
REPORT DOCUMENTATION PAGE

1. Recipient's Reference 2. Originator's Reference

AGARD-LS-146

3. Further Reference

ISBN 92-835-1527-7

5. Originator Advisory Group for Aerospace Research and Development
North Atlantic Treaty Organization

 7 rue Ancelle, 92200 Neuilly sur Seine, France

4. Security Classification
of Document

UNCLASSIFIED

6. Title
APPLICATION OF ADA* HIGHER ORDER LANGUAGE
TO GUIDANCE AND CONTROL

7. Presented on
20—21 May 1986 in Ottawa, Canada, 2—3 June 1986 in London, United Kingdom,
and 5—6 June 1986 in Cologne, Germany.

8. Author(s)/Editor(s)

Various

10. Autlior's/Editor's Address

Various

12. Distribution Statement

9. Date

May 1986

11. Pages

114

This document is distributed in accordance with AGARD
policies and regulations, which are outlined on the
Outside Back Covers of all AGARD publications.

13. Keywords/Descriptors

ADA (programming languages)
Computer systems programs
Digital computers

Compilers
Operating systems (computers)

14. Abstract

The need to reduce escalating software life-cycle costs is the raison d'etre for Ada. Early
experience with the language suggests that the promise of increased software productivity can
be fulfilled. However, many problems remain: the need for validated and efficient compilers
targeted for computers suitable to the guidance and control application, and software
development environments built around Ada, are two among the foremost.

This Lecture Series, sponsored by the Guidance and Control Panel of AGARD, has been
implemented by the Consultant and Exchange Programme of AGARD.

* Ada is a registered trademark of the US Government (Ada Joint Program Office)

LIBRARY
RESEARCH REPORTS DIVISION
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA 93940 AGARD-LS-146

•o

■

<

<

AGARD LECTURE SERIES No. 146

Application of ADA Higher
Order Language to

Guidance and Control

NORTH ATLANTIC TREATY ORGANIZATION

'^r

DISTRIBUTION AND AVAILABILITY
ON BACK COVER

AGARD-LS-146

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

AGARD Lecture Series No. 146

APPLICATION OF ADA HIGHER ORDER

LANGUAGE TO GUIDANCE AND CONTROL

The material in this publication was assembled to support a Lecture Series under the sponsorship of the
Guidance and Control Panel and the Consultant and Exchange Programme of AGARD

presented on 20—21 May 1986 in Ottawa, Canada, 2—3 June 1986 in London, United Kingdom,
and 5—6 June 1986 in Cologne, Germany.

THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personaHties of the NATO nations in the fields of science and
technology relating to aerospace for the following purposes:

— Exchanging of scientific and technical information;

— Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;

— Improving the co-operation among member nations in aerospace research and development;

— Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research
and development (with particular regard to its military application);

— Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in
connection with research and development problems in the aerospace field;

— Providing assistance to member nations for the purpose of increasing their scientific and technical potential;

— Recommending effective ways for the member nations to use their research and development capabilities for the
common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior
representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of
experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications
Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through
the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced
directly from material supplied by AGARD or the authors.

Published May 1986

Copyright © AGARD 1986
All Rights Reserved

ISBN 92-835-1527-7

Printed by Specialised Printing Services Limited
40 Chigwell Lane, Loughton, Essex IGIO 3TZ

PREFACE

This Lecture Series No. 146 on the "Apphcation of Ada® Higher Order Language to Guidance and Control" is
sponsored by the Guidance and Control Panel (GCP) of AGARD, and implemented by the Consultant and Exchange
Programme of AGARD. The Department of Defense has stated that Ada shall become the single, common computer
programming language for Defense mission-critical applications beginning in 1984. The proposal to make Ada a NATO
standard High Order Language (HOL) as well, prompted the GCP to provided a Lecture Series embracing the basic
structure, theories and principles embodied in this HOL.

The need to reduce escalating software life-cycle costs is the raison d'etre for Ada. Early experience with the language
suggests that the promise of increased software productivity can be fulfilled. However, many problems remain: the need for
validated and efficient compilers targeted for computers suitable to the guidance and control application, and software
development environments built around Ada, are two among the foremost.

This Lecture Series addresses both the promise and the problems. Following an introduction to Ada, the structure and
features of the language are described. Two special features of Ada, parallel processing and software reusability, are
discussed in detail. Compiler development and validation, and the use of Ada in programming environments are described.
Finally, the use of Ada in a real-world pilot project is described.

Theodore F.Westermeier
McDonnell Douglas Corporation
St. Louis, Missouri

® Ada is a registered trademark of the US Government (Ada Joint Program Office).

LIST OF SPEAKERS

Lecture Series Director: Dr T.F.Westermeier
129 Lindenwood Avenue
St Charles, MO 63301
USA

SPEAKERS

Mr R.E.Bolz
6751 South Dahlia Court
Modem Prograimning Languages
Littleton, CO 80122
USA

Dr O.Roubine
Informatique Internationale
Route des DoUnes
Les CardouUnes
06560 Valbonne
France

Dr E.Ploedereder
Tartan Laboratories Inc.
477 Melwood Avenue
Pittsburgh, PA 15213
USA

Dr T.P.Baker
Florida State University
Tallahassee, FL 32306
USA

Mr D.EUers
PPresident
Irvine Compiler Corporation
18021 Sky Park Circle, Suite L
Irvine, CA 92714
USA

Dr M.Selwood
Plessey Defence Systems
Abbey Works
Titchfield
Fareham, Hants P014 4QA
United Kingdom

CONTENTS

PREFACE

LIST OF SPEAKERS

Page

Reference

INTRODUCTION TO THE APPLICATION OF ADA TO GUIDANCE AND CONTROL
by T.F.Westermeier 1

INTRODUCTION TO ADA
by R.E.Bolz 2*

THE ADA LANGUAGE STRUCTURE
by R.E.BoIz 3*

PARALLEL PROCESSING AND ADA TASKS
by T.P.Baker 4

REUSABLE SOFTWARE
by O.Roubine 5

ADA COMPILER DEVELOPMENT
by D.Eilers 6

ADA COMPILER VALIDATION
by E.PIoedereder 7

PROGRAMMING WITH ADA - THE ADA ENVIRONMENT
by E.PIoedereder g

ADA IN USE; SOME CASE STUDIES
by M.Selwood 9

ADA IN USE; A DIGITAL FLIGHT CONTROL SYSTEM
by T.F.Westermeier and H.E.Hansen 10

BIBLIOGRAPHY B

* Paper 2 and Paper 3 have been combined for tiie purpose of this publication.

1-1

INTRODUCTION TO THE APPLICATION OF ADA® TO GUIDANCE AND CONTROL

THEODORE F. WESTERMEIER
MCDONNELL AIRCRAFT COMPANY

MCDONNELL DOUGLAS CORPORATION
P. 0. BOX 516

ST. LOUIS, MO 63166

The Department of Defense (DoD) has stated that Ada shall become the single, common computer
programming language for defense mission-critical applications beginning in 1984. The proposal to make
Ada a NATO standard High Order Language (HOL) as well, prompted the Guidance and Control Panel of AGARD
to provide a Lecture Series embracing the basic structure, theories and principles embodied in this HOL.

The need to reduce, or at least contain, escalating software life-cycle costs is the main reason
for the existence of Ada. The costs of developing software for the DoD are expected to have a ten-fold
growth from an estimated $2.8 billion in 1980 to as much as $30 billion in 1990, as shown in Figure 1.
Accordingly, the U.S. Government is sponsoring several initiatives directed toward the development of
improved software. These include a program called Software Technology for Adaptable, Reliable Systems,
another called the Joint Service Software Engineering Environment, the newly established Software
Engineering Institute at Carnegie Mellon University, and the Strategic Computing Program. Organizations
outside the U.S. have also embarked on programs for improved software productivity. These include the
European Esprit Consortium, and Great Britain's Alvey Programme. A key element in many of these
initatives Is Ada.

The application of Ada to guidance and control may, at first glance, appear to be a rather narrow
focus. (Although Ada was originally intended for embedded computer systems, it nevertheless includes
features applicable to a wide application domain. Indeed, there is currently wide-spread interest in
Ada in applications that range from business to scientific.) Nevertheless, guidance and control is an
important subset of embedded systems used throughout aerospace. If Ada can be successfully applied to
guidance and control, it can be used in many embedded systems. Consequently, "guidance and control"
can, in many ways, be read as "embedded".

Guidance and control includes a wide range of application programs, as depicted in Figure 2. The
list is by no means complete. The trend to closely-interacting and interdependent subsystems results in
increasing levels of sophistication. Subsystems that were once outside guidance and control
considerations are no longer. For instance, the propulsion system of a vertical take-off and landing
aircraft becomes a critical control system effector during the hover mode, supplying control moments in
addition to propulsive forces. The increased levels of sophistication dictate the increased use of high
performance digital processors and operational software. Consequently, the growth in guidance and
control software mirrors the exponential growth of DoD software in general.

Guidance and control systems impose special requirements: the computation times must be acutely
limited; the systems are mission critical, and often flight critical; severe limitations are placed on
the size, weight, power and cost of the underlying digital mechanizations. These system requirements
demand operational software that is efficient, reliable and maintainable.

These special system requirements interact in complex ways and place stringent demands on Ada. For
example, the dynamic performance of many guidance and control systems requires that the response times,
transport lags, and iteration rates inherent in digital mechanizations be restricted to certain limited
values, in order that the system performance not be compromised. This in turn requires that the Ada
compiler be efficient. Of course, the higher the throughput of the target computer, the more compiler
inefficiency that can be tolerated. But the size, power, weight and cost constraints limit the
throughput that can be realized from realistic guidance and control computers. (After all, not many
airborne systems can accommodate mainframe computers.)

Early experience with the Ada language suggests that the promise of increased software productivity
and reliability can be fulfilled. However, many problems remain: the need for validated and efficient
compilers targeted for computers suitable to the guidance and control application, and software
development environments built around Ada, are two at the top of the list.

The lectures in this series are intended to emphasize the promise of Ada without minimizing the
problems. Accordingly they have been structured to address the following topics:

o The origin of the "software crisis" and how Ada can alleviate it

o Deficiencies of other HOL's rectified by Ada

o Ada language facilities that have special relevance to real-time, embedded systems

®Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

1-2

o Prognosis as to Ada's acceptance; some possible roadblocks

o The role of tasking in embedded applications

o How Ada supports tasking

o The productivity implications of reusable software

o How Ada supports the concept of reusable software

o Ada compiler development issues: rehostabillty, optimization, run-time environments, related
Ada tools

o The purpose and mechanics of validating a compiler

o The economics of compiler development and validation

o Are all but the most widely-used computers ruled out by the economics?

o What validation proves, what is doesn't prove

o Programming with Ada

o The Ada Programming Support Environment . . : ,

o The role of Ada software development tools '

o Practical results and experiences in applying Ada to some real-world, real-time embedded
systems.

SOFTWARE

HARDWARE

1-3

40
BILLIONS OF DOLLARS

35,

30

25

20

15

5

Based on a study by D. G. Stephen et al, "DOD Digital Data Processing
Study: A Ten Year Forecast," Electronics Industries Association, 1980.

80 82 83 84 85 86 89 90

YEARS

FIGURE 1. i:OD Hardware/Software Cost Trends

ADA APPLICATION SPECTRUM

BUSINESS SCIENTIFIC

I EMBEDDED
I REAL-TIME

GUIDANCE AND CONTROL APPLICATION PROGRAMS:

DIGITAL FLIGHT CONTROLS

DIGITAL PROPULSION CONTROLS

AIDED INERTIAL NAVIGATION

MULTIFUNCTION SENSORS

INTEGRATED FLIGHT/WEAPON CONTROL

ON-BOARD SIMULATION AND TRAINING

ENERGY MANAGEMENT

AIR BATTLE MANAGEMENT

TACTICAL FLIGHT MANAGEMENT

FIGURE 2. The Ada Application Domain

2-1

INTRODUCTION TO ADA

by
Richard E. Bolz

6751 S. Dahlia Ct.
Littleton, Co. 80122

USA

SUMMARY

This paper discusses the development of the Ada programming language and current ex-
periences with using the language. It presents the language as an embodiment of good soft-
ware development principles.

ABSTRACT

The "Software Crisis", first recognized in the late 1960's is exemplified by software
that IS late, expensive, filled with errors and nearly impossible to maintain The U S
Department of Defense (DoD), the largest customer of software in the world decided to spon-
sor the development of a common high-ordered programming language to give partial response
to this continuing crisis.

The language, Ada, has an interesting development history. Public review of the
language requirements resulted in a document which is small, concise and readable (counter
to what we have come to expect as DoD documentation). The resulting language embodies
many of the principles of good software development which have emerged within the past 15
years. These principles include abstraction, information hiding, localization and modu-
larity.

The Ada language enhances transportability by eliminating almost all dependence on an
operating system. Hence, such capabilities as exception handling and concurrency become
programming language features as opposed to operating system features.

The DoD and NATO have adopted Ada as the common high-order language for all mission
critical software (DoD in 1984 and NATO in 1986). The success of the language will not
be limited to military systems, however. There appears to be wide-spread interest in the
language_from such diverse areas as banking, geophysical activity, computer-based train-
ing, artificial intelligence and accounting. What started out as a language primarily
for embedded computer systems is emerging as a language that can be easily adapted to a
variety of application areas.

Experienced users of the language have been quite positive in their evaluations and
many managers claim that their software developers have experienced remarkable productivity
increases. Also many early results tend to allay fears that generated code and the com-
pilation process would be too slow.

THE SOFTWARE CRISIS

No one in our industry can seriously argue that modern software is trivial to produce.
Are there any among us who consistently develop software that comes in on time, on budget,
works according to specs and is straightforward to modify? Collectively, these attributes
define the software crisis.! xhis phenomenon of difficulty in developing software was
first recognized in the mid 1960's, about the time that we began to realize that the prob-
lems we were asked to solve were becomming increasingly complex. To compound matters, the
emergence of various architectures caused us to desire software which was transportable;
we needed (and still need) software which could run (with minor modification) on archi-
tectures other than that on which it originally executed.

This "crisis" generated considerable research into ways to do things better. A new
appreciation for the system life cycle emerged. Structured X, where X stands for coding
programming, analysis, design, testing, walkthrough or any of several other software
development activities, started to face us everywhere we turned. Some of these have met
with far more success than others. Further, we began to experience an increased interest
in developing tools to aid us in various phases of the system life cycle.

THE DEPARTMENT OF DEFENSE RESPONSE

The software crisis (some refer to it as a software depression) was and is most
keenly felt by the U.S. Department of Defense (DoD), the largest single user of software
in the world. Early in the 1970's the DoD realized that language proliferation was a
major cause of software difficulty.2 it was found that over 450 different languages were
used in DoD mission-critical systems. These systems include such diverse application
areas as intelligence systems, cryptologic systems related to national security, command
and control of military forces, weapons systems and administrative support for such sys-
tems .J None of the 450 were found to dominate the others as far as frequency of use was
concerned (although FORTRAN was used more than any other language).

Mission-critical systems have some characteristics which are rarely found in more
common systems such as payroll processing. Parallel processing and real-time response
are two such characteristics. Further, in the early 1970's mission critical systems

2-2

accoxmted for over 56% of the total DoD software budget.^ Some estimates show that soft-
ware budget exceeding $32 billion annually by 1990 if standardization on a common language
is not forthcoming.5

In the mid 1970's, the DoD formed the High-Order Language Working Group (HOLWG) to
investigate the feasibility of transition to a single language for mission-critical sys-
tems. This group was to (1) decide what features should be required in the language, (2)
compare existing languages against those requirements and (3) make recommendation to either
adopt an existing language or have one developed which meets the requirements."

The DoD expected certain benefits to accrue with a single, high-order language. Among
these benefits:'

(1) Reduced cost by decreasing (if not eliminating) duplication of language-
specific efforts across the lifecycle.

(2) Improved communication by eliminating the "artificial"boundaries which
hamper software technology transfer.

(3) Focused research on embedded computer systems software. A plurality of
languages makes data gathering very difficult.

(4) Decreased ties to particular vendors who might have the inside track
when it comes to supporting their "unique" languages.

(5) Focused energy on the problem at hand rather than on a new language
custom built for the project.

(6) Consolidation of fiscal capability resulting in a wider range of software
development tools which can provide considerable leverage.

(7) Decreased risk in using existing languages because of their current poor
support.

The approach to defining the requirements for a language was somewhat unique. The
HOLWG first generated a beginning collection of requirements and called the document STRAW-
MAN. Of course, this is not a novel approach. Many task forces will meet and draft up a
document which they will call "strawman". They will then meet two week later, read their
"strawman" and either modify it or accept it as final. The HOLWG did not take this tradi-
tional approach. Instead, they submitted STRAWMAN to public review. Reviewers from such
diverse communities as academe, science, military, and business took part. The results of
this process were folded into the next iteration of the sequence, WOODENMAN. The process
continued and produced TINMAN, IRONMAN, revised IRONMAN and finally, STEELMAN, the final
definition of the language requirements. Given this "Wizard of OZ" approach it is remark-
able that the resulting language was not named Dorothy instead of Ada. Two very pleasant
surprises which came from this three-year requirements formulation are that the STEELMAN
document is only 22 pages long and that it is quite easy to understand.»

A Request For Proposal (RFP) was issued in 1977 for new languages which would meet
the emerging requirements. There were 17 responses with most of the proposed languages
being based on Pascal. A vigorous competition ensued and the eventual winner was the
language submitted by Cll-Honewell Bull, a French corporation. The design team was led
by Jean Ichbiah and contained participants from several nations.

The language was officially named "Ada" in the spring of 1979. Prior to that time,
the unofficial name of "DoD-1" (it should be obvious why they didn't use the name "DoD-0").
The name Ada honors the mathematician of the 19th century who, as colleague to Charles
Babbage, developed an instruction set for the as yet unbuilt analytical engine. She pro-
ceeded to use this instruction set to solve some Bernoulli equations. Since no previous
algorithm for use on a computing device (real or theoretic) is known, we refer to her as
the first computer programmer in history.9

THE ENVIRONMENT
Four of the original goals of the DoD common high-order language
effort, which led to the definition of the Ada language, were to:

Address the problem of life-cycle program costs
Improve program reliability
Promote the development of portable software, and
Promote the development of portable software tools

It was recognized from the beginning that these objectives would
not be met by the language alone, but by a comprehensive, integrated
programming environment.!"

Early in the development of the requirements of the Ada language, it became apparent
that a common language would not be sufficient to address the life-cycle problems of DoD
mission-critical software. Support for such a language would be enhanced by having an
environment containing certain language-specific tools which could be used by all software
developers using Ada. Among these tools would be editors, linker/loaders, debuggers, etc.

In 1978, a workshop was held to attempt to identify what an Ada Programming Support
Environment might look like. A document called PEBBLEMAN emerged shortly thereafter and,
like STRAWMAN, was submitted to extensive public review. The iterative process terminated
with the STONEMAN document in February, 1979. It is important to realize that the STONE-
MAN document was not to be considered as a collection of firm requirements as was the case
with STEELMAN, but as "...a yardstick against which competing versions of an APSE could be
measured. "H

2-3

It was apparent that "...there (was) no consensus about what an APSE should look like
The beauty of an APSE is in the eye of the beholder, and there are many beholders No
single APSE could fulfill all the wishes of all the participants."12 However there'was
an agreement on certain characteristics or tools which would most likely be common to all
APSEs. This Minimal Ada Program Support Environment (MAPSE) became the focus to atten-
tion. It included compilers, link editors, simulators, symbolic (high level language)
debuggers, editors, prettyprinters, set-use analyzers, dynamic analysis tools and con-
figuration management routines.

A major consideration for a MAPSE was that tools developed for one environment should
be transportable to another environment. Further, tools should be, to the extent possible,
interoperable. That is, tools should be able to invoke other tools within the environment!
This transportability of tools raises the question of machine dependence. Even though a
tool would operate relative to a common language, it still had to execute on a given host
architecture. It is clear that transportability of software is hampered if that software
is dependent upon its underlying host architecture or operating system.

The writers of the STONEMAN document propose an interesting solution to this trans-
portability delimma: have the MAPSE tools execute on a virtual Ada machine. They propose
that a machine dependent Kemal Ada Program Support Environment (KAPSE) provide a machine
independent interface to the MAPSE. This KAPSE would contain such items as the APSE data
base, database access routines, operator interface routines, operating system interface
routines and a complete runtime support package.13

THE LANGUAGE

As a result of the public review process, the final set of language requirements
(foirnd in the STEELMAN document) included the following language features:

Strong typing and type conversions
Relative and absolute precision
Enumerated and integer types
Variable declaration with initial values
Arrays and records
Sequential, conditional and iterative control structures
Subprograms (functions and procedures)

Encapsulated definitions
Parallel processing
Generic Definition
Exception handling
Representation specification
Interface to other languages

The first group of features can be found, in some form or another, in many algorith-
mic languages (most notably, Pascal). These features will not be discussed further in
this paper. It is the second group of features that makes Ada an interesting language.
We will discuss each of them briefly.

ENCAPSULATED DEFINITIONS

This language requirement provides a natural marriage of the software engineering
principles of abstraction and information hiding. Abstraction is the ability to deal with
things in their real world (problem space) terminology. "The essence of abstraction is to
extract essential properties while ommitting inessential details."!^ We need to be able
to deal with the functionality of the entity under consideration and defer (for the moment)
any consideration of the underlying representation. Information hiding allows us to make
inaccessible these detailed decisions of representation thereby forcing the user to rely
on the abstractions provided.

The Ada construct for implementing encapsulated definitions is known as the package.
A package is a module that allows one to gather together a collection of logically related
computational resources. The package has a two part structure: the specification indicates
what is available and the body indicates how it is actually accomplished. The specifica-
tion represents a contract with the user oT~the package. In fact, the specification in-
dicates all objects and operations which can be exported. The user can make full use of
the package by knowing only the specification. The body contains information of interest
only to the implementor of the resource. In addition to the implementation details of
the operations exported by the package, the body may contain other information which is
hidden from all but the implementor. Such information might include utility routines,
state memory, file manipulation, etc.

The package concept in Ada was greatly influenced by the concept of a class in SIMULA
and the module in MODULA.

PARALLEL PROCESSING

Perhaps the epitome of information hiding is the fact that the Ada language "hides"
the very existence of the operating system from the applications programmer. Nowhere is
this more apparent than with the Ada model of concurrent execution of communicating

2-4

sequential processes. As far as the user is concerned, there is no reliance on the oper-
ating system via system calls to effect concurrency. The Ada tasking model allows the
user to nicely model the natural concurrency present in many of the problems we are asked
to solve. This natural concurrency is especially present in mission-critical systems.

The concurrency model of Ada is based, to a large degree, on the Communicating Seq-
uential Processing (CSP) model of Professor C.A.R. Hoare of Oxford University.15 In Ada,
a task is considered to be executing on its own dedicated virtual processor. It doesn t
matter whether the actual execution is on a multicomputer system, a true multiprocessing
system or with interleaved execution on a single processor. Further, tasks are assumed
to commmicate with each other directly (not through an operating system). It should be
stated that the actual communication is most likely through operating system calls but
that is part of the service provided by the run-time support package nested within the
KAPSE.

Communication takes place via entries. If task A wants to comm\inicate with task B,
then task A must call an entry of task B. This communication is assymetric. That is,
task A must know that it is calling task B but task B does not necessarily know that it
is being called by task A. Note that this is a departure from the CSP model. In fact,
each entry of each task has associated with it a queue and callers of the entry are placed
into the queue in a first in first out order. When task A calls task B and task B acknow-
ledges the request (via an Ada "accept" statement) then A and B are said to be in
rendezvous.

In the simplest form of rendezvous, whichever task (caller or server) gets to the
rendezvous point first goes into a sleeping wait. When the other gets to the rendezvous
point the first wakes up and rendezvous occurs. While this rendezvous is taking place,
the two tasks are locked together (there is a single thread of execution). Once rendez-
vous is completed, the tasks are free to continue concurrently (there are multiple threads
of execution).

Some of the features available with the Ada tasking model:

A servor task can select one of several of its entry queues to serve.

A servor task can either go into a sleeping wait or perform some indivisible
sequence of statements if all of its entry queues are empty.

A servor task can serve any one of its entry queues if that queue becomes
nonempty within a specified time. If not, it can perform some alternative
action.

A servor task can choose to consider certain entry queues only if some
particular condition (guard) is true.

A servor task can offer to terminate if all of its queues are empty.

A calling task can choose to wait only a specified time for service.

A calling task can choose to rendezvous if and only if it can do so
immediately.

A task can be spawned off dynamically.

A task can suspend itself for some finite period of time.

Thus it can be seen that the Ada tasking model contains a very rich set of primitive
operations for concurrency. From this collection, monitors, semaphones, schedulers, etc.
can easily be implemented.

GENERIC DEFINITION

Perhaps the best analogy for describing Ada's generic definition capability is that
a generic unit in Ada is very similar to a macro in assembly language. The Ada generic
capability provides parameterization of subprograms and packages (there is no such thing
as a generic task) with types, objects and subprograms.

If we consider a subprogram, we see that it really represents a factorization of sim-
ilar algorithms. That which is consistent (the subprogram body) is factored out from that
which differs (the subprogram parameters). The resolution of actual/formal parameters
occurs during run time. Analogous to this is the factorization that occurs with generic
units That which is consistent (the generic body) is factored out from that which
differs (the generic parameters). However, the resolution of actual/formal parameters
occurs prior to actual execution. Further, only values and objects can be passed as
actual parameters to a subprogram. But, types and subprograms, m addition to values
and obiects, can be passed as actual parameters to generic units. It is as it these
actual parameters are used to construct a unit which uses the generic unit as a template.
This construction is known as generic instantiation.

2-5

If we consider the abstract object known as a stack and the abstract operations of
push and pop, we have a very powerful data structure. Suppose we want a stack of integers
and a stack of automobiles. Clearly these two situations differ only in the data type of
the components of the stack. As in most languages, it is not possible to pass a data typ^e
to a subprogram at run time. This is clearly an opportunity for using generic units. The
template for the generic package could be written in terms of some generic parameter (say
ELEMENT_TYPE). Then two specific instantiations could be given. One where type INTEGER
is systematically substituted for ELEMENT__TYPE and another where type AUTOMOBILE is sub-
stituted for ELEMENT_TYPE at each occurence. We would now have two stack packages just
as if we had written them from the very beginning.

It is envisioned that Ada's generic definition capability will be the cornerstone of
an industry of off-the-shelf, reuseable software components.

EXCEPTION HANDLING

Ada provides the application programmer the opportxinity to "trap" exceptional condi-
tions (like division by zero, exceeding array bounds, etc.) rather than have the operating
systemdeal with them as is generally the case. This provides yet another example of
shielding the software developer from the operating system.

Exceptions can be raised implicitly by the system when errors occur or explicitly by
the programmer when an error condition is sensed. Further, user-defined exceptions (such
as STACK_OVERFLOW or CHANGE_3ARREL_iS_EMPTY) can be dealt with as well as system-defined
exceptions (such as NUMERICJERROR, CONSTRAINT_ERROR, etc.) Of course, user-defined errors
can only be raised explicitly.

Exceptions are handled relative to a frame of reference. A frame of reference can be
a block statement, subprogram body, task body or package body. Each of these can contain
a sequence of statements and, at the very end of the sequence of statements, an exception
handler. This handler contains statements which will be executed only if an exception is
raised during execution of the sequence of statements of the frame of reference. If there
is no such handler, then the exception is propagated. For example, if an exception is
raised inside of a block statement then execution is abandoned and control is transfered
to the exception handler. If there is no exception handler then the exception is propa-
gated by raising it again at the next sequential statement following the block statement.
If the same situation arose inside of an active subprogram body, then the exception would
be propagated by raising the same exception at the point of call of the subprogram.

The Ada exception handling capability allows a very nice separation of steady_state
logic from error checking logic. In addition, the ability to raise and handle a DATA_
ERROR when erroneous data is input, allows the fairly straightforward input (and output)
of enumerated values. This is one of several shortcomings in the Pascal language which
are eliminated in Ada.

REPRESENTATION SPECIFICATION '

Transportable software has been one of the goals of the Ada movement since its incep-
tion. However there are often aspects of software, especially mission critical software,
which rtm counter to transportability. Often, because of external interfaces to peripheral
hardware, or to provide more efficient representation of internal objects, it becomes nec-
essary to make certain decisions to take advantage of certain capabilities of the host or
target architecture. This "bit-twiddling" is often decried as heinous but is sometimes
necessary.

wiLu Program atacus woras ana tne iiKe;, etc. Also, if a given architecture will vector
to a certain address upon receipt of a hardware interrupt, that actual address can be the
location of a task entry point and can be indicated by a representation specification.

It is important to realize that representation specifications are not currently part
of the validation suite. Therefore, an implementation is not required to include these
specifications.

INTERFACE TO OTHER LANGUAGES

"A subprogram written in another language can be called from an Ada program provided
that all communication is achieved via parameters and function results."1°

There is a great amount of software which has been written, tested and, in some cases
proven to be correct. Throughout the Ada movement it has never been the intent that
existing software be rewritten in Ada. Therefore the language makes provision for calling
subprograms which have actually been written in other languages.

This capability is not required by an implementation (it is not part of the valida-
tion suite testing). Current experience shows that the most common language supported by
this mechanism are FORTRAN and the assembly language associated with the underlvine
architecture. ^

2-6

EUROPEAN PARTICIPATION WITH ADA

Although Ada was initiated by the U. S. Department of Defense, there seems to have
been as much Ada activity in Europe as in the United States. The language was developed
by a primarily European team and interest in the language continues at a high level. The
following is a sample of European Ada involvement: All information has been gleaned from
the Ada Information Clearing House.-'-''

During the summer of 1985, NATO issued a mandate requiring the use of Ada for all
NATO-developed systems. This mandate took effect 1 January 1986.

Also during summer, 1985, an agreement was reached with the Ministry of Defense to
establish a third validation facility (France and Germany having the first two) in Europe.
The difference is that the UK will be able to issue its own validation certificates
rather than have the certificates issued by the US.

In March, 1985 it was announced that the Commission of European Communities (CEC)
had contracted with Dansk Datamatik Center (DDC) and Consorzio per la Ricerca de le Appli-
cazioni di Informatica (CRAI) to develop a draft formal definition of the standard Ameri-
can National Standards Institute (ANSI) Ada. In addition to the Danish and Italian
principle organizations, the CEC will establish a review group from approximately 12
countries in Europe, the U. S. and Canada.

In January, 1985 Informatique Internationale, of France delivered a queuing network
simulation program to the Spanish company CESELSA. The program was written entirely in
Ada and is appropriate for any queuing system including inventory management, ground and
air traffic monitoring and production planning and manufacturing.

In December, 1984, ALSYS, a French company headed by Jean Ichbiah (the principle
developer of the Ada language) was awarded a validation certificate for its AlsyCOMP 0001
version 1.0 Ada Compiler. Host machines included the Vax 11/785, 11/780, 11/750, 11/730
and the Micro Vax 1 with host operating system is the VMS version 4.0. The target system
is the ALTOS ACS 68000 under the ALTOS Operating System version 1.

In July, 1984 the UK announced that the Ministry of Defense would require the use of
Ada in real-time computer applications. They stated "Confidence in the Ada language is
now such that we can announce our intention to adopt it as a successor to CORAL for real-
time defense applications." In general, projects initiated prior to 1 July 1987 can
choose Ada or CORAL but projects initiated after that date will use Ada.

In November, 1984, The University of Karlruhe, under contract to the Ministry of De-
fense of the Federal Republic of Germany was awarded validation certificates for two Ada
compilers. The first Ada compiler is the Siemens BS2000 version 840404. Its host and
target is the Siemens 7.571 under the BS2000 7.1 operating system. The second compiler
is the Vax 11 Version VI.0. The host and target is the VAX 11/750 under VMS version 3.0.

In October, 1984 Dansk Datamatik Center (DDC) was awarded a validation certificate
for its DDC Ada Compiler VAX 11 Release 1.1. The DDC Ada Compiler host and target machine
is the VAX 11/750 tmder the VMS 3.5 operating system.

York University is writing an Ada compiler for Vax systems under UNIX.

In addition to the above activity, many of the finest textbooks on the Ada language
have come from European authors.

ADA EXPERIENCE

The following represents findings from various organizations currently engaged in
Ada activity. No attempt has been made to validate the findings and no attempt has been
made to find a common level of comparison among the findings. Except where noted, all
information is derived from an Ada Joint Program Office briefing.^"

Bell Technical Operations of Tucson, Arizona developed a commercial application with
over 103,000 lines of Ada code. They feel that the judicious use of the Ada generic
facility reduced the total lines of code by approximately 40%.1"

MacDonnell-Douglass Aircraft Company of St. Louis, Missouri, developed a Computer-
Based Training system which included almost 500,000 lines of Ada code. They found that
it was almost trivial to rehost this system from a Vax-11/780 to a Gould SEL and finally
to a Pacific Micro 68020 based system.^0

MacDonnell-Douglass also found, in their F-15 flight control experience, that they
achieved a five-to-one productivity improvement over that realized with assembly language.
Further, they experienced only a 10% cost in execution time and a 36% cost in memory.

Northrop Aircraft Corporation of Hawthorne, California noticed a five-to-four reduc-
tion in source lines from Jovial J73 to Ada.

IBM's Federal Systems Division, using Ada as PDL on a major system for the Sattelite
Control Facility reports the following findings:

--30% improvement in programmer productivity

2-7

--15-20% problem reports/1000 lines
--957c, success rate in initial problem fixes
--Only 17o of fixes propagated new problems

Digital Electronic Systems of Esthill Springs, Tennessee, working on various configu-
ration control systems, reports productivity of 2,241 lines per man month and estimate
that 957o of their software was successful after the initial compilation.

Intellimac of Rockville, Maryland indicates 800-1200 lines per man month. The 1200
figure is reported also by Moog Corporation of Buffalo, New York.

Raytheon Corporation of Mt. Laurel, New Jersey found that in transporting a system
from a 6800 micro to a Vax, only 5 line changes per 12,500 Ada lines were required.

It is clear that there is wide-spread support emerging for the Ada language. It is
now time for serious research into the productivity claims in order to verify the numbers
and to make estimates which range across experience base and application areas.

CONCLUSION

The Ada programming language is the result of a carefully considered design approach
which was, at every juncture, submitted for public review by users, implementors and
academicians alike. It is quite likely that this language, with its support environment,
will be a very helpful instrument for achieving transportability of software, tools and
even people in the years to come. Also, initial data seems to indicate that software
developers can be more productive using the Ada language than they were using previous
languages. Finally, the use of Ada will in no way guarantee the generation of better
software. The undisciplined use of this language will likely result in software which
is just as difficult to maintain as our existing efforts. However, if good, modern princi-
ples of software engineering are used in designing our sofware, the Ada language will en-
force those decisions better than any other language to date. Perhaps most importantly,
almost everyone who has seriously tried the language, likes it.

2-8

BIBLIOGRAPHY

1. Dijkstra, E.W., "The Humble Programmer" (Turing Award Lecture, Communications
of the ACM, Vol. 15, No. 10 (October 1972): 861.

2. Fisher, David A., "DoD's Common Programming Language Effort" IEEE Computer
(March 19 78) : 24

3. Mission Critical Computer Resources Definition, Title 10, U.S. Code 2315
(the Warner Amendment), Ada Information Clearinghouse Newsletter (November
1984).

4. Fisher, David A., p. 25

5. Stephen, D.G. et al, "DoD Digital Data Processing Study; A Ten Year Forecast,"
Electronics Industries Association, 1980.

6- Whitaker, William A., "The U.S. Department of Defense Common High Order
Language Effort," AC, Sigplan Notices, (February 1978): 22

7. Fisher, David A., p. 26

S- Requirements for High Order Programming Languages, STEELMAN, Department
of Defense, June 1978.

'• Booch, Grady, Software Engineering with Ada, Benjamin /Cummings, Menlo
Park, California, 1983.

10. Stenning, Vic et al, "The Ada Environment; A Perspective," IEEE Computer,
(June, 1981): 26.

11- Locke, Doug, "The Ada Programming Support Environment," IBM Software
Engineering Exchange, (October 1980):21.

12. Ibid.

13. Buxton, John N. and Druffel, Larry E. "Requirements for an Ada Programming
Support Environment: Rationale for STONEMAN," Proceedings, Compsac 80,
(October 1980): 68

14. Ross, D.T. et al, "Software Engineering: Process, Principles, and Goals,"
Computer (May 1975): 65.

15. Hoare, C.A.R., "Communicating Sequential Processes", Communications of the
ACM, (August 1978) : 66

16- Reference Manual for the Ada Programming Language, United States Department
of Defense, Ada Joint Program Office, July 1982.

17. Ada Information Clearinghouse, 3D139 (1211FERN,C-107), The Pentagon,
Washington, DC 20301-3081.

18. Kopp, Alan, "1980's Ada Goldrush", briefing presented at Ada/UK Conference,
University of York, January 1985.

19. Amdt, Douglas, "The Application of Ada Generics to Large-scale Projects: A
Case Study:, internal paper. Bell Technical Operations Corporation, Tucson,
Arizona.

20. Bolz, Richard and Pflaster, Dave "A Computer Based Training System Written
in Ada", briefing presented at Ada-Jovial User's Group meeting, 26 February
1985, San Jose, California

4-1

"PARALLEL PROCESSING" AND ADA * TASKS

T. P. Baker

Department of Computer Science
The Florida State University

Tallahassee, FL 32306
U.S.A.

December 16, 1985

SUMMARY

This paper explores some of the possible uses and hmitations of Ada tasks within the context of real-time embedded computer apphcations.
It also surveys the extent to which tasks and some other Ada features map naturally onto physically parallel computers. Some famiUarity
with Ada, and in particular Ada tasks, is presumed, though the paper does review some aspects of Ada task semantics.

1 INTRODUCTION

One of the more distinctive features of the programming language Ada is its provision for defining multiple tasks. The Ada Standard
says: "Tasks are entities whose executions proceed in parallel in the following sense. Each task can be considered to be executed by a
logical processor of its own. Different tasks (different logical processors) proceed independently, except at points where they synchronize
.. .Parallel tasks (parallel logical processors) may be implemented on multicomputers, multiprocessors, or with interleaved execution on
a single physical processor. On the other hand, whenever an implementation can detect that the same effect can be guaranteed if parts
of the actions of given task are executed by different physical processors acting in parallel, it may choose to execute them in this way; in
such a case, several physical processors implement a single logical processor." fll

That is, tasks are logically parallel divisions of a program. Whether there is any physical paralleUsm in the execution of an Ada program
is entirely independent of its division into tasks.

In real-time embedded systems, both kinds of parallelism are of interest. Physical parallehsm is of interest because it can provide
greater processing speed than sequential processing. Logical parallelism is of interest because it is a natural characteristic of real-time
apphcations.

2 PARALLELISM IN A REAL-TIME SYSTEM

To illustrate logical parallehsm and the motivation for physical parallelism in a real-time apphcation, we consider an imaginary simple
aircraft tracking system, shown in Figure 1. The inputs to this system are from a tracking (e.g. phased array) radar and an operator
console; the outputs are to the radar and to a graphic display device viewed by the operator. In addition to using radar data to keep
the information on the display up to date, the system maintains an internal table or "track file", showing the estimated current position
of each tracked object, for use by the tracking system itseff and by other systems which it supports.

radar •o-o software

console a
display U^

operator

Figure 1: A simphfied aircraft tracking system.

The tracking system software must meet the following requirements:

• Each command going to the radar specifies a cell of space in which the radar is to look. The radar buffers a hmited number of
commands bternally, and executes them in order of arrival. Determining whether the radar is ready for another command requires
polhng the radar command port at least once every R seconds.

• Reports from the radar arrive over a direct memory access (DMA) channel. The radar generates an interrupt whenever it fills its
current report buffer. The tracking system must respond by giving the radar the location of a free buffer. This must be done promptly
or data will be lost. Each report describes a set of objects sighted by the radar in a smgle cell. If a command results in no object
bemg sighted, there is no report. If more than one object is sighted in a particular cell, the radar returns a report describing all the
objects.

'Ada is a registered trademark of the U.S. Department of Defense (AJPO).

4-2

• The positions of sJl tracked objects are to be updated in the track file at least one every T seconds, using fresh data from the radar,
if possible.

• The radar is to be used both to keep known objects in track, and to search for new objects, giving priority to keeping known objects
in traick.

• The graphic display is a DMA device, which periodically refreshes its screen from an image stored shared-access memory. All the
information in this area is to be updated at least once every D seconds, using current data from the track file.

• The operator console generates an interrupt whenever the operator hits a key. Such interrupts are to be handled immediately. As
soon as a complete console command has been accumulated it is to be executed within C seconds.

• The operator can add annotations to tracked objects and direct the searching to concentrate on areas of particuleir interest.

The work which the application software must do to meet these requirements is most naturally viewed as a set of logically parallel
activities, which must go on more or less asynchronously and at independent rates. (See Figure 2.) In Ada, these activities can be
described as a collection of tasks, within a single program. We will discuss how such a system might be programmed in Ada, further on

in this paper.

Figure 2: System activities

This example also presents a situation where a software designer may need to deal with physically pzirallel processing. In order to keep
up with the radar, which we assume is capable of tracking many objects simultaneously, and to discriminate objects from noise, a great
deal of computation will need to be done quickly. Suppose no single processor capable of doing all these computations quickly enough is
available. The hardware designers therefore propose a configuration with several processors and several shared memory banks, such as
that shown in Figure 3.

