shock-Induced Separation. The initial Reynolds number R §, is equal to 0.87 x 106. The interacting
flow was carefully probed by means of pressure and hot-wire probes.

The experimentally deduced flow field is represented in Fig. 3.77. The corresponding st{eamwise evolutions of the
displacement thickness s*and of the boundary-layer mass-flow i relative to its initial value m are plotted in Fig. 3.78.
These results display trends typical of supersonic interactions :

i - the boundary-layer thickness § decreases markedly in the course of the interaction. Here, the relative "jump"
A §/8 o between two stations located respectively downstream and upstream of the shock impingement region
is equal to -0.35 ;

ii~ also, the displacement thickness decreases ; in the present case A 6*/ [ *0 =-=0.353

iii-by contrast, the boundary-layer mass flow increases sharply. It is clear that the entrainment rate dm/dx is about
an order of magnitude greater downstream of the interaction than upstream.

The important rise in dl:.u/dx during the interaction was also noticed in transonic interactions (see Section 2.9.3
above). It results from the amplification of the turbulent mixing process, especially at the boundary-layer edge. Thus a
larger amount of fluid is transferred from the outer flow into the boundary-layer.
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and wall pressure distribution (Rose, 1973).
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On the other hand, the decrease in § and § observed in the present shock reflection is in contradiction with the
tendencies observed in transonic and/or moderately supersonic flows (see Section 2.9.3 above and shadowgraph pictures

in fig. 2.20). As a matter of fact, the "jump" in § and §'can be explained by considering the following expression of the
mass-flow of a boundary-layer :

!33=peue(6-6'5

wherep o and ue are relative to local conditions at the boundary-layer outer edge. Hence :
§ =8"+ mp g ue

As just seen, m rises steeply during the interaction. But at the same time, due to the decrease in the outer Mach
number Mg, § ¢ ue) also increases, the increase in b e ue) being more pronounced as the initial Mach number is higher.
Thus when My, is raised, a situation can be reached in which the increase in b eue) outbalances that of m leading to a
thinning of the boundary-layer. The decrease of §* is a consequence of that of 8 if the interaction is not strong enough
to sufficiently "empty"” the boundary-layer velocity profile. However, it is clear that there is no general rule to decide
if an interaction will entail a thinning or a thickening of the boundary-layer since the phenomenon depends on many
more parameters than the initial Mach number alone.

Information on a separating boundary-layer in supersonic conditions is provided by experiments carried out by
Behrens (1971). This author analyzed with great care the flow produced by a forward facing step placed in a two-
dimensional uniform supersonic flow (see Fig. 3.16 and Section 3.2.3 above). The initial conditions were as follows : Mg
=4, and Rgo = 112 x 105. The flow was investigated by means of pressure probes. Moreover, some fluctuation
measurements were performed by using hot-wires. Some of the streamwise velocity profiles located downstream of the
separation point are plotted in Fig. 3.79. In this representation, h is the step height and x the distance from the step,
positive values being upstream distances. The profiles exhibit a region of reversed flow and their shape is similar to that
of the profiles found in transonic interactions. The x-wise evolution of the following quantites is plotted in Figs. 3.80
and 3.81.:

i - the maximum reversed flow velocity

ii- the reversed mass-flow, i.e. the mass-flow between the wall and the ordinate Yo at which the streamwise
component crosses zero.

One observes that the reversed flow region is fed by the flow which moves down the step and is sharply turned in
the upstream direction. This flow is quickly accelerated to a velocity | umipe = 0.37. Thereafter the maximum back-flow
velocity decreases slowly to zero at the separation point,” At the same time, the reversed mass flow decreases steadily
in magnitude because of the aspiration or entrainment effect of the forward flow along the u = 0 line (see sketch in Fig.
3.80). Behrens indeed found that the profiles above the u = 0 line compare very well with boundary-layer profiles
disturbed by large wall injection, if the injection rate at the wall is identical to the entrainment rate along the
u = 0 line.
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3.9.2 - The Turbulent Field

Accurate information on turbulence behavior in a supersonic interaction is provided by the experiments of
Ardonceau (1981) (see also Ardonceau et al., 1980). These tests were carried out on a ramp flow with the initial
conditions : Mg = 2.25 and R§ ¢ = 0.90 x 105. Three ramp angles were considered :@ = 8, 13 and 18 deg. The
measurements were performed by using both hot-wire and laser velocimetry. The wall pressure distributions for the
three ramp angles are plotted in Fig. 3.82 and the corresponding mean streamwise velocity profiles in Fig. 3.83. The
case® = 13 deg. is on the verge of separation and for =18 deg., a separated region is clearly seen. These velocity
distributions exhibit the same general trends as those observed in transonic flows (see Section 2.9.3 above). In
particular, downstream of reattachment (case® = 18 deg.), the flow is highly accelerated near the wall, which results in
characteristic profiles including two inflection points. This feature will be interpreted shortly hereafter.

The profiles of the RMS values of the streamwise and vertical velocity fluctuations are plotted in Figs. 3.84 and
3.85. Like in transonic flows, the v/ u'2 distributions reveal the existence of a very intense maximum of velocity
fluctuations which is more and more detached from the wall as the interaction becomes stronger (i.e.,cA increases). As
we already know, the interaction with the shock entails a large increase in the fluctuation level, the production of
turbulence being higher when the flow is separated. The increase inV v'2 is far less important which leads to the
development of a strong anisotropy, as was already observed in transonic flows. According to Ardonceau et al. (1980),
this situation can be explained by the fact that the turbulent kinetic energy is essentially produced on the u'
component (see Section 2.9.3.4 above) and redistributed on the v'2 and w'2 components mainly through the pressure-
strain correlation. Due to the very short streamwise extent of the interaction, the tendency to isotropy cannot balance
the large u'2 production and values of u'¢/ v'2 greater than 16 are obtained in some regions.

The large increase in the anisotropy which is a typical feature of this kind of interacting flows was also noticed by
Rose and Johnson (1985) who investigated a shock reflection for the conditions : Mg =2.9and R§ o = 1.4 x 105, the
deflection through the primary incident shock being equal to 7 deg. The measurements were also performed by using
both hot-wire and laser velocimetry. No sizeable separation bubble was observed, the incident shock not being strong
enough the induce large separation. However, it was found that VY u2 increased very much, while the transverse
fluctuation component ¥ v'¢ remained nearly unchanged during the interaction (see Fig. 3.86).
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The evolution of the Reynolds shear-stress ~u'v' has been investigated by several authors, among them :
yn g y g

i-

ii-

Rose and Johnson (1975) for the flow situation just described ;

Marvin et al. (1975) who considered a shock reflection in an axisymmetric flow. The experimental arrangement
was made up of a long cone-ogive -cylinder whose axis was aligned with the free stream flow. The incident
shock-wave was produced by an annular shock-wave generator concentric with the cylinder. The free stream
Mach number M, was equal to 7.2 and the Reynolds number R§ o close to 0.2 x 105. In the cited study, the
Reynolds shear-stress was evaluated indirectly by the use of mean quantity (4, v, p,p) distributions to solve
boundary-layer type equations for the interacting dissipative flow. Direct measurements of -u'v’ were later
performed on the same arrangement by Mikulla and Horstman (1976) who employed hot-wire techniques;

fii-also Rose (1973) (see also Rose and Childs, 1974) performed Reynolds shear-stress measurements with hot-wires

on the shock-reflection flow already considered in the present Section.

The essential features revealed by these investigations will now be briefly summarized. They are in fact similar to
those found in transonic flows (see Section 2.9.3.4 above).

i-

ii-

as a result of the shock-wave/boundary-layer interaction, the shear-stress level is substantially increased (see
the results of Rose and Johnson plotted in Fig. 3.87) ;

non-equilibrium effects are especially important throughout the interaction and persist far downstream of the
interaction region. Importance of these effects is illustrated by the dimensionless mixing-length distributions
plotted in Fig. 3.88. It is clear that for this kind of flow there is not a unique relationship between the shear-
stress and the mean velocity gradient. This is obvious for the outer mixing length level (see fig. 3.88). Marvin et
al. (1975) demonstrated that the distribution is also modified in the near wall region ;

iii-the Reynolds normal stress terms, normally neglected in boundary-layer analyses, are important within and just

downstream of the interaction.

A consequence of the large increase of the turbulent mixing rate (or Reynolds shear-stress) during the interaction

is that
acceler

the momentum added to the flow near the wall is particularly important. This mechanism explains the rapid
ation of the flow field which occurs in the downstream part of the interaction (see the results of Ardonceau

above and also those obtained in transonic flows). So that (according to Rose) if another shock-wave/boundary-layer
interaction follows closely downstream of the first one, the boundary-layer could sustain a larger pressure rise than the
initial boundary-layer without separating.
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3.9.3 - Concluding Remarks

To conclude this Section, it must be pointed out that the interaction between a shock-wave and a boundary-
layerraises many other questions on turbulence behavior and involves a large number of complex phenomena. In fact,
this very difficult subject belongs to the domain of research on fundamental turbulence. Therefore, a close examination
of this problem would entail long developments that would be beyond the scope of the present AGARDograph.
Furthermore, the modeling of turbulence in such complicated flows is still far from having received a complete and
satisfactory solution. A-aoayg the probles unsolved we can mention those relative to :

i- the importance of bulk dilation :

ii- the role of teiaperature - or density - fluctuations and the correlative problem of modeling of the terms
involving these fluctuations in the turbulence transport equations. For a thorough discussion of this question see

also Rose (1973) for experimental results on temperature fluctuations in a shock-wave/boundary-layer
interaction ;

iii- the theoretical treatment of the near wall regicn is still in great part conjectural due to the lack of
experimental information on this region.

In addition, for supersonic and hypersonic flows where the shock penetrates deep into the boundary-layer, a crucial
problem is that of the effect of a discontinuity on a turbulence field. The first theovetical results on this essential

question have been obtained b& Debieve (1980) (see also Debidve, Gouin and Gaviglio (1981)). This author developed a
discontinuity type analysis allowing the calculation of the jump through the shock wave of all the Reynolds tensor
components. His analysis leads to simple algebraic expressions relating the Reynolds stress values on each side of the
shock-wave. This model has been compared with measurements made on a two-dimensional ramp model of an angle a= 6
deg., the apstrea:a Mach aunber being equal to 2.3. Thus, Fig. 389 shows a comparison between the computed and the
xneasuved distributions of y/u'2/u for this case. The calculation is seen to be in close agreement with experiment.

u "-"?E Irwnrtmd'#n —|

-1 = + 2 dowrabream ol shock
_ Cakulsiion  Diecesbiasty aralyses [ Debiews 158011

& | | ez 4‘
of TRl 2

| b Y | meni
|

i} 5 L1} 1‘:'.‘ 20

Fig. 3.89 — Ramp flow — Jump in VG through the shock-
wave (Debidve et al., 1981).



85

3.10 - Références
Appels, C. (1973): Turbulent boundary-layer separation at Mach 12. VKI, TN 90 (Sept. 1973).

Appels, C. (1974): Incipient separation of a compressible turbulent boundary-layer. VKI, TN-99 (April 1974); see also
AGARD CP-168 (1975).

Ardonceau, P., Lee, D.H., Alziary de Roquefort, T. and Goethals, R. (1980): Turbulence behavior in a shock-
wave/boundary-layer interaction. AGARD CP-271, Paper N° 8,

Ardonceau, P. (1981): Etude de l'interaction onde de choc-couche limite supersonique. Thése de Docteur &s Sciences
Physiques, Université de Poitiers, France (July 1981).

Back, L.H. and Cuffel, R.F. (1976): Shock-wave/ turbulent boundary-layer interactions with and without surface cooling.
AIAA Journal, Vol. 14, N° 4, pp. 526-532 (April 1976).

Batham, J.P.(1972): An experimental study of turbulent separating and reattaching flows at a high Mach number.
J. Fluid Mech., Vol. 52, Part 3, pp. 425-435.

Behrens, W. (1971): Separation of a supersonic turbulent boundary-layer by a forward facing step. AIAA Paper N° 71-
127 (Jan. 1971).

Bogdonoff, S.M., Keppler, E.C. and Sanlorenzo, E. (1953): A study of shock-wave/turbulent boundary-layer interaction
at M=3. Princeton University, Dept. of Aero. Eng., Report N° 222.

Bogdonoff, S.M. and Keppler, E.C. (1954): Separation of a supersonic turbulent boundary-layer. Princeton University,
Dept. of Aero. Eng., Report 249 (Jan. 1954).

Carpenter, P. and Tabakoff, W. (1971): The initial development of the non-isoenergetic compressible free shear layer.
NASA CR-1828, (Oct. 1971).

Carriere, P., Sirieix, M. and Solignac, J.-L. (1968): Propriétés de similitude des phénoménes de décollement laminaires
ou turbulents en écoulement supersonique non uniforme. 12th International Congress of Applied Mech., Stanford
University, (Aug. 1968) and ONERA TP N° 659F (1968).

Carriere, P. (1973): Apergu de quelques résultats nouveaux obtenus 3 'ONERA sur les phénomeénes de décollement et de
recollement. ZAMM 53, T3 - T14.

Carriére, P., Sirieix. M. and Délery, J. (1975): Méthodes de calcul des écoulements turbulents décollés en supersonique.
Progress in Aerospace Sciences, Pergamon Press, Vol. 16, N° 4, pp. 385-429.

Chapman, D.R., Kuehn, D.M. and Larson, H.K. (1957): Investigation of separated flow in supersonic and subsonic
streams with emphasis on the effect of transition. NACA TN-3869.

Coleman, G.T. and Stollery, J.L. (1974): Incipient separation of axially symmetric hypersonic turbulent boundary-layers.
AIAA Journal, Vol. 12, N° 1, pp. 119-120 (Jan, 1974).

Curle, N. (1961): The effect of heat transfer on laminar boundary-layer separation in supersonic flow. Aero. Quarterly,
Vol. 12 (Nov. 1961).

Debieve, J.-F. (1980): Bilan des tensions de Reynolds dans une interaction onde de choc turbulence. C.R. Acad. Sc.
Paris, t. 291, Série B, pp. 133-136 (Oct. 1980).

Debiéve, J.-F., Gouin, H. and Gaviglio, J. (1981): Momentum and temperature fluxes in a shock-wave turbulence
interaction. Proceedings of the ICHMT/TUTAM Symposium on the Structure of Turbulence and Heat and Mass
Tranfer, Dubrovnik, Yugoslavia - Hemisphere Publishing Co., Washington.

Délery, J. and Masure, B. (1969): Action d'une variation brusque de pression sur une couche limite turbulente et
application aux prises d'air hypersoniques. La Recherche Aérospatiale, N° 129, pp. 3-12.



86

Délery, J. (1970): Examen des phénoménes d'interaction choc-couche limite dans un canal interaubes. ONERA NT-2-
7078AY (Feb. 1970).

Délery, J. and Le Balleur, J.-C. (1972): Résultats sur l'interaction choc-couche limite 4 des nombres de Mach
modérément supersoniques. AGARD AG-164 on "Boundary Layer Effects in Turbomachines".

Délery, J. and Le Balleur, J.-C. (1972): Interaction choc-couche limite turbulente & M = 1.92 at 1.62. Synthése des
résultats obtenus. ONERA NT-8/7078AY (Feb. 1972).

Délery, J. and Le Balleur, J.-C. (1973): Recherches sur l'interaction choc-couche limite turbulente. ONERA NT-
21/2247AN (April 1973).

Délery, J. and Lacharme, J.~P. (1978): Interaction onde de choc-couche limite en écoulement transsonique stationnaire.
ONERA RSF-31/7078AY (April 1978).

Délery, J. and Sirieix, M, (1979): Ecoulements de culot. AGARD LS-98 on Missile Aerodynamics (March 1979), English
translation "Base flows behind missiles". ONERA TP N° 1979-14E.

Délery, J. (1983): ONERA Research on afterbody viscous/inviscid interactions with special emphasis on base flow
problems. Symposium on Rocket/Plume Fluid Dynamics Interactions, Huntsville, Ala., 5-7 April 1983 and ONERA
TP N° 1983-26.

Don Gray, J. (1967): Investigation of the effect of flare and ramp angle on the upstream influence of laminar and
transitional reattaching flows from Mach 3 to 7. AEDC-TR-66-190 (Jan. 1967).

Drougge, G. (1953): An experimental investigation of the influence of strong adverse pressure gradients on turbulent
boundary-layers at supersonic speeds. FFA Report 47.

Dussauge, J.-P. (1982): Evolution des transferts turbulents dans une détente rapide en écoulement supersonique. Thése
de Docteur &s Sciences Physiques, Université de Provence, Marseille, France.

Elfstrom, G.M. (1971): Turbulent separation in hypersonic flow. Imperial College of Sciences and Technology, 1.C. Aero
Report 71-16 (Sept. 1971); see also : Turbulent hypersonic flow at a wedge compression corner. J. Fluid Mech.,
Vol. 53, Part 1, pp. 113-127 (1972).

Erdos, J. and Pallone, A. (1962): Shock/boundary-layer interaction and flow separation. Heat Transfer and Fluid
Mechanics Institute Procs., Stanford University Press.

Frishett, J.C. (1971): Incipient separation of a supersonic turbulent boundary-layer including effects of heat transfer.
Ph. D, Dissertation, University of California, Los Angeles.

Gadd, G. E. (1953): Interaction between wholly laminar or wholly turbulent boundary-layers and shock-waves strong
enough to cause separation, JAS, Vol. 20, N° 11 (Nov. 1953).

Gadd, G. E., Holder, D. W. and Regan, J. D. (1954): An experimental investigation of the interaction between shock-
waves and boundary-layers. Proc. Roy. Soc., Ser. A, Vol. 226, pp. 227-253.

Grande, E. (1971): An investigation of the unsteady flow properties of the interaction between a shock-wave and a
turbulent boundary-layer in two-dimensional internal flow. Ph. D. Thesis, University of Washington.

Green, J.E. (1969): Interaction between shock-waves and turbulent boundary-layers. RAE TR-69098 (May 1969); see also
Progress in Aerospace Sciences, Pergamon Press, Vol. 11, pp. 235-340 (1970).

Green, J. E. (1970): Reflexion of an oblique shock-wave by a turbulent boundary-layer, J. Fluid Mech., Vol. 40, Part 1,
pp- 81-95.

Hahn, M., Rubbert, P.E. and Mahal, A.S. (1973): Evaluation of separation criteria and their application to separated flow
analysis. AFFDL-TR-72 145 (Jan. 1973).

Hakkinen, R. J., Greber, L, Trilling, L. and Abarbanel, S. S. (1959): The interaction of an oblique shock-wave with a
laminar boundary-layer. NASA Memo 2-18-59W (March 1959).



87

Hammitt, A. G. and Hight, S. (1959): Scale effects in turbulent shock-wave/boundary-layer interactions. AFOSR TN 60-
82, Procs. 6th Midwestern Conf. on Fluid Mechanics.

Henderson, L. F. (1967): The reflexion of a shock-wave at a rigid wall in the presence of a boundary-layer. J. Fluid
Mech., Vol. 30, Part 4, pp. 699-722.

Holden, M. S. (1972): Shock-wave/turbulent boundary-layer interaction in hypersonic flow. AIAA Paper N° 72-74
(Jan. 1972).

Holden, M. S. (1974): Experimental studies of shock-wave/boundary-layer interactions. VKI, LS-62 (Jan. 1974).

Johnson, C. B. and Bushnell, D, M. (1970): Power law velocity profile exponent variations with Reynolds number, wall
cooling and Mach number in a turbulent boundary-layer. NASA TN-D-5753 (April 1970).

Kessler, W. C., Reilly, J. F. and Mockapetris, L. J. (1970): Supersonic turbulent boundary-layer interaction with an
expansion ramp and a compression corner. Mc Donnell Douglas, Report MDC E 0264 (Dec. 1970).

Kilburg, R. F. and Kotansky, D. R. (1969): Experimental investigation of the interaction of a plane oblique incident-
reflecting shock-wave with a turbulent boundary-layer on a cooled surface., NASA CR-66-841.

Kiyotaka Hayakawa and Squire, L. C. (1982): The effect of the upstream boundary-layer state on the shock interaction
at a compression corner. J. Fluid Mech., Vol, 122, pPp. 369-394.

Korkegi, R.H. (1975): Comparison of shock-induced two- and three-dimensional incipient turbulent separation, ATAA
Journal, Vol. 13, N° 4, pp. 534-535 (April 1975).

Korst, H. H, (1956): A theory for base pressure in transonic and supersonic flow. J. Appl. Mech., Vol. 23, pp. 593-600.

Kuehn, D. M. (1959): Experimental investigation of the pressure rise required for the incipient separation of turbulent
boundary-layers in two dimensional supersonic flow, NASA Memo 1-21-59 A (Feb. 1959).

Kuehn, D. M. (1961): Turbulent boundary-layer separation induced by flares on cylinders at zero angle of attack. NASA
TR-R117.

Law, C. H, (1974): Supersonic, turbulent boundary-layer separation. ATAA Journal, Vol. 12, N° 6, pp. 794-797
(June 1974).

Law, C. H. (1976): Supersonic shock-wave/turbulent boundary-layer interactions. AIAA Journal, Vol, 14, N° 6, pp. 730-
734 (June 1976).

Le Balleur, J.~C. and Délery, J. (1973): Etude expérimentale de l'effet de la réflexion d'une onde de choc sur la
transition de la couche-limite. Congrés Francais de Mécanique, Poitiers (France), 17-20 Sept. 1973; see also La
Recherche Aérospatiale, N° 1974-3, pp. 165-173 (May-June 1974).

Lewis, J. E., Kubota, T. and Lees, L. (1967): Experimental investigation of supersonic laminar two-dimensional
boundary-layer separation in a compression corner with and without cooling, ATAA Paper, N° $7-191 (Jan. 1967);
see also ATAA Journal, Vol. 6, N° 1, pp. 7-14 (Jan. 1968).

Liepman, H. W. (1946): The interaction between boundary-layer and shock-waves in transonic flow. JAS, Vol, 13, N° 12,
pp. 623-638 (Dec. 1946).

Marvin, J. G., Horstman, C.C., Rubesin, M. W., Coakley, T.J. and Kussoy, M.L (1975): An experimental and numerical
investigation of shock-wave induced turbulent boundary-layer separation at hypersonic speeds, AGARD CP-168,
Paper N° 25.

Mikulla, V. and Horstman, C.C. (1976): Turbulence measurements in hypersonic shock-wave interaction flows. AIAA
Paper N° 76-162 (Jan. 1976).

Needham, D. A, and Stollery, J. L. (1966): Boundary-layer separation in hypersonic flow. AIAA Paper N°© 66-455 (June
1966).

Popinski, Z, and Ehrlich, C. F. (1966): Development design methods for predicting hypersonic aerodynamic control
characteristics. AFFDL - TR - 66 - 85 (Sept. 1966).



88

Reda, D. C. and Page, R. H. (1969): Supersonic turbulent flow reattachment downstream of a two-dimensional backstep.
AFOSR 69-1592 TR.

Reshotko, E. and Tucker, M. (1955): Effect of a discontinuity on turbulent boundary-layer thickness parameters with
application to shock induced separation. NACA TN-3454.

Rose, W. C., Murphy, J. D. and Watson, E. C. (1968): Interaction of an oblique shock-wave with a turbulent boundary-
layer. AIAA Journal, Vol. 6, N° 9, pp. 1792-1793 (Sept. 1968).

Rose, W. C. (1973): Turbulence measurements in a compressible boundary-layer subjected to a shock~wave-induced
adverse pressure gradient. AIAA Paper N° 73-167 (Jan. 1973).

Rose, W, C. (1973): The behavior of a compressible turbulent boundary-layer in a shock-wave induced adverse pressure
gradient. NASA TN-D-7092 (March 1973).

Rose, W. C., Page, R. J. and Childs, M, E. (1973): Incipient separation pressure rise for a Mach 3.8 turbulent boundary-
layer. AIAA Journal, Vol. 11, N° 5, pp. 761-763 (May 1973).

Rose, W. C. and Childs, M. E. (1974): Reynolds shear-stress measurements in a compressible boundary-layer within a
shock-wave-induced adverse pressure gradient. J, Fluid Mech., Vol. 65, Part 1, pp. 177-188.

Rose, W. C. and Johnson, D. A. {1975): Turbulence in shock-wave boundary-layer interaction. AIAA Journal, Vol. 13,
N° 7, pp. 884-889 (July 1975).

Roshko, A. and Thomke, G. J. (1966): Correlations for incipient separation pressure. Douglas Aircraft Co., DAC-59800.

Roshko, A. and Thomke, G. J. (1966): Observations of turbulent reattachment behind an axisymmetric downstream-
facing step in supersonic flow. AIAA Journal, Vol. 4, N° 6, pp. 975-980 (June 1966).

Roshko, A. and Thomke, G. J. (1969): Supersonic turbulent boundary-layer interaction with a compression corner at very
high Reynolds number. Mc Donnell Douglas, Paper 10163 (May 1969).

Roshko, A, and Thomke, G. J. (1974): Flare induced interaction lengths in supersonic, turbulent boundary-layers. Mc
Donnell Douglas, MDAC Paper WD 2416 (Dec. 1974); see also AIAA Journal, Vol. 14, N° 7, pp. 873-879 (July 1976).

Seebaugh, W. R. (1968): An investigation of the interaction of a shock-wave and a turbulent boundary-layer in axially
symmetric internal flow including the effect of mass bleed. Ph. D, Thesis, University of Washington.

Settles, G. S. and Bogdonoff, S. M. (1973): Separation of a supersonic turbulent boundary-layer at moderate to high
Reynolds numbers. AIAA Paper N° 73-666 (July 1973).

Settles, G. S. (1975): An experimental study of compressible turbulent boundary-layer separation at high Reynolds
number. Ph. D. Dissertation, Aerospace and Mechanical Sciences Dept., Princeton University (Sept. 1975).

Settles, G.S., Bogdonoff, S.M. and Vas, LE. (1975): Incipient separation of a supersonic turbulent boundary-layer at
moderate to high Reynolds numbers, ATIAA Paper N° 75-7 (Jan. 1975); see also AIAA Journal, Vol. 14, N° 1, pp. 50~
56 (Jan. 1976).

Settles, G. S., Fitzpatrick, T. J. and Bogdonoff, S. M. (1978): A detailed study of attached and separated compression
corner flowfields in high Reynolds number supersonic flow. ATAA Paper N° 78-1167 (July 1978); see also ATAA
Journal, Vol. 17, N° 6, pp. 579-585 (June 1979).

Settles, G. S., Perkins J. J. and Bogdonoff, S. M. (1981): Upstream influence scaling of 2D and 3D shock/turbulent
boundary-layer interactions at compression corners. AIAA Paper N° 81-0334 (Jan. 1981).

Sfeir, A. A. (1969): Supersonic laminar boundary-layer separation near a compression corner. University of California,
Berkeley, Aeronautical Sciences Division, Report N° AS-69-6 {(March 1969).

Shang, I. S., Hankey Jr., W. L. and Law, C. H. (1976): Numerical simulation of shock-wave/turbulent boundary-layer
interaction. ATAA Journal, Vol, 14, N° 10, pp. 1451-1457 (Oct. 1976).



89

Simpson, R, L., Chew, Y.-T. and Shivaprasad, B. G. (1981): The structure of a separating turbulent boundary-layer.
Part 1: Mean flow and Reynolds stresses. J. Fluid Mech., Vol. 113, pp. 23-51.

Spaid, F. W. and Frishett, J. C. (1972): Incipient separation of a supersonic, turbulent boundary-layer, including effects
of heat transfer. AIAA Paper N° 72-114 (Jan. 1972); see also AIAA Journal, Vol. 10, N°© 7, pp. 915-922 (July 1972).

Sullivan, P. A. (1963): Hypersonic flow over slender double wedges. AIAA Journal, Vol. 1, N° 8, p, 1927 (Aug. 1963).

Thomke, G. J. and Roshko, A. (1969): Incipient separation of a turbulent boundary-layer at high Reynolds number in
two-dimensional supersonic flow over a compression corner. Mc Donnell Douglas, Report DAC 59819,

Todisco, A. and Reeves, B. L. (1969): Turbulent boundary-layer separation and reattachment at supersonic and
hypersonic speeds. Paper presented at Symposium on "Viscous Interaction Phenomena in Supersonic and Hypersonic
Flow", Hypersonic Research Laboratory, USAF ARL, Ohio.

Werle, M.J. (1968): A critical review of analytical methods for estimating control forces produced by secondary
injection. U.S. Naval Ordnance Laboratory, NOLTR 68-5 (Jan. 1968).

Zukoski, E.E. (1967): Turbulent boundary-layer separation in front of a forward-facing step. ATAA Journal, Vol. 5,
N° 10, pp. 1746-1753, (Oct. 1967).



90

4 - INTERACTION IN THREE-DIMENSIONAL FLOWS
4.1 - Introductory Remarks

In reality, as most flows of practical interest are three-dimensional, the two-dimensional case - about which a
large amount of information is available - may appear as somewhat academic. In fact, as pointed out by Green (1969), in
Aeronautics, real two-dimensional shock-wave/boundary-layer interactions are in practice confined largely to
axisymmetric flows, e.g., in axisymmetric air-intakes and nozzles and on the flare of launch vehicles or missiles.

It is only for obvious reasons of simplicity that the majority of theoretical studies on shock/boundary-layer
interaction are restricted to planar or axisymmetric flows. On the other hand, in the experimental domain, the
complexity of 3-D flows, especially when separation occurs, renders extremely difficult and costly investigations as
refined as those performed on 2-D interactions. The probing of a 3-D flowfield is still far from being a routine task in
spite of the efforts accomplished to develop 3-D instrumentation and to improve the efficiency of the probing
techniques.

However, the continuous progress of both computer technology and numerical methods, should permit the
calculation of more and more complex flows in the near future. As a matter of fact, very promising results have already
been obtained in the prediction of 3-D shock-separated turbulent flows (Hung and Mc Cormark, 1978 ; Kussoy et al.,
1980, Anderson and Benson, 1983 see also section 5 of Part II). This fast development of computational methods renders
particularly urgent the accompanying execution of detailed experimental investigations. The aim of these tests is to
establish a clear physical picture of 3-D interacting flows - the organisation of which is still far from being entirely
understood - and to provide data with which to assess the theoretical methods.

In spite of the great practical importance of the subject, the Section concerned with 3-D interactions will be
relatively brief for the following main reasons :

i - rather complete information on 3-D shock-wave/boundary-layer interactions can be found in a relatively
recent AGARDograph devoted to 3-D separated flows prepared by Peake and Tobak (1980);

ii - the number of detailed and fundamental analyses on 3-D interactions is still limited ;

ili - the general structure and the physical properties of these flows are not yet completely understood.

The subject will be presented by describing the main features of typical 3-D shock-wave/boundary-layer
interactions, the turbulent regime alone being considered. These flows are :

i ~ the swept wedge flow ;

ii the skewed (or glancing) oblique shock~wave ;

iii the blunt fin or cylindrical obstacle ;

iv - transonic flow over a swept wing.

However, before going into the physical description of the above flows, it can be helpful to briefly introduce some
congepts and definitions pertinent to the separation phenomenon in 3-D flows. The reader interested in more complete
information on this subject is referred to the already cited AGARDograph of Peake and Tobak.

4.2 - Separation in Three-Dimensional Flows

Let us first briefly recall the main characteristics of a three-dimensional boundary-layer and define basic concepts
which will be used in the forthcoming discussion. It is customary to resolve the.3-D boundary-layer in a streamline co-
ordinates system that is based on the geometry of the external inviscid flow. In this system the first family of co-
ordinates curves is the projection of the external streamline on the surface of the body and the second family consists
of the orthogonal trajectories in the surface of the first family. Thus, as shown in Fig. 4.1a, the velocity vector in the
boundary-layer is resolved into a streamwise componentu along the external streamline and a transverse
component w constituting the crossflow along the orthogonal trajectories.
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In contrast with 2-D and axisymmetric boundary-layer flows in which the velocity vector remains in the same
plane, the distinctive feature of 3-D flows is the ability to develop such a crossflow under the influence of a pressure
gradient acting in the transverse direction. Thus the velocity vector in the boundary-layer can be progressively rotated
resulting in a "skewing" of the viscous flow characterized by the crossflow angle 8 uetined in ¥Fig. 4.1b. This angle
measures the deflection between the local streamline and the external streamline. When the distance y from Qg
surface tends to zero, the velocity vector reaches a limiting direction which is colinear to the skin-friction vector T .
At the same time, the streamlines tend to a limit position, the so-called "limiting streamline" which is also a trajectory
of the skin-friction vector field. For this reason, limiting streamlines are also called skin-friction lines. As it will be
seen below, the skewing of a 3-D boundary-layer can be very important, especially when separation occurs. In that case,
the angle By, between the skin-friction line and the external streamline can be close to 90 deg.

The separation phenomenon has been extensively studied in two-dimensional flows, incompressible as well as
compressible. But, in the three-dimensional case, what is commonly called "separation” becomes much more difficult to
characterize and even to define. In fact, there is still some controversy about what separation means in 3-D flows.

In a 2-D steady stream, it is generally recognized that separation occurs when the wall shear-stress (or equiva-~
lently, the skin-friction coefficient) vanishes at a certain point - the so-called separation point. Beyond that point, the
wall shear-stress Ty, is negative, the velocity distribution along a direction normal to the surface having a portion close
to the wall where the streamwise component u streams opposite to that of the outer main flow.

In most 3-D flows, such a definition becomes insufficient and useless because, on general 3-D surfaces, there is no
privileged direction along which the sign of the wall shear-stress has an intrinsic significance (except in very special
situations, such as a plane of symmetry or the case of an infinite swept wing).

The first attempt to give a rational and universal definition of 3-D separation can probably be ascribed to Maskell
(1955). However, the most decisive progress is this field was brought about by the cogitations of Legendre (1952, 1977)
and of Lighthill (1963).

Legendre has shown that nearly all the observed surface flow patterns belonging to what are called separated flows
can be interpreted in a rational and simple way by introducing a very limited number of elementary singularities into
the family of skin-friction lines of an isolated obstacle.

The singularities envisioned are isolated singular points on the surface where both the skin-friction vector and the
surface vorticity vanish. These singular points are of two kinds : nodal points and saddle points. Among the nodal points
(or nodes), one is led to distinguish between :

i - nodes of attachment or separation where all the skin-friction lines - except one - have a common tangent (see
Fig. 4.2a). In some circumstances - for example at the stagnation point of an axisymmetric body at zero angle
of attack - the nodal point becomes an isotropic node (see Fig. 4.2b) ;

ii - focus (of attachment or separation) where there is no longer a common tangent line. An infinity of
streamlines spiral around such a point (see Fig. 4.2¢).

b . isotropic node ¢ _ foeus d . saddle point

Fig. 4.2 — Three-dimensional separation — Singular point in skin friction lines pattern.

Only two skin-friction lines can run through a saddle- point {see Fig. 4.2d) : all the other skin-friction lines "avoid"
the singular point. After bending, the skin-friction lines tend to take the direction of the two particular skin-friction
lines. These two lines act as barriers in the field of skin-friction lines, making one set of these lines inaccessible to the
adjacent set,

Simple topological rules dictate the number of nodes and saddle points that can exist on the surface of the same
obstacle. The difference between the number of nodes and the number of saddle points is necessarily equal to two. In
these conditions, a flow will be said separated if its skin-friction line pattern contains more than two nodes. Since the
skin-friction lines coming from two nodes of the same nature (attachment or separation) cannot cross, a singular point -
which is necessarily a saddle point - must be placed somewhere between these two points. Hence, it is concluded that
any separated three-dimensional flow has at least one saddle point through which run two particular skin-friction lines.
One of these lines is the separation line. Thus the so-called separation line delimits two domains on the surface flow.
The skin-friction lines belonging to each of these domains run asymptotically into the separation line. This means that
they never cross the separation line and that they have no contact with it.

From this standpoint, the two dimensional case represents a very particular situation. It would correspond to a 3-D
separated flow in which the separation line is rectilinear and is the locus of an infinite number of saddle points. The
separation point would be the trace of this separation line on the plane perpendicular to it that contains the 2-D flow.
As a matter of fact, careful surface flow visualizations of nominally 2-D flows reveal that in the vicinity of separation
or reattachment, the structure of the surface flow is very complex. This is illustrated by the experimentally determined
surface patterns shown in Figs. 4.3 and 4.4, The first example is relative to ramp-induced separation in a 2-D supersonic
flow (Settles et al, 1978) ; the second to supersonic reattachment behind an axisymmetric downstream facing step
(Roshko and Thomke, 1965 ; see also the experiments of Ginoux, 1962). In both cases, the surface flow exhibits a
repetitive pattern looking like a succession of saddle-points regularly distributed on the separation or reattachment

line. Such obsefvations tend to prove that two-dimensionality is in fact an abstraction without real existence in the
actual 3-D world.
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Fig. 4.4 — Reattachment behind an axisymmetric downstream facing
(Settles et al., 1978).

step surface flow pattern (Roshko and Thomke, 1965).

Recently, Tobak and Peake (1981) suggested a modification to the above definition of 3-D separation in order to
take into account some experimental observations that seem to contradict the original definition. These authors have
proposed making a distinction between :

i - global separation which corresponds to the existence of a saddle point through which runs what they call a
global separation line,

ii - and local separation where the separation line has its origin at a nodal point of attachment, for instance.

Nevertheless, in both cases, the separation phenomenon is characterized by the existence of a particular skin-
friction line - the separation line - that "separates" the skin-friction lines into two sets.

In a separation phenomenon, the skin-friction lines converge asymptotically towards the separation line from either
side of this ilne. A reattachment process can be defined in the same terms, but now the skin-friction lines diverge from
the reattachment line.

In spite of this relatively clear definition, there is still some controversy about the origin of separation in 3-D
flows. For example, some investigators claim that a separation line can form without necessarily originating from a
singular point where the wall shear-stress vanishes (see Wang, 1983 and Hornung, 1983). Here, we will not enter into this
dispute, but we will retain the following fact that is now commonly recognized : the system of singular points (nodes
and saddle points) actually constitutes what Peake and Tobak have called a "flow grammar whose finite number of

elements can be combined in myriad ways to describe, understand, and connect the properties common to all three-
dimensional viscous flows".

In order to illustrate the above considerations, Figs. 4.5 to 4.7 give examples of skin-friction line patterns for 3-D
separated flows. The first example (see Fig. 4.5) is a separation produced in a subsonic flow by a cylindrical obstacle
mounted perpendicularly to a flat plate, (similar separation will be considered in Section 4.3.3 for a supersonic incoming
flow). The left- hand part of the figure shows the surface flow pattern determined experimentally by East and Hoxey
(1971) ; its right-hand part shows the same pattern as computed by the inverse 3-D boundary-layer method presented in
Section 2.4.3 of Part II (Délery and Formery, 1983). The two surface flow patterns clearly exhibit the formation of a
saddle- point contained in the plane of symmetry of this flow. The separation line originates from this point and appears
evidently as an asymptote to the skin-friction lines. The second example (see Fig. 4.6) shows the occurrence of
separation on a wing-like surface under infinite swept wing conditions. In this case, the flow is invariant along a
particular direction which is here parallel to the wing leading edge. Flows of this kind are said to possess a cylindrical
symmetry along a direction z . This property is expressed mathematically by stating that the derivatives along z are
equal to zero. Cylindrical symmetry leads to considerable simplifications in the equations of motion which take a quasi
two-dimensional form, although the solution ‘may retain a strongly three- dimensional character, as will be shown in the
forthcoming examples. For this reason, the assumption of cylindrical symmetry is frequently made in predictive
methods. The experimental results shown in Fig. 4.6 were obtained by Van den Berg and Elsenaar (1972) ; they also
correspond to an incompressible flow. In the case of cylindrical symmetry, the separation line is rectilinear and parallel
to the direction z , the saddle-point singularity being in effect at negative infinity.

Surface flow pattern
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Fig. 4.5 — Three-dimensional separation in front of a cylindrical Fig. 4.6 — Three-dimensional separation on an infinite swept wing

obstacle in incompressible flow. in incompressible flow.
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Fig. 4.8 — The swept corner configuration.

The last example {see Fig. 4.7) is purely numerical. The calculation simulates separation on an infinite swept wing
in transonic flow, the boundary-layer being turbulent. This calculation was made by using the already cited inverse
boundary-layer method. It shows a case of separation followed by reattachment in what can be called a bubble-type 3-D
separation,

The above examples exhibit trends typical of separation in 3-D turbulent flows which will be observed in the 3-D
shock-wave/boundary-layer interactions examined in what follows. To summarize, these features are the following :

i - in the separated region, the external streamlines (i.e., the streamlines at the boundary-layer edge) are only
slightly deflected (see Fig. 4.5 to 4.7), whereas the skin-friction lines turn abruptly on approaching the
separation line. Thus, the surface flow pattern could give a misleading impression that the entire flowfield is
highly skewed from the streamwise direction, which is not the case. In fact, the major part of the boundary-
layer flow has not yet been strongly affected in the separation region. It continues to stream in a direction
differing slightly from that of the incoming flow. Most of the flow turning takes place over a thin region of
low energy fluid close to the wall.

it - in_g'3-D separation, the wall shear-stress - or more exactly the modulus of the wall shear-stress vector
|TW| - generally does not vanish on a separation line, except of course at a node or a saddle-point. Thus it is
clear that the vanishing of the wall shear-stress cannot be used as a criterion - or even a definition'-_for
separation in 3-D flows. The only property identifiable with separation seems to be the passage of |Tw|
through a miniroum. However, this property is a frequently made observation which nas no rational
justification. The unique feature of the wall shear-stress at a separation line is that the component
of Tw norwai to tne separation line vanishes, but this property results simply from the definition of a
separation line. It is of no help in identifying separation from wall shear-stress measurements.

iii - the separation phenomenon is characterized by a very rapid turning of the skin-friction lines when they
approach the separation line from upstream. This could give the impression that they are tangent to the
separation line. On the other hand, the tendency towards the separation line from downstream as well as the
tendency towards a reattachment line is far more progressive,

To conclude, it should be said that the consideration of the surface-flow pattern plays an important role in the
experimental investigation of 3-D separated flows. Surface flow patterns are of the greatest help in understanding the

structure of these flows. At supersonic velocities, they play a role comparable to that of optical methods (schlieren or
shadowgraph pictures) in the study of two-dimensional interactions,

4.3 - Typical Interactions in 3-D Flows,

4.3.1 - Interaction at a Swept Corner

This first flow is produced by a corner (or ramp) of angle & swept at an angle A in relation to the incoming
supersonic flow, which is assumed uniform for the sake of simplicity (see Fig. 4.8). It is clear that A = 0. corresponds to
the 2-D interaction considered in some detail in Section 3 above. Thus, with the present configuration, by progressively
increasing the sweep angle A from zero, it is possible to create a flow situation in which there is a continuous transition
from a two-dimensional interaction to interactions where 3D effects become more and more pronounced.

-The corresponding change in the surface flow pattern is illustrated by the photographs shown in Fig. 4.9. These
experiments were carried out by Settles and Perkins (1979) at an upstream Mach number of 3 and for a Reynolds number
range between RS, = 1.86 x 100 and 6.23 x 100, The flow patterns presented here are relative to an angle a = 24 deg.
Also, a case where & = 16 deg. and A = 30 deg. is presented. When the corner is swept, the surface flow pattern reveals
the existence of a separation line and of a reattachment line originating both from the corner apex. Except in the apex
region, this pattern has a close resemblance to the computed pattern of Fig. 4.7. Its essential features are
schematically represented in Fig. 4.10. Their examination reveals the following properties :

i ~ broadly speaking, the flow can be divided into two regions. Near the apex, the flow tends to develop a
conical structure ; the distance separating the separation line from the reattachment line increases
progressively with the distance £ from the apex. Figure 4.11 a shows a very schematic representation of the
projected streamlines in a vertical plane perpendicular to the corner hinge. Due to the spreading of the
separated flow, the lateral outflow within the recirculation increases with§ in such a way that an extra
fluid is drawn into the recirculation. The reattachment stream surface thus passes over the surface springing
from the separation line (the reverse situation would be observed if the extent of the separation were
decreasing).
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At a certain distance £ frow the apex, the flow develops a cylindrical pattern, in the sense that it is
invariant along directions parallel to the corner hinge line (the flow possesses a cylindrical symmetry). The
length required for the inception of a cylindrical flow increases with the sweep angle X (all other parameters
being kept fixed). Also, at a given A , £ increases when ¢ is increased. Obviously, the cylindrical symmetry
is not always observed for such flows. Its establishment necessitates a sufficient spanwise size of the
experimental arrangement. As we already know, for a cylindrical flow, all derivatives parallel to the corner
are zero. In particular, the lateral flow within the separation bubble is constant. Thus, the projected
streamlines constitute a closed "recirculation bubble” (see Fig. 4.11b).
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Fig. 4.9 — Swept corner flow — Surface flow patterns
(Settles and Perkins, 1979).
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Fig. 4.12 — Swept corner flow — Deviation of ski.n ) Fig. 4.11 — Swept corner flow — Schematic representation
friction line in the separated region —  defined inFig. 4.10 of the projected streamiines in plane perpendicular to the corner hinge.
ii - as shown in Fig. 4.10, let us define the angle ¥ as the deflection of the skin-friction lines in the central part

of the separated region (also called the secondary flow region). As shown by the experimental data points
plotted in Fig. 4.12, ¥ starts immediately to deviate from pure flow reversal ( = 0 deg.), as soon as a small
amount of corner sweep is added to the initially 2-D interaction. In the present case, the skin-friction lines
of the secondary flow appear to approach asymptotically a situation in which they are inclined at 10 deg. to
the corner line at the higher sweep angles.

iii - the wall pressure distributions measured along a line z = constant {see Fig. 4.8) for & = 16 deg.and varying
sweep angle A are plotted in Fig. 4.13. A striking feature of the interaction is that the pressure distribution
does not change at all from the 2-D case for sweep angles up to 10 deg, although, at the same time, the flow
in the vicinity of the wall is strongly affected, as shown by the rapid variation of ¥ (see Fig. 4.12). When X is
greater than 10 deg, the pressure rise at the wall starts to spread progressively both in the upstream and in
the downstream directions.

Let us now consider scaling properties of the upstream influence. In the present situation, the interaction
propagates both in the x streamwise and in the spanwise directions, so that one ‘must consider the two interactions
lengths %, and zg defined in Fig. 4.10. It is clear that the interaction length scales must necessarily come from the
incoming flow since the corner geometry has no significant dimension. However, the appropriate scales will, in
principle, depend also on the two angles A and 0. The 2-D analysis of Settles et al (1981) (see Section 3.7.2 above), can
be extended to 3-D interactions for which it leads to a very good correlation for the lengths x, and z, , as shown in Fig.
4.14. It is to be noticed that, for the corner angle @ = i0 deg. cylindrical symmetry is reached within the test section
only for X less than 50 deg. and if o, = 24 deg. for A less than 40 deg. The problem of the spanwise propagation of the
swept~corner influence in the apex region has been analytically investigated by Stalker (1960, 1982). By using the small
perturbation approach of the Lighthill triple deck model (see Section 4.1 of Part II), this author found that this influence
propagates at an angle (relative to the corner hinge line) determined by the sweep angle, the properties of the
boundary-layer (namely its velocity profile) and the upstream Mach number. It does not however depend on the
boundary-layer thickness. This theory is restricted to weak disturbances and to non-separated flows.

As we know, when cylindrical symmetry exists, the interacting flow is in fact a quasi 2-D flow. Then, purely 2-D
correlation properties can frequently be applied by considering the flow quantities normal to the sweep angle (see, for
example Stalker, 1960). Thus, Settles and his co-workers have found that the Roshko and Thomke (1974) correlation
given in Section 3.7.2 above, works satisfactorily well when the normal components of the Mach number, the Reynolds
number and §, are used. This kind of transposition is also applied in order to derive 3-D Incipient Shock-Induced
Separation criteria (see Section 4.4 below).
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Fig. 4.13 — Swept corner flow — Wall pressure distributions Fig. 4.14 — Swept corner flow — Streamwise and spanwise scaling
. (Settles and Perkins, 1979) of upstream influence lengths (Settles et al., 1981).

Interaction with separation at a swept corner was also investigated by Bachalo and Holt (1975). These authors used
a symmetric model formed by making two oblique, symmetric cuts in a plane compression corner. Their experiments,
which include boundary-layer surveys, were carried out both in laminar and turbulent flows.

4.3.2 - The Skewed Shock-Wave Interaction

This kind of flow is schematically represented in Fig. 4.15. A planar shock-wave is generated by a plate with a
sharp leading-edge set at an angle of attack G- iu variants of this arrangement, the shock is generated by a ramp.

In the present situation, one considers the shock-wave/boundary-layer interaction taking place on an adjacent flat
plate perpendicular to the shock generator. This kind of flow is also termed "Glancing Shock-Wave/Boundary-Layer
Interaction” and is identical to the so-called "Sharp Fin-Induced Shock/Boundary-Layer Interaction". In pratice, such
phenomena occur, for example, on the side plate of supersonic two-dimensional mixed or external compression inlets or
on the wing surfaces of aircraft with highly swept wings in supersonic flight.

This type of 3-D interaction has been more intensively studied than the other types ; presumably because of its
greater practical importance... and also because it is amenable to relatively simple analyses. Most of these analyses,
discussed in Section 1.3 of Part II, assume that the flow is cylindrical in a direction parallel to the freestream shock.
This assumption permits a rather straightforward extension of purely 2-D theories.

Let us first examine the skin-friction pattern resulting from an interaction of this kind. For this purpose, we will
use experiments performed by Oskam et al. (1976). Many other experimental results can be found in the literature
(Stanbrook, 1960 ; Lowrie,1965 ; West and Korgegi, 1972 ; Law, 1975; Peake and Rainbird, 1975 ; Cousteix and
Houdeville, 1976 ; Oskam et al., 1977 ; Degrez and Ginoux, 1983). In the present case, the incoming turbulent flow has
an outer Mach number equal to 2.95. Figures 4.16a and 4.16b show photographs of oil flow patterns obtained for two
values of the shock generator angle ©G. Une observes that for the lower value of aG (0 = 4 deg.), the skin-friction lines
start to be deflected well upstream of the calculated shock position (from inviscid flow theory) which nearly coincides
with the shock location in the outer inviscid stream. The maximum deflection angle of the skin—friction lines is
approximately equal to 10 deg., which is about twice the shock generator angle but is well below the shock wave
angled . In fact, the present surface flow pattern is typical of a 3-b boundary-layer undergoing a moderate
compression. The adverse pressure gradient causes the slower moving fluid in the bottom part of the boundary-layer to
deflect to larger angles than the faster moving fluid in the outer portion of the boundary-layer.

My =295 =% _abaluted shock __separation lime
Bowndary-layer [

1 shock generator

a- Gg=4deg _ Unseparated flow b _ag-10deq - Separated flow

Fig. 4.16 — Skewed shock wave — Surface flow patterns on side wall
(Oskam et al., 1976).

{ Shock generator " Fig. 4.15 — The skewed shock wave (or glancing shock) configuration.

When the shock generator is set at an angle &G = 10 deg., the surface flow pattern is radically different. In this
case, the skin-friction lines coming from upstream infinity are abruptly turned well upstream of the outer shock
location and they run asymptotically into a line (S) which is roughly parallel to the shock. Farther downstream, the skin-
friction lines are deflected to angles substantially larger than the shock angle. In this part of the flow, the surface flow
streams from the apex of the shock generator and the streamwise component of this motion (i.e., the component in the
direction of the still unperturbated incoming flow) is opposite that of the outer stream. These downstream skin-friction
lines also run asymptotically into the line (S) which thus has the character of a separation line.
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The surface flow pattern also reveals the existence of a reattachment line (R)close ;to the trace of the shock
generator. In the present situation, the two lines (S) and (R) originate from a region very close to the shock generator
leading edge. In this region, the size of the surface phenomena is too small to be resolved by the oil technique, so that
the singular point(s) at the origin of the separation and reattachment lines cannot be observed.

