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A ﬁ. “In this thesis a pattern recognition system capable of classifying
Wl
L2 two dimensional shapes with multiple edges was developed. The problem
;}éﬁ of multiple edge classification was treated as an extension of the single
h ")
LEQ) edge problem. For each edge, a feature vector was formed from the para-
(12
. ' meters of an autoregressive model of a time series representing the shape
fﬂ : of the edge. The dimension of these feature vectors was further re-
0N
rﬁ%j duced by the use of a transformation based on the Karhunen-Loeve
ij expansion. A minimum distance classification rule was used to classify
1,83,
;ﬁit an input transformed feature vector according to the nearest class mean
Wit
g\$ in the transformed feature space.
"y
i Two boundary sampling methods as well as two versions of the
| ﬁ; Karhunen-Loeve transformation were investigated. An illustrative
Y
“j:i numerical example and the description of the system tests are provided.
;,‘ Using an equal angle boundary sampling technique and the pre-whitened
r:*i Karhunen-Loeve transformation, an industrial shapes test showed 100%
3
&5 N correct classification results with an average classification time of
’$b 1.27 seconds. The complete Fortran listings of the routines written for
Vil
B this system are included in the Appendix at the back of this work. o
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objects.

in Figure 1.1.

of labelled features.

down into a series of logical steps.

discriminating features of the animal.

Sensing

Pre-
Processing
and
Feature
Selectian

CHAPTER 1

INTRODUCTION

The purpose of this thesis is to classify objects with mulitiple
edges using the method of classification based on a Karhunen-Loeve trans-
formation of the autoregressive model parameters which represent the

shapes of the boundaries detected in thresholded, digital images of the

The human ability to recognize a particular object can be broken
For instance in order to recognize
a cat, a person looks at the cat and unconsciously collects the unique
Then a comparing process occurs
where the just collected information is compared to the vast storehouse
A match occurs when the newly collected features
agree with the features remembered as those belonging to a cat.

An automatic pattern recognition system uses the same principles.

The block diagram of a simple pattern recognition system is shown belaw

A e A o e, |

Xq F====7 X
p—— —
X, ]
— | Xa
Y further | P
: Processing |
vox
X i M |
LN r ’
booo—d M

Classi-
fication

Decision
———ey

Figure 1.1.1

%

o e e

Block Diagram of a Pattern Recognition System
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A sensing device such as a TV camera passes the raw data to a storage

device. In the storage area the two-dimensional image can be digitized,
thresholded, segmented and preprocessed in any way to enhance the dis-
criminating features of the object. Once the image has been satisfactor-
ily preprocessed, the physical features or the structural relationships

(or both) can be selected and put into array (also called pattern vector

or feature vector) form for computer manipulation. At this point the

pattern vector can undergo further processing, or it can go directly to

a classifier or categorizor. Generally the classifier has been pre-

viously trained with examples of expected pattern vectors called training
samples and their corresponding labels. Pattern classification occurs
when the input data is assigned to one of a finite number of categories

or pattern classes.

In this thesis a pattern recognition system which is capable of
classifying a broad set of objects is developed. The feature vectors of
the objects are formed from the parameters of a particular linear differ-
ence equation called the autoregressive (AR) equation. The AR equation
has been shown to be an effective model for the shape of an object's
boundary [Dubois, 1984]. To further reduce storage space and classifi-
cation time, the AR parameters are then projected onto the Karhunen-
Loeve (K-L) coordinate axes. By making use of the special properties of
the K-L expansion, the dimension of the feature vector can be further
reduced. The result of this work has been the development of an efficient
object recognition system that requires very little training data
storage space and no extra dedicated hardware.

The 1ist of applications for an automatic pattern recognition system

is almost endless. At present, recognition systems are being used in

‘\."“."‘.'..".'.- Ny ‘\ﬂ'"'\'\'\""."-'_\'_-._‘_._'.,'.,'._' ~\.¢- PN PRI !‘*il
SOV CR TR PRI AR T LY o A AT AL AJ-'-)\ 'Jb .AM\ ..A’J\eﬁ?‘




-ms industry to inspect and identify parts. As a part moves down an

; assembly line the vision system can inspect for quality and can also make
é%: sure that the right part is moving down the line at the proper time.