A B C D

r~ 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Figure 3: A multiprocessor configuration.

Although in 1985 no multiprocessor Ada compilers and runtime systems have yet been developed, it appears that such a collection of
processors can be used to achieve physically peirallel execution of Ada tasks. We will consider how this might be done, after a quick
review of Ada task semantics.

3 TASKS IN ADA

Ada'tasks are data objects. They follow the normal scope and lifetime rules of data objects. Like all data objects, each task has a type.
All tasks of a type share the same executable code. Each task has its own storage to hold the values of data within it. Unlike other kinds
of data objects, tasks are also executable program units. A task defines a level of static nesting. It may have local declarations, and code
within it may access both local and nonlocjj declarations. Thus several tasks may share read and update access rights to variables, and
allocation rights to a collection of objects designated by an access type. Tasks may be nested within recursive procedures and within
other tasks. They also may have local exception handlers.

When a task is created it is inactive. Later, it begins a period of execution, called "activation", during which it initializes local data.
After its activation is complete, and possibly after some waiting to synchronize with other tasks, the task begins normal execution.
During normal execution it may communicate with other tasks, by means of "rendezvous" zind shared variables. From time to time,
execution of the task may be forced to wait for some event. Execution may continue indefinitely, or it may eventually complete. After
completion, the task and its storage may still be referenced by other tasks. Finally, the task may "terminate", at which point its storage
is no longer needed, and for sill nontrivial purposes the task may be considered to no longer exist. Figure 4, below, shows these principle
state transitions of a task.

4-3

Figure 4: Important task state distinctions.

Tasks are essentially asynchronous and nondeterministic. They may be created at arbitrary times, and go through their lives indepen-
dently, except at a few points:
(1) two tasks participating in a "rendezvous" are synchronized at the start and end of the rendezvous;
(2) a task is synchronized with the task that created it at the start and end of its activation;
(3) a task that has completed its execution is synchronized with every other task.

A rendezvous takes place when one task calls an entry of another task, and the other task expresses readiness to accept a call on that
entry, via an accept or selective wait statement. From the calling task's point of view, an entry call is syntactically and semantically like
a procedure call (even with respect to details such as the propagation of exceptions raised and not handled during the call). As with
a procedure call, the execution at the point of call is suspended until the call is complete. During the rendezvous, parameters may be
passed between the two tasks. From the acceptor's point of view, however, the rendezvous is different. The acceptor cannot in general
determine the identity of the calling task, and must accept calls on each entry in "first-in-first-out" (FIFO) order.

Note that in order for a rendezvous to take place, the calling task must be able to name the task it calls. This means that the called task
must be visible at the point of call, or must be named indirectly, via an access value. Because it is referenced in the call by name, the
type of the called task is fixed at the time the entry call is compiled. In contrast, from the point of viev/ of the accepting task there is
no restriction on tasks that may call one of its entries, other than that they be able to name the entry. This asymmetry must be taken
into account when designing with tasks. For example, it means that a "server" task in general cannot "call back" those tasks which it
serves, since it hcis no way of naming them.

As an example of an Ada program with tasks, and rendezvous in particular, consider the following pair of producer-consumer tasks.
PRODUCER calls CONSUMER'S entry TAKE whenever it has a datum to transmit, and CONSUMER accepts a call on TAKE whenever
it is ready to receive a datum. Whichever one attempts to make the rendezvous first will wait until the other is ready.

accept TAKE([

 OOhSLMm-

procedure MAIN is . . .
task PRODUCER;

task CONSUMER is entry TAKE(X: in out T); end CONSUMER;
task body PRODUCER is X: T;
begin loop . . . CONSUMER.TAKE(X);

end loop;
end PRODUCER;
task body CONSUMER is . . .
begin loop accept TAKE(X: in out T) do;

end TAKE;

end loop;
end CONSUMER;

begin . . .

end MAIN;

- - Task PRODUCER created.
- - Task CONSUMER created.

- - Producer finishes activation.
-- Calls entry TAKE of CONSUMER.

CONSUMER finishes activation.
- CONSUMER accepts entry call.

- - Rendezvous is completed.

- - Procedure body MAIN finishes elaboration.
PRODUCER and CONSUMER start activation.

- - Procedure MAIN completes execution.

Figure 5: Producer and consumer tasks.

Figure 6 illustrates how these three tasks might execute in parallel, given three separate processors.

4-4

MAIN FHCDUCm ooajMm

^
!^

—1 11
^

1 III!

ill

- CFEAIEPHODUCffi

■ CPEATECONSJtJER

- START ACTIVATDN

- FINISH ACTIVATON

- FINISH ACTIVATION

■B\fTFlYCALL

-ACCEPT

- B^D RENDEZVOUS

Figure 6: Tasks executing in parallel.

Operations that require synchronization of tasks, or mutual exclusion between tasks, such as allocation out of a shared pool of storage,
are likely to be implemented by a collection of software provided with an Ada compiler, that must be coresident with compiled programs
at run time. We call this collection of support software a "runtime environment". Other support services provided by the Ada runtime
environment include maintenance of a real-time clock, task dispatching, and any aspects of storage management and exception handling
that are not implemented directly by compiler-generated code. The runtime system may also be responsible for linking interrupts to

handlers within the Ada program.

The runtime environment is most efficiently hosted on a "bare" machine - that is, one without any other operating system. In this
case all functions typically provided by an operating system or executive are provided either by the Ada runtime environment or by
apphcation code (written in Ada). Because it need not support many of the more complex functions of a traditional operating system,
such as providing a file system, an Ada runtime environment can be quite small. For example, in the FSU/AFATL implementation it
occupies less than 8K bytes of memory.

A real-time embedded systems builder is likely to be interested in details of an Ada implementation, and in particular the runtime
environment, because they determine execution timing. Unfortunately, the details of interest will vary from one compiler to another.
Even the division of duties between inline code (generated by the compiler) and the runtime environment may vary for one compiler,
according to the level of optimization. Thus real-time programmers using Ada may need to learn to survive with less control than they
are accustomed to exercising over things like execution timing and storage utiUzation.

4 MAPPING ADA ONTO PARALLEL MACHINES

There is considerable interest in using Ada to develop software for parallel hardware configurations. ParjJlehsm in computer hardware
comes in a number of different forms. Among the various forms of parallel computer architectures are:

• Pipelined scalar processors, which partially overlap the execution of successive instructions within a sequence.

• "Vector" or "array" processors, which can rapidly perform a single operation on a sequence of data, using pipelined or fully parallel

execution.

• Multiprocessor configurations with shared memory, where each processor executes its own independent instruction sequence in parallel
with the rest, but communication and synchronization are possible through a shared (arbitrated) memory.

• Multiprocessor configurations without shared memory but linked by a communications network.

Among these, the finer granularity of parallelism offered by pipehned and array processors distinguishes them sharply from multiprocessor
configurations. Ada does not provide any standard means of expressing such fine-grained parallelism explicitly. Nevertheless, an
optimizing compiler may be able to find opportunities for such paralleHsm within a program. That is, the code generator of a comnpiler
targeted to a pipelined processor might be designed to take advantage of the pipehning. A compiler might also do loop-conversion and
other vectorizing transformations similar to those currently done by "vectorizing" FORTRAN compilers. It is likely to be some time,
however, before we see Ada compilers reach this level of sophistication, since in general the complexity of the Ada semantics make
optimizations difficult. For the case of vector processors, there is an alternative to compiler-supplied optimizations. Explicit access to
hardware parallelism can be provided through an implementation-defined package of vector operations.

In contrast, coarser grained parallelism is explicitly representable in stanadard Ada - through tasks and through multiple programs.
Physically parallel execution of tasks is likely to map more efficiently onto some hardware architectures than others, however. Because
tasks must be able to share read and write access to common data, and because intertask communication requires rendezvous, the Ada
task model seems best suited to architectures with high-bandwidth interprocessor communication and low-cost synchronization.

For instance, it appears quite practical for several processors that share access to a common memory (such as those shown in Figure 3)
to execute different tasks within a single program, in parallel. It also appears practical to distribute Ada tasks over a system of more

loosely connected processors. The notion of rendezvous (i.e. remote procedure call) seems fairly well suited to the latter environment,
and has been proven workable in network operating systems. Shared access to non-local data is still possible, using remote read and write
operations. The main problem seems to be efficiency. Still, in 1985, no such multiprocessor implementations of Ada have yet appeared.

4-5

Unfortunately, for some architectures, such as closely coupled multiprocessor systems with very many processing elements, neither the
task nor the program seems to be a suitable unit of granularity. It may be argued that Ada was not designed to support such architectures.
If Ada programs are to be mapped onto such machines in such a way as to take full advantage of their power further research advances
appear necessary.

One direction such research is taking, exemplified by work done at Honeywell [2], is that parallehsm introduced solely for speed or
redundancy should not be expressed directly in Ada. In this view the logical design of a program should be expressed in its simplest and
most natural form, without regard to the hardware architecture on which the program will be executed. Details of how a program is
mapped onto particular hardware should be expressed in a separate specification. While this approach appears very desirable from the
point of view of maintaining independence of hardware and software, its feasibility remains to be demonstrated.

Given today's compilers it seems most practical to view each processor as executing a separate program (or several). Such programs
can communicate by means of common interfaces, implemented as shared library-packages. In addition to being immediately practical,
this multiprogram approach has another advantage over the single-program model - it supports an "open" system architecture. UnUke
communicating tasks, which must be compiled together within a single program, separate programs that communicate via common
packages may be compiled and loaded independently. Moreover, communication linkages may be changed dynamically, during execution.

5 SOME BASIC DESIGN CONSIDERATIONS

Before returning to the radar tracking example, we examine some of the basic problems in designing real-time software with Ada tasks,
and some useful techniques.

5.1 SHARING A PROCESSOR

When there is more than one task ready to be executed by a single physical processor the Ada language implementation must choose one
of the tasks to be executed. We call this process of allocating processor time to tasks "dispatching". The Ada Standard leaves the details
of dispatching to be determined by an implementation. This is good, because it gives the implementation freedom to make efficient use
of the particular hardware resources that may be available - e.g., multiple processors. On the other hand, it is a problem for real-time
system designers, who need to be able to predict system performance.

A programmer can exert Umited control over dispatching by means of static priorities, which may be assigned to task types. Whenever
several tasks are competing to be executed by the same processor, the processor must be allocated to one with highest priority. Additional
control may be provided by associating entries of tasks with hardware interrupts, since while a task is handling an interrupt it has
effectively higher priority than any task that is not handling an interrupt.

An unpleasant consequence of Ada's leaving the detials of dispatching unspecified is that programs with multiple tasks are likely to
depend on implementation features for their correctness. Consider, for example, the two tasks shown below.

task URGENT is pragma PRIORITY(IOO); end URGENT;
task LESS_URGENT is pragma PRIORITy(O); end LESS_URGENT;
task body URGENT is

''"Sin loop ■• • .. Do urgent work,
delay 0.1;

end loop;
end URGENT;
task body LESS-URGENT is

?,' ' ' - - Do less urgent work,
end loop;

end LESS-URGENT;

Figure 7: Controlling dispatching with priorities and the delay statement.

Let us look at this example from a pessimistic point of view, assuming the Ada implementation is validated, but no more. Several things
may go wrong:
(1) The compiler may ignore the pragma PRIORITY.
(2) Among tasks of equal priority, the runtime environment may give dispatching preference to the currently aiztive task. That is the
dispatching policy may be "unfair".
(3) The runtime environment may not notice that task URGENT's delay has expired, until it is invoked for some other reason. That is,
the delay statement may be implemented in a non-preemptive manner.
If (2) holds, and (1) or (3) also holds, task LESS_URGENT will "starve out" task URGENT. All of the above are permitted by the
present validation tests (ACVC Version 1.6).

It appears that (3) will be disallowed in the future. That is, while the Standard only requires that a task that executes a delay statement
be suspended for "at least" the duration specified, there must be some Umit to how long it is suspended, and when the delayed task

is released it should preempt a processor from any lower priority task. Still, the accuracy of the the delay is unpredictable and in an
implementation seeking to minimize worst-case overhead it may become less accurate as the number of tasks increases. Finally, unless
the delayed task has higher priority than every other task, it may wait an unpredictably long time before its execution resumes.

4-6

Some would argue further that a good implementation would not allow (2), but we do not agree. Switching a processor from one task
to another unnecessarily is a waste of the processor's time.

Designing £in Ada program involving tasks so that it is free of implementation-dependencies related to dispatching is not only difficult,
it is probably EJSO unwise. A program that is totally implementation-independent is likely not to permit efficient use of multiprocessor
hardware configurations. In particular, to make certain that a system of tasks can be executed on a single processor with an unfair
dispatching pohcy it appears necessary to structure the program in such a way that for each task there is some time when all other
tasks of higher or equal priority voluntarily wait, so that that task can be guaranteed to execute. For configurations with more than one
processor this would mean that all but one of the processors would be idle much of the time.

5.2 PROBLEMS WITH RENDEZVOUS

The normal means of intertask synchronization and communication in Ada is by means of rendezvous. This presents two problems for a
designer of real-time software systems: overhead and waiting.

5.2.1 OVERHEAD

The first problem is that rendezvous is a fairly complex, find therefore fairly costly operation. Because an entry call is similar in efect
to a procedure call, we ran a simple test to compare the execution times of these two constructs, using our own (FSU/AFATL) Ada
compiler - a single-processor implementation for the Z8002 microprocessor - and the test program in Figure 8. It has two tasks, one of
which loops, repeatedly meiking a rendezvous with an entry of the other. In one second, 366 iterations were completed. In a comparison
test, where the rendezvous was replaced by a procedure call, 957 iterations were completed. Replacing the procedure call by inline code
resulted in a further increase, to 1081 iterations. Solving the three linear equations representing the running time of the loop, we find
that it takes 15 times longer to perform a rendezvous service cycle (with no parameters) than to perform a similM procedure call and
return. Even though the speed of rendezvous in the FSU implementation could be improved, so could the speed of procedure calls.
Therefore this is probably a fair estimate of the overhead of rendezvous.

In such a single-processor implementation, the £idditional cost of the rendezvous over the procedure call is largely due to making the one
task wait for the other, determining when the dynamic conditions necessary for rendezvous have been met, and switching the context
of execution between tasks. In a multiprocessor implementation (when such become available) there would be additional overhead, due

to interprocessor communication. Though claims have been made [3] that compiler optimizations can dramatically reduce the average
cost of rendezvous by recognizing special cases ("idioms"), the feasibiUty and practical benefits of such optimizations have yet to be
demonstrated.

procedure TIMER is . . .
I: INTEGER— 0;
task A is entry GO; end A;
task B is entry GO; entry E; end B;
procedure REPORT is begin put_hne(I); abort A,B; end REPORT;
task body A is
begin accept GO;

loop B.E; - - This entry call is replaced by a procedure call or inline code.
NOW:=CLOCK; D:=NOW-START;
if D >= 1.0 then REPORT; end if;

end loop;
end A;
task body B is
begin accept GO;

loop accept E do I:=I-(-l; end E; end loop;
end B;

begin START:=CLOCK; A.GO; B.GO; end TIMER;

Figure 8: Program used to measure relative execution time of rendezvous.

The overhead of rendezvous should be considered in the design of a software system. In particular, task interjictions should be designed
so that the work done between rendezvous should counterbalance the cost of the rendezvous. For example, if a rendezvous takes 15 time
longer than a procedure call, and the work done between rendezvous is at least equivalent to 300 procedure calls, the overhead of tasking
due to rendezvous will be limited to 5 percent.

5.2.2 WAITING

The second problem with rendezvous is that one of the tasks always must be willing to wait. The limitations that this need for waiting
imposes on task communication can be seen by reconsidering the producer-consumer example, discussed above. So long as either
PRODUCER or CONSUMER can always afford to wait there is no problem, but in real-time applications this is not always the case.
Suppose, for example, that PRODUCER is an interrupt-driven task, and CONSUMER is a periodic task, that must execute exactly once
every T seconds, using any new information that PRODUCER has passed to it. Alternatively, suppose that PRODUCER is executing
on one physical processor and CONSUMER is executing on another; if either task must wait, valuable processor time may be wasted.

4-7

To avoid or limit waiting, a task that wishes to make a rendezvous might use a conditional or timed entry call, or a selective wait with
an else or delay clause. If the rendezvous is not begun within the specified delay the task is released and may go on with its execution.
The task does not have to wait, but then neither does it accomplish the purpose of the rendezvous. For example, suppose that the task
PRODUCER used a conditional entry call to pass data to the task CONSUMER, as shown in Figure 9. Because PRODUCER may need
to produce more than one datum between successful rendezvous with CONSUMER, the two tasks now communicate through a buffer
that can hold more than one datum.

task body PRODUCER is
BUFFER: array (...) of T;

begin loop

select CONSUMER.TAKE(BUFFER);
else null;
end select;

end loop;
end PRODUCER;

Do some work; put datum into buffer if it fits.

Figure 9: Using a conditional entry call to avoid waiting.

There are several problems with this proposed solution:

• CONSUMER must be willing to wait; otherwise there may never be any rendezvous. (This is the main problem.)

• Executing the conditional entry call takes time, which is essentially wasted in the case that no rendezvous is made.

• If the buffer ever fills up entirely, PRODUCER can do no more useful work. (This is unavoidable, if PRODUCER does not wait, but
we hope the buffer is big enough.)

• Since an Ada implementation is not required to do time slicing, if PRODUCER shares a processor with CONSUMER it may starve
out CONSUMER. (This is really an independent problem, and does not arise at all if PRODUCER has a separate processor.)

• CONSUMER must copy all the data from the buffer to a working area, so that it can release PRODUCER from the rendezous quickly.
(This is also an independent problem, which is easily overcome using indirect buffers, as shown further below.)

task body PRODUCER is
BUFFER: array (...) of T;

begin loop . . .
select CONSUMER.TAKE(BUFFER); else delay 0.1; end select;

end loop;
end PRODUCER;

Do some work; put datum into the buffer, if it fits.

Figure 10: Using a timed entry call to limit waiting.

A timed entry call could also be used, as in Figure 10 . Here PRODUCER delays itself for 0.1 second if it cannot make the
rendezvous. The chief advantage of this is that it may let other tasks on the same processor do some work. However, we have not gained
much:

• CONSUMER still must be wilUng to wait.

• PRODUCER now also may need to wait (though if it has to wait very long it will wake up and do some other work). This solution
would therefore be inappropriate if PRODUCER were interrupt-driven.

• Still more execution time (due to scheduling the wakeup event for PRODUCER) will be spent in the case that the rendezvous cannot
be made immediately.

For each of the solutions above there is also a complementary solution, in which the aiccepting task limits its waiting time, using a
selective wait statement with a delay alternative or else part. Though the roles of the two tasks are reversed, the limitations are the
same.

5.3 USING SHARED VARIABLES TO AVOID RENDEZVOUS

It might seem that we would be better off if we could avoid rendezvous entirely. Sometimes this can be done safely by means of
conventional buffering techniques, making use of shared variables and the pragma SHARED. Using the pragma SHARED we can specify
that every read and update of a particular simple variable of a scalar or access type is effectively an atomic operation. Consider the
example in Figures 11 - 13 , in which the producer and consumer communicate via indirect buffers, using shared access variables to
communicate their current positions in a chain of shared buffers.

4-8

generic type DATA. TYPE is private;
SIZE: in INTEGER;

package QUEUE is
- - Assumes eeich instantiation of this package is "owned" by a single writer task,
- - so that the list of available buffers need not be synchronized.
- - Each instantiation may be accessed by one reeider task.
- - This reader task should only call ADVANCE and read MARK.all.
type BUFFER;
type BUFFER-ACCESS is access BUFFER;
type BUFFER is record NEXT: BUFFER-ACCESS; DATA: DATA-TYPE; end record;
HEAD, MARK, TAIL: BUFFER-ACCESS:= null;
- - HEAD is accessed only by writer; it is used to collect used buffers.
- - MARK is the buffer currrently begin read. It is read by writer Jind updated by reader.

pragma SHARED(MARK);
- - TAIL is the buffer currently being written-to. It is reeid by reader and updated by writer.

pragma SHARED(TAIL);
procedure READER-ADVANCE(OK: out BOOLEAN);

- - Move MARK to next full buffer in chain, if any. Set OK=true iff MARK is advanced,
procedure WRITER-ADVANCE;

- - Add new (empty) buffer to tail of chain, pushing current tail
- - buffer into range of full buffers, that reader may eu;cess.

end QUEUE;

Figure 11: The specification of a generic queue package, using shared Vciriables.

package body QUEUE is
AVAIL: BUFFER-ACCESS:= null;
procedure READER-ADVANCE(OK: BOOLEAN) is
begin if MARK = TAIL then OK:= false; else OK:=true; MARK:= MARK.NEXT; end if;
end READER-ADVANCE;
procedure WRITER-ADVANCE is

Tl: BUFFER-ACCESS:= null;
T2: BUFFER-ACCESS:= HEAD;

begin while T2 /= MARK; loop Tl:= T2; T2:=T2.NEXT; end loop;
if Tl = null
then if AVAIL = null then Tl:= new BUFFER else Tl:= AVAIL; AVAIL:= AVAIL.NEXT; end if;
elsif Tl /= HEAD then T1.NEXT:= AVAIL; AVAIL:= HEAD.NEXT; end if;
HEAD:= T2; T1.NEXT:= null; TAIL.NEXT:= Tl;

end WRITER-ADVANCE;
begin for I in 1..SIZE-1 loop HEAD:= new BUFFER; HEAD.NEXT:=AVAIL; AVAIL:=HEAD; end loop;

MARK:= new BUFFER; MARK.NEXT:= null; HEAD:= MARK; TAIL:= MARK;
end QUEUE;

Figure 12: The body of a generic queue package, using shared variables.

package Q is new QUEUE(T, 4);
task PRODUCER;
task CONSUMER;
task body CONSUMER is

OK: BOOLEAN;
begin loop Q.READER-ADVANCE(OK);

if OK then consume(Q.MARK.all); else . . . end if;
end loop;

end CONSUMER;

task body PRODUCER is
OK: BOOLEAN;

begin loop Q.WRITER-ADVANCE; produce_data_in(Q.MARK.all); end loop;
end PRODUCER;

Figure 13: Tasks communicating via a queue, implemented with shared variables.

4-9

Note that the package QUEUE keeps an explicit hst of available buffers rather than relying entirely on Ada allocators and Ada's predefined
generic unchecked deallocation procedure. Note also that as many buffers as are expected to be needed are preallocated. This is to save
time. The general-case storage allocation and deallocation operations supported by the Ada runtime environment are likely to be less
efficient, because: (1) arbitrary-sized blocks of storage must be handled; (2) they must be treated as a critical sections, since several
tasks may allocate concurrently from a single pool of storage.

Avoiding rendezvous has solved our main problem. That is, neither PRODUCER nor CONSUMER need wait, and both can execute at
the same time, if they execute on different physical processors. There remain other problems, such as avoiding starvation and dealing
with buffer overflow, but these can be solved independently.

5.4 USING A SERVER TASK

It is unfortunate that the approach taken above does not generalize nicely to more complex task interactions, such as the producer-
consumer problem with multiple producers and consumers. It seems that for such problems it may be best to protect shared buffers by
interposing a server-task, which controls access to the buffers. Ghent tasks would then obtain or return buffers by rendezvous with the

buffer-server, as shown in Figures 14-16.

generic
type DATA-TYPE is private;
SIZE: in INTEGER:= 3;

package CHANNEL is
- - Bounded buffer capable of holding SIZE items, intended for multiple producers and multiple consumers.
type BUFFER;
type BUFFER-ACCESS is access BUFFER;
type BUFFER is record NEXT: BUFFER-ACCESS; DATA: DATA-TYPE; end record;
task SERVER is

entry NEXT_IN(A: in out BUFFER-ACCESS);
entry NEXT-OUT(A: in out BUFFER-ACCESS);

end SERVER;
end CHANNEL;

Figure 14: The specification of a generic channel package, with a server task.

package body CHANNEL is
task body SERVER is

HEAD, TAIL, AVAIL: BUFFER-ACCESS:= null;
begin - - Set up hst of free buffers,

for I in 1..SIZE
loop HEAD:= new BUFFER; HEAD.NEXT:=AVAIL; AVAIL:= HEAD; end loop;
HEAD:= null;
- - Begin service,
loop select accept NEXT-IN (A: in out BUFFER-ACCESS) do

- - Add full buffer, if any, to FIFO,
if A /= null then A.NEXT:= null;

if TAIL= null then HEAD:= A; else TAIL.NEXT:= A; end if;
TAIL:= A;

end if;
- - Get empty item-buffer.
if AVAIL = null then A:=new BUFFER;
else A:= AVAIL; AVAIL:= AVAIL.NEXT; end if;

end NEXT_IN;
or accept NEXT-OUT(A: in out BUFFER-ACCESS) do

- - Return empty item-buffer, if any.
if A /= null then A.NEXT:= AVAIL; AVAIL:= A; end if;
- - Get full item-buffer, if any available.
if HEAD /= iiuU then A:=HEAD; HEAD:=HEAD.NEXT; end if;

end NEXT-OUT;
end select;

end loop;
end SERVER;

end CHANNEL;

Figure 15: The body of a generic channel package, with a server task.

4-10

I NE>ajN(□);
V :

task type CONSUMER;
task type PRODUCER;
PRODUCER-1, PR0DUCER_2: PRODUCER;
CONSUMER-1, CONSUMER-2: CONSUMER;
package C is new CHANNEL(T, ACCESS_T, 4);
task body CONSUMER is

A: C.BUFFER-ACCESS— null;
begin loop C.SERVER.NEXT-OUT(A);

if A /= null then consume(A.DATA); else . . . end if;
end loop;

end CONSUMER;

task body PRODUCER is
A: C.BUFFER-ACCESS— null;

begin loop C.SERVER.NEXT-IN(A);
if A /= null then produce_data_in(A.DATA); else . .

end loop;
end PRODUCER;

>4^ NEXT OUT "Re 1 NEXT IN I -i~- -

-SERVER-

end if;

Figure 16: Tasks communicating via channel implemented by server task.

The main problem with this solution is that each datum passed between the producer and the consumer requires not one, but TWO
rendezvous. This will probably be time-consuming, but it appears that the only way one can hope to do better is by relying upon
implementation-dependent features (e.g., a predefined task type SEMAPHORE, with entries P and V, or an optimization that recognizes

certain special forms of tasks).

Given the high cost (in waiting time and overhead) of intertask communication using rendezvous, it seems wise to design so as to keep
the need for such communication to a minimum.

5.5 CONTROLLING SCHEDULING

Another one of the problems in using Ada tasks for real-time software is scheduling - that is, controlling the timing of task execution.
Ada leaves many of the details of scheduling to the language implementation. It can be partially controlled, however, by means of delay
statements and the real-time clock, and by means of timer-generated hardware interrupts linked to entries.

In real-time systems scheduling is typically periodic. The Ada Standard gives the example shown in Figure 17 to illustrate how a delay
statement may be used in conjunction with the real-time clock to achieve periodic execution.

declare use CALENDAR;
NEXT-TIME: TIME:= CLOCK -I- INTERVAL;

begin loop delay NEXT-TIME - CLOCK;
INTERVAL is a global constant.

- - Do some work.
NEXT-TIME:= NEXT-TIME -I- INTERVAL;

end loop;
end;

Figure 17: Periodic scheduling with a delay statement.

This will work, but is not likely to be suitable for sill applications. Some problems are:

• The delay interval must be large in comparison to the time needed to check the real-time clock, calculate the delay, and execute the
delay statement, or the overhead will be excessive.

• The delay statement must be implemented preemptively, and the cycling task must have sufficiently high priority with respect to
other tasks competing for the same processor(s) to insure that it can complete an iteration once in each interval.

• The accuracy of timing is limited by the accuracy of the delay statement implementation (even though the variations will average
out).

4-11

Where more accuracy or a smaller interval is necessary, periodic execution can be achieved by means of a timer-generated hardware
interrupt, linked to an entry of a task. The example in Figure 18, adapted from MacLaren [4], illustrates how this technique can be used
to program a standard cyclic executive in Ada. In this example, task EXEC calls the several procedures that perform the actual work
of the system. EXEC divides time into "minor frames", whose length is the period D of the timer interrupt, and "major frames", whose
length is 4D. Procedures INTF and CNTRL are called once every minor frame. Procedure EPROC is called once every 2D seconds, and
procedures INTBl and INTB2 are called once every major frame. The latter are intended to be two parts of a single logical procedure,
illustrating how computations that do not fit into a minor frame may be subdivided.

task EXEC is

' . ' - - indicates the start of a new minor frame
for DING use at PERIODIC,INTERRUPT'ADDRESS; pragma PRIORITY(IO); - . a high priority

end EXEC;

task body EXEC is
M: constant INTEGER:= 4; „.™K.. <•„•<■ • ■ r
FRAME: INTEGER:=0; --number of mmor frames m a major frame

begin loop accept DING;
case FRAME is
when 0 => INTF; INTBl; CNTRL;
when 1 => INTF; EPROC; CNTRL;
when 2 => INTF; INTB2; CNTRL;
when 3 => INTF; EPROC; CNTRL;
end case;
FRAME:=(FRAME-H) mod M;

end loop;
end EXEC;

Figure 18: A cyclic executive, implmented using a periodic interrupt entry.

This approach should incur less overhead than using the delay statement, and may be more exact. If there is sufficient processor time
left, it permits other (background) tasks to run, at lower priorities. There are also some hmitations, however:

• Any other interrupt handlers must be kept sufficiently short and their interrupts sufficiently infrequent that the computations to be
performed in each minor cycle can be completed, in the worst case.

• All the work to be scheduled by the executive must be broken into procedures that can be executed within one minor frame.

• A task that must respond to interrupts cannot wait for other tasks, which makes it difficult to pass information between interrupt-
driven tasks and other tasks, as explained above.

• This solution is based on a sequential, single-processor model of execution. (It can be generalized, however, using trivial entry calls
rather than procedure calls, to work with a parallel model of execution.)

• There is likely to be disagreement among compilers on details of the implementation of interrupt entries. For example: What happens
when a task with an interrupt entry is itself interrupted? Does this depend on whether the task is executing an accept on an interrupt
entry at the time? Also, what happens if the task responsible for handling an interrrupt is not waiting at an accept for the interrupt

when the interrupt arrives? (In particular, what happens if the task EXEC above is still executing in the case statement when the
next time interrupt arrives?) Can an interrupt-driven task rendezvous with other tasks? What happens if an interrupt occurs during
such a rendezvous?

5.6 STARTING UP AND SHUTTING DOWN

Starting up a task and shutting it down are both time-consuming operations, and can involve subtle interactions with other tasks.

Before a task can start up it must be created. This may be as a consequence of the elaboration of a task declaration, or elaboration of
an object declaration or allocator for a task type or a composite type containing a task component. Elaboration typically involves the
execution of code produced by the compiler, and is performed each time execution enters the scope of the declaration. This minimally
involves allocating storage for the task, and initiahzing data structures used by the runtime environment to coordinate task execution.

At some point after it is created, a task begins activation. This involves the elaboration of the declarative part of the task, including
the initialization of local data objects, and the creation and activation of any local tasks. The time it takes to execute the elaboration
code of a task thus depends on the complexity of its local declarations. Eventually, when a task has finished activation, execution of the
sequence of statements of its body may begin.

There are a number of fairly complex rules governing task activation. These rules help to prevent execution of a task before all of the
data structures on which it depends have been initialized, and calls to an entry of a task that has not yet been created. Since there is
still danger of such elaboration order errors, Ada programs also check for them at run-time. For example, consider the following pair of
packages:

4-12

package P is tcisk type T; end P;
package Q is Tl: T; end Q; ■
package body Q is . . .

- - Task Tl is activated here, just before the "begin".
- - ELABORATION_CHECK then raises PROGRAM-ERROR, because the body of T has not yet been elaborated,

begin . . . end Q;
package body P is

... - - declarations used by task body T

task body T is ... end T;
endP;

Figure 19: A problem with task body elaboration order.

Task Tl is declared in package Q, whose body is elaborated before the body of T, Tl's task type. The elaboration of Q's body calls
for Tl to be activated, and this raises the exception PROGRAM-ERROR. In this example, the error is obvious - the order of the two
package bodies should be reversed - but problems with elaboration order are not always so obvious, nor so easily corrected. It is best to

avoid this kind of problem by paying careful attention to activation order in the design of a system.

Should there be need to start up a collection of tasks synchronously, after each completes its elaboration it can wait for a "go ahead"
signal, except for one, which serves as starter. The starter can give the signal by calUng a designated entry of each other task, in a
specified sequence. Such entry calls can also be used to "restart" tasks in response to some event, though this requires that the restartable

tasks be designed so they are always willing to accept such a call.

Execution of a task may continue indefinitely, or it may complete. Completion may be a result of: the task reaching the end of its
sequence of statements; an exception that is raised and not handled within the task; the task being aborted; an orderly shutdown of a

family of inactive tasks, using the "terminate alternative" of a selective wait statement.

Some time after a task completes execution, it may be terminated. The distinction between completion and termination is similar to the
distinction between activation and creation. As with activation, there are a number of fziirly complex rules governing termination. Their
effect is to insure that a task continues to exist so long as there is another zictive task that may attempt to interact with it, and that all
the data that a task may access must continue to exist so long as the task remains active. For example, in the following example, the
procedure P is not permitted to return, because the task T never completes, even though P itself has no statements.

procedure P is
task T;
task body T is begin loop null; end loop; end T;.

begin null; end P;

Figure 20: A master of tasks may not be exited until all dependent tasks have terminated.

Because task creation, activation, and termination are fairly complex operations, they can contribute significantly to the execution time
of a program. Moreover, if tasks are routinely created and destroyed during the normzJ operation of a system, the execution timing is
hkely to be erratic. It is therefore preferable in the design of time-critical systems that all tasks be created and activated before the
system becomes operational, during "warm-up" time.

When one task in a collection of communicating tasks does die unexpectedly, perhaps due to an error, it may be preferable that the entire
collection die and be recreated. This is hkely to be time-consuming, but ofiers the only chance of complete recovery. In the example
given below, a watchdog task aborts em entire collection of tasks if an error is detected. The enclosing loop ensures that they will be
restarted.

loop declare
task WATCHDOG;
task body WATCHDOG is

task A . . . ; task B ...;.. .
begin loop ...

if FAILURE-DETECTED then abort; end if; -" W

end loop;
exception when others => abort; '' ()
end WATCHDOG;
begin null;
exception when others => null; " " (. J
end;

end loop;

Figure 21: Restarting a collection of tasks.

4-13

Note that the execution of the task enclosing the outer loop cannot leave the block statement until all the tasks within have terminated.
This will not happen until the watchdog dies. Note also that all the other tasks (including A, B) are made dependents of the watchdog
so that when it aborts itself (1) it aborts all of them, without needing to know their names. Thus, even tasks designated by access types
declared within the watchdog will be aborted. The inner exception handler (2) insures that all tasks will be aborted, whether the failure
is detected directly, or through an exception being raised within the watchdog task. The outer exception handler (3) insures that the
tsisks will be restarted even if an exception is raised during the activation of the watchdog.

6 THE RADAR TRACKING EXAMPLE

Let us now consider in more detail how we might implement a solution to the radar tracking problem outhned above, using Ada tasks.
The work which the software must do can be divided as shown below. The information flow between these tasks is as shown in Figure 2.

(1) task COMMAND-PROCESSOR;
- - Respond to console interrupts, eiccumulate characters, and when a
- - full command is accumulated, execute it within C seconds.

(2) task DISPLAYER;
- - Every D seconds, update the screen image, using current data from the track file.

(3) task RADAR-DISPATCHER;
- - Every R seconds, check the radar, and feed it another order, if necessary.

(4) task RADAR-RECEIVER;
- - Respond to interrupts from the radar when it has filled up a DMA
- - buffer area, informing it of the next buffer area to use.

(5) task BACKGROUND-SEARCHER;
- - Continually generate radar orders to search for new objects.

(4) task TRACKER;
- - Every T seconds, update the track file, using new radar data, if possible.
- - Attempt to obtain new radar data for each tracked object every T seconds.

The partitioning above is based on the principle of initially not introducing any more task divisions than seem necessary to reflect the
inherent asynchronisms of the problem. The CommEind Processor, the Radar Dispatcher, and the Radar Receiver are driven at different
asynchronous rates by their respective data streams. The Displayer and the Tracker are also driven at different rates, according to the
required timeliness of their outputs. The Background Seeircher needs to operate independently, so that it can use up otherwise unneeded
radar and processor capacity.

The tasks in our example all have the characteristic that they will only need to be created once, when the system is started up, and
should not terminate during the normal operation of the system. They could all be declared in the declarative part of the main program
or a library package referenced by the main program.

6.1 THE COMMAND PROCESSOR

The Command Processor must be able to respond quickly to operator keystrokes, so that no data is lost. At the same time, it must
synchronize with other tasks, in order to execute operator conmiands. These two requirements are incompatible. We therefore introduce
a new task, the Console Monitor, which will be responsible for responding to console interrupts, accumulating charzicters, and passing on
complete commands to the Command Processor. There are several ways the Console Monitor and its communication with the Command
Processor can be implemented, depending on the sophistication of the compiler. We wiU consider two ways.

With a primitive compiler, hke the author's FSU/AFATL compiler, first-level interrupt handlers must be coded in assembly language.
Such an interrupt handler, coded in assembly language, would in effect be the console-monitoring "task". It would buffer up to one full
command, and then pass it on to the Command Processor via a "mailbox" - a dummy task control block which can be Unked to an
interrupt entry queue and which simulates a an entry call. Since many such mailboxes can be linked to any entry queue, there is no need
for the handler to wait, nor is there danger of lost commands. This interface is shown in Figure 22.

task COMMAND-PROCESSOR is
entry RECEIVE_COMMAND(C: in COMMAND);

for RECEIVE-COMMAND use at CONSOLE-HANDLER'ADDRESS;
end COMMAND-PROCESSOR;

task body COMMAND-PROCESSOR is
begin loop accept RECEIVE-COMMAND(C: in COMMAND) do

• • • - - Save C;
end RECEIVE-COMMAND;

• ■ • - - Execute command C;
end loop;

end COMMAND-PROCESSOR;

Figure 22: The Command Processor task.

4-14

Alternatively, the compiler may permit coding the first-level interrupt handler directly in Ada. For example, the ALS compiler, developed
by Softech, Inc., provides special-case treatment of "fast interrupts", "trivial entries", and "trivial accepta"[5]. With such a compiler,

the console-monitoring could be done by an Ada task, as illustrated in Figure 23. . This task uses a trivial entry to signal the Command
Processor when it haws Eiccumulated a complete command. Trivial entry calls are guaranteed to be accepted without delay, but may
not have parameters. For this reason, the commeind must be passed in a shared-variable buffer. Exchsmge-buffering should probably be
used, but such details are omitted.

task CONSOLE-MONITOR is
pragma INTERRUPT-HANDLER-TASK;
entry KEYSTROKE;

for KEYSTROKE use at CONSOLE-INTERRUPT'ADDRESS;
pragma FAST-INTERRUPT-ENTRY(KEYSTROKE, SIGNALLING-QUICK);

end CONSOLE-MONITOR;

task COMMAND-PROCESSOR is
entry SIGNAL; pragma TRIVIAL-ENTRY (SIGNAL);

end COMMAND-PROCESSOR;

task body CONSOLE-MONITOR is
begin loop accept KEYSTROKE do; . . .

if . . .
then . . .

select COMMAND-PROCESSOR.SIGNAL;
else null;
end select;

end if;
end KEYSTROKE;

end loop;
end CONSOLE-MONITOR;

- - Move character from input port to buffer;
- - If the buffer contains a complete command

- - exchange buffers
Conditional entry call guarantees no waiting.

task body COMMAND-PROCESSOR is
begin loop accept SIGNAL;

end loop;
end COMMAND-PROCESSOR;

A trivial accept statement.
- - Process the cormnand;

Figure 23: An alternate version of the Command Processor task.

We still need to insure that a command is processed within C seconds. One way is to give the Commeuid Processor very high priority, so
that it need never wait for any other task; then care must be taken in the programming of the Command Processor that the processing
time for esich command is short enough not to interfere with the timely execution of other tasks. Other solutions require more detailed
consideration of the other tasks within the system and the hardware configuration. We will consider some of these other approsiches for
the Displayer, next.

6.2 THE DISPLAYER

The Displayer must update the display once every D seconds. We assume that D is fairly large (say one or two seconds), and that some
variation in the period is allowable, so that we can schedule the execution of this task with a delay statement. There still may be a
problem, though. Updating the display may take longer thjin we can afford to wait between execution of other tasks. One way to make
sure that the Displayer does not prevent other tasks from executing is to put it on a separate processor. Otherwise, we could try giving
it a fairly low priority, but then when the system overloads the Displayer may not execute at all.

One idea is to set a deadline for the Displayer, and raise its priority when it nears the deadhne. Since Ada priorities are static, this would
be impossible with a standard runtime environment. (Note, however, that an implementation conforming to the Standard may provide
dynamic priorities, restricting the standard static priorities to a null range.) Nevertheless, the desired behaviour can be achieved, though
awkwardly. The first step is to break the work done by the Displayer into small units, that we can afford to execute without switching
tasks; that is, into the same kind of divisions required for a cyclic executive.