A tentative representation of this kind of interacting flow was postulated by Kubota and Stollery (1980). In this
model, (see Figs 4.17a and 4.17b) a first corner vortex forms. Also, the inner part of the shock generator boundary-layer
is pushed under the sidewall boundary-layer. When separation occurs (see sketch in Fig, 4.17b), the skin-friction lines of
this flow constitute the pattern observed downstream of (S). A separation sheet emanates from (S) where the two
families of skin-friction lines meet. Then the sheet rolls up into a vortex.
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a . Attached Flowfield model b _ Separated Flowfield model

Fig. 4.17 — Skewed shock wave — Schematic representations
of the flowfield {Kubota and Stollery, 1980).

Wall pressure distributions measured by Oskam and his colleagues are plotted in Fig. 4.18. These distributions were
measured along the xg direction defined by the sketch in Fig. 4.18. The different curves correspond to increasing values
of the shock generator angle ac (the distance xg is normalized by the boundary-layer thickness § 5 at the beginning of
the pressure rise). A key feature of the plotted distributions is that the upstream extent of the interaction measured
from the shock location ( xg = 0.) and along the chosen direction is largely independent of the shock strength. However,
a careful reconsideration of the problem of upstream influence by Dolling and Bogdonoff (1981) has shown that with this
kind of plotting, the influence of shock strength is masked. This fact is demonstrated by the correlation curves
represented in Fig. 4.19. Here, the streamwise influence length x; is plotted against the distance § for different shock
strengths (£ is the distance from the shock generator leading edge measured along the free stream shock-wave).
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Fig. 4.18 — Skewed shock wave — Wall pressure distribu tions Fig. 4.19 — Skewed shock wave — Streamwise upstream interaction
along a line Y-constant (Oskam et al., 1976). length (Dolling and Bogdonoff, 1981).

In fact, the length x, has no particular physical significance. A more correct scaling of the phenomenon is
obtained by considering the distance Ly normal to the free stream shock. Now, with Ly, the influence of the shock

strength is clearly visible as shown by the data points plotted in Fig. 4.20. Furthermore, a good correlation of the shock
strength effect can be obtained by normalizing the normal distance Lg with a "normal Mach number function" Mg
defined as the ratio of the normal Mach number Mpo = Mgsind to a "reference” normal Mach number (here, the value of
Mpg corresponding to ag = 2 deg.). As shown in Fig. 4.21, the collapse of the data for variousagG on a single curve
demonstrates the essential role played by the normal flow in the determination of certain basic properties of this kind
of interaction.
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Similar to the case of the swept ramp, a typical feature of the skewed shock/boundary-layer interaction is the
large extent of upstream influence, even for very weak shock-waves. This behavior is clearly demonstrated by the
variation of L, with g plotted in Fig. 4.22. One observes the three following tendencies :

i - the normal interaction length L, becomes important as soon as 4 is different from zero ;
ii - the increase of L, with 0.G is moderate ;
ili - the upstream interaction length is typically an order of magnitude or more greater than that occurring in 2-

D interactions (with the same incoming flow conditions).

Also, Dolling and Bogdonoff (1981) found that the functional dependence of L, on the Reynolds number and the
incoming boundary-layer thickness is the same as that observed in both unswept and swept compression corners.

Lu and Settles (1983) have examined the similarity properties of the interaction produced by a fin swept at an
angle A (see sketch in Fig. 4.23). As demonstrated by data plotted in Fig. 4.23, this flow obeys a conical similarity
principle irrespective of fin sweepback or angle of attack. Also, scaling laws for Reynolds number and normal Mach
number effects already mentioned (see Figs. 4.14 and 4.21) are seen to apply well to the present interaction.
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Fig. 4.22 — Skewed shock wave — Normal interaction length as Fig. 4.23 — Skewed shock wave produced by a swept fin —
function of shock wave strength (Dolling and Bogdonoff, 1981). Scaling of normal upstream interaction length (Lu and Settles,
1983).

The structure of three-dimensional separation produced by a skewed shock-wave was also investigated by Korkegi
(1976) who gave a detailed description of the flow region between the interaction origin and the shock generator. Thus,
for increasing shock strength, Korkegi proposed the sequence of flow patterns represented in Fig. 4.24 :

i - sketches a and b correspond to the situations already analyzed. In a, the shock strength is not sufficient to
induce separation ; in b separation occurs.

ii - as the separated region grows in size due to a progressively stronger shock, the "reverse flow" can also
separate. Then, a secondary separation region develops within the primary one (see Fig. 4.24c). In the sketch,

(S) and (R) are respectively the primary separation and reattachment lines and (S1) and (Rj), the secondary
ones.
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Fig. 4.24 — Skewed shock wave — Schematic representation of the Fig. 4.25 — Skewed shock wave — Typical surface pressure and surface
flowfield (Korkegi, 1976). heating profiles.

The figure also shows (very schematically) the wall shear-stress component Ty normal to the lines of interaction
defined in the sketch. As these lines have practically the direction of the separation and reattachment lines (the flow

being assumed conical), Tyn changes sign on (S), (R) and (Sy), (R1). Also, the streamlines projected on the surface
normal to lines of interaction are represented.

The above region is the siege, not only of high pressure rises, but also of high heating rates in non-adiabatic flow
conditions (for example, in the case of a reentry vehicle flying at hypersonic Mach numbers). Typical surface pressure
and surface heating distributions along a spanwise direction are schematically represented in Fig. 4.25. As the free
stream enters the interaction region, it is compressed through a first pressure rise. This increase may result in an initial
pressure peak or plateau. The first compression is generally followed by a much higher pressure peak occurring between
the shock-wave and the shock generator (see the curves of Fig. 4.18 corresponding to high angles o ). The surface

heating distribution increases more slowly and reaches a peak value located also between the shock-wave and the shock
generator.
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Several empirical correlations have been proposed for predicting the main features of the above pressure and
heating distributions. For instance, Neumann and Hayes (1977) gave the following formulae to represent peak pressure
(second highest peak ppk ) and peak heating hpk(see Fig. 4.25)

Ppk . STpk .
= (M, sind)?P = (Mg sind - 1) NST + 0.75
Po To

where STy is the Stanton number, ST, being the value of ST at the origin of interaction. The exponent np and the
coefficient NST are functions of X/8, given in Figs. 4.26a and 4,26b. Similar empirical laws have be:en propf)sed by
Scuderi (1978). For the problem of kinetic heating due to skewed shock-wave/turbulent boundary-layer interaction, see

also Degrez (1981).
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Fig. 4.26 — Skewed shock wave — Correlations for higher peak pressure
and peak heat transfer (Neumann and Hayes, 1977).

4,3.3 - Obstacle - Induced Interaction

The third configuration envisaged consists of a blunt cylindrical obstacle - which can be a fin with rounded leading
edge - mounted perpendicularly to a flat plate on which a turbulent boundary-layer develops. For the sake of simplicity,
the incoming flow will be assumed uniform. The flow resulting from an obstacle-induced shock-wave/boundary-layer
interaction is the supersonic counterpart of the well known incompressible 3-D separating flow analyzed in great detail
by East and Hoxey (1971). Part of the surface flow pattern is shown in Fig. 4.5.

When the obstacle is sufficiently tall and the flow supersonic, very high values of pressure, pressure gradients and
heat transfer are measured both on the obstacle and in its vicinity on the flat plate. Such high values are not found for
small protuberances, but in this case, the disturbance caused by the obstacle can persist for hundreds of protuberance
heights downstream. Thus, this kind of flow is of great practical importance and has been the object of several specific
investigations (Price and Stallings, 1967 ; Westkaemper, 1968 ; Korgegi, 1971 ; Winkelmann, 1972 ; Kaufman et al,,
1972 ; Dolling et al. , 1979).

The present 3-D flow is excessively complex and depends on a large number of parameters : the dimensions (three
lengths), shape and orientation (sweep) of the obstacle, free stream Mach number and Reynolds number, the undisturbed
velocity profile of the incoming boundary-layer and its thickness § o- Because of this complexity, detailed information
on such interactions is still scarce and fragmentary, Therefore,, the structure of the flow, as well as its general
properties, are still far from being completely elucidated. Thus, the present Section is restricted to a brief presentation
of the most typical flow features.

The overall structure of the outer flow ahead of a fin with circular leading-edge is revealed by the shadowgraph of
Fig. 4.27a . The present experiments were carried out by Dolling et al. (1979) at an upstream Mach number My, =3 and
at high Reynolds number. The shadowgraph visualizes the trace in the symmetry plane of the shock system at the foot
of the fin. This system consists essentially of a bow shock and of a separation shock originating in the inner part of the
boundary-layer well ahead of the fin. The interaction between the bow shock and the separation shock results in a
complex system made more visible by the sketch in Fig. 4.27b. The represented schema of the shock structure was
designated Type IV by Edney (1968). This structure includes a triple point I, a Mach stem and also a supersonic jet
embedded in a subsonic region. At high Mach number, the peak impact pressure of this jet can be extremely high, as can
be the local heat transfer. The structure represented in Fig. 4.27b is not proper to all fin induced flows but corresponds
to particular conditions. However, its main components - the bow shock, the separation shock and the Mach stem - are
encountered in every such flow.

thh paint [
impinging shock
plane of symmetry shock
a _ Shadowgraph of the flowfield b - Schematic of shock structure

Fig. 4.27 — Obstacle induced flow — Shock structure ahead
of the obstacle (Dolling et al., 1979).
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An example of surface flow pattern is shown in Fig. 4.28. It was obtained by Sedney and Kitchens (1977) at
Mg = 2.5. In this experiment, the obstacle is a circular cylinder with a height equal to 2.67 times its diameter. The most
visible features of the pattern are :

i - the saddle-point singularity S constituting the "separation point" in the plane of symmetry. One sees very
clearly the pattern of skin-friction lines that tend asymptotically into the separation line passing through S ;

ii - the reattachment point and the corresponding reattachment line close to the obstacle (these features, of a
much smaller scale, are barely visible on the photograph) ;

iii- two oil accumulation dots, downstream of the cylinder. They are the traces on the surface of two tornado-
like vortices. These vortices spring from focus-type singular points in the skin-friction lines pattern, then
bend over into the free stream direction and continue as the trailing edge pair.

iv - the photograph also shows the traces of the bow shock and of the Mach stem.
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Fig. 4.28 — Obstacle induced flow — Surface flow pattern Fig. 4.29 — Obstacle induced flow — Surface flow pattern
of a two-vortex configuration (Sedney and Kitchens, 1975). of a six-vortex configuration (Sedney and Kitchens, 1975).

The present case is an example of flow with two horseshoe vortices that surround the front part of the obstacle and

then continue downstream in a direction parallel to that of the free stream. Here, the streamwise extent of the large
vortex is about 25 times that of the small one. For a given cylinder geometry, at fixed Mach number Mg, the number of
such vortices may change considerably with the Reynolds number. Thus, Fig. 4.29 shows the surface flow pattern of a
six-vortex configuration. On the photograph, (S) is the primary separation line, (S1) and (S) the secondary separation
lines, (R), (R1) and (R) being the corresponding reattachment lines. Also, flows with four vortices were observed by
Sedney and Kitchens. In each case, (S) and (R) are always present, but the structure between them changes. .
The change in the flow structure occurs for rather small variations in Reynolds number and are perfectly repeatable.
According to Sedney and Kitchens, this suggests that there may be a delicate balance in the flow which is upset by
changing the Reynolds number so that one structure easily changes to another. Tentative representations of the flow off
the surface in the symmetry plane are shown in Fig. 4.30. The sketches correspond to a two-vortex and to a six-vortex
flow in the case of a small obstacle (then, there is no attachment on the obstacle). They are not to scale and the
streamwise dimensions are magnified compared to vertical dimensions for clarity. For the same reason, the traces of
the shocks are omitted. Because of symmetry, there is no flow across a symmetry plane, but there is flow out of or into
it, so that streamlines being tangent to it can appear to end in a side view of this plane.

Fig. 4.30 — Obstacle induced flow — Schematic representation of flow

3 _ Two-vortex configuration [ T — off the surface in the symmetry plane {Sedney and Kitchens, 1977).
Similar observations are reported by Ozcan (1982) who made most of his experiments in laminar flow. He noticed

t}.nat the number of separation lines dropped from 3 to 2 and from 2 to 1 with increasing Reynolds number. However, at

high Reynolds number, several separation lines can be observed again.

Let us examine some scaling properties of the obstacle induced interaction. This question has been studied by
several investigators (Westkaemper, 1968 ; Winkelmann, 1972 ; Dolling et al., 1979 ; Sedney and Kitchens, 1977 ;
Lucas, 1971 ; Uselton, 1967). Here, we will only briefly summarize their essential findings. The developments that
follow were for the most part directly inspired by a paper of Dolling (1982) who made a careful comparison between
sharp and blunt fin-induced shock-wave/turbulent boundary-layer interactions. In particular, Dolling has shown that in
the case of a blunt fin, a distinction must be made between two regions :

i - close to the fin (or the obstacle), there is what he calls an inner region where the flowfield can be described
as leading edge dominated. Within this region, the flow properties depend primarily on the leading edge
diameter D and are only slightly affected by changes in the incoming boundary-layer thickness. This property
is demonstrated by Fig. 4.31 which shows wall pressure distributions in the symmetry plane ahead of the fin.
These distributions were measured for five different values of /L. Une observes that the distributions do
not differ much even for ratios 8 o/D varying from 0.26 to 5.3. In particular, the upstream influence length -
defined as the distancg between the obstacle and the beginning of the pressure rise - is slightly affected by
the large changes in 8 o/D. Upstream influence is predominantly a function of D, practically independent of
8, and of the freestream Mach number. This strong dependence on geometric parameters tends to prove that
this kind of interaction has an essentially inviscid character. It is thus radically different from separation in
fz:ont of a two-dimensional step in spite of the resemblance of wall pressure distributions. For a two-
dimensional step, the thickness of the incoming boundary-layer is the primary streamwise scale of the
separation process (see the Free Interaction Theory in Section 3.6 above).
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Sedney and Kitchens also showed that for cylindrical obstacles, the primary separation distance Lg - i.e., the
distance between the obstacle leading edge and primary separation point S (see above) - depends mainly on D,
on the obstacle height h and on the free stream Mach number Mg ; but it only depends very weakly on the
thickness § ; (see the correlation curves in Fig. 4.32). This result also raises the question of the distinction
between "small" and "large” protuberances. More precisely, a protuberance will be considered as "large" if it
produces the "asymptotic results", a condition occurring when further increases in the height of the
protuberance do not change the extent of the disturbance field. The two situations are sketched in Fig. 4.33.
In particular, when the "asymptotic height"h = h, is reached, the upstream influence length, the primary
separation distance and the height hy of the triple point location no longer depend on h. Experimental
observations show that the "shock root" and in particular the location of the triple point are independent of h
provided that h 2> hy. The question of the scaling of the asymptotic height was carefully discussed by Dolling
and Bogdonoff (1981) who arrived at the conclusion that the proper scale for h, is the diameter D of the

obstacle.
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Fig. 4.33 — Obstacle induced flow — Schematic of shock structure

Fig. 4.34 — Obstacle induced flow — Correlation for the primary
for a) “large” and b} “small”’ cylinders (Dolling and Bogdonoff, 1981).

separation distance (Sedney and Kitchens, 1977).

Similar behavior was noticed by Sedney and Kitchens (1977). This property is a direct consequence of the
character of the flow in the so-called "inner region” where it is found that the influence of the free stream
boundary-layer is of second order. In principle, a universal value for hy, only function of D, cannot be
specified, since h, depends also on the Mach and Reynolds numbers. However, the correlation curves of
Sedney and Kitchens given in Fig. 4.34 show a relatively small variation of the ratio hy/D with Mg and the
Reynolds number. The value of ha/D is close to 2.5 for the two cases considered. Furthermore, for the same
cases, the normalized "asymptotic” primary separation distance Lg/D is nearly equal to 2.2-2.3, this level
being practically independent of the Reynolds number, provided that the regime be fully turbulent. The above
value of Lg/D has been confirmed by several other investigators (Stanbrook, 1960 ; Voitenko et al., 1966 ;
Young et al., 1968)., On the other hand, in laminar and transitional flows, Ozcan found that Lg depends
strongly on the Reynolds number. In laminar flow regime, Lg increases when the Reynolds number increases,
whereas in transitional flow regime, the trend is reversed. We have seen that the same tendency is observed
in two-dimensional flows (see Section 3.7 above) ;

ii - at a large spanwise distance from the fin, there is an outer region in which the properties of the interaction
are independent of leading edge blunting. As shown by Dolling (1982), in this region the scaling laws of the
phenomenon are identical to those of the sharp fin (see previous Section)), i.e., depend primarily on the
incoming boundary-layer properties.

In reality, the flowfield in the vicinity of the obstacle leading edge is characterized by a highly unsteady shock
wave structure, as found both by Dolling and Bogdonoff (1981) in turbulent flow regime, and by Ozcan (1982) at low
Reynolds number, This is not the place to discuss in detail this aspect of the phenomenon which is not yet well known.
However, it should be kept in mind that the above considerations pertain in fact to a mean flow which has no real
existence.

4.3.4 -~ Transonic Flow Over a Swept Wing

The flow past a swept wing at transonic speed can be extremely complex, especially when separation occurs. This
flow depends on many parameters : the freestream Mach number Mw, the reynolds number, the shape and size of the
wing, its angle of attack @ and its sweep angle § . A thorough description of such a complex flow would be beyond the
scope of the present AGARDograph, The interested reader can find detailed information on this subject in the existing
literature {Rogers and Hall, 1960 ; Squire et al.,, 1961 ; Monnerie and Charpin, 1975). In what follows, we will restrict
ourselves to a rapid description of the shock system which forms on the wing upper surface at high subsonic Mach
numbers.
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The wing configuration considered for this description has been studied in great detail by Schmitt and Manie (1979).
It is a rectangular wing equipped with a symmetrical profile having a relative thickness of 0.105. The sweep angle ¥ of
this wing can be varied continuously from 0 deg. to 60 deg., thus allowing a complete examination of the flow pheno-
mena over a large range of sweep angles. The present tests were all carried out for a Reynolds number R, = 2.5 106
(geometrical quantities are defined in Fig. 4.35).

Let us first consider flow evolution with the sweep angle at fixed freestream Mach number - Mw = 0.84 - and angle

of attack - a = 4 deg. The wall pressure distributions measured at two spanwise stations for different values of ¥ are
plotted in Fig. 4.35. The rapid pressure rises on these distributions indicate the shock-wave locations.

at¥=0 (no sweep), a quasi-normal shock stands approximately at mid-chord. In this case, the flow can be
considered as two-dimensional over the major part of the wing, three-dimensional effects being important only near the
wing tip and the wing root. For ¥ = 30 deg., one observes at the spanwise station Y/b = 0.45 a double compression, the
flow remaining supersonic behind the first compression, Only one shock is observed in the most outboard section at
Y/b = 0.75. Surface flow visualizations do not show separation, For ¥= 40,50 and 60 deg., only one shock is visible. This
shock is just about parallel to the wing leading-edge and it moves upstream as the sweep angle is increased, At the same
time, the Mach number peak value decreases so that the shock weakens. The traces of the shocks on the wing surface,
as determined from pressure measurements, are shown in Fig. 4.35. At ¥ = 30 deg., the shock system exhibits a typical
lambda pattern. Then, in the inboard part of the wing, two shocks form. Through the first shock - or forward shock - the
flow undergoes a supersonic-supersonic compression, whereas it becomes subsonic behind the second - or rear - shock.

Now, let us examine the flow evolution with the freestream Mach number Mw, at fixed sweep angle and angle of
attack (@ = 4 deg.). The first evolution, reflected by the wall pressure distributions plotted in Fig. 4.36, corresponds
to ¥= 0 deg. For the section located nearly at mid span (Y/b = 0.60), the evolution is similar to that of a two-
dimensional airfoil, with a progressive displacement of the shock towards the trailing edge as the freestream Mach
number is raised. At the same time, the shock becomes stronger and induces separation, as indicated by the rapid
change of the trailing edge pressure. On the other hand, near the wing tip (Y/b = 0.95), a two-shock system is observed
due to the locally strong three-dimensional effects. For f = 50 deg. (see Fig, 4.36b), the flow downstream of the shock
is supersonic only beyond Mw = 0.92. Then, a lambda shock pattern forms, like for ¥ = 30 deg., Ma = 0.84. In this case,
separation does not occur, as can be deduced from the constancy of the trailing-edge pressure.
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Fig. 4.35 — Swept wing in transonic flow — Chordwise pressure
distribution on upper surface — Sweep angle effect (Schmitt
and Manie, 1979).

To conclude, the last example of results illustrates the changes in the flowfield for variable angle of attack, Mg
and J being kept fixed. The corresponding wall pressure distributions are plotted in Fig. 4.37 and the shock locations on
the wing planform are represented in Fig. 4.38. When a is increased, the shock moves towards the trailing edge and
becomes stronger. The lambda pattern appears as soon asu = 2 deg. Thereafter, the intersection point of the two shocks
moves progressively inboard as a is increased, Simultaneously, the foward shock strengthens and induces separation in
the outboard part of the wing as soon as & = 7 deg.
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Fig. 4.37 — Swept wing in transonic flow — Chordwise pressure
distribution on upper surface — Angle of attack effect (Schmitt
and Manie, 1979).
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Fig. 4.38 — Swept wing in transonic flow — Upper surface shock
pattern (Schmatt and Manie, 1979).
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After this rapid overview, we will now examine some properties of the shock-wave/boundary-layer interactions
that occur on such wings. The experimental results chosen for this purpose were obtained in a pressurized transonic
wind-tunnel on a wing similar to the one used above to analyze the overall flow structure. The experimental
arrangement is schematically represented in Fig. 4.39. The cylindrical wing, mounted on one of the tunnel side walls,
can be set at variable sweep angles. It is equipped with a supercritical profile. Pressure orifices are located along three
sections of the wing, as indicated in Fig. 4.39. The present experiments (Mignosi et al. , 1980 ; Dor and Seraudie, 1982)
were carried out at a freestream Mach number Me = 0.90. Boundary-layer transition is promoted by a tripping band
located at the chordwise station X/C = 0.05. In these conditions, a shock-wave nearly parallel to the wing leading edge
forms at X/C = 0.15,

We will focus our attention on the region close to the wing tip where row N° 3 of pressure taps is located (see Fig.
4.39). Let us first examine surface flow patterns forming in this region, slightly downstream of the leading edge. The
first photograph of Fig. 4.40 shows the pattern obtained when the angle of attack a is equal to 2 deg. One observes that
the skin-friction lines, which tend to become perpendicular to the leading edge in the most upstream part of the flow,
are strongly deflected in the shock foot region. They continue downstream of the shock and tend progressively to adopt
the direction of the outer flow. Let us now consider the surface flow pattern obtained when a = 4 deg. In this case, it is
clearly visible that the skin-friction lines coming from the leading-edge region do not "cross" the shock anymore. In the
shock foot region, these lines are abruptly bent and converge into a separation line (S). Downstream of (S), the skin-
friction lines also converge asymptotically into the separation line. Along (S), the surface flow streams towardsthe wing
tip. A reattachment line is also visible. Downstream of it, the surface flow is progressively deflected in the direction of
the trailing edge. The computed pattern represented in Fig. 4.7 closely resembles the present observation. In particular,
it clearly shows that the outer flow, at the boundary-layer edge, is weakly deflected by the shock, whereas the surface
flow is highly skewed. For greater clarity, the experimental skin-friction line patterns are schematically represented in
Fig. 4.40.
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Fig. 4.39 — Transonic interaction on a swept wing — Wing installation
in the tunnel test-section (Mignosi et al., 1980).
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The "wall" Mach number distributions along row N° 3 are plotted in Fig. 4.41. The Mach number M, immediately
upstream of the shock increases steadily with the angle of attack. In the present cases, the downstream level is always
supersonic. The shock-wave is nearly planar and practically normal to the wing, so that it is possible to define a
"normal” Mach number. This property will be utilized to deduce a criterion for Incipient Shock-Induced Separation in the
following Section. Chordwise evolutions of the boundary-layer global properties (displacement and momentum
thicknesses, incompressible shape-parameter) are represented in Figs. 4.42 and 4.43 for a sweep angle of 30 deg. They
correspond to the cases of a non-separated and of a separated boundary-layer at the shock foot. In the first case, the
normal Mach number is equal to 1.28, in the second case it is equal to 1.36. The integral quantities have been computed
with the total velocity. In fact, except in the separated bubble, the skewing of the flow is small so that the boundary-
layer is nearly two-dimensional. The present evolutions of 8 ¥, 0 and hj are very similar to those observed in purely two-
dimensional flows.
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4.4 - Incipient Shock-Induced Separation in 3-D Flows.

Information on Incipient Shock-Induced Separation in three-dimensional flows is still very scarce when compared to
the abundance of results on two-dimensional flows (see Section 3.8 above). This scarcity is certainly due to the
complexity of 3-D separated flows and also to the difficulty in defining 3-D Incipient Separation.

Three-dimensional separation is detected experimentally by inspection of the skin-friction lines pattern. In
practice, this pattern is obtained by oil flow pictures but which are often difficult to interpret. The oil pattern is
determined by many forces, including surface tension, gravity and buoyancy, as well as wall shear- stress and pressure
gradient. The response of the oil film itself depends on the oil physical properties : viscosity, density, ... The difficulties
of interpretation explain in part the large scatter of the experimental results, Furthermore, there is still some
controversy over the way of defining separation from inspection of a skin-friction lines pattern (see Section 4.2 above).
This fact also contributes to the discrepancy in the Incipient Separation limits published by different authors.

What follows is restricted to separation induced by a skewed shock-wave on a side wall normal to it. Result on
other types of interaction are practically non existent.

To our knowledge, one of the first Incipient Separation criteria for three-dimensional flows was proposed by Mc
Cabe (1966). This author assumed that Incipient Separation occurred when the skin-friction lines turned parallel to the
inviscid shock direction. Then by applying his simple theoretical model for the 3-D shock/boundary-layer interaction,
Mc Cabe was able to compute the conditions leading to Incipient Separation (see Section 1.3.3 of Part II for a brief
presentation of Mc Cabe's theory).

Korkegi (1973) showed that at high Mach number - and for Y = 1.4 - Mc Cabe's separation limit could be
approximated by the very simple equation :

(4.1) Mg %Gy = 0.364 (in radians)

where Mg is the Mach number of the undisturbed incoming flow and GGy the angle of the shock generator in the
Incipient Separation condition on the side plate. However, Korkegi found thereafter that a better agreement with
experiment was obtained by changing the constant to 0.3, thus the criterion becomes :

(4.2) My agI = 0.3 (in radians)

At the same time, Korkegi (1975) proposed a correlation for 2-D Incipient Separation that takes into account most
of the available experimental results presented in Section 3.8.3 above. This correlation, given here for purposes of
comparison with the 3-D case, holds true only for high values of the Reynolds number R$ . Furthermore, it is assumed
that if RS, is sufficiently high, its influence on Incipient Separation is practically negligible. This assumption is not
really in contradiction with experiment, the influence of the Reynolds number at high R§ , not being obvious - and even
controversial ~ due to the large experimental scatter. Thus, Korkegi's correlation is a unique curve in the (Mg, agy)
plane which is traced in Fig. 4.44a. It is assumed valid for the range 105 iRdo £107. The pressure rise for Incipient
Separation corresponding to Fig, 4.44a is shown in Fig. 4.44b along with two empirical formulae adequate for rough
estimates in adiabatic flow conditions.

The two 3-D Incipient Separation criteria proposed by Mec Cabe (Eq.4.1) and by Korkegi (Eq. 4.2) are represented in
Fig. 4.45a. They are in good agreement with the experimental results of Kubota and Stollery (1980) and those of
Neumann and Token (1974). To Eq. 4.2 corresponds the pressure rise across the shock P1/Po = 1.5, independent of M, (see
Fig. 4.45D).
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According to Kubota and Stollery, the Incipient Separation definition adopted by Mc Cabe (and by Korkegi) would
be inadequate since there are experiments which show that the surface flow can be deflected through angles exceeding
the shock-wave angle before the formation of a true separation line. Thus, as explained above, true Incipient Separation
actually occurs when the skin-friction lines converge and merge asymptotically into a separation line or what Kubota
and Stollery call a "convergence line". In fact there is no contradiction with the definition of Mc Cabe : the difference
comes from the observation that the true separation line is not necessarily parallel to the inviscid shock, as postulated
by Mc Cabe.

The Incipient Separation conditions detected by using this second definition are plotted in Fig. 4.45b (this
compilation was made by Kubota and Stollery). Since the turning angle of the surface flow can be higher than the shock
angle before a separation line is formed, this definition - in principle more exact - leads to values of the limit angle @Gy
significantly higher than those given by Mc Cabe's criterion. The presently available experimental results show no
influence of the Reynolds number. For well established turbulent flow regime, this influence - if it e-ists - is certainly
weak and well within the scatter of the data points.

Goldberg (1969) has proposed an approximate criterion for 3-D Incipient Separation induced by a glancing shock
wave which consists in applying the 2-D criterion with the Mach number normal to the inviscid shock. Consideration of
the results plotted in Fig. 4.45 suggests a still simpler criterion consisting in adopting for G.Gp the value oGy = 8 deg.,
independent of the Mach number and Reynolds number.

Whatever the definition adopted, the above results show that the pressure rise for 3-D Incipient Separation by a
skewed shock-wave is far less important than for 2-D ramp (or shock reflection) induced separation and the gap widens
with increasing Mach number. This greater sensitivity of 3-D flows was also noticed by Myring (1977) as a result of his
simplified analysis presented in Section 1.3.3 of Part IL Thus, as pointed out by Korkegi (1975) as well as by Goldberg
(1969), it is the skewed shock-wave interaction with the side wall turbulent boundary-layer in rectangular diffusors or
inlets that first leads to separation and to possible flow breakdown for compression angles (or pressure rises) which may
be well below the incipient values for the two-dimensional case.

It should also be emphasized that Incipient Separation in 3-D flows depends certainly on the kind of interaction
considered (see Myring and Goldberg). Thus the above results are, in principle, applicable only to a skewed shock-wave
normal to a flat plate. For other types of interacting flows - like swept corner or oblique skewed shock - the Incipient
Separation conditions should be different.

Now we will give some information on Incipient Separation on a swept wing in transonic flows. This problem was
carefully studied by Dor and Plazanet (1982) on the experimental arrangement shown in Fig. 4.39. In their
investigations, the Incipient Separation situation was detected by interpretation of surface flow patterns and inspection
of wall pressure distributions. They arrived at the conclusion that Incipient Separation occurred when the Mach number
normal to the shock was equal to 1.33. No noticeable influence of the Reynolds number or of the shape parameter of the
incoming boundary-layer was noticed, mainly because of the limitations of the test set-up. The value 1.33 for the
normal Mach number is close to the value of the Mach number for Incipient Separation in 2-D transonic flows (see
Section 2.7 above).
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PART II. — METHODS OF CALCULATION

1. — GLOBAL METHODS

1.1. — Introductory Remarks

With very few exceptions, the main purpose of the methods considered in this Section is the prediction of the change in the boundary-layer
properties (integral thicknesses, shape parameter) across a shock-wave of insufficient strength to induce separation. The case of a separated flow
is only considered by Hammitt (see Section 2.2.2) and by Baker (see Section 2.2.6). For most of the methods, the limit of validity coincides
with incipient separation, the prediction of this limit being a secondary, but important, objective of these approximate theories.

The interaction problem is generally formulated in the following terms:

— an initial state is given at a Station 1 which coincides with the beginning of the interaction domain. Thus, Station 1 is located at the point
where the wall static pressure starts to rise or at the point where an incident oblique shock-wave meets the boundary-layer edge. At Station 1,
the following quantities are known: inviscid flowfield properties (i.e. Mach number M, ;, pressure p,, density p,,, etc) and boundary-layer
characteristics. These characteristics may consist of the full velocity distribution, if it is available, or more frequently of global quantities like
momentum and displacement thicknesses, shape parameter and, eventually, skin-friction coefficient. These quantities generally result from a
“classical” boundary-layer calculation which has been performed in the region upstream of the shock location. Very frequently, this calculation is
made by one of the many available integral techniques which are very popular owing to their rapidity and practicality;

— a downstream Station 2 is defined at the end of the interaction domain where the inviscid Sflow properties are prescribed (i.e. Mach number
M., pressure p,, density p,,, etc.). These quantities may result from an inviscid flow calculation or be given by experimental
correlations. Definition of the final state at Station 2 is often less obvious than the choice of the initial conditions. As a matter of fact, if there is
generally no ambiguity involved in defining the start of interaction, especially in turbulent flows, the end of the process is often far from being
unambiguously defined. Thus, the fixing of the downstream Station 2 can sometimes be arbitrary. This is more particularly true in transonic
shock-wave/boundary-layer interactions;

— "the problem is to compute the boundary-layer properties at Station 2, i.e., the distorted profile or more global quantities: momentum and
displacement thicknesses as well as a parameter characteristic of the shape of the velocity distribution, etc. This information could then be used as
input for a new classical boundary-layer calculation downstream of the interaction region. Other quantities like the streamwise extent of the
interaction domain are also of interest.

Many of the approximate methods developed to predict the downstream boundary-layer properties rely on discontinuity analysis. According
to this approach, the interaction process is considered as a “black-box” with State 1 as input and State 2 as output. The details of the phenomenon
are ignored or crudely represented.

The rather simple flow model on which these methods are constructed is inspired by experimental evidence and incorporate more or less
empirical information. This fact explains the relatively good quantitative success of discontinuity analyses together with the very “rapid” character
of the interaction process which allows drastic simplifications (mainly the neglecting of viscous effects). The counterpart of this kind of approach
is a rather limited range of validity, so that the method to be used depends on the flow situation to be treated: oblique shock reflection or quasi-
normal shock-wave, transonic, supersonic or hypersonic conditions, etc.

The approximate methods founded on a discontinuity analysis belong to one or the other of the following two families, which are, in fact, closely
related:

— boundary-layer integral methods;

— control volume methods.

We will now present some of the existing analyses by first considering two-dimentional flows (Section 1.2), then three-dimensional flows
(Section 1. 3).

In Section 1.4, we will envisage a rather different approach which was termed by Green (1969) “the inviscid shear-layer analysis”. In this
approach, the local flow properties are computed by considering the interacting boundary-layer flow as a wholly inviscid stream.

This presentation is essentially concerned with turbulent boundary-layers. In principle, it would be possible to apply certain of the following
methods to laminar situations by making appropriate changes (velocity profile representation, entrainment rate, skin friction law, etc.) However,
use of such analyses in laminar flows is questionabie for several reasons:

— some assumptions valid in turbulent flows do not hold true for laminar flows: for instance (as seen in Section 3.4 of Part I) interaction
length is far more important in laminar than in turbulent, and as a consequence, the neglecting of viscous forces, which is frequently made in
turbulent, is not always justifiable;

— except in very low Reynolds number flows, or for very weak shocks, interaction with a shock-wave generally provokes separation of the
laminar boundary-layer and simultaneously induces transition. This phenomenon is difficult to model within the framework of a discontinuity
analysis;

— there exist reliable and more exact methods for computing a purely laminar interaction [(solution of the full Navier-Stokes equations (see
Section 5), viscous-inviscid coupling techniques (see Section 3)], so that the use of discontinuity analyses is of no real interest.
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In order to simplify the presentation of the different methods, the flow will be assumed adiabatic (no heat transfer at the wall). In principle,
these analyses could be generalized to non-adiabatic flows by addition of the energy equation. However, this extension has rarely been carried out
and will not be discussed here. In fact, it leads to difficult problems for properly taking into account heat transfer at the wall.

For adiabatic flows at moderate Mach numbers (say M,<4), it is frequently assumed that stagnation enthalpy is everywhere constant
(isoenergetic flow). This hypothesis leads to some simplifications of the calculation without affecting appreciably the accuracy of methods which
involve more “severe” simplifying assumptions.

1.2. — Two Dimensional Interaction

1.2.1. — Simplified Boundary-Layer Integral Methods

General comments. — A first way to devise an approximate analysis treating the interaction between a shock-wave and a turbulent boundary-
layer is to use a simplified form of the Prandtl equations. The key hypothesis of this approach is to assume that viscous forces have no time to
play an appreciable role during the rapid interaction process which is essentially controlled by pressure and inertia forces. Of course, such an
assumption is not true very close to the wall, however in a turbulent boundary-layer the “viscous-layer” is so thin that it appears legitimate to
consider that the whole process is only weakly affected by viscosity. This conclusion certainly does not hold true for laminar flows, as has already
been pointed out in the introductory remarks. The resolution of the simplified version of the boundary-layer equations is made by considering an
integral form of these equations since the use of the local partial differential equations would require a special treatment of the wall region in order
to satisfy the no-slip condition (see Section 1.4 below on Inviscid Shear Layer analyses and Section 4 on Multi-Deck theories). Practically all the
existing boundary-layer integral methods can be modified in order to give a global description of the shock/boundary-layer interaction. Nevertheless,
we will here consider only three methods which are the most popular and have been specifically designed to treat the interaction problem.

For all these theories, the approaching boundary-layer is considered as an input to the problem (this means that we know its integral properties
which are most often: the momentum thickness 9, the displacement thickness 5* and the “incompressible” shape parameter' ;). The Mach number
M., at the boundary-layer edge just upstream of the shock as well as the downstream value M., are also given. The problem is to compute the
downstream state (i e., 8,, 83, H,,, etc.) for a boundary-layer that has been submitted to a “rapid” pressure change from p, to p, (rapid meaning
that the interaction length, or the distance between Station 1 and 2, is of the order of a few 8;). It is to be noticed that the sign of the pressure
change (p,—p,) does not matter and thus the boundary-layer methods may also be applied to a concentrated expansion resulting, for example,
from a change in the slope of a wall or from separation at a base shoulder, the flows being of course supersonic. For an adiabatic flow, the
problem has three unknown quantities: two integral thicknesses and a shape parameter (other quantities of interest, like the skin friction coefficient,
may generally be deduced from the previous quantities by appropriate relations). Thus, one needs three equations. 1In all the methods, two of
these equations are integral forms of Prandtl’s equations, the first one being as always the well known Von Karman equation (with the wall shear
stress omitted). The third relation (or “closure” assumption) is obtained by assuming that the velocity distributions in the boundary-layer belong
to a one parameter family, i.e., are fully specified by the knowledge of only one shape parameter. Thus, the various methods differ one from the
other by the use of a different second integral equation and a different velocity profile family.

These basic principles of calculation also underlie methods which compute the details of the phenomenon by a continuous streamwise integration
of integral boundary-layer equations (see Section 2).

Reshotko and Tucker's methed (1955). — This analysis being among the oldest methods (Tyler and Shapiro, 1953; Crocco and Probstein, 1954;
Mayer, 1955), it is nevertheless still widely used to predict boundary-layer change resulting from the action of a concentrated pressure gradient
(compression as well as expansion).

The authors start from the following boundary-layer equations where the shear stress term is omitted:

— continuity:
6(pu)+6(pv)=0’ a.1
x dy
— momentum:
Ju ou dp
P — = — —, 1.2
i 0x pv dy dx .2

It is assumed that the total enthalpy h, is constant throughout the dissipative region, which implies adiabatic conditions (no heat transfer at the
wall) and an external Mach number M, which is not too high (up to 4 approximately; for this value the change in h, is nearly equal to 4%). With
the assumption h,=Const., the energy equation is not needed.

Equations 1.1 and 1.2 are first cast into an “incompressible” form by using a Stewartson type transformation:

dx=P0% gy

Frathyy
d¥  pu,
& ped,
where a is the speed of sound, e designates the situation at the boundary-layer edge and ¢, the stagnation conditions.

Thus, one obtains:

v
v a_=0, (1.3)
ox | oy

vy _ydl. (1.4)

ox oY “dx
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The “compressible” and the “incompressible”” quantities (capital letters) are related in the following way:

— velocity:
u= il U.
ale
— Mach number:
U
M=,
ate
— momentum thickness:
0= p‘e_a‘f Q, (1.5)
pe ae
— shape parameter:
— y—1 Qe
H=H+TM‘ (H+1). (1.6)

It is to be noticed that the shape parameter H, computed with the transformed thicknesses, differs from the usual “incompressible” shape

parameter H; defined by:
& 3
H,-=f (1—l)dy/ ﬁ(l—l)dy.
[ u, o U, u,

Thereafter, two integral equations are deduced from the transformed equations 1.3 and 1. 4.
The first is the Von Karman equation without the skin friction term:

d4® o 2+AdU, _

== b 1.7
dx U, dXx Sod

The second, following the general integral formulation developed by Tetervin and Chia Chiao Lin (1951) is obtained by multiplying 1.4 by
the normal co-ordinate Y before integration between Y=0 and Y=35. Furthermore, if a power-law velocity profile family is assumed, one obtains
the equation:

di _ H@E-1)(@A-1 14U, 0.8
ax 2 U, dX’

Knowing that U,=q,,M,, Eqgs. 1.7 and 1.8 can be formally integrated to give the following relations which link the values after (2) and
before (1) the pressure discontinuity:

M., _fH) (1.9)
M., f@HY
0, g, (1.10)
0, gAY
where f(H) and g (H) are the functions:
- =
F()= H?exp[1/(H +1)]

(H =D (7 +1)
g ={(H*~1)** (A + )exp[— 1/(H + D]}/A*.

Application of this method is straightforward and very rapid since the solution is explicit and expressed by analytic forms: initial values H,, 0,
being given, along with the Mach number M,,, one computes first #, and @, by 1.5and 1.6. Then, knowing the downstream Mach number M, ,;
H, and ©, are deduced from 1.9 and 1. 10. Finally, formulae 1.5 and 1.6 give the “compressible”, or true downstream quantities H, and 0,.

Since viscous terms are entirely neglected, the method does not indicate any direct influence of the Reynolds number, except via the value of
the incompressible shape parameter H,, which, indeed, is a function of the local Reynolds number (see Section 1, in Part I).

The authors applied their analysis to predict the shock-induced separation limit by simply letting the limit value for H,, corresponding to
incipient separation, be equal to 2.2. Thus, for a given upstream shape parameter H, it is possible by using Eq.1.9 to compute the Mach number
ratio M, ,/M, |, which leads to separation. For a form factor A 1= 1.286, which corresponds to a transformed seventh-power law velocity profile,
it has been found that M, ,/M, ; =0.762. In fact, as has already been pointed out, H does not coincide with the “true” shape parameter H;, Thus
a more rigorous application of the method should take this fact into account in order to predict separation. Nevertheless, the conclusion drawn
by the authors remains valid: the lower the form factor H,, the greater must be the pressure rise capable of provoking separation. This tendency
has been wholly confirmed by experiments at sufficiently high Reynolds numbers (see Section 3.8 of Part I).

Applications of Reshotko and Tucker’s analysis are presented in Figures 1.1 and 1.2. They deal with oblique shock reflection for varying
primary deflection angle Ag at a constant upstream Mach number M 0=1.92. The “jumps” in the boundary-layer momentum thickness 8 (Fig. 1.1)
and shape parameter H, (Fig. 1.2) are well predicted as long as the incident shock intensity is not too high. The example of Ag=6.3 deg. nearly
corresponds to Incipient Separation. In this situation, the present model underestimates the change in the boundary-layer properties. Also, in
Figure 1.2, an empirical formula is given to represent the “relaxation” of H; downstream of the shock impingement. Another example of

application of Reshotko and Tucker’s analysis is given in Section 3.8.5 of Part I as curves giving the Incipient Separation limit in supersonic
flows.
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Fig. 1.1 — Prediction of boundary-layer momentum thickness variation Fig. 1.2 — Prediction of boundary-layer shape parameter variation
in a shock reflection — Mo = 1.92; Rs = 0.85x 10°. in a shock reflection — Mo =1.92 ;Rs . =0.85x 10°.

Gadd’s method (1961). — In 1961, Gadd proposed quite a thorough analysis of the shock turbulent boundary-layer interaction problem in
transonic flows. In fact, this analysis pertains also to coupling methods or to analytical methods since its aim is to compute both the boundary-
layer and the external inviscid flow according to an interactive technique. However, we have decided to present it in this section because one of its
essential merits was to propose a simple method for calculating the effects of the sharp adverse pressure gradient on the velocity profile of a
turbulent boundary-layer.

We will be very brief concerning the calculation of the part of the flow considered to be inviscid since much more sophisticated methods are
now available. In Gadd’s very simplified analysis, the interaction domain is divided into an upstream region and a downstream region. The
upstream part extends from the undisturbed initial state to the shock position. There, the boundary-layer thickening induces compression waves
which propagate into the supersonic flow. This compression wave region is of the simple-wave type, with the Mach waves emanating from the
edge of the boundary-layer intersecting the shock-wave and being terminated by it (see Fig. 1.3). This terminating shock is vanishingly weak at
the edge of the boundary-layer, so that the latter is not called upon to support any discontinuous jump of pressure.

The downstream part of the interaction extends from behind the shock to downstream infinity. The two inviscid flowfields are computed by
making crude simplifying assumptions in order to obtain rather simple equations which will not be given here.

The interacting dissipative layer is computed by assuming that the static pressure is transversally constant. Following the basic principles of
other analyses, two equations are used. The first one is obtained by assuming that the rate of entrainment of fluid into the boundary-layer from the
external flow is the same as just upstream of the region of interaction (this rate is assumed to be equal to zero in the upstream part of the interaction,
which is the zero-entrainment hypothesis of many global analyses.)

The second equation is the Mean Flow Kinetic energy equation (see Section 2.2. 1 below) written under the assumption that the non-dimensional

. 8t ofu . . ] ! .
shear-work integral 5 =-| — dy remains constant in the interaction region.
o p.uz dy\u,

The problem is “closed” by supposing that the boundary-layer velocity distributions can be represented by power-law profiles thoughout the
interaction domain.

Thus, for a prescribed distribution of Mach number at the boundary-layer edge, the problem has two unknown quantities (the power-law
exponent n and the boundary-layer thickness 8} which can be computed by solving the above two equations.

The skin friction coefficient (the knowledge of which is of interest for predicting, incipient separation) is computed by using the boundary-layer
momentum integral equation.

The simultaneous solving of these boundary-layer equations and of the inviscid flow equations, along with a matching condition written at 8,
enables Gadd to compute the whole interaction process. In particular, he could deduce from his calculations a limit for Incipient Shock Induced
Separation.

This theory is not in very good quantitative agreement with experiment, mainly because of the rather crude simplifications involved in the
transonic inviscid flow calculation. However, it has played and important role in the development of ideas which led to the much more advanced
analytical methods which are presently used to compute transonic shock-wave/turbulent boundary-layer interaction (see Section 4 below).

Green's method (1969). — This author does not employ a compressibility transformation but solves the problem in natural co-ordinates.

A first relation is derived from the Von Karman integral equation written with a skin friction coefficient C, equal to zero:

o0 pdu. 8dp.
dx u, dx  p.dx
This may be rearranged:
d(lnp,u,0)=—(H+1)d(nu,). (1.11)

A second equation is obtained by assuming that the boundary-layer mass flow remains unchanged during the interaction process (zero entrainment
hypothesis). This is simply expressed by:
d 5
—(J pudy):O. (1.12)
dx

[}

Introducing the new “shape parameter” H, defined by:
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and taking 1.11 into account, 1. 12 is written:
d(InH)=(H+1d(nu,). (1.13)

The conventional shape-parameter H =58*/8 which appears in equations 1.11 and 1. 13 is not really representative of the shape of the velocity
profile (contrary to H;), since it is a strong function of the Mach number M.,.

A more convenient parameter, which depends only slightly on the Mach number, is the transformed shape parameter:
Yl y-1,,
H*={H— —M; A 1+—M?2}.
2 2

For flows with constant stagnation temperature, H* is identical to Reshotko and Tucker’s “incompressible” shape parameter H (sec above).
Finally, equations 1.11 and 1. 13 take the following forms:

{d(lnp,u,@): —(H*+1)d(In M),

d(InH)=(H*+1)d(InM,). (1.14)

This system can be solved for the downstream values 8, and H¥ provided that a law H 1=H,(H*, M) is available. Such a law can be
empirical of computed from velocity profiles belonging to a one parameter family (Coles, 1956; Mellor and Gibson, 1966; Michel et al., 1969;
Alber, 1971). In fact, experimental results as well as calculations using power-law profiles, have shown that H , varies only slightly with the Mach
number, so that, for a first approximation, H, may be taken as a unique function of H*. If this simplification holds true, integration of system 1. 14
between State 1 and final State 2 leads to relations of the form:

H;=h(ﬁ”, Hr>,

el

(p.u.6); =k<M’2, H?)
(p.u.6), M,,

Panaras’ method (1976, 1980, 1981). — More recently, a method was proposed by Panaras which uses the following simplified integral
equations:

— momentum; or Von Kdrman equation;
— Mean Flow Kinetic Energy equation (see Section 2. 1 below)

do* 3 14d ",
97 peuf 3 1dp\ 00du, o (1.15)
dx u,dx p,dx u, dx

where:

O LY PR
= 5 |4y,
o P U, u,

is the boundary-layer energy thickness and:

3
°**=f ﬂ(ﬁ_l)d},
0 PeU. hz

is the enthalpy thickness.
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Pinckney’s method for oblique shock-wave (1965). — This method, as well as the next one, were devised essentiaily to compute the effects
resulting from the reflection of an oblique shock-wave for conditions entirely supersonic. In fact, Pinckney’s method does not use a control
volume approach. Nevertheless, we think that it is more suitable to consider it in the present Section than among boundary-layer analyses.

2) (@)
P @ )
1

— L pressure
| e pressure of the model
| _._ inwiscid pressure

Fig. 1.7 — Pinckney’s model for oblique shock reflection.

The aim of this method is to introduce a simplified shock pattern which resembles the one observed on schlieren photographs and to treat the
boundary-layer as a one-dimensional supersonic stream in a manner similar to Hammitt’s analysis. Figure 1.7 is a typical schematic flowfield. The
incident shock C, enters the boundary-layer at Station 1. There, the true horizontal velocity distribution is replaced by a power law profile whose
exponent n is determined in such a way that the approximate distribution yields the same mass flow as the real one (the thickness 8, and the Mach
number M, being identical). Then the boundary-layer flow (whose velocity distribution is now depicted by a power-law profile) is represented by
a one-dimensional stream which has the same thickness 8, and the same mass, momentum and energy than the real flow. If E designates quantities
pertaining to the one-dimensional stream, we must have the following relations:

! y
pEu5=J pud<—>=m, (1.21)
o 8

for the mass;

1
pE+pEué=pe+j pu’d@) =P+ 1.22)
0
for the momentum;
e = puna{2)+1 [ puwra(?2 1.23
= “ )+ - wdl =), .
EEE R f ; (8) ZLP <5> (#->D

for the energy.

1t is to be noticed, that:
'_"__j‘_& (z) _%_Il_wid@). 41_‘[1_9“_3d(2>
m, Jopete \3) @ Jopu2 \8) m. Jopu \8/)

can be computed once for all as functions of the exponent # and of the external Mach number M., if the wall is adiabatic (a modified Crocco’s law
is then used). Solving 1.21 to 1.23 we can compute the equivalent Mach number M, which is given implicitly by:

M, (m/m )" (nf(n+ 1) +(y— )2 M2n/n )"

f(Mp)= (1.29)
" (1+7M2 /0.
where:
Y_l 1/2
f(ME)=ME(1 + —Z—Mﬁ) (1 +v M),
The pressure pg is then calculated by:
P _ (147 M2 0/ /(1 +y MB). (1.25)

e

The fictitious pressure pj; differs from the real pressure p,, but in fact, the difference is generally small.
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Knowing the properties of the incoming one-dimensional stream, we can then proceed to the construction of the shock pattern.

For a given value of the deflection Y, induced in the free stream by the incident shock C,, one chooses a value Y of the deflection provoked
by C, in the boundary-layer (¥ will be determined by a trial and error method). The reflected shock C, springs from the wall at point 0 which is
upstream of the point where C, would impinge against the wall in the case of an inviscid flow. The deflection across C, is put equal to Yy+y
where " is an angle introduced to take into account the entrainment effects at the boundary-layer edge. Experimental data show that Y’ can be
approximated by:

V=20 i {3,

V= %q/ i <3

The origin 0 of shock C, is positioned so that the incident and the reflected shocks intersect at a point I whose height Y, has a well determined
value. The crux of the treatment is an empirical correlation giving Y, by a relation of the form Y,/L,= f(Ap/q, ;) where:

— Ap is the total pressure jump associated with the reflection;
— g, the dynamic pressure of the upstream flow;

— L, a length defined on Figure 1.7.