:éL: Electronic suppliers use vision systems to ensure proper placement of

P . circuit board components [Beavers and Hubach, 1984]. Industrial robots
‘:ﬁ are currently in use for parts inspection, sorting, and material handling.
; } Two specialized bin-picking robots are already finding their way into

3 factories; one is the GE Bin Vision robot and the other is the ORS (Object
“ja Recognition System) system called i-bot 1 [Edson, 1984]. Much research
E% is being done for the autonomous robot where the ability to recognize

‘f¥ obstacles is necessary to prevent the robot from walking into things or
;;% falling off precipices.

t;j Other areas for the application of a pattern recognition system are
.j_ in the military and the medical fields. A recognition system such as the
T% one developed in this work could be adapted for use in the classification
é% of objects in remotely sensed images. Other military applications for a
,j pattern recognition system include automatic undersea searching and

@f target classification. In the medical field this work could be imple-

Ei mented to classify cells or chromosomes.

?:' The vision systems in use today generally require a great amount of
?@ training data in order to classify an object. A reduction in the amount
?5 of data needed to characterize an object would allow more storage space
:; for the training data of additional objects. This would allow the vision
? system to be able to recognize more objects and less time would be needed
§ for retraining. The recognition of three dimensional shapes may require
i: the storage of many views of the same object. This is only possible if
‘2; the amount of data to describe one view is minimal. The development of
b
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a recognition system that could classify an object using a few parameters
would be beneficial to any system that qeeded to classify a large number
of objects.

The subsequent chapters will introduce and then describe in detail
the theory and implementation of the pattern recognition system developed
in this work. Chapter 2 introduces some feature selection techniques
found in the literature. The rest of the chapter then focuses on the
particular autoregressive model and the parameter estimation algorithm
used to produce a feéture vector. Chapter 3 describes the classifi-
cation process and how that process is made simpler and quicker by trans-
forming the feature vector onto a set of Karhunen-Loeve coordinate axes.
Chapter 4 discusses the actual software implementation of the pattern
recognition theory in order to produce a working system. Chapter 5
provides a numerical example of the system theories and also covers the
tests of the system and their results. Chapter 6 concludes this work
with some comments on the test results and suggestions for further

improvements.
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CHAPTER 2
FEATURE SELECTION THEORY

According to George S. Sebestyen "Pattern recognition is a process
of decision making in which a new input is recognized as a member of a
given class by comparison of its attributes with the already known
pattern of common attributes of members of that class" [Sebestyen, 1962].
It is the job of the feature selector to form the set of attributes which
are most representative of the common features of a class.

As a way of introducing the problems encountered in the feature
selection process, some algorithms found in the literature will be
described and compared in the first section. The second section will
present the feature selector used in this work. Included in that section
will be the description of some boundary representation schemes, and
also the theory and parameter estimation of the model used to produce

the feature vector.

2.1 Feature Selection Background

Feature selection algorithms are divided into three basic groups.
The first group is comprised of heuristic algorithms which are based on
ad hoc rules dependent on the particular objects to be classified. Since
we are not dealing with any one particular type of object, we are more
interested in general algorithms which can be applied to any type of
object. These algorithms form the following two categories: the

syntactical and the mathematical. The main difference between the two

s W VYOR
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D types of algorithms is that the syntactical algorithms deal with the

b structural information of the image. This differs from the mathematical
‘V approach which fits an analytic model to the physical features of an

N image. These two types of algorithms are described in further detail in
3 the following paragraphs.

b

Z 2.1.1 Syntactical Approach to Feature Selection

s Just as the meaning of a word is often context dependent so is the
:g shape of an object's feature. Thus it can be assumed that the handle of
? a cup will be curved and will probably join the cup at two contact points.
:‘ The syntactic or linguistic approach decomposes complex patterns re-

Eg cursively into simpler subpatterns in the same way that a sentence can be
\? decomposed into letters. Patterns are described by their basic elements
¥ or subpatterns along with a set of syntactic rules or pattern grammar.

‘g In the classification of patterns described by a syntactic algorithm, the
~ﬁ classifier performs a syntax analysis while parsing the pattern and

‘RV answers the question of whether or not the pattern belongs to the language
1% generated by the grammar. As can be deduced, this method is very complex
? to implement due to the very broad range of objects it tries to classify.
X Much research is being done in this area.

if 2.1.2 Mathematical Approach to Feature Selection

k One of the earliest mathematical feature selection techniques is the
n method of moments. In this method a pattern is represented by its two

75 dimensional moments calculated from a density distribution function with
s respect to a pair of axes fixed in the visual field [Hu, 1962]. These

§ moments and other moments found in a similar manner can be formed into

o

1
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A linear combinations called "moment invariants." These are so-called

p - since they are invariant under a number of similarity transformations.
! The major disadvantage of this method is that although the first few

K3 moments convey significant information for simple objects, they fail to
do so for more complicated ones. Furthermore the computational re-
quirements are substantial [Pavlidis, 1978].