Suppose we code these small units of work as cases within a single procedure, WORK, which looks at a global variable, NEXT-STAGE,
to see how far work has progressed, and which stage it should execute at each call. Just before returning, procedure WORK increments
NEXT-STAGE. Also, when it finishes updating the display, it resets NEXT-STAGE to zero, LAST-TIME to the time it finished
updating the display, NEXT-TIME to the time it is due to start the next update, at low priority, and DEADLINE to a time after which
updating the display must be given high priority. We encapsulate the code relating to the Displayer's logic in the following package:

4-15

package DISPLAYER is
LAST-TIME, NEXT-TIME, DEADLINE: TIME;

pragma SHARED(LAST-TIME);
pragma SHARED(NEXT-TIME);
pragma SHARED(DEADLINE);

procedure WORK;
end DISPLAYER;

package body DISPLAYER is
NEXT-STAGE: INTEGER:= 0;
procedure WORK is ... ;

begin . . .
end DISPLAYER;

- - Initialize LAST-TIME, NEXT-TIME, DEADLINE.

Figure 24: The Displayer.

Given this breakdown, there are several ways we can proceed. If we already have a cychc executive, we can intersperse calls to WORK
within its schedule. Alternatively, we might create a new high-priority task, DISPLAY-EXEC, which alternates between executing
WORK and delaying itself. This task can use the values of NEXT-STAGE, LAST-TIME, and the real-time clock to adjust the duration
of its delay as the deadline for updating the display approaches.

task DISPLAY-EXEC is
pragma PRIORITY(lO);

end DISPLAY-EXEC;

task body DISPLAY-EXEC is

begin loop delay(DISPLAY.NEXT-TIME - CLOCK);
T:= DISPLAY.L AST-TIME;
while DISPLAY.LAST-TIME = T loop

DISPLAY.WORK;
if CLOCK < DISPLAY.DEADLINE then delay

end loop;
end loop;

end DISPLAY-EXEC;

end if;

Figure 25: The Displayer Executive.

Of course, care must be taken that the units of work and the delay durations are sufficiently large that the overhead (of the delay
statement, computing the duration, and the calls to procedure WORK) is tolerable. There is also a danger, present any time there are
several tasks with delay statements, that several tasks will get in phase with one another. If this happens, the processing resources of
the system will alternate between idleness and overload, with the the overloads possibly escalating until there is complete system failure.

We can solve the problem of DISPLAY-EXEC delaying itself longer than necessary by means of another task of lower priority. Ideally,
the lower priority task would execute until the deadhne is passed, making use of any slack time, then when the deadline passes the
higher priority task would take over. A difficulty with this approach is ensuring that at most one of the two tasks is executing WORK
at any one time. The obvious solution is rendezvous, if the execution time of one call to WORK is long enough to justify the cost of the
rendezvous. Another difficulty is that if the deadhne passes while the lower priority task is executing WORK the higher priority task
must wait for it to complete. This c£in be solved by letting the higher priority task do all the work, with the lower priority task merely
serving as a gauge of system workload.

task SLOW-EXEC is pragma PRIORITY(5); end SLOW-EXEC;

task body DISPLAY-EXEC is

if CLOCK < DISPLAY.DEADLINE
then select accept PROD; or delay X; end select; end if;

end DISPLAY-EXEC;

task body SLOW-EXEC is
begin loop DISPLAY-EXEC.PROD;

end loop;
end SLOW-EXEC;

Figure 26: A two-level executive.

4-16

Note that we have been forced to reject another approach that seems good, but which Ada does not support. This would be to have the
lower priority task do the work, but let the higher priority task give it a boost periodically, by calling it whenever the dezidline is passed.
The body of the higher priority task might be structured as shown in Figure 27.

task body BOOSTER is . . a very high priority task,
begin loop delay(DISPLAYER.DEADLINE-CLOCK);

if DISPLAY.LAST-TIME j DISPLAY.DEADLINE then DISPLAY.EXEC.BOOST; end if;
end loop;

end BOOSTER;

Figure 27: An approach that will not work.

The effective priority of DISPLAY-EXEC would be raised to that of BOOSTER while it is accepting a call from BOOSTER. The

problem, of course, is that the priority is not boosted until the call is accepted, and the accepting task will not be able to reach an accept
statement if its priority is too low to begin with. Alas, this exposes a fundamental inconsistency in the Ada semzintics of priorities. (For
consistency, since the effective priority of a task can be raised by rendezvous with a higher priority task, we would expect that it should
also be raised by the presence of a high-priority task on one of its entry queues, and that the order in which calls are accepted should be
FIFO within priority classes, rather than strict FIFO, but this is not true.)

A third approach might be to redesign WORK so that more than one call could execute concurrently, without conflict. This would
require partitioning the data structures updated by WORK so that those accessed in different stages are disjoint. We consider this
approach in more detail below, for the Tracker.

Beneath all of these examples lurks an important truth: achieving satisfactory performance from a real-time system is likely to require
"tuning" the task-level structure of the system. Several different task structures may need to be tried before one is found that is
satisfactory. Moreover, subsequent "maintenance" may change timing characteristics of some components sufficiently that this tuning
must be redone.

If such task-level design changes are to be possible without extensive recoding, most of a system's code will need to be organized into
procedures. For maximum scheduling flexibility, the procedures out of which tasks are built should be short enough to be executed
without preemption (excluding preemptions to service hardware interrupts), yet long enough so that the overhead of a task-switch
between calls is tolerable.

6.3 THE RADAR DISPATCHER

The Radar Dispatcher task poses problems similar to those of the console Command Processor, though the rate of data flow is much
higher. We assume the radar is speedy, so that the period, R, with which it must be polled is too small to make use of a delay statement
practical. It will therefore be driven by a periodic interrupt. On the other hand, it must be able to receive orders from both the

Background Searcher and the Tracker. These tasks could pass the orders to the Radar Dispatcher via entry calls. However, if the
overhead, of a delay is too high, then the overhead of an entry call probably is too high abo. A solution is to deUver the orders to
the Radar Dispatcher in batches, so EIS to spread out the cost of the rendezvous. As with the console-monitoring task, we have the
choice of implementing the radar poUing below the level of Ada, in assembly language, or using a fast-interrupt entry if the compiler
supports it. The Radar Poller will take its orders from a buffer. For buffering we can use the circular buffering scheme given in the
producer-consumer example above, which does not require rendezvous. However, this permits only one producer and one consumer. In
this case there is only one consumer, the Radar Poller, but there are two producers. In order to accomodate them both, we interpose
the Radar Dispatcher. The Background Searcher and the Tracker will send their orders to the Radar Dispatcher in batches, and the
radar dispatcher will channel them to the Radar Poller. This arrangement not only solves the problem of multiple access, but gives us
an opportunity to control the flow of orders, and perhaps to sort them. (For example, we may wish to give preference to orders from the
Tracker.) It also Umits the scope of software changes if we decide to add or change radar units. We end up with the organization shown
in Figures 28 and 29.

6.4 THE RADAR RECEIVER

The Radar Receiver is also interrupt-driven. Its main function is to channel reports to the Tracker. So long as there is only one Tracker
task, there is no reason to bother with rendezvous; we can use a shared-vwiable buffer to pass data from the interrupt-handler to the
Tracker directly. This is shown in Figure 30.

6.5 THE BACKGROUND SEARCHER

The job of the Beickground Searcher is to look for new objects, not already in track. It could be treated as a pure background task,
executing at the lowest possible priority. Alternatively, we may wish to guarantee a certain minimum level of performance, even when
the system is heavily loaded, tracking many objects. If so, we can treat this task similarly to the Displayer, breaking it into procedures
of moderate length. This would have EUI advantage in flexibility. For example, we might wish the operator to be able to modify the
effective priority of the search, as well as to direct its pattern.

If the Background Searcher is implemented as a low priority task we might be able to afford aborting one version and starting up another.
We might even create additionsil background search tasks, in response to operator conunands, so as to do concentrated searches in special
regions.

4-17

task RADAR_POLLER is

pragma INTERRUPT_HANDLER_TASK;
entry DING;

for DING use at PERIODIC-INTERRUPT'ADDRESS;
pragma FAST-INTERRUPT_ENTRY(DING, SIMPLE_QUICK);end RADAR_POLLER;

task RADAR_ DISPATCHER is
entry PROD; pragma TRIVIAL_ENTRY(PROD);
entry TRACKER_ORDER(B: in out COMMAND-BUFFER.ACCESS);
entry BACKGROUND.ORDER(B: in out COMMAND_BUFFER_ACCESS);
end RADAR-DISPATCHER;

task body RADAR_POLLER is
begin loop accept DING;

if RADAR-IN.STATUS.READY and SOME-ORDERS-HERE

*°^° • • • - - Take the next conmiand from the buffer and send it to the radar.
end if;

if FEW-ORDERS-HERE then RADAR-DISPATCHER.PROD; end if;
end loop;

end RADAR-ROLLER;

Figure 28: The specifications of the Radar Dispatcher and Roller tasks.

task body RADAR-DISPATCHER is

begin loop select accept TRACKER-ORDER(B: in out COMMAND-BUFFER-ACCESS) do

end TRACKER-ORDER;
or when FEW-ORDERS-TO_DISPATCH =>

- - Make the Background Search wait until the radar load is not too heavy,
accept BACKGROUND-ORDER(B: in out COMMAND-BUFFER-ACCESS) do

end BACKGROUND-ORDER;
or when SOME-ORDERS-TO_ DISPATCH =>

accept PROD; Transfer orders from Dispatcher buffer to PoUer's buffer,
or delay . . . ;

■ ' ■ - - Check on the radar, to see if it is working,
end select;

end loop;
end RADAR-DISPATCHER;

Figure 29: The bodies of the Radar Dispatcher and Roller tasks.

task RADAR-RECEIVER is
pragma INTERRUPT-HANDLER-TASK;
entry FRESH-DATA;

for FRESH-DATA use RADAR-SIGNAL'ADDRESS;
pragma FAST-INTERRUPT-ENTRY(FRESH_DATA,SIMPLE-QUICK);

end RADAR-RECEIVER;

task body RADAR-RECEIVER is ,.
begin loop accept FRESH-DATA do

end FRESH-DATA;
end loop;

end RADAR-RECEIVER;

Tell radar where to put next batch of reports.

Figure 30: The Radar Receiver task.

6.6 THE TRACKER

The Tracker incorporates most of the system's mtelligence. Without going into detaUs of the Tracker's algorithm, we see that its work
divides naturally into two phases, one driven by the structure of the track file and the other driven by the order of the incoming radar
reports.

4-18

First, because the estimated position of each tracked object is to be accurate within a tolerance of T seconds, the Tracker will need to
update the position of all objects once every T seconds. It will update the position of each object using radar data, if any is available;
otherwise, it will extrapolate the position of the object based on its previous position and estimated velocity. After several cycles without
radar confirmation, the object will be considered lost, and deleted from the track file. (Special measures might be taken first to bring
the object back into track, but we ignore these details here.) At the same time as it updates the position of an object, the Tracker can
generate a radar order to obtain the data it will need to update the position of that object in the next cycle. All of this processing can
be viewed as being performed for each object during a pass over the track file, one pass being made every T seconds.

Second, the Tracker needs to correlate incoming radar information with items in the track file, based on spacial proximity. The track file
may be organized so as to help in doing this efficiently. Since the radar reports will be coming in in arbitrary order, and may include
reports of new objects, not yet in the treick file, the Tracker must set up a correspondence between radar reports and items in the track
file before it can use the reports to update positions. This may be done during periodic passes though the recently-arrived radar reports,
by sorting them out according to the orgeinization of the track file. There will be computations that need to be performed on a per-report
basis, including coordinate conversion and interpretation of multiobject reports, that may also be performed during this phase.

If there is only one processor, the Tracker can be organized as two phases within one task. For example, see Figure 31.

task body TRACKER is
begin loop START_TIME:= CLOCK; - - Phase I: (per-report)

Swap_radar_report_ buffers;
for I in l..LAST_REPORT_IN-BUFFER loop

... - - process Ith report.
end loop;

- - Phase II: (per-track)
for I in L.LAST-TRACK loop
... - - process Ith track.
end loop;
COMPLETION_TIME:= CLOCK;
delay T - (COMPLETION.TIME - START-TIME);

end loop;
end TRACKER;

Figure 31: The Tracker task.

If the radar is speedy and there are many objects to track, this is likely to be more work than a single processor could handle. The
hardware solution is to use more processors. The software problem is how to use them. We will return to this problem after we have
handled another - controlling access by the different tasks to the track file and radar reports.

6.7 THE TRACK FILE

The track file presents a problem of shared access, since it must be read by the Displayer and both read and updated by the Tracker and
the Command Processor. In addition, other software (e.g. a colUsion-detector) may need to rejid from it. Thus, some mesins of mutual
exclusion must be provided.

Since several different tasks will need to access the track file, and because we may want to add more tasks later, we are forced to view

it as a client-server problem, where the tasks accessing the track file do so by obtaining permission from a Track File Server task. In
order that client teisks do not have to make rendezvous with this server too often, it should allocate access in fairly large blocks. Since
we CEinnot afford time to copy such large blocks of data frequently, the server must provide access to data either through access values
(pointers) or through assigned index ranges in a shared array. To make such large blocks of data useful, we may partition the data in
the track file into blocks representing different contiguous sectors of the physical space in which objects are to be tracked.

Since we cannot yet predict the order in which all the tasks will need to access this data, we must consider the possibilities of deadlock
and starvation. To lessen this danger, we will prohibit in-place updating of data. That is, a task such as the Displayer, that requests
read-only access to a sector of the track file will receive access to the most recent version of that sector in the database. A task, such
cis the Tracker, that updates the track file must do so by requesting read-access to the database, and permission to update. The server
grants read-only access to the current copy of the sector, and update access to an available block of memory, which will become the new
version of that sector when returned to the database. Thus, simultaneously one task may be updating and several tasks may be reading
from the same sector of the track file, but no more thcin one may update at the same time. Time stamps are applied to the sectors of
the track file, since the versions of the different sectors are not synchronized.

We thus have the organization shown in Figure 32.

4-19

task TRACK-FILE-SERVER is

entry REQUEST_READ(SECTOR-INDEX)(S: out SECTOR-ACCESS);
entry RELEASE-READ(A: in SECTOR-ACCESS);
entry START_UPDATE(SECTOR-INDEX)(S: out SECTOR-ACCESS)-
entry FINISH_UPDATE(SECTOR-INDEX);

end TRACK-FILE-SERVER;

task type TRACKER;
task body TRACKER is
begin loop ... „,

TRACK-FILE_SERVER.START-UPDATE(I)(S); "" " '"""'°'' ^' *° "P'^"'''

TRACK_FILE-SERVER.FINISH-UPDATE(I); " " ^"^°™ "P*^^'' °^ ^'^^
end loop;

end TRACKER;

Figure 32: The IVack-file Server task.

6.8 BUFFERING RADAR REPORTS

We have a similar, but less extreme, problem with the storage of radar reports between the time they are received and the time they
are processed by the Tracker. In order that the track file can be updated a sector at a time, we want the Radar Receiver to sort the
incoming radar reports into different "bins" according to sector. The Tracker wiU thus simultaneously need read access to a bin of radar
reports and update access to the corresponding sector of the track file. Anticipating deadlock problems if we later divide the Tracker into
several tasks executed on different processors, we plan to make the allocation of report bins between Tracker processes implicit, through
the allocation of update rights to track-file segments.

We still have the problem of providing write-access for the Radar Receiver to the report bins. When the Tracker requests update access
to a sector, we want it to take all the most up-to-date radar reports for that sector. On the other hand, we do not want the Tracker to
rendezvous with the Radar Receiver for each incoming radar report, because the overhead would be excessive.

One solution is to used shared variables for mutual exclusion, representing each bin as a linked chain of buffers. In particular, suppose
we use the generic package QUEUE, defined above, with one instantiation per sector of the track file. A troublesome detail is that Ada
only permits us to specify the pragma SHARED for simple variables - not for components of an array or record. This forces us to treat
each queue as a package (rather than as a record, which would have allowed the bins to be represented as an array of queues, indexed
by sector identifier). Instead, the reader and writer will have to use case statements to select the bin for a given sector.

6.9 USING PHYSICAL PARALLELISM

Suppose the radar tracking system is to be implemented on a multiprocessor configuration, like that shown in Figure 3, above. Using
present-day compilers, the best solution would be to write a separate Ada program for each processor, using conventional locking
techniques (e.g. test-and-set) to protect shared data.

At some time in the future it is Ukely that there wUl be Ada compilers that are capable of distributing a single program over such
an architecture. Though radical approaches have been proposed[2], a simple and relatively easy first step toward a multiprocessor
implementation seems to be compUing a single Ada program for a single virtual memory address space, with shared access by a coUection
of processors. Virtually no change is required from a compiler for a single processor. Some changes would need to be made in the runtime
support software, but they would not need to be major. Each processor would perform its own dispatching, working from a common
queue of ready tasks. No special pragmas or language extensions would be necessary, since the allocation of processors to tasks could be
completely dynamic. Pragmas could be provided, however, to insure that certain processors are reserved for critical tasks.

Let us assume that such a multiprocessor compiler is available, and consider how the tasks of our tracking system might be distributed
over the processors in Figure 3. We might assign the Console Monitor and Command Processor tasks to Processor C, and the radar
interface tasks to Processor D, leaving Processors A and B, and any slack time on processors C and D, avaUable for the TVacker and
Background Search.

Since the Tracker task seems to be the most demanding of processor time, it would be helpful to split its work between Processors A
and B. Without givmg up the twophase structure, we can separate Phases I and II, so that they execute as a pipeline. While Processor
B IS domg Phase II, updatmg the track file. Processor A can do the Phase I processing for a collection of radar reports that will be used
by Processor B the next time it updates the track file. This is not an ideal solution, however. One problem is that the excess time of
Processors C and D is not used, except perhaps for the Background Search. Another problem is that the pass-oriented structure is likely
to put an uneven demand on the radar, resulting in a need for long queues. Finally, radar data received immediately after the start of
an update pass cannot be used until the next pass, by which time is is "stale".

Alternatively, we might split the TVacker "vertically", instead of "horizontally". We could create several objects of task type TVacker so
that one Tracker could be updating one sector of the track file on Processor A while the other is updating another sector on Processor B.

4-20

To obtain maximum speed from parallel processors, data shsired between different processors should be divided between different memory
modules, so that processors do not wsiste time contending for memory access. Thus, for exeimple, the even numbered track file sectors
and their corresponding report bins might be a.ssigned to Memory 0, and the odd ones to Memory 1. A copy of the Tracker code might
be resident in each of Memories 2 and 3. We might have two Tracker tasks, one with its workspjice assigned to Memory 0 and the other
with its workspace asigned to Memory 1. The code for the Console and Bjickground Search Tasks could go into Memory 4, and their
workspjices into Memory 5. Memories 6 and 7 would be used for the Radar tasks.

Of course, this solution is still not very good, since it is Ukely that most of the tracking activity may be concentrated in one sector. This
suggests that a more subtle approach may be needed if we were to design a real tracking system.

Note that we have ignored one seemingly elegant approach - using one TVacker task per tracked object. This was considered and rejected,
because of several problems, including especially:
(1) heavy execution time overhead, due to extra rendezvous and individual dispatching of objects;
(2) storage overhezid, due to extra teisk control information.

7 CONCLUSIONS

We have described some of the features of Ada that support programming with tasks, and considered some of the ways they might be
used in real-time embedded software systems. There are still many interesting features which we have not covered, however. These
include:

• interactions storage management, including the STORAGE-SIZE clause for task types;

• interactions with exception handling, including exceptions raised by task operations, propagation of exceptions between tasks, 2uad
response of tasks to exceptions;

• entry famiUes (i.e., "arrays" of entries);

• aborting a task;

• details of activation;

• details of completion and termination, including the terminate alternative;

• the severed forms of selective wait statement;

• peculiarities of main programs and of tasks declared in library packages;

• attributes 'CALLABLE, 'TERMINATED, and 'COUNT.

The full definition of the semantics of Ada tasks is in [l], and a discussion of some implementation techniques is given in [6].

Though Ada may not be idejilly suited for rejJ-time software, especially from the point of view of obtaining maximum performance from
parallel hzirdware architectures, it can be made to work. Moreover, because Ada does provide linguistic means for describing concurrency,
it is a vast improvement over languages that do not.

In order to support the development of good rezd-time systems, compilers and runtime environments will need to provide more than the
minimal features required by the Ada Standard. At the same time, to permit efficient mapping onto hardware, they may need to impose
limitations on the use of some standeird leinguage features. (A good example is fast interrupt entries.) So long as dependencies on such
implementation features are explicit, and isolated to a small number of code modules, the benefits will outweigh the costs. Indeed, with
real-time systems some implementation-dependent programming seems unavoidable.

We do beUeve, however, that there is serious cause for concern about the complexity of Ada compilers, and the effect that this is hkely
to have on their reUability. This complexity appears hkely to be aggravated by optimizations that implement a single language construct
in different ways, depending on context. This author hopes that the Department of Defense may eventuzilly recognize the wisdom of
designating a restricted subset of Ada, which can be implemented efficiently without need for such special-casing.

Finally, as a positive step toward using Ada to develop real-time systems that czm be flexibly tuned to meet timing constraints and fitted
to peculiar hardware configurations, we would like to suggest an approach to structuring Ada programs. This is based on an adaption
of a proven methodology [7], which recognizes three kinds of components - (1) procedural components, (2) informational components,
and (3) structural components.

Procedursd components do the "work" of the system, by transforming data. These can be reaUzed by Ada procedures and functions.
IdetJly, the primary (top level) procedural components should have the following properties:

1. They should be short enough that they can be executed to completion without causing scheduhng problems, but long enough that
making a rendezvous or otherwise switching a processor from one task to another between them would not incur disproportionate
overhead.

2. They should access data only through exphcit parameters.

3. They should not depend in any way on the order in which they are called, how they may be czdled by different tasks, or what processor
happens to execute them.

Informational components hold data between transformations. These can be realized by Ada pEickages containing (mainly) object
declzirations. Ideally, these should be partitioned in such a way as to avoid need for synchronization between concurrent operations.

4-21

Organizational components describe which transformations should be applied to which data, in what order, and at what times. These
can be realized by combinations of of Ada tasks. They should be designed to take into account the actual hardware resources and costs
of intertask communication. They are likely to need to be reorganized to tune the entire system's performance.

In addition, for Ada we would add two more kinds of components, to take advantage of Ada's strengths in the area of abstraction,
extendability, and reusability - (4) data-type modules and (5) communication modules. Data-type modules consist of packages containing
declarations of data types and operations on those types whose usefulness goes beyond one particular program (i.e. subprograms at a
lower level than primary procedural components, and that have the character of language extensions). Communication modules provide
abstract communication interfaces for tasks or main programs, hiding lower-level protocols and in-some cases even the identities of the
communicating entitites. (For example, consider MASCOT channels and pools.) Both kinds of modules should typically be suitable for
expression as generic packages.

References

[1] United States Department of Defense, Military Standard Ada Programming Language, ANSI/MIL-STD-1815A Document ,
U.S. Government Printing OflSce, Washington, D.C. (January 1983) paragraphs 9.0.1-9.0.5.

[2] D. Cornhill, J. Beane, and J. Silverman, "Distributed Ada Project - 1982", technical report, Honeywell, Minneapolis, MN
(January, 1983).

[3] A.N. Haberman and I.R. Nassi, "Efficient implementation of Ada tasks", technical report. Department of Computer Science,
Carnegie-Mellon University (January 1980).

[4] L. MacLaren, "Evolving toward Ada in real time systems", Proceedings of the ACM SIGPLAN Conference on Ada, Boston
(1980) 146-155.

[5] W.R. Greene and J. Juergens, "Fast interrupt entries", paper presented at AdaTEC/AdaJUG Meeting, San Jose (February
1985).

[6] T.P. Baker and G.A. Riccardi, "Ada tasking: from semantics to efficient implementation", IEEE Software 2.2 (March 1985)
34-45.

[7] T.P. Baker and G. Scallon, "An architecture for real-time software systems". University of Washington Department of Com-
puter Science technical report 85-06-04, to appear in IEEE Software .

5-1

REUSABLE SOFTWARE

Olivier ROUDINE

INFORMATIQUE INTERNATIONALE

Centre de Dfeveloppement de Sophia-AntipoJis

Les Caidoulines - Route des Defines

06560 VALBONNE - FRANCE

ABSTRACT

The design of the language Ada® was undertaken In an effort lo reduce the cost of software. One of the overriding

factors to achieve such a benefit is the possibility to reuse program components among different projects,

leading to a true software con:^>onent industry. The various aspects of Ada that relate to this notion are
discussed, and in particular the relevaiKc of packages, separate compilation, generic units, abstraction and
portability. Matters relating to the production, distribution and use of software components are also discussed.

1. INTRODUCTION

The development of Ada had as its primary objective a reduction of soaring software costs. Such a reduction could be obtained
through a combination of various factors:

• a strongly-typed, high-level language allowing numerous errors to be detected by the compiler;

• a unique language, usable for all mission-critical computer applications, that would reduce development costs
(no duplication of tools and environments) and training costs (programmers using the same language from one pro-
ject to the other);

• a language that woud support the development of systems by building up on existing software.

This latter aspect is probably the most prominent one, because its benefits can be easily quantified.

In the past, software reuse has been hindered by the fact that it was quite difficult to isolate program parts that could be reused in the
context of another project (a noticeable exception is the notion of libraries of subprograms, such as scientific or graphic libraries;
however, such libraries generally offer only very basic components).

We will see how Ada addresses the issue of software reuse tlirough various language features that not only support tlie reuse of
software components, but also promotes the development of software so as to isolate reusable components.

The paper first attempts to give a characterization of what constitutes a good component; it then discusses tlie economics of
reusable software, and the general problems involved. It then reviews the various features of Ada that are relevant to the
development and use of software components. Lastly, it presents an investigation of the methodological implications of reus-
able components, i.e., how to design systems that use components, and how to construct systems so that part of them can be turned
into reusable components.

2. CHARACTERIZATION OF REUSABLE SOFIWARE

The central notion of reusable software is the reuse of a complete software system, or parts of it, in a different context than the one
it was originally developed for.

Without this latter qualification, we are confronted with a much more conventional problem that of portable software. We will see
that portability is an important property of reusable software but it is not the only one.

Although the reuse of complete programs is not uncommon, e.g., in the context of software development environments where primitive
software tools are often composed to make more complex tools, it is rarely the case that complete embedded computer programs
can be reused in a different context.

Embedded systems tend to be rather complex and specific. Yet they still contain many opportunities to reuse software that has
been previously developed in a different context. Some examples are given below:

a/ Track Processing in Radar Systems
In a radar system, echos must be processed to recognize consecutive echos of the same object, and to record various
data associated to a track, (speed, coordinates, etc.). These functions are likely to have much in common between a
ground air-traffic control system and an aiibome missile firing system.

b/ Real-Time Scheduling
In a large category of process control systems, the real time scheduling of various activities relies on a small set of pos-
sibilities, e.g., run an activity at such time, or every so often, or conditional to the occurrence of a certain event. That
part of the system which does the scheduling could be reused in other systems, provided it is made sufficiently

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)

5-2

independent of the activities that have to be scheduled.

Reusable software components must possess certain desirable characteristics:

• simple, clear and clean interfaces: the users of a component must understand witliout difficulty how to use it
properly;

• portability: the component is likely to be distributed on a variety of machines;

• reliability: one of the major advantages of reusing software components is that these have already been fully unit-
tested;

• adaptability: a software component should be able to operate properly in a variety of similar situation; it should
be insensitive to things like table sizes, data representation, etc..

3. THE ECONOMICS OF REUSABLE SOFTWARE

Reusing existing software components has a number of economic appeals. There is an obvious benefit in not developing, cod-
ing and testing something from scratch. However, this benefit must be weighed against potential problems:

• cost of acquiring the software

• cost of choosing the software

• cost of adapting to the software

• cost of adapting the software.

Other aspects must also be examined:

• impact of software reuse on traditional development methods

• maintenance problems

• distribution aspects.

There are two possible situations leading to an effective use of software components; on the one hand, there is the situation of large
software developers, running several projects, and who can develop their own libraries of software component, which can grow by
building up on previous project; on the other hand, there is the general (yet to be developed) market for software components,
where a user can purchase a given component from a vendor. This latter situation is ultimately of primary interest:

• it can lead to improved returns on investment by allowing a developer to sell more copies of (part oQ its software;

• it enables a reduction in software costs, tlie cost of purchasing a component being presumably less tlian that
of making it;

• it can contribute to a better reliability of software, reused components having been tested by many more users. Some of
the problems are specific to one situation or the other.

3.1. Apparent and Hidden costs

One of the most obvious costs is the purchase price if the component has to be acquired. However, the use of a foreign com-
ponent in a software project may cause a variety of problems:

• instead of designing a software component, one has to choose the appropriate one. This means that Uie exact needs
must be known, and that the choice must be made carefully. In particular, since it is often not possible to
modify a component after it has been installed, an inappropriate choice may have drastic consequences.

• Another potential cost is the time spent to understand the specifications of various components before making
a selection. This may also require that components have to be evaluated and tested before they are acquired.

• In most cases, the component will not provide exactly the features that the user would have wished. This does not
mean that the choice was inappropriate, but it merely reflects the fact that it often costs substantially less to use some-
thing imperfect than to try and develop something perfect. Nevertheless, one of the consequences is that the
system design will have to be bent to be compatible with the component. The degree to which the design must
be modified is an important cost factor.

• In other cases, the system design may be an overriding constraint and one may be tempted to alter the
specification of the component. First it is not always possible to do this (one may not even have the source available),

' and second, one must be aware of all the implications, especially in terms of testing the component again. In general,
it is feasible to modify a component if it has been developed in house, so that all the documentation is available, as
well as the test data.

5-3

3.2. The Distribution and Maintenance Aspects

In the case where a software component has been acquired from a vendor, a number of problems may arise when this component
has been incorporated in a system which is itself distributed to users:

• can binary versions of the component be distributed freely if they are incorporated in a more complex system, or
will royalties have to be paid to the authors?

• Is the component maintained? What warranty is provided? What support is available?

• In certain cases, customers of a complete system will request the sources of all software. In these cases, the source of
a component must also be available, at a reasonable cost.

33. Adaptation Costs

"Thinking reuse" is not necessarily a natural transition, in spite of the potential advantages. In addition to an evolution of the
mentalities, the development methods may have to be modified. We discuss later some of the methodological aspects of
software components. It must be borne in mind that the introduction of such modifications may introduce new costs; also, the
isolation of potentially reusable components may be encouraged but this may also introduce extra costs, in the fonn of specific
component oriented reviews and requests for modifications that have no immediate use in the original project but will contribute in
making the component easier to reuse.

4. DISTRIBUTION ASPECTS

In view of the various contexts for use of software components, one can envision various possibilities for the distribution of
components. We consider here only the case of an independent component vendor, interested in selling software for profit (or
for glory). There are two basic approaches: a conventional, protective approach, where only binary versions of the com-
ponents are distributed, and a more open kind of relationship where the customer has access to the source.

4.1. Binary Distribution

Selling packages only in a binary fonn has the advantage of protecting the author's investment against unauthorized copies.
For this reason, it also allows the vendor to quote a lower price and reach an adequate return due to a higher number of
sales.

However, these considerations are essentially borrowed from tlie micro-computer market. Their appropriateness in the context
of professional software components does not immediately follow:

• the potential market base is much narrower;

• potential customers are also professionals with a specific need: the cost of purchasing a general purpose component
can be balanced against the cost of developing a much more restricted version for their own use;

• the risk of piracy in industrial organizations is probably substantially lower than in the general public;

• there are numerous technical problems in distributing binary versions of a component (described below) that make it
much less likely that someone will want to make unauthorized duplications.

llie technical difficulties have to do with the fact that what has to be distributed is not an object module, but something that has to be
incorporated in the user compilation libraries, in particular all the intennediate tables needed by a compiler must be provided. This
means:

• that the distributor must have access to all Ada compilers on the market;

• that the maintenance must be able to follow changes in the compilers;

• that not giving the source may be an impossible goal because the compiler may need an intermediate representation
that can be "decompiled" to reproduce the source. One possible solution would be to use special protection
modes on the tables, e.g. "execute" protection could mean that a table can be used by a compiler but not copied
or decompiled. Ihis obviously requires that the compiler itself is made to check such accesses. Also some compilere
may not require the tables for the unit bodies.

The conclusion is that binary distribution is probably inappropriate for a general component distribution.

4.2. Source Distribution

Most of the problems raised previously disappear if the vendor is willing to licence the source of the components.

This approach is reassuring to Uie users who know that they can adapt the code if the need arises, or have the code available if man-
dated by a contract.

On the other hand, such a distribution is very difficult to combine with an appropriate maintenance and support if users modify the
cede. This is often a sufficient deterrent to prevent loo many users from modifying the code.

It is also possible to have two levels of source distribution: one which is the full source code with documentation comments, etc.,

5-4

and a second level where the source that is released uses only cryptic identifiers (e.g. X00178) and no comment at all. This second
level although by no means foolpnx)f, can often be sufficient to ensure that most customers will not invest the time to "borrow"
proprietary methods and algorithms from the author.

One could go even further and use a "code scrambler", i.e., a tool that transforms a well-structured program into an equivalent
rather unstructured one:

Example:

— This is a conventional binary search algorithm that searches
— through a linear table for a string that matches the one given
— in STR. The variable NEXT indicates the index of the next
— element to be tested; it also indicates the selected item at
— the end of the search. If the item is not found in the table,
— the exception XNOTFOUND is raised.

Low := Table'FlRST; - LOW and HIGH are respectively
High := Table'LAST; —the floor and ceiling markers

— used in the algorithm.
Next := (Low + High);

loop
case string_comp (Table(Next), Str) is

when '<' =>
if Next = Table'FlRST then

raise XNOTFOUND;
else

High := Next - 1;
end If;

when '=' =>
exit; — the item has been found!

when '>' =>
If Next = Table'LAST then

raise XNOTFOUND;
else

Low := Next +1;
end if;

end case;

If Low > High then
raise XNOTFOUND;

else
Next := (Low + High)/2;

end if;

end loop;

5-5

Scrambled version:

X006 := XOOS'FIRST;
X007 := XOOS'LAST;
X005 := (X006+X007)/2;

«L001»X(X)1 := X002(X008(X005)^009);
ifXOOl/= 1 then

goto L002; , ,
end if;
if X005 /= XOOS'FIRST then

gotoL003;
end if;
raise X999;

«L003»X007 := X005-1;
goto L007;

«L002»if XOOl /= 2 then
goto LOOS;

end if;
goto L004;

«L005»if X005 /= XOOS'LAST then
goto L006;

end if;
raise X999;

«L006»X006 := X005+1;
«L007»lf X006 <= X007 then

goto LOOS;
end if;
raise X999;

«L008»X005 := (X006fX007)/2;
gotoLOOl;

«L004»

43. Problems Related to Component Selection

One of the major problems facing a user is how to select the appropriate software component, the specifications of the com-
ponent must be well understood, and in such cases the performances must be thoroughly tested before a project manager can give the
go-ahead.

Giving components on loan for testing purposes is quite risky in that there is very little that can be done to control that the user has
not kept an unauthorized copy if the component is not purchased.

One potential solution to this problem is the notion of a subscription service: the vendor acts as a software publisher, with a
number of categories (e.g., general algorithms, civil engineering, aerospace, graphics,...).

The customer subscribes to certain categories and is given the existing component base for the chosen categories and
keeps receivmg new components during the subscription period: the central idea is that the customer does not necessarily acquire
only the components that are needed now, but an entire library of components among which he can select those he wants to use-
he can of course exercise them at his leisure to test the performance characteristics, etc... This allows a distribution of components
on a much wider scale, and therefore lower prices per component.

5. ADA FEATURES FOR REUSABLE SOFTWARE

There are three major aspects whereby a language can support the construction and use of software component:

the language structure must allow for the incorporation in a program of physically separate units that group together all what
the component must provide, in terms of definitions, variables, subprograms, tasks,...

Software components must be flexible in order to be easily tailored to specific application contexts. Parameterization facil-
ities are called for here.

. Software components are to be used in different contexts and on different machines. A language design that encourages the
development of tmly portable software is therefore appropriate.

5.1. Packages and Separate Compilation

^s!m°ct°on" °^ ^"^^ ^''^^'' °°°^"'"'=^"'«Pri'"^'y mechanism for structuring progn.ms. Packages provide for encapsulation and

^JZlVl^^'S^ir^ ""T '" "-/-'^-"°-'hat are related to a given concept: such declarations may have to be
grouped together either for logical reasons (e.g., trigonometric funUons) or for implementation reasons, because they access the

5-6

same data (e.g., procedures to add or remove an element to a list).

The most valuable software components are those that are too complex to be worth re-implementing. As such they must offer much
more than a single procedural interface. The package is therefore a convenient way to group together the various aspects of a
software component The package will be the embodiment of the component

The separation between a package specification and a package body is a further advantage in that the user is presented with only
the information required to use the component, without having to sort what is relevant from a user's point of view from what con-
cerns only the implementation.

The language rule that makes the contents of a body inaccessible to the rest of the program forms the basis for encapsulation, i.e.,
preventing the user from interfering with the implementation of a component. This is necessary to enforce the integrity of the
internal data structures used and the proper behavior of the component. Without this safety, it would be very difficult to
provide any kind of warranty concerning an independently tested component. Note that the notion of private type is a neces-
sary complement guaranteeing that a user can declare several objects that are administered by the package, without the possibil-
ity of compromising the internal representation of these objects.

Separate compilation is another fundamental feature: the separate compilation mles allow a user program to reference the visi-
ble declarations of a package without having to insert these declarations in its code (a reference to the name of the package is
sufficient).

Example:

package COMPONENT is

procedure some_action (...);

end COMPONENT;

with COMPONENT;
procedure USERPROGRAM is

begin

COMPONENT.some_action (...);

end USER PROGRAM;

As a result, it is feasible to distribute components in binary form if necessary without forcing the user to have "external" declarations
in his program, while retaining the tight checking capabilities of Ada. Encapsulation and abstraction (the fact that a component is
accessible only through its "logical" interface, without reference to any implementation intricacy) have also an important impact
on maintenance: new versions of a component can be released without requiring any modification to the user programs, or
even any recompilation —only relinking is necessary, and even that could be avoided on certain systems, e.g., Multics. Also com-
ponents can be available in multiple versions corresponding to a common specification, leaving the user free to switch from
one version to another if he sees it fit

5^. Generics

In some cases, a component that has been developed can be reused as is in another context. However, in most situations where
reuse is contemplated some adaptation is necessary. This will be in particular the case whenever a component is supposed to
operate on certain user defined types. A typical example would be a set of functions that operate on fixed point data: in Ada,
there is no single fixed point type; rather, the user must declare a type based on his own range and precision requirements, e.g..

type MEASURE is delta 0.0005 range -273.00 .. 10000.0;

From such a declaration, the compiler will determine the appropriate representation. Now suppose Uiat an interesting component has
been written, that performs some complex computation on a fixed-point number, e.g. taking the logarithm. The component itself
could not have been written for this specific type, which was not even known when it was developed. So, what is needed is a way
to parameterize the component in terms of a user type. This is exactly what is provided by the generic facility: by writing

5-7

generic
type ANYFIX is deita o;

function FIXLOG (X: ANYFIX) return FLOAT;

the writer of the function will permit its use with any user-defined fixed-point type. Parameterization facilities also allow tlie use of
user-defined variables and subprograms inside a software component.

A large class of components can make direct use of these facilities in particular components that define and manipulate data struc-
tures (lists, queues, stacks, trees, graphs, ...) or general purpose algorithms (e.g., sorting and searching).

In essence, a generic unit is a template for what can become a real unit when all the generic parameters are determined. In the
above example, FIX_LOG is not a function that can be called directly by the user. Ratlier, the user must first create an actual func-
tion from the template; this is called instantiating the generic unit:

function MEASURE_LOG is new FIX_LOG (MEASURE);

After the instantiation, MEASURELOG is treated exactly as a function that would have been declared locally.

Both packages and subprograms can be turned into generic units.

This feature makes an existing component directly usable in many more contexts than it would have been without the parameterization.
This is obviously an important factor in determining the economic benefit of writing a software component.

53. Portability Features

There are three major elements that can result in a poor portability of software:

• differences in the representation of types;

• use of non-standard features, or system-dependent libraries;

• use of "dangerous" programming practices, such as violating the types of values (a "violation" of a type occurs when the
bits forming a value (e.g., an integer value) are interpreted as if Uiey represented a different value (e.g. a floating point
value).

Non-portability could be a severe hinderance to tlie large dissemination of software components. Fortunately, several of
the above issues have been addressed in Ada.

53.1. Control over Type Representation

A programmer can force a certain representation of the values of a type through representation clauses. Also, and equally impor-
tant, the numeric types, that are often a big source of non-portability are expressed in Ada solely with respect to the desired properties
of the values, in terms of range and precision, independently of an actual physical implementation. Thus a user can declare:

type MYJNT is range 0 .. 200;
type MY_FIX Is delta 0.0002 range 0 .. 86_400.0;
type MYFLOAT is digits 9;

The given infonnation is sufficient to let tlie compiler select a representation that is sufficient to accomodate the required
properties; In this way, the programmer is relieved from the headaches caused by different word lengths on different
machines.

53.2. Use of non-standard Features

Because the Ada language itself is standardized, there is no real non-standard feature. On the other hand, there may be a variety
of specific components or libraries available on a given system, upon which a user program relies. Little can be done to prevent
that. However, one can hope that widely used components written entirely in Ada become generally available, pretty much in the
same way as the portable "C" library.