Now, it is supposed that downstream of I the flows which were previously above and below I have undergone identical deflections. If these
flows have the same Mach number (as is supposed), then their direction must be Y. Thus, it is necessary to impose at D, an expansion of angle '
in order to make the flow parallel to the wall. (In fact, the difference Y’ is small and is an empirical refinement of the flow model; the expansion §*
is a geometric requirement and not the constant pressure reflection of the incident shock.)

It appears that the geometric construction which has been made implies the existence of a void region downstream of 0.

After the shock interaction, the pressure in the one-dimensional equivalent flow is assumed constant, and the pressure p, 5 in a Section 3,
sufficiently far downstream is given by:

Pes _Pr1Pe3Pes (1.26)
Pey  PerPpiPes

The ratio “£3 results from shock calculation, and 721 andPE3 are computed by relation 1.25

PE1 Pes Pes

The right ¥ deflection is obtained when the pressure P.3 given by 1.26 equals the pressure corresponding to the reflection of shock C, in the
absence of boundary-layer. Thus, it is postulated that the pressure downstream of the interaction tends towards the perfect fluid solution.

When the solution has been converged, the boundary-layer downstream characteristics are computed at a Station 4 whose distance L, results
from an empirical correlation: Ly/8,=f (M, ,, V). There, it is supposed that the one-dimensional mass flow is equal to the mass flow at D
through a section including the height of a void region, which leads to the relation:

(Peug)p8p=(pgitg)s b, .27

Knowing My ,=Mg,, pp4=pg, and M, ,, p. , (given by the perfect fluid calculation) equation 1.24 allows the calculation of n; that is to say,
defines the shape of the velocity distribution. The thickness 8, is given by equation 1.27.

Seebaugh, Paynter and Childs’ method for oblique shock-wave. (1968). — In 1968, Seebaugh et al. proposed a rather simple model for predicting
shock reflection in supersonic flows. In contrast with the previous analysis, their method relies completely on control volume arguments. Its
objective is to predict the change in boundary-layer properties during the shock reflection, including the effect of boundary-layer bleed. Originally,
velocity distributions were represented by power-law profiles and a Dorodnitsyn-Howarth transformation was used in order to simplify the equations
by reducing their density dependence. And in fact, the analysis led to simple algebraic equations which could be easily solved.

In a subsequent analysis, Mathews (1969) used a law of the walljlaw of the wake profile to replace the power-law profile. Mathews also
allowed for boundary-layer mass entrainment in the interaction region. More recently Sun and Childs (1974, 1976), further improved the method
by introducing a more refined wall-wake velocity profile for turbulent isoenergetic compressible boundary-layer flow. These authors have treated
axisymmetric as well as two dimensional flows. They have also considered the case of successive oblique shock-wave/turbulent boundary-layer
interactions. Such interactions may occur, for example, in engine inlets of supersonic aircraft.

Here we will present only the most recent version of Seebaugh’s method, but, for the sake of simplicity, we will restrict ourselves to the two-
dimensional case, extension to an axisymmetric situation being rather straightforward. The flow model used in the analysis is shown in
Figure 1.8. The incoming shock C, meets the boundary-layer edge at the Station 1 where all the conditions are assumed to be known. The
refiected shock C, emerges from the boundary-layer at the Station labelled 3. Surface 2 is the stream surface of the inviscid flowfield which passes
through the intersection of C, with the boundary-layer edge at Station 3. Note that Surface 2 intersects the incident shock-wave outside the
boundary-layer edge. The distance A; is introduced to allow for mass entrainment into the boundary-layer during the course of interaction.

Considering the control volume drawn in Figure 1.8, the equation for the conservation of mass may be expressed in the form:

83 8y +Ag .
J putiy:J~ pudy+my, (1.28)
] o]
while the x-momentum equation may be written:
(N 5y +Ap 53 _
f puzdy=f puzdy+p1(81+AE)—p353—f Pady~LT,+14,, (1.29)
0 (] 81 +Ag
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_ . _ 1 0
where T, is the average wall shear stress between Stations 1 and 3 (Tw=§(‘tw‘ +1T,,))s Mg the boundary-layer mass bleed rate, Iz, the x-momentum

of the bleed flow and L the shock-wave/boundary-layer interaction length. The pressure terms are determined from the inviscid flow calculation;
p, and p, are assumed constant but p, may vary along the stream surface 2 if the flow is not uniform. The distance Ay is determined by assuming
an entrainment rate equal to that for the flow upstream of the interaction. It is to be noticed that the introducing of Ag makes it necessary to use
an iterative process to construct the stream surface 2.

The velocity distributions at Stations 1 and 3 are given by a wall-wake velocity profile expressed in the form (Sun and Childs, 1973):

1

1 Tpsnterein o[ 1 (i a(1-3)-am(14(1-3) )i 1) |
—_—=— 14— =In=+2{1—= —2In{1+4{1—= — ——={1+4cosn= b (1.30)
l‘e \/Esm{arc sin \/c[ k(u:‘ n ( 5) s et 5

where:
/k= %{(u:/u,)—(l/k) In(Su/v,)—5.1+0.614/k}.

In these expressions:
=l y—1
o= Y—z— MZ/(I + TM§>;

k=0.4 (Von Karman constant);

u*= van Driest’s generalized velocity;
v=Ykinematic viscosity;

u,=friction velocity;

1 =coefficient of the Coles wake function.

For a given external Mach number M,, the profile defined by equations 1.30 is a function of two parameters: the Reynolds number and a
“shape parameter” which can be u /u¥, for example.

The first step of the method consists in finding the best representation of the given boundary-layer distribution at Station 1 by means of
equation 1.30. This is done by a least-squares fit and yields t,,,.

Then, knowing the mass bleed rate mp, and with a suitable representation of the magnitude of Iy,, equations 1.28 and 1.29 constitute a
system for the two unknowns 8, and t,,; (which define the shape of the profile at Station 3). This system is solved by a suitable iterative
method. It is obvious that the x-momentum of the bleed flow depends on the manner in which the bleed flow is accomplished. The analysis has
been applied to three bleed models: porous wall suction, slot suction and scoop suction (see Fig. 1.8).

For the porous wall model, the x-momentum of the bleed flow I, is neglected. With slot suction, I is assumed equal to the momentum of
the extracted fluid when it enters the control volume, i.e.:

. 8
st=j puldy,

[

where 8y is determined from:

. 8
mB=J pudy.

0

For scoop suction, the control volume encloses only that part of the boundary-layer which passes downstream.

The method has been generalized in order to compute successive oblique shock reflections according to the model shown in Figure 1.9. Regions
extending from Station 1 to Station 3 and from Station 5 to 7 are computed by using the control volume analysis; between 3 and 5, a “classical”
boundary-layer calculation is made. The wall static pressure distribution needed for this calculation is provided by an inviscid flow solution which
is obtained in such a way as to allow for the effects of the first shock/boundary-layer interaction.

An example of application of Sun and Childs’ method is given in Figure 1.10. It corresponds to two successive interactions provoked by the
impingements of two oblique shock-waves generated by a double cone centerbody, the flow being axisymmetric. For this case, the predicted
boundary-layer properties are in good agreement with the experimental values.
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Sun and Childs flow model.
Délery’s method for transonic interaction (1977). — The two former control volume methods are in fact applicable to entirely supersonic

situations where an oblique shock meets a turbulent boundary-layer. At sufficiently high Mach number, in the absence of extended separation,
and with the condition that no shock detachment or Mach stem phenomena occur, it is a rather simple task to construct a realistic inviscid shock
system associated with the interaction. Furthermore, the initial and the downstream states may generally be defined unambiguously.

In transonic flows, the situation is not so clear: the inviscid shock structure depends strongly on viscous interaction effects and the scheme of a
shock wave normal to the wall (as it would be in perfect fluid flow) is far from reflecting the reality. In fact (see Section 2 of Part I), the quasi
normal shock forms at a certain distance from the wall. Near the surface, the viscous displacement effect entails a progressive compression through
converging supersonic compression waves which coalesce into the transonic shock.

The location of the initial station of a jump method is always well defined, since it is generally taken at the point where the wall static pressure
starts to rise. By contrast, the choice of the downstream station is not so obvious. Indeed, the wall pressure distribution generally shows a
continuous and rather slow increase after the very steep compression associated with the supersonic part ot the interaction (i. . the evolution from
the initial supersonic state, of Mach number M. 4, to a locally sonic situation where M =1.; see Section 2.7.2 of Part I on scaling laws in transonic
interactions). Downstream of the point where M = 1, the flow has an elliptic character and consequently depends strongly on conditions far from
the interaction domain (trailing egde flow for an airfoil, width to length ratio in the case of a channel flow, etc.). Thus it doesn’t seem feasible to

construct a general “a priori” model of transonic interactions extending to downstream subsonic conditions. Adoption of a final subsonic state
necessarily leads to specific flow situations.

The simplified boundary-layer integral methods may be applied to interactions in transonic flows.
results as long as the shock is not too strong. But when the upstream Mach number goes beyond 1.2, the
boundary-layer growth which occurs between M, ;=1.2 and the Mach number leading to Incipient Shock In

They generally give good quantitative
y systematically underpredict the rapid
duced Separation.

The method presented here has been developed in order to improve the prediction in the Mach number range extending from M,, =12 to
Incipient Separation, this domain being of great interest for practical applications.

In this method, one considers:

— an uspstream State 1 corresponding to the flow situation in front of the shock;

— a downstream State 2 defined somewhere behind the shock and which will be specified later.

Let M, , py, p. 1, 4. be the conditions at boundary-layer edge in 1 and M, 2, P2, Pe2s u. , corresponding values in 2.

Applying conservation relations between 1 and 2 one obtains:

— for the mass:

82 8y
f pudy=f pudy+K,p. u,(5,—8,), (1.31)
1)

o [} (

— for the x-momentum (the effect of wall shear stress is neglected):

5y 5
f puzdy=f puldy+K,p, u2,(8,~8,)—8,(p,—p,). (1.32)
[ 2)

0

The terms labelled 1 and 2 re

present an overall mass entrainment effect taking place during the interaction process. K,
determined coefficient.

is an empirically

Equations 1.31 and 1.32 with K,,=1 are identical to the first two e

quations used by Klineberg (1968) to compute the supercritical- subcritical
jump of his viscous-inviscid interaction theory. Equation 1.31 written

with K,,=0 corresponds to the zero entrainment hypothesis.

In fact, the mass flux does not remain constant during the interaction process. This is demonstrated by Figure 1. 11 wich shows measured
evolutions of transonic shock-wave/boundary-layer interactions of various strength.  One generally observes a substantial increase of the mass
except in the case of very weak shocks. A careful processing of these experimental data (obtained by using holographic interferometry, thus
without perturbation of the flow fields) allowed the determination of K., The values obtained for K, are plotted in Figure 1.12 as functions of
the Mach numbers ratio M, ,/M,,. They exhibit a rather large scatter, mainly due to the difficulty of defining the physical thickness & of the
boundary-layer. A constant average value K,=0.5 is proposed. It corresponds to an incompressible shape parameter H,=1.24. In fact,
application of this jump method has shown that K, is a function of H,. This dependence may be taken into account by the simple formula:

K,=0.5 H,/1.24
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during a transonic shock/boundary-layer interaction. in a transonic interaction without separation.
For numerical solution, equations 1.31-1. 32 are more conveniently written in the following forms:
Peath, 2 (B2 =88 =p, 11 (8, =8P+ K, pey vty B,—81), (1.33)
(1.34)

p,zuZz(52—5§—91)=p,1u§1(51—52‘—91)+Kmpe1u§1(5z—51)—52(pz—p1)-

If the values of the external Mach numbers M,, and M, , are specified, equations 1.33-1.34 which contain three unknown quantities (3,, 8%,
0,) may be solved, provided that the boundary-layer velocity profiles belong to a family depending on only one shape parameter. The adopted
family is represented by an equation similar to Coles (1956) law-of-the wall/law-of-the wake (for more details, see Section 1.1 of PartI). It is
supposed that there is no Mach number effect on velocity profile shape, which is well verified in the transonic domain and even for Mach numbers
ranging up to 2. This fact is demonstrated by Figure 1. 13 which shows a comparison between adopted profiles and velocity distributions measured

downstream of a transonic shock wave.
In the application of the present discontinuity analysis, the downstream state (2) is defined as the location where the sonic condition is reached,

i.e. M,,=1. This choice is dictated by the fact that only the supersonic part of the interaction obeys similitude rules of the “free interaction”

type, as defined by Chapman (1958) (see Section 3.6 of Part ).
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Examples of application of Delery’s jump method.

in a transonic interaction without separation.

The input of the calculation is: the Mach number M, and the boundary-layer properties at Station 1 (usually the thicknesses 3F and 8, plus

the shape parameter H, ).

The downstream Mach number M, , being given, equations 1.33-1.34 are solved taking the velocity profile equation into account to obtain
the boundary-layer conditions at Station 2 (displacement and momentum thickness, shape parameter, skin-friction). These conditions can be used

to initiate a “classical” boundary-layer calculation downstream of the shock quasi-discontinuity.
The length L* of the interaction region, i.e. the stream-wise distance between Stations 1 and 2, may be obtained from the empirical correlation

law (see Section 2.7.2 of Part I):
L*=T70(H;,—1)8%.

Some applications of the above method have already been given in Section 2.7.3 of PartI to illustrate the jump in the boundary-layer
momentum and displacement thicknesses throughout a transonic interaction. Further examples relative to interactions occurring in a transonic

channel are presented in Figure 1.14. Downstream of the jump region, the boundary-layer has been computed by an integral method using the
Mean Flow Kinetic Energy Equation (see Délery’s method in Section 2.2 below).

The existence of a correlation law for the supersonic interaction length L* makes it possible to develop a simplified theory for predicting
Incipient Separation in transonic flows. This theory will be presented in this section, although it is not exactly a control volume type analysis.
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Examples of application of Delery’s jump method
The present theory rests on the following basic assumptions :

(i) the point of Incipient Separation necessarily appears at the end of the supersonic part of the compression; i.e. coincides with an outer state
locally sonic. The separation limit is thus defined by the conditions of coincidence of the points where the wall shear-stress t,, vanishes and where
M=1. This very heuristic approach is based on a number of experimental observations (see Section 2.7 of Part I).

(ii) the evolution of the dissipative layer submitted to the compression from M, to M =1 is represented by means of the classical first order
boundary-layer equations;

(iii) in these equations, the Reynolds shear-stress is computed by an algebraic turbulence model calling upon the mixing-length concept (Michel
et al., 1969).

The principle of the method is as follows. For given initial conditions H,, and M,,, the above correlation law for L* provides the dimensionless
extent L*/8} of the interaction domain. Hence it is possible to deduce the Mach number distribution M (X/8%) in the supersonic part of the
interaction this distribution being approximated by a linear law linking M., and M=1. Thereafter, starting from a suitable initial velocity profile
at the origin of the interaction, the boundary-layer equations are integrated by using a finite difference method with the above Mach number
distribution prescribed as the outer boundary condition along the boundary-layer edge. Due to the proximity of separation, this calculation must
be made according to an inverse procedure in which the prescribed quantity is the wall shear stress streamwise distribution 1,{X) (see Section 2.3
below). With this kind of procedure, the outer Mach number is the result of the calculation, thus in order to satisfy the given distribution
M (X/3%), one must at each x-wise integration step iterate on t,, until the outer Mach number resulting from the boundary-layer calculation
coincides with the assigned value.

The shape factor H;, and the Reynolds number R;, being kept constant, a second iteration loop on the initial Mach number M, , has to be
made until assumption (i) above is verified.

The value of M, thus found gives the transonic shock strength leading to Incipient Separation. This theory is compared to experiment in
Section 2.7.2 of Part L.

Baker’s method for transonic interaction (1980). — This method has been specifically designed to predict turbulent boundary-layer development
throughout a normal shock wave interaction. Tt has many points in common with Délery’s analysis but incorporates refinements which allow, in
particular, the prediction of the interaction length which is no longer an empirical input. It also claims to be able to predict boundary-layer
characteristics at the end of a separated region.

Two kinds of control volume are used (see Fig. 1.15): one — CV1 — to model unseparated flow; the other — CV2 — to model the separated
part of the flow.

The control volume CV 1 is made up of two regions: an upstream region, of length [,, which originates at Station 1 where the wall pressure
distribution starts to rise. It ends at Station 1 located at the intersection of the initial boundary-layer edge with the leading Mach wave of the
compression wave system. In this part of the interaction domain, the thickness 8 is assumed constant. The downstream region, of length Iy,
extends from Station 1 to Station 2. For flows without separation, Station 2 is at the point where the Mach number at the edge of the boundary-
layer is equal to 1. If separation occurs, Station 2 is fixed at the separation point, and has to be determined in an iterative manner until the skin
friction at Station 2 vanishes. Between Stations 1 and 2, the boundary-layer will be assumed to grow linearly with distance. Then, a further
control volume — CV2 — is drawn between Station 2 and a downstream Station 3 which is made to coincide with the reattachment point. Between
Stations 2 and 3, the boundary-layer is also presumed to grow linearly.

We will now present the analysis for CV 1. Its application to CV 2 entails only minor modifications which will be indicated later.
The following conservation equations are written:

— for mass:

8 3y o
f pudy=f pudy+p,u, Cgl, (1.35)

0 [}

— for x-momentum:

82 8y 1 . 1_ -~
f P"de=f putdy+p 8, —p; 8+ E(Pl+Pz)(5z—51)+P¢“1¢ Cel- EPJZC/, (1.36)

0 o

In these equations: I=1, +1,; p, and Eiare respectively average density and average velocity at boundary-layer edge; C; an average entrainment
coefficient between Stations 1 and 2; and C an average skin friction coefficient. Pressures p, and p, are assumed transversally constant and equal
to the edge values. Coefficients Cy and C, are approximated by the following formulae:

~ 1
C£=l:cslll*'i(cm""czz)lz:l/l,

- 1
Cr= E(Ch +Cp))
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p. and i, are defined like Cp. Therefore, Cy, p,, u, are weighted averages of their respective values between Stations 1 and 1, and their average
values between Stations 1’ and 2. (The inviscid flow is assumed to remain unchanged between Stations 1 and 1)

A geometric relation, necessary to compute l, is obtained by applying the free interaction principle. That is, the inviscid flow undergoes a
simple wave compression along the boundary-layer displacement surface between Stations 1 and 2. Thus we have:

*
48— =tan(v,,—V,). (1.37)
dx

where v is the well known Prandtl-Meyer angle.
On a first approximation, equation 1.37 may be written:

51 —6t
1A

- Stan(v,,=v.2) (1.38)
Finally, the length /; will be given by:
I,=5,/tanq, where o, =sin"'(1/M,,).

The system of equations 1.35-1.36 is “closed” by making the following assumptions:
— the boundary-layer velocity profiles are assumed to be of the power-law form;

— density throughout the boundary-layer is computed by using the Crocco relation between temperature and velocity;

the formula of Green (1972) is used to specify the entrainment coefficient;

— the skin friction coefficient is determined from the Winter and Gaudet (1970) skin friction relations as modified by Green et al.
(1973). However, an empirical correction had to be introduced to obtain better agreement with experiment in the “free interaction” region.

For a given initial state (upstream Mach number M , ,, boundary-layer velocity profile at Station 1 it is now possible to compute flow conditions
at Station 2 and interaction lengh I

If the skin friction at Station 2 is found negative, Station 2 is no longer determined by the condition M,,=1, but has to be defined in an
iterative manner until C,, =0.

Afterwards, the previous analysis is applied to CV 2 (separated region) with the following adaptations:

— for CV2 the “free interaction” principle does not apply. Thus, in order to compute the interaction length, it is necessary to prescribe the
pressure distribution;

— the position of Station 3 is found in an iterative manner until the skin friction C, falls to zero; i.e., Station 3 becomes the reattachment
position and the boundary-layer parameters are known at this point.

This analysis can be ecasily modified to represent effect of mass bleed at the wall (injection or suction). If the fluid in injected (extracted)
perpendicular to the surface, equation 1.36 remains the same since there is then no streamwise change in the momentum flux. It is only necessary
to add an extra term in the equation of conservation of mass 1.35 which will represent mass bleed rate (see Seebaugh et al’s method above).

The author has also included in his analysis extra terms for modeling the outflow of mass and momentum from the sides of the control
volume. Such an outflow would result from three dimensional effects. These correction terms are added in order to make more significant
comparisons with experimental data distorted by three dimensional parasitic effects. The latter are due, in the main, to the interaction between the
channel side wall boundary-layers and the shock system.

The present method relies on sound physical evidence for the modeling of the supersonic (or non-separated) part of the interaction. So it can
be considered as a reliable and rather simple tool for predicting the overall flow properties in this region. Introduction of the skin friction is not
essential for the calculation of the boundary-layer thickness at Station 2 since the contribution of C; to the x-momentum balance is practically
negligible. The main interest of knowing C,, is to be able to predict Shock Induced Separation. However C, does not result from equation 1. 36
but is deduced from the shape of the velocity distribution at Station 2.

Perhaps the weakest point of this method is the use of simple power-law profiles which seem inappropriate for representing highly retarded or
separated boundary-layer flows.

The modeling of the separated flow (control volume CV 2) is much more tentative and far too coarse to give a realistic description of the flow
phenomena.

Two applications of Baker’s analysis are shown in Figure 1.16 They concern transonic interactions experimentally studied by Kooi (1978)
(see Section 2.9 of Part I). The momentum thickness as well as the skin-friction coefficient are relatively well predicted but agreement for the
thickness ratio H =58*/0 is less satisfactory.

To conclude this Section on two-dimensional flows, Figure 1.17 shows a comparison of some of the above analyses. As suggested by
Green (1969), the ratio (p, u, 8),/(p, u, 8), is plotted vs. the ratio of the upstream Mach number to the downstream Mach number M, /M, ,. Except
for Panaras'method which overpredicts the shock effeet, the various analyses are in close agreement with experiment for M,,/M,, less than
1.3. As the shock becomes stronger, they all tend to underpredict its effect, especially when the situation is close to Shock-Induced Incipient
Separation. It should be said that the results plotted in Figure 1.17 do not display any influence of the initial shape parameter H,,, which as we
know plays a considerable role. Thus the present results are representative of an “average” value of H;, close to 1.4.
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Fig. 1.16 — Transonic interaction — Examples of application

Fig. 1.17 — Comparison of different “jump”* methods to predict
of Baker’s jump method.

the rise in boundary-layer momentum thickness.

1.3. — Three Dimensional Interactions

1.3.1. — General Comments

As we know, for 2-D boundary-layer the essential and more useful features of the flow are determined by the knowledge of 3 “‘integral”
thicknesses; namely 8, 5* and © (other quantities of interest, like the skin-friction coefficient may be deduced from these thicknesses by ad-hoc
relations). An assumption concerning the shape of the velocity distribution provides a link between 8, 8* and 0 so that for adiabatic flow, only
two equations are needed to solve the problem.

In a 3-D isoenergetic boundary-layer flow, one generally considers the following integral thicknesses:

5 H
= (1— o Y 8;=f LN
0 p.U. o P.W
S pU U i w?
911=J P '(1——>d}” 922=J‘ = ——zdy,
OpeUe Ue o peUe
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o PUC 0P U, U

e

where U and W are respectively the streamwise and crosswise boundary-layer velocity components (i. e., U is the component in the direction of the
local external velocity vector at the boundary-layer edge, W being directly perpendicular to U).

Thus the problem possesses 7 unknown quantities: the 6 above integral thicknesses, plus 8. (The skin-friction coefficients are supposed to be
expressed as functions of the previous quantities by appropriate formulae.)

In the most usual approaches, integral as well as control volume, the number of unknown quantities is reduced to three by assuming that
streamwise and crosswise velocity distributions are each defined by only one shape-parameter: one for the U component and one for the W
component. In this manner, only three equations are needed to determine the remaining unknown quantities which are: one thickness and the two
shape parameters. Most often, these equations are the streamwise and crosswise integral momentum equations plus the integral form of the
continuity equation, also called the entrainment equation (see Section 2.4.2 below).

We have retained here. three discontinuity analyses which have been proposed for treating 3-D shock-wave/turbulent boundary-layer
interactions. The first two are simplified boundary-layer integral methods; the third is a control volume analysis.

These three methods share the following assumptions:

(i) a velocity component in a direction parallel to the shock is assumed to exist, but the flow properties in a direction parallel to the incident
shock are considered as constant (the flow is said to be cylindrically symmetric);

(ii) the downstream inviscid flow properties are known from oblique shock theory;

(ii) the flow is assumed isoenergetic (this assumption is not essential, it simply makes it possible to avoid considering the energy equation);

(iv) viscous forces and mass entrainment have negligible effects.
Thus these methods differ from each other essentially by the velocity profile families adopted in order to derive the “closure” relationships.

In what follows, we consider the rectangular cartesian axes x and z as lying in the body surface, the z-axis being parallel to the shock which is
assumed to be rectilinear. The y-axis is normal to the body surface. According to assumption (i), the formulations will be restricted to the case of
cylindrically symmetric shock interactions, i. e., conditions along the z-axis are assumed invariant.
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1.3.2. — Simplified Boundary-Layer Integral Methods

Cousteix and Houdeville's method (1976). — This method belongs to the class of simplified boundary-layer integral methods. Taking into
consideration assumptions (i) to (iv) above, the boundary-layer integral equations take the following forms:

— momentum integral equation for the x-direction:

d(p.U20,,)+3tp,U.dU,.=0, (1.39)
— momentum integral equation for the z-direction:
d(p.U20,,)=0, (1.40)
— entrainment equation:
dp. U.(8—387)]=0. (1.41

As a consequence of the cylindrically symmetry assumption, thicknesses 8%, 6, and 8,, do not appear in the integral equations.

Equations 1.39 to 1.41 have to be integrated between Station 1 where the velocity U, , and the boundary-layer characteristics are known, and
Station 2 where the velocity U, , is prescribed by oblique shock theory. These three equations, which contain 4 unknown quantities (namely 8, 8%,
9,, and 8,,), must be completed by closure assumptions. Cousteix and Houdeville have obtained the closure relations by using “self similar”
solutions of the 3-D boundary-layer partial differential equations (Cousteix and Houdeville, 1976, see Section 2.4.2 below).

To derive these solutions, the following basic assumption is made: the turbulent shear stress is supposed to be parallel to the mean velocity
gradient and is thus represented by introducing an isotropic eddy viscosity. This viscosity is expressed by a mixing length model.

The self similar solutions make it possible to express the various thickness ratios as well as the skin-friction and entrainment coefficients as
functions of:

— two shape parameters;
- the external Mach number M_;
— the local Reynolds number R;.

Thus, for known initial conditions at Station 1, solution of equations (1.39-41) gives the boundary-layer properties at Station 2, the downstream
Mach number M, , being prescribed.

Mpyring’s method (1975, 1977). — This method is similar to Cousteix and Houdeville’s analysis. The difference lies in the closure relations
employed.

For streamwise velocity profiles, Myring uses semi-empirical relations which correlate the “shape parameters” H, and H* involved in his
formulation (see Green's method in Section 1.2.1).

For crossflow velocity profiles, he uses the two-layer triangular model developed by Johnston (1957). This representation involves the cross
flow angle B, which is the angle between the external streamline and the skin-friction line. In order to evaluate B, values of the streamwise skin-
friction coefficient C, are needed. At the start of interaction, C; is determined by the well known Ludwieg-Tillmann skin-friction law evaluated at
the Eckert reference temperature. In the region of a strong adverse pressure gradient, Myring uses a special law deduced from his experiments (1967).

Although this analysis could be applied to compute the change in the boundary-layer integral properties, the author seems to have developed it
essentially with a view to predicting the effects of sweep on condition at separation.

In this analysis, the separation line is defined as the skin-friction line which runs parallel to the line of the shock (for more details on three
dimensional shock-wave/boundary-layer interaction (see Section 4 of Part I). This condition fixes the angle § at separation, i.e., fixes one of the
parameters used to describe the boundary-layer. It is thus possible to determine the external velocity (or, the pressure coefficient which is
equivalent) at the position of the separation line (this type of resolution is similar in nature to Inverse Methods presented in Section 2).

1.3.3. — Control Volume Methods

Paynter's method (1980). — This method, which is a control volume analysis, has been proposed for computing the change in boundary-layer
properties across a weak glancing shock/boundary-layer interaction (GSBLI). This phenomenon occurs, for example, on the sideplates of supersonic
two-dimensional mixed or external compression inlets or on the wing surfaces of aircraft with highly swept wings in supersonic flight. GSBLI
arises when oblique shock generated by a deflection imparted to the flow meets the boundary-layer of a wall approximately normal to the shock
generating surface. The proposed analysis is restricted to weak GSBLI; i. ., interactions in which there is no coalescence of the skin-friction lines
towards a sepation line (Peake, 1976). In this case, the skin-friction lines (or streamlines very near the wall) undergo a deviation which begins
upstream of the oblique shock front. Their final turning angle is generally greater than that of the streamlines at the boundary-layer edge. (See
Section 4 of Part I for a phenomenological discussion of 3-D shock-wave/turbulent boundary-layer interaction.)

In the present method, it is supposed that the incoming boundary-layer is two-dimensional. The downstream boundary-layer properties are
computed by performing a control volume analysis which generalizes the 2-D method of Seebauch et al. (See above).

The basic assumptions made are listed above in Section 1.3.1 (in particular, the flow is assumed cylindrically symmetric).

The closure relations are provided here by considering that the velocity components normal and tangential to the shock, both upstream and
downstream of the interaction region, are represented by power-law profiles. It is also assumed that the static pressure downstream of the
interaction region, at Station 2 of the control volume, is constant normal to the wall.
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The control volume is shown in Figure 1.18. The view AA is in a plane normal to the wall and to the shock. With the notations already
used, we can write the following balance equations:

— continuity (zero entrainment assumption):

8 8y
J. pudy=J. pudy, (1.42)
0 0

— Xx-momentum:

(31 8y _
J pu’dy=J putdy+p, 8, —p,8,+p(8,~8,), (1.43)
0 o

— Z-momentum:

8 3y
j pwudy=f pwudy. (1.44)
0 °

The term p which appears in equation 1.43 is the average pressure acting on the upper surface of the control volume. It is computed by
representing rather crudely the true pressure distribution in the interaction domain. This analysis is made in plane AA, normal both to the wall
and to the shock.
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Fig. 1.18 — Paynter’s model for glancing shock/boundary-layer
interaction.

One considers:
— first, a supersonic compression from the upstream State 1 to locally sonic conditions. This process is supposed to be isentropic;
— second, a subsonic compression from the sonic state p* to the final pressure p, (p, results from oblique shock relations).

In addition, it is supposed that there is no thickening of the boundary-layer during the course of the supersonic part of the process (i ¢., the

“free interaction” domain) and that compression from p* to p, occurs in such a way that the shape of the curve p(x/l) (I being the interaction
length) is parabolic. Thus p/p, is given by:

2 _og7la +0.33[ L+or— 2. M3, Si"ze}””“’.
P Py 1+(y—1)/2

By combining equations 1.42 and 1.43 and expressing p, u, in terms of Mach number and pressure, one arrives at:

1 = . 1
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Combining equations 1.42 and 1.44 yields:
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Assumption concerning the velocity profiles leads to the following representations:
— normal velocity:

— tangential velocity:

where x=1 indicates that the profile is upstream of the shock and x=2 indicates that the profile is downstream of the shock.
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Finally equations 1.45 and 1.46 constitute a system for the two unknown n,, and n,,; this system is solved iteratively. Thereafter,
equation 1.42 may be used to compute §,.

The previous analysis can be successively applied to cope with multiple GSBLI consisting of shocks of opposite families or shocks of the same
family (Paynter, 1981).

Mc Cabe’s theory for the prediction of Incipient Separation (1966). — In 1966 McCabe proposed a rather simple theory for predicting the onset
of separation in a situation where an oblique shock-wave interacts with the boundary-layer formed on a surface which is normal to the plane of the
shock. This theory applies to turbulent flows and is largely inspired by experimental evidence. In a 3-D interaction taking place on a flat plate,
there exists a transverse pressure gradient in a direction perpendicular to the incoming parallel stream. This pressure gradient will deflect the
slower moving layers of the boundary-layer at a larger angle than the faster moving layers. Consequently, in the shock foot region, the direction
of the flow changes continuously throughout the boundary-layer: the inner streamlines are more deflected than the outer streamlines. This may be
described as a “twist” of the boundary-layer. Now, following Myring’s idea (see Section 1.3.3 above), it is postulated that separation first occurs
when the streamline direction at the surface is parallel to the shock-wave. The flow direction close to the surface is computed by resorting to
vorticity transport arguments. The basis of the theory is to assume that all vorticity in the boundary-layer upstream of the shock is convected
with the free stream velocity. Furthermore, it is assumed that viscosity has no effect during the (rapid) interaction process. Henceforth, it is not
necessary to stipulate zero slip velocity at the wall. The wall streamline direction is determined by considering the calculation around a circuit
moving with the fluid from upstream to downstream of the shock. The fact that this circulation does not alter with time, plus oblique shock
equations and appropriatc simplifications allow the author to compute the change in flow direction across the boundary-layer. Hence, an Incipient
Separation limit can be determined as a function of the upstream Mach number and shock sweep angle. The shape of the incoming velocity
profile is not taken into account, which constitutes a drawback to this kind of theory.

A comparison with experiment of the Incipient Separation limit predicted by McCabe’s analysis is given in Section 4 of Part I devoted to the
physical description of shock-wave/boundary-layer interaction in three-dimensional flows.

1.4. — Inviscid shear layer analyses

As we know, viscous forces often play a negligible role in the largest part of a turbulent dissipative layer undergoing a rapid interaction
involving either compression or expansion. The phenomenon is controlled essentially by pressure and inertia forces. Thus the key hypothesis in
Inviscid Shear Layer analyses is the constancy of entropy on each streamline: the interacting boundary-layer is considered as a rotational inviscid
stream. This assumption leads to two different methods of calculation.

The first method pertains more or less to discontinuity analysis, since it consists in computing a downstream state 2 from a known initial
velocity distribution at Station 1 and prescribed static pressures p, and p,. Flow evolution between Stations 1 and 2 is ignored. The basic
principle of the method is to divide the shear layer into N streamtubes of thickness Ay, (this thickness may vary from one streamtube to the other)
over which the flow properties are considered as constant. By assuming that each streamtube undergoes an isentropic compression (or expansion)
between Stations 1 and 2 and making use of the continuity relation (conservation of mass), one may construct the downstream velocity distribution
at 2 (provided that the static pressure is transversally constant at Stations 1 and 2).

No restrictive assumption has to be introduced concerning the shape of the velocity profiles and this technique is rather general, in the sense
that no boundary-layer approximations are made. However the calculation requires that the total pressure of the streamtube exceed the static
pressure p, or at least be equal to it. For a compression, this condition is not fulfilled near the wall and a way is therefore needed to deal with the
inner part of the initial boundary-layer in which total pressure is less than the final static pressure. This difficulty can be circumvented if suction
is performed at the wall in such a manner as to insure that the low energy fluid be continuously sucked away (for more details on this special but
interesting case, see Green, 1969).

No problem of this kind exists for a rapid expansion where p, is lower than p,. Indeed, the method gives very good results in the prediction
of boundary-layer change across a centered expansion wave (Murthy and Hammitt, 1958; Kirk, 1959; Carriére and Sirieix, 1960; Nash, 1962;
Weinbaum, 1966; Délery and Masure, 1969).

The second approach consists in performing an exact calculation of the rotational shear layer throughout the interaction zone. Calculation of
this kind can be made without any special difficulty if most of the shear flow remains supersonic. Then the equations of motion are of hyperbolic
nature and can be solved by a downstream marching process. The Method of Characteristics is very well suited for such calculation.

Naturally, there is a problem with the subsonic part of the boundary-layer. Nonetheless, if the Mach number of the external inviscid stream
is high enough (say greater than 2), the subsonic region of a turbulent boundary-layer is very thin compared to its total thickness 8 (see Section 1
of Part I), so that the influence of the subsonic inner layer can be neglected in a first level approximation.

This kind of analysis has been used with very good quantitative success for expansion occurring at a sharp corner or at a base shoulder. In
these circumstances, the subsonic layer is laminated so that its influence actually decreases.

One of the first applications of the inviscid rotational approach to shock-wave/turbulent boundary-layer interaction was made by Thomke and
Roshko (1969). The inviscid model was applied to the compression over a wedge, the initial external Mach number being approximately equal to
4. In this model, a small, inner portion of the boundary-layer profile was ignored and the outer portion was considered simply as a supersonic,
rotational stream that interacts inviscidly with the ramp (see Fig. 1.19). The lower edge of this layer is defined by a Mach number M, >1 and is
taken to be at the wall itself. Calculations were performed by using a rotational Method of Characteristics code. This implies that the Mach
number M, on the lower boundary-layer be high enough (or the wedge angle sufficiently small) to preserve supersonic flow on the ramp. The
starting conditions were provided by the measured incoming boundary-layer profile where the “cut” Mach number was determined from empirical
considerations. The computed wall pressure distribution agreed very well with the measured one as can be seen in Figure 3.5 of Section 3.2.1,
Part I. Other examples of this kind of computation can be found in Section 3.2 of Part I.

This kind of calculation was later improved by Rosen, Roshko and Pavish (1980) in order to take account of the influence of the inner layer
and to deduce a rational basis for determining the Mach number M,. The basic principle of this improved method consists in applying to the
inner layer a control volume analysis similar in nature to those presented above (see Section 1.2.2). The chosen control volume is shown in
Figure 1.20. The static pressure is assumed constant across the inner layer, and the entrainment as well as the viscous forces are assumed negligible
at its outer edge.
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Fig. 1.19 — Roshko and Thomke’s inviscid rotational flow model. for inner layer determination.
Three equations are obtained by writing conservation of mass, of momentum is the direction of the initial flow and of momentum in the
direction normal to the incoming flow. This basic system is supplemented by the assumption that the velocity distributions belong to a family of
profiles depending essentially on only one shape parameter. In this analysis, the thickness §, of the incoming inner layer as well as the streamwise
extent Ax (see in Fig. 1.20) are unknown. Thus, two additional relations are required; they are obtained from matching pressure and velocity at
the interface between the two layers.

Examples of application of this improved analysis are presented in Figure 1.21. The two computed cases are relative to ramp flows at the
same upstream Mach number of 3.93 but with different ramp angles. Agreement with the experiments of Roshko and Thomke (1969), is very
good except for the downstream part of the wall pressure distribution which is, in fact, affected by disturbances coming from the external flow.

Rose, Murphy and Watson (1968), have also used the rotational inviscid approach to compute the interaction between an oblique shock and a
turbulent boundary-layer in hypersonic flows. Here, the lower edge of the outer portion of the layer was defined by a characteristic break in the
measured initial Mach number profile. The inviscid part of the flow was computed by the Method of Characteristics. In a first version of their
method, the authors made the assumption that the thickness of the viscous (and partly subsonic) inner layer remains unchanged during the shock
reflection (i.e., no interaction effect between the two layers was considered). In an improved version (Rose, 1970; Rose et al., 1972), a more

refined two-layer model was used. It incorporated a very simplified interaction mechanism between an inner laminar viscous sublayer and the
outer inviscid flow.

Examples of such calculations are given in Figure 1.22. They concern shock reflections in hypersonic flows for a laminar case and for a
turbulent case (Watson et al., 1967). Agreement with experiment is good, especially in the laminar case. The laminar interaction has also been
computed by Goodwin et al. (1977) by using a method belonging to the category of viscous-inviscid interactive methods (see Section 3 below).

A similar analysis was developed by Elfstrom (1971), but without any interactive effect between the two layers. This theory was essentially
applied to predict wall pressure distribution over a wedge-compression corner in hypersonic turbulent flow. It was also used to derive a criterion
for Incipient Separation at the wedge corner. As seen in Section 3.8 of Part I devoted to Incipient Separation in two-dimensional supersonic

flows, Elfstrom’s model gives results which are in close agreement with experiment provided that the free stream Mach number be high enough
(say M, , greater than 4).

The ideas underlying Inviscid Shear Layer analyses result in great part from experimental observations. This demonstrates the quasi negligible
effect of viscous forces in turbulent flows submitted to rapid interaction.

Of course, viscous forces must necessarily play a dominant role in the immediate vicinity of the wall in order for the no slip condition to be
satisfied. For this reason, the use of an entirely inviscid model leads inevitably to inconsistancies which cannot always be ignored. A more
realistic solution of the problem necessitates that one resort to a more refined theoretical examination of the flow structure. This is precisely the
object of the multi-deck theories which are presented in Section 4.
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of Rosen, Roshko and Pavish (1980).
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2. — METHODS FOR THE CALCULATION OF THE CONTINUOUS DEVELOPMENT OF THE BOUNDARY-LAYER

2.1. — Introductory Remarks. The Inverse Mode of Calculation

The present Section is concerned with the use of Prandtl’s equations to compute the continuous evolution of the boundary-layer in the course
of interaction with a shock-wave.

Application of the classical boundary-layer concept is in fact not feasible for this situation since the purely inviscid solution leads to a
discontinuity in the wall pressure distribution. The existence of such a discontinuity implies an infinite pressure gradient which would provoke the
breakdown of the boundary-layer calculation even for a vanishingly weak shock. Consequently, a trouble free boundary-layer calculation
necessitates a “smoothing” of the wall pressure discontinuity. In reality as explained in Part I, this smoothing results from the shock-wave/boundary-
layer interaction phenomenon itself. Therefore, a complete and real prediction of the interaction within the framework of the boundary-layer
concept requires the use of a coupling (or matching) technique. In this kind of technique, the boundary-layer and the flow considered as inviscid
are computed simultaneously and made compatible by satisfying appropriate “matching conditions”. Such methods of calculation, which pertain
to the weak interaction and strong interaction concepts, will be presented in the next Section.

Before considering interactive analyses, we will first discuss the ability of boundary-layer methods to properly predict flow evolution during an
interaction. Within this limited perspective, the shock is considered as a rapid but continuous process. The input of the boundary-layer calculation
is a smoothed wall pressure distribution (as long as the boundary-layer does not separate [see below]) which may result from measurements or be
provided by an inviscid flow calculation using a shock capturing technique which produces an artificial smearing of discontinuities.

If the shock-wave is of insufficient strength to induce separation, any boundary-layer method can be used in conjunction with the properly
smoothed pressure distribution. There exists a large number of such methods (finite difference as well as integral methods); it would be out of
place to mention them here. They generally give acceptable results as long as the shock-wave is not too strong. A difficulty with this kind of
calculation is the correct smoothing of (or filling in the blanks if the data points are too sparse) the pressure distribution in the shock foot
region. If the shock is weak enough (say My<1.2 in transonic flows), the final result (i.e., boundary-layer quantities downstream of the shock
region) is not very sensitive to the shape of a “reasonably” smoothed curve. However, if the shock strength is increased, the pressure gradient
becomes steeper and the boundary-layer calculation is more sensitive to the shape of the adopted pressure distribution. A badly defined compression
may lead to the breakdown of the calculation announcing a separation which does not actually occur. One of the merits of the Discontinuity
Analyses (see Section 1 above) as well as of the Multi-Deck theories (see Section 4 below) is to avoid this problem by providing a local treatment
for the shock foot region. Furthermore, Discontinuity Analyses can incorporate empirical refinements rather simply which improves the prediction
in circumstances where “classical” boundary-layer methods can deviate markedly from experiment (for example, in the case of interactions just
before Incipient Separation conditions in transonic flows).

If separation occurs (or is likely to occur) in the course of the interaction, some adjustment of the classical boundary-layer methods is required
in order to avoid the breakdown of the calculation in the vicinity of the separation point. Some improvements of the physical model also have to
be introduced in order to adequately represent the highly destabilized boundary-layer.

In what follows, attention will be focused on boundary-layer methods which incorporate such adaptations and which are commonly used in
calculations of shock-wave/turbulent boundary-layer interactions by interactive techniques. The distinctive feature of these methods is their ability
to compute unseparated as well as separated boundary-layer flows and to work either in the direct mode or in the inverse mode. This capacity
allows them to continuously join a separated state to an unseparated state and vice versa.

In the classical, or direct, formulation of the boundary-layer problem, Prandtl's equations have to satisfy initial conditions (i. e., initial velocity
and temperature distributions) and a prescribed streamwise pressure distribution (if the flow is non-adiabatic, the wall temperature must also be
imposed. For the sake of simplicity, only the adiabatic case will be considered in what follows). The solution of these equations (by finite
difference or integral methods) provides the streamwise evolution of the boundary-layer. The main quantities of practical interest are most often
the displacement and momentum thicknesses, a representative shape-parameter and the skin-friction coefficient.

In the inverse mode, one prescribes the streamwise variation of a quantity pertaining to the boundary-layer development; for instance, the skin
friction coefficient or the displacement thickness (other quantities can also be chosen). In this case, one of the results of the calculation is the
pressure distribution imparted to the boundary-layer.

For many years the inverse mode was used for “design” purposes. In this case, the aim of the inverse calculation is to furnish a pressure
distribution p(x) leading to the maximum pressure recovery which can be sustained by the boundary-layer without separating. Thereafter, an
inverse inviscid flow calculation (i. ¢., a calculation with the pressure distribution p (x) imposed as boundary condition) gives the shape of the object
(airfoil, turbomachine blade or diffusor wall, etc.).

However, an essential merit of the inverse mode is to render possible the use of the boundary-layer equations in separated flow situations by
avoiding the separation point singularity encountered in direct mode calculations.

As is now well known, in 2-D steady flows, computation of a boundary-layer (laminar or turbulent) satisfying a prescribed distribution of
pressure p (x) [or external velocity u, (x)] is not generally possible if law p (x) results in separation of the boundary-layer. The numerical difficulties
which are then encountered on approaching separation are linked to the existence of a singularity of Prandtl's equations at the point where the
wall shear stress vanishes. This singularity manifests itself when the pressure p is imposed as boundary condition. For laminar flows, the nature
and the origin of this singular behavior have been extensively analyzed by Goldstein (1948), Stewartson (1958) and Brown (1965). To our
knowledge, such a local analysis has not yet been carried out for turbulent flows.

Singularity at separation in the direct mode is also met when using integral methods of calculation. Here, the singularity manifests itself in
the vanishing of the principal determinant made up of the coefficients of the system of ordinary differential equations governing the boundary-layer
development (most often two equations are used, see Section 2.2.1 below).

The impossibility to perform a conventional boundary-layer calculation until separation and to continue it beyond that point is not attributable
(as was originally thought) to the failure of the boundary-layer concept. 1In fact, this impossibility denotes the establishment of a “strong interaction”
régime between the boundary-layer and that part of the flow considered as inviscid. Consequently, the pressure distribution p (x) can no longer be
independently prescribed, as is the case for “weak interaction” régime. In this case p(x) results from the strong coupling mechanism between the
viscous layer and the outer inviscid flow. Such a mechanism establishes itself when the boundary-layer undergoes a strong destabilization, like in
a shock-wave/boundary-layer interaction. The notion of strong coupling was originally introduced by Crocco and Lees (1952). It permits the
determination of an inviscid external flow and of the accompanying boundary-layer in such a way that the distribution p (x) resulting from the
calculation ensures a smooth passage of the solution through the separation (and/or reattachment) point.
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In a more restricted perspective, the calculation of a 2-D boundary-layer including a separated bubble can be performed without encountering
any singularity at separation (or reattachment) by use of the inverse mode, as has already been pointed out. The capacity to compute separated
boundary-layers by means of an inverse technique has at least a double advantage (besides the “design” purpose):

— on the one hand, it permits the application of coupling methods to subsonic and transonic flows. In these cases, due to the ellipticity of
the inviscid stream, the boundary-layer and the external flow must be calculated independently and made compatible by overall successive
iterations. The situation is different for entirely supersonic external streams; for then it is possible to satisfy the compatibility conditions at each
step of a purely downstream marching process, provided the boundary-layer calculation is made entirely parabolic in the downstream direction (see
Section 2.3 on Finite Difference Methods and Section 3 on Coupling Methods);

— on the other hand, when compared to the solving of the full Navier-Stokes equations, it may provide an effective and economical
computational tool for defining and criticising models of turbulence applicable to strongly interacting flows.

In what follows, we will present boundary-layer type methods which are used in transonic and/or supersonic flows where separation resulting
from the interaction with a shock-wave is likely to occur (or actually occurs). Only methods working for turbulent Sflows will be considered, since
the turbulent régime is the most likely to exist in shock/boundary-layer interactions. Most of the existing methods are restricted to 2-D flows as
only a very limited number of methods are available for treat 3-D boundary-layer flows.

We will first consider integral methods (Section 2.2) which are often used in coupling algorithms because of their rapidity. Then finite
difference methods (Section 2. 3) will be presented. These last methods allow a more local description of the flow and the use of more sophisticated
turbulence models, even though it be at the cost of longer computing times, of course.

2.2. — Integral Methods

2.2.1. — Basic Principles and Equations

The basic principle underlying nearly all existing integral methods is to describe the boundary-layer development by means of two integral
equations. It is thus possible to compute the streamwise variation of two characteristic quantities, namely:

— a length scale measuring the boundary-layer thickness. The most often retained thicknesses are: either the displacement thickness or the
momentum thickness;

— a shape-factor which represents the shape of the boundary-layer velocity profiles. The knowledge of this shape factor (also called form-
factor of form parameter) allows the determination of all the other integral thicknesses when only one of them is known (of course the external
Mach number as well as thermal conditions at the wall must also be known).

The resolution of the system of ordinary differential equations necessitates additional or “closure” relationships which consist of:

— an appropriate velocity profile family;

— a turbulence model or ad-hoc formulae to evaluate the viscous terms.

Thus the two-equation integral methods permit the prediction of two quantities of main interest, namely: the skin friction or momentum loss
due to viscous forces, and the displacement effect which is at the origin of the viscous-inviscid interaction mechanism.

The taking into account of thermal effects would require, in principle, an integral form of the energy equation. However, most of the
methods employed to compute shock-wave/boundary-layer interaction make use of Crocco’s integral to relate the temperature and the velocity
profiles. Moreover, it is also frequently assumed that the stagnation enthalpy is constant across the boundary-layer. This assumption does not
entail large errors provided the flow is adiabatic (absence of heat transfer at the wall) and the Mach number M, at the boundary-layer edge is
moderate (the variation of stagnation enthalpy across an adiabatic boundary-layer is approximately equal to 4% when M_=2). In what follows
we will not consider the energy equation.

Let us consider the turbulent boundary-layer equations of a 2-D compressible steady flow assumed adiabatic:

— continuity:

opw) , 0(pv) _

Y 0 2.1
ox dy 2.1
— streamwise momentum:
Ju du dp ¢ du
U—+pr—=——+—|(u+p)— | 2.2
pu-_+p % x5 [(u 18] 6y] 2.2)

In these equations all the symbols are relative to mean quantities (Reynolds’ avcraging) and y, is the turbulent eddy viscosity defined by:

ou praed
He P P

As already stated, the energy equation is replaced by Crocco’s integral which for adiabatic flows is written:

_ 2
= 1 +ry_1 MZ[1- L (r: recovery factor). (2.3)
T 2 u?

e e

The most widely used integral equations are the following.
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The first one is the Von Karman momentum equation which can be written:

do 5*\ 1du 1dp C,
— 40| (24— )—2+—" = 2.4
dx+ [( (-))u,dx p,dx] 2 @9

or, if the flow at the boundary-layer edge is isentropic:

*
@+<2+ i...Mf)E% =Q.
dx
The second (or complementary) equation differs according to the author’s preference. Three kinds of equations are commonly used.

(i) The Mean-Flow Kinetic Energy Equation also called the Mechanical Energy Equation.

This equation is obtained by multiplication of equation 2.2 by u prior to integration in the y direction, which gives:

* * %k
£+e*(3d—“—=+i@>+ze . _p, @.5)

dx u,dx p,dx u, dx

or, for an isentropic external flow:

Thicknesses 6* and 8** as well as the Shear-Work Integral D are defined in Section 1.2.1 above (D is also termed the dissipation integral).

(ii) Integral Continuity Equation also called the Entrainment Equation.
This equation results from integration of the continuity equation between y=0 and y =3, which gives:

468" _(6-87d(p,u) _d5 v

=< =C, 2.6
dx p.u, dx dx u, E 2.6
or for an isentropic external stream:
— ¥
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The coefficient C, represents the rate at which the external flow enters the boundary-layer. It is sometimes called Head’s entrainment
coefficient (1958). It has been demonstrated by Michel et al. (1969):

a8 v __ 1 (5_f> @.7
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which clearly shows that the entrainment coefficient is strongly related to turbulence properties at boundary-layer edge.

(iii) The Moment of Momentum Equation.

It is obtained by multiplication of equation 2.2 by y prior to integration from y=0 to y=3§, which leads to the following equation:

8 y ¥y
J{pu%—éﬁf a(p“)dn—peurﬂ}ydw—j tdy. (2.8)

0 ax 0xJo Ox dx °

The Moment of Momentum Equation may prove superior to the Mean-Flow Kinetic Energy Equation due to difficulties in evaluating
numerically the Shear-Work Integral in the latter.

In what follows, the retained methods are classified according to the second equation they use (all of them employ the Von Karman
equation). In this review, only the distinguishing features of the methods are presented, i.e.:
— the velocity profile family (if any) used to evaluated the different thickness ratios;

— the essential formulae giving the viscous terms.

2.2.2. — Methods Using the Mean-Flow Kinetic Energy Equation

It seems that the first integral method especially devised to compute separated flows at transonic speed should be accredited to Klineberg and
Steger (1972). The method was restricted to laminar flow so we will not consider it in much detail here. It also incorporated the calculation of
the airfoil wake which could be either laminar or turbulent. In this method, the basic integral equations were transformed into an equivalent
incompressible form. The various profile quantities, as well as the skin friction coefficient and the shear-work integral, were deduced from
boundary-layer and wake-like similarity solutions (Klineberg 1968; Kiineberg and Lees (1969).
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The method proposed by Délery (1975) to compute a separated turbulent boundary-layer is formulated directly in the compressible (physical)
plane. The velocity profiles belong to a family derived from Cole’s law-of-the-wall/law-of-the-wake formula, which is here written in the form:

*
ot U a2 aoa(¥ U\ () @.9)
u, 041U, & 5 041U,)°\5

U C, i . . . . L - .
where U’ = Ef' EIC f:l is defined with an incompressible skin friction coefficient and can be negative to accomodate separated flows. The ratio
e fi

3

8#/8 involving the “incompressible” displacement thickness: 8;*=j ( 1— l)dy can be considered as a shape-factor. The “wake” function f /8)
0 u,

is a polynomial function of (y/8)!/2 defined from a correlation of turbulent velocity profiles measured in the separated and reattaching zone behind

a downstream facing step (Noi, 1971). Reasoning for the (fictitious) incompressible state, U, is a function of 3}/5 and of the Reynolds number

R;. However by fitting equation 2.9 with the well known law-of-the-wall, it is possible to derive the following relation between these three

parameters:
*
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Thus the profiles depend essentially on only one parameter: the shape-factor 8f/3. The Reynolds number is a secondary parameter since it is
a function of & and u, (plus the fixed stagnation conditions). The effect of compressibility on the shape of the dimensionless velocity profiles u/u,
was assumed negligible. This assumption has been well verified experimentally for adiabatic flows, the external Mach number of which is not too
high (M,<3). Thus equation 2.9 is assumed valid for compressible boundary-layer at moderate Mach numbers. The true or “compressible”
skin friction coefficient is deduced from C '+ by using the relation:

y—1, , -1/2
c,=c,,_(1+rTM,> ,

which gives a good correlation for the compressibility effect if the flow is iso-energetic. It is to be noticed that equation 2.9 is not valid in the
immediate vicinity of the wall since the logarithmic term tends to infinity when y — 0. Nevertheless, equation 2.9 can be applied very close to the
wall, down to y/8=0.01. The part of the profile below this ordinate is approximated by a linear evolution.

The above velocity profile representation is sufficient to compute the various thickness ratios involved in the formulation. However,
formula 2.9 is not accurate enough to permit a realistic calculation of the shear-work integral from an eddy viscosity model and the slope du/dy
evaluated by differentiating equation 2.9. It is more appropriate to compute D with an equation given independently of the velocity profile
representation. Initially, D was deduced from Alber’s turbulent similarity solutions (1971). In a subsequent version of the method, D was
evaluated with a more accurate and more convenient expression derived by Le Balleur (see Section 2.2.3 below). This expression gives the shear-
work integral coefficient C,, in the form:
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> pu? [1C/]]w] ( ")]1+o.53(y—1)/2M3

Here the *“‘wake velocity” uy is simply:
*
uB=1.—2.246—'.
8
(The wake velocity is the velocity which would exist at the wall if U, were set equal to zero in equation 2.9. It corresponds to a slip velocity in

the absence of the logarithmic component.)

More recently, Whitfield, Swafford and Jacocks (1981) have proposed a method which uses a very sophisticated boundary-layer velocity
family. This family is represented, in incompressible flow by (see also Whitfield, 1979 and Swafford, 1981):

u u S u ST

—=—"——tan"1(0.09 Y*)+| 1— =2 _ Jtanh!2[a(Y/0 I 2.11

u, u50.09 a ( ) [ uc0,]8] an [a( / )b] ( )
where:

S=sgn(Cy), B |z and y+r=2%_ [Ra].-z.

The profiles defined by equation 2. 11 depend on three quantities: H;, C;, and [Ry); (a and b can be evaluated if the three previous parameters
are known). In fact, the number of parameters is reduced to two by adopting a correlation law giving C 7, as a function of H; and [R]..

In compressible flows, the profites are still represented by equation 2. 11 with “incompressible” values related to compressible ones by the
following relationships:

y—1_ . \-12
C,=Cy, 1+TM2) s

,Y_l 1/2
R9=[Rs],-(1 + TMf) 3
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For the purpose of defining integral thicknesses at high Reynolds number, equation 2.11 can be conveniently replaced by the following
formula:

e [1_ (_”‘)ﬁ]tanhm [a(Y/0)], (2.12)
ue

U, e

in which (), /u,. is a fictitious “slip velocity” representing the outer limit of the first term of equation 2.11 (i.e., the limit of this term when
Y* > o). For separated flows, the second representation has an advantage in that (1), represents the maximum reverse flow velocity which can
be correlated more easily than the skin-friction, which for separated flows is very small and difficult to measure. Thus, a correlation is provided
which gives (u;) ,/u, as a function of H;.

Also, a correlation is given to compute the energy integral thickness parameter 8)/6; as a function of H,, although such a correlation is not
strictly necessary since 87/8; can be computed from equation 2. 11 (or 2.12). Such a correlation is only useful for saving computer time.

The shear-work integral D is evaluated by using the Cebeci-Smith (1974) two-layer eddy viscosity turbulence model and the analytical velocity
expression for du/dy. However, the numerical results thus obtained can be reproduced very closely by a two-term approximation of D as the sum
of an inner and of an outer contribution. The integral thus becomes:

D=D;+D,.

In the inner region (contribution D), the shear is assumed constant and equal to the wall value; in the outer region {contribution D), it is
computed by using Clauser’s eddy viscosity model (1954). The shear-work integral coefficient thus computed can be approximated as:

3/2
¢

Cp=Cp,+Cp,=2|

—i1\3 2
—"-+21<<3}—"‘tl T with K=0.0168. @2.13)
0.18 3H )2

The above expression is an excellent correlation law for boundary-layer flows evolving in near equilibrium conditions. It is inadequate for
flows undergoing a rapid interaction process, as is the case of a shock-wave/boundary-layer interaction. We know that in this case non-equilibrium
effects are particularly important (see Sections 2.9 and 3.9.2 of Part I). So, in a more recent version of this method, Whitfield and Thomas (1983)
proposed modeling these effects by means of a relaxation-type equation for the outer contribution Do. This equation, which is derived from
arguments similar to those employed by Green et al. in their “Lag Entrainment Method” (see below), is written:

5 d(Cpy)

Cou dx =A(Cpeig —(Cp)"),

where the term (Cp)gg is given by equation 2.13. A is a known function of the shape-parameter. The authors assume that the near wall region

responds much more rapidly than the outer region so that its contribution D; to the shear-work integral can be computed by the equilibrium
expression 2. 13,

The above method is applied to compressible flows by relating compressible integral thicknesses to their incompressible counter-parts by means
of suitable velocity-temperature relations.

In the method proposed by Thiede (1976) for computing separated turbulent boundary-layer a correspondence is first established between
physical (or compressible) thicknesses and incompressible thicknesses. This transformation makes use of Crocco’s relation to link the temperature
and the velocity profiles (see equation 2.3 above). The closure relations are thus deduced from a one parameter incompressible profile family. This
family is made up of the “lower branch” turbulent similar solutions of Alber (1971) i.e., velocity distributions including a reversed flow region. The
shear-work integral coefficient (in the incompressible plane) is given by an equation which contains an empirical term representing non-equilibrium
effects:

Cp=(Cplgg+AC, (IT—Tlp).
In the above formula Equilibrium Quantities are relative to similar solutions; I1 is the pressure gradient parameter defined as:
8
H=LdU‘j I—E dy.
U, dx Jo U,

and (Cp)g, is a function of the “incompressible” shape-parameter H resulting from the transformation (it is recalled that H differs from the “true”
incompressible shape-parameter H,, see Section 1.2.1 above).

2.2.3. — Methods Using the Entrainment Equation

A very sophisticated and popular integral method using Head’s entrainment concept has been proposed by Green, Weeks and
Brooman (1972). This method was developed to compute (turbulent) compressible boundary-layers submitted to a rapid evolution involving strong
out-of-equilibrium effects. In this method the entrainment equation is written in the form:

dfi dH C 0 du
0 =——| Cp—H,{L—(H+1)——=3|. 2.14
dx dHll: £ 1{2 ( )uedx}] ( )

~ 1 : o . .
H= I B<1 - l)dy is a pseudo incompressible shape-factor which is a weak function of the Mach number (see also Section 1.2. 1 above) and:
u

€

& —8*
L[ 2Ly 8E
6 o P, 0
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The entrainment coefficient Cy is given by a differential equation representing “lag” effects which are likely to occur in a rapid compression
(or expansion). This equation is written:

{(CHE—Cc2 4 (31’,";) —f(M) 0 due:l,
u, dx /g

- u, dx

dCx [ 2.8

6—==F
dx H+H,

. ! o* . L S - .
where f (M) is a known function of the Mach number M_, H= ry and C, is the skin-friction coefficient computed with the shear-stress T at a

conventional value of y/3 in the boundary-layer. The above equation for Cy is developed from the equation for the shear-stress that Bradshaw et

al. (1967) derived from the turbulence kinetic energy equation. Quantities (C,)zp and ( ﬂdue) are relative to equilibrium flows.
U X /Eo

These flows are defined as flows in which the shape of the velocity and shear-stress profiles do not vary with the streamwise distance x. The
other closure formulae are obtained from the following considerations:
— appropriate relations are provided to express H, and H as functions of H;

— the skin-friction coefficient isdetermined from H and R, by a relation involving a flat plate skin friction C to 8iven by the correlation of
Winter and Gaudet (1970):

u,

— the equilibrium values (C,)g, and ( gd

u, dx

2.14 to an equilibrium boundary-layer for which dH/dx=0. These operations provide algebraic relations allowing the calculation of equilibrium
quantities from the knowledge of C » H, H, H, and the external Mach number M,

) are deduced from results concerning equilibrium flows and by applying equations 2.4 and
EQ

The method also incorporates factors representing extraneous influences on the turbulence structure: longitudinal curvature, lateral strain,
dilatation, momentum inbalance due to departure from two-dimensional flow.

Modifications of the method concerning essentially the shape paramater relations have been introduced by East, Smith and Merryman (1977)
to improve the prediction in highly separated flows.

In the method developed by Michel, Quémard and Cousteix (1977) the closure relationships are deduced from “self-similar”” solutions of the
compressible turbulent boundary-layer equations. These solutions are obtained via a procedure analogous to Alber’s approach. This procedure
consists in making restrictive assumptions regarding the streamwise evolution of the boundary-layer. Then the partial differential equations reduce
to ordinary differential equations, the solutions of which constitute a family of velocity profiles depending on a limited number of parameters. In
the present case, the similar solutions are derived by using a mixing length model to express the turbulent shear stress:

du

dy

ou

ou
T=pn—+pF? 4
“ay e dy

In the above relation //3 is taken to be a universal function of /3 which is of the form:

The viscous sub-layer correction function F is a modified form of the Van Driest damping function. It is written:

F=1'_exP[_26;p /‘rp] (here k=0.41).

In compressible flows, the self-similarity hypothesis consists basically in saying that the dimensionless profile u/u, depends only on p/§; i.e.:

u_ofy
u",_f<6)'

Then the boundary-layer equations are reduced to ordinary differential equations with y/5 as independent variable. Their solutions depend on
three parameters: the Mach number M., the Reynolds number R, and a pressure gradient parameter. In the integral method, the profiles are
“unhooked” from the actual pressure gradient and characterized in fact by Clauser’s shape parameter:

G=(H;— 1~)/[Hi, /Cj/2]

Consequently, the various thickness ratios intervening in the integral formulation, as well as the skin friction and entrainment coefficients are
computed from the self-similar solutions and expressed as functions of M, Ry and G.

The method has been extended to take into account three-dimensionality (see Section 1.3 about “jump” methods for 3-D shock-wave/turbulent
boundary-layer interaction), wall curvature and free stream turbulence, These extensions are made by a suitable generalization of the mixing-
length model (Cousteix et al., 1974; Cousteix and Houdeville, 1977).

The method developed by Le Balleur (1981) applies to laminar, transitional and turbulent flows. Here, we will consider only the turbulent
case since this régime is the most likely to occur in shock-wave/boundary-layer interactions met in most practical situations.

The turbulent version of the method uses the momentum and the entrainment equations which are integrated directly in the compressible
(physical) plane. In addition to the assumption of a constant stagnation enthalpy, it is assumed that compressibility has no effect on the shape of
the dimensionless velocity distributions. These distributions are represented by a formula similar to equation 2.9 (see Section 2.2.2 above)
However the present method introduces two inprovements in the representation of the profiles:

— the wake component of the Coles’law is given by the formula:

GHEr™ T
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which coincides with the asymptotic far wake solution if the turbulent eddy viscosity is modeled by using a mixing length relation (Quémard and
Archambaud, 1976). Thus the method can also be applied in a rather continuous manner and with only minor changes to the turbulent wake
which follows turbulent boundary-layer separating at a trailing edge;

— an adaptation of the wake component is introduced to extend Coles’ relation to largely separated boundary-layers. In fact, it can be shown

that equation 2.9 together with the usual forms of the wake component lead to unbounded negative velocities when H; becomes very large. To
avoid this unphysical behavior, the wake function, designated here by 7, takes the following form:

O<y<y*, ](%):1.

o 2)420)

This means that the velocity distribution includes a zone of constant return velocity below y=y* and has the usual wakelike shape above
y=y* The reduced ordinate y*/5 is a prescribed function of the shape-factor 8#/8. This function is empirically defined to generate realistic
profiles for a continuous variation of H; (or8#/8) from the attached flat plate value (or the wake value) to the value corresponding to the turbulent
isobaric mixing, i e., a largely separated boundary-layer.

The skin-friction coefficient results from the adjustment of the velocity distribution (see equation 2.10 in Section 2.2.2 above) with the wall

law when H, is greater than 1.6. The compressibility effect on C, is represented by the relation given by Michel et al (1972). For H, smaller
than 1.6 the Michel et al. law is preferred because of its superior accuracy.

Non equilibrium effects are taken into account by expressing the entrainment coefficient in the form:

Ce=n(x)(Cpzo-

»
The equilibrium value (Cp)g, is deduced from known equilibrium turbulent boundary-layer properties; whereas A (x), which characterizes departure
from equilibrium, is a function of the streamwise distance x. This function is computed by integrating simplified turbulence transport equations.

At high Reynolds number (Cp)g, is given by the following relations:

- if H;21.6,
(Co)5o=0.053 <1.— EE)—0.182 e
] JEs]
where the reduced “wake-velocity” uy/u, is related to the shape-factor 8}/3 by:
Yy _ 2.228}/8
u,  L+1.22y%8
— if H;<1.6, the Michel et al. formula is employed, i.e.:
H,—1 H
Copo=0.074——— —0.548 —_. C,.
(Ceio H, H—1 !

The departure from equilibrium, represented by the “one-dimensional” function A(x), is computed by first assuming that the velocity profiles
representation remains unaffected. Then, from the definition of the entrainment coefficient and the relation 2.7 of Section 2.2.1 above, we get:

) _ G
[1(x, Ve [CE(X)]EQ

The following additional approximation is introduced:

RIS )
IT (%, Mo ﬁ (x)]EQ’

where %(x) is a turbulent shear-stress level depending on x alone and characterizing an “average” turbulent state of the boundary-layer at
station x. This “one-dimensional” shear-stress is computed by using very simplified transport equations for an average turbulence kinetic energy k,
an average dissipation rate & and . These equations are derived from Launder and Hanjalic’s transport equations (1972) by making simplifications
which reduce them to ordinary differential equations for the “one-dimensional” turbulent variables k(x), €(x) and #(x). This approach bears
some similarity to Green’s lag entrainment method (see above).

2.2.4. — Methods Using the Moment of Momentum Equation

In the method of Kuhn and Nielsen (1973), a Stewartson transformation is first applied to reduce the equation of the compressible boundary-
layer to those of an incompressible boundary-layer. Thus the velocity profiles found to be valid for incompressible flows can also be used to
compute compressible flows. The adopted velocity profiles are represented by a function which is a modification of Coles’ family with a laminar
sublayer added and the wake function approximated by a cosine. This formula, which involves incompressible values, is written:

U U 1U Y
=251+ YN 451-(339Y" +5.1 -037Y" +——B[l.—c05<n—>} 2.15
U Ue[ n(l.+Y")+ ( Yexp( ) ) 5 2.15)
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where Y*=| U,| Y/v. The friction velocity U, is modified to accomodate separated flows and can be positive or negative (see equation 2.9 in
Section 2.2.2 above). Uy is the wake-velocity (see Section 2.2.2 above). The exponential term and the additional unit in the logarithmic term
provide a smooth transition from the turbulent flow to the wall through a laminar sublayer. There are three parameters involved in equation 2. 15:
U, Uy and 8. However, Uy can be eliminated by evaluating equation 2,15 at ¥==5 which gives an equation similar to equation 2. 10, but here
unlike other methods, U is eliminated instead of U,.

The shear-work integral is computed by using equation 2. 15 for dU/3Y and an eddy viscosity model which is an extension of the two-layer
model used by Kuhn (1971). In the inner layer of attached flows, the eddy viscosity parameter B=1+v,/v is represented by an exponential
expression based on the law-of-the-wall. In the outer layer, v, is represented by Clauser’s expression along with an intermittency function :

v,=kyU,5*.

The Klebanoff intermittency function y is approximated by:

L) T

In order to represent the decrease of the “constant” k noticed in strongly retardated flows, k is calculated by:

k=0.013+0.0038 exp(—P/15),

where P is the dimensionless pressure gradient parameter:

*
p
1, dx

For separated flows, the value of k at separation is retained, but the length scale of the eddy viscosity is changed. In accordance with Alber’s
analysis, the conventional displacement thickness is replaced by the displacement thickness based on the profile above the U=0 line;

H
5= (1—£>dY.
Y @=0) U,

Substitution of equation 2. 15 into the two basic integral equations expressed in their incompressible form leads to the following system:

— momentun equation:

du. ds dU,
Ay —"+A,—+4 £ =—U,|U,|/U.,3,
1t dx 12dx 13 dx | |/
— moment of momentum equation:
dU, ds dU, v % oU
Ayy—+A4,,—+A4 f= e — —dY.
Max T Pax TP gy U,Bzfo oy

Thus the easier way to use Kuhn and Nielsen’s method in an inverse calculation is to prescribe the friction velocity U, which is in fact
equivalent to prescribing the skin-friction coefficient. However the method of integration can be modified without difficulty to introduce the
displacement thickness 3* as a working variable (§* being a known function which can be expressed in terms of U, 8 and U,). The use of §* is
generally more convenient for viscous-inviscid calculations. In such calculations, the displacement thickness plays a key role in the various coupling
(matching) equations which can be written (see Section 3.2. 1 below).

The authors have extended the method to compressible axisymmetric flows by making use of the Probstein-Elliot transformation in order to

give the boundary-layer equations an almost two-dimensional form before applying the compressible-incompressible transformation (Kuhn and
Nielsen, 1975).

More recently, Gerhart (1979) proposed a method which is formulated in the physical plane. The velocity profiles are also represented by a
modified form of Coles’ law which allows for compressibility and possible reversed flow (Alber and Coats, 1969; Mathews et al., 1973):

e a—kv[ln(l.+y+)+5.—(1.5y++5.)exp(—0.18y+)]+auﬂsin2 Iy (2.16)
u, a 0.41 28

where:

ae T2 M2 e Cr

Ltriy—D2M? /Ic; Vi

The main profile parameters are A and up.  However, following the now classical procedure, equation 2. 16 written at y =3 results in a relation
between A and u;.  Thus, the profiles in fact depend essentially on only one parameter, like in the preceding methods.

The shear-work integral D is evaluated by differentiation of 2. 16 and by using a mixing length expression for the turbulent eddy viscosity. The
total (laminar plus turbulent) shear-stress is thus written:
> du
ay’

which allows for negative shear in regions of reversed flow. A continuous distribution of mixing length [ identical to the Michel et al. expression
is used (see Section 2.2. 3 above).

Ou

‘t:=<u+ple2 P
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The Van Driest exponential damping term is expressed by:

172
F=1.—exp|:—L<—|1:w| +ld_py> :I,
26v\ p pdx

which avoids the singular behavior at the separation point of the original Van Driest formula in which F=0 everywhere if 7,=0. When the
boundary-layer separates, the damping effect of the wall is removed and a different formulation of the mixing length is adopted:

— above the zero velocity point (y2y,); 1. e., the outer edge of the reversed flow region:

1=1m=<’£>5,
3

— while below the zero velocity point (y <y,),
I= lao ¥ / Yo-

For an equilibrium attached boundary-layer, the value of I/8 is rather well determined as: /,/3=0.09. However, for a boundary-layer
undergoing a strongly out of equilibrium evolution like in a shock-wave/boundary-layer interaction the ratio I,/8 does not remain constant but
decreases markedly (Simpson et al., 1981; Délery, 1981) ((see Section 2.9 of Part I). The author proposes different possibilities to model this
evolution.

The first and simplest way is to use an algebraic formulation, following the approach of Alber (1968). The relation adopted for /_/d has a
form similar to Kuhn and Nielsen’s formula (Kuhn and Nielsen, 1975) :

Ofl|8~

=0.055+0.035exp(—B/5). (2.17)
The parameter B is related to the local “equilibrium” shape-factor and is not taken to be equal to the reduced pressure gradient, according to
its original definition. Thus B is calculated from:

G=6.1_/B+18i—17.

where G is the Clauser defect shape-factor defined above (see Section 2.3.2).

Another possibility is to use a differential equation (see Green’s lag entrainment method as well as Le Balleur’s method in Section 2.2.3
above) which can be derived from the turbulence kinetic energy equation. In the integral form this equation is:

1 3 a £ _ N S
—f —(puk)dy:j [r,a—u—(u’z—v’z)%:ldy—f pedy, (2.18)
2 )0 0x ol "0y ox [

where k is the turbulence kinetic energy and ¢ the turbulence dissipation rate. Following results of McDonald and Camarata (1968), Bradshaw
et al. (1967), and Collins and Simpson (1976), the different terms involved in equation 2. 18 can be modeled and expressed as functions of M,, A, J,
ug, 1,,/8 provided that a formula is available to compute the length scale L for the dissipation.

The following expressions were used by Gerhart:

— for attached boundary-layers:
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— for separated boundary-layers:
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For a non-equilibrium situation, L /8 cannot be considered as constant and a formulation of the form:

% =0.05+0.04 exp(— B/4),

is proposed.

According to the author’s conclusion, equation 2. 18 does not give better results than the much simpler algebraic expression.
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2.3. — Finite Difference Methods

2.3.1. — Earlier Inverse Methods

To our knowledge, the first inverse method using a finite difference technique to solve the boundary-layer equations was published by Catherall
and Mangler in 1966. The method was applied to an incompressible two-dimensional laminar boundary-layer and the case of a prescribed
displacement thickness was considered. The equations are written in terms of a stream function and the vorticity. A transformation is introduced
in which the independent variables are simply connected to the inviscid stream function and velocity potential.  The stream function Vs is expressed
as the sum of two functions: one representing the inviscid solution, the other — H — the viscous modification to the inviscid flow; so that if H is
made to decay as we move from the body into the main stream, the solution will merge into the external potential flow solution. This function H
is directly related to the displacement thickness 8* Thus the method incorporates two important features of inverse formulations that were
developed afterwards:

— elimination of the unknown pressure gradient by introducing the vorticity w;

— use of a modified stream function which allows the prescribed displacement thickness to figure explicitly in the equations to be solved as well
as in the boundary conditions.

These two essential features will be presented in more detail below.

Catherall and Mangler presented applications which showed that it is indeed possible to compute a boundary-layer past the point of vanishing
skin friction and also past the point of reattachment.

The numerical method was carried out by using an entirely parabolic procedure marching always in the downstream direction. Consequently,
numerical difficulties were encountered in the reversed flow region where the calculation developed instabilities. Nevertheless, the integration was
continued by decreasing the convergence criterion at each station. As the authors pointed out, this difficulty is to be expected, because the region
of reversed flow should actually be integrated in the upstream direction with boundary conditions provided from downstream. This problem will
be discussed in more detail below:

The case of a prescribed wall shear was treated in 1972 by Keller and Cebeci for an incompressible laminar boundary-layer. The equations
are reduced to the familiar dimensionless form:

&f 0 (YN g (o P PSS
0n3+f6n’+6(§)[1 (6n> ]—2§<6n3§6n 5n’6§)’ o

where f(m, &) is proportional to a stream function, £2>0 is a transformed streamwise variable, 1= 0 measures distances normal to the wall and B(&)
is the pressure gradient parameter. When the £-derivatives are put equal to zero this equation reduces to the well known Falkner-Skan equation.

The inverse problem results from requiring that the wall shear be specified, meaning;

az
a—nz(é, 0)=5 (%) (2.20)

Specification of both B(£) and S (&) would result in an over-determined problem: thus, a solution is obtained by solving equation 2. 19 (with
appropriate and classical boundary conditions) where B (£) is considered as an “eigenvalue” which is determined so that 2.20 can be satisfied. In
brief, the procedure consists in treating the unknown distribution as an “eigenvalue” which is approximated by a Newton iteration scheme based
on satisfying equation 2.20. For iteration, a standard boundary-layer flow problem is solved which may lead to severe difficulties if separation
occurs. The numerical scheme uses a two-point finite difference method (Keller and Cebeci, 1977 a and b) plus Newton linearization. The linear
system is then solved by the block elimination method.

In 1976, Cebeci extended this method to compressible and turbulent boundary-layer, although the method was still restricted to non-separated
flow (see Section 2. 3. 4 below).

A more elaborate analysis capable of properly accounting for negative wall shear was proposed in 1974 by Klineberg and Steger. As it was
restricted to laminar incompressible flows, we will not consider it in much detail. We will only comment on some of its essential features which
have been incorporated in future methods.

The problem is here formulated in primitive variables (u, v, p) with a transformation that keeps the boundary-layer nearly uniform in thickness
in the computation domain.

The boundary-layer equations are solved subject to the following boundary conditions (in the inverse mode):

g‘i:h(‘x); y— 00, u—-u,.
oy
Here, h(x) is a prescribed function and ¥, must be determined as part of the solution process. The pressure gradient is deduced from the

momentum equat_ion evaluated at the surface. The computational domain may contain a zone of reversed flow. But the boundary-layer has to
be attached both in the entrance and in the outgoing section in order to have a well posed problem (see sketch below).
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One of the essential features of the method is the use of differencing schemes which allow the information to propagate in accordance with the
local flow direction. Thus, in the part of the boundary-layer where the stream flows in the downstream direction, a backward difference scheme is
used, whereas a centered scheme is employed in reversed flow regions. A blending formula is employed in the intermediate zone to enhance the
iteration process. This formula is not otherwise fundamental.

The possible existence of a reversed flow where the scheme is centered precludes-in principle-the use of a simple forward marching procedure,
but necessitates an iterative method consisting of successive sweeps of the computational domain until convergence is reached. For this purpose,
both point and line Successive Underrelaxation were used. The relaxation procedure was initiated by assuming a Blasius profile everywhere.

The major result of this study was to demonstrate that regular solutions of the boundary-layer equations in separated regions could be found
by the inverse technique provided the reversed flow region is correctly treated in order to avoid the numerical difficulties met by Catherall and
Mangler. The authors have also developed a local analysis which proves that regular flows are characterized by an integrable saddle-point type
singularity that makes it difficult to obtain numerical solutions which pass continuously into the separated region. This singularity is removed by
specifying the wall shear-stress distribution and computing the pressure gradient as part of the solution.

However, numerical applications made by Klineberg and Steger [and also by Carter (1975)] have shown that discontinuous solutions may be
found for highly separated flows. Then the computed value of the pressure gradient tends to become discontinuous at a point located downstream
of separation. Correspondingly, the normal velocity increases rapidly. This phenomenon is certainly not an indication of a possible breakdown
of the boundary-layer equations since highly separated flows are computed without any discontinuity by methods in which the displacement
thickness is prescribed. It is more probably due to possible branching phenomena associated with the existence of two reversed flow solutions
having the same wall shear-stress but corresponding to different pressure gradients. These two solutions are found when solving the Falkner-Skan
equation (Stewartson, 1954).

2.3.2. — Carter’s Method and Derived Methods

We will now expose in more detail a method which works for compressible and turbulent boundary-layer flows and which is commonly used in
transonic flow calculations. This method, proposed by Carter was first formulated for laminar incompressible flows (Carter and Wornom,
1975). Then it was extended to incompressible turbulent flows (Carter, 1978) and later to compressible turbulent flows. It is basically designed to
make inverse calculations with prescribed displacement thickness. However, it can be applied to the case of specified wall shear stress distribution
at the cost of minor changes. Two versions of the method have been successively proposed by Carter:

— the first uses as dependent variables the stream function ¥ and the vorticity ® (more exactly the pseudo vorticity ©=3u/dy);
— the second method employs primitive variables.
Formulation with Variables (», V). For the sake of simplicity, the basic principles of the method will be exposed by considering an incompressible

turbulent boundary-layer. Extension to compressible flow is rather staightforward and will be considered thereafter.

Starting from the boundary-layer equations, the unknown pressure p (or edge velocity ) is first eliminated by taking the y-derivative of the
momentum equation. Introducing the vorticity @=0u/dy and taking the continuity equation into account, the @ transport equation is obtained:

do o 0*
u$+va—y=a—y—2[(v+v,)m]. (2.21)

The turbulent shear-stress has been modeled with the eddy viscocity concept (this is not essential, more sophisticated modeling can be
envisaged); thus:

7

= du
—u'v=v,— =v,0
ay

In order to eliminate the edge velocity from the outer boundary condition it is convenient to introduce the stream function ¥ so that:

L AL 4
ay 0x
Equation 2.21 is now written :
2
PO O ) @.22)
ox oxdy oy’

A “modified stream function” ¥ is defined by letting ({ is also called the ‘“‘perturbation stream function™):
J=y—u(y—38% (2.23)

Considering the definition of the displacement thickness 3*, it can be easily verified that { - 0 when y - co. Thus, introduction of  has a
double advantage:

— first, the prescribed displacement thickness figures explicitly in the equations. Consequently, there is no need for an iterative or shooting
technique as would be required by a “classical” formulation;

— second, { has “convenient” boundary conditions, since ¥ is zero both for y=0 and y - 0.

Differentiating 2.23 with respect to y gives:

@:m(&"—y)_ (2.24)
oy

Thus, the inverse problem consists in solving equations 2.22-23 along with the boundary-conditions:

u(x, 0)="Y(x, 0)=0,

®(x, y), J’(X, y)—0 for y— o, (2.25)
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the distribution of 8* being prescribed.
When the wall shear-stress is imposed the condition is simply:
a(x, 0)=o,(x) (a given function of x).
Applications in compressible flow. — In order to extend the above formulation to compressible flows with a minimum change in the numerical
treatment, Délery (1980) has applied a compressible-incompressible transformation similar to Stewartson’s transformation. The new independent

variables X and Y are defined in such a way that:

dx=2Pe g, 0¥ _ap

a0 Po 8y appy

where a, (sound velocity) and p, are relative to a constant reference state. Letting:

0 4
°“=°°a—j;” pv=—poa—il

and making the assumption that the stagnation enthalpy remains constant throughout the flowfield (iso-energetic flow), one obtains the following
quasi-incompressible form for the two governing equations:

2
vy _y ., 12 [( +u) P U],

ax" oy cax " parl P TM o oy (2.26)
V=¥y-U-4%  with y(X, N=V(x, )
where the compressible (physical) and incompressible (transformed) quantities are related by the retations:
w=lU, o= &(@V_alu)
ao P \4oPo 0x
and:
M=Y_ U,
a. Qo
The “incompressible” displacement thickness A* is defined as:
At =‘[ (l o E) dy
0 Ue
and we have the following relation between A* and the physical displacement thickness §*:
—_ @® 2
A*=“_=°_=5*—7—1M3f (1—1)‘1{ (2.27)
Ao Po 2 0 vz

. U .
Introducing the transformed vorticity Q= Z—Y, the equations to be solved are:

Q opan 1 o b
U e —=——|(p+p) =0},
0X  3XaY p,ov? [(“ k)

Po
‘A
— =(A*-Y)Q,
7Y @a*-1

along with the usual boundary conditions 2. 25.

The transformed vorticity equation is not entirely “incompressible” since density and viscosity remain in the Right Hand Side. Total
elimination of p and p would require very restrictive assumptions concerning the compressibility effect on the turbulent eddy viscosity. Such a
restriction is not recommended if one wishes to use realistic turbulence models. The essential merit of the transformation is to give equations in
which there is only one term involving density.

One should note that A* must be determined iteratively from 2. 27, since the input of the calculation is in fact 5*. In practice this iteration is
included in the iterative cycle of the calculation procedure (see below).

It is also possible (as was done by Kawai, 1977), to perform the calculation directly in the compressible (physical) plane. Then differentiating
with respect to y, the x-momentum equation yields:

2
u@a—“+pu"’—“’—@9‘3—ua—"m=%[m+uoml, 2.28)

where: dy ox ox dxdy ox

The equation for the modified stream function is now written:

z—q’,=(5‘—y)<pm+u@) from \T/=\|/—pu(y—8*), (2.29)
y oy



142

The above system has to be supplemented by the energy equation which will not be written here since its solution does not need any special
procedure. Furthermore, in transonic adiabatic flows, the stagnation enthalpy can be assumed constant. This avoids the solving of the energy
equation.

Method of Numerical Solution. — In his first publication (1975), which concerned only laminar boundary-layer, Carter envisaged two
computational schemes:

— for a prescribed displacement thickness, a Crank-Nicolson scheme is employed in the forward flow region and a centered scheme in the
reversed flow region;

— for prescribed wall shear, the computational molecules are similar to those used by Klineberg and Steger (see above).
In a further extension of the method to turbulent flows, Carter considered only the second kind of computational scheme which is_ employed
both for prescribed displacement thickness and prescribed wall shear. In fact use of the Crank-Nicolson scheme in this case leads to oscillations of

the numerical solution.

Thus, the two following computational molecules have to be considered for calculating turbulent boundary-layer:

n+1 n+1
n n
= m- 1 -1
- n-1 m_1 e m+1
m m

The discretization is most often established for a variable step size in the y-direction to allow for mesh refinement near the wall as is essential
when calculating turbulent flows. Generally, the grid is varied at a constant rate Ay,=KAy,_, where K is close to unity in order to maintain
second order accuracy (usually K=1.04 to 1.09). About 60 to 80 points are distributed across the boundary-layer in such a way that several
points lie in the viscous sublayer. More recently, Carter et al. (1982) proposed a composite y-transformation which allows the simultaneous
capture of the two turbulent length scales: i.e., boundary-layer total thickness and wall layer thickness. Basically, the transformation consists in
the addition of two co-ordinates: an inner co-ordinate N; based on the approximate analytical velocity representation proposed by Whitfield (1979)
and an outer co-ordinate N, deduced from an approximate fit to the Clauser correlation. There results an adaptative grid procedure which
enlarges the inner region, therefore permitting a uniform mesh to be used in the computation plane.

Linearization and discretization of the @ transport equation 2.22 at point (m, n) leads to the linear equation:

A @, -1+ B0y ,+C, 0, 111=D, (2.30)

where 4, B, C, and D, are coefficients which due to the non-linear character of the problem depend on the solution.
The equation for ¥ (equation 2.23) is discretized at the middle point between n and (n+1). This gives a relation of the form:

T, 0 =Vm, mi 1+ En (@, s 1+ O ). (2.31)

The velocity component u is computed from © by using the trapezoidal rule.

Repeated application of equation 2.30 across the boundary-layer results in a tridiagonal system which is conveniently solved by Thomas’
algorithm. A recurrence formula of the form:

O, =Dy +Croy 5oy, (2.32)
is obtained at each streamwise station m.
In a similar way equation 2. 31 can be combined with equation 2.32 to obtain a recurrence relation for the stream function:

U, =Kot L0, oy

The coefficients D, and C;, which are a combination of 4,, B,, C, and D, are computed recursively from the outer boundary to the wall, with
the outer boundary condition (x, «0)=0 imposed by setting Dy=Cy,=0 (N denotes the grid point at the outer edge).

Equation 2. 32 is then used to compute all the o, , provided that the starting value at the wall ®,, , is known. This value is deduced from
an implicit procedure consisting in a combination of equation 2.32 written for n=2 with equation 2.31 evaluated for n=2 and in which the
boundary condition Y(x, 0)=0 is imposed. Proceeding in a similar way, K, and L, are computed from the outer edge to the wall with the
boundary condition @ (x, c0)={(x, c0)=0 imposed by setting Ky=Ly=0.

Due to the non-linearities of the governing equations, the above procedure has to be iterated at each station m until a convergence criterion is
satisfied. A slight underrelaxation has generally to be applied.

In a relaxation or successive sweeps procedure, as the one used by Klineberg and Steger (sec above), starting (initial) values of ® and  are
guessed at each point of the computational domain. At the upstream border, the y distributions of @ and { are prescribed. At the downstream
boundary, the flow is assumed attached; hence it is unnecessary to impose any conditions here. The columns (m =const.) are computed successively
beginning at the upstream boundary and continuing to some point downstream of reattachment. Since there exists a region of separated flow, this
sweep procedure must be repeated iteratively until satisfaction of a convergence criterion.
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When the amplitude of the negative velocity in the reversed flow region is small, it is possible to use a forward-marching procedure everywhere
without too much loss of accuracy. As is well known, such a method of calculation leads to instabilities when the integration proceeds in a
direction opposite to that of the local flow. Nevertheless, the calculation can be stabilized by setting the convection term u du/dx (or u dw/dx) in
the x-momentum equation equal to zero when u is less than zero. This approximation is often called the FLARE approximation from Fliigge-
Lotz and Reyhner who introduced it for the first time (1968). The FLARE approximation permits a substantial reduction in computer time and
storage capacity. This time-gain is of great interest for coupling methods where many successive inviscid flow/boundary-layer calculations are
often necessary, especially when separation occurs (Carter and Wornom, 1975).

We will say only a few words about Kawai’s method, since his numerical procedure is very similar to the one employed by
Carter. Equations 2.28 and 2.29 are linearized in the form:

9 Jou do [0 [ dp]| _ 0° W _ e ([0
[uay:’ax+[pu]6x [axJay [uax]w—ayz{(wu,)m},ay—(a y){[ay]uﬂp]m},

where the bracketted terms are considered as the constant coefficients. A modified Thomas algorithm is used in order to treat implicitly the du/dx
derivative. The recurrence formulae are now:

O, p =+, Oy g+ Dythy s,
Wm. n=Kn+anm, n—-l+Mnum. n—1°
Coefficients ay, b, d,, K,, L, and M, are computed recursively starting from the boundary-layer outer edge.
This method was applied by Kawai to laminar flows, but it can be extended without difficulty to turbulent flows as was done by Délery. In
this case, second order backward difference schemes are recommended. Kawai’s method leads to more complicated algebra than methods using

compressible-incompressible transformation. However, the overall computing time is comparable since it does not entail repeated exchanges
between the incompressible and the physical planes.

Formulation with Primitive Variables. Carter (1978) has extended his inverse method to compressible flow through the use of the Levy-Lees
compressibility transformation.

The following new independent variables are introduced:

é=j p.u, . dx,
o (2.33)

p. ¥, '[ 7p
n=2ete ) Py
J28Jo p.
(In reality, the transformation used by Carter also includes a factor allowing the mapping of an axisymmetric flow into a two-dimensionam flow:
for the sake of simplicity, this factor has been discarded here.)

The transformed continuity and x-momentum equations are written:

oF v
28— +F+ - =0.
gag om
) oF ] 2 e
2&F_F-+V—=ﬁ(e—F2)+—[l<1+ﬁ>—F]
o  on n u/om
where:
F=Y o= T o Ph g 2Bdy,
u, T, P.H, u, dg
and:

2¢ n  pv )
V=——"—(F—+ .
pm,u.;( ox /28

(Carter’s formulation also takes into consideration the energy equation which will not be considered here for reasons exposed above.)

In the transformed plane, the relation between the stream function f and the perturbation stream function f becomes:

—r—r(| oa —M)
s+, oan €

The stream function 7 satisfies the boundary conditions:
JE& 0 =1 »)=0.
Finally a second change of variables is introduced:-

n=

En or ﬁ=(
m

y
f £dy)/eS*,
o P.
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where i =p,u,8* is the “perturbation mass flow”, i.e¢., the loss of mass flow in the inviscid stream resulting from the existence of the boundary-
layer. With the new variables, the perturbation stream function is written:

T=f- T G114, (2.35)

J2E
where:

h=r(e—1)dﬁ.

0

This relation is similar to the above relation 2.27 which can also be written:

$=¢—U<Y—%5*+h)

g Po

the only difference being in the scaling of the y co-ordinate.

This similarity is to be expected since the crux of all compressible-incompressible transformation methods lies in the correspondence:

¥y
y— Yocj Edy.

0 Pe

The final equation to be solved is equation 2.34 and the relation obtained by differentiating equation 2. 33 with respect to y (plus the energy
equation in Carter’s publication). These equation are:

a2 pdf _ =0 (A~ OF _ B0 Fyt o w\oF
m?F mag[\/ﬁ]‘+mF(n 1+h)]aﬁ m>p(® F)+aﬁ[l<l+u>aﬁ]'

Carter solves the inverse problem for a prescribed perturbation mass flow i (x) instead of the displacement thickness. This choice [which is
particularly convenient since the grouping p,u,8* appears in the definition of the perturbation stream function (equation 2. 35)] presents, in fact,
more essential advantages when the inverse calculation is used in a viscous-inviscid coupling method (see Section 3.2.1).

Method of Numerical Solution. — The governing equations are solved by using the Crank-Nicolson finite difference scheme with Newton
linearization. In the present formulation, Newton linearization is used on non-linear terms to accelerate the convergence of the iterative process at
each streamwise location. In the reversed flow region, the FLARE approximation is introduced to prevent instability while preserving the usual
rapid forward-marching scheme (see above).

In order to facilitate comparison with the numerical method employed in the (o, ) formulation, let us designate by 8u, 87 and 3P the change
in the dependent variables at a given point between two successive column iterations; that is:

Bthy, = Ul o — U
where g is the iteration index (it is recalled that B represents the unknown pressure gradient parameter: B=ue£id£5>.
X
The linearized finite difference form of the governing equations are written as:
VW w8V, w1 + Pty p—8tty o 1)=0Q, (2.36)
and:
A8ty o1+ B8, +CoBty iy + D,V =E,+H,5P. (2.37)

Repeated application of equations 2.36 and 2.37 across the boundary-layer results in a system of block tridiagonal linear system which is
solved by the following recurrence formulae:

Sty y=E,—H, 0B~ A, 8ty sy, (2.38)
8, =04 — S, 8B —R; 8ty ps1- (2.39)

The recurrence coefficients are computed from the wall where du,, 1=V, ;=0 to the boundary-layer edge. In the inverse mode, the
perturbation in the edge velocity 8u,, y and in the pressure gradient parameter 3f are computed from formulae and relations derived from:

— equation 2. 39 where the boundary condition 8V, y=0 is imposed;

— equation resulting from the x-momentum equation written at the outer edge where the y-derivatives must cancel out, thus:
ou
u— =p.
[

Hence the four relations:

Sy w1 =Ey 1 —Hy_ 1 Op— Ay Ot x,
5%., N-1=0n-1—Sy-13B—Ry_1 Sy, w
By 8u,, y=Ey+Hy3B,
8$m, N-1=Py Bty y—BUp, x-1)—Cn:
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which permit the determination of du,, , and 88. These edge values allow the starting of the recurrence formulae 2. 38 and 2.39 which are swept
from the boundary-layer edge to the wall.

It is to be noticed that in this method the unknown pressure gradient parameter B is treated implicitly in the numerical procedure. This
treatment avoids the numerical difficulties which are met at the separation (or reattachment) point by other methods also using primitive variables
in which B is determined explicitly by a shooting technique (see Keller and Cebeci’s method above as well as Arieli and Murphy’s method below).

Remarks. — Formulation of the direct and/or inverse boundary-layer problem in primitive variables may present some advantages:

— the possibility of a resolution either in the direct mode or in the inverse mode is far easier than for the (o, {) formulation. In a direct
calculation, u, and B are known, thus du,, ,=8B=0 and the back substitution process begins by using equations 2.38 and 2.39. The ability of a
boundary-layer calculation to easily switch from the direct to the inverse mode and vice versa is essential for coupling techniques.

As a matter of fact, it is preferable to treat weak interaction regions in direct mode, whereas strong interaction regions must be computed in
the inverse mode (for more detail, see Section 3):

— the use of primitive variables avoids the complication of solving for the unknown surface vorticity as is required by the (o, ) formulation.
In some applications (Carter, 1979, 1981), especially when large separated zones form or for very rapid compressions (as in shock-wave/boundary-

layer interactions), the Crank-Nicolson scheme produces streamwise oscillations of the solution. Then it is advantageous to employ a fully implicit
backward difference scheme. This of course does not change the basic principles of the method.

2.3.3. — Ardonceau’s Inverse Method

A different way of solving the inverse problem in primitive variables was proposed in 1981 by Ardonceau. His method is quite general since
it applies both to laminar and compressible turbulent flows. The problem is formulated in the compressible plane with primitive variables and can
deal with a large variety of prescribed quantities:

— pressure p (x) (direct mode);

— displacement thickness 8* (x);

— skin friction coefficient C; (x);

— perturbation mass flow m (x);

— edge normal mass flow: p, v, (x).

The x-momentum and energy equations are discretized by using a second order centered difference scheme to represent the y-derivatives. This
scheme allows for a variable y-step in the case of turbulent flows. When the flow is attached, the x-derivatives are approximated by a second

order backward difference scheme. For separated flows, a global iteration procedure similar to the one of Klineberg and Steger (see above) is
employed but with a more refined discretization of the form:

Ou _F+1d0u|  F—16u
ox 2 oxly 2 ax|
with:
G| _ Bt =Bty aF U g,
x|y 2Ax ’
_aﬂ __éum.n+4um+l,n—um+2_.n
x|y 24Ax '

The function F which insures a blending between the forward and backward schemes is defined as:

F, ,= Ym, l:l.—exp<|—u@)].
Ium. nI Upy

This progressive transition between the two schemes avoids oscillations of the line u(x, y)=0 during the iteration on the non-linear terms. The
reference velocity uy, is chosen sufficiently small so as not to allow downstream influence on well attached profiles.

The discretized x-momentum and energy equations results in a block (2x2) tridiagonal matrix of dimension Nx N (N being the number of
grid points in the boundary-layer) plus:

.. . . du
— one column containing the discretized unknown edge gradient: p. U, y <
x

— one row which expresses the prescribed boundary-condition in a discretized form.

In this formulation, the boundary condition (prescribed quantity) is treated implicitly (like in Carter’s method) thus avoiding numerical
difficulties at separation (or reattachment).

The resolution of the above matrix is made by a substitution algorithm derived from Thomas’ algorithm. The velocity v-component is given
by the continuity equation integrated from the wall to the outer edge by means of a Crank-Nicolson scheme. As in the above methods, an
iteration is made at each streamwise step in order to cope with the non-linearities of the problem.
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2.3.4. — Other Inverse Methods

In 1974, Horton proposed an inverse method for a scparating laminar boundary-layer with prescribed wall shear (see also Horton, 1975). The
boundary-layer equation in the form 2. 19 is used (see Section 2.3.1 above). The method of solution consists in replacing the § derivatives by 3-
or 4-point Lagrange backward difference formulae. This results in an ordinary differential equation for 9f/on at each & The inverse problem is
solved with condition 2.20 prescribed at the wall. The solution procedure uses a shooting technique on B with Newton’s method to enhance
convergence. The author was able to compute separation and reattachment with non evidence of any singular behavior and found no numerical
instabilities in the reversed flow region although the forward marching procedure was used cverywhere without, seemingly, the FLARE
approximation. This result is in contradiction with calculations made by other authors.

In 1972 Klemp and Acrivos presented an original method for integrating the boundary-layer equations through a region of reversed flow. Their
basic idea consists in dividing the flow into two-domains: a region I in which the flow is reversed and a region IT where u is everywhere
positive. Along the line y=T"(x) separating I and 11 u=0. For a given boundary location I'(x), the boundary-layer equations are integrated
separately in I and II in the appropriate flow direction by using standard numerical techniques. The solution is obtained by iteration on I'(x) until
the slopes &u/dy along I'(x) become identical in flows I and II. The authors applied this technique to the problem of the flow over a finite
stationary flat plate, the surface of which moves at a constant velocity in the opposite direction of the free stream. The pressure gradient being
assumed to be zero the method was in fact worked in the direct mode and, consequently, the singularity at separation (and reattachment) was not
avoided. In spite of this limited and non-conclusive calculation, Klemp and Acrivos’ method is to be retained. It has received an interesting
application by Cebeci et al. (see below).

As already mentioned, in 1976, Cebeci published an inverse technique for compressible laminar and turbulent boundary-layers. His method
applied to prescribed wall shear as well as to prescribed displacement thickness but it was restricted to non-separated flows. The method was
formulated in primitive variables with the unknown pressure gradient kept in the x-momentum equation. The boundary-layer equations are solved
by using at two-point finite difference method (Keller, 1970). The unknown pressure gradient is determined explicitly at each streamwise station
by an outer iteration loop using Newton’s method.

In 1979 Cebeci, Keller and Williams (1979) extended the above method to separating boundary-layer flows (their formulation is restricted to
incompressible laminar flows but it could be easily transposed to compressible turbulent flows). The method, which is worked out for a prescribed
displacement thickness, employs the Box Scheme along with the FLARE approximation in separated regions. The equations being written with
primitive variables, the inverse problem is treated as a non-linear “eigenvalue” problem for the pressure gradient. Althoug the FLARE approxima-
tion allows a fully forward marching procedure, the approximate reversed flow thus computed is corrected by a downstream-upstream iteration
similar in nature to the one introduced by Klemp and Acrivos (see above).