5-8

533. Use of Dangerous Practices

Type violations, randomly accessing the memory, and similar interesting practices are extremely restricted in Ada. They can
be done, but not without the user explicitly saying so.

For instance, to use an integer as a floating point value, one would have to reference and instantiate the predefined generic function
UNCHECKED CONVERSION, e.g..

function INT TO FLOAT Is new UNCHECKED CONVERSION (INTEGER, FLOAT);

and then use it explicitly, e.g..

INT TO FLOAT (X);

Accessing a specific address in memory would require an address clause, such as:

for X use at 16#FFF0A#;

These low-level aspects both restrict the use of dangerous programming practices, and flag them for attention when porting
is attempted.

Through its package stmcture, its separate compilation facilities, the flexibility offered by generic units and the possibility of
writing tmly portable software, Ada will permit the generalized practice of reusing components in software systems, and will also
be a determining factor in the establishment of a real software component industry.

6. PROGRAM CONSTRUCTION AND SOFTWARE COMPONENTS

The possible gains offered by an effective reuse of software components may lead to a modification of the way software sys-
tems are built. One must consider the potential for using existing components when designing a system; it is also advisable to scru-
tinize newly developed software for possible "componentization", i.e., slightly modifying the specifications of what has been
designed so that certain parts can become reusable components.

6.1. Using Existing components

The simple attitude towards reusing software consists in specifying and designing a system, and looking for possible components to
fill in the slots traced by the designer. In such a case, the potential for finding exactly the appropriate component is rather low, and
may be time-consuming. The desired component might not exist, or may be found in some especially exotic place (like Sophia-
Antipolis, for instance), where people would not search for it

With such an attitude, only two kinds of components may be reused: those that are already well-known in-house, and those that are
fairly big and correspond to a standard (e.g. a graphical or data base interface).

Many more parts of a system could probably be implemented by using existing components if the designer can make his choices
based on the availability of these components.

It must be kept in mind that component selection must be done eariy in the design, because the specifications of a given component
may have an influence on the architecture of the system in which it is embedded.

In order to do this, a special activity must be launched at the start of a project, which consists in establishing a catalogue of relevant
components for the project, possibly acquiring the most promising ones to evaluate and test them. This could be done using a list
of keywords that relate to the project, deriving them from the requirements analysis. Such an activity is a fairiy specialized
one, and one could expect to see a "component engineer" as a particular profile in a project team.

The work of finding the relevant components can of course lead to specialized tools, i.e., component data bases, that can be
interrogated by keywords, performance information, protocols, etc...

62. Componentizing Software

An important part of the component base that will be effectively reused is likely to be internal to a company; such a base is built
gradually by accumulating components that had been originally designed for a specific system.

However, if a system is constructed without special attention, a variety of things may hinder the extraction of true components:
the interfaces may be poorly packaged, Uie component may be relying on some global data that is at tlie heart of the system, or it

5-9

may make assumptions on how it is going to be used which may not be valid in a different context. The design is also likely to be
too specific, e.g., operating on a specific data type where tliis could be parameterized through use of the generic facility.

If there is a strong will to develop a component-based approach, part of the review process that goes on in a project must be devoted
to identifying those parts tliat could lead to reusable components: during the global design, modifications can be made to
the interfaces, to promote encapsulation, to group togetlier related objects or, to the opposite, to separate things that are not related,
and to eliminate unnecessary dependencies. During detailed design, one should also correct certain options that could hinder
the extraction of a component. Lastly the potential components that have been identified must be given to separate teams for realiza-
tion and testing, as it is important that they become an independently maintained product very quickly. Here again, the quality
assurance team could incorporate a specialized "component adviser", whose specific objective is to look for potential components
in a software project.

7. CONCLUSION

Ada offers a unique opportunity to reach a significant productivity improvement in the software through an effective reuse of
software components. Specific features of Ada are central to such an evolution: the package structure, separate compilation
rules, the generic facility, and the improved portability of Ada software.

One should expect that such an evolution will be gradual, as mentalities will have to adapt to the full potential offered by the
b reutilization of software components. Bases of software components will have to be built and made accessible on a commercial
I basis, leading to an industry of software components.

; Such an industry will have to face fairly high investment costs, and be aware of the specificities required for the effective distribution
|- of software components. Once the appropriate structures are in place, both inside companies and on the open market, com-
l ponents may have a profound impact on the way software is developed.

\

6-1

ADA COMPILER DEVELOPMENT

Dan Eilers

President
Irvine Compiler Corporation

18021 Sky Park Circle, Suite L
Irvine, California, 92714

Sununary

The ICC-Ada compiler has enjoyed considerable success in flight applications,
of this success is due to careful consideration during its development of the
which are critical to embedded systems applications. Compiler development by
involves various trade-offs, Ada compilers in particular. Understanding these
and trade-offs is important to the selection and use of an
system applications.

Much
issues
nature
issues

Ada compiler for embedded

1. Introduction

Ada was not designed to be easy to compile. If so, there would be no reason for
this paper. Ada compilers were intended to be written only once, and used forever, so
the focus in language design was to make life easy for the programmers using Ada. This
is in sharp contrast with the design of most other languages, including Pascal, on which
Ada was loosely based. In addition to the many difficult language features and their
interactions for a compiler developer to address, many design decisions must be made,
affecting the usability of the compiler for various purposes. It is therefore important
for the user to be aware of the goals of the compiler developers, and the tradeoffs they
have made in developing their compilers. Some of the major issues facing a developer
are portability, compile-time resource requirements, optimizations, run-time
environments, interfaces to various other tools, and customer support. Each of these
will be addressed in turn.

No single compiler can possibly do everything right for every user. But then not
all users need use the same compiler. Fortunately a number of different compilers have
been developed, and with widely diverging goals. Some excel at optimization, some at
compile speed, some at error and warning diagnostics, some at library management, some
at environment tools, etc. It may even be appropriate for a single user to use one
compiler for training, another for rapid prototyping, another for PDL processing,
another for full scale development, and then hand the project off to be maintained on
yet another. They may even all run on different computers. The strict standardization
of Ada makes this feasible.

Despite this degree of standardization, compilers used for generating production
code are not particularly interchangeable. Each has its own unique run-time systems,
and implementation-defined pragmas and attributes for dealing with embedded
applications. And each is designed to work with particular assemblers, linkers,
debuggers, floating point processors, timers, i/o devices, memory models, etc. Since
various implementations do different optimizations, coding rules for creating efficient
code will vary accordingly. In addition, the language-defined low-level mechanisms are
not well tested by the validation procedures, and have in fact been omitted by many
implementations. Selecting a production compiler therefore deserves careful
consideration.

2. Portability

For some compiler implementers, the decision of whi
to support is a non-issue. Mini-computer manufactur
compilers on their own systems. But even they typically
usually more than one host operating system. Independen
to support as many different host/target combinations as
both for the implementer as well as for the use
amortizing the compiler development costs over a broad u
by not getting locked into a particular brand of hardwa
some instances it is possible, and very convenient to
architectures from the same development host.

ch host and target environments
ers for example, will host their
sell a range of equipment, and

t compiler vendors typically try
possible. This has benefits

r. The implementer benefits by
ser base, and the user benefits
re for software development. In

target to several different

Designing a compiler to be rehostable entails several constraints, none of which
are severe. It means not relying on "compiler-compiler" tools which are only available
on particular systems. It also means not relying on particular text file formats or
file-system operations. It also rules out reliance on process mechanisms for such
things as implementing the library management system. Tricky, non-portable coding
techniques cannot even be considered. And an implementation language must be chosen for

6-2

which compilers are widely available.

The choice of an implementation language is critical. It usually boils down to
using the compiler to compile itself, or using some other language. The implementers
who have chosen mature languages have so far ended up with the most efficient
implementations. It remains to be seen whether the others can do as well using Ada.
ICC has taken a middle ground approach. Our compiler is written in an extended Pascal
dialect, but uses it's own code generator, by sharing the internal representation with
the Pascal compiler. This results in an efficient implementation, avoiding any Ada-
related inefficiencies, but also one that is easy to rehost. Rehosting is done simply
by retargetting the code generator, and then recompiling. No lines of source code need
be changed.

Retargetability of compilers in general is a fairly well understood technology. A
low-level intermediate language is used which can be efficiently mapped onto various
target instruction sets, DIANA, by contrast is a much higher level intermediate
language for Ada, used primarily as the interface between the front and middle "ends" of
some Ada compilers. Retargetability is a poor excuse for slow compilers, since they all
generally use similar intermediate representations. Retargetable compilers have an
added reliability advantage in that some subtle bugs typically show up (and are fixed)
each time the compiler is retargetted.

3. Compile-time Resource Requirements

Probably the major resource issue, because it directly impacts rehostability, is
memory utilization. It may be possible to build a 4K or 8K BASIC (although most current
versions are much larger), but not an Ada compiler. The best to have been done so far
was an implementation for the 128K byte Western Digital Micro-engine, although this
compiler had severe restrictions on program size. Potential host machines can be
divided roughly into three categories. First is 8-bit micro-computers and older 16-bit
mini-computers with addressable spaces of 128K bytes or less. Although millions of
these machines exist, and it would be desirable to accommodate them, very little can be
done. Not only is their main memory too small, but their disc space, and processing
throughput are usually impractical for Ada as well. It is however feasible to cross-
target Ada compilers to these computers, although care must be taken not to fill their
entire address spaces with the run-time system.

Some people used to think that the small host machine problem could be solved by
subsetting the language. However, not only was this severely frowned upon by the AJPO,
but it turned out to be impractical. Ada is too tightly integrated to be subsetted
cleanly. For example, the text_io package depends on almost every feature of the
language except tasking and subunits, and even these could be used. Text_io uses
overloading, generics, exceptions, derived types, default parameters, unconstrained
arrays, renaming, packages, etc. And not only does text_io use the full language, but
even beginning users do the same, for example unwittingly using derived types in a
simple integer type declaration. Tasking and subunits could be cleanly subsetted away,
but with only modest savings in compiler size. Most other cuts would leave a different
language, not a true subset.

Even though Ada can not be cleanly subsetted, it could however be simplified,
although not to the extent of making compilers significantly smaller. The language
contains hundreds, maybe thousands of restrictions, many of which serve no useful
purpose. At best they clutter compilers. Worse, they frustrate users. Some, such as
the restriction that functions may not have 'out' parameters, are vestiges of former
versions of the language that in this case attempted to prevent functions from having
side effects. Other restrictions were intended to make implementations easier, or exist
because no use could be thought of for a construct. But many of these have been shown
to be misguided. And yet others, such as the restriction that case expressions must be
discrete, apparently exist simply because it has always been done this way.

Other simplifications that could be done involve eliminating syntactic ambiguities
and inconsistencies. For example, the string literal "+" as an actual parameter in a
generic instantiation could really be a string literal, or it could be the name of the
addition operator, depending on context. An example of an inconsistency is that a
task's priority is set by a pragma, its storage size is set by a length clause, and an
object's address is set by an address clause, all with different syntax. Compiler
developers are rarely content to leave the language design to others...but I digress.

.At the opposite end of the computing scale are the powerful 32-bit (or more)
machines with virtual memory, or at least several megabytes of addressable space.
Supporting Ada on these hosts is not a problem as far as memory is concerned, although
surprisingly enough, due to contract requirements, some compilers designed only for this
class of hosts have elaborate mechanisms for minimizing main memory usage. On these
hosts, memory management is best left to the operating system.

The final category is machines with approximately 512K-1M bytes of main memory.
This includes the current generation of 16-bit micro-computers as well as some older
large scale computers with 18-bit address spaces. These constitute the interesting
case, both from a technical standpoint, and from the perspective that software
development may be migrating from typically mini-computer development systems, to
networks of distributed work-stations. Ada compilers can be implemented for these

6-3

machines, if memory usage is minimized.

Memory usage for a compiler consists of three components: code space for the
compiler itself, data space for the symbol table, and data space for the parse tree.
Code space can be minimized in three ways: by using an interpreter to take advantage of
compact stack oriented code; by segmenting the compiler and using overlays; or by
splitting the compiler into multiple independent passes. Interpretation is feasible,
and has in fact been used for some implementations, but slows compilation considerably.
The use of segmentation is not particularly feasible, since compilers tend to frequently
hop from one area to another. For this reason, it is important on virtual memory
systems to have sufficient real memory to minimize thrashing with any compiler.

Using multiple passes is the most common approach, but it too has its drawbacks.
Foremost of which is the i/o needed to reconstruct both the symbol table and the parse
tree. This i/o time is usually the bottle-neck limiting compilation speed. And not
only does it take time, but it also adds a significant amount of code to the compiler to
read and write these structures which have many different kinds of nodes, which defeats
the entire purpose. These structures could potentially be kept in memory between
passes, but that also defeats the purpose of minimizing memory usage. The conclusion is
that not much can be done practically to minimize code space requirements, with the
possible exception of using a good compiler to compile the Ada compiler.

Some implementations attempt to control symbol table space usage. On the surface
this is very attractive, since symbol table space requirements can be quite high in Ada.
Packages such as text_io for example have large interface sections which are made
visible by a 'with' clause. Multiple instantiations of generic packages can also
rapidly use up space. And seemingly simple derived type declarations often implicitly
declare a number of functions to operate on objects of the type. However there are
major drawbacks here too. Overloading rules for example require the compiler to search
the entire symbol table for alternate interpretations of subprogram calls, even for such
seemingly simple expressions as "2+2". Having to page the entire symbol table in and
out of memory just to interpret such common expressions could be prohibitively
expensive. Also the necessary checking to determine whether a particular symbol
definition was in memory every time it was referenced is costly both in time and code
space.

Another way to reduce symbol space requirements is to use ordinals instead of
pointers to reference symbols. Where pointers are likely to take up a full 32-bit word,
ordinals can be 16 bits, or possibly sometimes less. This approach has two drawbacks:
one is that table sizes place arbitrary limits on the number of symbols of particular
classes in particular scopes; the second is that references to the symbols necessarily
are likely to be less efficient in both time and space than having a pointer directly to
the symbol. Since Ada was designed for large programs, any arbitrary symbol table limit
is almost guaranteed to be exceeded at some point.

ICC makes neither of the these attempts at minimizing symbol space usage. The
penalties in terms of compilation speed or arbitrary limits on number of symbols were
felt to be too great. Instead ICC relies on minimizing code size, and eliminating parse
tree data space requirements in order to run the compiler effectively on work-stations.
Data space for parse trees is eliminated by parsing one statement at a time, generating
the appropriate nodes to the intermediate file, and reclaiming any storage used in the
process. This allows arbitrarily long files to be compiled, which is particularly
useful when large FORTRAN modules, for example, are translated to Ada without being
broken into separate modules.

Ada was not really designed for this kind of one-pass, statement at a time, mode of
compilation. The lack of a requirement for declaring labels, for example, has the
unfortunate result that a statement can make a previous statement illegal. Also, in-
memory parse tree representations are very handy for many of the required semantic
checks, and for generic instantiations, but all these problems have solutions.

4. Optimizations

Optimization of Ada compilers is likely to take longer than anyone expects. There
is much to be done. And the designers of Ada practically assumed the existence of
significant optimizations. One of the major differences between Ada and typical systems
programming languages, is that Ada emphasizes portability, and the others emphasize the
ability to directly manipulate the hardware at the lowest possible levels. In order for
Ada to achieve similar results, a large number of optimizations must be performed. And
with Ada, unfortunately, it is not always easy to tell for a given compiler which
constructs generate efficient code, or under which circumstances. Slight changes to a
program can have significant effects, such as when a static constant is made dynamic.

Optimizations fall into two broad categories. Those that are to be performed in
the front-end of the compiler and those which are code generation issues. Code
generation issues are fairly well understood. They are generally independent of the
input source language. This means that code generators and optimizers developed for
other compilers for other languages can readily be adapted to Ada compilers. Although
they still need significantly more work tailoring them to recognize the common
inefficiencies created by Ada front-ends.

6-4

The more difficult category consists of generating reasonable intermediate code for
each of Ada's constructs, since there is only so much an optimizer can do with what it's
given. Each of Ada's features requires special attention. Often there are several ways
of implementing the feature, each better in certain cases. Some implementations will
support only one. Others will allow the user to control the implementation via a
pragma, and in other cases, the compiler will attempt to determine the best
implementation.

In exception handling, for example, the overhead can be placed either at the time
of a raise, or at the time any scope is entered or exited, or possibly at the time a
scope is entered only if it contains a handler, or some combination of these. No single
method is best for all applications. In generics there are obvious tradeoffs between
space and time, depending on whether or not generic bodies are shared, and under what
circumstances. Discriminant records containing dynamic arrays can be implemented in a
variety of ways, depending on whether it is more important to efficiently access fields
of the record, or to copy and compare the records. Descriptors for unconstrained arrays
and discriminant records can be created with the data they describe, or only on demand,
or can be shared when possible. Bit operations are not directly available in Ada, and
can only be effectively used if logical operations on packed arrays of bits generate
single machine instructions.

Tasking will require numerous optimizations, depending on what the purpose of the
task is, or on how many tasks will be running at a time, etc. Simple tasks used only to
synchronize accesses to shared objects need not involve the full complexity of the
scheduling algorithm. And real-time applications such as flight control which may
simply switch back and forth between a foreground task and a low priority background
task can also theoretically involve almost no task-switching overhead. ICC has much
work remaining in most of these areas.

5. Run-time Environments

Run-time environments are an area of great importance for embedded applications,
and Ada compiler run-time systems can vary greatly. Of prime importance often is the
size of the run-time system. A related factor is its decomposability, so that no space
is taken by something which is never used. Other concerns are support for handling
interrupts, time-slicing and task scheduling, asynchronous or non-blocking i/o, various
forms of automatic garbage-collection, and the ability to run more than one Ada program
simultaneously on the same processor, with inter-process communication. Tailorability
of the run-time system is also very important, particularly in unique embedded systems,
whether it "voids the warranty" or not.

Another run-time issue becoming more important is the ability to run Ada code on
unique architectures, such as multiple-processor environments, either tightly or loosely
coupled. Support for accessories such as array processors, or other such "peripherals"
is also important to some classes of users. Again ICC does not claim to have the the
final answers, although having virtually its entire run-time system written in Ada makes
customization easier.

6. Tools

An Ada compiler is but one member in a family of tools, although a very important
member. Actually, possibly too much effort was expended early on in the Ada program on
environment issues, and not enough on the compilers themselves. Compilers were thought
to be well understood technology, requiring little attention. They were also mistakenly
thought not to fit well in existing environments. In the early stages of Ada's
application to embedded systems, a good compiler with a functional environment is likely
to be more useful than a good environment with a functional compiler.

However, as the compilers mature, the environment tools will increasingly gain in
importance. Also, the larger the project, the more important the tools become. And Ada
has a way of vastly complicating the tools required. For example, typical debuggers
were not designed to support Ada tasking. Overloading causes problems uniquely
referring to subprograms. And arbitrarily long identifier names with full significance
are unheard of. An ironic aspect of complicated Ada tools, particularly the compilers
themselves, is that they can least afford to incur the additional overhead costs of
layered kernels, such as CAIS, which are designed specifically to aid these tools.

The library management system for a large Ada project is probably the most critical
tool. It must allow for such things as hierarchies of program libraries, with package
specifications under configuration control, and package bodies which can be modified in
a local context, debugged, and integrated with others. Minimizing the number of
recompilations required by any given change is also important on large projects, but not
at the cost of compilation speed. Ada's requirements of full checking across
compilation boundaries create enormous burdens on a library system, that earlier
languages knew nothing about. Other complications involve libraries scattered across
multiple host computers, and libraries that support multiple versions of a compiler,
both for the same target or for different targets.

6-5

7. Support

An unfortunate side effect of Ada's complexity is that even the sophisticated users
will generally prefer not to do their own compiler support. With other languages,
critical bugs could be fixed immediately, and optimizations added. But in an Ada
compiler, fixing one bug is likely to cause several new ones. Even most mini-computer
vendors, who would otherwise write their own compilers, are instead adapting portable
implementations. And Ada compilers will always have bugs. Users still may find it
feasible to make code-generator modifications to their Ada compilers, but should be
alert to the issue of vendor support.

8. Conclusion

The design and implementation of an Ada compiler is a very demanding project, and
likely to be never ending. Along the way, many design decisions are made affecting the
usability of the compiler for various applications. Despite validation, all Ada
compilers are not created equal, nor is it necessarily easy to switch from one to
another for embedded applications, and they are not free of bugs. Careful compiler
selection is called for to reap the benefits that have been painstakingly designed into
the language, its compilers, and programming environments.

7-1

ADA^ COMPILER VAUDATION

by

Erhard Ploedereder, Ph.D.

Tartan Laboratories

477 Melwood Ave.

Pittsburgh, PA 15221

U.S.A.

Summary

This paper discusses Ada Compiler Validation from the viewpoint of both the compiler supplier and the com-

piler user. The objectives of the requirement for validation and the resulting benefits, as well as the limita-

tions of validation are presented. The process of Ada compiler validation is detailed along with its various

problems as well as issues relating to validation and the use of validated compilers. Solutions to these

problems and issues are explained, as they are proposed in a recent AJPO draft of a revised validation

policy.

Preface

The proliferation of languages and language dialects has been recognized as a major contributing factor to

the high cost of software development and maintenance. Problems that arise out of such proliferation in-

clude the added expense of maintaining a software environment for each such language and dialect, the

cost of educating personnel in the use of many different languages, and the Increased cost of porting

software to other systems.

The programming language Ada was developed by the US Department of Defense (DoD) to become the only

programming language to be used in DoD mission critical computer resource (MCCR) projects. Ada has

been standardized and mechanisms have been put In place to prevent the existence of language dialects.

The validation of Ada compilers is an Integral part of these mechanisms.

This paper discusses various aspects of the Ada compiler validation, including Its objectives and limitations,

the actual process of validation, the policy for the use of validated Ada compilers within U.S. OoO, and the

economics of compiler validation.

1. Oblectlyea of Validation

Past experience with standardized languages (e.g.. Jovial, Pascal, Cobol), has shown that the mere exist-

ence of a standard is insufficient to prevent the emergence of language dialects, as compiler vendors tend

to deviate In their compiler implementations from the respective language standard. As a consequence,

software developed with one compiler often cannot be compiled with a compiler supplied by another vendor

without major changes to the software. As a result, porting of software between systems employing different

compilers becomes expensive, if not economically Infeasible. Particularly in the military setting, large

software systems have a lifespan of many years, during which enhancements and new hardware develop-

ments will make it necessary to port the software to new underlying systems.

Recognizing this problem, the U.S. DoD has taken steps to insure that the mistakes of the past are not

repeated In the Ada effort. It has obtained a trademark on Ada and requires that the conformance of com-

pilers to the language standard, ANSI/MIL-STD 1815a, be ascertained by means of the validation process,

before such compilers are allowed to be called Ada compilers. The objective of this requirement Is to

prevent language dialects and thereby to enhance the portability of software written in Ada.

Ada It a registered trademark of the United States Qovernment, Ada Joint Program Office

7-2

2. rfie Meaning of Validation

Validation Is not a replacement for acceptance testing by the buyer of an Ada compiler. Staying truo to Its

objectives, the validation process tests only for conformance with the language standard. It does not ad-

dress Issues of usability or efficiency of the compiler and the generated code. For example, the first Ada

translator ever validated was the New York University Ada Interpreter, which was a remarkable achievement

as an experimental system for semantic modelling and for teaching Ada, but definitely not a system to sup-

port application code written In Ada.

Moreover, validation is not a guarantee of compiler correctness. Because the validation process employs

testing by examples as the test method, only part of the Intricacies of the Ada language can be covered by

the validation.

On the other hand, the test suite of the validation process Is sufficiently large and well designed that broad

coverage Is achieved. Successful processing of the test suite is a significant and major milestone for com-

piler developers on the way to compiler correctness and conformance to the language standard. As such. It

significantly raises the users' confidence In the correctness and completeness of Ada compilers.

Notwithstanding validation, users must evaluate the appropriateness of a validated compiler for their par-

ticular needs along all dimensions, such as code efficiency, usability and user friendliness, interaction with

the environment, provision of features that are optional in the language standard, etc.

3. The Validation Policy, Procedures, and Guldellnea

In January 1986, AJPO drafted a new validation policy, consisting of three documents:

; the general policy for compiler validation;

; the procedures for the conduct of the Ada validation process; and

; the policies and guidelines for the use of Ada compilers In DoD.

The first document establishes the policies for the validation process applicable to Ada compilers both for

general trade and for U.S. DoD applications. The second document details the procedures necessary to

establish a compiler as a validated compiler. The third document Integrates the requirement for validation of

compilers with the constraints of life-cycle management procedures In U.S. DoD projects. While this third

document relates specifically to the use of Ada In U.S. DoD, similar issues will arise In general trade

usage of Ada compilers. It therefore can act as a model for general trade companies in adopting similar
policies and guidelines.

in the subsequent sections, the provisions of the draft policy are described in more detail. Since, at this

time, the draft is still under discussion and the policies and procedures not officially issued, changes may

occur that are not reflected In this paper and may contradict Its contents.

4. The Contponenta of the Validation Process

The three organizational components of the validation process are the Ada Joint Program Office (AJPO), the

Ada Validation Organization (AVO), and the Ada Validation Facilities (AVF) . The technical component Is the

Ada Compiler Validation Capability (ACVC). These components and their role are briefly described In the
following sections.

4.1. The Ada Joint Program Office (AJPO)

The Director of the AJPO formulates the validation policy. Issues charters to AVF, and Is ultimately respon-

sible for all components of the validation process. Validation certificates are Issued or authorized by AJPO

after successful completion of the validation process.

7-3

4.2. The Ada Validation Organization (AVO)

AJPO has chartered an Ada Validation Organization (AVO) with the tasi< to establish detailed guidelines and

procedures for the process of Ada compiler validations, and to supervise Ada Validation hacilities (AVH) in

their conduct of the validations. The AVO consults to AJPO on validation issues that arise from compiler

validations. Furthermore, the AVO maintains the lists of validated compilers.

4.3. The Ada Validation Facilities (AVF)

The AVF are Impartial organizations that are chartered by AJPO to conduct validations. Such charters are in

effect for three years and are renewable. AVF are bound to adhere to the validation policies issued by

AJPO and to the procedural guidelines established by the AVO. The AVF act as the interlace between sup-

pliers of compilers that desire validation of their compilers and the certification body comprising AJPO, AVO,

and AVF.

Currently, five AVF are in existence; two In the U.S., and one each In Germany, Britain, and France.

Their addresses arc listed in Appendix B.

4.4. Ada Compiler Validation Capability (ACVC)

The AJPO has procured the Ada Compiler Validation Capability (ACVC) as the technical means to ascertain

conformance of Ada compilers to the language standard. The core element of the ACVC is a large set of

test programs to be submitted to the compiler to be validated. Currently, this test suite consists of about

2400 programs, each of which checics particular aspects of the language. About hail ol the tests are

programs that contain errors that a compiler must detect. The remainder of the tests are correct Ada and

must be executable after compilation. Some of the tests examine the correct implementation ol optional lea-

tures of the language, which a compiler may or may not support; the applicability ol these tests depends

on the individual compiler. The tests containing errors usually contain a large number ol variations ol the

same class of error. Each of these errors must be recognized by the compiler. Since error recovery oc-

casionally will masl< subsequent errors, such tests may have to be split Into multiple tests to isolate in-

dividual error situations, thus further increasing the number of test examples used in the validation process.

The result of the tests containing errors is obtained by examining the listings produced by the compiler. Ex-

ecutable tests, on the other hand, are carefully designed to condense an indication of success or laiiure

Into a small print-out produced by the execution of the test.

The ACVC is augmented by software tools that facilitate the evaluation of test results, and by the

Implementers' Guide which is a detailed commentary on ramifications ol the Ada language semantics and on

the corresponding ACVC tests.

At any given time, three versions of the ACVC test suite are in existence:

1. the development version; this version Is not released to the public. New tests and corrected
tests are added to this version.

2. the field-test version: this version is available to the public. During the first three months of its

release, individual tests may be corrected. After three months, this version is frozen and can
be optionally selected by a compiler impiementor to be used In the formal validation process.

3. the released version; this frozen version of the test suite is generally used during formal valida-
tion. Tests in the frozen versions that are found to be incorrect are withdrawn and, alter being
corrected, are added to the development version.

The field-test and released versions are available to the public. Periodically the released version is retired

and replaced by the field-test version; the development version becomes the field-test version and a new

development version is created. Currently, this change of versions occurs in six-month intervals on June

10th and December 10th of each year. Consequently, for formal validation, implementers have a choice

between the field-test version and the released version from September 10th to December 10th, and from

March 10th to June 10th. During the remainder of the year only the current released version ol the ACVC

test suite can be used in formal validation. The overlap of ACVC versions admissible in validations has been

Introduced to permit compiler suppliers to reduce their risk of failing to complete the validation process be-

fore the released version expires; by choosing the frozen field-test version lor validation, potential delays

7-4

can be absorbed more easily.

As the ACVC Is rapidly maturing. It Is expected that. In the near future, the release cycle will be

lengthened so that the released version of the ACVC test suite has a lifetime of nine or twelve months.

5. The Validation Process

Ada compiler validation requires that ail applicable tests of the ACVC test suite must be passed successfully

by the compiler to be validated. Thus, validation testing is a pass/fail decision. The evaluation of the test

results Is done by an impartial body, i.e., an AVF, in two major steps: first, the AVI- examines the test

results as they were submitted to the AVF by the compiler supplier; at this stage, testing issues that the

supplier or the AVF might raise, such as the applicability of Individual tests, are resolved. Second, the AVh

witnesses the on-site testing of the compiler, the results of which formally determine the success ol the

validation. Normally, any causes for potential failure of the validation testing are discovered and corrected

during the first step so that on-site testing becomes a mere formality.

The applicability and correctness of individual ACVC tests may be challenged by the compiler supplier. Ap-

plicability Issues arise for tests that examine optional features of the language not supported by the com-

piler. Correctness Issues relate In most cases to tests for which the test designers Interpreted the language

standard differently than the compiler writers. These challenges are forwarded by the AVF to the AVO

which, with the help of a group of language experts, determines whether the compiler writers' interpretation

is permissible by the language standard. If so, the test is withdrawn from the test suite. The compiler

supplier is informed about the disposition on the challenge typically within two weei<s.

After successful validation, a Validation Certificate Is Issued by AJPO to the supplier of the compiler. This

certificate Is valid for one year and entitles the supplier ol the compiler to market the compiler as a

validated Ada compiler. The Validation Certificate attests to the successful completion of validation testing lor

a specific compiler and specified host and target systems, for which the full ACVC test suite was run as

part of the on-site testing. The validated compiler for the specified hosl and target system is referred to as

a "Base Compiler".

In detail, the validation process consists of ten steps that must be successfully completed in order to obtain

a Validation Certificate for a Base Compiler. These ten steps are explained In Appendix A.

S. Ravalldatlon

In order to preserve the status of a Base Compiler as a validated Ada compiler after expiration of Its

Validation Certificate, the supplier must re-submit the compiler for validation prior to the expiration of the

Validation Certificate.

Such revalidations have a dual purpose: first, they guarantee that changes to compilers do not cause a

gradual deviation from the language standard. Second, the ACVC test suite Is continuously enhanced to

provide more comprehensive coverage of the language standard. The requirement of revalldallon Insures that

compilers conform to the standard even In those areas that were not covered by the ACVC version that was

In effect at the time the compiler was initially validated.

It is expected that, as compilers and the ACVC gradually mature, the validity ol the Validation Certificate will

be extended to two years, thus reducing the effort and cost ol revalidations.

7. Status of Maintained Compilers

Ada compilers will undergo maintenance changes and enhancements, in particular during the initial period

after their first release. As It is economically and administratively infeaslble to require formal revalldallon

after each change to a compiler, as well as undesirable to discourage maintenance upgrades by such a re-

quirement, AJPO has adopted the policy that the validation status of a compiler automatically extends to its

revisions. This policy relies on the mandate for annual revalidatlon to detect deviations from the standard

and on the fact that It Is In the best interest of the compiler suppliers to remain conforming to the lan-

guage standard. .

7-5

8. Compllera for Multiple Configurations

A particular problem with which compiler validation Is confronted is the issue of compilers for multiple host

and target system configurations. Typical examples are compilers hosted on and targeted for system ar-

chitectures that are compatible in their instruction set; for such compilers. It can be reasonably expected

that a compiler tested on one such configuration will generally execute correctly for any other configuration

within the family of these architectures. This expectation is more difficult to justify If there are minor dif-

ferences In the Instruction set architecture or the operating system. A similar complication arises from

compiler switches that influence execution characteristics of the compiler or the code generated by the com-

piler.

Clearly, It Is quite impossible to perform compiler validations for all host and target configurations for which

a compiler is designed, and for all switch settings of the compiler, due to the combinatorial explosion of all

permutations of these influencing parameters. On the other hand. It is equally impossible to decide with

certainty whether these parameters will alter the outcome of validation testing without actually performing the

test. In a strict sense. It is therefore impossible for the AVF to attest to the successful completion of the

validation testing, unless the tests are executed on the specific configuration.

The draft validation policy addresses this issue by introducing the concept of a 'Registered Derived

Compiler": A compiler supplier who has successfully validated a Base Compiler can register with AJHO ad-

ditional compilers derived from this Base Compiler. Thus registered compilers are considered as equally

validated compilers. This status Is tied to the validation status of the Base Compiler and expires with the

expiration date of the Validation Certificate for the Base Compiler. A registered derived compiler can be

marl(eted as a validated Ada compiler.

As part of the registration process, the supplier has to assert that the compiler Is a - possibly modified

- version of the Base Compiler and that the compiler conforms to the Ada language standard. AJPO or AVC

may require substantiating information for this assertion, such as a hardware vendor's statement guarantee-

ing the equivalence of the instruction set architecture or the results of running ACVC tests. However, final

Judgement on trusting a Registered Compiler to pass ail applicable ACVC tests lies with the prospective

buyer of the compiler.

The AVO maintains the list of Registered Compilers. If, at some later lime, it is established that a Regis-

tered Compiler does not pass an ACVC test that the Base Compiler passed successfully, the compiler will

loose its status as a Registered Compiler, unless the supplier corrects the problem. Any such challenges,

which may be brought to the attention of the AJPO by any current or prospective user of the compiler, will

be noted in the list of Registered Compilers after ascertaining the validity of those challenges.

The Intention of this policy Is to avoid the combinatorial explosion of formal validations, without requiring

AVF or AVO to render Judgement on whether a compiler Is lil<eiy to pass validation testing on some host

and target configuration without running the test suite on this configuration. It relies on the market place to

force Registered Compilers to adhere to the language standard as well. Given that registration of compilers

is dependent on the existence of an already validated Base Compiler by the same supplier, it Is reasonable

to assume that any potential deviations of Registered Compilers from the language standard are minor,
unintentional, and easy to correct.

9. Life-Cycle Management of Validated Compilers

The mandate for the use of validated compilers In projects is generally In conflict with the practice of

baselining compilers for extended periods of time. Since the validation status of a compiler expires after one

year, annual revalidatlon Is necessary. Due to changes In the ACVC test suite, it may be the case that the

basellned compiler fails revalidatlon; an upgrade of the baseline would be required. f-"or project stability or

contractual reasons, such upgrades may be highly undesirable.

A revised policy for the use of Ada compilers in DoD projects has therefore been drafted that reconciles the

requirement for compiler validation with the need for baselining compilers. This policy Introduces the con-
cept of a "Project-Validated Compiler'.

A Project-Validated Compiler is a validated compiler that has been basellned In accordance with DoD life-

cycle management policies. Such a compiler maintains its status as a Project-Validated Compiler throughout

7-6

the duration of the project. Only major system upgrades require thai the baselined compilers also be

upgraded to Validated Compilers. The rationale of this project-specific extension of the validation status Is

that, as the ACVC Is maturing rapidly. It Is very unlikely thai a validated compiler would exhibit grave devia-

tions from the language standard. The benefit of preventing minor accidental deviations by enhancements to

the ACVC Is low compared to the complications that arise from the risl< of forcing- an upgrade of the

baselined compiler at inopportune stages of a project. Naturally, program managers are encouraged to plan

for periodic upgrades of the baseline to a compiler with a Validation Certificate In effect.

While the Ada compiler used during development of MCCR software is not required to be a Project-Validated

compiler, the compiler used for the software delivered for operational testing must be a Project-Validated

Compiler. The acceptance testing upon delivery of such software will ascertain that the compiler passes all

applicable tests of an ACVC version equal to or, optionally, more recent than the version that was in effect

at the time of basellning the compiler. Depending on the software volume, such testing may range from In-

ternal testing to formal validation. The requirement for such testing is automatically satisfied if the compiler

Is a validated Base Compiler.

As a risk reduction strategy, project managers should consider using validated compilers as early as pos-

sible In a project. Maintenance and enhancement revisions of these compilers should be periodically

checked for conformance with the language standard by using the ACVC as the test mechanism, so that

potential acceptance problems at the time of delivery of software for operational testing are prevented.

10. Compilers for Embedded Targets

Embedded targets pose another challenge to the validation process: such targets may not be able to ex-

ecute the ACVC tests, due to lack of hardware, in particular of appropriate output devices; the hardware for

such targets may not exist yet; the hardware may be so restricted that it cannot support the mandatory fea-

tures of the Ada language standard. In all these cases, the validation process cannot be applied to the

compiler targeted at the embedded system and, hence, no Validation Certificate can be Issued lor the com-

piler.

Since It Is nevertheless desirable to use compilers conforming to the Ada language standard in developing

software for such embedded targets, the proposed DoD policy addresses this issue and arrives at a com-

promise that alleviates the problem and achieves the objective of conformance to the language standard:

For many embedded systems, the application code is first developed using a 'simulated target", i.e., a

simulator or an extended hardware configuration that provides more capabilities than the real embedded tar-

get system. If the compiler for the simulated target Is a (project-)validated compiler, then the compiler lor

the real embedded target is also regarded as a project-validated compiler, provided that

1. the compiler for the real embedded target Is derived from the project-validated compiler for the

simulated target, and

2. all mandatory features of the Ada language standard that can be supported by the real target

4. any additions or changes to the run-time support maintain conformance of the execution of ap-

plication code to the semantics of the Ada language standard.

From the viewpoint of practicality, the compiler for the real embedded target and any run-time modifications

are unlikely to deviate from the language standard In an Incompatible fashion (as opposed to a subsettlng

of the run-time support) , since the application code translated by the validated compiler for the simulated

target, on which the application code Is developed and tested, cannot differ significantly from the code

produced by the compiler for the real embedded target. Otherwise such earlier testing would be rendered

quite useless. Consequently, the conditions enumerated above are sufficient to ensure a maximum of por-

tability and reusability achievable for the application software.

7-7

11. The Economics of Compiler Validation

Without doubt, the validation process Is expensive for the supplier of an Ada compiler and ultimately tor the

user of such compilers, since the cost of validation v»ill be reflected In the cost of the compiler to the

user. Typical AVF fees for the validation process are $12,000 to $15,000. Suppliers of validated Ada

compilers have, however, estimated the total cost of a formal validation In the range from $50,000 to

$100,000, due to the Internal cost of preparing for the validation. While this estimate seems high, given

that the monitoring of results of running the ACVC tests should be accounted for as part of the Internal

quality assurance for the compiler rather than of validation, a non-trlvlal effort Is spent on administrating the

validation process, on conducting the on-slte testing, on making sure that the supplier's Interpretation of

the applicability of individual ACVC tests conforms to the AVO's official position, and on adjusting the com-

piler In areas where the AVO does not share the supplier's opinion. Extrapolating from these high es-

timates, the cost of revalldation of a compiler Is likely to range from $25,000 to $50,000, provided that

neither the compiler nor the ACVC test suite has changed significantly since the previous validation. Even

for Registered Derived Compilers, the cost of ascertaining that the compilers Indeed are capable ot passing

ail applicable ACVC tests can be substantial to the compiler supplier.

For the user of Ada compilers, the economic benefits of using validated compilers can be considerable.

First, the DoD mandate for using validated Ada compilers In MCCR projects makes It impossible to success-

fully compete for DoD contracts without access to a validated Ada compiler. Second, for the user concerned

with porting Ada software between systems, the use of validated compilers Is a first measure to reduce the

cost of such porting by eliminating the problem with subset or superset compiler implementations. While

compliance of compilers to the language standard Is not a panacea for solving the porting problem. It

eliminates one of the major hurdles encountered in the past with other languages.

12. The Impact of Validation on the Ada Effort

The requirement for validation has been blamed for the long delays In getting Ada compilers to the market

place. Historically, the first compilers marketed for comprehensive languages such as COBOL or PL/1

processed only subsets of the respective language, thereby enabling first experiences to be gained with

these new languages before compilers for the full languages appeared on the market. This Introduction

strategy Is a two-edged sword, however, since the subset compilers typically remain In use, thus creating

significant porting problems. Furthermore, by the time compilers for the full language emerge, programming

styles have been established that perpetuate a limited utilization of the full capabilities ol the language.

For Ada, DoD consciously decided on a strategy in which only compilers for the full language are accept-

able for software development. Within this constraint, the availability of the ACVC has helped the Implemen-

tors, by providing an extensive and well designed test set, as much as hindering them by forcing them into

adherence to minute and sometimes pathological details of the Ada language standard and into the time-

consuming process of formal validation.

By the end of 1985, more than 15 compilers were listed by AJPO as formally validated compilers, many ol

which are hosted on and targeted to a variety of systems. A significant number of additional compilers are

expected to be validated in 1986. it Is safe to say that the Ada effort is now past any Initial delays that may

have been caused by the mandate to validate Ada compilers.

The requirement of validation has also led to a situation In which compiler suppliers concentrate first and

foremost on the task of obtaining validation status for their compilers, before concentrating on making their

products sufficiently efficient and user-frlendiy to be viable tools In the development of Ada software. This

situation must be considered a real danger to the casual public perception of the value of Ada compiler

validation, as a validated compiler Is by no means guaranteed to be a compiler usable in real application

programming. Therefore It cannot be emphasized enough that evaluation of Ada compilers for their respec-

tive application domain remains a prime responsibility of the user. Validation can be one decision criterion

In this evaluation, but surely not the only one.

Initial concerns about the combinatorial explosion of compiler validations with Its cost and probable scarce-

ness of AVF availability should be resolved by the proposed revised validation policies.

On the positive side, the requirement for validation has provided the user with an Initial screening ol the

market place for Ada compilers: since the Investment for getting an Ada compiler Into a valldalable state is

7-8

very high, the market place has focused on the viable compiler suppliers likely to provide good products

and continued product support. Moreover, the publicized list of validated compilers, and the Validation Sum-

mary Reports (see Appendix A), which are publicly available, provide the user with valuable Information

about the products offered In the market place.

The validation process for Ada has raised the awareness of the suppliers as well as the users for the Im-

portance of compliance of a compiler with the programming language standards.

In the long run, DoD's persistence In Its "no dialects'-pollcy for Ada and Its validation requirement will have

made a significant contribution to the portability of Ada programs and to the potential emergence of an Ada

software component market which would be considerably less viable without such a standard. Compared to

the cost reductions that can result from these facts, the cost of validation, especially when distributed over

a large user base. Is a minor expense that can be easily justified by the derived benefits.

APPENDIX A

THE TEN STEPS TO VAUDATION

A.I. Step 1: Self-Testing

The supplier of an Ada compiler must obtain a copy of the ACVC test suite for in-house testing of the com-

piler. The test suite Is distributed by the AVF for a nominal charge covering the cost of distribution. The

suppliers compile and execute the test suite using their compilers and, typically, will proceed to step 2 only

when compliance of the compilers with the test suite has essentially been established.

A. 2. Step 2: Notice of Intent to Validate

The suppliers must notify an AVF that they wish to be scheduled for formal validation, and establish a con-

tract with the AVF for Its services. The AVF will schedule validations on a first-come-tlrst-served basis. It is

therefore advisable for suppliers to contact an AVF as early as possible, once a target date for full com-

pliance with the test suite can be internally established.

In planning for the validation, there are two dates that are of crucial importance to the suppliers;

; the expiration date of the test suite version that the supplier wishes to use for formal valldatlonj

and

; in the case of a revalldatlon, the expiration date of the existing validation certificate.

As there Is generally a 90-day lead-time for an AVF In preparing the formal validation, as well as potential

resource constraints of the AVF due to other scheduled validations, suppliers must plan well In advance to

complete the validation process before these two crucial dates.

Formal validation testing with an already expired ACVC version is permissible only If a declaration of con-

formity (see step 4) has been made by the supplier prior to expiration of the ACVC version and no test

disputes that are pending are decided against the supplier's position.

A.S. Step 3: Contract Negotiations with the AVF

A formal contract needs to be negotiated between the supplier and the AVF, In which schedules and pay-

ments to the AVF are agreed upon. As a major part of the work will be performed by the AVF prior to the

on-site testing, advance payments will generally be required.

A. 4. Step 4: Declaration of Conformity

The compiler supplier Is required to provide a Declaration of Conformity to the AVF. In this declaration, the

supplier asserts that the compiler to be validated conforms to the Ada language standard. Implementation-

specific Information, such as required by Appendix F of ANSI/MIL-STD-1815A, must be supplied to the AVF.

7-9

Furthermore, the results of running the ACVC tests on the compiler must be submitted to the AVK tor

evaluation at least 60-days prior to on-slte testing, as well as a list of tests that the supplier believes to be

Incorrect or Inapplicable to the compiler to be validated.

The AVF will carefully evaluate the submitted material, resolve any test disputes and Issues In coordination

with the supplier, and prepare a draft test report.

A. 6. Step 6: Resolution of Test Issues

If the supplier and the AVF disagree on test methods or the applicability of tests, the AVF will refer these

Issues to the AVO for a binding decision.

The AVO will arrive at a decision within two workweeks and convey this decision to the AVF. The AVO is

assisted in this process by the 'Fast Reaction Team*, a group of Ada language experts.

A. 6. Step B: On-slte Testing

The AVF will conduct the conformity testing of the compiler al the location designated by the supplier. This

test consists of running all applicable tests of the ACVC test suite. The compiler passes the conformance

testing, if all tests are processed according to the language standard. A disposition on the outcome o(the

on-site testing will, however, not be made until step 8 Is completed.

A. 7. Step 7: Report Preparation

The AVF will collect and evaluate the results of on-site testing and then issue a draft Validation Summary

Report (VSR) within 30 days of the on-slte testing.

A. 8. Step 8: Review of Draft Report

The supplier, AVO, and AJPO recefve the draft VSR for concurrent review and comment. Any comments

must be submitted to the AVF within two workweeks of receipt of the draft VSR. The AVF will then forward a

final VSR to the AVO within two workweeks. If disagreements on the contents of the VSR arise, the Director

of AJPO will decide after hearing arguments.

A. 9. Step 9: Approval Review

The AVO will review the VSR for proper reflection of all comments made in Step 8, and then forward the

VSR to the Director of AJPO for signature.

A. 10. Step 10: Issuing ttie Validation Certificate

A certificate of conformity, called the "Validation Certificate", will be issued to the compiler supplier by the

AJPO when the Director of AJPO has signed the VSR. This certificate lists the compiler and describes the

configuration on which the compiler was tested on-slte by the AVF. The Validation Certificate and the VSR

are then made publicly available. The compiler Is added to the list of validated compilers.

7-10

APPENDIX B

THE ADA VAUOATION FACIUTIES

The following AVF are chartered by AJPO to perform Ada compiler validations. The ACVC test suite can be

obtained from any AVF or directly from the Wright-Patterson Ada Validation Facility, which acts as the

central malntalner of the test suite.

Wright-Patterson Ada Validation Facility
ASD/SIOL
Wright-Patterson AFB, OH 45433-6503
Tel! (513) 255-4472
Contact: Georgeane Chitwood

Federal Software Testing Center (FSTC)
Office of Software Development & Information Technology
Two Skyline Place, Suite 1100
5203 Leesburg Pike
Falls Church, VA 22041-3467
Tel: (703) 756-6153
Contact: Arnold Johnson

Bureau d'Orlentatlon dc la Normalisation en Informatique
Domain de Voluceau-Rocquencourt
B.P. 105
F-78153 Le Chesney, FRANCE
Tel: 33-3-955-2535
Contact: Jacqueline SidI

lABG-AVF
Industrleanlagen-Betrlebsgescllschaft (lABG)
Dept. SZT
EInstelnstrasse
D-8012 Ottobrunn, Fed. Rep. of Germany
Tel: 49-89-6008-3090
Contact; Helmut Hummel

Ministry of Defense (PE)
EQD "Aqulla"
Golf Road
Bromley, Kent BR 1 2JB, United Kingdom
Tel: 01-467 2600 (Ext. 6056)
Contact: Kevin E. Phillips

PROGRAMMING WITH ADA' — THE ADA ENVIRONMENT

by

Erhard Ploedereder, Ph.D.

Tartan Laboratories

477 Mclwood Avo.

Pittsburgh, PA 15221

U.S.A.

Summary

This paper examines two aspects of using Ada for the impiementatlon of large program systems. Kirsl,

those elements of the Ada language that are particularly targeted at programming in the large are dis-

cussed. Conclusions about appropriate design methodologies that match these language features are

presented along with an explanation of some potential problems. Second, an overview of efforts to develop

programming support environments for Ada beyond the Ada compilation system is given. The rationale and

the scope of on-going standardization work in the area of Ada Programming Support Environments (APSE)
Is presented.

Preface

A necessary prerequisite for using Ada as the Implementation language in a project is the availability ol Ada

compilers. At the end of 1985 more than 15 Ada compilers had been validated on a variety of host and

target systems (1). Hence, at present, there Is a significant number of Ada compilers available to

prospective users of Ada. The focus for satisfying prerequisites for the successful applicalion of Ada is

gradually shifting to the software environments around the Ada compiler.

Given a high-quality compiler, the productivity of software designers and programmers depends to a very

large degree on the properties of the software development environment. While this is true for any lan-

guage, it has been specifically acknowledged in the Ada program: considerable efforts are spent to address

the Issues and Improve the quality of software environments.

In this paper, we concentrate on two aspects of the software environment for Ada: first, we discuss some

properties of Ada that impact environment issues and programming in the large. Then we present

U.S. Department of Defense (DoD) and industry efforts towards evolving software environments in support of
projects using Ada.

1. Program Structure In Ada

Historically, programming languages and their compilers supported the programmers by translating individual

modules, but failed to enforce interface conventions across module boundaries. Violations of these conven-

tions were discovered in part at link-time and In part during testing by exploring the causes of incorrect

program execution. In some languages, e.g., Pascal, C, and Pearl, the missing facility (or consistency

checking across module boundaries was added in subsequent language revisions or by language extensions

of Individual compilers or by tools of the programming environment that analyze the interdependent modules
for possible inconsistencies.

The Ada language design has been guided by established principles that facilitate programming in the large

(2,3). It supports the structuring of program systems into units, each ol which can be compiled separately

from other units with which It interfaces. The mechanisms for enforcing the consistency among separately

compiled units are an Integral part of the language. The rules of the Ada language for consistency checks

across compilation unit boundaries are as if all units involved were translated in one monolithic compilation;

unit boundaries have no Influence on the strength and nature of the checks. Thus, dividing large program

Ada is a registered trademark of the United States Government, Ada Joint Program Off tee

8-2

systems Into many units according to some structure Induced by the applied design methodology carries no

penalty In terms of the compiler support for the early detection of errors In the program.

In the Ada language, separately compilable units come In two flavors: A unit can be a specification unit,

which describes only the programatic Interface presented to users of the unit, or It can be a "body", which

Implements the details of an associated specification. Separately compilable specification units are called

"library units" and their bodies are referred to as "secondary units", as Ihey require the existence of primary

specifications that describe their interface presented to other units.

Library units are individual packages, subprograms and tasks; such packages and subprograms may bo

generic, i.e., they describe an entire family of closely related packages and subprograms. Secondary units

are the corresponding package bodies, subprogram bodies and task bodies. Packages are used to group

logically related specifications, definitions and declarations. Specifications ol packages, subprograms and

tasks can also be nested within other units, and their bodies can be segregated into so-called "subunlts"

that can be separately compiled as secondary units.

Any specification unit can be viewed as a contract between the provider and the user ol the services offered

by the unit. The rules of the language guarantee that neither the user (I.e., another unit) nor the im-

plementor (i.e., the body for the specification) of such services can violate the programatic interface

described by their specification. Moreover, the details of the implementation are hidden from the user of

the service, thus guaranteeing that the Implementation can be changed without affecting the validity of the

programatic Interface presented to the user. In more technical terms, interfacing is allowed only to

specification units, which contain all the Information required for checking the consistency of references that

cross unit boundaries. Additional features of the Ada language, such as private types, permit the hiding of

data representation defined in the specification of a unit, so that users of the service cannot Inappropriately

take cognizance of representational details that are to be considered implementation-dependent (but

generally are needed by the compiler In translating dependent units) .

The described elements of the Ada language, which provide global structure in Ada programs, allow a

variety of development strategies. Bottom-up development Is supported in the sense that already Implemented

library units can be used to provide the building stones to construct additional library units and their bodies.

Top-down development and stepwise refinement Is supported in a dual fashions first, the separation of

specification and body for each library unit makes it possible to postpone the Implementation o(a unit and

base all compilations of dependent units on the specification alone. Second, within secondary units, the Im-

plementation of locally declared packages, subprograms and tasks can be separated into subunlts without

Impacting the capability to compile any units dependent on the units whose Implementation is thus delayed.

It becomes possible to code and compile programs whose underpinnings have been specified but not yet

Implemented.

Generally, the compilation of a unit cannot depend on a secondary unit. Exceptions to this rule are sub-

units, which depend on the secondary units within which their specification is provided, and compiler-

Introduced dependencies on secondary units. The latter may arise for the Instantiation of generic units, if

their bodies are expanded In place, for calls on Inline subprograms, and for optimization-related reasons

among units that are submitted in a single compilation.

Within the limitations of these exceptions, the clean separation of the Implementation from the specification

permits arbitrary replacements of secondary units to be made without affecting any dependent units, since

such replacements must be in conformance with their respective specifications. This freedom has significant

advantages for a top-down development, since defaulted bodies can be provided for units not yet Imple-

mented. With such defaults, the program can be brought to execution as long as the defaulted entitles are

not referenced in a way relevant for the results of the execution. Later, the defaulted bodies can be

gradually replaced by their true Implementation with a minimum of recompllatlon effort.

in practice, software development Is often a mixture of top-down design and subsequent bottom-up im-

plementation combined with corrections to the original design. The decribed features of the Ada language

are ideally suited to support bottom-up and top-down strategies as well as a mixture of the two approaches.

8-3

2. The Ada Program Library

In order to achieve consistency checking across compilation boundaries, the compiler must retain Infor-

mation about the separately compiled units. This capability Is provided by the use of the "program library"

v/hlch contains the required Information about compiled units.

The language rules require that each unit begins with a Indication of all units on which it depends. This

specification Is called a "context clause". Based on the context clause, the compiler retrieves the stored

Information about the referenced specification units, uses this information for the compliatlon at hand, and,

for each reference to an entity in such a unit, performs the required consistency checks the ensure the
legality of the reference.

The concept of separate compilation requires that all units on which a given unit depends have been com-

piled prior to the compilation of that unit. Consequently, mutual dependencies of compliatlon units cannot

be accommodated. Since dependencies generally exist only with respect to specification units. It Is

nevertheless possible that the Implementation bodies of two units depend on the specification of the respec-

tive other unit. For example. It Is not permissible that two specification units, A and B, reference each

other; It Is however possible that the body for A references the specification of B and vice versa. In terms

of a design methodology, this restriction Implies that mutually dependent definitions must be provided within

a single package. It applies In particular to type definitions In package specifications, since establishing

the representational details of types cannot be postponed to the compilation of the package body for reasons
of compiler implementation constraints.

During software development, compilation units will be subject to changes, which may affect the validity of

other compilation units that depend on the altered unit. Most programming languages leave this aspect o1

the software development process entirely up to the user or to tools provided by the language environment.

The Ada language. In contrast, requires that the compilation system recognizes this potential danger and

prevents the occurrence of inconsistencies introduced by a change. The mechanism for doing so is also

embedded In the program library. It records the dependencies between compilation units and, upon recom-

pilatlon of a unit, recognizes the fact that dependent units are now potentially Inconsistent and may have to
be recompiled.

A further application of the recording of dependency information Is that the Implementations of the program

library are capable of retrieving the exact set of units needed to bring a given main program to execution.

By transitively accumulating the units and their bodies on which the main program depends, any superfluous

units contained In the library will be omitted from the linked Image of the program.

With the requirement for the existence of a program library that tracks dependencies and the effects o(

changes, the Ada language goes beyond the nature of a mere Implementation language. It attempts to ad-

dress some of the problems that historically have been In the realm of software environment tools, i.e.,

version and configuration management tools. There can be no doubt that these rules of the Ada language

will provide a maximum of safeguards against inadvertent errors in maintaining system consistency in the
presence of changes.

The requirements posed by the language standard on the capabilities of the program library in this area

are, however, rather rudimentary. They merely require that, after compilation of a unit, any previously

compiled unit that Is affected by the change to this unit must be treated as If It were as yet uncomplled.

An implementation of the Ada program library that satisfies only the minimal requirements imposed by the

language standard is likely to create some difficulties for the users, unless a very rigorous programming

discipline is enforced. The reason for such difficulties lies in the above rule which. In a unsophisticated

Implementation of the Ada library, will cause all compilations to obliterate the results of previous compila-

tions of dependent units. Hence, a minimal change to and recompllatlon of a specification unit can cause

many hours of additional rocompllatlons for units that depend on the changed unit, even though the change

may have had no real effect on them. The most pathological example of such a change Is the addition of a

comment to a specification unit. A compilation system that Is not capable of recognizing the Irrelevancy of

this or other changes on the consistency of the compilation results for dependent units will have to require

a recompllatlon of all dependent units. The undeniable advantage of strict enforcement of consistency by the

recompllatlon rules can be quickly negated by the loss of productivity due to delays caused by such un-
necessary recompilatlons.

8-4

As many Ada compilation systems will not possess the sophistication of analyzing changes with regard to

their effects on dependent units, the methodology employed in the utilization of these systems for the

development of Ada software must compensate for this lack. It must ensure that changes to specification

units on which many other units transitively depend are minimized. The same holds, to a lesser extent, for

changes to units that have subunits. Fortunately, this constraint is consistent with good software design

and development practice that stabilizes central Interfaces as soon as possible and performs a rigorous

change control on these Interfaces. Generally, bottom-up Implementation strategies, following a detailed

top-down design, will provide the best match with the properties of unsophisticated implementations of the

Ada program library mechanisms.

The requirements on the Ada program library do not address the problem of parallel versions of units in

multiple configurations of an encompassing program system. The solution to this problem, as It may be

provided by environment tools. Is somewhat constrained by the necessity to co-exist with the rules of the

Ada program library. A typical scenario during software development is that new versions of some compila-

tion units are installed for experimentation purposes. If these new versions have led to recompllallons of de-

pendent units, then reverting to the Initial state after completion of the experiment Is not possible without

another recompliatlon of these dependent units. Short of an Ada program library that is fully Integrated into

a version and configuration control system, the only alternative for preserving the initial slate consists in the

creation of a new program library for each such experiment. It Is therefore crucial that such creation of

program libraries be possible with a minimum of effort and resources and a maximum of sharing with exist-

ing libraries. Again, the minimal requirements imposed by the Ada language standard do not address this

Issue.

Finally, It should be noted that the Ada language rules regarding the program library refer only to the

results of compilations, but not to the Input to these compilations. That is, the program library need not

administrate the Ada source flies, it is merely concerned with the Internal representation of the compilation

units as required by the separate compilation capability, and with the generated object code, it Is not

necessarily a source control system, nor Is It required to support dependencies other than compilation

dependencies, such as for example the interrelation between source code and documentation files.

It is entirely possible that the productivity of Ada software implementors will be influenced by the quality and

functionality of the Ada program library at least as much as by the quality and speed of the Ada compiler

Itself, it Is therefore of utmost Importance that the software design and development methodology and the

strategies for version and configuration control be In unison with the capabilities of the employed Ada

program library, and that the program library mechanisms Integrate well with software environment tools

beyond the Ada compiler.

Despite all the caveats expressed in the preceding paragraphs, a reasonably sophisticated implementation of

the Ada program library that supports functionality beyond the minimal requirements imposed by the Ada lan-

guage standard can be an extremely powerful tool, in large application systems, errors that are caused by

minor Interface Inconsistencies are very difficult to locate. The required capabilities of the program library

prevent the occurrence of this class of errors. With only a moderate addition of functionality to the Ada

program library, tedious and traditionally error-prone tasks, such as the recompliatlon of changed sources

and ensuing recompliatlon of dependent but unchanged sources, can be totally automated and performed

without errors, since the required Information Is directly derived by the compiler from dependency infor-

mation In the program library.

3. Programming Support Environments

For software engineers and programmers to be effective, the provision of an Ada compilation system alone

Is clearly not sufficient. They require additional tools, such as editors, debuggers, version and configuration

management tools, network file-transfer tools, project management tools, and so on. The collection of

these tools is generally referred to as a "Programming Support Environment (PSE)".

Some of the tools in a PSE are heavily language-dependent, for example the compilers, syntax-directed

editors, program analyzers, symbolic debuggers, performance monitoring tools, etc. These tools need to be

developed for any implementation language. Other tools are language-independent, such as file-transfer

mechanisms, project administration tools, documentation systems, test harnesses, etc. Where available,

these tools can be applied in a project regardless of the chosen Implementation language.

Since the early stages of the Ada effort, considerable attention has been focused on the PSE for Ada and.

In the process, on issues of language-dependent and -Independent environment support In general, be-

cause the state of the art In this area Is In its infancy despite Its recognized Importance. Unlorlunately,

this attention has led some observers to the misconception that Ada requires substantially more environment

support than other languages or, worse, cannot be used at all without a complete environment specifically

developed tor Ada.

In reality, Ada has been used as a focal point of plans for improvements in software engineering and PSE

technology, which are direly needed regardless of the choice of implementation language. It could even be

argued that Ada may require less environment support than other languages, due to Its high degree of

compiie-time error checl<ing. Its enforcement of implementation discipline, and the environmental aspects of

the program library. There is certainly little reason to believe that Ada could not be supported in more

traditional environment settings. Currently, the majority of commercially available Ada compilation systems

are not embedded in an Ada-specific PSE, but are Integrated into the standard PSE available on the

respective host systems.

3.1. The DoD Requirement Catalogues

In early 1978, first efforts were made within U.S. DoD to arrive at a concept for the development of the

environment support for Ada. A set of initial Ideas were first collected In what became known as the

SANDI^AN catalogue, which was never published. By late 1978, it was consolidated irilo a requirement

catalogue, named PEBBLEMAN, in which the desired functionality and cooperation of various tools were

described. A revised version of PEBBLEMAN was published In 1979 (4). in February 1980, a further docu-

ment, STONEIVIAN, was produced; It became one of the most cited references regarding Ada environments
(5).

In addition to posing requirements for the desired tools In a PSE, STONEIVIAN Introduced a model for "Ada

Programming Support Environments (APSE)", which addressed both the Issues of tool integration and of

portability of the entire APSE as well as of Individual tools or tool-sets. The term "APSE" has since become

a synonym for the concept of integrated toolsets for Ada, as opposed to the so-called "tool-box" approach

In which a set of Independent tools Is provided to the user.

Part of the motivation behind the STONEMAN model was the recognition that the general Immaturity of cur-

rent PSE Implementations is not caused so much by the non-existence of powerful tools as by the missing

capability to bring existing tools together on a single host system and integrate them with each other to

form a coherent and efficient PSE. Consequently, the development of a PSE becomes unnecessarily expen-

sive, as many tools are relmpiemented although similar and, quite possibly, better tools are already avail-
able in other environments.

One might surmise that the enhanced portability of tools written in Ada would solve the portability problem.

However, while the Ada language standard provides portability advantages In many areas, it must be recog-

nized that most tools require a significant amount of interfacing with the host operating system. The Ada

standard, which is primarily intended for the generation of application code for arbitrary target systems,

could not justifiably prescribe the details of those language features that are Intimately United to operating

system Interfaces, fy/loreover, the requirements of application code on operating system services have been

recognized to be quite different from those of PSE. This is due partially to the different problem domains

and partially to the dynamic nature of evolving PSE as opposed to the relatively static nature of operational
application systems.

Consequently, some standard interfaces suitable for application programming might be quite inappropriate lor

PSE development. Given that the Ada language leaves the details of operating system interfaces, such as

calls on the file management or on terminal ID services, largely Implementation-dependent, the porting of

tools written In Ada will nevertheless have to contend with modifications of these host-dependent portions of
the software.

The STONEMAN model postulates a system architecture in which the host dependencies and the tool inter-

communication are encapsulated In a Kernel APSE (KAPSE) . The individual tools of the APSE are built on

top of the KAPSE services. Since the Interfaces offered by the KAPSE are conceived to be host-

Independent, and since the Ada language goes to great length in facilitating the portability of Ada software,

tools could be written in Ada to be portable among different hosts offering the same KAPSE services. Port-

8-6

Ing of an entire APSE to a new host consists of re-lmplcmenllng the KAPSE on the new host. Further-

more, Individual APSE tools could be transferred to another APSE as long as the tool Intercomnnunicatlon

Interfaces needed by these tools were provided by this APSE. Sonrie tools are so heavily dependent on In-

terfaces with other tools that It Is unreasonable to expect that all such Interfaces are provided on each

KAPSE. These tools cannot be ported Individually; they form an tightly Integrated tool-set. By relying only

on the common mechanisms for tool communication provided by the KAPSE, but not on the specific details

of the communicated Information, such combined tool-sets could equally be ported to a new APSE.

STONEMAN established a set of requirements for the services that must be provided by the KAPSE in order

to reach the described goals. These requirements relate in particular to the data administration and com-

munication Interfaces needed by tools, and to the run-time system that enables the execution o(Ada

programs. STONE-IVIAN adopts the paradigm of distinguishing host and target systems. It postulates that

software development, in particular for embedded targets, needs to take place on a host system sufficiently

powerful to accommodate the various tools required for supporting the development and maintenance of

software throughout its life-cycle.

Among the many conceivable tools of an APSE, STONEMAN identifies a minimal set perceived to be neces-

sary to make an APSE an effective tool for software developers and maintalners. This set was designated as

the Minimal APSE (MAPSE). It comprises the Ada compilers, linkers and loaders, simple static program

analyzers and debuggers, text editors and pretty-printers, a file and configuration management system, and

the command interpreter.

The STONEMAN principles were readily accepted by the majority of efforts concerned with the development

of a PSE for Ada. In particular, the emphasis of STONEMAN on the provision of better data administration

capabilities than offered by the file management of traditional operating systems has been reflected in almost

all major PSE developments. While some of the details of the STONEMAN requirement catalogue may re-

quire revisions In the light of experience gained since 1980, the fundamental principles are slili valid con-

tributions to the area of PSE design.

3.2. APSE Implementations

Within U.S. DoD, two major developments of Ada Programming Support Environments were procured: in

1980, the U.S. Army initiated the development of the Ada Language System (ALS) with SofTech, Inc., as

the lead contractor (6); In 1981/82 the U.S. Air Force contracted with Intermetrics, Inc., for the develop-

ment of the Ada Integrated Environment (AiE) (7,8). initial plans called for the ALS to be an Interim tool-

set for the Introduction of Ada, while the AIE was Intended to be a STONEMAN-conformIng integrated en-

vironment and to eventually become a standard OoD Ada environment.

The developers of the ALS adopted many of the STONEMAN principles In their implementation strategy, such

as utilization of a KAPSE-IIke kernel to facilitate the porting of the ALS, which has been developed on a

VAX/VMS host system. In December 1983, the first version of the ALS was made available to prospective

users. The seif-hosted Ada compiler of the ALS was validated in December 1984. The ALS comprises a set

of about 75 tools to be used In software development and maintenance. The development of the AIE, whose

Initial design promised a superior Integrated environment, encountered serious funding problems; at present,

it Is extremely doubtful that a comprehensive AiE will become available in the foreseeable future.

The U.S. Navy decided In early 1985 to base their Ada environment efforts on the ALS and to enhance this

environment by additional tools and by code generation capabilities for the prevalent instruction set architec-

tures in use by the Navy. This extended ALS has been named "ALS/N' and Is expected to become available

In early 1989.

The German Ministry of Defense, Bundesamt fuer Wehrtechnik und Beschaffung, began the procurement of

components of an Ada software environment, named SPERBER (Standardlslerles Programm-Erstellungssystem

fuer den Ruestungsbereich) in 1979 (9) . Major efforts have been directed at developing Ada compilers,

debuggers, and a program development data base system. The first two compilers were validated In Novem-

ber 1984. The British Ministry of Defense In cooperation with British industry co-financed several design

efforts towards the development of software environments for Ada (10, VI). The Commission of European

Communities, under its multi-annual program to advance the European software technology In the commer-

cial sector as well as under the ESPRIT program, has co-financed several multi-national projects developing

Ada programming support environments, most notably the PAPS project (11).

8-7

Commercial suppliers have been somewhat reluctant to embark on a course ol providing Integrated Ada Pro-

gramming Support Environments, recognizing that such Integrated solutions, while desirable In principle,

constitute a truly major capital investment. Moreover, customers who have built a considerable wealth of

software to support their In-house software development are concerned with preserving the usefulness of this

software for future development projects using Ada as the implementation language. The challenge to com-

mercial suppliers Is to provide Integrated environments that nevertheless allow the Inclusion or easy tran-
sltloning of existing tools.

Apart from ALS, which Is also commercially marketed by SofTech, Inc., only the Ada Development Environ-

ment (ADE), marketed by ROLM Corporation (12), and the Rational Environment, marketed by Rational, can

be regarded as largely integrated Ada Programming Support Environments. The Rational Environment takes a

quite unique approach! its host system has been specifically designed for the development and execution of

Ada programs. The entire environment is exclusively centered around Ada. IVIany of the language concepts

are Immediately reflected In the concepts of the environment whose command language is Ada. Other com-

mercial suppliers of Ada compilation systems have taken the path of embedding their systems into the en-

vironments offered by existing operating systems, so that users could continue to utilize the tools which
which they are most familiar.

4. Environment Standardization Efforts

The more the software development process Is assisted by tools of a programming environment, the more

difficult it becomes to transition software developed in one environment to a different environment. The cur-

rent practice in military procurement of mission-critical software is that this software is developed by con-

tractors but maintained In military maintenance centers. Just as a proliferation of implementation languages

raises the cost of such maintenance considerably, so does a proliferation of software environments needed

to maintain the software even in a single language. It Is therefore in the interest of DoD to minimize the
proliferation of environments in Its maintenance centers.

Hero, DoD is faced with a dilemmai while language research was advanced enough to embark on the

standardization of a single language, Ada, today's slate of the art in environments Is much less mature.

Therefore rigorous standardization on a single environment may be III advised, as considerable advances in

the environment technology can be expected to occur in the next decades.

A compromise can be found within the framework of the STONEf^AN model. If commonality of KAPSE Im-

plementations were advanced by standardization at this much lower and less ambitious level, tools used in

application development could be transltloned Into existing maintenance environments, thus reducing the

number of necessary environments while, at the same time, continuously enhancing the support provided of
these environments.

4.1. The Kapse Interface Team (KIT)

When It became apparent that there would be two competing designs of KAPSE Interfaces for the ALS and

the AIE respectively, a Memorandum of Agreement was signed in January 1982 between the U.S. Army, Air

Force, and Navy to work towards establishing commonality of the KAPSE interfaces in DoD environments

(13). Under the lead of the U.S. Navy, the KAPSE Interface Team (KIT) was created and chartered with

this task. The KIT Is assisted by an advisory group of software environment experts from industry and

academla with International representation, the KITIA (KIT - Industry and Academla) . The objective of

KIT/KITIA was set to establish requirements for the interoperability and transportability of tools among APSE

and to subsequently develop guidelines and conventions for achieving these requirements with the uillmalo
goal of evolving standards in this area (14).

KIT/KITIA has been meeting quarterly since 1982. The results of its deliberations are contained in poriodi-

cally published reports (14). Among Its most relevant products are the "Requirements and Design Criteria

for the Common APSE Interface Set (CAIS)" (15), and the proposed -Military Standard Common APSE Inter-

face Set- (16), which Is an initial set of KAPSE-like interfaces for the encapsulation of host dcpondoncios.

At this time, the later document is being reviewed by the DoD services for adoption as a military standard
within DoD.

While the initial motivation of achieving commonality between ALS and AIE has decreased, due to the les-

sening importance of the AIE, the KIT/KITIA effort has been recognized as an Important contribution to ad-

8-8

vance the knowledge In the area of KAPSE-iIke Interfaces and of Issues of tool portability and Intor-

operablllty. It also creates a forum for Information exchange between DoD and Industrial efforts, thereby

preserving the opportunity to prevent a complete divergence of these efforts.

4.2. The Common APSE Interface Set (CAIS)

In late 1982, a KIT working group began examining the ALS and AIE KAPSE Interfaces for areas of com-

monality and of divergence In order to establish a common set of Interfaces that could be supported by both

KAPSE designs. In March 1983, this group was Joined by several KITIA members to form a group that later

became known as the CAISWQ (CAIS working group) . With the participation of the ALS and AIE designers,

this group began developing the specification for a set of common interfaces deemed important for the por-

tability of tools. A crucial design decision was made In mld-1983 to pursue an Interface set that was not

constrained by the current environment efforts of ALS and AIE, although much of the practical experienco of

these and other similar efforts Influenced the choice of Interfaces.

The main goals of the CAISWG were to develop Interfaces based on a simple, yet powerful and extendlble,

model, to apply uniform concepts throughout the design of the Interfaces, and to cover those Interfaces that

are most crucial for the portability of many tools. A first public review of the concepts of the CAIS took

place In September 1983. Various revisions were produced and publicly reviewed until. In January 1985, the

final document was delivered to AJPO as a proposed military standard.

The CAIS in Its present form contains Interfaces for the administration of files, their Interrelations and at-

tributes, for process administration, and for terminal ID targeted at three standard kinds of terminals. Some

other utilities frequently used by tools are also present. The CAIS design for the file administration has

departed from the traditional view of hierarchical file systems and instead administers flies by their interrela-

tions, in this regard, the CAIS cautiously]oins a trend that has been apparent in almost all recent designs

of PSE. Special attention has been paid to security aspects, so that the CAIS would not be in conflict with

requirements posed by DoO (17). The concepts and the set of interfaces provided by the CAIS are open-

ended. It Is expected that additional interfaces will be added to the CAIS and that the existing global con-

cepts are sufficiently flexible to accommodate a large variety of such extensions.

It was realized that the work of the CAISWG could be only a first step In defining a basic set of uniform In-

terfaces. The U.S. Navy contracted with SofTech, Inc., In 1986 for the further enhancement of the CAIS

beyond this Initial set and for a pilot-implementation of the CAIS to validate Its usefulness and efficiency.

Other pilot-Implementations of major portions of the CAIS have been undertaken by TRW, Inc., under

government contract, and by Gould, Inc. and MITRE Corporation, as Internally financed projects.

S. Future Benefits of APSE

As various studies have shown, the demand for application software is rising exponentially over time, while

the workforce engaged In producing this software is growing at a slow linear rate. Already the demand is

far beyond the production capability. In addition, the complexity of the software has increased considerably,

making the production of quality software more and more difficult and time-consuming. Without substantial

improvements In the software development process. Industry will not be capable to meet the increasing

demand nor will it master the growing complexity of this process in the future.

Four factors can have a major Impact on ameliorating the current situations

; Application of better methodologiesi Ada Is a first step to Improve the methodological basis at

the Implementation level. Clearly, better methodologies or Increased application of already avail-

able methodical approaches for requirement analysis and specification are necessary as well. Al-
most certainly, these approaches will be supported by software tool-sets. APSE can provide the
vehicle for a wider penetration of these tool-sets and associated methodologies.

; Provision of better tools i Today the portability and Integration problems of tools lead to a dead-
lock situation. For lack of portability, the development of truly sophisticated tools is expensive

and commercially risky; It therefore remains largely in the realm of proto-types developed In
academla. For lack of commercially available tools, software developers are forced to expend

their resources in the duplicating development of tool support, which, because of the resulting

financial constraints, continues to be of low quality. Improvements In portability and Integration,
as possibly provided among APSE, can release resources for the development of more advanced

8-9

and better tools as well as widen the commercial market for such tools.

; Use of standard components: similar to the hardware manufacturers, software producers will In-
creasingly have to rely on reusing pre-fabrlcaled components In order to meet the rapidly ex-

panding volume of the software demand. Within the framework of an application-oriented Im-
plementation language, whose major goal is the enhancement of software portability, Ada is an
almost Ideal breeding ground for such standard components.

; Automated generation of customized components! a leading edge In hardware research Is con-

centrating on the development of systems for the fast production of customized components. A
similar approach can be expected to emerge In the software field as well. In fact. In some spe-

cialized areas, e.g.. In compiler construction, the automated generation of components that are
customized to particular languages or target architectures has already been successfully applied
in commercial products. Again, APSE may provide the means for a wide distribution of such
software-generating tools.

Of ail these factors, the last two are likely to be the most important ones. As long as application software

is developed from scratch, whatever Improvements In tool support can be provided to the software

developers will Increase their productivity only by some constant multiplying factor. Significant as this factor

may be. It will not be sufficient to catch up with the exponentially developing software demand In the long

run. The only hope to match the ascending curve of demand consists In an ever increasing reduction of the

amount of work to be performed to produce products. Only the utilization and Increasing availability of stan-

dard components or of automated generation of customized components can lead to this reduction. Ada

and APSE can play a major role In meeting these challenges. In particular, if the promise of Increased

portability of tools and software components among partially standardized APSE can be realized.

S. References

(1) Ada Information Clearinghouse, "Validated Ada Compilers", AdalC, 3DI39 (I2il Fern St., C-107), The
Pentagon, Washington, November 1983.

(2) U.S. Government, "Reference Manual for the Ada Programming Language", ANSI/I^IL-STD-1815A,
U.S. Government Printing Office, Washington, February 1983

(3) Honeywell, Alsys, "Rationale for the Design of the Ada Programming Language", Draft for editorial
review, Honeywell, Minneapolis, January 1984

(4) United States Department of Defense, "PEBBLEMAN revised - Requirements for the Programming En-
vironment for the Common High Order Language ", January 1979

(5) United States Department of Defense, "Requirements for Ada Programming Support Environments
- STONEMAN", February 1980

(6) SofTech, Inc., "ALS Specification", November 1983

(7) Intermetrlcs, Inc.,"System Specification for Ada Integrated Environment", November 1982

(8) Bray, G., "AIE Support for Management of Embedded Computer Projects", Ada Letters, Vol. II, Number
1, pp. 33-49, August 1982

(9) Ploedereder, Erhard, "Project SPERBER - Background, Status, Future Plans", Ada Letters, Vol. Ml,
Number 4, pp. 92-98, February 1984

(10) Department of Industry, "U.K. Ada Study, Final Technical Report", June 1981.

(11) Sevan, S. et al. "investigation into the Differences Between PAPS and M-Chapse", unpublished paper,
December 1983.

(12) Elliott J.K., Klein D.M., Williams J.S., "APSE Tools - ROLM's experience". In: Teller J. (ed.)

"Proceedings of the Third Joint Ada Europe/AdaTEC Conference", Brussels. 26-28 June 1984, Cambridge
University Press, 1984.

8-10

(13) Memorandum of Agreement, published In (14), Volume III, pp 3B 18-19

C14) Patricia Oberndorf, "Kernel Ada Programming Support Environment (KAPSE) Interface Team Public

Report", Naval Ocean Systems Center, San Diego.

Volume I, NOSC Report TD-209, NTIS AD AITS 590, April 1982
Volume II, NOSC Report TD-552, NTIS AD A123 136, October 1982
Volume III, NOSC Report TD-552, NTIS AD A141 576, October 1983
Volume IV, NOSC Report TD-552, April 1984
Volume V, NOSC Report TD-552, August 1985

(15) KIT/KITIA, "DoD Requirements and Design Criteria for the Common APSE Interface Set (CAIS)",

prepared by KIT/KiTIA for the Ada Joint Program Office, September 1985

(16) U.S. Government, Ada Joint Program Office, "Military Standard Common APSE Interface Set (CAIS)",

Proposed MIL-STD-CAIS, NTIS AD 157-587, January 1985

(17) United States Department of Defense,"Trusted Computer System Evaluation Criteria", Computer Security

Center, Fort Meade, Maryland, CSC-STD-001-83, August 1983.

9-1

PRACTICAL EXPERIENCES OF THE ADA® LANGUAGE FOR REAL-TIME
EMBEDDED SYSTEMS DEVELOPMENT FOR THE DEFENCE-RELATED MARKET

by

Dr Mel Selwood
Plessey UK Limited

Abbey Works
Titchfield, Fareham

Hampshire POl 4 4QA
UK

Summary

This paper describes some of the experiences gained to-date from an Ada research
programme, undertaken within the Plessey Company in the U.K., by the author and his team.
This programme is investigating the cost-effective and beneficial introduction of the Ada
language for Defence-related (mostly real-time) software applications. Particular
emphasis is placed upon minimising the risks and maximising the benefits for large and /
or embedded microprocessor-based systems. Within the context of this largely practical
work programme, the paper identifies a number of key concerns within the team (and it is
suggested within industry at large) in making the transition to Ada. Also, some
suggestions for improving the application of current Ada compilers and tools is provided
to the vendors of these products.

Introduction

Clearly, in order to obtain the longer term benefits claimed for the Ada language, it is
first necessary for any commercial organisation to be able to bid for and implement Ada
projects both profitably and at minimum risk. This can only be done with confidence (at
least for fixed-price contracts) when that organisation has already implemented
representative" Ada projects, so that it can draw upon real experience of the technical
issues involved. Only then can it, for example, reliably establish criteria for
estimating project timescales and costs, and define appropriate standards and procedures
for Ada-based developments.

In general, for large and complex (especially real-time embedded micro-processor based)
systems, for which Ada is intended, the risk of using Ada ahead of gaining such real
experience may well be too great. Further, although the introduction of Ada may go
hand-in-hand with improved software engineering practices, it would be inappropriate to
ignore the often large existing investment in non-Ada software and systems products (and
the associated manpower skills, working practices, equipment etc.) in favour of some
totally new, unproven development scenario.

Instead, the situation demands an optimum (transition) solution for which on the one-hand
changes to the status quo are minimised, while on the other hand the potential benefits
of Ada and associated development methods are maximised.

This paper reports on some of the practical experiences gained to-date from an Ada
research programme which was set up to address this problem.