In 1980 Arieli and Murphy proposed an inverse method which solves the compressible laminar and turbulent boundary-layer equations written
in primitive variables. A Levy-Lees transformation (see equations 2.33 in Section 2.3.2 above) is applied mainly to permit the computational
domain to grow in the streamwise direction following to some extent the growth of the boundary-layer. A stream function f is introduced so that
an equation similar to equation 2. 19 is obtained (differences arise from the presence of the turbulent eddy viscosity). The total enthalpy is assumed
constant (the energy equation is not solved). The partial differential equation is integrated by using the generalized Galerkin’s method (for details
see Murphy, 1973). In the present case, the stream function f, the velocity df/on and the shear &* flén? are approximated by Taylor’s series
between adjacent mesh points in the n direction assuming a constant fourth derivative 2* flon* across the interval (n,, N,+,). The streamwise
derivatives are approximated by:

— backward difference at nodal points where: 61 = lg 0.01;
ue

— central difference near the zero-velocity line; i. €., at nodal points where: —0.01 <0f/on <0.01;

of

— forward difference when the flow is reversed and a—-< —0.01.
ul

Iterative sweeping is used so that convection in the region of backflow can be properly taken into account.
The inverse mode is solved with prescribed wall shear or prescribed wake centerline velocity if the method is applied to compute a wake flow.

In reality, this method is a pseudo-inverse method in the sense that it incorporates an iterative procedure on the prescribed quantity which is
varied until the computed pressure distribution coincides with the pressure distribution imparted to the boundary-layer. Thus the present method
is in fact a direct technique which uses the inverse mode to avoid (in a manner which is not clear) the singulariry at separation (or
reattachment). Basically, the iterative process employs a Newton-Raphson iteration procedure in which the “sensitivity” functions are evaluated
by solving a set of perturbation equations.

2.4. — Extension to 3-D Boundary-Layer Flows

2.4.1. — General Remarks on Boundary-Layer Separation in 3-D Flows

Like for 2-D flows, any boundary-layer method (integral as well as finite difference method) can be used in 3-D transonic or supersonic shock-
wave/boundary-layer interaction as long as the compression is not too intense. It must also be sufficiently spread out to maintain local conditions
far from the onset of separation. This is not the place to cite these methods. As in 2-D flows, we will restrict our attention to methods which
incorporate special procedures enabling them to work in situations where separation occurs or is likely to occur. Such situations generally
correspond to the breakdown of classical methods.

As we already know, the calculation of a 2-D boundary-layer which undergoes an interaction leading to separation or to a nearly separated
state is not possible in the direct mode (except in the very improbable situation where the prescribed pressure distribution would satisfy regularity
conditions ensuring a smooth passage of the solution through the separation point). In 3-D boundary-layer calculations, numerical difficulties are
also met when the prescribed external flowfield entails a destabilization of the boundary-layer towards a state where the 3-D separation phenomenon
is likely to occur. Physically, this situation is evidenced by a rapid deviation of the wall streamlines (also called skin friction lines) which tend to
become asymptotic to what is called the separation line (for more information on separation in 3-D flows see Section 4 of Part I). A local
mathematical analysis of boundary-layer equations is far more complicated in 3-D flows than it is in 2-D flows. To our knowledge, no analysis
similar to Goldstein’s study has been undertaken for 3-D boundary-layers.
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Nonetheless, very instructive results were obtained by Cousteix and Houdeville within the context of an integral method of solution (1981). They
showed that singularities appear as a consequence of the focusing of the skin friction lines. These lines form in fact a family of characteristic lines
of the quasi-linear system of first order partial differential (integral) equations applied to the boundary-layer. Such a focusing occurs in the vicinity
of a separation line but must not be confused with the separation phenomenon itself. In direct mode calculations, the approach of the singularity
leads to quasi unbounded and unrealistic growth of the boundary-layer thickness. In fact, this unphysical behavior can be avoided by extending
the inverse concept to 3-D boundary-layer flows. In three dimensions, two quantities must be prescribed since now the inverse problem involves
two unknown quantities, namely the two external velocity components in the surface. The prescribed quantities may be:

— either the streamwise and crosswise displacement thicknesses (which is the more convenient choice for coupling methods of calculation);

— or the wall shear-stress components.

Indeed the 3-D inverse concept has been successfully worked out within the context of integral methods. Applications for incompressible
flows have been presented by Cousteix and Houdeville (1981), Stock (1980) and Blaise (1982). These computations have shown that it is possible
to extend the use of the boundary-layer equations to the immediate neighbourhood of a separation line and even beyond it.

2.4.2. — Integral Inverse Methods

To our knowledge, applications of 3-D inverse boundary-layer calculations using an integral formulation have been restricted to incompressible
flows.  The essential reason for this restriction is probably the lack of accurate experimental data on 3-D separated compressible flows, these data
being necessary to test an inverse method. Nevertheless, it should be worthwhile to briefly present the existing methods since their extension to
compressible flow would be generally straight-forward. The three methods cited above which apply to turbulent flow use the two global momentum
equations plus the entrainment equation. These equations are written below in streamline co-ordinates. The x-axis coincides with the projection

on the surface of the external streamline. The z-axis is orthogonal to the streamline in a plane tangent to the surface, the y-axis being normal to
the surface.

In the equations, 9/ds and 8/én represent (1/h,)(3/dx) and (1/h,) (9/0z); hy and h, are the metric coefficients of the employed co-ordinate
system. K, and K, are the geodesic curvatures of the x and z lines; they are related to the metric coefficients by the formulae:
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— entrainment:

— 8% *
M+(5_5r)<lal}=_1{1>_@_§§ L6U=_K =@_ﬁ_c
0Os U, os on U, on

The integral thicknesses figuring in the above equations have been defined in Section 1.3 (for an incompressible flow p/p,=1). The thickness
ratio H is defined as H=5%/6,,. Generally speaking, the above system possesses ten unknowns. In the direct mode, these unknowns are the six
integral thicknesses, the two skin-friction coefficients and the entrainment coefficient. In the inverse mode, the two external velocity components
are unknown so that two quantities pertaining to the boundary-layer development must be prescribed. In the cited methods, these input quantities
are the two displacement thicknesses 8 and 8%. But it is obvious that other quantities can be prescribed, for example the skin friction coefficients.

Classically, the above system of three equations must be supplemented with “closure” relationships to express thickness ratios as well as the
skin-friction and entrainment coefficients.

In Cousteix and Houdeville'’s method, the closure relations are deduced from similarity solutions of the 3-D boundary-layen partial differential
equations (Michel et al., 1972; Cousteix and Houdeville, 1981). These solutions are obtained by using an isotropic eddy viscosity model such that:

i1 A— v 1 — ow
L= —p UV =(+p) . L=p— —pW V= (utp) o,
" PR P (e +p) 2 h % P (r+p) o

where the turbulent eddy viscosity is expressed with the mixing length concept:

2 w 2
w=pF*? Gl + el with

! 0,085 tann ( 24LY
dy ay 5

0.0853

and incorporates a damping function of the form:

1
F=l-exp| ————— /1 with t=(t2+12)!2,
p[ 26x0.41 x pV p] =)

The use of the similarity solutions permits the expression of the closure relations as functions of the three parameters:
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thus reducing the number of unknowns to three.

In the method proposed by Stock (1980), the closure relations are deduced by considering two velocity profile representations:
— the streamwise velocity distributions are represented by the Coles family extended to flows describing separated profiles (see above);

— the method being restricted to infinite swept wing conditions, (or cylindrical flow) it is assumed that the velocity profile in the spanwise
direction can be represented by a flat plate velocity profile. Knowing the angle o between the chordwise direction and the external velocity vector
at the same time as the streamwive velocity profile, the crossflow profile can be computed from a simple geometric construction.

The entrainment coefficient is evaluated with the lag-entrainment formulation (see Section 2.3 above).

2.4.3. — Finite Difference Methods

The finite difference inverse method developed by Formery (1981; see also Formery and Délery, 1981; Délery and Formery, 1983) extends to
3-D flows the basic principles underlying Carter’s method (see Section 2.3.2 above). In order to simplify the presentation, we will restrict ourselves
to the case of a 3-D boundary-layer developing on a flat plate. It will also be assumed that the Reynolds shear-stresses can be expressed in terms
of an isotropic eddy viscosity p,. This assumption is not essential, more sophisticated turbulence modeling can be envisaged. Let us consider a
cartesian co-ordinate system O xyz set up in such that axes O x, O z are in the surface and O y is perpendicular to the surface. The 3-D turbulent
boundary-layer equations relative to the mean motion (Reynolds’ averaging) are written:

— continuity:

olpw) , (pr) , 0low) _,

0x ay oz
— streamwise momentum:
01 i)
pua—u+pv—u+pwa—u=——£+—a—|:(u+u,)@-j| (2.40)
0x oy 0z ax dy dy

— crosswise momentum:

ow ow aw ap 0 ow
— 4 pr—FpPpW—=— — 4+ — +H)— | 2.41
pu—_+p % pw— 2t 3 |:(u ) 6y:| (2.41)

The energy equation will be replaced here by the assumption that the stagnation enthalpy is constant throughout the flowfield. As we know
(see Section 2.2. 1 above), this assumption does not entail large errors provided the flow is adiabatic and the Mach number M, at the boundary-
layer edge moderately supersonic. However, consideration of the energy equation would not modify the basic principles of the method.

One introduces vectors Q and A defined as:

Q=curl V, pV=curlA.

The components of £ and A along the axes Oy, O x, Oz are designated respectively by Q,, Q,, Q, and 4;, 4,, 4;. Introduction of the
potential vector A automatically satisfies the continuity equation. Without loss of generality (except for possibility of mass injection at the wall)
vector A — which is defined to within an arbitrary gradient— is chosen in such a way that:

A (x, 3, 2)=0,  Ay(x,0,2)=4;(x, 0, 2)=0.

Within the boundary-layer approximations the following relations hold true:

ooy _ @ G 1 ]
Yax oz 2 oy’ ? ay
pum A 045 04 _ o4,
ay’ ox oz’ dy

By taking the y-derivative of equations 2.40-2.41 in order to eliminate the unknown pressure p, one obtains the new system:

0, 0, Q, du ow ( dp dp dpdw  dpow &

C2 002 4 ow 2 0, —pQy— —{u— W | —u—— —w—— = — [+ ) Q 2.42
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By definition, the streamwise and crosswise displacement thicknesses A, and A, are expressed by the following relations in the computation
reference system (the displacement thicknesses expressed in the external streamlines co-ordinate system are defined in Section 1.3 above):
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where V, represents the velocity modulus at the boundary-layer edge. It can be readily shown that the “modified stream functions” A, and A,
defined by relations:
A=A, +pul,cosa—pw(y—A,sing), (2.44)
Ay=Ay+pu(y—A,cosa)—pwA,sina, (2.45)
where o is the angle between the external velocity V, and axis O x satisfy the boundary conditions:
A,=A4,=0 when y=0,

A, 4,50  when yo oo.

Thus, the use of 4, and A, permits the generalising to the 3-D casc of the modified stream function ¥ of Carter’s 2-D inverse method (see
Section 2.3.2 above). By taking the y-derivative of equations 2.44 and 2.45, one obtains:

A .0
% =pQ, (y—A, sincz)+pQ3Azcosa+A2ua—pcosa—w(y—Az sma)—p (2.46)
ady dy dy
0 .0
QZ—:’ =pQ, Ay sina+pQ;(y—A, cosm)-HA(y—Alcosoz)—p —A; wsin « P (2.47)
oy oy dy

The inverse problem consists in solving equations 2.42-43-46-47, the unknown functions of which are Q,, Q;, 4, and 4,. The boundary
conditions of the problem are:

— at the wall:

— at the external boundary:

yooo;  Q=Qy=A,=4,=0.

Components u, v, w of velocity are easily computed from Q,, Qs, 4, and A,

In the proposed method, the inverse problem can be solved according to one or the other of the following sets of prescribed quantities:
— displacement thicknesses 8} and 8% (A, and A, are immediately deduced from 8% and 8%);

— components of the skin friction vector; or which is equivalent, the skin-friction coefficients Croand Cy .

For the numerical resolution, equations 2. 42-43-46-47 are linearized and discretized according to the computational molecule shown below:

n+1

The mesh has a variable step size in the y-direction to permit mesh refinement in the vicinity of the wall. The x and z-derivatives are evaluated
by second order forward difference schemes. The y-derivatives are computed by a centered scheme.

Discretization of equations 2.42 and 2.43 at point P™ ™ ? and of equations 2.46 and 2.47 at P’ of co-ordinates (m Ax, y,, s2» P Az) along
with the use of the trapezoidal rule to express the velocity components u and w lead to a linear system of algebraic equations which is solved at
each computation station (m, p) by using a generalization of Thomas’ algorithm [for detail, see Formery, 1981]. When the displacement thicknesses
are prescribed, a special procedure must be used to compute the components of vorticity at the wall in order to start the recurrence calculation. The
adopted method is an implicit procedure which gencralizes to 3-D flows the method briefly described in Section 2. 3.2 above. The procedure leads
to a linear system of two equations allowing the computation of Q, and Q; for y=0. When the skin-friction vector is prescribed the computation
is a bit more simple since then Q, and Q, at the wall are practically equal to the prescribed quantities.

The computation is stabilized in the region where u and w change sign thanks to the FLARE approximation.

Another finite difference method was proposed more recently by Radwan and Lekoudis (1983). In this method, the primitive momentum
equations are solved directly, i.e., without prior differentiation with respect to y. But, in a manner similar to that employed in the previous
technique of solution, a two component vector potential is introduced. The solution procedure is based on the Keller box scheme with use of the
FLARE approximation in reversed flow regions. Calculations were performed with the displacement thicknesses prescribed, an algebraic eddy
viscosity model being used. Since application was restricted to incompressible cylindrical flows, we will not give any further details on this method.

Applications of the Formery-Délery method are given in Section 4.2 of Part I. One of them concerns a transonic interaction under infinite
swept wing conditions due to the lack of experimental data relative to compressible 3-D interactions (in fact the method works in truly 3-D
flows). The example clearly shows the ability of the inverse mode to compute a separated zone including a separation and a reattachment line.
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3. — INVISCID-VISCOUS INTERACTIVE METHODS

3. 1. — Basic Principles

The basic idea of most Inviscid Viscous Interactive (IVI) methods (also called coupling methods) consists in splitting the flowfield into:
— an external or outer region where viscous forces (laminar as well as turbulent stresses) are assumed to play a negligible role;

~— one or several inner region(s) in which the dissipative effects are essential. These regions are boundary-layers, wakes, mixing zones, etc.

The usual coupling approach is a substitute for the solving of the full time-averaged Navier-Stokes equations for flows in which dissipative
effects are confined within regions small in size when compared to a characteristic length scale of the problem (chord length of an airfoil, blade to
blade distance of a cascade, etc.).

Thus, in the coupling approach, the external flow has to satisfy the much simpler Euler equations (which are frequently replaced by the
potential equation if the inviscid flow is, or is assumed to be, irrotational); whereas the dissipative zones are modeled according to various
approaches differing in their level of sophistication:

— the full Navier-Stokes equations can be applied to the whole inner region, as is done in what is called the multi-domain approach (see
Section 5);

— analytical methods based on asymptotic expansion or perturbation techniques are sometimes employed (see Section 4);

— the most popular models, however, make use of the Prandtl equations which are solved either by finite difference techniques or, more
frequently, by integral methods (see Section 2).

Mixed procedures can in fact be envisaged: for instance, boundary-layer equations are applied to the major part of the viscous flow, except in
small regions where the validity of these equations is questionable (shock foot region, trailing edge flow, largely separated zone, etc.). These sub-
domains are represented by more refined analyses using either analytical techniques or numerical solution of the full Navier-Stokes equations.

In what follows, we will only consider viscous-inviscid coupling methods using the classical Prandtl equations to represent the boundary-layer
flow. More refined approaches, still in the development stage, will be briefly evoked in Section 3.4. This presentation will also be restricted to
isoenergetic and steady flows. Neither do we intend to discuss viscous-inviscid coupling methods in general. These methods involve many
problems, the consideration of which is beyond the scope of the present AGARDograph. Thorough examination of the coupling approach can be
found elsewhere (Le Balleur, 1978, 1980; Lock and Firmin, 1981). The present review will concentrate on points which are of critical importance
when applying coupling methods to shock-wave/boundary-layer interaction problems, with emphasis being put on turbulent régime.

Briefly speaking, development of a viscous-inviscid interactive technique requires the following elements:

(1) an accurate and fast solver of the inviscid flow equations. These qualities are especially important when computing shock-wave/boundary-
layer interactions since a meaningful “capturing” of the interaction necessitates local mesh sizes smaller than the thickness of the incoming boundary-
layer;

(2) an accurate (i. e., physically realistic) method with which to compute dissipative flow regions;

(3) representative and convenient compatibility relations between the outer and the inner flow regions. The compatibility generally results in a
coupling equation, the form of which may lead to difficult problems in transonic and/or supersonic flows.

(4) an efficient iterative procedure to insure a fast convergence of the interactive calculations between the two flow regions.

Point 1 is a very broad domain, the examination of which would be beyond the scope of the present AGARDograph. Point 2 has been
developed in Section 2. Points 3 and 4 will be discussed in what follows.

3.2. — The Problem of the Coupling Conditions

3.2.1. — The Various Forms of the Coupling Equation

Basically, the inviscid-viscous coupling problem consists in the calculation of two flows, described by different equations, which must satisfy
boundary conditions (at infinity and on the body surface) and be “compatible” along their common free boundary 3(x). Conditions to be satisfied
on 8(x) are continuity of pressure and flow direction. Tt is usual to choose as free boundary 3 some conventional outer edge of the boundary-layer.

In what follows, we will neglect wall curvature effects and consider the classical boundary-layer system of co-ordinates where axis Ox is in the
surface.

Integration along y of the boundary-layer continuity equation gives the flow deviation [6;]y; induced at § by the boundary-layer, viz.:

[l 22 = 2 — €= dPer) @0
u X

In this above equation, 8* is the conventional boundary-layer displacement thickness (more sophisticated viscous-inviscid models involving
“defect formulation” will be briefly presented in Section 3. 4).



154

Thus, the two flows must satisfy, at each streamwise distance x, the following conditions:

[P x)s=[p(x)]s (the designates perfect fluid quantities) 3.2)

and:

{851 =[65l5.- (3.3)

Equation 3.1 constitutes what is called the coupling relation. Other forms of this equation are often preferred. To facilitate the inviscid
calculation, an analytical approximate report of condition 3. 1 at some distance of the free boundary is carried out. As demonstrated by Lighthill
(1958), this is done by considering a continuation of the external inviscid flow into the region occupied by the boundary-layer. By making a Taylor
expansion in the vicinity of 5 while, neglecting second order terms and assuming that p and u for this fictitious flow can be regarded as constant
across the boundary-layer and equal to their outer edge values (which is consistent with the standard boundary-layer approximations), one arrives
at:

d(p, u.

P U() =PV +(B—y)- o

Since it is assumed p,=p, and u,=u,, combining this relation with equation 3. 1 yields:
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From equation 3.4 we can immediately draw two alternative conclusions:

— when y=3%*, we obtain:

= *
[;] oy 3.5
u, lp+ dx
which is a no slip condition on the displacement body.
— when y=0, we have:
v 1 d__ _
[ijl =— s 8%, (3.6)
u, lo  pou. dx

which corresponds to a condition of fluid injection at the wall (this condition is also known as the transpiration velocity concept).

When relations 3.5 and 3.6 are used, conditions at the boundary-layer edge p,, u, are generally identified with inviscid flow quantities P, u
which are computed either on the displacement body or on the wall. There is a certain degree of inconsistency in making this identification which
is justified only if the continuated inviscid flow remains practically constant in the y-direction. Although this is not true in strong interaction
processes, nevertheless the above identification provides a simple way to take into account static pressure variation across the boundary-layer (Le
Balleur and Mirande, 1975). This fact is only an empirical observation and a formulation of the “overlapping” problem free of any approximation
can be made by redefining boundary-layer integral quantities from the “defect formulation” concept (see Section 3.4 below).

Coupling equations 3.1, 3.5 and 3.6 are in principle equivalent within the boundary-layer approximations. The reality is more subtle and in
fact they correspond to different interpretations of the viscous-inviscid interaction problem.

Use of equation 3.1 makes the problem similar to the classical multi-domain approach — or “patching approach” — in the sense that the two
flows are distinct and can be considered as really “existing” on each side of the free boundary. In fact, these streams satisfy different equations
(the Euler and Prandtl equations respectively) so that only continuity of quantities can be satisfied at 8; the derivatives are discontinuous.

Coupling equations 3.5 and 3.6 imply an overlapping of the two streams. The boundary-layer flow is no longer contiguous to the inviscid
stream and the existence of the boundary-layer is essentially “felt” by the outer flow as an alteration of the inviscid no-slip condition on the body
surface. This is particularly true when the coupling condition is written on the wall: then there is no longer a *‘geometrical” constraint via § or &*
between the two flows. The formulation involving an overlapping between the two streams is often termed “matching” method and acquires its
full significance when the defect formulation is introduced.

Differences between the patching and the matching approaches are immaterial in low subsonic flows and the various coupling relations give
nearly identical results. However, in supersonic and transonic interacting flows, consideration of different coupling equations leads to dramatic
change in the behavior of the solution. This problem—which is of the outmost importance when applying the interactive concept to compute
shock-wave/boundary-layer interactions —will now be discussed.
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3.2.2. — Subcritical and Supercritical Boundary-Layers

The coupling problem will be discussed by considering first the local boundary-layer equations in order to make it clear that this problem is
inherent in the boundary-layer approach and is not a consequence of the use of an integral method of solution. In a second part, the problem will
be formulated with integral concepts and it will be seen that similar conclusions are then reached.

Local Analysis. — Weinbaum and Garvine (1968) have for the first time established the following equation giving flow deflection [6]; at the
boundary-layer edge (see also Carriére et al., 1975) :

95=Bd—‘p +C, 3.7
dx

where:

5 . 2
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In the above expressions, M is the local Mach number in the boundary-layer, p the pressure and ¥ the ratio of specific heats. It is assumed
that 0 is zero at the wall. Equation 3.7 is obtained by combination of the boundary-layer equations along with the classical hypothesis: dp/dy.

For a wake flow, the inner limit & can be set equal to zero since velocity is non-zero on the axis y=0 (except at a “separation” or “reattachment”
station). A difficulty arises in boundary-layer flows since then B and C are singular in the limit e >0 (M =0 at y=0). However, in turbulent
flows, the problem can be circumvented by taking for ¢ the thickness § of the viscous sublayer, the normal velocity at § being asymptotically equal
to zero to all orders 8" as shown by Mellor (1972) (see also Section 4.3.1 on analytical methods). An other way to avoid the singularity is to
consider a fictitious slip-velocity at the wall equal to the “wake velocity” of the Coles’ composite law. In fact, behaviors to be discussed depend
mainly on the more or less important “filling” of the velocity profile. For a turbulent boundary-layer, this filling is essentially represented by the
wake component

For a supersonic boundary-layer (or wake), integral B may be either positive or negative, as is intuitively obvious if one considers the change
of sign of the integrand at the sonic point of the velocity profile. Drastically different responses of the boundary-layer in a free interaction process
correspond to this change in the sign of B. To see this, let us consider a perturbation of equation 3.7 near flat-plate conditions (dp/dx =0); then:

d,
8 — [0)p=BL.
dx

Consequences:

— if B is positive, an increase in 8 i.c., a thickening of the boundary-layer (8 ~d3*/dx), corresponds to pressure rise. By analogy with one-
dimensional perfect fluid theory, the boundary-layer is then said to be subcritical, in the sense that it behaves (in an overall a global manner) like a
subsonic flow;

— if B is negative, an increase in 6; is associated with a negative pressure gradient. In this case, the boundary-layer is said to be supercritical,
since it behaves like a supersonic flow.

The above terminology was introduced in 1952 by Crocco and Lees in their pioneer paper on viscous-inviscid interaction.

A laminar boundary-layer is most often subcritical, a supercritical state being encountered only in hypersonic flows or for highly cooled surfaces
(in the latter, very low temperature levels close to the wall entail low local speed of sound and accordingly high Mach number; thus B is more
likely to be negative). For a turbulent boundary-layer, in which the Mach number profile is much fuller, transition from subcritical state to
supercritical state occurs approximately for M,=1.3 for a conventional flat-plate profile (H;=1.3). One sees that supercritical behavior is met as
soon as the transonic flow régime is reached.

The essential feature of a supercritical state is that the boundary-layer cannot undergo an interaction process with smooth tendency towards
separation, i.e., a process in which the pressure p, the thickness 6* and the shape parameter H, all increase. Such a behavior is only possible for a
subcritical flow. For a supercritical boundary-layer, the onset of an interaction process leading to separation requires a preliminary transition—or
Jjump— to subcritical conditions. Various analyses have been proposed to connect a given upstream supercritical state to the associated downstream
subcritical state. These jump models have been formulated within the context of integral methods. In a manner similar to normal shock theory,
they use a set of equations expressing the conservation of appropriate global quantities across the jump (Crocco;1954; Klineberg, 1968; Hunter and
Reeves, 1971).

We will not comment any further about the “jump” theory, such a discontinuity in the boundary-layer evolution being artificial and physically
meaningless. It must be clear that the sub-and supercritical states are not “‘real” properties of the dissipative layer but are a consequence of the
model (inadequate as a result of over simplification) adopted to depict the viscous-inviscid interaction. The subcritical-supercritical behavior which
is met when the coupling conditions are written at & is probably a consequence of the neglect of pressure variation across the boundary-layer. As
a matter of fact, in a formulation using coupling at 8, Holden (1969) was able to compute smooth interaction in turbulent supersonic flows (no
jump needed), provided that normal pressure gradients were introduced and computed with the help of the integral y-momentum equation (these
calculations were made within the context of an integral method).

Le Balleur (1977) has shown that it is possible to write the coupling on the displacement body or at the wall in a manner similar to equation
3.7. By considering a continuation of the inviscid flow below the boundary 8, one can write (if the pressure p is assumed constant across the
boundary-layer):

| dp [® MP—1
B-0=- L M-, (.8)
vp dx), M?
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Within the classical boundary-layer approximations, M can be considered as constant and equal to M,. Combination of equations 3.7 and
3.8 gives:

— for the coupling on the displacement body (y =38*):
dp

X

P {eM2-1 /1 1
Al |

The second integral figuring in B* is always negative since M is always greater than M. The first integral may be positive if the boundary-
layer flow remains supersonic below the displacement surface. As a consequence, B* is less likely to be negative than B (see equation 3.7). In
fact, for a flat-plate turbulent boundary-layer (H;=1.3), B* changes sign near M,~2. One sees that coupling on the displacement surface does
not suppress supercritical behavior (in turbulent flows); it only postpones the critical limit to higher Mach numbers.

0.=8*2 1,

where:

— for the coupling at the wall (y=0):

dp

dx

1371 1
By=—— = — et dy.
‘ Yp.[ (M’ M’) i’

As is easily seen, B, is always positive (since M is always greater then M). Thus coupling at the wall leads to a formulation of the viscous-
inviscid problem in which the boundary-layer always behaves as a subcritical flow, whatever the external Mach number may be. There is no longer
a need for an artificial jump to initiate an interaction process.

8o=B8,Z +¢C

with:

Criticity Within the Context of Integral Methods. — The same above conclusions can also be drawn by consideration of an integral method of
solution for the interaction problem. In a general way, the coupling relation (see equations 3.1, 3.5 and 3.6) is expressed by means of an
ordinary differential equation involving boundary-layer global characteristics (8*, H;) and the edge velocity (or the edge Mach number). On the
other hand, x-wise variations in boundary-layer integral properties are related to change in edge conditions by ordinary differential integral equations
generally two in number (see Section 2.2 above). Thus, the interaction process is formulated via a system of three equations for three unknown
quantities, namely: a thickness, 5* for instance, a shape parameter H, and the velocity (or Mach number) at boundary-layer edge. This system can
be written in the condensed form:

do*
d.
;H G
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waaf |7
u, dx

with y=3, 8* or 0 according to the coupling relation envisaged. Function f is the Entrainment coefficient, or the Shear-Work integral or the
Shear Stress integral depending on the “second” equation employed. Coefficients of matrix A4 depend only on the Mach number M, and on the
velocity distribution shape parameter. Denoting by D the determinant of matrix A, and applying Cramer’s rule, system 3.9 leads to a relation of
the form:

1 du,
D= —=d,8,+d,
u, dx S

One sees that a relation similar to equation 3.7 is obtained in such a way that the same conclusions can be drawn by discussing the sign of
D. When equations 3.1 is used, the vanishing of D corresponds exactly to the Crocco-Lees critical point(Crocco and Lees, 1952).

Integration of system 3.9 is not possible at the point where D vanishes, except if regularity conditions are locally satisfied. These conditions
are obviously that d, 8,4+ d,=0 when D =0 (It can be shown that if u, is regular, 8* and H, are also regular, see Carriére et al., 1975). The critical
point corresponds to a saddle-point singularity and is similar to the throat singularity of a one-dimensional perfect fluid flow.

The existence of a critical point (with associated subcritical and supercritical states) has also important repercussions in boundary-layer
calculations using the inverse mode.

One of the ways to perform an inverse calculation, consists in solving system 3.9 for prescribed 8, (as we know, see Section 2 above, other
inverse procedures are possible). As quoted above, integration of 3.9 is not possible if D=0. The diagram shown in Figure 3.1 gives in the
plane (H,, M,) the locus of the points where D vanishes for the three types of inverse input 6,. It can be scen that the critical boundaries are not
very sensitive to the “second” equation employed (the present calculations have been made with the velocity profiles defined by equation 2.9 in
Section 2 above). Concerning an inverse integral method, the following conclusions can be drawn for a turbulent boundary-layer starting from an
initial flat-plate situation:

— if 6 is prescribed, supercritical behavior is met as soon as M,~1.3;

*
— if Bz = ?« (i. e. the displacement thickness) is prescribed supercritical behavior appears for M, 2 2;
X

. d - - el . . . |
— if Bp= d—(peuQB*)/peue (i.e., the “perturbation mass flow”, see Section 2.3.2 above) is prescribed, there is no risk of “criticity”: the
b3

boundary-layer always responds as a subcritical flow.
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Fig. 3.1 — Integral coupling method — Critical curves.

As shown by numerical experiments, the above conclusions remain valid when the boundary-layer equations are solved with a finite difference
method:

Conclusions Concerning the Coupling Formulation. — To summarize the coupling problem in transonic and/or supersonic flows,

— coupling at boundary-layer edge is not recommended (and is now rarely used) for the following reasons:

(1) this technique necessitates the location of the boundary-layer edge, hence difficulties can be met in performing the outer inviscid flow

calculation. Furthermore, boundary conditions for the outer field have to be imposed on an ill-defined boundary which moves in the course of
the iterative procedure;

(ii) supercritical response appears in the transonic range (for a turbulent régime), leading to severe numerical difficulties. In principle, this
problem could be avoided by resorting to higher order boundary-layer formulations but at the cost of a greater complexity in the calculation of the
dissipative layers,

— coupling on the displacement body has long been considered as the most natural way to take viscous effects into account. Nevertheless, the
displacement surface is changing at every iteration step which complicates the inviscid flow calculation; and supercritical behavior is to be expected
for M, 22 (for a turbulent régime);

— coupling at the wall does not suffer from these disadvantages since:
(i) the effective body geometry “seen” by the inviscid stream remains unchanged during the iterative procedure;

(i) the response of the boundary-layer is always subcritical.

However, the use of a coupling equation written at the wall may be questionable as a means of representing viscous effects due to large
separated zones. In this case, the displacement body concept seems more appropriate to correctly depict reality. Secondly, when the inviscid flow
is computed with the general Euler equations (which is necessary when computing internal flows), a problem arises in the determining of the
entropy of the fuid entering into the computation domain when the coupling relation gives a positive mass injection.

In the following Sections, we will mainly consider viscous inviscid calculations in which the dissipative layers remain subcritical, in the sense
that no jump has to be introduced. This implies coupling at the wall or on the displacement body for turbulent flows where the Mach number is
not too high (M,<2).

3.2.3. — Weak and Strong Interactions

In viscous-inviscid interacting flows, one has to distinguish between weak and strong interaction régimes.

A weak interaction régime is said to exist when the flow properties (body pressure distribution, for instance) are essentially imposed by the
inviscid solution. This means that there are only small differences between the real (viscous) flow wall pressure distribution and the pressure
distribution given by the fully inviscid solution. In this case, the consideration of viscous effects is merely a (small) correction to the inviscid

solution. In principle, it is not then necessary to iterate the dissipative layers and the perfect fluid calculations. The computation chain is as
follows:

(1) Perfect Fluid — (2) Boundary-Layer (direct mode) — (3) Perfect Fluid with corrected boundary conditions at (or near) the wall — Stop.

When the iteration loop is limited to one cycle, the compatibility conditions are not strictly satisfied except the 8;, condition (most often, weak
interactions are computed with the displacement body concept). However, for a truly weak interaction régime, the error on the pressure distribution
is very small and, as has been shown by numerical experiments, further iterations do not substantially improve the solution. The weak interaction
behavior corresponds to the classical Prandtl boundary-layer concept. In terms of the triple-deck asymptotic theory (see Section 4 below), the
hierarchy of the flow tends to the classical direct (i.e., prescribed external pressure field) boundary-layer hierarchy in which the pressure is mainly
determined by the outer inviscid region (or upper-deck).

A strong interaction régime establishes the moment when the entirely inviscid solution becomes completely unrealistic. This means that this
solution comprises regions of very steep pressure gradient and/or pressure discontinuities (shock-waves) which are not compatible with the existence
of a thin and attached boundary-layer. In this case, there exists a strong dependence between the viscous and the inviscid parts of the flow, so
that it is strictly necessary to iterate the calculations of the two regions until a stable and converged state is reached (i. ., until all the compatibility
conditions are satisfied). The strong interaction régime does not correspond to a breakdown of the boundary-layer concept itself. This is well
demonstrated by the triple-deck theory. In fact, it corresponds to a failure of the classical direct boundary-layer approach. In terms of the triple-

deck theory, there is no longer a definite hierarchy between the two flows: with equal importance, the pressure distribution is determined, both by
the boundary-layer and the outer inviscid stream.

In the following Sections, the strong interaction problem alone will be envisaged, since it is obviously the only interaction régime pertaining to
shock-wave/boundary-layer interaction.
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3.3. — The Problem of the Iterative Procedure

3.3.1. — Entirely Supersonic Interactions

The earlier coupling methods were applied to fully supersonic outer flows and, most often, used a coupling condition written at 3 (see equation
3.1). In partticular, these methods were developed to compute shock/boundary-layer interactions arising at a wedge or when an oblique shock
impinges on a wall. 'The external inviscid flow was generally determined by assuming a Prandti-Meyer compression which gives a simple and local
relation between the flow direction at & and the pressure gradient dp/dx (the tangent-wedge relation was also employed). Use of the Prandtl-
Meyer law restricts application of the theory to simple wave flows; i.e., to two-dimensional and initially uniform flows. Such a restriction could
be alleviated by using the general Method of Characteristics. In this case, a precise localization of the outer edge of the boundary-layer is essential
for the computation of the inviscid stream. On the contrary, the location of 3 is without importance when the Prandtl-Meyer law is employed to
determine the outer flow (this of course is not true for the evaluation of the deflection [0]; induced by the boundary-layer). In these theories, the
boundary-layer development was calculated by a variety of techniques: integral, finite difference, Galerkin methods, etc. The laminar as well as
the turbulent régimes were both considered.

As the equations describing the outer flow are hyperbolic whereas those applied to the dissipative layer are parabolic in the downstream
direction (in separated regions, the FLARE approximation renders the flow parabolic in the downstream direction everywhere), the most immediate
method of solution is to use a downstream marching procedure. In this procedure, the compatibility conditions (see equations 3.2 and 3.3) are
satisfied at each streamwise step so that singularities at separation and/or reattachment are avoided. However, the problem of the interacting
boundary-layer envisaged as an initial value problem is ill-posed. Some downstream condition is needed to insure unicity of the solution and thus a
well-posed problem (see Garvine, 1968; Neyland, 1970; Werle et al., 1973). This downstream condition restores the ellipticity of the real problem
which apparently was lost by the use of Prandtl equations.

Handled as an initial value problem, the viscous-inviscid formulation may be summarized in the following terms: for an imposed perturbating
agency (i. e., shock strength) and a given boundary-layer initially unperturbated:

— if the flow is subcritical, a self-induced destabilization process (H;, 8* and p rise at the same time) can be initiated at any abscissa x,. The
principle of solution consists in interating on x, until the condition prescribed downstream is satisfied (usually, this condition is the return of the
solution to a flat plate or weak interaction situation);

— if the dissipative flow is supercritical, a self-induced compression can only take place after an initial jump from the supercritical state to the
corresponding subcritical state. Now, the proper solution is found by iterating on the abscissa x, of the jump until the downstream condition is
fulfilled. This condition can be the continuous return to a supercritical situation which requires the passage of the solution through a “throat”
where regularity conditions must be satisfied in a manner similar to the behavior of the inviscid flow solution in a converging-diverging nozzle (for
more details see Ai, 1970 and Carriére et al., 1975). This throat is in fact the Crocco-Lees critical point (see also Stollery and Hankey, 1970 for a
discussion of the problem of subcritical-supercritical boundary-layer).

In fact, there are no fundamental differences between the above two cases since a change in the coupling equation renders a supercritical flow
subcritical. The essence of the above methods is the fact that the problem is conceived as a two-point boundary value problem which is essentially
solved by shooting techniques. Such techniques can become tedious and time consuming, especially when large separation bubbles form. Methods
belonging to this type have been proposed for laminar flows by Bray et al. (1960), Reyhner and Fliigge-Lotz (1966), Lees and Reeves (1964),
Nielsen et al. (1966), Holt (1966), Klineberg and Lees (1969), Alziary de Roquefort (1969), Leblanc et al., (1971), Gautier and Ginoux (1973). The
turbulent case has been treated by Alber (1967), Alber and Lees (1968), Todisco and Reeves (1969), Klineberg et al. (1972), Aymer de la Chevalerie
and Leblanc (1978).  (These lists of authours are not exhaustive). Most of these methods employ an integral formulation to compute the dissipative
layer. We will not comment any further on these methods which are now rather out-dated and which have been discussed in the preceding
AGARDograph on Shock-Wave/Boundary-Layer Interaction. Rather we will focus our attention on new techniques of solution which have been
developed in the meantime.

Integration of the interaction equations by a purely downstream marching process is ill posed as an initial value problem in the sense that any
error encountered at the initial station will grow exponentially in the x-direction (i.e., will cause a “branching”) and thus will produce a solution
unrelated to the correct initial conditions. To overcome this weakness, it is necessary to specify directly the downstream condition in terms of some
constraint which may be either the pressure level itself or the return of the downstream pressure to its weak interaction valve. The implicit
treatment of the downstream boundary condition results in sweeping or relaxation techniques in which the computation plane is swept iteratively
until convergence is achieved on the wall pressure distribution, for instance. In this relaxation procedure, the downstream boundary condition is
enforced at each iteration step.

To our knowledge, the first application of this kind of technique was made to laminar flow by Werle and Vatsa (1973). Thereafter, Bertke,
Werle and Vatsa (1974) extended the method to turbulent flows (see also Werle et al., 1975).

In these techniques, the coupling is expressed on the displacement body (equation 3.5 of Section 3.2.1 above) and the change in the outer

flow pressure via a relation of the form:
dp (@ . d*s*
dx dx  dx* )

where 6, is the slope of the surface. The above relation may be provided by linear theory, tangent wedge or the unified tangent wedge laws (Cox
and Crabtree, 1965). Thus, the boundary-layer x-momentum equation is written in the form:

ou u 4o, d?5*\ @ du
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(we will not consider here the energy equation which does not receive any special treatment). Equation 3.10 can be expressed in the following
more condensed form which explicitly displays the influence of the boundary-layer:
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The turbulent viscosity p, is modeled by a classical algebraic two-layer description. The boundary-layer equations are integrated by a standard
finite difference method (Blottner, 1970) and the viscous-inviscid interaction problem is solved with the following boundary conditions:

— upstream station x,:

u(xq,y) and dd*/dx prescribed,

— downstream station:

dd* d?5*
— or
dx dx?

=0. (3.12)

Numerical solution of equation 3. 11, along with the prescribed boundary conditions, is accomplished by using Alternating Direction Implicit
concepts. It proceeds at two artificial time levels. The first one is from ¢" to ¢ *+(1/ D=1"4 At)2:
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and the second from ("* /2 o ¢+ 1 ="+ (112 App).

a au n+{1/2) dz 5* n+1 2
— +p1)— 4 prrn 2 7 — L (§* D) G (n+(1/2)p =RBn+t1/2) 3.13
{ z [(u W ]} ; pa B ) |=Bs 3.13)

Basically, in the first step the viscous properties (i. e., velocity and temperature profiles) are determined; while the second step serves to update
the displacement thickness contribution to the inviscid pressure gradient. Equation 3. 13 will reduce to a tridiagonal set of algebraic equations in
finite difference form which can be solved by the Thomas algorithm, downstream condition 3. 12 being taken into account. The time-like march is
allowed to proceed until a steady state is achieved.

The first time-step corresponds in fact to a classical direct mode boundary-layer calculation, since for this step the pressure—or which is
equivalent d*8*/dx? —is prescribed, the streamwise distribution of §* being that computed at time level n.  Accordingly, a special arrangement of
the numerical method has to be introduced to overcome the Goldstein type singularity at separation and reattachment. This point is certainly a
weakness of this kind of calculation in which the boundary-layer is always computed in the direct-mode.

A method similar in nature, but without the drawback of the singularities inherent in the direct mode, has been proposed by Aymer de la
Chevalerie and Leblanc (1979) for laminar interactions. The method incorporates an inverse finite difference technique for the calculation of the
separated boundary-layer. The inverse procedure is worked with the skin friction prescribed, and is a generalization of the method developed by
Klineberg and Steger (1974), (see Section 2.3. 1 above).

3.3.2. — Mixed Supersonic-Subsonic Flows

3.3.2.1. — Direct, Inverse and Semi-Inverse Methods

Sweeping or relaxation techniques are not essential when the outer flow is entirely supersonic. They only appear as more convenient and
probably more efficient than shooting techniques. However, the formulation of the viscous-inviscid interaction problem has to be reconsidered
when the outer inviscid flow contains subsonic regions. In this case, it is no longer possible to compute the external stream by a downstream
marching method or to use simple formulae to compute the pressure from the local flow angle.

In the mixed supersonic-subsonic situation, computation of the perfect fluid flow requires relaxation or time-marching methods in order to
properly take into account the boundary conditions on all the frontiers of the computational domain. In this way it is no longer possible to fulfill
the compatibility conditions by a streamwise progression since outer flow quantities at a station x depend on downstream conditions. In fact, the
boundary-layer and the external inviscid flow have to be computed separately and in turn according to an iterative process which is repeated until
convergence is achieved, i.e., until conditions 3. 2-3 are satisfied.

To achieve this goal, various arrangements of the calculation strategy can be envisaged:

(i) Direct Methods (see diagram in Fig. 3.2). The iteration loop starts with given surface boundary conditions (i. e, conditions at or near the
body according to equations 3.1, 3.5 or 3.6). These conditions are known from the previous iteration step. An inviscid flow calculation provides
a pressure distribution p(x) which is then fed into the boundary-layer calculation. This last calculation furnishes new boundary-conditions 8 (x)
and the process is repeated. Such an iterative procedure is called a fixed point iteration, since at every station there is the following relationship
between values of 0 (x) at iterations n and n+1:

6" (x)=F [0" (x)]. (3.14)

In the above equation, F is an operator involving perfect fluid and boundary-layer calculations.

It is clear that an entirely direct method breaks down as soon as scparation occurs since the boundary-layer is always computed in the direct
mode.

(i) Inverse Methods (se_e diagram in Fig. 3.2). — Now, both flows are computed by inverse methods. The iteration loop is as follows: for a
given pressure distribution p (x) (on or near the body surface, according to the coupling relation retained), an inverse inviscid flow calculation gives
8(x) which is, in turn, prescribed to an inverse boundary-layer calculation; hence a new pressure distribution p(x)... The inverse fixed point
operator is:

=GP (X)) (3.15)

In fact, the inverse boundary-layer mode is not well suited to weak interaction regions or to accelerating flows (Ardonceau and Alziary de
Roquefort, 1980). So that when computing a camplete and complex flowfield, (the flow past an airfoil, for example) it is necessary to use
alternatively direct and inverse modes. Then, it can become difficult to obtain a smooth transition between regions where the inviscid flow has
been calculated either by direct or by inverse methods.
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(iii) Semi-Inverse Methods (see diagram in Fig. 3.2). In this method, the perfect fluid flow is always computed in the direct mode, whereas
the boundary-layer is computed either in the direct mode, in “well” attached flow regions, or in the inverse mode if separation occurs (or if the
dissipative flow is highly destabilized). According to the present procedure, the same 0(x) distribution is fed both in the boundary-layer and in the
inviscid flow calculations. Two pressure distributions are thus obtained which coincide when convergence is reached. Here, a new iteration cycle
is started by “guessing”’ a new 8 (x) distribution from the “error” p(x) —p(x).

8 {outer velocity angle ) <] 8
P .
- a.:-""’"‘ L
- P
g | "
- o
| =
“"?." & i
~ o v =
4 P
a _ Direct mode b - Inverse mode ¢ .. Semi-inverse mode

Fig. 3.2 — The various iteration paths in coupling algorithms.

The three above coupling techniques are said to be explicit in the sense that the boundary-layer and the inviscid stream are computed in turn, the
one after the other. The supersonic methods cited in the preceding Section were in fact implicit coupling procedures, since in these methods the
two streams were determined simultancously. In the latter case, use of the Prandtl-Meyer law (or the tangent wedge relation) to find the external
pressure makes the implicit formulation very easy. Extension of the implicit procedure to elliptic external flows, with a view to obtaining higher
convergence rates, has been proposed by Veldman (1979, 1981). In essence his method is as follows in the case of a strictly incompressible
flow: the outer velocity distribution i,(x) is computed by using Cauchy’s integral which involves the displacement thickness distribution. This
integral constitutes the interaction law. Discretization of the interaction law results in an algebraic relation involving 8* and u, at every grid point
i(i=1, I) along the body surface. This relation is added to the discretized boundary-layer equations to obtain a system which is solved at each
streamwise station x, (i varying from 1 to ). Due to the fact that the interaction law contains values of 8* downstream of the computation
station x; (the problem is here elliptic), it is necessary to perform several upstream-downstream sweeps in order to properly account for the ellipticity
of the problem. The essential feature of the present method is to use an interaction law (or coupling equation) at iteration number n, and for
station x;, which involves both 8} and u,; at the same iteration number.

This is in contrast to:

— direct methods where & is computed from §*®~1;

— inverse methods where 8* ® is computed from u"~ ),

Such a quasi-simultaneous procedure avoids difficulties incurred when either fully direct (as in Werle and Vatsa’s method, see above) or fully
inverse modes are used. We will not comment any further on Veldman’s method since its applications have been hitherto restricted to incompressible
flows.

3.3.2.2. — Convergence Properties of Direct and Inverse Methods

Fixed Point Methods. — The relationship implicit in equations 3. 14 and 3.15 can be viewed conceptually, in simplified form, as representing
curves or traces in the (p—0) space, such as depicted in Figure 3.3. This graph may also be interpreted as the situation at one particular point of
the computation grid along the coupling surface. The two curves represent respectively:

— relation between p and 8 satisfying the inviscid flow equations;
— relation p(6) resulting from boundary-layer calculations.

The intersection point of these two curves is the desired matching point. It is clear that an iteration path based on successive perfect-fluid
boundary-layer calculations using simple fixed point iterations, such as those defined by equations 3.14 and 3.15 may be either converging or
diverging according to the local shape of the two “response” curves (see diagrams in Fig. 3.3). The classical and well-known method used to
insure the convergence of the iteration process or to enhance its convergence rate is to employ underrelaxation.

The process consists in replacing equations 3.14 and 3. 15 respectively by:
9" 1 (x)=0"(x)+ o { F[8"(x)]—0"(x)},
P =" M+ {GP&]-r"x)}

where the underrelaxation coefficient ® is mot often determined empirically from trial and error. Effect of underrelaxation in the plane p—0 is
shown in Figure 3.4.

© (outer velocity angle ) -] -i"‘.?f B {outer welecity angle ) ; o
ﬁ" éﬁ} e
N ) ' f
Dieect L N Dirvet [ -1 "’3,6.
; b B | e
g B F G Ao
- :"_"1 2 ] O _*'."'\-\-..__\_ A \'1.
= = T P E_.- G —
L 5 I - i 1| P L
< e \‘r" B_r*_.-r-_-f:'_'- a4 1

T o ey ]
i | ] fecrn P | w}/ """--\.___.!?:

a _ Direct mode converges - laverse mode diverges b _ lnverse mode converges - Direct mode diverges

Fig. 3.3 — Convergence properties of direct and inverse modes. yz
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A rational approach to the stability problem of coupling algorithms was published in 1978 by Le Balleur and has led to important results
allowing, in particular, a more rigorous way to define the optimum relaxation coefficient. Basically, Le Balleur’s method relies on an approximate,
linear, stability analysis (a very similar analysis of this problem has been given by Wigton and Hol, 1983).

Let us first consider the direct mode and imagine that a harmonic perturbation 86(x, 0) =€ exp (iAx) is imposed on the converged 8*(x, 0)
distribution. This distribution is the one for which the outer and the inner flows have been made compatible (i.c., they satisfy equations 3.2-

3). Let du(x, 0) be the resulting velocity perturbation of the inviscid flow (u is scaled to some reference velocity, say the velocity at upstream
infinity U,). 8u(x, 0) is estimated with the help of the linearized small disturbance equation for the perturbation potential ¢ (x, y) :

5. 029 o
2 =
(1-M?) ax_).,_a_z__o,

where M is the local unperturbated Mach number. Knowing that: 6= Z—(p and du= %(g’ it can be shown that 38 and 81, along the boundary y=0
y X

(i.e., on the body surface) are related by:

86 (x, 0)=i\/1—1\72817(x, 0) (3.16)

if the flow is locally subsonic,

8B (x, 0)=— /M*—16u(x, 0)

if the flow is locally supersonic.

Now, let us consider the response of the boundary-layer to the perturbation 8u(x, 0) in the external velocity. This response is given by
equation 3.7 (see Section 3.2.2 above) which will be written here in a slightly different form involving velocity instead of pressure:

0=pn & +C.
dx
Hence for the perturbation angle:
30 (x, 0)=iABdu(x,0) where B=B/u (3.17)

Thus, we arrive at the following relations giving the response 56 (x, 0) of the boundary-layer as function of the perturbation 58 (x, 0) of the
converged boundary condition:

06(x, 0)= %89()@ 0) if M<1,

30 (x, 0)=—HTBSG(X, 0) if M>1,

where:

B= \/-I—IV-IZ—_II
Letting:

L[f if M<1 or u,,:-"‘TB i M1

(up is the amplification coefficient of the coupling mechanism), one can see that the classical chain iteration will converge only if [p,,] <1, a
condition which corresponds to a damping of the oscillations. The restriction |p,,] <1 must be satisfied for every wave number A. If the
perturbation is not made up of a simple sinusoid, it can be decomposed into simple harmonics by the Fourier analysis. The condition |u,, (X)l <1
must be satisfied for all the wave numbers A contained in the spectrum of the perturbation. In reality, due to the x-discretization of the computation
methods, the numbers A constitute a finite set of discrete values lying in the range:

A
>
lIA

A
El=

where Ax is the mesh size and L the length of the computation domain.

A very similar analysis can be made for the inverse problem by considering a perturbation 8u (x, 0) of the external velocity. Now, the boundary-
layer response is given by:

Su(x, 0)=p, du(x, 0).
It is readily verified that pj, and p, are such that:

Mpp, =1
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The above analysis leads to very useful conclusions regarding the convergence properties of the direct and inverse modes:

— in direct iteration, a small mesh size (A, is large) tends to degrade the convergence properties by increasing the amplification factor
] Bp Agax) | The converse is true for an inverse iteration: convergence is deteriorated by an enlargement of the computation domain. This latter
finding has been confirmed by calculations made by Melnik and Chow (1976);

— in “well” attached flows, B is small (it is recalled that B depends only on the shape of the velocity distribution in the boundary-layer and
on the edge Mach number). Consequently, the direct mode is more appropriate for computing these flows. On the other hand, when the
boundary-layer is separated or strongly destabilized, B is large and the inverse mode becomes preferable. The above situations are illustrated in
Figure 3.3. When the slope at the matching point P of the boundary-layer response curve is small (Fig. 3.3a), i. €., when the flow is attached, the
direct mode is more likely to give convergence. On the other hand, when this slope is increased, which corresponds to a destabilized boundary-
layer, the inverse mode has a natural tendency to converge (see Fig. 3. 3b).