Ada Research Programme

The programme was set up as a 'virtual' project, involving a hybrid mix of practical
study activities and real Ada software developments. This project is ongoing and
involves multiple study teams with distributed interests, thereby ensuring a broad
approach to the problem.

Given that the coding phase of projects typically equates to only 10% of the overall
development effort, it is clear that the real value of Ada will come not from the direct
characteristics of the language itself but from the catalytic (secondary) influence upon
exLine""^''^ engineering methods employed. Thus, the following issues are being

i. the appropriate time-frame for introducing Ada,
ii. the impact of Ada upon the overall development lifecycle,
ill. the necessary standards and procedures (Project Management Baseline),
IV. the anticipated effort / cost - time profile for Ada projects,
V. constraints upon the design and implementation of products, and their expected

characteristics, *■
VI. operational aspects (eg appropriate development environment).

Ada IS a registered trademark of the U.S. Government (Ada Joint Program Office)

9-2

Within this context, the programme focusses upon the production of Ada demonstrators for
gaining practical experience of Ada, to demonstrate representative Ada-based software
systems actually working, and to allow ancillary studies eg into code size and
performance issues. The work is complemented by a series of across-application studies
to check the consistency of the results and their applicability to varied applications.

Three demonstrators are currently being worked upon:

A Digital Telephone Exchange Demonstrator

This system implements the complex multi-tasking activities associated with setting up,
supporting, and terminating, one or more concurrent two-party telephone calls from
Digital Voice Terminals (DVTs). The system supports a variety of facilities eg system
configuration, abbreviated dialling, diversion of calls, call pre-emption etc.

The system is a conversion of an existing product which was developed using the "Modular
Approach to Software Construction, Operation and Test (Mascot) [1]", and implemented
using the Coral 66 language. The majority of the new system preserves the existing
Mascot design (excluding the Mascot 'machine' concept, which supports primitives such as
operations on control queues for synchronising access to shared data areas). The
required system functions were then manually re-implemented using the full features of
the Ada language. In contrast, the man-machine interface (MMI) sub-system is both newly
designed and implemented and this serves as a test case for studies into Ada design
methods.

Subscriber
7625341

Subscriber
7624762

Subscrtbor
4534233

Subscriber
65234S4

() 1
□ ODD DDDO
aaDO DDDQ
ODDO aODO
DODO DDOn

() 1

Subscriber
3435366

Subscriber
2587454

Subscriber Subscriber
7654321 7234511

Figure 1 - Typical Screen Snapshot

The demonstrator involves three platforms:

i. an entirely DEC Vax-based Ada system with software emulating the function of the
real (DVT) hardware - a typical screen snapshot is shown in figure 1.

ii. the Vax-based Ada system linked via an RS232 interface to an existing hardware rig
supporting real DVTs,

iii. the Ada software at ii. re-ported to run on an Intel 80286-based target.

9-3

A Sonar System demonstrator

This system is based upon an existing Pascal implementation and demonstrates a typical
naval surface ship sonar data processing and colour display function. It presents both

special purpose five-button keypad
rolling ball

LS
Lpulated using a

A sonar cursor is also provided, controlled from a

Vox
m

MMI

ia \mi

n— cr

Parallel Links DR11c

(Ada Programme)

MMI

DRIlc

Display

Generotor

10 Cards

, _ Console

Display

Generator

10 Cords

Figure 2 - Platform 1 Sonar Demonstrator

(Ada Control Programme)

Vax

H

[B]

TO—■ cr

PC/AT EvQiUQtion

iSDi

DRUC

Two
Port
Mem

MMI

Proc Mem

, _Con90lo

Display

Generator

n

Microprocessor Evaluation

Intel 8086, 186

IBM-PC/AT I "-
(Ada Control Programme)

DRIlc

Two
Port
Mem

MMI

Proc Mem

J_

Display

Generator

Figure 3 - Platform 2 Sonar Demonstrator

9-4

There are two platforms (figures 2 and 3). In the first the Ada software runs in a Vax
which is directly coupled via twin parallel interfaces to two IEE796 microprocessor
busses, on which are situated multi-plane colour graphics display generators and
man-machine interface (MMI) cards. All intelligence is deliberately removed from the
IEE796 cards, and accordingly the Vax-based Ada software deals with the display and MMI
hardware at the lowest level of bit manipulation.

In the second platform, the majority of the demonstrator is reconfigured for a multiple
Intel 8086 microprocessor system whilst the remaining Ada control module runs in either
Vax or IBM PC-AT machines.

An Engine Monitoring System demonstrator

This demonstrator is based on an existing product [2] which performs a range of engine
life count calculations, incident / exceedance monitoring and vibration analysis, for the
Rolls Royce Pegasus engine. It provides a platform for investigating the use of Ada in
high performance-critical applications; the majority of complex algorithmic calculations
being carried out in real-time. The initial investigations involve re-implementing in
Ada that software which is used to assess the low cycle fatigue damage on the major
components of the engine.

There are two phases to the work. The first involves an examination of the existing
design and Pascal implementation, and re-implementing the system in Ada to run on a Vax.
In the second stage the system is re-targetted to run in the real Motorola 68000-based
hardware configuration.

Results and Discussion

Digital Telephone Exchange Demonstrator

Development of this demonstrator commenced using the Telesoft Ada compiler V2.1, and
later the Karlsruhe Ada compiler VI.1. However, the performance of these products was
below expectation and a change was made to the newly arrived DEC Ada compiler VI.0, with
which the implementation of the first and second (Vax-based) platforms were
satisfactorily completed.

For the third platform, which is still under development, involving an Intel 80286
embedded microprocessor target, it is planned to use the Verdix/VADS system (running
under VMS) since the DEC Ada compiler does not currently support code generation for
non-DEC microprocessor targets. This work should allow comparison between the DEC and
Verdix products.

The following list identifies some of the operational issues which have been raised by
the demonstrator experience:

i. The security and robustness of the Ada library management facilities.
ii. The ease with which software developed using one compiler can be recompiled under

another.
iii. The robustness of the compiler, and the existence of any implementation constraints.
iv. The development machine resources required.
V. The speed of compilation,
vi. The extent of interference by the operating system in the execution of the Ada

software.

Thus, taking point v. as an example: for both the Telesoft and Karlsruhe Ada compilers,
in the particular application used in the demonstrator exercise, the CPU time required to
build the first demonstr-ator platform (before the system was fully coded) was in excess
of two hours - the elapsed time being substantially longer. Considering only the MMI
sub-system (ca. 25% of the total system), this meant that the "(re-) build and run -
analyse and debug" development iteration could be performed on average two or at most
three times per normal working day (depending on the extent of re-compilation required).

When the DEC Ada compiler was used in the same application, the entire system was built
in 16 minutes CPU time (typically two hours elapsed time) on a Vax-11/785 with 8 Mbytes
main memory. This turn-round time compared favourably with experiences of traditional
languages eg Coral, and led to much greater overall productivity.

The platform 1 software comprises some 40 packages, including 34 Ada tasks, and is
implemented in approximately 25,000 lines of code (including comments). This represents
a substantial working example of a complex Ada system, albeit a Vax-based implementation.

Sonar Demonstrator

The first (Vax-based) platform was implemented using both the Karlsruhe and DEC Ada
compilers. In transferring to the DEC Ada compiler it was noted that successful
re-compilation and build occurred without needing any code changes at all. Despite the
inevitable differences in run-time characteristics, this is an optimistic sign for
portability of Ada across different projects.

9-5

The first platform is implemented in approximately 8,000 lines of code (including
comments). This compares with approximately 5,500 lines of Pascal code in the original
implementation. However, this smaller size can be attributed to the reduced number of
facilities for error recovery and reduced program robustness, rather than to any
verboseness of Ada (except where enforced by the strong typing features of the language).

The speed of progression of the Sonar 'ping-front' from the bottom to the top of the
display screen provides a simple measure of the net relative performance of the software.
Such measurements show that, in the applications used, for single-threaded (non
multi-tasking) versions of the platform, the DEC Ada-based system slightly outperforms
the DEC Pascal version. An extended multi-tasking DEC Ada implementation is showing
comparable performance to its single-threaded counter-part.

For the second platform (multi-Intel 8086 microprocessor configuration) the SofTech ALS
system is being used. However, to meet the operational requirements of the system, the
target hardware is not based on standard Intel boards. Accordingly, certain non-trivial
problems are involved:

i. Support for the different hardware components employed.
ii. The size of the run-time support (RTS) system - this currently exceeds the amount of

the processor card on-board memory,
iii. Alterations to the standard RTS to cater for the different configuration of the

target hardware.

This work is ongoing but is already highlighting a number of important issues eg the
impact on validation.

Engine Monitoring System (EMS) Demonstrator

In the past for this application the Structured Analysis / Structured Design method [4,5]
has been used. For Pascal, this has often involved considerable pre-implementation
'engineering' of the design. However, for Ada the information hiding features
(primarily) appear to permit a more optimal mapping with consequential improvements in
the software structure. This area of investigation is still at an early stage, but the
initial results look encouraging.

Comparing functionally equivalent single threaded (non multi-tasking) Vax-based versions
of the software implemented respectively in (DEC) Pascal and (DEC) Ada, shows a decreased
run-time performance in the latter case, contrary to the results from the Sonar Ada
platform. A number of implementation changes to the Ada version have been made in an
attempt to explain this difference, but so far these have not substantially altered the
results.

The reduced Ada performance for this application may be due to the significantly higher
degree of numerical processing involved, and this is being investigated. Work is
progressing on the implementation of a driver/display unit (to display the low cycle
fatigue results) for which no such numerical calculations are involved. This should
provide an opportunity for further comparison.

For the second stage of the work, it is planned to use the Verdix/VADS cross-development
system and this should provide both size and performance data for the 68000-based target
configuration in the near future.

Ancillary studies

Apart from the demonstrator projects, a number of additional studies are being carried
out in the following key areas:

The design of Ada-based systems: A number of methods eg Structured Analysis /
Structured Design [4,5], Mascot [1], the Structured Systems Analysis and Design Method
(LSDM/SSADM) [6], and object-oriented approaches [7,8] are being reviewed.

In the design and implementation of the MMI sub-system for the Digital Telephone Exchange
Demonstrator, using a Mascot-like approach, it was found that for example:

i. Significant effort was needed to design and efficiently package the data types and
objects (Mascot provides insufficient support).

ii. Packaging structures were initially adopted which were subsequently found to be non-
optimal. Thus, while undesirable sharing of data objects was avoided, the first
implementation required excessive sharing of data type definitions.

iii. Although the strong typing of Ada generally led to a much more straight-forward
mapping between the design and code, this was at the expense of some awkwardness in
the processing of the data.

iv. Using 'with' alone, rather than 'with' and 'use', for referencing other packages was
found to be much clearer and less error-prone (for this large scale development).
This contrasts with the (implied) recommendations of most Ada textbooks whose
examples are rather simple.

9-6

The following points were also observed:

Mascot segregates processing units (activities) and intercommunication data areas (IDAs),
the access procedures for which encapsulate the more complex inter-task communication and
synchronis-ation aspects. This is useful when the implementation teams are of mixed
ability. In Ada, inter-task communication is an implicit part of all of the applications
software. The full impact of this upon large systems developments has yet to be
established.

A direct mapping of a Mascot design to Ada usually leads to all activities being
implemented as (active) Ada tasks. However, since Ada assumes a synchronous tasking
model (rendezvous) the implementation of the IDAs leads to two possibilities: (1)
treating them as decoupled (asynchronous) inter-task communication mechanisms, and hence
coding them as (passive) Ada tasks, or (2) effecting a synchronous inter-task
communication by means of a rendezvous. In the first (more general) case, the overall
system performance depends even more heavily upon the efficiency of Ada tasking.

It is important in defining the application boundary for an Ada task, to bear in mind
that it is not possible to alter the priority of an Ada task dynamically (at run-time).
Thus, care has to be taken not to group functionally related processing activities within
a single task if the functions are inherently not of equivalent priority.

The MMI sub-system has now been re-designed and re-implemented based upon the findings of
the review into this and other methods. This serves as a model example from which a
reasonably optimal design and implement-ation code of practice is being derived for
future applications.

Program testing: Most Ada compiler vendors are supplying symbolic debuggers for use
within the program debugging stage of software development. However, most
Defence-related projects involve a high degree of stringent testing (verification and
validation against the requirements and design) and this aspect appears to be receiving
scant commercial attention.

Accordingly, the suitability of using commercial symbolic debug facilities as the basis
of a more sophisticated test harness is being investigated. To-date a prototype test
tool has been produced which involves lexical analysis of the software under test and the
automated production of command files to drive the DEC symbolic debugger. Further work
is being carried out to investigate the representation of the complex real-time behaviour
of Ada systems by advanced graphical means.

During this work numerous instances have been encountered of having to gather data about
the software under test which must clearly have already been obtained during the course
of Ada compilation. However, this information is not made externally visible by the
compiler. It is felt that there is immense scope for Ada compiler suppliers to
collaborate with industry to help overcome this sort of problem.

Configuration Management: Because of the inherent complexity of most Defence-
related programmes, and the fact that they require multiple development teams, strong
emphasis is placed on the need for efficient tool-based configuration management methods
to support Ada projects. Of particular interest is support for software re-use across
projects and in devising suitable schemes for linking existing or future configuration
management databases to Ada system build facilities.

Current investigations are looking at the use of the DEC, SofTech and Verdix products for
this purpose. The results are expected to form the basis of a future paper.

Run-time support: The provision of efficient run time support for embedded
microprocessor-based Ada systems is crucial to the use of Ada for such applications.
To-date studies in this area have been frustrated by the frequent lack of detailed data
from the compiler vendors about the characteristics of the run-time support systems to be
supplied. Again, this is a problem area which could benefit from further collaboration
between the Compiler suppliers and Industry. Some of the issues of importance are:

i. the functionality, size and performance of the RTS, and the 'hooks' provided for use
by applications software,

ii. the advantages and disadvantages (eg for portability) of using proprietary RTS
systems eg Intel's iRMX, and the Hunter & Ready VRTX system, as well as Ada specific
products,

iii. the interaction between the underlying Ada compiler technology and the RTS system in
the context of the often non-standard hardware configurations used in embedded
microprocessor applications.

At the present time software that can be used to 'bench-mark' the commercially supplied
run-time support systems is being developed.

9-7

Conclusions

The research programme being carried out by the Plessey Company represents a major
initiative to examine the key issues associated with the transition to Ada. In common
with views expressed elsewhere [9], Ada is regarded as much more than another programming
language and is expected to provide a new and real opportunity to catalyse substantial
improvements in industry's software engineering capability. In particular, by allowing
the unification of working practices, Ada is expected to increase the opportunities for
much greater levels of software portability and re-use, software reliability, and overall
productivity.

Industry is keen to take advantage of these benefits but clearly any significant advance
reguires the availability of (cross-) compilers and support tools appropriate to the
systems to be produced. Such compilers need to be not only technically compliant with
the Ada Language Reference Manual but also of high performance and operationally
eff icient.

This is still an area of concern and despite the (increasing) number of validated Ada
compilers available it is thought that there is much to be done before Ada can really be
put to effective use for embedded microprocessor applicat-ions for which Ada has most to
offer.

However, for the complex and real-time applications described here, the experience gained
to-date gives cause for optimism. Thus, in the development of the Vax-based platforms
the DEC Ada compiler appeared to be well engineered and operationally efficient. In
these particular circumstances it resulted in comparable run-time performance in at least
one application to Pascal, and although it currently involves increased code sizes when
the run-time allocation of storage is taken into account, it is thought likely that this
situation will improve in future products.

At the same time, the fact that the research programme has slipped in time-scales due to
the non-availability of high performance cross-compilers and tools to support
representative embedded micro-processor configurations is a cause of concern. Such
delays could frustrate industry in bidding for and implementing these types of
application. A further concern is that there often seems to be insufficient
documentation concerning the detailed compiler characteristics eg resource reguirements,
availability of intermediate compiler outputs, run-time support features etc. This is an
area which is just beginning to receive greater attention in the Ada community and needs
to be encouraged.

As a general conclusion, it is felt that to-date there has been considerable emphasis
(perhaps not surprisingly) on producing validated Ada compilers, but much less on
providing genuine support for real Ada developments (whether this be appropriate
compilers, support tools or in devising effective working methods for use with Ada).
Clearly, if Ada is to be put into real service and provide the benefits that industry is
expecting this balance has to be redressed at the earliest opportunity.

Acknowledgements

This paper is produced as a conseguence of an in-house (private venture) funded Ada
research programme carried out by the Plessey Company in the U.K. The author would like
to record his thanks to the Company for supporting the production and presentation of
this paper, and to those people engaged on the programme who have provided the results
presented.

References

1. Official Definition of Mascot, The Mascot Suppliers Association, U.K., 1980.
2. Cooper G A, Carter C B, Hess A, "AV-8B/GR Mk 5 Engine Monitoring System", 21st Joint

Propulsion Conference, California, 1985.
3. Slape J, "Experience in the Use of Ada for a Digital Switching System", Ada UK

Conference, 1986.
4. Yourdon E and Constantine L, Structured Design, Prentice-Hall, 1979.
5. DeMarco T, Structured Analysis and System Specification, Prentice-Hall, 1979.
6. Learmonth and Burchett's Structured Design Method (LSDM), Learmonth and Burchett

Management Systems, London.
7. Booch G, Software Engineering with Ada, Benjamin/Curamings, California, 1983.
8. Berard E V, An Object-Oriented Design Handbook for Ada Software, E.V.B. Software

Engineering Inc., 1985.

9. Walsh T J, "Transitioning to Ada: The challenge for Software Engineering", Proc. 3rd
Annual National Conference on Ada Technology, Texas, 1985.

10-1

ADA® IN USE; A DIGITAL FLIGHT CONTROL SYSTEM

T. F. VJestermeier and H. E. Hansen
McDonnell Aircraft Company
McDonnell Douglas Corporation

P.O. Box 516
St. Louis, MO 63166

SUMMARY

A microprocessor-based, parallel-processing flight control system has been built
around the F-15 Eagle Dual Control Augmentation System and has been successfully flight
tested. The microprocessors are programmed using Ada, the Department of Defense (DoD)
standard high order language. It is widely agreed that Ada has the potential for
reducing software life cycle costs through increased programmer productivity. To use Ada
and realize the productivity gains, however, the compiler must be reasonably efficient.
The use of Ada is discussed, therefore, from these two interrelated standpoints:
software productivity and compiler efficiency. The productivity gains and the level of
efficiency actually achieved are highlighted.

INTRODUCTION

The first flight of the U.S. Air Force/McDonnell Douglas F-15 with an Ada-programmed
flight control system occurred at Edwards Air Force Base, California, on September 18,
1984. The F-15 thus became the first aircraft to fly with a mission-critical system
programmed in the Ada computer language.

The compiler and supporting equipment used in the flight were supplied by Zilog,
Inc. The compiler was designed and built by Irvine Compiler Corporation. At the time of
this writing certification of the Ada compiler is in process and validation is expected
to be completed in 1986. The operational flight software was developed by McDonnell
Aircraft, and is used in the flight control system's four Zilog Z8002 microprocessors.
The hardware used in the system was developed by the Astronics Division of Lear-Siegler,
Inc. The same system, programmed in the Pascal computer language, flew for the first
time in May 1983.

Recognizing that a number of technological advancements were occurring which could
importantly affect the direction of digital flight control system design in the near
future, the McDonnell Aircraft Conpany initiated an Independent Research and Development
(IRAD) program in the summer of 1981 designed to assess advancements in the following
technology areas: microprocessors, higher order languages (HOL's), floating point
arithmetic, and parallel processing.

It has long been recognized that HOL's have the potential for reducing software life
cycle costs, and current language standardization thrusts within the DoD are in pursuit
of that goal. On the other hand, the inefficiency of compilers has often meant that
HOL's were not feasible or cost effective for embedded software applications. Because of
recent developments, including higher quality compilers, cheaper memory, higher speed
processors, and computer architectures which better support HOL's, a reassessment of the
use of HOL's was undertaken as an important part of the IRAD activity.

In conducting this reassessment, the requirement to use Ada in future defense
systems was kept strongly in mind. The DoD has mandated the use of Ada in all
mission-critical defense systems that enter advanced development status after January 1,
1984 or that enter full-scale engineering development status after July 1, 1984.

At the time of initiation of the IRAD, suitable Ada compilers were not available.
Consequently it was decided to begin the HOL assessment with Pascal since, from a user's
standpoint, Pascal has many of the features of Ada. The particular Pascal compiler used
was a 7-pass, optimizing, microconcurrent version, built by Enertec, Inc., Lansdale, PA.
An Operational Flight Program (OFP) (including the executive, control laws, and
built-in-test) was written in Pascal and flown on the F-15 Eagle.

In late 1983 an Ada compiler was procured from Irvine Compiler Corporation, Irvine,
California. Compiler efficiency was made the first priority. Whatever the virtues of a
high-order language, the use of a HOL (including Ada) becomes impractical in many
real-time embedded applications if the compiler is inefficient, i.e., if the object code
produced by the compiler occupies too much memory or requires too much computation time.
In particular, a digital flight control system in many ways supplies the most severe test
to the use of Ada in real-time applications.

A complete OFP, including an executive, control laws, and a built-in-test function
was written in Ada. The object code was first tested at the module level. The software
was then integrated with the hardware and the combination subjected to a series of tests
befitting a flight-critical system, including a closed-loop, man-in-the-loop simulation.
The system was then ground tested on the airplane prior to flight testing.

®Ada is a Registered Trademark of the U.S. Government (Ada Joint Program Office).

Note: "The material herein was originally presented at the AIAA Guidance, Navigation and
Control Conference, August 1985. Copyright AIAA. Reprinted with permission".

10-2

The purpose of the present paper is to report our findings as to the use of Ada in a
Digital Flight Control System (DFCS). The specific hardware configuration that served as
the supporting system for Ada is described first. The configuration is shown to be a
microprocessor based, parallel processing system that facilitates an efficient software
structure. The bulk of the paper then concentrates on the evaluation of Ada from two
interrelated standpoints: software productivity and Ada efficiency. The productivity
gains and the level of efficiency actually achieved are highlighted.

Because of the stringent hardware size and computation time requirements inherent in
DFCS's, these systems in many ways supply the litmus test to the use of Ada in other
embedded real-time applications.

Implementation of Ada in the flight control system is the first step towards an
Ada-based integrated control system that will include elements of fire control, aided
navigation, propulsion and trajectory control.

SYSTEM DESCRIPTION

Hardware Configuration - The particular hardware configuration that served as the
supporting system for technology evaluation is built around the present F-15 Eagle dual
Command Augmentation System (CAS). This was done for two reasons: the electronic
portion of the CAS could be modified at minimum cost/time to provide all of the required
research and development digital features; and, the system could be flight tested with
minimum aircraft modification.

The present production F-15 control system is shown in Figure 1. The CAS computers
have been modified as depicted in Figure 2. The existing dual analog computers in each
computer LRU were replaced with two digital processors (Z8002 microprocessors)
(Reference (1)) and associated memory and converters. The modifications were carried out
by the Astronics Division of Lear Siegler Corporation, Santa Monica, and are described in
detail in Reference (2).

Rati
Gyro
Unit

Csntar
Slick

Acceleration
Unit

Lateral
Accel

CAS Pitch
Computer

Engaging
Control
Panel

ACT
EHV
CAS

Elactrlcal
Mechanical
Ailsron tuddar mlarconnact
Conirci sticK boost and pilcii companaator
Pitcti ratio adjust davica
Pitch trim controllar
Roll ralio adjust davica
Vatva
Actuator
Elacirohydraulic vaiva
Control augmantation systam

%

^kj

%^

CAS Roll/Yaw
Computer

P

Act

■6

AFCS - Automatic FilgM Control Sysiam

Figure 1. F-15 Present Mechanical and Dual Command Augmentation Flight Control System

10-3

A H

Analog
Comparators -

aP43-1(M3'2'R

Figure 2. F-15 Flight Control Coinputer Modifications

The resulting system is a parallel processing system with the Operational Flight
Program (OFP) partitioned by control axes^. Two processors operate on the pitch axis
software and two operate concurrently on the roll/yaw software. The two pitch processors
are frame synchronized, as are the roll/yaw processors. The two pitch processors,
however, are unsynchronized with respect to the roll/yaw processors. The dual processors
in the pitch and roll/yaw axes are consistent with the dual (fail-safe) nature of the
F-15 production CAS.

Reference (3) shows that the increased computation power afforded by parallel
processors (vis-a-vis a uniprocessor) can be used to advantage in a number of ways. The
increased computation power afforded by the present parallel system has been exploited to
support an HOL and to simplify the software structure. For example, all control laws are
processed at a single iteration rate, thereby avoiding a multiple rate structure.

Operational Flight Program - The OFP includes an executive, control laws, and a
built-in-test (BIT) function all programmed in Ada. The control laws used in this Ada
version of the OFP are designed to emulate the analog control laws, and therefore the
flying qualities of the production F-15. The built-in-test function includes a pre-
flight and a maintenance BIT, as described in detail in Reference (4).

The computational events in a 12.5 ms frame are depicted in Figure 3. All parts of
the control laws are coraputed at 80 Hz.

Memory sizes and computation times for the Ada version of the OFP are given in
Figure 4. (The maintenance portion of BIT is not included in this figure). Obviously, a
large amount of spare memory is available for future growth. The computation time
requires a 38% and 59% duty cycle in the pitch and roll/yaw computers. Thus, adequate
spare computation time is also available for future growth. The 622 word kernel referred
to in Note 4 is primarily the floating point algorithm written in assembly language.

FLIGHT TEST RESULTS

The DFCS programmed with the Ada OFP of Figure 4 was flight tested at Edwards AFB
during 1984. As shown in Figure 5, nine dedicated DFCS/ Ada test fights were flown in
two phases. The DFCS/Ada configuration was flown on nine other missions whose purpose
was other than the specific evaluation of DFCS/Ada.

10-4

The first test phase included four DFCS/Ada flights. The maneuvers included middle
of the envelope handling quality checks up to 1.2 Mach, large amplitude maneuvering,
tracking and formation flight. In all cases the test pilots commented that the aircraft
flew the same as any other F-15 with an analog flight control system.

Following the initial four DFCS/Ada flights it was decided to fly some additional
flights in order to expand the flight envelope. The second phase of DFCS/Ada testing
consisted of five flights.

Two flights (668-7 and 671-8) were flown in order to investigate the high angle-of-
attack handling qualities of the system with a clean aircraft configuration and a con-
figuration with a centerline tank and two inboard pylons. The pilots indicated that they
could not tell the difference between an aircraft equipped with an analog or digital CAS.

The final test flight (672-9) in this series of DFCS/Ada test flights expanded the
DFCS flight envelope to the high supersonic speeds. Five speed runs along with three air
refuelings were performed on this flight. The DFCS equipped aircraft was flown to
calibrated airspeeds up to 720 knots, Mach numbers up to 2.0 and at altitudes exceeding
45,000 feet. At all test points there were no anomalies noted in the data and pilot
comments indicated that the aircraft response was the same as a standard F-15 with an
analog CAS.

All the test points flown in these last four instrumented flights are plotted on a
standard F-15 level flight envelope in Figure 6. At all test points the AFFTC test
pilots noted that the DFCS aircraft responses were the same as a standard F-15. These
excellent results indicate that the DFCS programmed in Ada can be utilized throughout the
F-15 flight envelope.

—12.5 ms-

RCL YCL

Roll/Yaw A }—h

Time '-

RCL YCL RCL YCL

RCL YCL RCL YCL RCL YCL

Roll/Yaw Bj h

PCL PCL PCL

Pitch A I h

PCL PCL PCL

Pitch B I h

Synchronization

|—1553A Ihput Data

|—Discrete Inputs
(—Analog Inputs

PCL

1 r-

-l-H

■i

I—Analog Outputs
|—Discrete Outputs

1553A Output Data

■Watch Dog Time Reset

Time

Cwaicii u

Spare Ti
. «--

-12.5 ms-
PCL - Pitch Control Laws
RCL - Roll Control Laws
YCL - Yaw Control Laws

GP53^M11-1-R

Figure 3. Events in 80 Hz Computation Frame

OFP Element
Size

(16 Bit Words)

Spare 21,935

Time
(ms)

Pitch CAS Control Laws 1,343 2.81

Executive 2,026 2.00
Pitch
Computers
(Each)

Built-in-Test (Preflight) 934 N/A

Total 4,925('') 4.81

Available 27,648<2) 12.50(3)

Spare 22,723 7.69

Roll CAS Control Laws 775 1.72

Yaw CAS Control Laws 867 2.66

Roll/Yaw
Computers

Executive

Built-in-Test (Preflight)

2,454

995

3.02

N/A

(Each) Total 5,713<'') 7.40

Available 27,648(2> 12.5013)

5.10

(1) OFP version Ada; uses MCAIR floating poinl algorithm
(2) 27K flight memory card: 24K PROM; 2K scratcti pad; IK NVR
(3) 80 Hz computation frame
(4) Includes 622 word kernel

QP43-1043-4-R

Figure 4. DFCS OFP^^) Memory Size and Computation Time

Date Ftlglit Numbn inight TIma Pilot Purpose

9/17/84 622-1 1.2 Lt Col Saxon Middle of Envelope to Low Supersonic Testing

9/18/84 623-2 1.1 Fit LI Sears Middle of Envelope to Low Supersonic Testing

9/19/84 624-3 1.0 Fit LI Sears Trac)<lng and Formation

9/19/84 625-4 0-7 Lt Col Saxon Large Amplitude Maneuvering

11/19/84 659 1,6 Maj Slrittmatler Non-Test Flight

11/20/84 660 1,7 Maj Ferraloll Non-Test Flight

12/3/84 661 0,4 r^ai Strittmatter Non-Test Flight

12/4/84 662 2,6 Ma| Slrittmatler Non-Test Flight

12/4/84 663 0,4 Mai Strittmatter Non-Test Flight

12/4/84 664-5 1,2 Mai Ferraloll Middle ol Envelope to Low Supersonic Testing

12/5/84 665-6 1,5 Fit Lt Sears Tracldng and Formation

12/5/84 666 0,4 Maj Strittmatter Non-Test Flight

12/6/84 667 0-4 Maj Strittmatter Non-Test Flight

12/12/84 668-7 1.4 Fit LI Sears High Angle-of-Attack

12/12/84 669 1,6 Maj Prill Non-Test Flight

12/17/84 670 1,1 Fit Lt Sears Non-Test Flight

12/17/84 671-8 1,8 Maj Strittmatter High Angle-of-Attack

12/20/84 672-9 1,5 Fit LI Sears Supersonic

18 Flights 21,6 lir 5 Pilots

80

60

Altitude

1,000 ft
40

20

QP43-l043-2«^

)/ c 1 o <) O () O () /

7 o o<
oo c
o

)0 0(
)00 i

)0 o
) O () o^ ̂

•

o oo o
o

oo/ V. 5 Flight Envelope

1

Figure 5. Summary of DFCS/Ada Fliglit Testing

0 0.4 0 8 1.2 1.6 2.0 2.4 2.8

Mach Number ap43.ii»!7-K

Figure 6. DFCS/Ada Fiiglit Test Condition

10-5

SOFTWARE PRODUCTIVITY

An increase in software productivity and a corresponding decrease in the cost of
developing software is, of course, the raison d'etre for the use of Ada. Studies made
for the DoD predict that Ada will result in substantial cost savings DoD-wide.

A^ number of analyses have been made of the impact of HOL'S on software productivity
and life-cycle costs. Software productivity analyses necessarily involve assumptions
which are often highly judgemental, and sweeping generalizations about software
life-cycle costs are rightly viewed with skepticism.

VJith these caveats in mind, we present in Figure 7 our experience of the impact of
Ada on programmer productivity. The DFCS program is admittedly not a large experience
base and certainly no claim is made that these results are universally true. The figure
says that a software program written in floating point assembly language or Pascal will
require only about 40% and 20% of the effort required to produce that same program in
fixed point assembly language. Because of the similarity of Ada and Pascal from the
user's standpoint, for a flight control application Ada productivity gains are about the
same as Pascal. Assembly language is used as the basis of conparison since it is used in
the vast majority of embedded applications.

1.2

1.0

0.8
Relative

Programmer 0.61—
Manhours

0.4

0.2

0
 Y

Assembly Language
Notes:

(1} Effort applies to design, coding, and testing of control laws
(2) Pervasive use of Ada; estimate

Fixed
Pointd)

Floating
Point'i'

- Pascaldl Ada<"

. Adai!l.

GP43.1043«fl

Figure 7. Impact of HOL and Floating Point on
Programmer Productivity

For DFCS applications, the two features of Ada that strongly impact productivity are
high level constructs and floating point. As illustrated in Figure 8, they eliminate the
labor associated with fixed point arithmetic and simplify and reduce the source
statements required to program a system, thereby reducing programming errors and
simplifying program documentation. In (a), a structural filter is shown in its original
s-plane form; (b) shows the difference equation representation that is solved in the
digital computer; (c) shows the single Ada program statement required to solve this
equation; (d) shows the number of assembly language statements required. Note that the
assembly language employs floating point add/subtract (FADD/FSUB) and floating point
multiply (FMUL) instructions. If fixed point arithmetic had been used, the number of
statements required would have been still greater.

The Ada language is designed to promote the goals of software portability and
reuseability. When these goals are pervasively realized, it is estimated by a number of
notable software engineers that Ada may achieve productivity gains of 10:1 vis-a-vis
assembly language. Currently, however, a major impediment to the realization of these
goals is the lack of a large number of high quality compilers and associated target
computers. ^

The Phases of Software Development - It is widely agreed that the total of software
development consists of four activity phases: design, coding, testing and maintenance.
Ada obviously has a large impact on coding productivity as illustrated in Figure 8. Less
obvious IS the influence on software design, testing and maintenance. The impact on
software productivity must therefore be assessed for each of the four phases of software
development. The assessment must also take into account the four functional divisions of
the total flight control OFP: the control laws, the executive, the redundancy management
function, and the built-m-test (BIT) function.

10-6

Original S-Plane Representation
of Structural Filter

0.48073^ + 83.5533S + 3894

S^+125S + 3894

Assembly Language Statements*

STFL = [0.56603 • PRESTRU] - [0.33991 • PREM1STRUJ +
[0.089533 • PREM2STRU1 +[0.87711 • STFLM1]-

[0.19182 ■ STFLM2)

% RR8 Contains PRESTRU
% 0.56503 • PRESTRU
% Store Result for Later Use

% 0.33991 • PREM1STRU
% Prepare for Subtraction

Difference Equation Representation

STFL = 0.56503 • PRESTRU

-0.33991 • PREM1STRU

+ 0.089533 • PREI^2STRU
+ 0.87711 • STFM1 -0.19182 • STFLM2

^

or

Ada Statement

STFL: = 0.56503 • PRESTRU

-0.33991 • PREI^ISTRU

+ 0.089633 • PREM2STRU

+ 0.877116 • STF1M1 -0.19182 • STFl'M2;

LDL RR10,PCAS24;
CALL FMUL;
LDL RR6, RR8;
LDL RR8, PREM1STRU
LDL RR10, PCAS25;
CALL FMUI;
LDL RR10,RR8;
LDL RR8,RR6;
CALL FSUB,
LDL RR6,RR8;
LDL RR8,PREM2STRU;
LDL RR10,PCAS26;
CALL FMUL;
LDL RR10,RR6,
CALL FADD
LDL RR6,RR8;
LDL RR8,STFLI^1;
LDL RR10,PCAS27;
CALL FI^UI;
LDL RR10,RR6;
CALL FADD;
LDL RR6,RR8
LDL RR8,STFLM2;
LDL RR10,PCAS28;
CALL FMUI;
LDL RRIO.RRB;
LDL RR8,RR6;
CALL FSUB;
LDL STFI.RRB;

% RR6-[0.33991 • PREM1STRU]
% Store Result for Later Use

% 0.089533 • PREM2STRU

% RRt + [0.089533 • PREM2STRU1
% Store Resuit for Later Use

% 0.87711 • STFLM1

% RR6 +[0.87711 • STFLM1I
% Store Result for Later Use

% 0.19182 ■ STFLM2
% Prepare for Subtraction

% RR6-[0.19182 • STFLM21

Based on floating point algorithm
"Twice as long if fixed point Gp43.0013.25

Figure 8. Ease of Programming; Ada vs Assembly
Steps in Digital IVIechanization of Structural Filter (STFL)

A qualitative assessment is made in Figure 9 of the impact of Ada on each of the
functional divisions in each of the development phases. The percentages shown for each
of the functions are typical amounts, by word count, of the total OFP; thus, the control
laws are typically 20% of the total OFP size. The percentages shown for the development
phases are estimates of the amount of the total software development activity. Note that
the maintenance phase is less of a percentage of the total job than it might be for many
types of embedded software applications. This is so since the DFCS maintenance phase is
considered to begin with delivery of the first production aircraft. Barring major
structural, equipment, or aerodynamic changes to the aircraft, changes to flight control
software should be minor for production aircraft. Nevertheless, when these changes are
required, they are much easier to make with Ada.

Software Development Phases

OFP
Functional
Divisions

Design
(25%)

Coding
(20%)

Test(i)
(45%)

Maintenance'^)
(10%)

Control Laws (20%)

Executive (15%)
Redundancy Management (20%)

Built-in Test (45%)

Some

Nil

Nil

Nil

Large

Large

Large

Large

Large

Some

Some

Some

Some

Nil

Nil

Some

Notes:
{1) Ttie test ptiase includes development flight testing
(2) The maintenance phase begins with the delivery of production aircraft

Figure 9. A Qualitative Assessment of tfie Impact of Ada
on Software Productivity

Ada and floating point also have some inpact on software design, testing and
maintenance, although the impact is less direct. The language used has negligible
influence on the design of executive, redundancy management, and BIT software.
Synthesizing the control laws from aerodynamic data is totally independent of language
considerations; however, rendering the usual s-plane representation of the control laws
into a digital format is made easier with Ada and floating point.

Some aspects of testing and maintenance are made easier through the use of Ada and
floating point. During testing of the control laws, for example, finding and eliminating
overflows occasioned by the use of fixed point can be very time consuming. Modifications
to the software are much easier to make with Ada and floating point since only the
affected area of the program need be changed, whereas with assembly language and fixed
point, substantially more of the program may have to be rescaled and reprogrammed.

10-7

Concern is often expressed that testing, especially at the systems level, is more
difficult if Ada is used; an error found during hardware-software integration, for
instance, may be harder to locate and correct in the object code. This problem can be
circumvented by having the compiler generate an assembly-language listing that includes
comments that link the assembly-language object statements to the Ada source statements,
as m Figure 8(d). Such listings are necessary in any case if patches to the program are
to be made. In the DFCS project, no testing difficulties were encountered because of Ada.

Self Documentation - If properly generated, an Ada PDL Specification contains the
information and has the clarity of a flow chart. The compiler generates the listing and
programmer labor is not required. In addition, the source code by its very nature always
reflects the underlying machine instructions. The source statements in the listing,
moreover, are readily traceable back to the original software design document.

Transportability - An OFF written in assembly language must be checked out on the
actual target processor, an emulator of the exact processor, or a software simulator of
that processor. In all cases, the source program cannot be tested until one or more of
the above are procured and this may cause a delay in software development. With Ada the
problem can be circumvented. If a compiler is available for any target machine,
simulator, or emulator, the source program can be tested using one of these devices. In
so doing, a high confidence exists that the source program is correct well before the
target machine becomes available.

Floating Point Arithmetic - Floating point arithmetic is supported by most HOL's,
including the Ada language. In addition, floating point offers a number of advantages
vis-a-vis fixed point, even when used with assembly language: the range of numbers that
can be handled is extended; inherent safety features are provided; and software produc-
tivity is increased.

The use of floating point arithmetic extends the range of the variables used in DFCS
software with some important consequences: as examples, the granularity of a variable is
decreased, and the significant figures in a variable are more easily preserved.

The use of floating point algorithms also provides inherent safety features,
particularly the handling of overflows. Overflows, for example, are prevented from
occurring in the tody of the program.

Perhaps the biggest advantage of floating point, however, is increased programmer
productivity. With floating point, scaling is automatic, and the programmer is relieved
of all tedious and time consuming scaling considerations. This is in keeping with the
philosophy of having the computer handle all the tasks of which it is capable, allowing
the engineer more time for productive tasks.

It is a common perception that fixed point arithmetic is always faster than floating
point. This IS not necessarily true. In fact, although floating-point addition and
subtraction may take longer than fixed-point, floating-point multiplication and division
may be as fast or faster than fixed-point. In addition, fixed-point programs often
employ time-consuming double precision arithmetic to minimize round-off and truncation
errors. This is not to suggest, of course, that the speed of the floating point algorithm
used IS unimportant.

It was always the intent on the DFCS program to eventually implement floating point
in hardware; however, at the time of initiation of the program, suitable hardware was not
available. In the interim, various software floating point algorithms have been used.

The first floating point algorithm to be used employed the IEEE format and a 24-bit
mantissa. It was subsequently modified to use a 16-bit mantissa. This modified
algorithm^ achieved faster speeds with little degradation in accuracy and for a time was
the baseline implementation.

Recognizing that the speed of a floating point algorithm could be improved by
tailoring the format to the computer architecture, Harold Hansen, one of the authors of
this paper, developed a floating point algorithm which dramatically reduces computation
time from that achieved with the 16-bit algorithm, and which even approaches the
performance expected from a fast co-processor (see References 5 and 6). The
mechanization has been used in the Ada, Pascal, and assembly language versions of the OFP
with very favorable results.