Meauzé and Délery (1983) have developed a coupling method for computing the flow in a transonic channel in which shock/boundary-layer
interactions with large separation occur. The aim of this research is the extension of coupling techniques to the prediction of the flow in supersonic
axial compressors. Due to the necessity to determine a flow with choking conditions, the outer inviscid stream is computed by solving the full
Euler equations with a time marching method (Viviand and Veuillot, 1978). This method can be worked out either in the direct mode (i. e., with
slip condition on the body surface) or in the inverse mode (i.e., with prescribed pressure along a free boundary, Meauzé, 1980). The turbulent
boundary-layer is computed by a direct-inverse finite difference method (Délery and Le Balleur, 1980, see Section 2.3.2). The coupling conditions
are written on the displacement body in order to satisfy the mass flow conservation in the channel. The iteration procedure can be performed
according to the fully Inverse or Direct modes or to the Semi-Inverse mode.

In situations where the Inverse mode tends to diverge, an underrelaxation coefficient is computed at every grid point situated on the coupling
surface. Reasoning is made in the (3*—M.) plane (the boundary-layer edge Mach number M, is in fact equivalent to the pressure p of Figure
3.3). Let mpp and my, be respectively the siopes of the Perfect Fluid and Boundary-Layer response curves at the (desired) matching point P. If
in the vicinity of P these response curves are assumed to be rectilinear, it is clear that convergence of the fixed point iteration is insured provided
that mpp/mg;>1. In these circumstances, it can be readily demonstrated that the iteration is made to converge by choosing the relaxation coefficient
® in such a way that:

2m
o< —FF

Mpp—Mpgy

At every iteration cycle, the slopes mpr and my, are determined by assuming rectilinear response curves. The perfect-fluid slope is evaluated
by considering that locally the inviscid stream is one-dimensional with a Mach number Mgy equal to the average Mach number of the two-
dimensional inviscid flow. Then, by applying the equation for mass flow conservation, one obtains:

dMpp il A+ —12ME) Mpp
ds* (1—M32p) A4-8%

where A is the cross section of the channel.

The slope my, relative to the boundary-layer is computed by considering a simplified Von Karman equation where the skin friction is neglected
(in a manner similar to the method used by Carter, see below). This equation is written:

@+6(H+2—M§)—-——1—— Ly %=0 where me=uM§.
dx l+m, M, dx 2

By considering the approximate relation H =H;+o M2 where a=0.4, one has:
a* 8 [2aM? 1
dM, M. H I+m

(H+2-M§)]. (3.18)

e

In the above equation, M, is the local Mach number at the boundary-layer edge and H is provided by the boundary-layer calculation.

Equation 3. 18 is also employed in the Semi-Inverse mode to guess the new 3* distribution from the mismatch AM, between the perfect-fluid
and the boundary-layer calculations (see below).

The Newton Method. — As was suggested by Brune et al. (1975) convergence of the coupling iteration can also be achieved by using the Newton
method. Let us consider a computation grid on the coupling surface where the points are characterized by index i. Any perturbation AD of the
boundary condition for the inviscid flow will produce changes in pressure Ap at every point i. These changes can be expressed in a linearized
form:

{Ap;} =[P, {A§;}, (3.19)

where the P;; are the inviscid flow influence coefficients.
Similarly, one can write a linearized expression for the changes in boundary-layer deviation 8 due to changes in surface pressure p :

{A8,}=[B;] {Ap;}. (3.20)

The situation at iteration number n being defined by: {p;}", {8;}" {p:}" {6;}", the problem is to estimate values of pressure and deviation at
iteration (n+ 1) in such a way that:

{py ={p}"*"
{8} = {6, }"*L.
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Thus, we arrive at the following system:

{ap} =P 1" {A8;},
{48, }=[B"{ Ap;},
{E}“+{A17a}={Pe}"+{Ap.~}’
{8:}"+{A8;}={8,}"+{46,},

which allows, in principle, the calculation of the perturbation values { A, }, { AG,}, {Ap;} and {A8,}.

The above process is depicted schematically in Figure 3.5. Conceptually, the perturbation equations 3.19-20 define tangent lines to the
inviscid flow and boundary-layer solution curves. In essence, the method is seen to be equivalent to approximating these solution curves by
straight lines locally tangent to the starting points and to solving for the point at which these tangent lines intersect.

5 /_Starting point of Boundary-Layer calculation

result of second iteration cycle

result of first iteration cycle

Starting point of Perfect Fluid calculation

Fig. 3.5 — Newton method for coupling problem
{Brune etal., 1974).

If non-linear effects in P;; and By; are moderate (i.e., if the solution curves are nearly straight), convergence of the method may be
rapid. However, each cycle is very complex since it requires inversion of full matrices. This is why relatively few examples of this approach have
been reported for transonic flow calculations (Thiede, 1976).

3.3.2.3. — Semi-Inverse Methods

Fixed Point Methods. — Now the problem is to “guess” a new (x) distribution from the difference (or “error”) in pressure Ap=p (x)—p (x)
in such a way that Ap cancels out at convergence. This kind of iteration procedure was first proposed by Kuhn and Nielsen (1973) in the
computation of transonic shock-wave/turbulent boundary-layer interactions. At that time, a rather empirical way to iterate on the 8(x) distribution

was employed. A more rational examination of the convergence properties of the Semi Inverse algorithm can be made by resorting to Le Balleur’s
stability analysis.

Let 0*(x, 0) and u*(x, 0)=u(x, 0) be the converged values on the coupling boundary and 6" (x, 0), u"(x, 0), u(x, 0) the corresponding values at
iteration number n (it is recalled that in the Semi-Inverse procedure 6(x, 0)=0"(x, 0), barred quantities being relative to the inviscid
flow). Considering the subsonic case, the local linear analysis leads to the following relations:

— for the inviscid flow (see equation 3. 16):

0" (x, 0)—0* (x, 0) = 2(1_ de_1 @f),

W dx  u* dx
— for the boundary-layer flow (see equation 3. 17):

ul *
0°(x, 0)— 0% (x, 0)=p+[ L 4 _ 1 duy
u* dx  u* dx

Combination of the two above equations gives:

L di 1 du" (l 1

(5~ E)[e" (x, 0)—6*(x, 0)].

If convergence is to be achieved at the (n+ 1) th iteration, we must have: §*1(x, 0) =06*(x, 0), hence:

oy, 0)—0"(x, 0)=ﬂ<l E_i E) (3.21)

For the supersonic case a similar calculation gives:

B*? 1 2w 1 &2
g+t x,O—G"x,O=B“ — SRR
0 0)-6Cx 0 AB¥2 4B\ wr dx? ot dx?
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A relaxation coefficient must generally be introduced and the (n+1) th values are taken to be:

0" (x, 0)=0"(x, 0)+0 [0 (x, 0)—6"(x, 0)].

It is to be noticed that this Semi-Inverse iteration method requires only the knowledge of the error on the pressure gradient so that integration
of u(x) [or p(x)] is not necessary. This property may facilitate a zonal switch between Semi-Inverse iteration which is used in separated regions
and Direct iteration which is more appropriate for attached flows.

More recently, Carter (1979, 1981) (see also Whitfield et al., 1981) proposed a rather simple updating procedure which takes the following
form when coupling conditions are expressed on the displacement body: the updated displacement thickness &*®* ! is deduced from the mismatch
of the viscous and inviscid velocities by:

8*(n+1)=5*(n)<u:n R
u"

The updating procedure including a relaxation coefficient can be written:

8*‘"”’:8*(")+m5*‘"’(£_;—1). (3.22)
u

A similar expression can be obtained if one considers the simplified Von Kirman equation where the skin friction has been omitted. In this
case, one can write:

8*
AS*= —(H,+2)>Au,
u

thus, if:
Au=u"—u",
{ AdS*=5* (1) __ 5% (n),
one gets:

8*(n+1)=6¥(n)+(Hi+2)8*('l)(u:”_1)_ (3.23)
u

Comparison of equations 3.22 and 3.23 shows a close resemblance in relating an increment in u to that in 8*. Estimation of 3*@+1) py
equation 3,23 is not in principle entirely rigorous since the momentum integral equation expresses change in u and 8* in the streamwise direction,
whereas those in equation 3.23 refer to change between successive iteration cycles. Carter found that overrelaxation could be used in equation
3.22 (0> 1) to accelerate the convergence of the iteration process. The similarity between equations 3.22 and 3.23 offers an explanation since,
even with overrelaxation, it has been observed in these calculations that:

o<H;+2,

H, being always greater than 1.

It can be easily demonstrated that, for subsonic flows, Carter’s and Le Balleur’s approaches are essentially equivalent. Differentiating
equation 3.22 with respect to x gives (after some approximations):

T bW
dx dx

do* @+ ggr <1 du" ld_ﬁ")

*
The above equation is identical to equation 3.21 applied to coupling on the displacement body |:in this case 6(x, 0)= Eds_] provided that:
X

d* m— ———B* B .
BB

In supersonic or transonic flows, Carter uses coupling on the body surface. As seen in Section 3.2.1, the effect of the boundary-layer is then
felt by the outer inviscid flow as mass bleed (positive or negative) along the body surface. In this case, the boundary-layer calculation of the
iteration cycle is made by specifying the perturbation mass flow: m=p,u,8* (see Section 2. 3.2 about boundary-layer calculation by inverse methods),
and the same updating procedure as for coupling on the displacement body is employed which gives:

n
m(n+1)=mn“:_
u'l

Application of the Newton Method. — The Newton iteration method can also be used to enhance convergence of the Semi-Inverse
algorithm, Most often, the method is employed in a much simpler form than the initial version proposed by Brune et al. (1975) (see above). For
example, Gordon and Rom (1981) have devised a matching procedure based on the assumption that the relation between {Ap;} and {AB,} and the
one between { Ap;} and { A8, } are two-dimensional. This means that for each station, { Ap;} depends only on {A®;} (and not on {A9;}, j#i) and
{Ap,} depends only on {A8;}. The procedure consists essentially in keeping only the diagonal of matrices [P;]] and [B;]]. The guessed displacement
thickness (coupling is expressed on the displacement body) has to be underrelaxed rather strongly to prevent oscillations.

In 1976, Alziary de Roquefort proposed an updating procedure in which only two diagonals in the boundary-layer influence matrix [B;] (i and
i—1) were retained. The method worked satisfactorily for laminar shock-wave/boundary-layer interactions.
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More recently, Ardoncean (1981, see also Ardonceau, Alziary and Aymer, 1980) published a method which worked efficiently both for

(supersonic) laminar and turbulent shock/boundary-layer interaction. Its principle consists in representing the perfect fluid and the boundary-layer
sensitivity functions by:

— for the perfect fluid:
Pl m=Pi-qp+ AP, @1 —=0i— a2 (3.29)

which is the linearized Prandtl-Meyer law:

— for the boundary-layer:

d n+1 d n
(—p> =<—p) SO =8y (.29
dx i-(1/2) dx i—(1/2)

op

deradp ) is approximated by ( - —) and estimated numerically.
i~(1/2) o8* /;

8

where the influence coefficient S = (

Discretization of equations 3.24 and 3.25, where p"*! is set equal to p"*4, results in a recursive relation allowing the calculation of p"*!. This
calculation is started from the most downstream station where the pressure is prescribed as the downstream boundary condition of the viscous-
inviscid interaction problem (see Section 3.3.1 above). Thereafter, the updated displacement thickness distribution is computed from 3.24 or

*
3.25 (in the case where 6= CL—S—> An underrelaxation of p"*! is required when separation occurs.
X

3.4. — Higher Order Methods

In the above formulation of the viscous-inviscid interaction problem, it is always tacitly assumed that the classical boundary-layer concept
remains valid. According to this concept, the fluid properties in the dissipative layer (velocity, density, etc.) tend towards constant values when
y = o, and accordingly, the transverse pressure gradient is assumed to be zero. The limit values are identified with the inviscid flow properties
along the coupling surface, which may be the outer edge 6, the displacement body or the solid body itself. This approach leads to some
inconsistencies which may be the source of inaccuracies when the external inviscid flow is far from being transversally constant, as is the case in a
shock-wave/boundary-layer interaction. Consequently, the pressure can no longer be considered as independent of y inside the boundary-layer. In
these circumstances, coupling on the displacement body or on the surface appears as a more or less empirical way to take into account the
transverse variation of the pressure. On the other hand, it now seems clear that the assumption dp/dy=0 is at the origin of the artificial supercritical

behavior (see Section 3.2.2 above). Therefore the “classical” formulation leads to an unsatisfactory situation even if the prediction it gives is
frequently correct.

In fact, a more rigorous formulation of the viscous-inviscid interaction concept can be made by introducing a “defect formulation” (see Le
Balleur, 1982). Basically, this approach consists in considering the difference between the real fluid, with viscous effects near the wall, and the
external inviscid fluid continued to the wall. If f designates a real flow property and 7 the corresponding inviscid property, one has:

lim (f~f)=0y >  with f={u v, p, p}

It is possible to write the full Navier-Stokes equations in terms of the difference between viscous and inviscid properties. However, for

practical purposes, a simpler form can be obtained by making the same order of magnitude analysis as in Prandtl equations. Then, the following
set of equations is obtained:

ﬁ(pu—ﬁﬁ)+33_(p_')—ﬁv) -0

>

ox dy
2w’ —pw) dpw—pud) __0p—p) o (-7
x dy 0x ay’ ay

In the classical (first order) boundary-layer theory, the overbarred quantities are considered as independent of y; they are now (fictitious)
inviscid values which may vary with y. From the above equations, it is possible to derive integral equations very similar to those of the first order

theory (see Section 2 above) provided new definitions of the integral thicknesses are introduced. These definitions take into account the variation
with y of the local inviscid values:

s*p,v,=f pute N—piCe Mldy (V2= +03),
[+)

(&*+0)p, V2 =J lpu (x, Y)—pu? (x, )] dy, ete.
0

We will not comment any further about the “Defect Formulation” which is still in the development stage.

It is also possible to improve the representation of viscous effects in high Reynolds number flows by introducing a “splitting” between a
viscous component and an inviscid part at the level of the local flow variables themselves (in the viscous-inviscid interactive concept envisaged up
to now, the splitting is made between regions). There results what is called a composite representation of the presure or of the velocity field. Such
techniques have been proposed by Dodge and Lieber (1977) and by Khosla and Rubin (1982). Further development concerning these relatively
new methods would be beyond the scope of the present AGARDograph.
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3.5. — Application of Inviscid-Viscous Interactive Methods to Flows Containing Shock-Waves

A large number of calculations based on IVI methods has been published, these methods now being routinely used for practical purposes (see

in particular AGARD CP-291, 1980).
the preceding Sections.

So in this Section we will only present typical examples caling upon methods which have been discussed in

First, we will consider entirely supersonic flows.

well known experiments of Lewis et al. (1968).
Mach number M equal to 4 (case a).

X
e Bt | SLL

The first calculations shown in Figure 3.6 were performed by Werle and Vatsa (1974).
are relative to laminar interactions at a compression corner.

They

These results are compared to Navier-Stokes calculations of Carter (1972) and to the

The best agreement —both with Navier-Stokes and measurements —is obtained for a free stream
The relatively large discrepancy observed at M =6.06 (case b) cannot be explained.

p Coupling calculations
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(G o Experiment ( Lewis etal., 1958 ) i . Werle-Bertke (1976)
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Fig. 3.6 — Ramp flow — Laminar boundary-layer — Inviscid-

Fig. 3.7 — Ramp flow — Turbulent boundary-layer —
viscous interactive calculations of Werle and Vatsa (1974)

Comparison of several coupling calculations.

The following example is a ramp flow in turbulent régime. The results presented in Figure 3.7 were obtained by three coupling techniques
(Ardonceau et al., 1980; Le Balleur, 1980 and Werle and Bertke, 1976). These calculations are compared to the experimental results of Law (1973)
which clearly exhibit the existence of an extended separated zone. In the Ardonceau et al. method, the boundary-layer is computed by a finite
difference method with the turbulence represented by an equilibrium two-layer model. This can explain the too large an increase in pressure given
by this method because—as we know from experimental evidence (see Section 2.9 of Part I)—classical equilibrium turbulence models always
overpredict considerably the “stiffness” of the boundary-layer thus leading to too intense pressure gradients. On the other hand the poor
performance of the Werle ant Bertke calculation probably comes from the writing of the coupling conditions on the displacement thickness in a
situation where the incoming boundary-layer is highly “supercritical” (see Section 3.2.2 above). Another example of application of an IVI method
to a supersonic ramp flow in turbulent régime is given in Section 5 dealing with Navier-Stokes calculations.

The forthcoming calculations are relative to transonic airfoil flows.
problem, for example the modeling of the viscous wake influence.
is essential to the achievement of a satisfying prediction.

It is clear that such calculations involve many aspects of the coupling
However, a good representation of the shock-wave/boundary-layer interaction(s)

The first example shown in Figure 3.8 is a calculation performed by Tai (1974) in which the boundary-layer is assumed to remain laminar
down to the profile trailing edge. This boundary-layer has been computed by an integral method using the Mean Flow Kinetic Energy equation
(see Section 2.2 above) along with a compressible-incompressible transformation and similar solutions. Coupling conditions are expressed at the
boundary-layer outer edge & which always gives a subcritical response in laminar (except if the wall is highly cooled, see Section 3.2.2
above). Agreement with the experiments of Graham et al. (1945) is very good over the major part of the profile. In particular the large shock
spreading at the wall which is typical of laminar interactions is well predicted. Agreement is not so satisfactory in the downstream part of the
profile, presumably because of possible transition in the experimental case.

inviscid-viscous interaction

inviscid solution {_ e T, tompression waves

ioviscid-viscous
interaction
manra solution

sonic pressure
Vs [}

Lt boadary ey
‘ wiarated by el
L
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a . Surface pressure distribution ¥ - Compubed T

NACA 0015 Airfoill ~ Mg=0729 a-d4dg  Fgc. 0148100
Fig. 3.8 — Transonic airfoil flow — Laminar boundary-layer —
Inviscid-viscous interactive calculations of Tai (1974).

In the following examples, the boundary-layer is turbulent over the major part of the airfoil and especially in the shock foot region. Calculations
shown in Figures 3.9 and 3. 10 concern the RAE 2822 airfoil which was carefully tested by Cook. et al. (1979).

In the calculation performed by Melnik et al. (1983) —see Figure 3.9 a—as also in the one of Le Balleur (1983) —see Figure 3.10d —the outer
inviscid flow is computed by solving the full potential equation in conservative form. Coupling conditions are written at the wall according to the
transpiration velocity concept. On the other hand in Whitfield ez al. calculations (1983) —see Figure 3.9 b—the inviscid flow is determined from
the Euler equations and the transpiration velocity concept is also used (Whitfield et al. have also made calculations with coupling on the displacement
surface. They found that the results were very close, the difference in shock location being approximately the same as the distance between grid
points). In Melnik ez al.’s calculations, the boundary-layer is computed by the lag-entrainment method (see Section 2.3 above).
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Fig. 3.10 — Transonic flow past an airfoil — Comparison of several
Fig. 3.9 — Transonic airfoil flow — Examples of inviscid-viscous

coupling calculations (origin of calculations and exp. in the Proc. of

interactive calculations. the 1980-81 AFOSR-HTTM-Stanford Conference).

To conclude the section on flow past airfoils, Figure 3.10 shows a comparison involving four coupling methods applied to the same flow
situation (origin of computations and experiment can be found in the Proceedings of the 1980-1981 AFORS-HTTM Stanford Conference on

Complex Turbulent Flows). In the Smith et al.’s calculation, the boundary-layer is computed by the already mentioned lag-entrainment method,
the inviscid flow being determined from the full potential equation in non conservative form.

Figure 3. 11 shows a calculation performed by Carter (1981) on the transonic axisymmetric bump tested by Bachalo and Johnson (1979). Here
the boundary-layer is computed by a finite difference technique along with the Cebeci-Smith two-layer algebraic turbulence model (1974). It is
seen that a reduction in the “strength” of the wake component of this model (¢=0.0084 instead of 0.016 8) considerably improves the

prediction. This effect is in agreement with experimental observations showing that in this kind of strong interaction classical flat-plate models are
inadequate (see Section 2.9 of Part I).
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Fig. 3.12 — Shock-wave/boundary-layer interaction in a channel flow —
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arc burnp (coupling calculations of Carter, 1981).

calculations of Meauzé and Delery (1983).

The two last examples of IVI calculations are relative to internal flows at transonic velocities for which viscous effects play an essential
role. The first of these examples is relative to the channel flow discussed in great detail in Section 2.8 (Flow 4). In this calculation performed by
Meauzé and Délery (1983) the inviscid flow is determined by solving the Euler equations and the boundary-layer is computed by a finite difference

method along with an algebraic model based on the mixing length concept (Michel et al., 1972). The geometry of the channel is sketched in
Figure 3.12. Its upper wall is made of a flat plate and a long bump is mounted on its lower wall.

In this calculation, the shock-wave/boundary-layer interaction on the lower wall is computed by an Inverse-Inverse technique in which both the
inviscid flow and the boundary-

layer are computed by inverse methods; the interaction on the upper wall being computed by a Semi-Inverse (or
Direct-Inverse) method.

The pressure distributions on the two walls are plotted in Figure 3. 12, the boundar
in Figure 3.13.  Agreement with experiment is only fair because of the “rusticity”
pressure rises during such interactions.

y-layer displacement and momentum thickness being plotted
of the employed turbulence model which is known to overpredict
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Inviscid-viscous interactive calculations of Calvert ( 1983)
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The second example of channel flow is due to Calvert (1982, 1983). It is relative to the flow in a supersonic cascade. In this calculation the
boundary-layer is computed by the lag-entrainment method and both Inverse and Semi-Inverse coupling techniques are also used. The results
given in Figure 3. 14 are in reasonable agreement with experiment.

To conclude this Section it must be stressed that in making Inviscid-Viscous Interactive calculation in flows containing shock-waves, care
should be taken to insure that the grid spacing in the shock foot region is small enough to correctly capture the interaction process (a spacing of
the order of the displacement thickness of the incoming boundary-layer is necessary). Such a high mesh refinement can lead to problem of
computer storage capacity and to extensive computer time. For this reason, some authors have proposed to represent the shock foot region by a

local crude schematization of the interaction zone like the viscous wedge model briefly discussed in Section 2.6.2 of Part I. A more thorough
information on this point can be found in the AGARD CP-291 (1981).
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4. — ANALYTICAL METHODS OR MULTI-DECK MODELS

4.1. — The Lighthill Multi-Deck Model

The essential features of an interacting boundary-layer were established in 1953 by Lighthill (1950, 1953) who examined the question of
upstream propagation in the interaction of an oblique shock-wave with a boundary-layer. Both laminar and turbulent cases were
considered. Lighthill recognized that the interaction takes place over a short distance, when compared to a length scale representative of the
boundary-layer development, (for instance the boundary-layer thickness). Asa consequence, Lighthill showed that the boundary-layer flow develops
a two-layer structure comprising (see Fig. 4. 1):

— a thick outer-region covering most of the boundary-layer and where the viscous forces can be neglected. In this region, the flow is
essentially driven by pressure and inertia forces which become predominant because of the rapid variations in the streamwise direction occurring in
the interaction domain. Thus, this part of the flow is considered as an inviscid rotational stream (the rotation having been created in the incoming
unperturbated boundary-layer).

— a viscous sublayer in contact with the wall. This layer must be introduced since the neglect of viscous forces down to the wall leads to a
situation where the flow in the immediate vicinity of the wall is unable to sustain any positive pressure gradient (this point was briefly brought up
in Section 1.4 concerning Inviscid Shear Layer Analyses). It is obvious that the zero velocity streamline cannot overcome a pressure rise by a
purely inviscid mechanism.

Lighthill proposed a solution to the interaction problem by using a small perturbation approach. For the part of the flow considered as
inviscid, he derived what is today a classical equation governing the disturbance pressure field:

@p dMy()dydp’  *p
1-M3 L MOy 00" T
0x Mo(y) 3 oy
shock wave /z// reflected waves
Vv . .
Mo (y) M //:,//,/ . irrotational Flow
—— #7277 external inviscid region
v
/}/
sonic_line ., 1= outer boundary-layer inviscid rotational flow
7 : 14T 3 “istous sublayer T 77 % faminar boundary-layer
(
slip or "cuttoff " Mach number Mg = My (y = 8y) Fig. 4.1 — The Lighthill two-layer model of strong interaction.

In the above equation, M, (») is the Mach number distribution in the undisturbed flow which includes the major part of the incoming boundary-
layer.

At the outer edge of the boundary-layer (y=3,), the solution must match the incoming and reflected disturbances which are assumed to satisfy
the linearized supersonic inviscid flow equations.

.. ] op’ . !
The tangency condition v’ =0 (equlvalent to 61 =0> prescribed at the wall for a boundary-layer flow considered as wholly inviscid, would
5)
necessarily lead to dp’/dx=0. Thus, the inner condition for the outer inviscid flow necessitates the consideration of the solution for the viscous
sublayer.

This inner region is here analyzed by considering the density in the sublayer as constant and 0p’/dy=0. The formulation of the perturbation
problem leads to an equation for the normal disturbance velocity v’ (for more details, see Section 4.3.2.1 below). Lighthill showed that the
essential result was that the effect of the sublayer on the outer flow is exactly as if this layer were replaced by a solid wall located at a distance
y*>0. This important finding is analogous to the properties of the displacement thickness in ordinary boundary-layer theory. Now the condition
v'=0 for the outer flow is imposed at a distance y* from the wall where Mo (y)#0. The difficulty arising from My —0 when v'=0 has been
overcome.

We will not give any further details on Lighthill's theory, since its essential principles will be exposed in a more developed form in
Section 4.3.2.1 concerning Inger’s analysis. We will only add that solutions in the two layers are obtained in closed form by using Fourier’s
decomposition in the x-direction. These solutions have permitted the establishment of important results governing the scaling of the interaction
region. Thus, it was shown that in laminar flows and for a supersonic external stream (which means M, not be too close to unity), the streamwise

: : . . ] A .
extent of the interaction A x scaled to the distance L of the interaction from the leading edge is such that: Tx =0 (R *8). Here R is the Reynolds

number computed with L and external flow unperturbated quantities. This result implies Ax/8,=0 (R''®) since §,/L=0 (R™Y3). The above
scaling laws confirm the general order of magnitude of ten boundary-layer thicknesses found experimentally for the distance of upstream influence
in laminar interactions without separation.

The considerable reduction in Ax for a turbulent interaction was shown to be partly due to differences in skin friction coefficient (i.e. the
initial slope of the velocity profile which measures its resistance to retardation effects) and partly due to differences in the width of the part of the
boundary-layer where the Mach number is low (a turbulent profile is much “fuller” than a laminar profile).

The first tendency linked to the shear stress level at the wall is in agreement with the conclusions of the Free Interaction theory which is well
verified at low to moderate Reynolds numbers whereas the second finding corroborates the behavior observed at high Reynolds number where the
boundary-layer becomes more resistant as its velocity distribution is more “filled”” (see Sections 3.6 and 3.7 of Part I).

The cited papers of Lighthill have had a considerable influence on subsequent theoretical research on the shock-wave/boundary-layer interaction
problem as well as on the accompanying self-induced separation phenomenon (see below). Let’s recall Stewartson’s words about one of Lighthill’s
papers: “In our view, this (final) paper of Lighthill is the key to the whole problem of self-induced separation and any other theory or approximate
method which does not build on it is incomplete and cannot provide a full understanding of the phenomenon” (Stewartson and Williams, 1969).
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In the following Sections we will first present multi-deck methods for laminar flows by considering in some detail the basic Stewartson and
Williams theory for self-induced separation in supersonic flows. In laminar flows, multi-deck theories generally use matched asymptotic expansion
methods of solution. In this sense, they are valid in the limit situation where a small parameter ¢ is tending towards zero (in the present case
£=R~Y8, thus the limit corresponds to a Reynolds number R tending to infinity). The exception among these theories is the non-asymptotic
theory of Tu and Weinbaum (see Section 4.2.2 below).

Multi-deck theories for turbulent flows are reviewed in Section 4.3. These theories use both asymptotic expansion methods and linearized
perturbation techniques, the latter being directly inspired from Lighthill’s pioneer work.

4.2. — Multi-Deck Theories in Laminar Flows

4.2.1. — Asymptotic Expansion Methods

4.2.1.1. — Stewartson and Williams’ Theory of Self Induced Separation in Supersonic Flows. In 1969, Lighthill’s multi-deck theory was developed
into a rational theory for laminar shock-wave/boundary-layer interaction by Stewartson and Williams. These two authors retained the full non-
linear boundary-layer equations to describe the sublayer behavior. About at the same time, similar approaches were proposed by Neiland (1970)
and Sychev (1972). Such analyses make use of asymptotic expansion techniques and focus on the self induced separation phenomenon which results,
for instance, from impingement of an oblique shock-wave strong enough to induce separation. The problem is conceived as a Free-Interaction
problem in the sense that it deals with the spontaneous and rapid change of the initially undisturbed boundary-layer velocity profile by interaction
with the main stream outside. The Free-Interaction concept, which leads to self-induced separation, was originally introduced by Chapman (1958)
to characterize a process by which a boundary-layer departs from its initially weak interaction régime as a consequence of some downstream
constraint (shock impingement, for example). From a physical standpoint, a simple explanation has been given by Chapman that basically a cycle
can be set up in which the growth of the boundary-layer produces an adverse pressure gradient in the outer stream which promotes further growth
of the boundary-layer. Thus the interaction is entirely determined by the outer inviscid stream characteristics and the incoming boundary-layer
properties. It does not depend on the triggering agent, hence the denomination of free-interaction or self-induced separation.

The Free Interaction concept is more thoroughly discussed in Section 3.6 of Part 1 by resorting to experimental evidence.

Let us go back to Stewartson and Williams’ theory which considers a laminar boundary-layer developing on a flat plate in a supersonic

. . . . L.
stream. Let L be the distance from the leading edge of the free interaction zone and assume that the Reynolds number: R= PoUsL is large.

Ko

Thus the boundary-layer is well established and its velocity distribution is determined by the Blasius equation suitably generalized to compressible
flows.

Following Lighthill’s idea, and by using asymptotic expansion arguments, the free interaction zone is shown to develop a triple deck structure
consisting of (see in Fig. 4.2):

— an upper-deck which is the external inviscid stream;

— a middle-deck or main-deck which comprises most of the boundary-layer;

— a lower-deck which is in fact Lighthill’s viscous subalyer.
Let us first consider the solution for the main-deck, i. e., that part of the flow normaly including most of the boundary-layer.

Defining e=R /8 as the small parameter, it is shown by asymptotic expansion arguments (see also Lighthill’s result in Section 4.1 above) that
a consistent approach to the interaction problem impose the following scaling for the main-deck:
— length scale in the x-direction: Ax=0 (¢*)L=0 (R™*8) L;

— length scale in the y-direction: Ay=0 (e*) L.
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1 L I oS LR Fig. 4.2 — The triple-deck structure of a free interacting
I 113 .
1 ik e laminar boundary-layer.

In fact Ay is O (3,), 8, being the physical thickness of the undisturbed boundary-layer which would exist at x=L in the absence of interaction.
The solution is expressed as a function of the stretched variables:
x=(x—L)/e*L,

y=y/e*L

which are defined in such a way as to be of order unity in the major part of the interacting boundary-layer. The solution has the form:

u=Ug(D+eu, (5, N+, N+ ., 4.1
v=6’v, (X, P+ 0, 06 N+ - -, @.2)
P=Put+Ep (L P+, @.3)

p=Ro()+ep, (X, N +e2 0, (5, N+ ... 4.4
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where all quantities have been made dimensionless by introducing appropriate scales (Us» po,) and where U, (5) is the streamwise velocity profile of
the incoming boundary-layer.

At this step, three remarks may be made:

(i) in the absence of interaction we would have: u= U, () +¢3 u, (X, y) since in this case ? =0(1).
X

. N . . Ou _
Now the streamwise variation of u is much more rapid, because ™ =0(E"%;
X

(i) the expansion for v begins with term O (¢?) from the continuity equation. In a “normal” boundary-layer v=0 (R~ 1%)=0(e%), i.e., is
much smaller;

(iii) the expansion for the pressure p omits term O (&) for reasons which will be seen later.

Substitution of expansions 4.1 to 4.4 into the full Navier-Stokes equations shows that leading viscous terms are O (1) while the leading inertia
term is O (¢~ ?) in the x-component of the momentum equation. This means that u, and u, are given by inviscid equations. Similar results are
demonstrated for v, and v, by consideration of the y-component of momentum.

The following equations are obtained for u,, v, and p, (for the sake of simplicity, higher order terms will not be considered here):

)

Ry (M Uy () pr: +Ro(F)v,

4U,0) _,
dy ’

The solutions of the above equations, satisfying u; — 0, X — co are simply:

uy=d, 20D, @“.5)
dy
,,1=_U0@d_"‘dl_ﬁ_ (4.6)
'y

A, (x) is a function, so that 4, (—00)=0, which is determined by matching with the upper-deck (external inviscid flow).

If y - o0, then u, — 0, so that to O (g) the main stream is undisturbed. Hence Py (X, ©0)=0 and as 9p,/dy vanishes in the boundary-layer,
then p;=0. There is no need to have a term O (g) in the expansion for p.

Let us now consider the outer inviscid irrotational flow or upper-deck. In this flow the length scales in the x and y directions must be
comparable. This is true if the flow is frankly supersonic (M, not too close to unity), i.e., if the slope of the characteristics (Mach waves):
(M%L—1)""2is O (1). In a transonic stream, the vertical and horizontal scales have to be different since then (M2 —1)"Y2 tends to- infinity (see
Section 4.2.1.2 below). For the present situation, the stretched variables in the upper deck are:

Y=y/e*L=¢y, X=x.

Matching conditions with the main-deck show that the pressure must be of the form (see above):

P=Po+E Py(X, V)+. ..

Substitution in the Navier-Stokes equations leads to the well known Prandtl-Glauert equation:

2 2
FPy_ 3Py 4

2 _
(Me=1) ox*  ay?

In the limiting process y — a0, Y =0, P, (X, 0)=p,(X).

Using a linearized simple wave equation (derived from equation 4.7) and writing conditions at order & connecting p, and v, yields (in the
limit y — oo):

vy dAl Moo_l
—=—==Y_ 5 (x) 4.8
T 1P M2 p2(X) “4.8)

Hence:

Ax(i)=——Mm_l i

1P M p2(D)dt,

which is the relation that determines 4, ().
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The solution of the (inviscid) main-deck cannot satisfy the no-slip condition at the wall. This fact is readily seen by considering the y—=0
limit of equations 4.5 and 4.6. Consequently, an inner-layer — the so-called lower-deck — must be introduced in order to satisfy this
condition. The thickness of the lower-deck is a fraction € of the Blasius’ boundary-layer thickness. The characteristic length scales are now:

— ~g3L in the x-direction;

— ~g°L in the y-direction.

In order to match with the main deck solution, the velocity components u and v are taken to be of the order £ U, and & U,, respectively while
the pressure variation is O (% p,).

Accordingly, it is demonstrated that the Navier-Stokes equations reduce to conventional incompressible boundary-layer equations (for a thermally
insulated wall). It is convenient to write:

y=¢5ZL, x=L+&’XL (X=X)
u=euU,, v=evU,,
P—Po=28 P, ULP.
Then, to order ¢ the equations for the lower-deck are written:

O

fudadd =—T 4 4.9

“ox"ozT T ax " R, 922 “.9)
H W (4.10)
ox " oz

(C is the constant of the Chapman viscosity law).
The above system has the following boundary conditions:

(i) X - o u=ZU’(0) which express the condition that # must join smoothly the undisturbed flow for which:
= = ., dU
UsG)=Us 0)5+0G*) (Uo=d—y_°);

(i) Z— o,

/MZ [ (%
u—2U5(0) ~> A, () U (0)=— W[J P2 (t)dt] U, (0), @.11)

which is the matching condition for the main-deck (see equations 4.1 and 4.5).

(ili) Z=0, #=0v=0 which is the no-slip condition at the wall.
Furthermore, it is established that p=p,, i.c., the pressure is the same as in the main-deck.

As shown by Stewartson and Williams, the main-deck is completely passive. Physically speaking it displaces the streamlines outwardly in the
boundary-layer and simultaneously tansmits the pressure perturbation unchanged from the base of the upper-deck to the lower-deck. The stream-
tubes divergence in the main-deck is neglected. The solution in the main-deck is simply represented by an outward shift of the Blasius profile.

The function 4, (x) can be interpreted as representing the slip velocity at the base of the main-deck corresponding to the inviscid perturbation

of the upstream Blasius’ profile by the induced pressure gradient. Alternatively, A, (x) can be regarded as a displacement thickness (see
equation 4. 8).

In its final form, the problem is formulated by introducing new dependent and independent variables in such a way that the influence of the
flow parameters is rendered explicit. This permits the calculation of a universal Free-Interaction solution in similarity variables. In particular, it

is shown that the dimensionless pressure change Ap=(p— pm)/% Po UZ, in a Free Interaction has the form:

)\‘1/2 Cl/4

~e 2 R-1/4
\p (Mz _1)1/4R pl(x)!

where A =0.332 results from Blasius’ solution. At separation, p; (x) has a well defined and fixed value which is O (1). Furthermore the theory
demonstrates that the dimensionless pressure changes Ap (M2 —1)/4 RY4).~ 12 C~1* must collapse into a single curve when plotted against the
dimensionless streamwise distance X, defined in Figure 4.3 (In fact, the X, co-ordinate used in Figure 4.3 incorporates a modification introduced
by Curle (1961) to better represent wall temperature effect, see Section 3.4 of Part I). One sees that the use of these reduced variables leads to a
very good correlation of wall pressure distributions measured in ramp-induced separations for very different flow conditions (Lewis et al.
1967). Thus the asymptotic theory confirms the similarity laws established by Chapman’s introduction of the Free Interaction concept.
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Applications of the First Order Theory. — In the original work of Stewartson and Wi[liamsz the lower-deck gquations 4.9-10, al9ng wit.h Fhe
boundary conditions, were solved by a finite difference method (Clenshaw, 1966). A stream function \|1(X,. Z) was mtroduced.and, by dlff_erentlat?ng
the governing equations with respect to Z in order to eliminate the pressure term, a fourth order equation for ¥ was obtained. The m_te:gratlon
was initiated at a distance X<0 by perturbing the trivial solution of the problem u=ZU};(0), v=0 and p.=0. } The outer bounda{y condition was
approximated by a condition at a large finite value of Z. The integration proceeded in }he dpwnstrfaam direction, the problem tfelng treated as an
initial value problem. This method of integration is basically the same as the one described in Section 2.3.2 aboye. At the.ltvtlme, the p1.1bllshe:d
calculations concerned only the self-induced separation region, including the very first part of the reversed flon region, the original calculations <.11d
not exhibit instabilities or non-uniqueness downstream of the separation point, which is rather surpri§ing since a purely downstrgam marching
process was used (see Section 2.1 above). In fact, further investigation showed that the stability was illusory (Stewartsgn, 1974) since a correct
treatment of the reversed flow should take downstream conditions into consideration. Hovg::vgr, a stable forward marchulg procedure is possible
for cases with small separated flow by using the FLARE approximation in which the term u du/0X is.neglected whenever u<.0 (sge Section 2.3.1
above). The ulterior and more convincing numerical experiments of Williams (1975) were made by using the FLARE approximation.

A comparison with experiment of a calculation made by Stewartson and Williams is presented in Figure 4 4, Thf agreement wit%l gxperiment
is poor presumably because of numerical inaccuracy but also and more certainly because the limit condition R™1/8 - 0 is not satisfied by the
present experiments. This point is discussed in what follows.
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Fig. 4.5 — The triple-deck scaling laws for laminar interaction Flig. 4.6 — Application of the triple-deck theory to a laminar corner
at a wedge corner flow by Rizzetta, Burggraf and Jenson (1978).

In 1978, Rizzetta, Burggraf and Jenson (1978) applied the triple-deck theory to compute the viscous-inviscid interaction produced when a
supersonic laminar boundary-layer encounters a corner (compression as well as expansion corners are treated). The method is applied both to
supersonic and to hypersonic flows. In the latter case, the pressure-displacement relationship is obtained through the tangent-wedge
approximation. It is assumed that the magnitude of the corner angle a is 0 (R™'/) (see Figure 4. 5).

For compression corners (if separation occurs), this limitation ensures that the reattachment is still within the Ax=0(R " %8) length scale. In
the present problem, uniqueness of the solution is assured by a downstream boundary condition which is prescribed for X — co, after the
reattachment point. This condition is simply the matching with the Blasius’ solution. The main equation to be solved is derived from equation 4.9
by differentiation with respect to Z, which eliminates the pressure term and leads to an equation for t=0u/dZ (this procedure is similar in nature
to the one used by Carter (1975), see Section 2. 3.2 above). A modified pressure-displacement interaction condition is derived by twice differentiating

the boundary condition 4. 11 with respect to X and eliminating the pressure by use of the wall compatibility condition (i. e, :-; = R_C( 0—) [;—;] )
0 0
Thus the problem involves only the strain 1 as principal dependent variable. In fact, the problem is formulated as an unsteady problem for 1,
the steady flow solution being obtained as the large time limit of the unsteady flow when the ramp angle is impulsively increased from zero to « at
time t=0. The calculation is initiated at t=0 with a uniform boundary-layer flow. It is to be noticed that in this unsteady procedure, the
downstream condition (i. e., the return of the boundary-layer to an undisturbed state) is continuously prescribed at every time step; in this manner,
the frequently tedious shooting method of ordinary steady approaches is avoided (see Section 3.3 above). To avoid the use of an excessively large

computational mesh, the upstream and downstream conditions are replaced by asymptotic expressions valid for X - + oo (Stewartson and Williams,
1969; Smith and Stewartson, 1973).

The calculation gives rapidly increasing separated regions when o goes beyond the value a* for Incipient Separation at the corner [o* is still
O (R4, Consequently, the separation zone moves rapidly upstream and a situation is reached where the pressure plateau and reattachment
regions are no longer contained in the O (R %% length scale. In this case, a new asymptotic flow structure must be introduced in which the
separated free shear-layer, the recirculating zone and the reattachment region have their own scaling.

Examples of calculations performed by Rizzetta et al. are shown in Figure 4.6. They are relative to ramp induced interactions for increasing
values of the angle «. The results are presented with dimensionless variables that correlate the initial conditions, in particular the Mach
number M. The figure also presents a comparison of the theory with an experimental result obtained by Lewis et al. (1967).
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An asymptotic theory for extended laminar separation has been developed by Burggraf (1975). The flow model consists basically of three
different regions each having their own appropriate length scale (see in Fig. 4.7):

(i) the separation zone, the mathematical structure of which is the one given by Stewartson and Willams (see Section 4.2.1. 1 above);

(i) the shear-layer leaving the separation region; the structure of this shear-layer has been described by Neiland (1971) and more fully by
Stewartson and Williams (1973) (see also Stewartson, 1974);

The matching of these three domains permits the calculation of interactions induced by supersonic ramps set at an angle which is greater than
the limit value o*.

Calculations made by Burggraf are presented in Figure 4.8. The first one is relative to separation induced by a forward facing step and the
second, to ramp induced separation at M, =2.55. In the second case, agreement with experiment is only moderate.

Very instructive comparisons between the triple-deck theory and the (ordinary) interacting boundary-layer model (see Section 3 above) have
been made by Burggraf et al (1979). In this work, the triple-deck calculations use the method of Rizzetta, Burggraf and Jenson (1978) whereas
interacting boundary-layer calculations employ Werle and Vatsa’s method (1974) (see Section 3 above). As we know, the “classical” interacting
model considers the boundary-layer as a unique layer for which the complete boundary-layer equations are applied. Thus this last model includes
the asymptotic triple-deck theory.
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Fig. 4.7 — Flow geometry for interaction with large separation Flig. 4.8 — Application of asymptotic expansion method
at a wedge corner in laminar flow. to extended laminar separation by Burggraf (1975).

In the above mentioned comparisons, the two methods have been applied to the supersonic compression ramp problem. Some of these
comparisons are presented in Figure 4.9 which shows that the asymptotic theory indicates the correct qualitative trend but is quantitatively accurate
only at very high Reynolds numbers (R>10%). A cause of inaccuracy at moderate Reynolds numbers (R=~10*—10% may be the ignoring of
streamlines divergence in the main-deck (Werle and Vatsa, 1974). The weak point of the asymptotic theory is the fact that it is accurate for very
high Reynolds numbers (R ~10°) for which a laminar régime is very improbable in most usual circumstances where the wall condition is adiabatic
(or nearly adiabatic). It is only for extremely cooled walls that transition can be delayed to very high Reynolds numbers.

The triple-deck equations have also been solved by Napolitano, Werle and Davis (1979) by using an Alternating Direction Implicit numerical
technique. This technique is similar to the approach used by Werle and Vatsa to solve the supersonic interacting boundary-layer equations (see
Section 3.3.1 above). The triple-deck theory is here applied to a flow passing a parabolic hump on a flat plate. The subsonic case is also
considered, in which case the pressure-displacement condition is given by a Cauchy integral.

Other improvements of the numerical technique have been proposed by Napolitano and Vacca (1980).

Comparisons of the asymptotic triple-deck theory to numerical solutions of the full Navier-Stokes equations have been made by Hussaini,
Baldwin and McCormack (1980). In reality, these calculations were performed essentially to study the accuracy of the numerical schemes employed
to solve the Navier-Stokes equations (influence of the grid size); the asymptotic theory was, in fact, used as a test bed. The main conclusion
drawn from the comparisons was that the asymptotic scaling laws can be of value for suggesting mesh resolution fine enough to correctly capture
the interaction phenomenon.
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Fig. 4.9 — Comparison between asymptotic model and interacting
boundary-layer model (Burggraf et al., 1979).

Applications of the Second-Order Theory. — In the preceding applications of the asymptotic theory, only the leading terms in the expansions
were retained. Extension of the method to include second-order terms was made by Brown and Williams (1975). In this case, the solution
depends on the thermal conditions at the wall (it is recalled that the inner-layer is incompressible to first-order). Brown and Williams solved the
Free Interaction problem for the adiabatic case, but they did not present results for the flowfield inside the separation bubble. A second-order
asymptotic solution with separated region was obtained by Ragad and Nayfeh (1978, 1980} for the supersonic flow over a compression corner. Now,
as has already been pointed out, the density is no longer constant in the inner-layer and the solution in the main-deck contains four undetermined
functions A, (x), 4, (X), p»(X) and p;(x). Two equations relating these functions are provided by the matching with the upper-deck. Hence,
A, (%) and 4, (x) can be expressed in terms of p,(¥) and p;(x). The latter functions are determined from matching with the lower-deck. The
basic principle of the method of solution is as follows:

(i) solving the first-order problem (y, vy, p,);
(ii) solving the second-order density (p,);

(iii) solving the total solution (&, 7, p).



177

The numerical method employed by Ragad and Nayfeh is similar to the one used by Rizzetta et al., i. e., the problem is formulated for
t=0u/0Z. The essential difference is in the use of a more accurate discretization scheme [the truncation error is 0 (Ax?) for the x-derivatives
instead of O (Ax)]. Calculations are made for both adiabatic and non-adiabatic wall conditions. The results obtained are rather disappointing:
when compared with Navier-Stokes calculations, the second-order expansion is found to be less accurate than the first-order expansion. According
to the authors, the greatest weakness in the matched asymptotic expansion version of the triple-deck theory lies in the expansion of the basic (i. .,
undisturbed) boundary-layer flow in powers of the transverse co-ordinate. The stream-tube divergence in the main-deck is likewise probably not
negligible for moderate Reynolds numbers since ¢ is then not very small,

4.2.1.2. — The Free Interaction Theory in Transonic Flows. The scaling laws defined in Section 4.2.1.1 fail when the upstream Mach number
M, is close to unity and the theory then needs reconsideration. The origin of this failure lies in the use of the linear supersonic theory to relate
the pressure and the flow deflection just outside the boundary-layer (see equation 4.7 in Section 4.2.1.1 above). As is well known, the linear
theory is not valid when M is close to one. In fact, according to the transonic small-disturbance theory, the changes in pressure are now of the
same order as the two-thirds power of the flow deflection angle. Taking this condition into consideration, Messiter, Feo and Melnik (1971) derived
the scaling laws appropriate for transonic flows (see also Stewartson, 1974)

(i) streamwise scale: Ax~O (g!%/%) L;
(ii) vertical scales:

— upper-deck: Ay,~O0 (£¥°) L;

— main-deck: Ay, ~0 (%) L;

— lower-deck: Ay,~O0 (e2*/%) L.

In the present situation, the vertical and the streamwise length scales in the upper-deck are no longer of the same order: Ay,/Ax~0 (e~ *%);
one sees that Ay, > Ax, which is consistent with propagation of disturbances near sonic conditions.

Apart from the change in scaling laws, the flow structure at transonic speeds is basically the same as in supersonic flows: the main-deck still
behaves as an inviscid rotational layer which is in fact the inviscid continuation of the Blasius’ boundary-layer. Its role is simply to transmit the
external pressure field unchanged to the lower-deck. The lower-deck is still represented, to first-order, by the incompressible boundary-layer
equation. The major change is in the upper-deck where the transonic small-perturbation equation is now used instead of the linear supersonic
theory. As we know, to first-order, the flow in the upper-deck is irrotational. It is thus possible to introduce a velocity potential ¢ which has to
satisfy the equation:

e
oy

oo
ax?’

=[Ko+(y+1)"—“’] @.12)
0x

where the transonic interaction parameter K, is of the form:

Ko~ (M2 —1)e™ %5,

Brilliant and Adamson (1974) have also derived scaling laws for the transonic Free Interaction. The problem considered by these authors
concerns the reflection of a weak oblique shock-wave in a transonic flow where the Mach number in the upper-deck always remains greater than
one (the case where the shock is normal far from the boundary-layer has been treated by Brilliant, 1971). The shock strength envisaged by
Brilliant and Adamson was too weak to induce separation. The problem of a transonic interaction with separation has been solved by Bodonyi
and Kluwick (1977). They also restricted themselves to the simpler situation where the outer flow remains entirely supersonic (in this case,
equation 4. 12 has simple-wave solutions). The lower-deck equations were solved by using a finite difference method with centered differences in
the y-direction and backward differences in the x-direction. Instabilities in the reversed flow region were prevented with the help of the FLARE
approximation.

4.2.2. — The Tu and Weinbaum Non Asymptotic Triple-Deck Model

In order to avoid the limitations of the asymptotic expansion approach, a non asymptotic triple-deck model for laminar supersonic boundary-
layer interaction was proposed by Tu and Weinbaum (1976). In this model, the lower-deck is described by the complete boundary-layer equations,
including the energy equation (a Prandtl number of unity is assumed). The inner solution has to satisfy the following boundary conditions:

(i) at the wall u=v=0 and prescribed temperature (or absence of heat transfer);

(i) at the outer edge =¢8: continuous matching both in value and slope with the profile description in the main deck.

Here also, the main-deck is an inviscid rotational fluid with Op/0y=0, but the stream-tubes divergence is taken into account. An integrated
pressure/stream-tube area relation is derived which couples the viscous displacement effect at the edge of the inner layer to the interaction pressure
imposed by the outgoing wave system of the external flow at the boundary-layer outer edge. This relation, which is also considered in Section 3. 2.2,
is:

S ag2_
tanS,—tanGg:—i o) i Vi1
wpdx )y M2

dy, (4.13)

where 6, and 6; are flow angles at § and § respectively. The pressure in the external flow is related to 6, through the use of the Prandtl-Meyer
function v(M), i.e.:
8. (x) =8, =v(M,)~v(M,).

Thus the external flow is assumed to be a simple wave system, but no linearization is made. Equation 4.13 can be more conveniently
expressed with the stream function Y (x, y):

R dp( 1 \"2 [Ysp2(y, x)—1.
0 — Pl | O/ L L M AW, =1 1/2
tan 6, —tan 8; = dx(yR) L S [Ty, ]2 dy 4.14)

(here R is the perfect gas law constant).
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The fluid in the main-deck being assumed inviscid, the Mach number and temperature distributions at any streamwise station x can be
calculated from known initial profiles and initial pressure p, by considering an isentropic evolution from p, to p along each streamline (it is recalled
that the pressure is assumed to be transversally constant). This kind of calculation is in fact an “Inviscid Shear-Layer Analysis” of the type
described in Section 1.4. Consequently, for a specified value of p, and initial Mach number profile, the integral on the Right Hand Side of
equation 4. 14 is only a function of the local interaction pressure p and of the definitions &8 and 5 of the sublayer and boundary-layer edges.

The viscous sublayer is computed by a Polhausen type method. The distributions are approximated by a fourth-order polynomial for the
reduced velocity u/uz and a third-order polynomial for the reduced stagnation enthalpy §/S;  The coefficients of these polynomials are determined
in a classical way by boundary and compatibility conditions. The remaining unknown thickness 8 is computed by integration of the momentum
integral equation.

The interacting boundary-layer can be computed by solving the equations appropriate to each layer along with boundary conditions to be
satisfied at the wall as well as at their common boundaries. The pressure is obtained through the interaction equation 4. 13 connecting the flow at
the outer edge of the sublayer and the flow turning angle in the outer inviscid stream. Calculation of shock-wave/boundary-layer interaction in
which a downstream condition must be satisfied is made by a shooting technique (see Section 3. 3.1 above).

Theoretically, a difficult problem with this kind of method could be the determination of the sublayer thickness 3, at the origin of the
interz}ction domain. However, according to the authors’ numerical experiments, the choice of 8,/8, does not greatly affect the results provided
that §,/3, is not too small and the external Mach number not too high.

The Tu and Weinbaum theory is compared to experiment in Figure 4.10. The first case corresponds to a shock reflection at a free stream
Mach number M equal to 2 (Hakkinen et al., 1959). The second case is a ramp flow with separation at M, =6.06. Agreement with experiment
is certainly better than in calculation using asymptotic theory.

The method proposed by Tu and Weinbaum is of course free of certain limitations inherent in the existing asymptotic expansion theories (for
example the neglecting of the stream-tube divergence in the main-deck). Nevertheless, from a fundamental point of view (i. e, excluding computation
time considerations), the expediency of the present two-layer model is questionable since this model is in fact contained (as well as the asymptotic
expansion versions of the triple-deck model) in the “classical” interaction theories which employ finite difference methods for computing the viscous
layer (see Section 2.3 above). In these last theories, the complete Prandtl equations are applied to the entire boundary-layer so that the exactness
of the mathematical model is greater than in the present versions of multi-deck approaches.
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Fig. 4.10 — The Tu and Weinbaum non asymptotic triple-deck mode!

(Tu and Weinbaum, 1976).

4.3. — Multi-Deck Theories in Turbulent Flow

4.3.1. — Asymptotic Expansion Methods

4.3.1.1. — The Limiting Processes in Turbulent Flow. Formal asymptotic methods have also been applied to the shock-wave/boundary-layer
interaction problem in turbulent flows. Most of the existing theories consider interaction with normal shock-waves. Recently, Melnik (1980)

presented a review of these theories and the conclusions developed in the present Section are largely inspired by his paper (for a general survey of
the problem, see also Adamson and Messiter, 1980).

The limiting processes pertaining to the interaction of shock-wave with a turbulent boundary-layer have been clearly establised by Melnik and
Grossman (1974). The limit conditions must be:

(i) the shock is weak and nearly normal to the flat plate coincident with the axis y=0. This means an upstream Mach number M, ~1;

(ii) the Reynolds number is high, so that the boundary-layer velocity profile is “full”. This profile can be represented by a conventional form

of the law-of-the wake/law-of-the wall (see Section 1.1 of Part I):

uo ()

4 0) _ 1+ L8 (NN iamw(2
" Uy (») l+0.41u,[ln(8)+nw<8>]’

where © and w are Coles’ wake parametcr and wake function. A high Reynolds number implies small skin-friction or, small reduced friction
velocity u./u, which is the same thing. Thus the large Reynolds number limit is expressed in terms of the small parameter:

T Uy

ge=—=

u, U,

~ [Cpil2 (weak compressibility effects).

Consequently, the solutions to be found are characterized by the double limit:

M, -1, £—0.

The limiting process is in fact more precisely defined by the parameter , such that:

_Mi-n
-2,

3
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(M2 —1) being proportional to the shock strength (in the limit M, — 1), %, is a measure of the ratio between the velocity jump across the
shock and the velocity defect in the boundary-layer. Various limit cases can be distinguished according to the value of x,:

(@) M, —>1e-0,in such a way that 1,=0 (1);
(b)) M, — 1, €0, in such a way that x, > 0;

(c) M, —1,e—0, in such a way that y, — co.

A fourth situation can be considered in which M_ #1 (supersonic case) and € — 0; thus:

(d) M_+#1, £—0, in such a way that y, —» co.

The four above limit processes can be interpreted as corresponding to the following flow situations sketched in Figure 4. 11;

shock-wave

boundary layer edge

- _-.?F;
Sl L /_wall layer
4 — Weak shack-wave : X¢ . 0(1) b _ Very weak shock-wave : Xy — 0
X Mai
€ | M
-
inner non linear negligible B
transonic region. upstream influence || “inner”wall layer
sonic line wall layer walfy!layer
------------- Va 7z
LR A I
¢ _ Moderate strength shock-wave : X¢ —m,Mg 1 d _. Strong shock-wave ; X¢ o, Mg fixed &
fg 9 g

Fig. 4.11 — Turbulent shock-wave/boundary-layer interaction —
Flowfield structure variation with shock strength (Melnik, 1980).

(a) weak shock-wave: here the velocity change across the boundary-layer is of the same order as the velocity change across the shock-
wave. Consequently, as the velocity profile is “full”, the sonic line is in the main part of the boundary-layer. The shock-wave penetrates the
boundary-layer and terminates somewhere in the supersonic zone as shown in Figure 4. 11 b;

(b) very weak shock-wave: the Mach number M., is close to one and the defect s is “large” [compared to (M —1)); thus the sonic line is near
the outer edge of the boundary-layer. The shock-wave which is weakened by compression waves generated by the boundary-layer thickening does
not penetrate into the boundary-layer;

() moderate shock strength: now the velocity defect is small compared to (M, —1); in consequence, the sonic line is close to the wall. The
shock wave is nearly straight and penetrates deep into the boundary-layer;

(d) strong shock-wave: the sonic line is very close to the wall so that the shock penetrates practically the entire boundary-layer and seems to
emanate from the wall itself. Such a situation corresponds to supersonic or hypersonic oblique shock-waves. For these cases, a very good
description of the flowfield is provided by supersonic inviscid rotational calculations (see Section 1.4 on Inviscid Shear-Layer analyses).

The different theories used to treat cases a to ¢ are reviewed in the following Sections. Case a [weak shock limit, y, =0 (1)] has been analyzed
by Melnik and Grossman (1974, 1975, 1977); case b (very weak shock-wave, % —0) by Adamson and Feo (1975); and case ¢ (moderate shock
strength, ¥, - c0 and M, — 1) by Adamson and Messiter (1977, 1980; see also Messiter and Adamson, 1978) and Adamson, Liou and Messiter
(1980).

4.3.1.2. — Melnik and Grossman’s Theory for Normal Shock-Wave Let’s recall that this theory applies to the case:

(ML —-Dfe=g,~>0().

On the basis of formal asymptotic analysis, it can be demonstrated that this limit corresponds to the asymptotic flow structure shown in
Figure 4.12. Upstream of the interaction domain, the boundary-layer develops a classical two-layer structure of the law-of-the-wall/law-of-the
wake form. In this region, the thickness 8, of the incoming boundary-layer scales with the friction velocity. This means that if L is a characteristic
length scale of the upstream region (the distance from the leading edge of an airfoil for instance):

3
I° =0 (g).
impinging normal
shock wave
0(e-*) inviscid region
|
0(e) °“t';;:::fe°” O(T outer layer
blending layer O(E;’"z)
0(e€) wall layer sublayer
0(1) 0(e¥2) o1
weak interaction strong interaction weak interaction

Fig. 4.12 — The Meinik and Grossman theory for weak shock-
wave. Asymptotic flowfield structure (Melnik and Grossman,
1974).
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The sonic line being well within the boundary-layer, it is assumed that the vertical extent of the interaction is O (3,). It results from
consideration of the slope tano=(M2 —1)~!/2 of the characteristics in the supersonic incoming flow that the streamwise length scale of the (strong)
interaction domain is given by [since x,=0 (1)}

Ax=¢'28,=0 (¥} L. (4.15)

As a consequence of this scaling, it can be established that in the interaction region, the boundary-layer develops a three-layer structure
consisting of:

(a) an outer inviscid rotational flow, extending over most of the boundary-layer, the length scale of which is: Ay=0 (¢) L. This layer is called
the “main-deck” in triple-deck terminology;

(b) a conventional wall-layer which has to be introduced in order to satisfy the no-slip condition at the wall. This layer is a continuation of
the upstream wall-layer, the length scale of which is classically given by:

Ay=-t* —0@E)L.
Po wuto

Following Mellor (1972), £ is defined by:

U,L
;=0@E e,  R=Po-es,
e*R Ko
since:
e=0(nR)"},

from the skin friction law in the approaching boundary-layer.

By virtue of this scaling, it can be demonstrated that inertia and pressure forces play a negligible role in the wall layer (except near separation
conditions) even though the streamwise pressure gradient might be large in the interaction region. A consequence of this finding is that the

displacement effect of the wall-layer is negligibly small, so that the wall-layer cannot significantly influence the solution in the outer inviscid region (in
contrast to Inger’s theory, see below).

(¢) a blending-layer between the outer and the wall layers. This intermediate layer must be introduced because of the mismatch in both the
Reynolds stress and streamwise velocity between the outer and the wall layer solutions (The mismatch results from the “freezing” of the Reynolds
stress in the outer region, whereas the Reynolds stress in the wall layer adjusts itself instantaneously to change in skin friction. Thus the two
regions cannot overlap.) It can be demonstrated that the vertical velocity in the blending layer is two orders of magnitude less than it is in the
outer layer so that the blending layer likewise does not influence the outer solution. The vertical scale of the blending-layer is:

Ay=e**L.

We will now briefly present the methods of solution for each of the three layers.

In the outer inviscid layer (main-deck), the solution is represented by the expansions:

U=u—(¥’—1)=l+au1()?, N+...,
Oe
y=tOD _sny G R+
Oe
where the stretched variables x and y are such that:
=g 12X yog12 4.16
. 7 i (4.16)

The undisturbed (or initial) boundary-layer profile is represented by:

U =1+eu, (),

(2 Vi 2]
u, ()= 0.41[ln<50>+nw<50>] iiNOs=ts “4.17)

0 if y>3d

where:

The perturbation field being irrotational (this can be demonstrated), a disturbance velocity potential @, is introduced in such a way that:
0
uy =g (D) + 2L, (4.18)
ox
0, =039,/0y. (4.19)
Substitution of 4. 18 and 4. 19 in the Navier-Stokes equations leads to the following equation for ¢;:

oo, N %o, oy
{x,+(y+l)M§e[uo(}7)+ a—;i]}ax?—-a?ﬂ. (4.20)-
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The above equation is in fact similar to the one used by Inger in the outer potential flow region (see Section 4.3.2.1 below) if one replaces
/U, in equation 4.26 by gu, =u, () + d¢,/0x and makes the appropriate scaling for x and y (i.e., relations 4. 16).

Equation 4.20 is supplemented by boundary conditions imposing that:

- % vanish far upstream (x - o0);
X

— the solution match the prescribed normal shock conditions for y- 0, ie:

0 for x<0 and y— oo,

e __211
(r+1)ME,

for x>0 and y-— o0.

(the origin x=0 is located in the plane of the undisturbed normal shock);

— the vertical component v, = d¢,/dy vanish at the wall. This latter condition results from the conclusion that the wall layer and the blending
layer have no displacement effect (see above).

It is to be noticed that u,(y) in equation 4. 17 tends to infinity when » — 0 (the logarithmic term in equation 4. 17 is obviously not valid very
near the wall) and a special treatment has to be applied to equation 4.20 in the immediate vicinity of the surface. In fact, the (unphysical)
singularity at y=0 of the representation adopted for the unperturbated velocity profile removes the inadequate behavior at the wall of an entirely
inviscid solution (see Section 4.1 above). The physical significance of such an “error compensating” mechanism is certainly questionable.

Thereafter, the pressure disturbance results from the standard small disturbance relationship:

P1=—0¢,/0x.

Equation 4.20, along with the appropriate boundary conditions, is solved by use of the Murman-Cole (1971) non-conservative finite difference
method.

The treatment of the blending and wall-layers involves rather complicated algebra so we will restrict ourselves to a presentation of the essential
results,

In the blending-layer, the independent variables are stretched according to:

x=£"32x/L;  y=e~3%y/L.

It can be demonstrated that the inertia and Reynolds stress terms in the streamwise momentum equation are of the same order and the
subsequent analysis leads to the following conclusions:

— to second-order, the pressure is constant across the blending layer;

— at transonic speeds, the blending layer is a parallel stream (no transverse velocity component) to third-order.
Thus this layer does not influence the outer deck.

The wall-layer is treated by introducing the usual scaling:

_Pu®) L w _ [a®

» u =

YL 4 (%) 0 ()

Pw{X), 1, (x) and u, (x) are local wall properties.
The equations describing the wall-layer are:

.
TR o, @.21)

T, Myt

from the momentum equation (equation 4.21 expresses the well known property that the total stress, laminar plus turbulent, is constant across the
wall layer), and:

L=<£><0.41y+g-u;>2D2(y+)+0(63), (4.22)
y

T Pw

which is a mixing length equation for the Reynolds stress incorporating a damping factor D (»*). The two above equations 4.21 and 4.22 are
supplemented by expressions giving density and molecular viscosity.

It is established that:
— the pressure is constant across the wall layer to all orders;

— the v component of velocity is exponentially small: the wall-layer has no influence on the outer solution, as has already been stated.

In order to match the wall-layer to the blending-layer, only the fully turbulent solution of the wall-layer is required. This solution is obtained
by dropping the viscous term in equation 4.21 and setting D=1 in equation 4.22. It has the familiar form:

ut = !
0.41

Iny* +B(x; €),
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where B (x; £)=B,=5 in incompressible flows. It is seen that the velocity profile in the wall-layer depends solely on wall properties: p,, (x), W, (x),
1, (x). These properties result from the wall pressure p,, (x) impressed by the outer layer [p,, (x), n,, (x)] and from the matching of the three layers

[z, ()

To sum up briefly: in the analysis of Melnik and Grossman just presented, the pressure field is defined by a purely inviscid solution which is
not influenced by any displacement effects due to the existence of a viscous sublayer. Acting viscous forces are confined within a very thin wall
layer which does not interact with the outer flow. This finding is in contradiction with Lighthill’s original model.

Calculations performed by Melnik and Grossman are shown in Figure 4.13. They are relative to a transonic interaction inside a circular pipe
which was studied experimentally by Gadd (1961). The computed streamwise pressure distributions at increasing distance from the wall are
represented in Figure 4.13a. They clearly exhibit the post-shock expansion observed in most transonic flows at a certain distance from the wall
(see Section 2.6.1 of Part I). The general flow structure is depicted in Figure 4.13b by the tracing of the shock-wave, the sonic line and the
compression waves forming upstream of the shock as a consequence of the interaction mechanism. This tracing is made in the plane of the
stretched variables x and y so that the streamwise scale is dilated by the factor (M2 —1)""2. A comparison with measured wall pressure

distribution is presented in Figure 4.13c.
; _ pank shexk saparsise ke [ | 1
P;. Eig charastisiatie . #\: [

q55

050

- Exrvumwine prwagrs dndribdion
ol U wall i o b Dt

purimenl | Gadd | 196510

¢ . Comparison with experiment
D451 == , . I
-10 0 IS
Fig. 4.13 — Application of the meinik and Grossman theory
for turbulent interaction (Melnik and Grossman, 1974),

4.3.1.3. — Adamson and Messiter's Theory for Normal Shock-Wave
As already mentioned (see Section 4.3.1.1 above), the case considered by Adamson and Messiter corresponds to moderate shock strength
i.e., M — 1 and u/u, - 0 in such a way that y, —» co. This limiting process means that in the incoming boundary-layer, the sonic line is very close

to the wall (because the velocity profile is very “filled”). As a consequence, the shock wave penetrates deep into the boundary-layer.

The flow structure which results from this situation is represented schematically in Figure 4.14. In a classic manner, the flow now comprises
an outer inviscid region and a boundary-layer region, the latter being divided into an inviscid rotational part and a viscous near-wall region.

Us shock wave 1 .
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| ; 1
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Fig. 4.14 — The Adamson-Messiter-Liou theory for moderate strength
shock-wave structure of the inviscid part of the flowfield (Adamson
etal., 1980).

The boundary-layer inviscid part must in turn be divided into:

(i) an outer domain which is scaled by the thickness 8, of the undisturbed boundary-layer and a corresponding Ax in the x-direction. In this
region one sees a normal shock entering the velocity defect part of the boundary-layer;

(i) an inner region which is scaled by the distance 3, from the wall of the sonic line in the undisturbed boundary-layer. The streamwise
extent of this region is O (A*x) with A*x<Ax. Here, the thickening of the subsonic layer, due to upstream influence, produces compression
waves in the supersonic part of the flow. These converging waves coalesce to form the shock-wave which becomes progressively normal. Thus,
the length scale Ax* is a measure of the upstream influence of the interaction; Ax* itself depends on the thickness 8, of the subsonic part of the
incoming boundary-layer. Because in this case y, — oo, the sonic line is assumed to be in the logarithmic portion of the velocity profile and,
consequently, 3, is exponentially small compared to 8. It can be demonstrated that the upstream influence O (A*) is also exponentially small
compared to &,.

The near-wall region is excessively thin throughout the interaction domain if separation does not occur. Therefore the conclusions of the
analysis given in Section 4.3.1.2 above remain valid. There is no transverse pressure gradient across the viscous region and (to the order
considered) there is no displacement effect impressed on the outer inviscid regions, i. €., v (x, 0)=vx (x,0)=0 (to the order considered). The pressure

field is entirely defined by the behavior of the inviscid flow, consideration of the wall region being necessary only to determine surface properties
(the skin friction coefficient, for instance).
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First, let us consider the solution for the outer inviscid flow which as we know includes most of the boundary-layer. To the scales § and Ax
of this region, the inner-layer is vanishingly small, and one sees a normal shock entering the boundary-layer which is represented by the velocity
defect layer. To order &, the incoming velocity is uniform and the shock is therefore planar. In fact, in the boundary-layer domain of the outer
region, there are variations from a uniform incoming velocity so that the shock shape must be corrected in a manner which will be seen later.

In the present Section, the authors’ original conventions will be adopted. The velocity is here scaled to the speed of sound in the external
upstream flow and the small parameter € is defined by (see in Fig. 4.15):

Up.=1+¢,

where U,, is the (reduced) outer flow velocity upstream of the shock-wave. The second small parameter is the dimensionless friction velocity u,
such that: u, <e.

The stretched variables y and X are defined by:

F=yfde  *=x/Ax.

y:—Y— 1
U-=1+¢€ 8o Un(1+€)”
M < Mg>1 Mo M<i yo
UnT+E+upug ly) Us 115 cur Ny e)eur @y (xy; €)
upwe € =1
| shock-wave : xg =0 (ur/e)
7L inner region : y = 0 (e~ke/ur)
e i Fig. 4.15 — The Adamson-Messiter-Liou theory — Asymptotic

§ 1N representation of “‘outer” flow (Adamson et al., 1980,
1o (1M X ? 4
8o
It is already known (see Section 4.3.1.1 above) that 5,/L=0 (u). Furthermore, asymptotic expansion arguments yield:

Ax=(y+ 1)y L,

which is similar to the scaling given by equation 4. 15 (y+1)!/ being O (1).

The upstream velocity field is represented by:

U=1+etu uy () .23)
V=0 ’

One seeks a downstream solution of the form:

U=1—¢e+uuy () +uu;, (x, N+. .. @.24)
V=(+D)"2eu v, (x, ) +... )

plus similar expressions for p, p and T. Expression 4. 24 satisfies shock jump relations to O (¢?) in the external flowfield.

Thus, it is assumed that the shock-wave penetrates down to the wall and
equation 4.23. The solution to be found is entirely in the subsonic domain an
downstream of the normal shock has to be determined).
u; (X, y) and v, (%, y), the governing equation for ¢, being:

propagates through an undisturbed upstream flow defined by
d does not comprise any transonic region (since only the flow
It can be shown that a potential ¢, exists for the perturbation velocity components

_6_2& + az_q"_ =0,
xrt @y

This means that the Laplace equation holds true downstream of the shock. The boundary conditions of the problem are:

o 00, — = :
(i) %(x, 0)=0, 0<x< oo (no displacement effect of the visous sublayer);
5

(i) lim;, , 2% —0, 0<F<co;
oy

... O = -
(i) 7"’_1(0, Y)=—2u; (), 0<y <o (shock jump relation);
X
A ¢y — -
(iv) hm;_,,,?(x, =0, 0<y<oco.
X

A solution can be found by inspection: it consists of a source distributi

ol y 18 on along x=0 (i. e., along the shock-wave) which gives the proper value
of 0¢,/0x and is symmetric in y so that v, =0 at y=0. The solution for th

e pressure distribution on the wall is given by:

pw(x)=1+ye—4yu'le Uy (Tl)d
T Jo x*+1n?

the integral being along the shock-wave.
It can be seen that the solution for the

pressure develops a logarithmic singularity as X, y — 0. This singularity is removed by introduction of
the inner solution.
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As we know, in the inner region the stretched variables are:

x*=x/A*x, y*=y/d,

The flow velocity leaving the shock must have variations from sonic value of the same order. Hence, one can write the following asymptotic
expansions:

U=1+uuf(x* y")+...
V=v,o¥f(x* y+...

(and similar expressions for p, p, T).
The scales of the inner layer are found to be:

1/2 372
Ar=ul3,  vi=ul

It is seen that the inner region problem is similar to the problem treated by Melnik and Grossman for what they called the main-deck (see
Section 4.3.1.2 above), but now the vertical scale is the thickness 3, of the subsonic part of the boundary-layer instead of the thickness 8, of the
incoming boundary-layer, Such a similarity is a direct consequence of the fact that 8, and 8, are of the same order in Melnik and Grossman’s
analysis.

The inner problem (along with proper boundary conditions which include v} =0 at the wall and matching conditions with the outer solution)
leads to non-linear equations. Hence, a numerica! solution would be called for in general (as was done by Melnik and Grossman). However
analytical results can be derived for the form of p,, (and t,) at the beginning of the interaction.

As we have seen, the outer solution is determined by assuming that the shock is planar and contained in the plane x=0. The exact shock
shape is found afterwards from the equation:

dx, _ "

4 U

s

where x, () is the shock position at any value of y, and [U] and [V] are the velocity discontinuities across the shock.

To sum up the procedure for the flow considered as inviscid, one can say that the inner solution describes perturbations about the undisturbed
boundary-layer flow, while the outer solution describes perturbations about a different boundary-layer flow, downstream of the shock-wave.

The treatment of the viscous part of the flow is like Melnik and Grossman’s analysis. Two layers are considered in which the Reynolds stress
is modeled by using a mixing length hypothesis including Van Driest’s damping factor. These two layers are:

(i) a Reynolds stress sublayer (called the blending-layer by Melnik and Grossman, see above), which is a parallel stream (no vertical component
to the order considered);

(ii) a wall layer where the only terms retained are the Reynolds and viscous shear stress terms.

An expression for t,,(x) is obtained which shows the correct behavior with a minimum value for t,, in the course of the interaction. Thereafter
it is possible to calculate the corresponding values of R and M, , for which (t,)ni, =0, yielding the condition for Incipient Separation.

As pointed out by Adamson and Messiter (1977), the basic difference in structure of the two kinds of boundary-layers explains the necessity of
a three-layer structure for an interaction with a turbulent boundary-layer (i.e., an outer rotational inviscid layer plus two viscous layers: the wall
and the blending-layers), as opposed to the two layers required for laminar flows. In laminar régime, a boundary-layer has a one layer structure
and so one needs consider only a viscous sublayer. On the other hand, a turbulent boundary-layer has a two-layer structure and so two layers
must be considered in the interaction region.

Figure 4.16a shows a computed streamwise pressure distribution outside the boundary-layer for a transonic interaction occurring at a curved
wall. Agreement with experiment is relatively good. Mach number at incipient separation vs. Reynolds number for flow over a flat plate is
shown in Fig. 4.16b. The rise in shock strength along with Reynolds number is in qualitative agreement with experiment, although the computed
limit gives a Mach number too low (see Section 2.7.2 of Part I).

4.3.1.4. — Adamson and Feo’s Theory for Oblique Shock-Wave

The problem considered by Adamson and Feo is the interaction between a weak oblique shock-wave and an unseparated turbulent boundary-
layer. A solution is looked for in the double limit as the Reynolds number tends to infinity and the Mach number tends to unity. With the same
notations as in the previous Section, the two small parameters are defined as:

e=Uy,—1 and u.

p M, = 1322 R -96x10°
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-10 0 10 20 X o o R g Fig. 4.16 — The Adamson-Messiter-Liou theory —

. Application to normal shock-wave (Adamson et al., 1980).
a_ Streamwise pressure distribution outside the BL. b Condition for shock-induced inciprent separation
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The limiting process envisaged is € — 0, u, — 0 in such a way that e/u, — 0: this case corresponds to a situation where the sonic line is near the
outer edge of the boundary-layer.
Matched asymptotic expansion arguments show that the perturbated flow develops the classical multi-deck structure consisting of:

(i) an outer transonic non viscous layer, the vertical length scale of which is:

A=0@?e YL,

(i) the outermost layer of the boundary-layer which coincides with the velocity defect region. To the order considered, the flow in this region
is inviscid. Its vertical length scale is:

Ay=0(u)L or Ay=0(3,) since u,=0 (§,/L);

(iif) a Reynolds stress layer (or blending-layer) for which:

Ay=0 (u2e'?)L;

(iv) a wall-layer for which (see Section 4.3.1.2 above):

Ay=0 [u; Yexp(—1/u)] L.

The longitudinal scale Ax is the same for the four layers:

Ax=0 @l Y3 L.

Evidently, if u, =0 (g), these length scales become identical to the ones introduced in Section 4.3.1.2.

The subsequent analysis of the different zones shows that, to the order considered and for the limiting process envisaged, the static pressure
remains transversally constant across the boundary-layer. Furthermore, it is demonstrated that the two inner layers play no role in the interaction
mechanism. The progressive pressure rise resulting from the interaction is entirely determined by a coupling between the outer inviscid flow and
the velocity defect region of the boundary-layer. This interaction is controlled by the following “coupling relation” (written with dimensionless
and stretched variables):

P o
ul=—(ﬂ)d—‘J. oy dy. (4.25)
Y dx Jo

In this equation, v, is the vertical component of the disturbance velocity at the boundary-layer edge, P, is the pressure perturbation and u,,
represents the velocity defect of the unperturbated incoming velocity profile, i. e.:

ugy=u; (U=, ).

It is to be noticed that equation 4.25 is in fact a linearized form of the basic coupling equation discussed in Section 3.2. 1.

The solution is thus determined by computing an external inviscid flow which satisfies the following matching (or boundary) conditions, in the
limiting process yijne; = 90, Youter = 0:

(i) equality of pressure in the two domains;

(1) ¥y gurer =01 inner Siven by equation 4. 25.

This method of solution is very similar to the coupling methods presented in Section 3. The wall pressure distribution is in fact calculated by
using only the two outer regions and the solution is in reality a turbulence Free Interaction solution in the sense of the laminar Free Interaction
theory (see Section 4.2.1.1 abave).

Adamson and Feo have made numerical applications for situations where the outer flow remains supersonic at all points (in this case the
pressure in the outer flow is determined by the Prandtl-Meyer law). The present model yields a solution in which all of the shock induced flow
variation occurs upstream of the shock impingement point. Physically, speaking this is due to the absence (to the order considered) of displacement
effects arising from the inner regions. As shown by equation 4.25, the shape of the velocity distribution (i.e., the velocity defect uy,) which
contributes to the coupling mechanism with the outer inviscid flow is assumed unaltered by the interaction process. Consequently, the analysis
implies that there is not the possiblity of a large increase of the boundary-layer thickness through a process in which the velocity distribution is
distorted as is the case in a compression. As opposed to the laminar case, the fluid does not turn back towards the wall in the post shock region
due to a mechanism in which the pressure continues to rise while the thickness of the boundary-layer decreases as a consequence of the “refilling”
of the velocity distribution. The only possible solution is a continuous increase of pressure upstream of the shock impingement point: ahead of
the shock, P, increases until it reaches a value equal to the final pressure after interaction. Then P, rises through the shock and decreases the
same amount through the centered expansion fan to insure continuity of pressure.

4.3.2. — Small Perturbations Methods

4.3.2.1. — Inger's Theory for Normal Shock-Wave

The analytical method developed by Inger (see Inger and Mason, 1976; Inger, 1976; Inger, 1980a and 1980b) is in fact a generalization of
Lighthill’s earlier work (see Section 4.1 above). It consists of a triple-deck model, the equations of which are solved by perturbation
techniques. The triple-deck structure is composed of (see in Fig. 4.17):

(i) an outer inviscid and irrotational flow (the incident shock is assumed weak so that it produces a negligible entropy change);
(ii) a rotational inviscid boundary-layer flow;

(iii) a thin shear-disturbance sublayer.
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Fig. 4.17 — The Inger flow model for transonic shock-wave/
turbulent boundary-layer interaction.

We wili now briefly examine the nature of the disturbance flow problem in each of the three basic decks.

Quter potential flow region. — The perturbation velocity components «’, v and the pressure perturbation p’ have to satisfy the following
equations:
M low &
[Mg,—1+(y+1)u'—°=]l=—”, (4.26)
Uy 10x oy
o o
KU OUS @.27)
ox dy
2,7 ’ 2 2,/
"-’%+ 1omz,—2¥ Mo 1P (4.28)
y 0e | 8x?

Equation 4.26 results from the continuity equation and assumption of constant entropy; equation 4.27 is the irrotationality condition and
equation 4.28 is a combination of the two momentum equations. The third term within the square brackets of equations 4.26 and 4.28 must be
retained in the transonic case. Then these equations automatically include the supersonic-subsonic shock jump conditions to this order of
approximation. If the term is omitted, equation 4. 28 reduces to the familiar Prandtl-Glauert equation.

It is assumed that such a small disturbance solution may be carried out for all x on the upper region y=38, where 3, is the thickness of the
undisturbed boundary-layer. The boundary conditions of the problem are the following:

(i) usual far-field conditions as y — oo;

(ii) other conditions are prescribed along the streamline which coincides with the boundary-layer edge. To the same order of approximation,
this border is taken to be the edge of the undisturbed boundary-layer of which the thickness 8, is considered as constant in the interaction
domain. Thus along y=38,, both v" and p’ are required to be equal to their middle-deck counterparts at y=2§,.

Middle rotational-disturbance flow deck. — In this part of the flow, the shear stress (turbulent as well as laminar) is considered as “frozen”
along each streamline; i. e., disturbances of the viscous forces (not the viscous forces themselves) are ignored. Furthermore, the streamwise changes
which would occur if the boundary-layer were not disturbed are neglected. This means that the properties of the undisturbed boundary-layer are
assumed functions of y only.

Thus, the disturbance field caused by a weak shock-wave is one of a small perturbation of the incoming non-uniform boundary-layer
profile. Such a disturbance field is governed by the equations:

i[v’(x, y)]= 1-M3(y) 8('/po) 4.29)
vl U0 | yM3O)  ox
o _ _9pfox _dUs v (4.30)

2, ’ ’ 2 2 ../
Tp_ 2 dMo +<1—M},—2" M°>9—”—=0, 4.31)
M, dy oy Uy /] ox?

where U, (y) and M, (y) are the velocity and Mach number profiles of the incoming boundary-layer.

The first equation is a result of the particle-isentropic continuity and energy equations; equation 4. 30 is the perturbed x-momentum equation;
and equation 4. 31 is a generalization of Lighthill’s well known pressure perturbation equation for non-uniform flow (see Section 4.1 above). The
difference lies in the non-linear correction term that accounts for possible transonic effects within the boundary-layer. These effects include the
diffracted impinging shock above the sonic level of the incoming boundary-layer profile. Use of equation 4.31 provides an account of any
transverse pressure gradient that develops across the interacting boundary-layer.

Equations 4.29 to 4. 31 are supplemented by boundary conditions requiring that:
(i) disturbances vanish far upstream (i. e., x = ©);

(ii) p’ and v’ match the outer-flow conditions along y=38,;

(i) v’ is equal to zero at a normal distance y,, . Which is determined by the matching with the inner deck solution. It is seen that y,, ¢ is an
effective wall position for the middle deck on which the Mach number is different from zero, since p,, +>0. As previously established by Lighthill
(see Section 4. 1 above), this displaced lower boundary removes the singularity which would exist if the v'=0 condition were applied at y=0. The
way to determine y,, . is explained in what follows.
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The normal disturbance velocity at §, is given by y-integration of equation 4. 29, yielding:

v - - 2
V& I P_*o(ﬂ)dn]
swere TPo - Mg (M)

Uy (o) Uy (») ox
=0

v (x, 50)_v'(x,yw_m)+g[

The lower limit of the integral represents the inner-deck contribution to the total streamline displacement effect.

The displacement thickness growth A8* along the interaction can be computed from the boundary-layer integral continuity equation. This
yields the following formula:

* v (x, 8) ME,—1 :Iap’
Ad* (x)= —— 2 8,— 0| —2¢ — , 0). 4.32
&2 L Uotog) T °)[vpoMs, ax O s

In the above expression, the streamwise pressure gradient is evaluated at the wall, the pressure being here assumed independent of y, which is
consistent with the “classical” displacement concept.

The inner shear-disturbance layer. — In the original work of Lighthill, the interaction problem was treated by considering that the inner-layer
is entirely contained within the laminar sublayer of the turbulent velocity profile. This simplifying assumption may be incorrect at high Reynolds
number where the laminar sublayer tends to be extremely thin. Inger’s theory avoids this limitation by taking into account the entire law of the
wall which expresses that the total shear stress (i. e., laminar plus turbulent) is constant in the wall region.

The perturbation equations are established within the following (main) hypotheses:

(i) the influcnce of density perturbation on the sublayer disturbance flow is neglected (for adiabatic flows, with low to moderate external Mach
numbers, the undisturbed and perturbation flow Mach numbers are both quite small within the shear disturbance sublayer).

(i) the density is assumed constant, compressibility effects being adequately represented by the Eckert reference temperature method. According
to this method, incompressible relations are used with quantities based on wall recovery temperature.

(iii) due to the extreme thinness of the inner-layer, the normal pressure gradient is neglected.

Under the above assumptions, the disturbance field is governed by the following equations:

— continuity:
i?l‘—+a—u=0; (4.33)
x dy
— momentum:
Uo?l +0’M=_L%+i(vow+2£ro)a_u (4.34)
ox dy Pow dx 0y dy

The doubling of the turbulent shear stress disturbance term results from inclusion of the eddy viscosity perturbation.

The eddy viscosity is expressed by the well known relation:

y T; 2‘“]o
7. =<0.41 1—e - = -, 4.35
’° { y[ xp( 26v0w\/p0w)]} dy o

which includes the Van Driest damping factor.

Equations 4.33 and 4. 34, along with 4.35 are to be solved subject to the following boundary conditions:
(i) all disturbances vanish at upstream infinity; i. e. w' (x, y)=0 when x = — o0;
(ii) no-slip condition at the wall; i.e. w’'=v"=0 at y=0;

(iii) at a certain distance 8, sufficiently far from the wall, u’ (x, y) must tend to the inviscid solution ui,, (x, y) along the bottom of the middle-
deck. This latter perturbation u,, (x, y) is governed by the continuity equation 4. 33 plus:

g, 01 4Py (4.36)
X

The distance 85, is defined as the height where the total shear disturbance (oc du’/dy) of the inner solution vanishes to a desired accuracy.
For the inner sublayer, the pressure distribution p,, (x) is prescribed. In fact P, (x) results from the matching with the other decks.

Following Lighthill’s, idea it proves convenient to derive from 4.33 and 4. 34 an equation involving only the normal disturbance velocity field
v (x, y)

a 0% d*U, 2 v

—\ Uo7 —v =—| (Vowt28r)— | 4.37

(5t 5 )= o2 G | @37
This equation is to be solved subject to the boundary conditions:

(i) vanishing of perturbation at downstream infinity;
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(ii) at the wall:

3v'(x,0)

v (x,0)= e

0;

(1) a third boundary condition is obtained by writing the momentum equation at the wall which leads to:

Pov_ 1 dp,
oy?

s
PowVow aX

(iv) the fourth boundary condition is the equivalent for v" of condition:

2 .,/ 2
2(y,2 vi.,v_vgnvﬂ)ﬂ,
dx ay? dy?

along with the vanishing of the total disturbance shear, i.e.:

v

oy?

From the solution for v’ (x, ¥) in the inner-deck, it is possible to deduce a boundary condition for the middle-deck in terms of an effective wall
position y,,.#0. The distance y,, .« is obtained by *“back projection” or more exactly “back extrapolation” of the external inviscid behavior of
v'(x, y). This extrapolation is carried out down to the ordinate y where v, (x, y) (extrapolated) vanishes. Physically speaking, y,, .« represents
the total mass defect height due to the shear stress perturbation field and hence the effective wall position “seen” by the overlying inviscid middle-
deck disturbance flow. This process provides the following non-singular boundary condition for the middle deck solution:

o
6_1))) W ett) = Viay Vo o) =0 at Up vy ere>0)-

Uoly) /

Uo (Y eff)

I rwiscid

solutian

Once the v'(x, y) field is known, the accompanying streamwise velocity (and hence the disturbance shear stress) may then be found from
equation 4, 34,

The three sets of equations 4.26-28, 4.29-31, 4.33-37 describing the various decks along with:
— prescribed behavior at infinity,
— wall boundary conditions,

— matching conditions,

constitute a “closed” problem which can be solved by any appropriate method. Following Lighthill’s original work, Inger employs a technique of

solution involving an a x-wise Fourier transform. This procedure leads to rather complicated mathematical expressions which will not be given
here.

The original Inger method has been improved upon several times over in order to take into account surface curvature effect (Inger and
Sobieczky, 1978), background pressure gradient effect (Panaras and Inger, 1977), suction or blowing effect (Inger and Lee, 1978; Inger, 1979) and
also to represent more faithfully shock penetration into the boundary-layer in low transonic flow régime (Inger, 1979). This method has also been
incorporated into viscous/inviscid interactive calculations of the flow past transonic airfoils (Stanewsky et al., 1981). Knowing the boundary-layer
properties just upstream of the shock (deduced from a “classical” boundary-layer calculation performed from the leading edge), the method permits
the calculation of boundary-layer change during the course of the interaction. 1t is thus possible to deduce from this calculation:

(i) the local evolution of the displacement thickness (see equation 4.32 above). This evolution defines a “viscous ramp” which models the
boundary-layer displacement effect as seen by the external non viscous stream;

(ii) the downstream properties of the boundary-layer which are fed as initial conditions into the new ‘“classical” calculation performed
downstream of the shock interaction region.

We will now present some applications of Inger’s theory which clearly show the specific influence of the essential parameters playing a role in
transonic shock-wave/turbulent boundary-layer interactions.

Assessment of the theory is first established by the comparisons with experimental results (Ackeret et al., 1946) shown in Figures 4.18 and
4.19. The wall pressure distributions plotted in Figure 4. 18 exhibit the differences occurring between the wall and the boundary-layer edge. In
particular, the post-shock expansion (see Section 2.6. 1 of Part I) is well predicted by the theory, in spite of some discrepancies with measurements
in this part of the field. Also, the rise in the boundary-layer displacement thickness is correctly predicted, as shown in Figure 4.19.
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Fig. 4.18 — Application of Inger’s flow model —

Fig. 4.19 — Application of Inger’s flow model. Rise in the boundary-
Streamwise pressure distributions (Inger and Sobieczky, 1978).

layer displacement thickness (Inger and Sobieczki, 1978).

Figure 4.20 shows a parametric study of shock strength effect for fixed initial shape parameter (H;,=1.40) and Reynolds number (
Rg=3.5x10*. It is clear that an increase in the upstream Mach number provokes a more severe destabilization of the boundary-layer with a
highe: increase in the displacement thickness and in the shape parameter and a larger dip in the skin-friction distribution which becomes negative
for My=1.3. The following figure (Fig. 4.21), shows a parametric study of initial shape parameter effect for fixed upstream Mach number
(M,=1.2) and Reynolds number (Rg =4 x 10%). The present theoretical results are in full agreement with the experimental trends discussed Part I
namely, an increase in H;, (which means a less “filled” incoming profile) entails a greater jump in the boundary-layer thickness and a more
important spreading of the pressure rise at the wall. The streamwise evolution of the skin-friction is very characteristic of behavior already
discussed in Section 2.7 of Part I devoted to Shock-Induced Incipient Separation in transonic flows. At first when H,, increases, the boundary-
layer tends to separate more readily, its profile becoming less “energetic”. However, one observes a trend reversal due to the wider spreading of
the compression when H,, is high. There results a weakening of the adverse pressure gradient and this effect is such that the boundary-layer is
less likely to separate in spite of a less filled velocity distribution.
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Fig. 4.20 — Application of Inger’s flow model — Parametric study Fig. 4.21 — Application of Inger’s flow model — Parametric study of
of shock strength effect for fixed shape parameter (Inger, 1980). initial shape parameter effect for fixed initial Mach number (Inger, 1980).

The last examples presented here show parametric studies of wall temperature and Reynolds number (see Fig. 4.22). As we already know
(see Section 3. 75 of Part I), cooling the wall increases the “stiffness” of the boundary-layer which then offers a greater resistance to separation. Of
course, heating the wall has the contrary effect. This behavior is clearly demonstrated by the skin-friction distributions represented in
Figure 4.22b. On the other hand, the wall pressure distribution is only slightly affected by thermal conditions at the wall. Moreover, the
resistance to separation increases with the Reynolds number as shown in Figure 4.22¢.

Inger’s theory has also been employed to determine a limit for Incipient Shock Induced Separation. This limit is computed as a function of
the main influence parameters: upstream Mach number M,, shape parameter H;, Reynolds number R, and also wall curvature (Inger, 1981). The

validity of the limit thus calculated is discussed in Section 2.7.2 of Part I. Influence of wall temperature on transonic Shock Induced Separation
is also discussed in Section 2.7.2 of Part I by resorting to Inger’s theory results.
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Fig. 4.22 — Application of Inger’s flow model — Parametric study of
wall temperature and Reynolds number (Inger 1978 b).
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4.3.2.2. — Bohning and Zierep’s Theory for Normal Shock-Wave (1976 a and b)

The flow model adopted in the present theory is again the triple deck model and the subsequent analysis has much in common with Inger’s
theory as well as with the basic work of Lighthill.
Schematically, Bohning and Zierep’s theory proceeds as follows:

(i) the outer-deck consists of a transonic inviscid flow with a shock-wave becoming normal far from the wall. This flow is computed by a
classical method. For curved wall, Oswatitsch and Zierep’s method (1960) is employed;

(i) in the main-deck the viscous forces are neglected. This zone, which comprises most of the boundary-layer, is described by the well known
Lighthill perturbation equations for a parallel and rotational inviscid stream. Here, these equations are written in terms of the pressure
perturbation p’ and the vertical velocity component v’, which gives:

dU,(»)
dy

v'=0.

1=-MEONL —p0 () Vo) 5 +900)
X ay

w _
oy

P U + % —o,
ox

The above equations are solved with the following boundary conditions:
— vanishing of vertical disturbance velocity at upstream and downstream infinity;

— prescribed pressure distribution p(x) along the outer boundary y=38, of the main-deck. This pressure distribution is imparted by the
external flow;

— zero vertical velocity on an inner boundary y=_8§>0 which constitutes the outer edge of the viscous sublayer.

Closed form solutions of the above problem are obtained for velocity distributions in the undisturbed boundary-layer that can be approximated
by power law functions (these solutions make use of confluent hypergeometric series);

(i) the inner viscous layer is treated by using a simplified boundary-layer formulation in which the flow is considered as a parallel stream. The
inner-layer analysis serves mainly to fix the thickness o which is determined once and for all from the properties of the undisturbed incoming
flow. The determination of 8 is based on the fact that, in the adopted viscous sublayer analysis, the gradient of wall shear stress Jt,,/dx at a fixed

S " .. d|@ . o . 2
position x, presents a minimum when o is being varied. Therefore, the condition 5[%] =0 is regarded as a defining equation for 0. The
x Ji-o

scaled inner thickness 8/8, thus determined is a function of the Reynolds number R; and of the exponent n of the undisturbed velocity profile
representation. This dependence can be represented by the relation:

8/8,=1.14(R;) 1@ *m for 5.10°SR;<5.10%

The overall solution procedure is as follows, /8, being known from undisturbed conditions: in the first step, a pressure jump (Oth order
pressure distribution) is imposed at the outer edge of the boundary-layer. Then the problem for the main-deck is solved. This yields the vertical
velocity component v’ at the outer edge of the boundary-layer. In the second step, this v” distribution is imposed as a boundary condition for an
inviscid external flow calculation which furnishes a new pressure distribution along the main-deck outer edge. This whole procedure can be
repeated iteratively until convergence is achieved.

The present flow model has also been used to find the limit for Incipient Shock Induced Separation as a function of: the external Mach
number, the Reynolds number and wall curvature (Bohning and Zierep, 1978 and 1981). These predictions are discussed in Section 2.7.2 of
Part I

Examples of flow structures computed by Bohning and Zierep are presented in Figure 4.23 a which shows tracings of lines of constant density
for two cases having the same upstream Mach number but differing by the curvature of the wall. The pattern corresponding to infinite radius of
curvature (flat wall) is in good qualitative agreement with interferograms of transonic interactions presented in Section2.6.1 of
Part I. Figure 4.23b shows streamwise pressure distributions at different distances from the wall. The post shock expansion phenomenon is
very clearly demonstrated, this effect being enhanced by convex curvature.
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Fig. 4.23 — Application of Bohning and Zierep flow mode/
{Bohning and Zierep, 1976 a).
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5. — REYNOLDS-AVERAGED NAVIER-STOKES CALCULATION METHODS

5.1. — Introductory Remarks

A potentially powerful approach to predicting turbulent shock wave boundary-layer interactions, including those involving separation is to
solve the Reynolds-averaged Navier-Stokes equations. For practical reasons, such an approach is favored over direct simulation of the time-
dependent, unaveraged Navier-Stokes equations because the three-dimensional, widely varying scales of turbulence present impossible requirements
for even the largest and fastest computers (Chapman, 1981). Consideration of this former approach became possible in the early 1970’s when
large, fast computers became available. While the technology required to provide adequate engineering solutions is still evolving, techniques have
advanced rapidly and matured sufficiently to warrant their consideration in specific practical 2-dimensional applications now and certainly for the
more general 3-dimensional applications during this decade. An obvious advantage of such an approach is that the entire viscous and inviscid
portions of the flow are captured simultaneously, and the potential exists for focusing directly on turbulence modeling, which is an important
pacing item for the successful development of this method and other finite difference methods already discussed. A disadvantage is the long
computing time and large storage limitations of current computers, which has hampered attempts to focus directly on turbulence modeling without
considering numerical resolution and accuracy. As it now stands, the competing elements of turbulence modeling, numerical resolution, and
accuracy must all be considered in any evaluation of our ability to compute flows with strong interactions induced by shock waves (Marvin,
1982). This is particularly true for three-dimensional flows, which are the interesting ones from the viewpoint of practical applications.

Methods for solving the governing equations and various turbulence modeling approaches are reviewed in this section first. Subsequently the
physical characteristics of the shock interactions being studied with these methods as derived from experiment are described briefly. More complete
descriptions can be found in Part I. Examples of computations are then compared with experiment and in some instances with other methods
also discussed previously to provide an assessment of progress.

5.2. — Governing Equations

5.2.1. — The Reynolds-Averaged Navier-Stokes Equations

The time-dependent Navier-Stokes equations, supplemented by mass conservation and suitable gas-law relationships, describe the turbulent
motion of a continuum fluid. Solutions to the equations for turbulent flows of practical interest are virtually impossible using today’s computers
because turbulence is three-dimensional and has an enormous range of length and time scales. The difficulty can be circumvented by rewriting the
equations for another set of variables, obtained by suitable averaging. For compressible flows, this has been accomplished by introducing
mass-weighted variables, decomposing them into their mean and fluctuating components, and averaging over a time that is long relative to the
largest turbulent time-scale (see Rubesin, 1973). The resulting set of equations is commonly referred to as the Reynolds-averaged form of the
Navier-Stokes equations.

5.2.2. — The Turbulence Modeling Problem

In the process of deriving the averaged form of the equations physical information on the turbulent motion itself is lost. Furthermore, the
formalism results in a new set of equations that has more unknows, and an equation-closure problem arises. Usually, this is referred to as the
turbulence-modeling problem. Introducing supplemental equations for the mean turbulence motion itself obtained by deriving moments of the
original equations, does not alleviate the problem, but does help to provide a means to introduce more information on the turbulence. Necessarily
then, turbulence modeling becomes an integral, important part of the overall numerical modeling process. A general description of various
turbulence modeling concepts used for applications in aerodynamic flows, taken from Marvin (1982) is shown in Table I. Two broad classes are
eddy viscosity models and Reynolds stress transport equation models. Features that distinguish models of either class or models within the same
class arise through the particular closure technique, i. e., expressing modeled quantities in terms of the mean velocity field or in terms of the mean
turbulent field. To date, solutions to the shock interaction problem using the Reynolds-averaged Navier-Stokes equations have invoked the
effective viscosity idea of Boussinesq (1877).

STRESS TRANSPORT EQUATION MODELS
0 EDDY VISCOSITY MODELS T _ —
sy - (VELOGITY) (LENGTH] | Tk = iy [ iy (u},_u;,,,% -k} (D7D
a e
l 1-EQUATION | 1.EQUATION 2. EQUATIONS MULTI-
0-EQUATION PLUS UNIVERSAL PLUS ALGEBRAIC EQUATION
2.EQUATION | FUNCTIONS RELATION (ASM) l {RSE)

CLOSURE THRU
MEAN-VELOCITY CLOSURE THRU MEAN TURBULENT FIELD J
FIELD I

Table | — Turbulence modeling concepts using single-point closure.
5.2.3. — The Equations for Plane Flow

The governing equations in mass-average variables and supplemental equations used in some of the eddy viscosity models are written for plane
flow in vector form as follows:

U F G
U OF, G _y (5.1
at  dx oy
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v=| *° Fe puv =Ty 6= P+, o ow © (5.2)
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The last two equations are the supplemental equations providing the velocity (k)2 and length scale s required in higher-order eddy-viscosity
models. In the column vectors, g, and qr, are the laminar-plus-turbulent heat-flux vectors; <., 1,, are the laminar-plus-turbulent normal stresses;
1,, is the laminar-plus-turbulent shear stress; and diy» Gsx> and g, are flux vectors associated with the field variables.

The stress terms and flux vectors are:

2 du v
Gxx=p+§pk_‘rxxi Ixy=p'7' —+ E]

dy Ox
2 ou v
Tex= = 2———1}, =(p+ pe), 5.3
3P-T< ox 6y> wr=(p+pe) (5.3)
1T e L
qrx=Kr o’ Qix [ P 9sx Hx o

where p is the hydrostatic pressure; 2/3pk is the pressure associated with the turbulence; kr is the thermal conductivity, including the turbulent
diffusivity; and pe is the turbulent eddy viscosity. The functional forms of the source functions F depend on the choice of the turbulence model.