The Ada language supports the use of fixed point arithmetic; however, the authors
believe that the use of fixed point, except in isolated instances, represents a major
step backwards. Therefore, the potential user of Ada should give serious consideration
to how floating point is to be mechanized.

10-8

COMPILER EFFICIENCY

Efficiency Goals - The main disadvantage of HOL's compared to assembly language is
an expansion of program size and execution time. The magnitude of expansion for a given
HOL varies widely, depending on the application, the compiler, and the target computer.
In DECS applications, program size directly affects recurring costs. At some point, the
additional cost of memory needed to accommodate a HOL for some number of aircraft can
offset the software development cost savings afforded by a HOL. If DECS performance is
not to be compromised, the expansion of execution time must be held to a tolerable level.
Memory and time expansion goals were therefore established, below which HOL code would be
cost and performance competitive with assembly language code, to wit:

GOALS:

— Time Expansion < 20%
-- Memory Expansion < 50%

The goals are about what we think the efficiency of a compiler should be in order to
produce object code that is competitive with assembly-language code on a production DFCS.
The rationale used to establish these goals follows.

In DFCS applications, confutation time is of the essence. For reasons of minimizing
the deleterious effects of aliasing and transport lags, DFCS computers must operate at
fairly high computation (iteration) rates (80 iterations per second are common). All
foreground portions (control laws, executive, and redundancy management) of the OFP must
be completed within the confutation frame.

It is, of course, difficult to generalize about how much time expansion can be
tolerated. In the present DFCS, an expansion in time in excess of 50% could be
tolerated. On the other hand, systems that just satisfy MIL-F-9490D would run out of
time if the expansion were in excess of 25%. For the purpose of the present study, an
expansion goal of less than 20% (expansion factor 1.2) was established.

As stated earlier, the most direct and measurable effect of the expansion in program
size is the increased recurring cost of memory. When contemplating the use of a HOL, the
trade-off between reduced software development costs and increased recurring costs must
be made, and the point determined at which a HOL becomes cost-effective. This point
will, of course, differ for every system application.

The factors involved are illustrated with Figure 10. The important assumptions
involved are shown on the figure. For sinplicity, the graph is made linear, thereby
neglecting the fact that at an expansion factor of 2.0, say, a whole new PROM board might
be required per computer; whereas at lower expansion factors, 1.1 say, only additional
memory chips may be required to be added to an existing board. In this illustration, if,
for example, the expansion factor is 2.0 (100%) the recurring cost of additional memory
is $2.4 MIL for a quad system. It is doubtful if the use of a HOL would reduce the
development cost of an OFP of this size so as to offset the increased memory costs. On
the other hand, with an expansion factor of 1.5 or less, the HOL might pay for itself.
Based on this type of analysis, a memory expansion goal of less than 50% was established.

2.5

Assumptions:
• Basic Assembly Language

OFP Size = 20Kx 16 Words
• Production Run of

500 Airplanes
• Memory Cost = 0.375° per Bit

(Mil Spec PROM)

Increased
Recurring 1.5
Cost of
Memory

Millions
of 1.0

Dollars

1.2 1.4 1.6 1.8

Memory Expansion Factor

Figure 10. The Impact of HOL Inefficiency on the increased
Recurring Cost of Memory

10-9

Efficiency Achieved - The computation time and memory expansion numbers for the Ada
OFP that was flown (Figure 4) are 1.1 and 1.63 as shown in Figure 11. The time expansion
is seen to be below the goal. The memory expansion is currently above the goal. In the
expansions, the assembly language program used for comparison employs floating point.

HOL Expansions Compared to Floating Point Assembly Language

Pascal Ada

Goal February May October August
1983 1983 1983 1984

Memory Expansion <1.5 1.77 1.35 1.30 1.63(1.36)*

Time Expansion <1.2 1.28 1.16 1.10 1.10

'Compared to fixed point assembly language

Figure 11. Compiler Efficiency

Gp43.1043.5-R

Achieving a high level of Ada efficiency will be an ongoing activity as it was with
Pascal, with similar results expected. Figure 11 illustrates how Pascal expansions
decreased over time as the compiler was modified for improved efficiency. As shown, by
Oct 83 the memory and time expansions had been reduced to 1.30 and 1.10, well below the
established goals. Ada time expansion is already below the goal.

SUMMARY AND CONCLUSIONS

An operational flight program has been developed in Ada and flown on an F-15 Eagle
m evidence of the fact that Ada is feasible in DFCS applications and therefore in other
avionic systems as well. In so doing, the increased software productivity resulting from
the use of Ada has been demonstrated.

In general, DFCS applications impose stringent requirements on compiler efficiency.
If memory expansion is too large, the increased recurring cost of system hardware will
offset the productivity gains; if computation time expansion is too large, the
performance of the system will suffer. In the present instance, exemplary memory and
computation time expansion levels have been achieved with an efficient Ada compiler.

The authors are of the opinion that the use of Ada holds great promise in avionics
systems. At the same time, they realize that Ada is not a panacea. If a computation
task cannot be accomplished in assembly language, neither can it be accomplished in Ada
If the compiler is inefficient, or if the target conputer speed is inadequate, then the
benefits of Ada may be elusive. But under the right combination of computer speed
efficient software structure, and compiler efficiency, as in the present F-15 DFCS the
benefits of Ada are substantial and can be realized.

REFERENCES

(1) Advanced Micro Devices, "AM Z8000 User's Manual", AMD Publication Number AMZ-291
April 1981.

(2) Lear Siegler, Inc. (Astronics Division), "F-15 DEFCS Hardware and Interface
Description", Report No. ADR-843/l, dated 27 July 1982.

(3) Westermeier, T.F., "Parallel Processing Applied to Digital Flight Control Systems;
Some Perspectives", NAECON, May 1981.

(4) Hansen, H. E., "A Method For Testing A Digital Flight Control System Without The Use
of Ground Support Equipment", IEEE/AIAA 6th Digital Avionics System Conference
November 1984. '

(5) T. F. Westermeier, H. E. Hansen, "Recent Digital Technology Advancements and Their
Impact on Digital Flight Control Design", NAECON, May 1983.

(6) T. F. Westermeier, H. E. Hansen, "The Use of High Order Languages In Digital Flight
Control Systems", IEEE/AIAA 5th Digital Avionics System Conference, November 1983.

SELECTIVE BIBLIOGRAPHY

This bibliography with Abstracts has been prepared to support
AGARD Lecture Series No. 146 by the Scientific and Technical
Information Branch of the US National Aeronautics and Space
Administration, Washington, D.C., in consultation with the
Lecture Series Director, Theodore F. Westermeier, McDonnell
Aircraft Company, St. Louis, Missouri.

PRINT 03/4/1-82 TERMINAL=67
UTTL: Reference manual for the Ada programming
language CORP: Honeywell Systems and Research
Center, Minneapolis, Minn.; Alsys, Saint Cloud
(France).

ABS: Ada is a programming language designed in accordance
with requirements defined by the United States
Department of Defense: the so-called Steelman
requirements. Overall, these requirements call for a
language with considerable expressive power covering £
wide application domain. As a result, the language
Includes facilities offered by classical languages
such as Pascal as well as facilities often found only
in specialized languages. Thus the language is a
modern algorithmic language with the usual control
structures, and with the ability to define types and
subprograms. It also serves the need for modularity,
whereby data, types, and subprograms can be packaged.
It treats modularity in the physical sense as well,
with a facility to support separate compilation. In
addition to these aspects, the language covers
real-time programming, with facilities to model
parallel tasks and to handle exceptions. It also
covers systems programming; this requires precise
control over the representation of data and access to
system-dependent properties. Finally, both
application-1evel and machine-1evel input-output are
def ined.

RPT*: AD-A131511 83/01/O0 84N10800

UTTL: Proceedings of the 2nd Annual Conference on Ada
(Trademark) Technology CORP: Army
Communications-Electronics Command, Fort Monmouth,
N.J. CSS: (Center for Tactical Computer Systems.)
Conf. held in Hampton, 27-28 Mar. 1984

RPT#: AD-A142403 84/03/00 84N30745

ABS:

RPT#:

ABS:

RPT#:

ABS:

UTTL: Introduction to Ada, a higher order language.
L103 teacher's guide CORP: Softech, Inc., Waltham,
Mass.
This guide aims to assist instructors who present
courses in the Ada programming language.
AD-A141848 84/05/00 84N29531

UTTL: Ada
Inc., Walt
This repor
di fferent
led to thi
under the
Contract.
To expand
contract c
insight in
design met
Ada this r
i11ustrate
convent i on
program st
AD-A140818

(Trademark) case st
ham, Mass.
t presents a set of
aspects of the Ada
s volume was perfor
Ada Design Methods
The objective of th
on Ada issues which
ited above to explo
to the characterist
hodology that would
eport contains fift
different areas of

s; types; coding pa
ructure.

84/01/00 84N27

udies II CORP: Softech,

case studies
language. The
med by SofTech
Training Suppo
is report is t
surfaced in t

re new Ada Iss
ics of a life
promote effec

een case studi
the Ada langu

radigms; excep

475

on
work which

Inc.
rt
hreefold:
he ASDMF
ues to gain
cycl e
tive use of
es which
age: naming
tions; and

RPT#:

UTTL: Ada compiler validation summary report: ROLM
Ada compiler, version 4.52 V-003 CORP: Softech,
Inc.. Waltham, Mass.
The ROLM Ada compiler, version 4.52, was tested in
June 1983 with version 1.1 (March 4, 1983) of the ACVC
validation tests. Version 1.1 of the test suite
contained 1,595 tests, of which 1,292 were applicable
to this compiler. Of the applicable tests, 56 were
withdrawn due to errors in the tests. All of the
remaining 1,235 applicable correct tests were passed.
AD-A136760 83/06/03 84N20202

UTTL: Ada (registered trademark) technical overview.
L102 teacher's guide CORP: Softech, Inc., Waltham,
Mass.

ABS: An introduction to the Ada computer programming
language is given. A summary of Ada program features
is provided. The Ada and FORTRAN languages were
compared.

RPT#: AD-A141862 84/05/00 84N29532

Western digital
CORP: Softech,

UTTL: Ada compiler validation report:
STC-Ada compiler, version C1.0M V-004
Inc., Waltham, Mass.

ABS: This report describes the results of the validation
effort for the following Ada translator: Host Machine:
Western Digital WD1600 Series MicroEngine; Operating
System: STC Ada Operating System 2.9; Host Disk
System: 10 megabyte Winchester; Target Machine:
Western Digital WD1600 Series MicroEngine; Operating
System: STC Ada Operating System 2.9; Language
Version: ANSI/MIL-STD-1815A Ada; Translator Name:
STC-Ada; Translator Version: C1.0m; and Validator
Version: 1.1 (March 4, 1983). Testing of this
translator was conducted by SofTech, Inc. The purpose
of this report is to document the results of the

a

RPT#:

ABS:

RPT#:

ABS:

RPT#:

ABS:

testing performed on the translator, and in
particular, to: identify any language constructs
supported by the translator that do not conform to the
Ada standard; identify any unsupported language
constructs required by the Ada standard; and describe
implementation-dependent behavior allowed by the
standard.
AD-Ai36738 83/07/28 84N20200

UTTL: Computer program
Ada integrated environ
facilities, type b5, B
Intermetrics, Inc., Ca
This document establis
test, and qualificatio
Integration Facilities
Environment. These fac
Library Interface Pack
the Program Library Su
includes requirements
program library, the e
integration occurs.
AD-A134003 IR-681-1

development specification for
ment: Program integration
5-AIE (1). PIF (1) CORP:
mbridge, Mass.
hes the performance, design,
n requirements for the Program
for the Ada Integrated
ilities include the Program
ages, the Program Builder and
pport Tools. This document also
for the design of the Ada
nvironment within which program

83/03/22 84N14774

UTTL: Computer program development specification for
Ada integrated environment. Ada compiler phases
B5-AIE (1). COMP (1) CORP: Intermetrics, Inc.,
Cambridge, Mass.
This document specifies the requirements for the
performance and verification of the Ada compilers for
the IBM (VM/370) and Perl< i n-E 1 mer (PE) 8/32 (OS/32)
systems. Each compiler provides the user with the
ability to translate an Ada compilation and obtain a
program listing and linl<able machine code for the
respective target machine; listing, optimization, and
debugging control are selectable by the user. Because
of the compiler structure and the similarity of the
target machines, the two compilers are nearly
identical. As a result, this document presents the
design as though there were a single Ada compiler;
where target-machine dependencies make the compilers
different, this is pointed out in the discussion.
AD-A134032 IR-677-2 82/11/05 84N14773

UTTL: System specification for Ada integrated
environment type A AIE(1) CORP: Intermetrics, Inc.,
Cambridge, Mass.
This specification establishes the performance,
design, development and test requirements for the Ada
Integrated Environment (AIE), an integrated set of
software tools designed to support the development and

maintenance of software written in the Ada Programming
Language.

RPT#: AD-A134080 IR-676-2 82/11/12 84N14769

UTTL: ADA (trademark) training curriculum.
Programming methodology m203 teacher's guide CORP:
Softech, Inc., Waltham, Mass.
Partial Contents; Review of Software Life Cycle;
Coding Phase; Goals; Structured Programming; Control
Structures; Coding Style; and Ensuring Reliability.
AD-A143581 84/07/00 84N33082

ffl

ABS:

RPT#:

ABS:

RPT#:

ABS:

UTTL: Ada
TeleSoft (
120 Motoro
1 . 1 CORP
The purpos
of testing
part icular
supported
Ada standa
constructs
discuss imi
the standa
AD-A146925

comp i1er
TeleSoft
la M68010
: Softech
e of this
perf orme'
to (1)

by the tr
rd; (2)
requ i red

piementat
rd.

84/08/

va1 i dat1 on s
Ada) comp i1e

us i ng 4.2
Inc., Fa i r

report is t
d on the Ada
identify any
anslator tha
dentify any
by the Ada
ion-dependen

ummary report:
r, version 2.0a for Sun
BSD UNIX-Sun Version
born, Ohio.
o document the results
translator and, in
language constructs

t do not adhere to the
unsupported 1 ariguage
standard; and (3)
t behavior allowed by

10 85N16484

UTTL: Ada compiler validation summary report, Dansk
Datamatik Center, VAX 11 compiler version 1.1 CORP:
Softech, Inc., Fairborn, Ohio.
The purpose of this Validation Summary Report (VSR) is
to present the results and conclusions of performing
standardized tests of the Dansk Datamatik Center
Compiler. The suite of tests known as the Ada Compiler
Validation Capability (ACVC), Version 1.4, was used.
The ACVC suite of tests is used to validate
conformance of the compiler to ANSI/MIL-STD-1815A
(Ada). The purpose of the testing is to ensure that
the compiler properly implements legal language
constructs and that it Identify, reject from
processing, and label illegal language constructs. The
testing also identifies implementation-dependent
behavior permitted by the standard. Six classes of
tests are used. These tests are designed to perform
checks at compile time, during execution, and at link
time. The ACVC, Version 1.4, contains 2178 tests, of
which 2011 were applicable to this implementation. Of
the 2011 applicable tests, 73 were withdrawn due to
the occurrence of errors in the tests. Results showed
that all of the remaining 1938 valid tests were
successfully passed by the Dansk Datamatik Center
compiler.

RPTif: AD-A149340 AVF-TAR-04.1184 84/11/06 85N20681

UTTL: Digital
Version T0.6-
Version 4.0 a
CORP: Federal
Va.

ABS: The Digital E
version T0.6-
11/730 using
MicroVMS vers
the ACVC vali
suite contain
applicable to
tests, 11 wer
Of the remain
and no anomal

RPT#: AD-A149375 AD
85N19696

Equipment Corporation VAX Ada Compiler
2 VAX-11/785, 11/750, 11/730, using VMS,
nd MicroVAX 1, using MicroVMS Version 1.0
Compiler Testing Center, Falls Church,

quipment Corporat
2, for the VAX-1 1
VMS version 4.0 a
ion 1.O, was test
dation tests. Ver
ed 2173 tests, of
this implementat

e withdrawn due t
ing applicable co
y was discovered
-F300533 TC-84-DE

ion Compiler VAX Ada,
/785. 11/780, 11/750,
nd MicroVAX 1 using
ed with version 1.4 of
sion 1.4 of the test
which 2099
ion. Of the
o errors in
rrect tests

were
applicable
the tests.
2099 passed

C-390 84/09/12

list of tests and results is provided in this report.
RPT#: AD-A153747 84/11/28 85N29591

UTTL: Ada (trademark) compiler validation summary
report. Honeywell information systems GC0S6 Ada
version 1.1 CORP: Federal Compiler Testing Center,
Fal1s Church, Va.

ABS: The Honeywell Information Systems Compiler GC0S6 Ada
version 1.1, for the DPS 6/95, DPS 6/75, DPS 6/45,
microsystem 6/20 and microsystem 6/10 using GC0S6
M0D400, was tested with version 1.4 of the ACVC
validation tests. Version 1.4 of the test suite
contained 2185 tests, of which 2008 were applicable to
this implementation. Of the applicable tests, 71 were
withdrawn due to errors in the tests. Of the remaining
applicable correct tests 1937 passed, and no anomaly
was discovered.

RPT#: AD-A153746 OIT/FSTC-84/515 84/12/14 85N29590

ABS:

RPT#:

ABS:

UTTL: Ada (trademark) compiler validation summary
report: ALSYS ALSYCOMP-OOOI CORP: Bureau
d'Orientation de la Normalisation en Informatique,
Rocguencourt (France).
The purpose of this report is to document the results
of the testing performed on the compiler, and in
particular, to: identify any language constructs
supported by the compiler that do not conform to the
Ada standard; identify any unsupported language
constructs required by the Ada standard; describe
implementation-dependent behavior allowed by the
standard.
AD-A153750 84/12/08 85N29592

UTTL: Ada compiler validation summary report.
University of Kar1sruhe-GMD/German MOD Siemens - BS
2000 version 7.30 CORP:
Industr ieanlagen-Betriebsgesel1schaft m.b.H.,
Ottobrunn (West Germany).
The purpose of this Validation Summary Report (VSR) is
to present the results and conclusions of performing
standardized tests of the GMD/German MOD Compiler.
On-Site testing was performed 27 Sep. 1984 to 8 Oct.
1984 at the GMD Center in B i r 1 i ngho.ven, Germany under
the auspices of the Ada Validation Facility (AVF),
according to the Ada Validation Office (AVO) policies
and procedures. The GMD Compiler (Siemens 7.XXX
Version 840404) is hosted on the Center's Siemens
7.571 Computer operating under BS2000 7.1. The suite
of tests known as the Ada Compiler Validation
Capability (ACVC), Version 1.4, was used. A complete

ABS:

RPT#:

ABS:

UTTL: Ada validatio
version 1.1 VAX-11/
CORP: Federal Compi
Va.
Under U.S. Army Contract DA
Incorporated has developed
for the Department of the A
Communications Electronic C
AdaVAX version 1.25, was te
the Ada Compiler Validation
suite on a VAX-11/780 opera
3.6. Version 1.4 of the tes
tests, of which 1943 were a
implementation. Of the appl
withdrawn due to errors in
applicable correct tests, a
anomaly was discovered.
AD-A153684 OIT/FSTC-84/501

n summary report. ALS AdaVAX
780 using VAX/VMS release 3.6
ler Testing Center, Falls Church,

AK80-C-0507, SofTech,
an Ada compilation system
rmy, Headquarters USA,
ommand. The compiler, ALS
sted against version 1.4 of
Capability (ACVC) test
ting under VAX/VMS version
t suite contained 2185
pplicable to this
icable tests, 74 were
the tests. Of the remaining
11 (1875) passed, and no

84/12/31 85N29588

UTTL: Ada compiler validation summary report:
University of Kar1sruhe-GMD/German MOD VAX 11
compiler, version vl.O CORP:
Industrieanlagen-BetriebsgeselIschaft m.b.H.,
Ottobrunn (West Germany).
The purpose of this Validation Summary Report is to
present the results and conclusions of performing
standardized tests of the System/German MoD compiler.
On-site testing was performed 28 Sep. 84 to 6 Oct. 84
at System KG in Karlsruhe, Germany under the auspices
of the Ada Validation Facility (AVF), according to the
Ada Validation Office policies and procedures. The
System compiler (VAX11 Version 1.0) is hosted on the

a
I

Center's VAX-11/750 computer operating under VMS 3.0.
The suite of tests known as the Ada Compiler
Validation Capability, Version 1.4, was used. The
purpose of the testing is to ensure that the cotnplier
properly implements legal language constructs and that
is identify, reject from processing, and label illegal
language constructs. The testing also identifies
implementation-dependent behavior permitted by the
standard. The AVF concluded that the results obtained
Show accepted compliance to the February 1983 ANSI Ada
Reference Manual.

RPIM: AD-A154370 84/11/12 85N30678

UTTL: Distributed avionics processing using ADA
AUTH: A/ADAMS, S. E.; B/CLAUSING, B. PAA:

A/(Intermetrics, Inc., Cambridge, MA) IN: NAECON
1983; Proceedings of the National Aerospace and
Electronics Conference, Dayton, OH, May 17-19, 1983.
Volume 2 (A84-16526 05-01). New York, Institute of
Electrical and Electronics Engineers, 1983, p.
979-983.

ABS: Problems that arise when implementing real-time
avionics systems are discussed, with emphasis placed
on the issues related to the use of the Ada language
for programming single and multiple processor systems.
Consideration is given to systematic and random timing
errors, scheduling by time multiplexing, task
partitioning, and problems arising from the use of two
new language constructs (rendezvous and exception
propagation). It is noted that in real-time
distributed systems, the accuracy of calculations will
be always affected by a time skew and that avionics
systems must be designed to tolerate this variation.
Care must be also taken to ensure a reasonable bound
for the inherent latency of multiprocessor
communications. 83/00/00 84A16647

UTTL: ADATLAS - The test language of the future
AUTH: A/ANDERSON, R. E.; B/MCGARVEY, R. L.; C/ZEAFLA, L.

A. PAA: C/(AAI Corp., Baltimore, MD) In:
AUTOTESTCON '81; Proceedings of the Conference,
Orlando, FL, October 19-21, 1981. (A83-10726 01-59)
New York, Institute of Electrical and Electronics
Engineers, Inc., 1981, p. 94-101.

ABS: ADA is the new DOD standard High Order Language
intended for use in embedded computer systems. This
paper proposes that it could be more cost effective to
write unit under test (UUT) programs in ADA instead of
ATLAS, the currently accepted standard test language.
This could be accomplished by combining the test
oriented features of ATLAS with the common programming
features of ADA, specifying a standard ADA package

that provides the test oriented functions.
83A10741

81/00/00
4^

AUTH:

ABS:

AUTH:

RPT#:

AUTH:

ABS:

UTTL: ANSI Ada and the UK M-CHAPSE
A/BARNES, d. G. P. CORP: Europea
Paris (France). In ESA Software
N84-14729 05-61)
The major changes to Ada resulting
standardization process are summer
project to provide the foundation
programming support environment fo
described. The M-CHAPSE objectives
host-target development systems wi
on the host; to provide consistent
friendly interfaces; to provide an
environment which accommodates fur
provide a foundation which support
entire system life cycle; to provi
which can be rehosted and retarget
cost; and to provide a secure and
system. 83/08/00 84N14760

n Space Agency,
Eng. p 243-250 (SEE

from the ANSI
ized. The M-CHAPSE
for a professional
r Ada and CHILL is
are: to provide

th source debugging
and convenient user
open ended
ther tools; to
s al1 aspects of the
de a portable system
ted at reasonable
reasonably efficient

UTTL: Software engineering
A/BATTRICK, B.; B/ROLFE, E. J. CORP: European Space
Agency, Paris (France). Proc. of ESA/ESTEC Sem.,
Noordwijk, Netherlands, 11-14 Oct. 1983
ESA-SP-199 ISSN-0379-6566 83/08/00 84N14729

UTTL: Ada (trademark) as a program design language:
Have the major issues been addressed and answered?
A/BLASEWITZ, R. M. CORP: RCA Government Systems
Div., Moorestown, N. J. CSS: (Missile and Surface
Radar.) In Army Communications-Electronics Command
Proc. of the 2nd Ann. Conf. on Ada (Trademark)
Technol. p 111-114 (SEE N84-30745 20-61)
Department of Defense requirements to use the higher
order language Ada will create challenges to
developers of military software that encompass these
major concerns: (1) developing a core of Ada software
personnel, (2) achieving productivity and software
gains that have been targeted as Ada life-cycle
objectives, and (3) transitioning to a language that
embodies a capability to express software solutions
eloquently, clearly, reliably and efficiently. Ada is
more than a programming language, it is the basis for
a modern perspective of software design and
engineering. The IEEE working group on Ada as a PDL
has been addressing the issues involved with the use
of Ada as a design mechanism for nearly two years.
This working group has recently generated a draft
guideline that addresses the key issues. The extent of

AUTH:

ABS:

Industry's involvement with Ada PDLs and the status
and final form of the IEEE product will substantially
impact both the acceptance of the Ada language and the
efficiency and correctness of its use.

RPT#: AD-P003430 84/03/00 84N30762

UTTL: Ada (Trademark) as a program design language. A
rational approach to transitioning industry to the
world of Ada through a program design language
cri ter ia
A/BLASEWITZ, R. M. CORP: RCA Government Systems
Div., Moorestown, N. J. CSS: (Missile and Surface
Radar.) In ASD Proc. Papers of the 2nd AFSC
Avionics Standardization Conf., Vol. 1 p 509-513 (SEE
N84-31121 21-06)
The Department of Defense requirements to use the
higher order language Ada by the mid-1980s will create
challenges to developers of military software that
encompass two major concerns: developing a core of Ada
software personnel, and achieving productivity and
software quality gains that have been targeted as Ada
life cycle objectives. Because of recent government
direction to use Ada-based PDLs, many organizations
are developing prototype Ada-based design methods. The
IEEE working group on Ada as a PDL is working on
guidelines for the use of Ada-based design languages.
The guidelines will include recommendations reflecting
the current state of the art as well as alternative
approaches in order to preserve good practice. The
extent of industry's involvement with Ada PDLs, and
also the status of the IEEE guidelines, may
substantially impact both the acceptance of the Ada
language and the efficiency of its use.
AD-P003556 82/11/00 84N31160

system designers to use Ada. This paper reviews
progress to date.

RPT#: AD-P003432 84/03/00 84N30764

RPT#:

AUTH:

ABS:

UTTL: Seeding the Ada (trademark) software components
industry
A/BOWLES, K. CORP: Telesoft, San Diego, Calif. In
Army Communications-Electronics Command Proc. of the
2nd Ann. Conf. on Ada (Trademark) Technol. p 125-128
(SEE N84-30745 20-61)
The principal aim of the Ada effort is economic -
particularly the enhancement of designer/programmer
productivity in all parts of the software life-cycle.
A shift in system design practice to widespread use of
off-the-shelf large scale Ada software components
would result in productivity gains exceeding a factor
of ten - far more than likely to result from use of
productivity enhancing software tools. To achieve
widespread use of off-the-shelf Ada components
requires establishment of a software components
industry, and a shift in attitudes about education of

AUTH:

ABS:

AUTH:

ABS:

RPT#:

UTTL: Ada - A good start, an exciting future
A/BRAUN, C. L. PAA: A/(SofTech, Inc., Waltham, MA)
Defense Electronics (ISSN 0278-3479), vol. 17, duly
1985, p. 105, 106.
An evaluation is made of the utility of the U.S.
Department of Defense standard computer language, Ada,
at the current stage of its development, and the
further performance improvements that may be obtained
in the course of its development history. It is noted
that the ful1 advantages that accrue to the
comprehensive use of a single high order language by
most Pentagon contractors will only begin to be
realized as entirely new software-intensive projects
are conceived; several major systems now entering
service antedate Ada. It is not expected that
fourth-generation high order languages incorporating
refinements beyond those embodied in Ada will be ready
in less than 10 years, which was the development
period length for Ada itself. 85/07/00 85A41549

UTTL
(APS
repo
A/CA
E. ;
Defe
Airl
The
estai
nece
wi 1 1
Envi
to 6
repr
ESV
Requ
Manu
sess
area
AD-A
84/1

Ada (trademar
E) Evaluation a
rt held at Airl
STOR, V. L.; B
D/KRAMER, d. F
nse Analyses, A
ie, Va., 2-6 Ap
Evaluation & Va
blished by the
ssary to assess
be included in
ronment (APSE)
, 1984, consist
esentatives who
subject areas
Irements, and t
al. Thi s report
ions and the pa
s under discuss
156667 AD-E5007
2/00 86N10829

T.

at

k) Programming Support Environment
nd Validation (E and V) workshop
ie, Virginia on 2-6 April 1984
/ANDERSON, C. M.; C/LINDQUIST,
., JR. CORP: Institute for
lexandria, Va. Workshop held
r. 1984
lidation (E&V) Task has been
AdPO to develop technology
the quality of software tools that
an Ada Programming Support
An E&V Workshop convened April 2

ed of government and industry
developed draft documents in three

Task Recommendations, Task
he APSE Evaluation Reference
contains an account of the plenary

pars that address the three subject
ion during this workshop.
21 IDA-M-34 IDA/HO-84-29295

U

UTTL: Evaluation and Validation (E/V) team public
report, volume 1

AUTH; A/CASTOR, V. L. CORP: Air Force Wright Aeronautical
Labs., Wright-Patterson AFB, Ohio.

ABS: The initial activities and accomplishments of the
Evaluation and Validation (E&V) Team are reported. The
purpose of the E&V Task, which is sponsored by the Ada
Joint Program Office (AJPO), is to develop the
techniques and tools which will provide a capability
to perform assessment of Ada Programming Support
Environments (APSEs) and to determine conformance of
APSEs to the Common APSE Interface Set (CAIS). As this
technology is developed, it is being made available to
DOD components, industry and academia. As with all
Ada-related activities, the widest possible
participation in the E&V Task is encouraged.

RPT#: AD-A153609 AFWAL-TR-85-1016-VOL-1 84/11/30
85N29584

UTTL: Teaching Ada (trademark) at the US Military
Academy

AUTH: A/COGAN. K. J. CORP: Military Academy, West Point,
N. Y. CSS: (Dept. of Geography and Computer Science.
) In Army Communications-Electronics Command Proc.
of the 2nd Ann. Conf. on Ada (Trademark) Technol. p
31-34 (SEE N84-30745 20-61)

ABS: A five year history of teaching Ada* with the NYU
Ada/Ed translator has evolved into an effective
methodology for teaching top-down engineering design
simultaneously with a bottom-up presentation of the
Ada grammar. With emphasis on embedded hardware
systems, students are confronted with successively
more difficult design problems which must be written
and executed on a VAX-11/780. Exposed to the Ada
features of packages, concurrency, generics, and
exception handling, students design, write and execute
an extensive term project simulating a real-time
embedded system using Ada. Projects approach the 1000
lines of source code limitation of the translator.
Reusability of code is stressed by importing a
previous year's package when feasible.

KPJff: AD-P003418 84/03/00 84N30750

UTTL: Experimenting with the Rolm Ada language
workshop for specifying and designing

AUTH: A/COUSERGUE, M.; B/PELLIZZARI, M. CORP: Centre
National d'Etudes Spatiales, Toulouse (France).
Presented at DESS Training Session, Toulouse

ABS: The utilization of Ada Language in specifying and
designing large real time computer programs for space
studies applications is discussed. Comparison with
languages such as SADT for specifications and PDL for

designing, are made. The Ada development environment
is presented theoretically and as a quality analysis.
It is shown that Ada is not acceptable for program
specifications, but quite adequate for designing.
84/06/00 85N12607

UTTL: The Ada (Trademark) run-time environment
AUTH: A/CROSS, d. K. CORP: Sperry Univac, St. Paul, Minn.

CSS: (Defense Systems Div.) In ASD Proc. Papers of
the 2nd AFSC Avionics Standardization Conf., Vol. 1 p
533-538 (SEE N84-31121 21-06)

ABS: The requirements on an Ada run-time environment are
surprisingly few and straightforward. The free choices
left up to the implementors of a run-time environment
are many and significant. These requirements and
freedoms are enumerated and discussed, and the
Importance of these issues to the success of an Ada
software system is described.

RPT#: AD-P003558 82/11/00 84N31162

a
ON

UTTL: In praise of procedures
AUTH: A/CURRIE, I. F. CORP: Royal S

Establishment, Malvern (England
ABS: The use of procedures vary grea

programming language to another
discussed and the use of proced
fashion is argued; in particula
obvious vehicle to provide the
encapsulation given in a very 1
language constructs such as ADA
implementation of these general
also discussed with reference t

RPT#; RSRE-3499 BR85316 82/07/00

ignals and Radar
).
tly from one

These variations are
ures in a very general
r, procedures are an
data abstraction and
imited form by other
packages. The
procedural values is

o the Flex computer.
83N18300

UTTL: Using Ada for a distributed, fault tolerant
system

AUTH: A/DEWOLF, J. B.; B/SODANO, N. M.; C/WHITTREDGE, R.
S. PAA : C/(Charles Stark Draper Laboratory, Inc.,
Cambridge, MA) CORP: Draper (Charles Stark) Lab.,
Inc., Cambridge, Mass. IN: Digital Avionics Systems
Conference, 6th, Baltimore, MD, December 3-6, 1984,
Proceedings (A85-17801 06-01). New York, American
Institute of Aeronautics and Astronautics, 1984, p.
477-484.

ABS: It is pointed out that advanced avionics applications
increasingly require underlying machine architectures
which are damage and fault tolerant, and which provide
access to distributed sensors, effectors and
high-throughput computational resources. The Advanced
Information Processing System (AIPS), sponsored by
NASA, is to provide an architecture which can meet the

RPT#:

AUTH:

ABS:

AUTH:

ABS:

RPT/C:

considered requirements. Ada
implementing the AIPS system
Ada are related to its provis
programming, error detection,
compilation, and standardizat
Chief drawbacks of this 1angu
availability and maturity of
and limited experience in app
real-time applications. The p
concerned with current plans
design of the software for AI
an overview of AIPS, AIPS sof
representative design issues
software categories.
AIAA PAPER 84-2703 84/00/00

was selected for
software. Advantages of
ions for real-time
modularity and separate
ion and portability,
age are currently limited
language implementations,
lying the language to
resent investigation is
for employing Ada in the
PS. Attention is given to
tware services, and
in each of four major

85A17873

UTTL: A host-target pr
for the production of
A/DOWLING, E. J.; B/A
Computer Systems Ltd.,
Software Eng. p i9i-i
Hardware and software
used for the productio
are discussed, togethe
choices made. Many sof
the host system (a DEC
software (configuratio
verification were deve
support environments a
the environment curren

ogramming support environment
high-quality real-time systems
VIS, B. E. CORP: Ferranti
Cwmbran (England). In ESA

98 (SEE N84-i4729 05-61)
components of an environment
n of large, real time systems
r with the reasons behind the
tware tools come directly from
VAX with VMS) but tools for

n) management and software
loped. Ada and Ada program
re contrasted with features of
tly used. 83/08/00 84N14753

UTTL: Diana reference manual, revision 3
A/EVANS, A., JR.; B/BUTLER, K. J. CORP: Tartan
Labs., Inc., Pittsburgh, Pa.
This document describes Diana, a Descriptive
Intermediate Attributed Notation for Ada, being both
an introduction and reference manual for it. Diana is
an abstract data type such that each object of the
type is a representation of an intermediate form of an
Ada program. Although the initial uses of this form
were for communication between the Front and Back Ends
of an Ada compiler, it is also intended to be suitable
for use with other tools in an Ada programming
environment. Diana resulted from a merger of the best
properties of two earlier similar intermediate forms:
TCOL and AIDA.
AD-A128232 TL-83-4 83/02/28 83N35684

UTTL: Software development methodologies and Ada. Ada
methodologies: Concepts and requirements, Ada
methodology questionnaire summary, comparing software
design methods for Ada: A study plan

AUTH: A/FREEMAN, P.; B/WASSERMAN, A. I. CORP: California
UniV. , Irvi ne.

ABS: This document rationalizes the need for the use of
coherent software development methodologies in
conjunction with Ada and its programming support
environments (APSE's) and describes the
characteristics that such methodologies should
possess. It is recognized that software development,
particularly for embedded systems, is increasingly
done in the context of overall systems development,
including hardware and environmental factors. While
there is a strong need for integrated systems
engineering, this document focuses on the software
issues only. Emphasis is thus given to the process by
which software is developed for Ada applications, not
Just with the language or its automated support
environment. The development activity yields a
collection of work products (including source and
object versions of Ada programs). These work products
are valuable not only through the development phase,
but also through the entire lifetime of the system as
modifications and enhancements are made to the system.

RPT#: AD-A123710 82/11/00 83N26541

UTTL: Parameterized programming
AUTH: A/GOGUEN. d. A. PAA: A/(SRI International, Menlo

Park; Stanford University, Stanford, CA) IEEE
Transactions on Software Engineering (ISSN 0098-5589),
vol. SE-10, Sept. 1984, p. 528-543.

ABS: The present investigation is concerned with a
technique called 'parameterized programming' which can
greatly extend the opportunities for reusing software
modules. The basic idea of parameterized programming
is to maximize program reuse by storing programs in as
general a form as possible. The implementation of this
concept requires a suitable notion of a parameterized
module, along with the capability for instantiating
the parameters of such modules, and the capability for
encapsulating existing code into modules. Language
features to support parameterized programming are
considered along with an illustration of parameterized
programming with some simple examples written in the
OBJ programming system now under development.
Attention is given to the hierarchical structure,
rewrite rules, details regarding parameterized
modules, and the denotational semantics of OBJ.
84/09/00 85A11097

CO

AUTH:

ABS:

RPT#:

AUTH:

ABS:

RPT#:

AUTH:

ABS:

UTTL: Ada compiler validation summary report: ROLM
Ada compiler, version 4.42 V-002
A/GOODENOUGH, J. B. CORP: Softech.'Inc., Waltham,
Mass.
This report describes the results of the validation
effort for the following Ada translator: Host Machine:
ROLM MSE/800, Data General MV/4000, MV/6000, MV/8000,
and MV/10000; Operating System: AOS/VS-Ada 2.03; Host
Disk System: 2.96 megabyte drives; Target Machine:
ROLM MSE/800, Data General MV/4000, MV/6000, MV/8000,
and MV/10000; Operating System: AOS/VS-Ada 2.03;
Language Version; ANSI/MIL-STD-1815A Ada; Translator
Version: 4.42; and Validator Version: 1.1 (March 4,
1983). Testing of this translator was conducted by
SofTech, Inc. The purpose of this report is to
document the results of the testing performed on the
translator, and in particular, to: identify any
language constructs, supported by the translator that
do not conform to the Ada standard; identify any
unsupported language constructs required by the Ada
standard; and describe implementation-dependent
behavior allowed by the standard.
AD-A136732 83/05/12 84N20199

UTTL: Ada (trademark) design language concerns
A/GRAU, J. K.; B/COMER, E. R. CORP: Harris Corp.,
Melbourne, Fla. In Army Communications-Electronics
Command Proc. of the 2nd Ann. Conf. on Ada
(Trademark) Technol. p 115-124 (SEE N84-30745 20-61)
This paper examines key language concerns regarding
Ada Design Languages (DL's) in regard to: life cycle
applicability; the information expressed by an Ada DL;
relationship of an Ada DL to the Ada language;
extensions of the Ada language through structured
commentary and annotation; and the relationship
between methodology and Ada Design Language. An
assessment is made of the relative maturity of Ada
DL's and of the obstacles to successful development of
an Ada DL standard.
AD-P003431 84/03/00 84N30763

UTTL: An advanced host-target environment for the
military computer family
A/HART, H.; B/HART, R.; C/MUENNICHOW, I. CORP:
TRW, Inc., Redondo Beach, Calif. In Army
Communications-Electronics Command Proc. of the 2nd
Ann. Conf. on Ada (Trademark) Technol. p 89-101 (SEE
N84-30745 20-61)
As part of the Military Computer Family Operating
System (MCFOS) project, extensions to the Ada Language
System (ALS) are being constructed which allow
software for the MCF computers to be developed and

RPT#:

AUTH:

ABS:

AUTH:

ABS:

tested in a host/targe
are collectively known
used for editing, comp
Ada programs, while AL
download the software
and execute the softwa
state-of-the-art high
monitoring facilities
environment. This pape
the ALSE from a user v
an applications progra
Extended Ada Language
AD-P003428 84/03/00

t envi ronment.
as the ALSE. A
i1i ng, 1i nk i ng
SE faci1i t ies a
into a connecte
re on the MCF,
level debugging
in an embedded
r describes the
iewpoint, conce
mmer would use
System to devel
84N30760

These extensions
LS faci1i t ies are
and exploring

re used to
d MCF computer
thus providing
and performance
target
components of
ntrating on how
MCFOS and the
op software.