5.3. — Solution Methods and Turbulence Models

5.3.1. — Explicit Methods

Development of methods for solving the mass-weighted form of the Navier-Stokes equations began after MacCormack (1971) used an explicit
time-marching scheme to solve the laminar form of the equations. In this second-order-accurate method the equations are discretized and advanced
in time such that:

Utt=L@An Uz ;. (5.4

The L (At) term is replaced by a sequence of time-split, one-dimensional operators, for example,

L{AYy=L, A L,(AyL, ﬂ), (5.5)
2 2
where L, solves the parts of equation (5. 1) given by:
W, %,
at  Ox
and L, solves that part given by:
w + i =0. (5.6)
a oy

The operators are advanced in time to a steady state, if one exists, according to a predictor-corrector sequence of steps. A numerical method
stability criterion exists that limits the time-step used to advance the solution. Typically, in high-Reynolds-number turbulent flows the limiting
time-step occurs in computational sweeps normal to the surface. It is given by:

At < Y )
[v] +c+ {(Vi/AX)+(V,/A» }

(5.7

where c is the sound speed and V, and V, represent viscous terms. The Ay step interval has to be very small to resolve the wall region of a
turbulent boundary layer, and the permissible time-step presents severe limitations and hence long computing times. Nevertheless, many solutions
of shock-separated flows were reported using this method in the mid-1970’s.

Zero Equation Turbulence Models. — Given the severe time-step restriction of the method and computer storage limitations, most investigators
chose simple zero-equation eddy-viscosity models that use mean-flow information to close the governing equation. These two-layer eddy-viscosity
models employed Prandtl’s mixing-layer hypothesis in the inner layer,

Sinner =1 l@ + QEI,
dy  dx
where:
[=0.4y(1—exp’4),
A=A"p,/(1,/p)'7, (5.8
A* =26,

In the outer region, either a mixing-length value was chosen, based on some length scale such as boundary-layer thickness, for example,

I=lye., (5.9

or Clauser’s eddy-viscosity formulation was chosen with an intermittency factor, for example,

Eouter =0.016 8 1y, 8F/[1+5.5(3/8)°], (5.10)
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where u,,, is the maximum velocity achieved in the boundary layer and 8} is the kinematic displacement thickness. The turbulent heat flux is
modeled through a turbulent Prandtl number. To date, this latter aspect of modeling has not been altered. As will be shown later, solutions with
these formulations fail to give entirely satisfactory predictions, although they qualitatively reproduce many experimentally observed features. Most of
the shortcomings were earlier blamed on turbulence modeling, but not many of the studies reported effects of grid dependence or numerical
smoothing which in retrospect may have been as important as the model.

Attempts to Modify Zero Equation Turbulence Models. — Even though computing times were excessive (several hours on a CDC7600
computer) attempts were made to modify the turbulence model and some improvement in the solutions to complex separated-flow problems was
demonstrated. Two approaches are worth noting. One used experimental data to guide modifications to the mixing length constants in the
turbulence mode! (Marvin et al., 1975), and the other attempted to relax the outer eddy viscosity to account for the fact that turbulence does not
adjust immediately to rapid changes in the mean flow (Shang et al., 1976; Baldwin and Rose, 1975); for example,

PE =g +[PE.q— peo] (1 —exp® =~ x0al), (5.11)

where (pe), and 3, are undisturbed values ahead of the interaction region, (pe),, is the usual unmodified value given by equation (10), and a is a
relaxation length obtained by a best-fit comparison of final computed results with experiment. It is obvious that both attempts rely heavily on
experimental data over a wide range of conditions which limits their generality. However, these studies illustrated the potential of the numerical
simulations and encouraged development of faster computing methods and better turbulence models.

At this point, the numerical algorithm development research branched. MacCormack (1976) developed his more efficient explicit hybrid
method and Beam and Warming (1978) and Briley and McDonald (1977) developed their implicit schemes. Also, turbulence-modeling improvement
studies using higher-order eddy-viscosity models followed in the wake of the hybrid-method development, and improvement studies for algebraic
eddy-viscosity models, mostly from a computational compatibility standpoint, followed in the wake of the factored-implicit scheme of Beam and
Warming (1978).

5.3.2. — Hybrid Methods

The time-step efficiency of the MacCormack explicit method was improved by combining the advantages of implicit numerical stability with
physical insight of the wave-propagating property of the fluid. Conceptually, this was accomplished by further splitting of the y-operator, L,, into
hyperbolic and parabolic parts,

L, (Af) =Ly, (A1) L, (A2). (5.12)

The hyperbolic operator contains the convective and pressure terms in the column vector G such that:

U 4G,
+—=

— 0. 5.13
ot dy ( )

In the prediction solution to G,, pressures and velocities are obtained by the method of characteristics in a manner that eliminated the speed of
sound from the time-step limit such that:

At
At,= Tl (5.14)

Since the finest portion of the mesh is usually confined to the wall-bounded region where v is small, the stability bound of the allowable time-step
is much less restrictive than that given by equation (5.7). The corrector step is applied as before. The parabolic operator L, is treated implicitly
and, therefore, unconditionally stable with regard to time advances. The programming for the hybrid method is complicated by the necessity of
using characteristics relations in the prediction step for the hyperbolic operator. However, decreases in computing times by an order of magnitude
or more relative to the purely explicit method were achieved. Such decreases encouraged some investigators to apply higher-order eddy-viscosity
models (¢. g, see Viegas and Horstman, 1979), and others to move forward in the computation of three-dimensional flows (e.g., see Hung and
MacCormack, 1978).

Higher Order Eddy Viscosity Turbulence Models. — Higher-order eddy-viscosity turbulence models were introduced into the hybrid method by
expanding the column vectors to include the turbulent kinetic-energy and length-scale equations in equation (5.2). The one-equation model from
Rubesin (1976), two-equation model from Jones and Launder (1971), and the two-equation model from Wilcox and Rubesin (1980) have been
examined for a range of different problems. The full equations describing the implementation of these models in the hybrid algorithm are given in
Viegas and Horstman (1979). Modeling constants developed for incompressible flows have usually been used but some modifications have also
been reported. See Viegas and Horstman (1979) and Liou and Coakley (1981). Authors have reported mixed results, but conclude overall that
the higher order models produce improvements.

5.3.3. — Implicit Methods

Concurrently, development of implicit methods was undertaken. For our purposes, the factored-implicit scheme of Beam and Warming (1978)
will be briefly described. The method is an extension of their earlier development of an inviscid-flow solver, and, for convenience, the essential
elements of the method will be discussed in that context. Time-differencing of equation (5. 1), where F and G contain only inviscid terms, is
accomplished by the unconditionally stable scheme given by:

Y A{ -a_g n a_lj. ntl 3
ur _w+2[(6t>+(6t> ]-{—O(At), (5.15)

L0 oy
ot ox oy )

where:
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In this form, however, the system of equations is nonlinear and contains a large system of algebraic equations; as a result, the advantage of
unconditional stability might not result in solution times significantly smaller than the times for explicit schemes. However, they linearized the
equations while maintaining temporal accuracy by a Taylor-series expansion of the nonlinear terms. For example, they let:

P+l=p+(:—l‘;)n(w“—ww(my. (5.16)

Substituting this expression and a similar one for G, writing the resulting in a delta form AU"=U"*!—U", and employing spatial factorization, the
final form of the equation was written as:
n L3 aF n
I+g o4 (1+§ ai)AU"=—A£(—+6—G>. (5.17)
2 ox 2 dy x  dy

The solution is marched in time to a steady state, if one exists, through a three-step sequence as follows:

(14 2 Yo (24 25,
2 0x dx dy

(1+§ 2B )AU"=AU*, (5.18)
2 dy

Utt=U"+ AU

Results from this procedure compared favorably with those of the hybrid method for the same test problems. Refinements to this method and
other implicit solvers have been developed on a continuing basis; see for example, Briley and McDonald (1977) and Coakley (1983). MacCormack
(1982) has recently reported a new mixed, explicit-implicit scheme which reduces the computation times and the complex programming problems
associated with his hybrid method.

Turbulence Models Used in the Implicit Methods. — Solutions using the implicit scheme developed by Beam and Warming (1978) have usually
been obtained by employing zero-equation turbulent models and the thin layer approximation to the full equations; for example, see Baldwin and
Lomax (1978). The thin-layer approximation neglects derivatives of the viscous stresses in the flow direction. Baldwin and Lomax (1978) argue
that this is computationally acceptable for even large separated flow regions because the accuracy of these derivatives in the discretized form of the
full equations is questionable since the aspect ratio of computational cells in the near-wall viscous regions is usually very much less than unity for
grids used to resolve turbulent layers. Briley and McDonald (1977), McDonald ( 1982), and Coakley (1983), however, have employed higher-order,
two-equation models and the full equations.

A Modified Zero-Equation Model. — The development of an improved turbulence model was initiated to circumvent a shortcoming of the
Clauser outer-eddy-viscosity formulation (equation 5. 10), arising because in many instances the inviscid regions in complex flows have a nonuniform
velocity field, and determination of the viscous-layer edge needed to evaluate 5* in the model becomes difficult. The outer eddy viscosity was
redefined as:

6711
Eouer=0.0168C, Fw,k,|:1+5.5<pﬂ> ] s (5.19)
Ymax
where:
Foke=Ymex Fmax O Cot Vimax Uditr/Fimax  the smaller. (5.20)
The values of F_,, and y,_,, are determined from:
a F] 271172
F(y>=y[(—" - —") ] [1—exp™ /4] (5.21)
x dy

In wakes, the exponential part of F(y) is set to zero. The F,,, is the corresponding value of Y at F,,.; Uy is the difference between the
maximum and minimum total velocity at a fixed x-station. The constant C, was determined to have a value of 1.6 ensuring that the resulting skin
friction computed for a flat plate was equivalent to the value obtained from the original Cebeci-Smith model formulation. In order to have a
correct value of eddy viscosity for a far-wake, C,, was taken to be 0.25. For two test problems involving shock-wave interaction, the model gave
results that were improved relative to those of the simple two-layer zero-equation model and more or less comparable to those achieved with the
relaxation formulation given by equation (11). However, recent studies suggest that a certain degree of caution be exercised in applying this
model. It requires modification of constants for Mach number changes, the function F(y) is not always a smoothly varying one, and the choice of
Froax is problem-dependent.  See for example Deganni and Schiff (1983) and Visbal and Knight (1983).

5.4. — Experimental Requirements

The emergence of these methods for computing complex, turbulent flows places stringent requirements on experiments used to assess their
development. In addition to the traditional role of providing basic understanding of the controlling mechanisms, they must also provide guidance
for modeling approximations an provide sufficient detail so that accurate checks of computational output can be made. See Kline et al. (1981)
and Marvin (1982).
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The experimental data used to assess the development of computer codes used to solve the mass-averaged Navier-Stokes equations vary in
completeness and accuracy because the flows are complicated by the presences of shock waves or separation or both, and because many investigators
used instrumentation techniques that were themselves in developmental stages. Nevertheless, a series of bench-mark experiments can be identified
to assist in the process. A number of those available for the problems involving shock boundary layer interactions are cited in Tables II-VII along
with citations of studies in which computations are reported. Information is given on test conditions, grid size, and type of turbulence model
employed. Grid size alone is not the only criterion for assessing computational resolution, however, because grid stretching and special refinement
in regions of rapid flow changes are important techniques commonly used by most investigators. But the size provides some measure for
comparison between various computations. Likewise, the eddy viscosity turbulent models listed are only broadly categorized because they usually
differ in detail as a result of programming decisions made by the various investigators. Some of the experiments conducted before 1981 are noted
in the tables; they were recently reviewed by an independent evaluation committee and ascertained to contain the most comprehensive data sets for
code validation (see Kline et al., 1981). There is a continuing need for additional experimental data.

5.5. — Examples of Navier-Stokes Computations

5.5.1. — General Comments

Tables T1-VII illustrate the variety of flows that have already been computed with the methods and turbulence models discussed in the previous
sections. Due to space limitations of this publication, examples from all the studies cannot be incorporated herein. What we will provide next
are some examples, classified according to flow phenomena, which illustrate the essential accomplishments and shortcomings of the
computations. The physical characteristics, as deduced from experimental evidence, will be introduced first and then the computations will be
compared with experiment (and where possible with other more approximate methods discussed earlier in this paper).

Two broad classes of flows will be discussed: those where the flow field upstream of the interaction is supersonic, where the shock wave
position and strength are “fixed” by external means or geometry and where the interaction only weakly affects the entire upstream flow through
the elliptic properties of the subsonic regions in the viscous boundary layer (see Tables II-V and VII); and, those where the flow upstream of the
shock wave is transonic and where the shock wave position and strength are “free” and they depend on the interaction since it affects a substantial
region of the entire flow through the elliptic properties of the inviscid as well as viscous regions of the flow (see Table VI). The latter cases take
longer to compute, are more sensitive to boundary conditions, and must be examined even more carefully than the others.
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5.5.2. — Impinging Oblique Shock Waves

Physical Characteristics. — Sketches showing the important features of two-dimensional oblique shock-wave interactions are shown in
Figure 5.1. For a purely inviscid flow the uniform upstream flow processed by the incoming shock wave is uniformly turned toward the surface
and then straightened again by the reflected shock. The corresponding surface-pressure signature is shown. Analytic expressions are available to
predict this rather simple situation. The presence of a boundary layer confounds the problem, and the resulting flow-field characteristics depend
on the strength of the incoming shock wave.

In the weak interaction, the shock wave penetrates the turbulent boundary layer and turns more steeply toward the surface as it encounters the
lower speeds within the viscous layer. It reflects from the viscous layer through a series of compression waves that coalesce into a reflected shock
wave. A uniformly increasing surface-pressure signature is found, whose overall rise is nearly equivalent to the inviscid jump.

In the strong interaction, the shock wave also penetrates the viscous layer, but that layer cannot overcome the pressure rise, and separation
takes place. The viscous layer is turned above the separation through a series of compression waves that coalesce into what is called a separation
shock which is later weakened by expansion waves emanating from the viscous flow accelerating over the separation bubble. Downstream, where
the bubble terminates, a series of compression waves coalesce into a reflected shock where the flow aligns itself with the surface. The corresponding
surface pressure is characterized by a smooth pressure rise and an inflection region characteristic of separation. Also, it is usually assumed that
the separation is closed by a dividing streamline that separates the mass entrained in the region from the outer flow and that a recirculating region
is present. In actuality, the turbulence-flow probably leads to unsteadiness within this separated region, but how much influence this has on the
mean characteristics is not understood at this time and further study is warranted. Above the separated region an island of very high peak
pressure exists near the bifurcation associated with the intersection of the incoming and separation shocks. The extent (scale of the interaction)
depends on the boundary layer thickness, flow Reynolds number, and Mach number.

Shock-Capturing Capability of the Numerical Methods. — One of the first considerations in computing such flows is the ability of the
computation to resolve shock waves. As reported by Metha and Lomax (1982), the solution methods discussed previously are all capable of
capturing shock waves. However, the degree of shock sharpness depends on the numerical method and computational mesh. An example, taken
from Coakley (1983), which illustrates what can be achieved with a reasonably good numerical method and a uniform mesh, is shown in
Figure 5.2. Pressures along the solid surface and at a location about midway up in the mesh above the surface are shown for the case of an
oblique wave inclined at 29° at a free-stream Mach number of 2.9. Similar results would be displayed in pressure distributions normal to the
surface as the shock wave was traversed. The mesh used in this example is typical of the mesh dimensions used in the Navier-Stokes codes out in
the inviscid regions of the flow. The point to note is that the numerical method requires at least several mesh points to capture the pressure jump
associated with the waves. From results such as these, it is easy to deduce that for solutions to the strong-interaction problems, in which separation
and reflected-shocks occur, mesh choice will have an influence on how well the flow is modeled and further that a certain amount of shock
“smearing” will always occur in practice. What seems to be missing in studies reported in the literature on shock-separated flow problems is an
assessment of this effect on the results.
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Fig. 1 — Physical characteristics of 2-dimensional oblique 2
shock-wave interaction

Fig. 2 — Modeling of an inviscid oblique shock-wave interaction.

A Comparison of Computation and Experiment (2-Dimensional). — Many of the first computations of separated turbulent flows were directed
toward solving the two-dimensional, strong impinging-shock interaction problem (see Table I). Turbulence modeling was reported to have a strong
influence on the results. The bench mark experimental flow of Kussoy and Horstman (1975) was computed with an explicit numerical method
and will be used to illustrate how this flow is simulated numerically. The experimental apparatus was axisymmetric and thus eliminated
three-dimensional effects now known to be present in other “two-dimensional” experiments.

Pressure contours from the experiment and two computations are shown in Figure 5.3. The experimental contours show the presence of the
incident-, separation-, and reflected-shock waves as evidenced by the closely spaced contour levels. An island of very high pressure exists above
the separation near the intersection of the incident and separation shocks. The computations were made with zero-equation eddy-viscosity models
and the equations were solved down to the wall; the O-equation model consisted of the mixing-length formulation given by equations (5.8)
and (5.9), and the modified mixing-length model was determined from data analysis (Marvin et al., 1975). The grid was chosen to allow reasonably
accurate shock capture in the outer regions, and in the viscous region a fine mesh was placed near the wall to resolve the turbulent boundary
layer. The eddy viscosity from the baseline model is too high in the interaction region and as a consequence the computation only predicts the
existence of a reflected shock wave.
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On the other hand, the modified model, which results in lower eddy viscosities, gave a better simulation of the experimental flow. In addition
to the reflected shock wave, the presence of a separation shock is evident, but it appears to be weaker and smeared compared with the
experiment. This deficiency in the calculations is probably a result of two things: the grid, which is still probably not fine enough to resolve the
flow in the region of the island of high pressure, and the modified turbulence model, which still gives a small separation bubble height relative to
the experimental one. Surface skin friction and heat transfer were not accurately predicted within the separated zone, although the model
modification did improve the results. In this instance, the model modification was experiment-dependent, and, therefore, not extendable to the
other conditions of Mach number and Reynolds number.

Although advances in numerical methods that improved computational efficiency provided the opportunity for investigating improvements in
turbulence modeling, there has not yet been a significant advance in the ability to predict the flow detail within a separated region. What is
known is the zero-equation eddy-viscosity models developed for attached flows must be modified or abandoned in favor of other approaches to
provide a physically plausible representation of the flow and that the model must provide some mechanism for altering the effective viscosity in the
interaction zone. Two approaches have provided some improvement: modifying the zero-equation model eddy viscosity (Baldwin and Lomax,
1978) and using two-equation eddy-viscosity models (Viegas and Horstman, 1979).

The former approach, which is advantageous from the viewpoint of computational efficiency, has been used extensively in three-dimensional
computations in which computer storage and speed make application of higher-order models less attractive.

A Comparison of Computation and Experiment (3-Dimensional). — Results of a recent study by Brosh et al. (1983) of a three-dimensional shock
interaction are worth examining because they illustrate current limitations. The flow field is sketched in Figure 5.4. A plane shock impinges on
a cylinder aligned with free-stream flow. Separation occurs on the windward surface because of shock interaction, and on the leeward surface
because, in part, of the cross flow imposed by the windward portion of the free stream being processed by the oblique shock. On the windward
plane of symmetry the shock interaction is similar to that depicted in Figure 5.2, but the separation is not closed, and the mean flow within it is
not a result of recirculation fed by downstream flow reattachment. (There has been some speculation that such open separations may be modeled
appropriately with zero-equation eddy-viscosity models.)

A cursory examination of the computed results using the Baldwin and Lomax (1978) turbulence model indicates that many of the features
observed experimentally are simulated, for example, surface-pressure distributions (Fig. 5.4) and the initial separation line. More detailed
examination, however, shows deficiencies that result from both turbulence modeling and grid resolution. In Figure 5.5, the windward plane flow
field, determined by flow-field surveys, is sketched, and comparisons with static-pressure profiles are shown. Grid resolution in the region outside
the viscous zone leads to significant shock smearing, and no separation shock is predicted.

In Figure 5.6, the surface skin-friction directions from the computations are compared with a photograph of oil-flow patterns on a Mylar
sheet that had been placed around the cylinder and then “unwrapped” and photographed after the test. On the windward plane (& =0), a single
separated line is predicted, whereas a double separation line is evident in the experiment. It is likely that the deficiencies of the computation are
caused by the combination of a poor turbulence model, which gives an effective viscosity that is too high, and poor numerical resolution of the
shock system, which causes a local weakening of any shock structure. As the flow proceeds around to the leeward, a single line of separation is
predicted, whereas a double line of separation is measured. The turbulence model of Baldwin and Lomax (1978) is unlikely to predict secondary
separations without modification and, in addition, the azimuthal grid spacing may have been too coarse. See Deganni and Schiff (1983). Hence
grid resolution and turbulence modeling must both be improved before definitive conclusions can be reached on the modeling of three-dimensional,
impinging-shock, separated flows.
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5.5.3. — Supersonic Compression Corner

Physical Characteristics. — The physical characteristics and corresponding wall pressures for a two-dimensional compression corner are sketched
in Figure 5.7. For the inviscid flow situation a single shock forms, and the pressure rises abruptly to the level predicted by wedge-flow
relations. The presence of a boundary layer complicates the flow, as depicted for two situations, the weak and strong interactions. In the weak
interaction, a series of compression waves form within the boundary layer as it encounters the pressure rise and they coalesce with the shock
formed in the inviscid flow, which is required to turn the flow in the direction of the ramp. The corresponding pressure rise shows a smoothing of
the pressure at the beginning and end of the interaction. For the strong interaction, the boundary layer cannot withstand the pressure rise and it

separates. Compression waves that coalesce into a shock wave form near the forward portion of the separation bubble as the outer viscous flow
negotiates the pressure rise.

Experimentally, the separation shock-angle is found to be independent of the corner angle. If the separation is large enough and the free-stream
Mach number high enough, a second shock will form downstream when the flow over the separated region reattaches and turns in the direction of
the ramp. The separation and recompression shocks coalesce with the outer shock wave. The corresponding pressure rise shows inflection over
the separated region and the upstream influence is more pronounced than in the weak case. Conceptually, the flow in the closed separated region
is divided from the outer flow, and mass is entrained and recirculated through the reattachment process. However, as reported by Dolling and Or
(1983), there is experimental evidence of unsteadiness in this process. The characteristic scale of the interaction depends on the boundary-layer
thickness and free-stream Mach number.

A Comparison of Computation and Experiment (2-Dimensional). — Computations of corner flows have been reported, as indicated in
Table I1I.  Different numerical methods and turbulence models have been employed. A comparison of two of the more recent Navier-Stokes
computations with experiment is shown in Figure 5.8. Two cases are shown, one near incipient separation (weak interaction) and one with
separation (strong interaction). In one computation, an implicit algorithm and the thin-layer form of the equations were used with the modified
zero-equation model of Baldwin and Lomax (1978) which was described earlier. In the other, the MacCormack hybrid algorithm and the full
equations were used with the two-equation turbulence model of Wilcox and Rubesin (1980). Metha and Lomax (1982) stated that these different
numerical schemes should yield similar results if comparable grids are used and care in carrying out the computation is exercised. Accepting that
premise, the differences between these calculations mainly reflect differences owing to turbulence modeling.
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In both the weak and strong cases, the pressure predicted using either model agree reasonably well with the data, and this reflects the common
observation that the pressure rise can be estimated, for engineering purposes, using any of the eddy-viscosity models. However, differences occur
in the viscous regions. The modified zero-equation model predicts skin-friction values that are much too low downstream of the weak interaction,
and this manifests itself more critically in the strong-interaction case by predicting reattachment too far downstream and velocity profiles that do
pot compare well with experiment. See also Visbal and Knight (1983). On the other hand, velocity profiles and shape factors in the downstream
region are predicted better by the two-equation model, even for the strong-interaction case in which skin friction is somewhat overpredicted (see
Marvin, 1982). It is thought that the failure of the two-equation model to predict the skin friction downstream of reattachment resides in the
low-Reynolds-number modeling terms developed to allow integration to the wall, but this should be investigated further and in light of the
experimental observations on unsteadiness. See Dolling and Or (1983).

Also shown for comparison is the computation of LeBalleur (1982). He used the method described previously in which an inverse integral
boundary layer solution including lag entrainment based on the turbulent kinetic energy equation is coupled to an inviscid Prandtl-Meyer outer
solution. [LeBalleur (1982) believes the simple inviscid outer solution may be a limitation that should be relaxed in favor of an Euler solution.] This
method also reproduces the overall pressure rise through the interaction; but seriously underpredicts the skin friction much in the same fashion as
the 0-equation turbulence model solution from the Navier-Stokes implicit solution. This similarity may reflect the inability of 0-equation turbulence
modeling to provide adequate simulations of the viscous region of these flows.

The change of separation and reattachment locations with Reynolds number based on boundary layer thickness are compared in Figure 5.9
with the locations from the Navier-Stokes solutions using the 2-equation model. The two distinct data sets were obtained by positioning the
corner at two different locations in the facility and the varying Reynolds number by changing the total pressure of the tests. The trend in variation
of these locations is predicted although the extent of upstream influence and length of separation are not. Results from the other two computations
are not shown because the integral method failed to predict any significant separation and because the Navier-Stokes solution with the 0-equation
turbulence model gave reattachment locations that fell out of the range of the graph as can be easily inferred from the skin friction comparison. The
latter discrepancy is typical of the Baldwin-Lomax turbulence model as discussed previously.
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A Comparison of Computation and Experiment (3-Dimensional). — Three-dimensional compression corner flows have also been studied. Teng
and Settles (1984) performed a series of experiments which identified two distinct flow regimes depending on the combination of sweep and
compression angles. (See the geometry sketch in Table IIL) They classified the flows as either having asymptotically cylindrical or conical
upstream influence. Typical surface skin friction line topologies are shown in Figure 5.10a and the boundary defining the two regions is shown
in Figure 5.10b. Cylindrical symmetry means that the upstream influence line (I) runs parallel to the swept corner line, whereas conical symmetry
means that the upstream influence and corner lines belong to a family which have a common origin. Both regimes develop following an initial
inception zone near the apex. In subsequent publications by Settles and Horstman (1984) and Horstman (1984) computations from a full
3-dimensional Navier-Stokes code using the implicit-explicit method of MacCormack (1981) were compared with these experiments. Isotropic
eddy viscosity models were employed. In that first publication both the 0-equation turbulence model [equations (5.8) and (5.10)] and the
2-equation turbulence model of Jones and Launder (1971) were used and comparisons made for a single flow case with conical influence. As
might be expected on the basis of results for 2-D compression corners, the resulting pressure distributions from either turbulence model were
essentially indistinguishable and most of the flow features were captured qualitatively with either model. However, the authors indicated a
preference for the 2-equation model formulation, mainly on the basis of observations that the upstream influence length was predicted somewhat
better, and that the Reynolds number scaling predicted with this model was consistent with experimental observations, and on the knowledge that
2-dimensional compression corners with separation were probably predicted better as shown in the previous section. In the second publication, a
parametric study using the 2-equation Jones-Launder turbulence model was made to determine whether the computations could define the boundary
between cylindrical and conical influence. The practical implementation of this numerical study was made possible by extending the wall functions
developed by Viegas and Rubesin (1983) to 3-dimensional flow and thus eliminating the time consuming task of integrating the model equations to
the wall. [Further discussion on the wall function treatment of Viegas and Rubesin (1983) is given in a subsequent section.] Indeed, the resulting
computations were successful in predicting the boundary of the two types of flow as shown in Figure 5.10b. Furthermore, combining observations
from the experiments and the computations the authors have now established that the boundary is most probably associated with shock detachment
and not separation; cylindrical influence associated with attached shock waves and conical associated with detached waves. While the computations
are impressive with respect to their ability to predict the qualitative features of the flow and have helped explain some of the experimental
observations, deficiencies remain, particularly when separation is present. ~ Grid resolution, flow unsteadiness, and modeling are certainly contributing
factors in this regard.
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5.5.4. — Glancing Shock Waves

Physical Characteristics. — Some bench mark experiments depicting the essential features of glancing shock flows are available for verifying
computations (see Table IV). Geometries for two of these are sketched in Figure 5. 11 along with surface skin-friction lines and shock-wave
structures which help to describe the general physical characteristics of the flows.

The sharp leading-edge shock generator can result in both weak and strong interactions. In the weak case, the shock interacts with the
incoming boundary layer and causes simple flow-turning, with the lower momentum fluid near the wall undergoing larger turning than the higher
momentum fluid at the boundary-layer edge. Far from the generator leading edge, the shock pattern formed by the component of the Mach
number normal to the shock wave might appear as a weak shock, as sketched in Figure 5.11. In the strong interaction, the boundary layer cannot
overcome the pressure gradient, and a separation line forms ahead of the shock wave and a reattachment line forms downstream. Skin-friction lines
accompanying such characteristics are sketched in the figure (see Peake and Tobak, 1980). In this case, the component of the Mach number
normal to the shock wave is larger, and the interaction is stronger and a shock wave with the characteristic lambda foot emanating from the
compression waves forms near the separation line. In contrast to the two-dimensional, normal-shock-wave case, the flow in the separation region
is not closed and continued recirculation of the shock-processed fluid does not occur. In this sense, the swept shock flows are probably more
steady than the two-dimensional flows. Furthermore, the flow relief owing to the third dimension causes the boundary layers to separate sooner
and to have correspondingly larger upstream influence than the two-dimensional flows. The scale of these interactions is determined mainly by
the incoming boundary-layer thickness and Mach number.
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In the case of the blunt leading edge, a bow shock wave is formed and a strong interaction takes place.
form ahead and downstream of the bow shock wave. A horseshoc vortex forms as a result of the presence of the blunt generating surface and it
streams around it. The shock wave in the plane of symmetry can form a lambda foot near the separation line for the strongest interactions and

an inviscid shear layer emanates from the bifurcation point. The scale of the interaction is determined by the bluntness of the generator, because
the shock standoff position and the horseshoe vortex scale are proportional to it.

Separation and reattachment lines

A Comparison of Computation and Experiment. — Surprisingly, numerical simulations of these glancing shock-wave flows using rather coarse
grids and a simple turbulence model provide adequate predictions of experimental data in contrast to the impinging-shock-wave and corner-flow
results discussed in previous sections. To illustrate this point for the sharp-generator case, typical comparisons of computation and experiment are
shown in Figures 5.12-5.14. The computations by Horstman and Hung (1979) were made with the MacCormack hybrid method along with a
two-layer, zero-equation, mixing-length eddy-viscosity model [equations (5. 8) and (5. 10)}, modified by Hung and MacCormack (1978) to account
approximately for the flow in the corner formed at the intersection of the generator and the plate.
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The axial variations of pressure and skin friction (Fig. 5.12) and the span-wise variation of pressure and heat transfer (Fig. 5. 13) agree with
the measurements except in the corner where modeling is undoubtedly incorrect. Differences in the axial variatioris at the farthest downstream
location are caused by locating the computational boundary there. Although not shown here, agreement with mean-velocity profiles was also
reported.  Similarly good comparisons of surface and flow-field quantities have been reported for wedge angles to 12° and Mach numbers to 6.

Surface skin-friction lines from the computations are shown in Figure 5.14. Locations of the main features of this strong-interaction case are
noted. The separation and reattachment lines were determined by examining cross-flow velocity vector plots oriented in a plane normal to the
center of the vortex formed by the interaction. They correspond closely to the converging and diverging lines usually associated with the separation
and reattachment locations (Peake and Tobak, 1980).

Several factors are believed responsible for the good agreement between computations, in which coarse grids and a simple mixing-length
turbulent model are used, and experiment. First of all, the normal component of the Mach number is not large and therefore the shock-wave
structure is not so difficult to capture. (In the example shown My=1.3)) Secondly, the separated-flow region is not closed and highly turbulent
fluid is not recirculating. And, as a consequence of the latter, the flow within the separated region is probably more steady than that within a
two-dimensional separated region.

The strong interactions resulting from a blunt generator have been recently computed by Hung and Kordulla (1983). The computations were
made using a finite-volume version of the newest implicit-explicit method of MacCormack (1982) with the zero-equation turbulence model of
Baldwin and Lomax (1978) modified in the same manner as the sharp-generator case to account for the presence of the generator wall. Some
example comparisons of these computations with the experimental data of Dolling and Bogdonoff (1982) are shown in Figures 5.15
and 5.16. Surface pressures along the flat plate and along the generator surface are shown. It can be inferred from these comparisons that the
scale of the interaction, including its upstream influence on the oncoming flow and its height relative to the oncoming boundary-layer thickness are
probably being predicted quite well, although no flow-field data are available to verify such a conclusion.

The predicted particle paths which represent streamlines in the plane of symmetry are shown in Figure 5. 17 to illustrate the resolution of the
flow-detail within the horseshoe vortex. A secondary vortex formed at the junction between the blunt generator and the plate (see Hung and
Kordulla, 1983). The separation region formed by the horseshoe vortex is open and the vortex streams around the blunt generator.

Most of the features observed in oil-flow photographs taken during the experiment also compare favorably, at least qualitatively, with these
computations. Again, it may appear surprising that the computations are doing so well, considering the grid resolution and simplicity of the
turbulence model. However, the scale of the interaction is set mainly by the blunt leading edge of the generator, in contrast to the two- and
three-dimensional, impinging-shock cases (¢. g. see Fig. 5.5 and 5. 6) in which no physical scale other than boundary-layer thickness is present.

Further study of this blunt generator case is needed to determine whether important quantities, such as heat transfer or skin friction, can be
predicted. It should also be mentioned that an unsteady shock-wave structure was found experimentally and that no such unsteadiness was found
in the computation.
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5.5.5. — Normal-Shock-Wave Interaction

Physical Characteristics. — Some of the physical characteristics are depicted in Figure 5.18. The Schlieren photographs and Mach contours
from the two-dimensional experiment of East (1976) are shown. At the lowest Mach number, a weak interaction develops and very little change
in the normal-shock-wave structure occurs. A thickening of the subsonic layer takes place during the movement of the viscous-layer from the
supersonic to the subsonic regions. A small foot to the normal shock wave appears through a series of weak compression waves. The resulting
wall-pressure distribution appears as a smoothing of the inviscid pressure jump, as we have seen previously for the weak-interacting, impinging
oblique-shock flows.

Increasing the Mach number strengthens the pressure rise, and eventually the boundary-layer can no longer pass through without
separating. The thickening of the viscous layer occurs sooner (farther upstream) and the series of compression waves can eventually coalesce into
a distinct oblique, separation shock forming the so-called lambda foot. This oblique shock will intersect the normal shock wave at a bifurcation
point. The losses through the normal shock wave are larger than those through the oblique shock wave and, therefore, the static pressure
downstream of the normal shock wave is higher than that of the flow downstream of the oblique shock wave and a second rearward-running shock
will form at the bifurcation to equalize the disparity.

At-the higher Mach numbers, existence of a supersonic “tongue” has been observed (see for example, Kooi, 1978). At the bifurcation point
there is a difference in total pressure between the flow processed by the normal and compound shock systems and a shear layer (a discontinuity
surface sometimes referred to as a vortex layer) forms. Corresponding surface-pressure distribution will show a steep rise in pressures ahead of
separation, a decrease in the pressure gradient over the region of separation, and gradual increase to a level somewhat below the inviscid jump
pressure for a normal shock.

A Comparison of Computation and Experiment (Small Separation). — A certain degree of success has been achieved in modeling the
moderately strong normal-shock interaction where separation is rather small or nonexistent. A more recent example is illustrated in Figures 5. 19
and 5.20. Computations using the MacCormack hybrid method and the two-equation eddy-viscosity model of Wilcox and Rubesin (1980) were
reported by Om et al. (1982). The grid (Table V) was chosen in order to provide adequate capture of the shock structure and to resolve the
near-wall region of the turbulent boundary-layer. In Figure 5. 19, pressure-distributions and velocity-profile shape parameters are compared with
the experiment reported by Om et al. (1982) for a range of Mach number and Reynolds number. The experiment was performed in an axisymmetric
test section so that three-dimensional effects could be eliminated; therefore, a high degree of confidence can be placed in the experimental trends
that are observed.
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Fig. 20 — Modeling of a moderately strong normal shock-wave interaction :
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The effects of Mach number and Reynolds number are predicted by the computations, except possibly in the immediate vicinity of the shock
at the highest Mach numbers. Mach contours are compared in Figure 5.20 for the highest Mach number case. For the most part the shock
structure is also predicted by the computations. The shock is weakened because of viscous-layer thickening near the separation, and a series of
compression waves coalesces into the normal shock. A smaller region of supersonic flow is predicted. One would not expect to capture any
discontinuity surface in total pressure that would lead to a so-called vortex layer because the grid is too coarse. The extent of separation in the
prediction is somewhat smaller than that of the experiment.

Influence of Turbulence Model Selection. — Studies have shown that the turbulence model has an influence on the predictions for these normal
shock flows (Viegas and Horstman, 1979). An illustrative example from that study is shown in Figure 5.21. Although the turbulence model has
little influence on the prediction of the overall pressure rise, models that use information on the turbulent kinetic energy changes through the shock
wave to form the velocity scale of the eddy viscosity provided better estimates of the skin friction and the development of the boundary-layer shape
parameters. As reported by Mateer and Viegas (1979), trends with Reynolds number over a wide, practical range are also predicted with those
higher-order eddy-viscosity models. However, even these higher-order models have to be applied with caution when wall skin friction or heat
transfer is being predicted, because the low-Reynolds-number functions, required when integrating the equation system from a wall boundary out
into the flow field have not always been developed adequately.

The reader is referred to a recent paper by Viegas and Rubesin (1983) in which that aspect of higher-order eddy-viscosity modeling for the
moderately strong, normal-shock problem is studied. Figure 5.22 summarizes the main points from that study. When integrating from the wall
boundary, only the Wilcox-Rubesin model gives skin-friction predictions that compare reasonably well with experiment. (Note the scale change in
Figures 5.22a and b.) In developing this model’s low-Reynolds-number functions, particular attention was given to ensure that modeling was
adequate for attached, large adverse-pressure-gradient flows.

On the other hand, the model of Jones and Launder (1971), with its original formulation of the low-Reynolds-number terms, and one developed
by Chien (1982) to minimize computational stiffness encountered when applying the model of Jones and Launder, do not have the same degree of
success. However, they did provide adequate predictions of surface-pressure and velocity-profile shapes.” Wall functions were developed by Viegas
and Rubesin (1983) for all these models to eliminate the need for integration to the wail. Uniformly successful predictions of the skin friction was
achieved with all models, as shown in the second part of Figure 5.22. It is interesting to note that McDonald (1982) also reported predictions of
this experimental data. He used an implicit numerical scheme with a different grid along with the Jones and Launder (1971) turbulence model. He
employed their low Reynolds number formulation and integrated to the wall. His predicted pressures and skin friction agree with those reported
by Viegas and Rubesin (1983) when they used the same model with integration to the wall. It is encouraging that two different numerical methods
give essentially the same results using the same turbulence model because more credence can be placed on conclusions regarding the attributes of
the various models.
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In addition to developing the wall functions for the two-equation models, the study of Viegas and Rubesin (1983) also showed that the
computer code became more robust and converged faster. Together with the savings in grid points near the wall and the advantage of robustness,
computational times using wall functions were decreased by nearly one order of magnitude over those using integration to the wall boundary.

A Comparison of Computation and Experiment (Large Separation). — Although the axisymmetric bench mark experimental flows have the
advantage of minimizing three-dimensional effects, they are limited to moderately strong interactions because the flow is confined and separation
extent is limited. Therefore, one must exercise caution in generalizing these results for two-dimensional situations, in which for the same free-stream
Mach number, separation may be considerably larger. In those cases, predictions from computations are not as good. To illustrate this aspect,
unpublished computations by C. C. Horstman of the Ames Research Center for the experiment reported by Délery (1983) are presented in the next
figures.

In the experiment by Délery, a region of supersonic flow was achieved in an asymmetric channel formed by having a bump on one wall of a
rectangular test section. In addition to forming a lambda shock foot, a separated region developed which closed downstream of the junction
formed by the bump and the channel wall. Although the flow was choked across the channel, the significant viscous interaction effects only
occurred on the bump-wall side. The computations were made using the new implicit-explicit method of MacCormack (1982) along with the
two-equation turbulence model of Jones and Launder (1971). Both walls were treated viscously, but the grid resolution was rather coarse on the
far wall where interaction effects were small. The equations were integrated to the wall.

An interferogram taken of the flow above the bump-wall is shown in Figure 5.23. Mach contours determined from the interferogram are
also shown. They can be compared with the computed contours using two different turbulence models. The unmodified models of Jones and
Launder (1971), with the low-Reynolds-number formulation of Chien (1982), predicts a region of separation smaller than that found
experimentally. As a result, the shock structure also differs in that the computed lambda foot of the shock is weaker and the zone of supersonic
flow smaller. As mentioned previously, the low-Reynolds-number functions of the turbulence model may be affecting these calculations, but at the
time they were made, that weakness of this model had not been reported. Horstman made another computation using modification to the model
that had provided some improvements in other separated-flow computations (see Horstman, 1983) to see if the correct flow field could be
predicted. The results, shown in Figures 5.23 and 5. 24, provide a better comparison for the Mach contours and extent of separation and pressure
recovery through the interaction. It is worth noting that these flows also have unsteady aspects that may influence our ability to model the
separated region.

EXPERIMENT COMPUTATION

nr \ -
FARI = ! UNMODIFIED MODEL 7
i ; o
G ¥ \ . .
so| gJ° v\ 6} e T
N

O EXPERIMENT

— 2E&Q COMPUTATION
....... 2-€0. (MODIFIED
) L 1 -t
32 36 £

Fig. 24 — Modeling of strong normal shock-wave interactions:
surface pressures.

Fig. 23 — Modeling of strong normal shock-wave interactions:
comparison of shock structure from experiment and computation.

The velocity and turbulence profiles that develop in the shear layer during this strong normal-shock-wave interaction behave like those that
develop downstream of a rearward-facing step (Seegmiller et al., 1978; Délery, 1983). They are illustrated and compared with the computations of
Horstman in Figure 5.25. In step flow studies (Driver and Seegmiller, 1982; and Driver et al., 1983) which eliminates uncertainties in separation
location and the complicating presence of unsteady shocks, were not found to work as well as Reynolds-stress models for predicting the flow within
the separated region. The latter models remove the assumption that the stresses respond immediately to changes in the strain rate and therefore
constitute a more plausible physical description in the case of strong interactions. The latter models are only now being implemented in compressible
Navier-Stokes codes (see Vandromme et al., 1983).

x = 0 237 = = 0280 m x=0.350m x=0.400m
012 ’ o 4-I|' o
' 2
; H q
e A d i
2 4 t
> 006 - [ § 'E
; | g i
=] 5]
o L P — |_.\_1 r—) .-:E...._. Dt
-2 2 610 -2 2 H10 -2 2 610 -2 2 610 -2 .2 6 1.0
2
uful,

Fig. 25 — Modeling of strong normal shock-wave interactions:
velocity and turbulence profiles.




209

5.5.6. — Transonic Flows with Shock Waves

Physical Characteristics. — The flow field structure in the vicinity of the shock wave formed in transonic flows is essentially the same as that
discussed in the previous section and will not be described again here. However, the elliptic character of the transonic flows precludes knowing
a priori the shock strength or position even in the inviscid regions of the flow except in very weak interaction cases. Therefore computations must
include a larger extent of the flow domain up- and down-stream of the shock wave and other viscous effects away from the vicinity of the shock
wave may have a significant influence, e. g., an airfoil near wake.

A Comparison of Computation and Experiment. — Development of computational methods employing the Navier-Stokes equations for airfoils
and wings has been under intense development over the past decade. Some of the first computations for a non-lifting airfoil were undertaken by
Deiwert and reported in McDevitt et al. (1975). The explicit time-marching code of MacCormack was used, grids were coarse, and turbulence
modeling was identified as an impediment to accurate solutions for instances where separation was present such as near trailing-edges for subcritical
flow and at shock waves for supercritical flow. Computation times were excessive. Since then, more efficient numerical methods have evolved
and additional benchmark flows have become available which provide additional opportunities to assess progress. See Table VI. Two examples
will be discussed. The flows are two-dimensional and were chosen as test cases for the AFSOR/HTTM-Stanford Conference (Kline et al., 1980,

1982). The first is an airfoil flow without separation. The next is an axisymmetric flow over a circular arc bump where separation forms at the
shock wave.

Mehta’s Navier-Stokes calculations (1983) of the unseparated airfoil flow are among the most accurate ones known to the authors. A
comparison with the experimental pressure distribution is shown in Figure 5.26. Mehta employed the implicit method of Beam and Warming
(1978), an O-grid, and used a O-equation turbulence model. The experimental lift coefficient was matched closely by performing calculations at
various angle of attack as recommended by the data evaluators (Kline et al., 1980). As the comparison shows, the solutions are sensitive to grid
fineness. Computation and experiment agree only for the finest grid. It was necessary to cluster grid in the vicinity of the shock wave to capture
it and resolve the viscous interaction near its foot. Also, he found it necessary to locate his first point away form the wall below a position where
»* =1 in order to provide skin friction results that were independent of this first grid point position.

Accuracy evaluation, not computational efficiency, was the primary motivation for Mehta’s Navier-Stokes computations. Actually, coupling
methods which employ integral boundary layer procedures together with potential flow solvers presently provide the best practical methods for
predicting unseparated airfoil flows. See for example, Kline et al. (1982). However, Coakley (1983) reports accurate results with a coarser grid

and convergence within two to three hundred time steps which appears to make the accuracy and computational efficiency of his Navier-Stokes
computations competitive with the coupling methods.

A comparison of the airfoil loads from the most recent Navier-Stokes computations and two coupling method computations taken from Kline,
et al. (1982) are given in the tabulation of Figure 5.27. The upper portion of the table gives the values measured in the experiment and suggested
corrected values for interference effects. The coupling method computations and the Navier-Stokes computations of Mehta and Coakley were
made by matching the lift coefficient. They predicted the experimental drag to within about 10 drag counts and their angle of attack differed by
less than 0.25° with the corrected experimental value. The differences are within the range of experimental accuracy and so the predictions
probably represents the best that can be done today for unseparated airfoil flows. The friction drag accounts for less than half of the total and
varies little between these methods indicating an insensitiveness to differences in turbulence modeling. Coakley (1983) tested the sensitivity of his
solutions to turbulence model choice. His results indicate that while the total drag is insensitive to the choice significant differences in the local
values of skin friction occur on the airfoil suction side downstream of the shock wave. But there the level of skin friction is small and doesn’t
contribute much to the total friction drag. Kordulla made his Navier-Stokes calculations at the uncorrected experimental angle of attack and they
predict somewhat higher lift, which might be expected. But, the total drag is overpredicted by an amount not expected from the differences in
incidence angle. He did not speculate on the causes for this discrepancy. However, far field boundary position may be influencing his results.
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The next example is the transonic, shock-induced separated flow studied experimentally by Johnson et al. (1980). The flow developed over a
circular arc section which was formed on the outer diameter of a long hollow cylinder whose axis was aligned in the flow direction. The
axisymmetric configuration was chosen to eliminate 3-dimensional experimental effects which can be present in airfoil studies. The pressure
distribution is compared with several computations in Figure 5.28. The Navier-Stokes computations are taken from Johnson and Horstman
(1984) and reflect improvements to their previously reported calculations. The implicit-explicit scheme of MacCormack (1981) was used and two
turbulence models were employed: the 0-equation Cebeci-Smith model and the 2-equation Jones-Launder model with terms added to account for
curvature effects. Another computation reported by Carter (1982) is also shown. He employed the inverse finite difference boundary-layer
procedure discussed previously and coupled it to a fully conservative potential flow solver. The Navier-Stokes and coupling procedure computations
that employ the same O-equation turbulence model agree with one another but not with the data downstream of the shock wave where the flow is
separated. The 2-equation model Navier-Stokes solutions agree somewhat better with the experiment downstream of the shock wave, but evidently
more improvements in the turbulence model are necessary if the proper pressure plateau is to be predicted. The mean and fluctuating velocity
profiles from the 2-equation model solutions are compared with the data at several selected stations in Figure 5.29. Agreement is reasonably
good, except just downstream of the shock wave where the shear and turbulent kinetic-energy is overpredicted and turbulence model improvement
is needed.
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5.5.7. — Unsteady Flows

The time accurate methods described previously can be applied, at least in principle, to unsteady flows. To date, rather successful calculations
of some unsteady flows with relatively narrow frequency bands have been undertaken. Readers are referred to a recent summary paper by Deiwert
and Bailey (1983) for a detailed discussion. Here we will mention only the essence of the underlying assumptions and give one illustration.

In order to use the time-dependent, mass-averaged form of the equations, the averaging time must be small relative to the aerodynamic time
scale of interest, but large relative to the time scale associated with the turbulence. Chapman (1979) compared the known non-dimensional
frequency range of many typical aerodynamic flows with those of large scale turbulent eddies for a range of Mach numbers. The results are
reproduced in Figure 5.30. The mean frequency of the large scale eddies corresponds to their mean-burst frequency scaled on boundary-layer
thickness. It depends weakly on length Reynolds number. All of the unsteady aerodynamic flows noted have characteristic frequencies that are
one to two orders of magnitude smaller than those of the large scale eddies. Hence it should be possible to employ the usual steady-flow turbulence
models and accurately simulate the time varying aerodynamic changes with the Reynolds-averaged form of the Navier-Stokes equations. These
arguments have been used in part to justify the remarkably good results from computations of buffet onset due to shock induced separation [Levy
(1978), Levy and Bailey (1981)], aileron buzz [Steger and Bailey (1980)], dynamic stall [Deiwert and Bailey (1983)], and oscillating airfoils [Chyu
and Kuwahara (1982)].
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To illustrate what has been achieved some of Levy’s results are given in Figures 5.31 and 5.32. He computed the flow over an 18% thick
biconvex airfoil at zero incidence undergoing self excited periodic oscillations caused by coupling of shock-induced and trailing-edge separation. A
comparison of shadowgraphs from the experiment and Mach contours from the computations taken from Seegmiller et al. (1978) is shown in
Figure 31. The times represent fractions of the dimensionless periodic cycle time of the oscillating flow. Comparisons between the experiment
and computations are made at different times to illustrate that the computations reproduce the physical characteristic of the experiment even
though the actual frequency of oscillation differed by about 20 percent. A comparison with the surface pressure variation at four different locations
on the airfoil is shown in Figure 5.32. The oscillations on the upper and lower surfaces are a half period out of phase with each other. The
frequency of oscillation from the computation differs by about 20 percent, but the wave forms and peak pressures compare quite well. Comparisons
of velocity profiles in the viscous shear layer also show good agreement. See Marvin et al. (1979).
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Mach contours.
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5.6. — Concluding Remarks

The mass-averaged Navier-Stokes computer codes in use today are still in their developmental stages. They represent a compromise between
the choice of numerical algorithm, grid, and turbulence model. The compromise is dictated by constraints of numerical efficiency and the lack of
an adequate turbulence model. Provided that the adequate safeguards are used to ensure numerical resolution, it is apparent that the computations
employing eddy-viscosity turbulence models can give a qualitatively good representation of many two- and three-dimensional, complex aerodynamic
flows involving shock wave and separation. Although flow details within separated regions cannot be predicted with complete confidence, the
solutions can now provide a bridge for connecting computations on either side of embedded separated regions.

Of the work remaining in developing these codes into predictive tools, proper physical modeling remains paramount. The challenges of better
numerical accuracy and resolution along with better turbulence modeling are areas for further exploration. With regard to the latter, it is clear
that some distinct advantages are gained by employing higher-order turbulence models. For example, they provide unambiguous, albeit approximate,
determinations of the length and velocity scales needed to.define an effective viscosity, and they provide inherent means to allow turbulence to
adjust itself appropriately to rapid changes in the mean flow. Whether they can be improved to provide completely adequate modeling or whether
they must give way to Reynolds stress modeling is a debatable issue, the resolution of which requires additional study.

More has to be done to determine the causes and effect of flow unsteadiness in shock wave interactions and its importance in modeling both
two- and three-dimensional flows. And, more has to be done experimentally to define flow field structures and critical parameters, to gain further
understanding of modeling, and to provide well-documented bench mark tests against which progress can be gauged.
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