00

UTTL: An automated methodology deve
A/HAWLEY, L. R. PAA: A/(Californi
Technology, Jet Propulsion Laborato
CORP: Jet Propulsion Lab., Californ
Pasadena. IN: Simulation in Ada;
Eastern Simulation Conference, Norf
1985 (A85-34127 15-61). San Diego.
Computer Simulation, 1985, p. 1-5.
research.
The design methodology employed in
applicability of Ada in large-scale
is described. Ada was considered as
FORTRAN to lower life cycle costs a
development efforts. An object-orie
taken, which featured definitions o
the capability of manipulating thei
real-time, and one-to-one correlati
object states and real world states
design process was automated by the
language (PSL)/problem statement an
PSL/PSA system accessed the problem
to enhance the code efficiency by,
non-used subroutines, and provided
report generation, besides allowing
interface descriptions. The ways in
methodology satisfied the responsiv
transportability, modifiabi1ity, ti
efficiency goals are discussed. 8

1opment
a Institute of
ry, Pasadena, CA)
ia Inst. of Tech.,
Proceedings of the
oik, VA, March 3-8,
CA, Society for
Army-sponsored

testing the
combat simulations
a substitute for

nd ease the program
nted approach was
f military targets,
r condition in
on between the

The simulation
problem statement

alyzer (PSA). The
data base directly

e.g., elimi nat ing
for automated
for functional and
which the

eness, reliability,
meli ness and
5/00/00 85A34128

UTTL: An expansive view of reusable software
A/HOROWITZ, E.; B/MUNSON, J. B. PAA: A/(Southern
California, University, Los Angeles, CA); B/(System
Development Corp., Camarillo, CA) IEEE Transactions
on Software Engineering (ISSN 0098-5589), vol. SE-10,
Sept. 1984, p. 477-487.
Developments related to software development have not
kept pace with advances related to computer hardware,
and the cost of software development has become

AUTH:

ABS:

RPT*:

expensive. One of the reasons for this phenomenon
Involves a lack of significant improvements made in
the productivity of software development work. The
present investigation is concerned with a concept
which has the potential for increasing software
productivity. That concept is now known by the
expression 'reusable software'. The advantages of an
employment of reusable software are related to the
observation that much of the code of one system is
virtually identical to code which was previously
written. In one example, it was found that 40-60
percent of actual program code was repeated in more
than one application. However, previous attempts to
utilize reusability concepts have not been entirely
successful. The current investigation has the
objective to examine reusability in its many forms and
to discuss their merits, primarily in the domain of
programming customized software systems. 84/09/00
85A11095

UTTL: Preliminary program manager's guide to Ada
A/HOWE, R. G.; B/BYRNE, W. E.; C/GRUND, E. C;
D/HILLIARD, R. F. I. ; E/MUNCK, R. G. CORP: Mitre
Corp., Bedford, Mass.
This draft guide provides current information that
should help a Program Manager in making decisions
relative to the use of Ada. It discusses pertinent Air
Force and DoD policy, effects of Ada on contractual
documentation, and steps that must be taken to apply
Ada. This guide identifies benefits and inherent risks
of using Ada, and Program Office initiatives needed to
control risk. It cites factors that will affect
programmer training, software cost and schedule
estimation, design, and configuration management. As
background information, the basic features of Ada and
the software needed to support programming in Ada are
described. The guide will be issued after review.
AD-A140347 WP-25012 ESD-TR-83-255 84/02/00
B4N26457

engineering education and training. These concepts
will result in an effective use of Ada in the shortest
time possible to realize cost savings and achieve
reliability and adaptability in computer software
development. The full potential of Ada cannot be
realized without appropriate education and training.

RPT#: AD-A148774 AD-E500686 IDA-M-7 IDA/HQ-84-28940
84/11/00 85N17592

UTTL: An evaluation of the needs and requirements for
the establishment of an Ada (trade name) liaison
organizat1 on

AUTH: A/dORSTAD, N. D.; B/LEE, d. A. N.; C/LOMONACO, S.
d., dR. CORP: Institute for Defense Analyses,
Alexandria, Va. CSS: (Science and Technology Div.)

ABS: This report examines the needs of the Ada doint
Program Office (AdPO) in the establishment of an
organization (to be called the Ada Liaison
Organization (ALO)) for the "sustenance' of the Ada
language following the acceptance of the language as s
National standard and during the early stages of
implementation, expansion of applicability, and
development of supporting systems. It Is proposed. In
view of the number of overlapping needs of various
responsibilities, that such an organization be formed
as a single unit so as to maintain coordination, but
with distinct subentities Interacting with the
differing internal and external agencies which have
cognizance of some phase of the Ada activity. The
ultimate responsibility for the continued support and
development of Ada remains with AJPO. The Ada Liaison
Organization will provide recommendations for the
administration of the Military Standard, the American
National Standard and other related standards or
specifications. The proposed charter of the ALO Is
presented in the Appendix.

RPT#: AD-A122286 AD-E500546 IDA-P-1681 IDA/HQ-82-24869
82/09/00 83N21825

AUTH:

ABS:

UTTL: Concept paper for th
(trademark) software engin
training plan
A/dORDAN, P. R.; B/MCDONA
CORP: Institute for Defens
The Ada doint Program Offi
December 1980, to manage t
(DOD) efforts to implement
life-cycle support for Ada
It Is the role of the AdPO
and training. The goal of
forth the concepts necessa

e development of a DOD Ada
eering education and

LD, C. W.; C/SCHAAR, B.
e Analyses, Alexandria, Va.
ce (AdPO) was established in
he Department of Defense
, introduce, and provide
. As part of this charter,
to address Ada education

this document is to set
ry for Ada software

AUTH:

ABS:

UTTL: APSE database user scena
A/KEAN, E. S. CORP: Rome Air
Griffiss AFB, N.Y. In ASD P
AFSC Avionics Std. Conf., Vol
N84-31165 21-06) Proc. held
- 2 Dec. 1982
The Database facilities provid
Integrated Environment are an
KAPSE/MAPSE design described i
Project management and configu
facilities are essential eleme
are provided through primitive
management system incorporated

r 1 o
Development Center,

roc. Papers of the 2nd
2 p 1085-1096 (SEE

in Dayton, Ohio, 30 Nov.

ed i n the Ada (1)
integral part of the
n the STONEMAN document,
ration control
nts in the design. They
s in the database
in the AIE

a

RPT#:

AUTH:

ABS:

AUTH:

ABS:

RPT#:

KAPSE/Database. L
development can b
primitives to mee
range from projec
programmers, and
administrative su
very different fu
various demands o
versatile and eff
describes the use
provided to AIE u
a software system
AD-P003593 82/1

arge and small scale system
e easily managed by manipulating the
t user requirements. The users may
t managers, software designers,
quality assurance personnel to
pport personnel. These users have
notional requirements and make
n the database that will require a
icient database system. This paper
rs interfaces and capabilities
sers during the development cycle of

1/00 84N31198

UTTL: Will Ada succeed?
A/KLEIN, D. PAA: A/(Rolm C
Defense Electronics (ISSN 02
1984, p. 105, 106, 108.
The U.S. Department of Defen
language, Ada, offers enhanc
transportability, simplified
cycle cost reductions. Its c
problems, however, in compil
and excessively severe train
evaluation is presently made
software implementation by t
well as the comparative adva
past experience with such la
Cobol. 84/12/00 85A34200

orp., San Jose
78-3479) , vol .

CA)
16, Dec.

se standard programming
ed software reliability,
maintenance, and 1ife
ritics have cited
er technology immaturity
ing requirements. An
of the status of Ada

he U.S. Armed Services, as
ntages of Ada, in light of
nguages as Fortran and

UTTL: A proposal for standard basic functions in Ada
A/KOK, J.; B/SYMM, G. T. PAA: A/(Centrum voor
Wiskunde en Informatica, Amsterdam) CORP: National
Physical Lab., Teddington (England). CSS: (Div. of
Information Technology and Computing.)
A standard basic mathematical functions package for
scientific computation in Ada is proposed. The package
is transportable to machines with different
floating-point types and its availability enhances the
portability of numerical software.
NPL-DITC-45/84 ISSN-0262-5369 CWI-NM-R8407 PB85-118701
84/06/00 85N14584

AUTH:

ABS:

RPT#:

AUTH:

ABS:

UTTL: An Ada (tradema
distributed computer
A/LANE, D. S.; B/HUL
Hughes Aircraft Co.,
Communicat ions-Electr
Ann. Conf. on Ada (Tr
N84-30745 20-61)
This paper reports on
distributed computer
in Ada. The goals of
transparent distribut
incremental growth, a
capabilities. Some of
distributing software
communicating process
the hardware configur
facilities. The model
then described. After
implemented, the proj
performance character
specifically, on dist
Ada language overhead
AD-P003423 84/03/00

rk) network: A real-time
system
ING, G.; C/BARDIN, B. M. CORP:
Fullerton, Calif. In Army
onics Command Proc. of the 2nd
ademark) Techno 1. p 55-61 (SEE

o

a prototype real-tim
system which will be
the Ada network are t
ion of application so
nd to provide fault t
the motivations and
in a local network o

ors are discussed, in
ation and software de
of distributed Ada p
the prototype softwa

ect will focus on ass
istics of the network
ribution, executive s
s.

84N30755

implemented
o support
ftware and
olerant
methods for
f
addition to

velopment
rograms is
re i s
essing the

oftware, and

UTTL: An optimizing table driven code generator for an
Ada compi1er
A/LEGNARD, T. M. PAA: A/(Florida State University,
Tallahassee, FL) IN: SOUTHEASTCON '83; Proceedings
of the Region 3 Conference and Exhibit, Orlando, FL,
April 11-13, 1983 (A85-28101 11-33). New York,
Institute of Electrical and Electronics Engineers,
Inc., 1983, p. 81-85.
The code generator presented in this paper is part of
an Ada cross-compiler, hosted on a CDC Cyber 6000
series computer and targeted for the Z8002
microprocessor, presently being developed at Florida
State University. It is a table driven code generator
automatically constructed from an attribute grammar
description of a translation from an intermediate
language of the compiler to a Z8002 assembly language.
The code generator tables are automatically derived
from the grammar using an attribute grammar processor
and an LALR(1) parser generator, thus automating much
of the code generation process. 83/00/00 85A28103

UTTL: Ada status and outlook
AUTH: A/KRAMER, J. F., JR. CORP: Ada Joint Program Office,

Arlington, Va. In AGARD Software for Avionics 6 p
(SEE N83-22112 12-01)

ABS: The Ada programming language is discussed. 83/01/00
83N22123

AUTH:

ABS:

UTTL: A specification technique for the common APSE
(Ada programming support environments) interface set
A/LINDQUIST, T. E.; B/FACEMIRE, J. L.; C/KAFURA, D.
G. CORP: Virginia Polytechnic Inst. and State Univ.
Blacksburg. CSS: (Dept. of Computer Science.)
This report demonstrates an approach to specifying
kernel Ada support environment interface components.

The objectives are to provide a mechanism which allows
building a complete enough specification for
validation, an understandable specification, and one
that is relatively easy to construct. In meeting these
objectives, an Abstract Machine approach has been
modified and applied to functional description of
kernel operations. After motivating an explaining the
approach, the paper exemplifies its utility.
Interactions among kernel operations and pragmatic
implementation limits, which are other needed parts of
a specification, are also discussed.

RPTif: AD-A140889 CS84004-R 84/04/00 84N27479

UTTL: Design of Ada systems yielding reusable
components - An approach using structured algebraic
specif icat ion

AUTH: A/LITVINTCHOUK, S. D.; B/MATSUMOTO, A. S. PAA:
A/(Mitre Corp., Bedford, MA); B/(ITT Advanced
Technology Center, Stratford, CT) IEEE Transactions
on Software Engineering (ISSN 0098-5589), vol. SE-10,
Sept. 1984, p. 544-551.

ABS: Experience with design of Ada software has indicated
that a methodology, based on formal algebra, can be
developed which integrates the design and management
of reusable components with Ada systems design. The
methodology requires the use of a specification
language, also based on formal algebra, to extend
Ada's expressive power for this purpose. It is shown
that certain requirements for the use of Ada packages
which cannot be expressed in Ada can be expressed in
algebraic specification languages, and that such
specifications can then be implemented in Ada.
84/09/00 85A11098

UTTL: Annotation language design for Ada (ANNA)
AUTH: A/LUCKHAM, D. C. CORP: Stanford Univ., Calif. CSS:

(Computer Systems Lab.)
ABS: This interim report covers research work on Annotation

language design for Ada. The major goal of this
research was the design and development of programming
tools that may be incorporated into an Ada Programming
Support Environment during the mid-1980's time frame.
Since Ada is a very advanced language containing many
essential new features such as tasking, and standard
Ada tools such as compilers do not yet exist, the
research has been structured so as to approach the
major goal by first studying the error detection
problem for subsets of Ada corresponding to already
highly used languages such as Pascal. The error
detection problem as an important starting point
because this attempts to analyse programs for common
errors without assuming that the programs have

RPT#:

AUTH:

ABS:

RPT#:

AUTH:

ABS:

RPT#:

AUTH:

ABS:

accompanying annotations. At the start of this project
no formal annotation language for Ada existed. The
second phase of the research effort was to design an
annotation language for Ada, called ANNA. This would
provide a basis for verification of Ada programs in
general. This second report deals with the work on the
design of ANNA.
AD-A140452 RADC-TR-83-298 84/01/00 84N26336

Calif. CSS:

project
The purpose of

UTTL: Ada advanced error detector
A/LUCKHAM, D. C. CORP: Stanford Univ.
(Computer Systems Lab.)
This is the final technical report on a
entitled "Ada Advanced Error Detector.
this project was to study techniques of detecting
common runtime errors in sequential Ada at
compile-time using verification techniques, high level
annotation languages, and runtime detection of
deadness errors in Ada tasking. This work has resulted
in a working prototype implementation of a system for
detecting and diagnosing tasking errors.
AD-A140273 RADC-TR-83-299 84/01/00 84N26334

UTTL: Software library: A reus
A/METCALF, S. G. CORP: Naval
Monterey, Calif.
This thesis presents a conceptual vi
Software Library. Issues concerning
crisis and its subsequent impact on
development are reviewed. The tradit
described for the purpose of compari
Software Library. A particular examp
Library, the Program Library, is des
prototype of a reusable library. A h
structure for a Program Library is d
approach to making the library entit
accessible and retrievable. The role
generators in the Program Library is
special features of Ada that support
libraries are described. Finally, no
the Software Library are discussed
AD-A150722 84/06/00 85N24816

able software issue
Postgraduate School,

ew of a reusable
the software
software
ional 1ibrary i s
son with the
le of the Software
cribed as a
ierarchical
iscussed as an
ies easily
of applicat ion
described. The
programmi ng
ncode products in

UTTL: Flowcharting with D-charts
A/MEYER, D. CORP: Jet Propulsion Lab., California
Inst. of Tech., Pasadena.
A D-Chart is a style of flowchart using control
symbols highly appropriate to modern structured
programming languages. The intent of a D-Chart is to
provide a clear and concise one-for-one mapping of
control symbols to high-level language constructs for

a

RPT#:

purposes of design and documentation. The notation
lends itself to both high-level and code-level
algorithmic description. The various issues that may
arise when representing, in D-Chart style, algorithms
expressed in the more popular high-level languages are
addressed. In particular, the peculiarities of mapping
control constructs for Ada, PASCAL, FORTRAN 77, C,
PL/I, Jovial J73, HAL/S, and Algol are discussed.
NASA-CR-175641 JPL-PUB-84-99 NAS 1.26:175641
85/01/15 85N24806

loss density curve (ELDC) which provide information
pertaining to two conflicting performance criteria:
insensitivity to impulsive noise contamination and
efficacy (power). Based on the proposed performance
measures and descriptors some detectors, such as, the
linear or the quadratic detector are shown to be
nonrobust. Their comparison in adverse noise
conditions with what is considered as robust
detectors, in the framework of the presented theory,
is improper. 82/00/00 83N13327

a

UTTL: Impact of ADA on the software life cycle
AUTH: A/MICKEL, S. B. PAA: A/(General Electric Co.,

Sunnyvale, CA) IN: Computers in Aerospace
Conference, 4th, Hartford, CT, October 24-26, 1983,
Collection of Technical Papers (A84-10001 01-59). New
York, American Institute of Aeronautics and
Astronautics, 1983, p. 200-204.

ABS: The introduction of the ADA programming language to
the software development process is discussed. The
software life cycle is outlined and illustrated with
block diagrams, and it is shown that ADA, because of
its flexibility, will affect almost every aspect of
the cycle, especially the phase transitions (where
different languages meet using present techniques),
the design methodology, software reusability, and
programmer training. While experience with ADA is
required to maximize the benefits it offers, some
preliminary recommendations (for the next few years)
can be made, including revision of the military
standard specifications, types, and forms;
modification of software-acquisition practices to
promote reusability; standard nomenclature for
embedded systems; and the development of training
programs based on sets of graduated examples.

RPT/f: AIAA PAPER 83-2362 83/00/00 84A10030

UTTL: Adaptive robust and nonparmetric procedures with
application to communications, radar, sonar and array
signal processing

AUTH: A/MIHAJLOVIC, R. A. CORP: Polytechnic Inst. of New
York, Brooklyn.

ABS: The qualitative aspects of robustness in the signal
detection framework is addressed. Local and global
robustness properties of the detector are investigated
and various approaches to the quantitative and
qualitative characterization of the robustness are
introduced. The measures of robustness are easy to
calculate and provide valuable information about
performance of the detector in a severe noise
environment. Of particular interest to the designer is
the efficacy robustness curve (ERC) and the efficacy

AUTH:

ABS:

RPT#:

AUTH:

ABS:

RPT#:

UTTL: Preliminary design and
method for validating evolvin
A/MILLER, E. D., JR. CORP
Wright-Patterson AFB, Ohio.
Engineer ing.)
This project consisted of a p
partial implementation of a t
existing Ada Compiler Validat
test set so it can be used to
compilers. The project evalua
repackaging each of test clas
suggested methods for repacka
developed uses a table-driven
duly 1980 proposed standard
parser to generate a represen
Once the representation is de
language-features are removed
representation is output as a
AD-A127333 AFIT/GCS/MA/83M-1

implementation of a
g Ada compilers
Air Force Inst. of Tech.,
CSS: (School of

reliminary design and a
ool which modifies the
ion Capability (ACVC)
test evolving Ada

ted the feasibility of
ses found in the ACVC and
ging the tests. The tool
parser which parses the
In uses output from the
tation of a test program,
veloped, unsupported
from it. The remaining
valid test program.
83/03/00 83N31338

UTTL: Ada-Europe guidelines for Ada compiler
specifications and selection
A/NISSEN, J. C. D.; B/WICHMANN, B. A.; C/DOWLING, T.
; D/GOLDSACK, S.; E/JEANROD, H.; F/MONTGOMERY, A.;
G/PIERCE, R.; H/REFICE, M.; I/THETHANG, N.;
J/TAFVELIN, S. CORP: National Physical Lab.,
Teddington (England). CSS: (Div. of Information
Technology and Computing.)
The Ada language reference manual defines the language
rather than indicating a list of the desirable
properties of an implementation of the language. The
characteristics of an implementation that should be
taken into account in the specification or selection
of an Ada compiler are listed.
NPL-DITC-10/82 ISSN-0262-5369 82/10/00 83N18287

UTTL: Ada-Europe guidelines for the portability of Ada
programs, second edition

AUTH: A/NIS5EN, J. C. P.; B/WALLIS, P.; C/WICHMANN, B. A.;
D/BARNES, d.; E/BRIGGS, 0.: F/DOWLING, T.;
G/GOLDSACK, S.; H/JEANROND, H.; I/MONTANEGRO, C;
J/MONTGOMERY, A. CORP: National Physical Lab.,
Teddington (England). CSS: (Div. of Information
Technology and Computing.)

ABS: A users guide for designing and coding portable Ada
programs is supplied. Layout and numbering follow the
Ada language reference manual. Tasks, program
structure, compilation issues, exceptions, generic
program units, representation specifications,
implementation dependent features, input/output
routines, lexical elements, declarations, types,
names, expressions, statements, subprograms, pacl<ages,
and visibility rules are covered. Guidelines are
classified as mandatory, recommended, or suggested.

RPT#: NPL-DITC-27/83 ISSN-0262-5369 83/07/00 84N12739

UTTL: Kernel ADA Programming Support Environment
(KAPSE) interface team: Public report, volume 2

AUTH: A/OBERNDORF, P. A. CORP: Naval Ocean Systems Center.
San Diego, Calif.

ABS: The continuing'activities of the Kernel Ada
Programming Support Environments (KAPSE) interface
team and its industry/academia auxiliary are reported.
(Ada is a recent, DOD-developed programming language.)
The Ada Joint Program Office (AdPO)-sponsored effort
will ensure the interoperability and transportability
of tools and data bases among different KAPSE
implementations. The effort is the result of a
Memorandum of Agreement (MOA) among the three' services
directing the establishment of an evaluation team,
chaired by the Navy, to identify and establish KAPSE
interface standards. As with previous ADA-related
developments, the widest possible participation is
being encouraged to create a broad base of experience
and acceptance in industry, academia, and the DOD.

RPT#: AD-A123136 NOSC/TD-552-VOL-2 82/10/28 83N24198

AUTH

ABS:

UTTL: Mapping
A/OCONNELL, S.
Tal1ahassee, F
of the Region
April 11-13, 1
Institute of E
Inc., 1983, p.
This paper des
and back ends
microprocessor
called the Tra

Ada onto a simple virtual machine
PAA: A/(Florida State University,

L) IN: SOUTHEASTCON '83; Proceedings
3 Conference and Exhibit, Orlando, FL,
983 (A85-28101 11-33). New York,
lectrical and Electronics Engineers,
73-77.

cribes the interface between the front
of an Ada compiler for the Z8000

This interface consists of a program
verser, which translates the

intermediate language produced by the front end into
the second intermediate language (IL2), which is the
input to a table-driven code generator. The traverser,
the IL2, and the method of code generation have
features which make the compiler easily retargetable.
The IL2 code is directed toward a virtual machine with
a stack based, byte-addressable memory. Target
machine-related details in the Traverser are
parameterized. The Traverser does all of the storage
binding, and interacts with the Code Generator only
through a table of IL2 operators. 83/00/00
85A28102

UTTL: Configuration management and the ADA programming
support environment

AUTH: A/PULFORD, K. d. CORP: Marconi Avionics Ltd.,
Boreham Wood (England). In AGARD Software for
Avionics 10 p (SEE N83-22112 12-01)

ABS: It is the aim of software development environments to
increase the efficiency with which software is
produced. One such environment is the ADA programming
support environment (APSE) Initiated by the U.S.
Department of Defence. These environments are a great
benefit to programmers making some of their tasks much
easier. They also offer great opportunities to monitor
and control software development. This in its turn
will affect the way that projects are organized and
run, and it will affect project personnel jobs to
varying extents. The way that projects will be
affected by the adoption of an APSE is explored by
considering the way that Configuration Management can
be implemented in an APSE. 83/01/00 83N22131

UTTL: Artificial intelligence in Ada (trademark):
Pattern-directed processing

AUTH: A/REEKER, L. H.; B/KREUTER, d.; C/WAUCHOPE, K.
CORP: Tulane Univ., New Orleans, La.

ABS: If the programming language Ada is to be widely used
in artificial intelligence applications, it will be
necessary to demonstrate to programmers that it can
provide superior facilities for use in that domain.
One means of doing this is to provide facilities for
pattern-directed programming within Ada. This report
includes three papers, of which the first is designed
to serve as an introduction to pattern-directed
programming and to the significance of the two papers
that follow. It includes: discussions of artificial
intelligence programming and the facilities provided
by the Ada language, pattern-directed computation,
pattern matching, and parsing. The other two papers
deal with the use of Ada for pattern-directed
programming. One paper deals with efficient

6d

implementation of pattern matching (within Ada) is
1 important, because pattern matching tends to be
inefficient, leading to problems with excessive
processing time. Another paper treats extensions of
pattern-direction from strings to more general data
structures of the sort used in artificial
i ntel1igence.

RPT#: AD-A156230 AFHRL-TR-85-12 85/O5/O0 85N35671

UTTL: Teach Ada (trademark) as the student's first
programming language?

AUTH: A/RICHMAN, M. S. CORP: Pennsylvania State Univ.,
Middletown. In Army Communications-Electronics
Command Proc. of the 2nd Ann. Conf. on Ada
(Trademark) Technol. p 50-54 (SEE N84-30745 20-61)

ABS: In designing an Ada programming course within our
colleges and universities, one of the first issues we
must confront is the level of expertise we shall set
as prerequisite to the course. Ada is a very rich and
complex language. Must the student have experience
with some other high order language in order to
appreciate Ada? The speaker contends that programming
in Ada can be taught in a meaningful way to the
neophyte and, in fact, there are decided advantages
inherent in learning Ada as a first language. Some
suggestions are offered for coping with the size and
complexity of Ada.

RPT#; AD-P003422 84/03/00 84N30754

UTTL: Program development with Byron
AUTH: A/SENGUPTA, S.; B/SNYDER, G. PAA: B/(Intermetrics,

Inc., Cambridge, MA) IN: NAECON 1984; Proceedings of
the National Aerospace and Electronics Conference,
Dayton, OH, May 21-25, 1984. Volume 2 (A85-44976
21-01). New York, IEEE, 1984, p. 687-694.

ABS: BYRON, which provides a program development language
(PDL) based on the Ada(+) programming language and a
set of tools is presented. The tools, which include
the BYRON language analyzer, a document generator, and
a text formatter, are discussed. The BYRON data flow
is shown, as are examples of package specification,
algorithm design and implementation, output list of
units, and user manual output. 84/00/00 85A45071

UTTL: Ada programming design languages - A report on
their status

AUTH: A/SHEFFIELD, J. R.; B/LINDLEY, L. PAA: A/(SofTech,
Inc., Dayton, OH); B/(U.S. Navy, Naval Avionics
Center, Indianapolis, IN) IN: NAECON 1983;
Proceedings of the National Aerospace and Electronics
Conference, Dayton, OH, May 17-19, 1983. Volume 2

(A84-16526 05-01). New York, Institute of Electrical
and Electronics Engineers, 1983, p. 968-972.

ABS: A survey was performed of Ada-based methodology, tool
developments and related project developments which
support the concept of using the Ada language as a
Programming Design Language (PDL). The survey
categorized the work being performed by various
companies and individuals, synopsized the work which
has been documented to date, and assessed the work
relative to its use as a PDL in an Ada framework. The
findings of this survey were used to recommend
guidelines for an Ada PDL adequate for use on upcoming
Navy projects. These guidelines address the popular
topic of whether an Ada PPL should be a proper subset
of the Ada language, the method for which English
narrative may be used to keep the description at the
design rather than code level, and the mechanism for
adding information to the design not covered by the
software engineering concepts embodied in the Ada
language proper. 83/00/00 84A16645

UTTL: Applied research in Ada
AUTH: A/STERNE, D. F. PAA: A/(dohns Hopkins University,

Laurel, MD) Johns Hopkins APL Technical Digest (ISSN
0270-5214), vol. 5, July-Sept. 1984, p. 266-269.

ABS: Ada is a new state-of-the-art computer programming
language developed by the Department of Defense for
embedded computer systems. Ada represents a modern
approach to reducing software life-cycle costs. In
connection with the adoption of Ada by the armed
services, certain transition problems arise. For this
reason, it was decided to conduct a three-phase
program of applied research. The program objectives
are discussed, taking into account the progress made
in the studies. The objectives of the first phase were
to gain hands-on programming experience and to acquire
familiarity with the central technical issues
surrounding Ada and the Ada Programming Support
Environment. The objectives of Phase 2 are to explore
the issues of applying Ada to Navy tactical software
systems, while Phase 3 is concerned with the
development of some specific spinoff products.
84/09/00 85A12219

UTTL: Guidelines for the design of large modular
scientific libraries in Ada

AUTH: A/SYMM, G. T.; B/WICHMANN, B. A.; C/KOK, J.;
D/WINTER, D. T. PAA: A/(National Physical Lab.,
Teddington, England); B/(National Physical Lab.,
Teddington. England) CORP: Center for Mathematics
and Computer Science, Amsterdam (Netherlands). CSS:
(Dept. of Numerical Mathematics.)

ABS:

RPT#:

AUTH:

ABS:

RPT/?:

Solutions for the design and Implementation of
scientific subroutine libraries in Ada are suggested.
Precision, basic mattiematical functions, composite
data types, information passing, error handling,
working space organization, and real time environment
are considered.
CWI-NM-N8401 B8469329 84/03/00 84N30792

UTTL: Guidelines for the design of
scientific libraries in Ada
A/SYMM, G. T.; B/WICHMANN, B. A.;
D/WINTER, D. T. PAA: C/(Stichtin
Centrum); D/(Stichting Mathematis
National Physical Lab., Teddington
Div. of Information Technology and
Guidelines for constructing numeri
packages for basic computations, a
packages, using Ada are presented,
precision, composite data types, i
error handling, working space orga
time environment are discussed.
NPL-DITC-28/83 ISSN-0262-5369 IR-2
83/07/00 84N12740

large modular

C/KOK, d.;
g Mathematisch
ch Centrum) CORP:
(England). CSS: (
Comput ing.)

cal analysis
nd applicat ions
Problems related to

nformation passing,
nization, and real

AD-B095226L

identified. The design of the Ada Language System
(ALS) is then described in terms of these basic
capabilities. The ALS is a computer programming
support environment for Ada.

RPTfS': AD-P003416 84/03/00 84N30748

UTTL: The Army Ada (trademark) education program
AUTH: A/TURNER, D. J. CORP: Army

Communications-Electronics Command, Fort Monmouth,
N.J. CSS: (Center for Tactical Computer Systems.)
In its Proc. of the 2nd Ann. Conf. on Ada (Trademark)
Technol. p 1-4 (SEE N84-30745 20-61)

ABS: In behalf of the U.S. Army, CENTACS is pursuing a
comprehensive and aggressive Ada program. An important
aspect of that program is the development and transfer
of public domain Ada educational and training
materials which are focused on the needs of the
academic, industrial and government communities. This
paper provides an overview of the Army's Ada education
and training program and summarizes the products and
materials which are being produced under contracts
with Softech, Inc., New York University and Jersey
City State College.

RPT#: AD-P0034 14 84/03/00 84N30746

UTTL: The US Army model Ada (trademark) training
curr iculum

AUTH: A/TEXEL, P. P. CORP: Softech, Inc., Waltham, Mass.
In Army Communications-Electronics Command Proc. of
the 2nd Ann. Conf. on Ada (Trademark) Technol. p 5-10
(SEE N84-30745 20-61)

ABS: This paper describes the U.S. Army Model Ada Training
Curriculum, developed by Softech, Inc. for the U.S.
Army, Ft. Monmouth, N.J. The curriculum consists of
individual modules which can be grouped together to
form the courses and training plans that best satisfy
the needs of specific organizations. The paper
describes the modules in terms of content,
prerequisites, and status, as of the date of this
conference. Finally, the paper addresses how a manager
might go about using this curriculum to satisfy the
training needs of his organization.

RPT#: AD-P003415 84/03/00 84N30747

UTTL: Configuration management with the Ada
(trademark) language

AUTH: A/THALL, R. M. CORP: Softech, Inc., Waltham. Mass.
In Army Communications-Electronics Command Proc. of
the 2nd Ann. Conf. on Ada (Trademark) Technol. p
11-24 system (SEE N84-30745 20-61)

ABS: Three characteristics of large software projects and
five basic configuration management capabilities are

UTTL: An attribute grammar for the semantic analysis
of Ada

AUTH: A/UHL, J.; B/DROSSOPOULOU, S.; C/PERSCH, G.;
D/GOOS. G.; E/DAUSMANN, M.; F/WINTERSTEIN, G.;
G/KIRCHGAESSNER, W. PAA: G/(Kar1sruhe, Universitaet,
Karlsruhe. West Germany) Research supported by the
Bundesamt fuer Wehrtechnik und Beschaffung,. Berlin,
Springer-Verlag (Lecture Notes in Computer Science,
Volume 139) , 1982, 517 p.

ABS: An attribute grammar (AG) that specifies the semantics
of the programming language Ada is presented. The
development of the AG is traced, together with the
applications of semantic analysis within a front-end
compiler. Attention is given to attribute value,
language elements, entities, syntactic units, and
words which change meaning with position in the typed
text. The procedure followed in the development of the
attribute grammar is explored and the AG is compared
with other grammars. Attribute types are defined, as
are constants, the STANDARD package, and the start
environment. Terminals and nonterminals and their
attributes are inventoried, as are the syntactic rules
and the semantic functions. 82/00/00 83A45140

»

UTTL: Ada developments
AUTH: A/VANKATWIJK, d. CORP: Technische Hogeschool , Delft

(Netherlands). CSS: (Dept. of Mathematics and
InformatIon.)

ABS: Worldwide developments around the programming language
Ada are discussed. Structuring and data structures in
the Ada subset are described.

RPT#: REPT-84-28 84/00/00 85N29604

UTTL: A concurrent PASCAL implementation on a Rolm
1664

AUTH: A/VANMEURS, W. d. CORP: National Aerospace Lab.,
Amsterdam (Netherlands). CSS: (Informatics Div.)
Presented at 2nd European Rolm Users Group Conf.,
Wiesbaden, West Germany, 22-23 Mar. 1983

ABS: Concurrent PASCAL (CP) was studied as an intermediate
step in the changeover to the Ada language. The
transportation of a CP computer and run time
environment from a POP 11/45 to a Rolm 1664 to be used
In airborne applications is described. Ways in which
CP contributes to reusable software because of its
language structure and machine independence are
discussed. Transportation of the complete software
system (operating system plus application programs)
proves to be feasible. As the system being transported
is already run, testing of the new implementation can
be confined to the virtual machine. The results are
Increased programmer productivity and program
rel1abi1i ty.

RPT#: NLR-MP-83035-U 83/06/12 84N28531

UTTL: The use of Ada in digital flight control systems
AUTH: A/WESTERMEIER, T. F.; B/HANSEN, H. E. PAA:

B/(McDonnell Aircraft Co., St. Louis, MO) IN:
Guidance, Navigation and Control Conference, Snowmass,
CO, August 19-21, 1985. Technical Papers (A85-45876
22-08). New York, AIAA, 1985, p. 597-603.

ABS: A microprocessor-based, parallei-processing flight
control system has been built around the F-15 Eagle
Dual Control Augmentation System and has been
successfully flight tested. The microprocessors are
programmed using Ada, the Department of Defense
standard high order language. It is widely agreed that
Ada has the potential for reducing software life cycle
costs through increased programmer productivity. To
use Ada and realize the productivity gains, however,
the compiler must be reasonably efficient. The use of
Ada is discussed, therefore, from these two
Interrelated standpoints: software productivity and
compiler efficiency. The productivity gains and the
level of efficiency actually achieved are highlighted.

RPT/C: AIAA PAPER 85-1953 85/00/00 85A45939

UTTL: Tutorial material
AUTH: A/WICHMANN, B. A. PAA:

London) CORP: National
(England). CSS: (Div.
Comput ing.)

ABS: Ada programming language
outlined, with exercises
numerical computation bu
floating point; notation
approximate computation;
for the investigation of
data types; and portabil

RPT#: NFL-DITC-34/83 ISSN-0262

on the real data types in Ada
A/(European Research Office,
Physical Lab., Teddington

of Information Technology and

numeric features are
, for programs familiar with
t not with Ada. Fixed and
for literals; a model of
universal expressions; tools
numerical accuracy; complex
ity issues are covered.
-5369 84/01/00 84N27458

0\

UTTL: Utilization of Ada as
AUTH: A/WYLIE, G. d.; B/WATT, T.

Postgraduate School, Monter
ABS: In terms of manpower, time

largest investment that mus
acquisition and maintenance
computer system is the inve
response to this situation
comprehensive research and
attempt to reduce, if not e
problems associated with so
end result of this effort w
programming language. This
development of the language
concepts and features which
software crisis solution. T
will be further examined as
they support the utilizatio
design language.

RPT#: AD-A132244 83/06/00 84N

a program design language
R. CORP: Naval

ey, Calif.
and money, the single
t be made In the
of a large and complex
stment made in software. In
DOD began an intensive and

development effort in an
liminate the inherent
ftware system design. The
as the creation of the Ada
thesis will examine the
, focusing attention on the
make Ada a potential

hese concepts and features
to the extent to which

n of Ada as a program

13830

AGARD Lecture Series No. 146
Advisory Group for Aerospace Research and
Development, NATO
APPLICATION OF ADA* HIGHER ORDER
LANGUAGE TO GUIDANCE AND CONTROL
Published May 1986
114 pages

The need to reduce escalating software life-cycle costs is the
raison d'etre for Ada. Early experience with the language
suggests that the promise of increased software
productivity can be fulfulled. However, many problems
remain: the need for validated and efficient compilers

* Ada is a registered trademark of the US Government
(Ada Joint Program Office)

P.T.O.

AGARD-LS-146 AGARD Lecture Series No. 146
Advisory Group for Aerospace Research and
Development, NATO
APPLICATION OF ADA* HIGHER ORDER
LANGUAGE TO GUIDANCE AND CONTROL
Published May 1986
114 pages

The need to reduce escalating software life-cycle costs is the
raison d'etre for Ada. Early experience with the language
suggests that the promise of increased software
productivity can be fulfulled. However, many problems
remain: the need for validated and efficient compilers

* Ada is a registered trademark of the US Government
(Ada Joint Program Office)

P.T.O.

AGARD-LS-146

ADA (programming
languages)

Computer systems
programs

Digital computers
Compilers
Operating systems
(computers)

ADA (programming
languages)

Computer systems
programm

Digital computers
Compilers
Operating systems
(computers)

AGARD Lecture Series No. 146
Advisory Group for Aerospace Research and
Development, NATO
APPLICATION OF ADA* HIGHER ORDER
LANGUAGE TO GUIDANCE AND CONTROL
Published May 1986
114 pages

The need to reduce escalating software life-cycle costs is the
raison d'etre for Ada. Early experience with the language
suggests that the promise of increased software
productivity can be fulfulled. However, many problems
remain: the need for validated and efficient compilers

* Ada is a registered trademark of the US Government
(Ada Joint Program Office)

P.T.O.

AGARD-LS-146 AGARD Lecture Series No. 146
Advisory Group for Aerospace Research and
Development, NATO
APPLICATION OF ADA* HIGHER ORDER
LANGUAGE TO GUIDANCE AND CONTROL
Pubhshed May 1986
114 pages

The need to reduce escalating software life-cycle costs is the
raison d'etre for Ada. Early experience with the language
suggests that the promise of increased software
productivity can be fulfulled. However, many problems
remain: the need for validated and efficient compilers

* Ada is a registered trademark of the US Government
(Ada Joint Program Office)

P.T.O.

AGARD-LS-146

ADA (programming
languages)

Computer systems
programs

Digital computers
Compilers
Operating systems
(computers)

ADA (programming
languages)

Computer systems
programs

Digital computers
Compilers
Operating systems
(computers)

U22A317

NATO ^ OTAN

7 RUE ANCELLE • 92200 NEUILLY-SUR-SEINE

FRANCE

Telephone (1) 47.45.08.10 • Telex 610176

DISTRIBUTION OF UNCLASSIFIED

AGARD PUBLICATIONS

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD
publications is made to AGARD Member Nations through the following National Distribution Centres.Further copies are sometimes
available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies listed below.

NATIONAL DISTRIBUTION CENTRES
BELGIUM

Coordonnateur AGARD — VSL
Etat-Major de la Force Aerienne
Quartier Reine Elisabeth

.,'.' ■ Rue d'Evere, 1140 Bruxelles

CANADA
Defence Scientific Information Services
Dept of National Defence
Ottawa, Ontario Kl A 0K2

DENMARK
Danish Defence Research Board
Ved Idraetsparken 4
2100 Copenhagen 0

FRANCE
O.N.E.R.A. (Direction)
29 Avenue de la Division Leclerc
92320 ChatiUon

GERMANY
Fachinformationszentrum Energie,
Physik, Mathematik GmbH
Kernforschungszentrum
D-7514 Eggenstein-Leopoldshafen

GREECE
Hellenic Air Force General Staff
Research and Development Directorate
Holargos, Athens

ICELAND
Director of Aviation
c/o Flugrad
Reyjavik

ITALY
Aeronautica Militare
Ufficio del Delegato Nazionale all'AGARD
3 Piazzale Adenauer
00144 Roma/EUR

LUXEMBOURG
See Belgium

NETHERLANDS
Netherlands Delegation to AGARD
National Aerospace Laboratory, NLR
P.O.Box 126
2600 AC Delft

NORWAY
Norwegian Defence Research Establishment
Attn: Biblioteket
P.O. Box 25
N-2007 Kjeller

PORTUGAL
Portuguese National Coordinator to AGARD
Gabinete de Estudos e Programas
CLAFA
Base de Alfragide
Alfragide
2700 Amadora

TURKEY
Department of Research and Development (ARGE)
Ministry of National Defence, Ankara

UNITED KINGDOM
Defence Research Information Centre
Kentigern House
65 Brown Street
Glasgow G2 SEX

UNITED STATES
National Aeronautics and Space Administration (NASA)
Langley Research Center
M/S 180
Hampton, Virginia 23665

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD
STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE

DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

Microfiche or Photocopy

National Technical
Information Service (NTIS)
5285 Port Royal Road
Springfield
Virginia 22161, USA

PURCHASE AGENCIES

Microfiche
ESA/Information Retrieval Service
European Space Agency
10, rue Mario Nikis
75015 Paris, France

Microfiche or Photocopy

British Library Lending
Division
Boston Spa, Wetherby
West Yorkshire LS23 7B0
England

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, title, author or editor, and
publication date. Requests to NTIS should include the NASA accession report number. Full bibhographical references and abstracts of

AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR)
published by NASA Scientific and Technical
Information Branch
NASA Headquarters (NIT-40)
Washington D.C. 20546, USA

Government Reports Armounceraents (GRA)
published by the National Technical
Information Services, Springfield
Virginia 22161, USA

Printed by Specialised Printing Services Limited
40 Chigwell Lane, Loughton, Essex IGIO 3TZ

ISBN-92-835-1527-7