Another mathematical feature selection technique is based on the
values of the Fourier Transform of some characteristic of the pattern.
X This technique is the basis of algorithms which involve the calculation
Yy of the Discrete Fourier Transform (DFT) of an object's characterizing

function which is commonly the boundary. The boundary samples can be

g expressed in terms of tangent angle vs arc length. They can also be

; expressed as terms of the complex function formed from the boundary

p sample position where the x axis of the reference plane corresponds to
t{ the real part of the sample and the y axis denotes the imaginary part.

E The main disadvantage of the resultant Fourier coefficient shape de-

. scriptors is that not all of the coefficients are invariant to translation
E and rotation |Granlund, 1972].

i In the next section we will describe the theory of a different

: mathematical technique for feature selection based on the autoregressive
é equation. In that section we will describe how the AR model parameters
:: can be estimated and how they are formed into a feature vector.

2.2 The Autoregressive Model

The autoregressive model is a probability model or stochastic model

of an observed time series. It has been applied in the areas of spectral




A analysis, speech recognition and transmission, and economic forecasting.
Sl In this section we will show how the autoregressive (AR) model can be

o used in shape recognition.

2.2.1 Boundary Representation Schemes

;\ﬁ It is our goal to compress as many of the discriminating features of
. an object boundary(s) into as few AR parameters as possible. This goal
v emphasizes the need to accurately sample the boundary to catch the dis-
w i criminating features. However we also need the resultant real valued

e time series to maintain the same form despite changes in the object's

o orientation, size, and initial sample point. If the object’'s centroid
PN is known, there arise many possible methods of sampling the boundary to

2o form the desired time series. These methods will be described below.

i 2.2.1.1 Equi-Angle Sampling. Consider that the object centroid is

) the origin of the cartesian system. Then N radius vectors can be pro-

jected from the origin to the boundary of the object as shown below.

},‘ Figure 2.2.1 Example of Equal Angle Boundary Sampling Method

B
™)

Y . , . AL A A
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%?ﬁ Let us make the requirement that the angle between consecutive radius
%‘ vectors is constant and equal to 2n/N. As Figure 2.2.1 shows, there are
._j‘.
¥,
§:ﬁ . two possible time series produced from this type of representation. The
e
jA: first is the time series ry, ry, ry, ..., ry formed from the Tengths of
e the radius vectors. The second time series is d;, d,, d3, ..., dy formed
A
§$§ from the distances along the boundary between consecutive radius vector
L%)
ﬁﬂi to boundary intersection points. Using this equal-angle sampling method,
oy the portions of the boundary closer to the centroid are sampled relatively
N
a’ﬁ more frequently than the portions farther away from the centroid. Also
‘i
3:* in the case of highly curved shapes, a large segment of the boundary may
A
S*f not be sampled at all. For example in Figure 2.2.2 the tips of the
r}'-:
j} letter S aren't sampled.
.r;j
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) Figure 2.2.2 Example of Boundary Sampling Method Showing How
i 2 Sections of Boundary Can Be Skipped
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This makes the letter look cut off at the ends and the time series re-

4 i as
-
.

-

presentation of this will differ from the one when the letter is rotated

2

so that the tip is sampled.

o

C—ars
0

)
b

e ]

A way to eliminate these problems is to sample the boundary so that

one sample is always the same distance away from another sample. This

-
c

<oy

method is described in the next section.

-

:§
(AN
o 2.2.1.2 Equal-Arc Length Sampling. As before, consider the origin
?13 of the Cartesian coordinate system to be the centroid of the object
A

boundary. Again we project N radius vectors from the centroid to the

’.!

boundary. However, this time we make the requirement that the arc-length

r

A ‘c{ e .,

between boundary intersctions remain the same and proportional to the

total length of the boundary. This boundary representation is shown

ST

below in Figure 2.2.2.
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Y
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e,
ey

W Figure 2.2.3 Example of Equal Arc Length Boundary Sampling Method

L0, As can be seen, the boundary is now uniformly sampled. As before, we

3‘. can form two time series from this method of boundary sampling. The

1

471, - ; - ap = -

gk y 0 g i () OBAOOHNG Bl 0 2O O ) ) >3\
IO B ey OGN0 OO ) \

OOV IS = DaEHEAGS 128 ). £ LIS OO SNONDASODADA A0 ESIIRL N D N 500 Yy Ot

# % it
et A HLGES, *nh.¢:ﬂm,



LA ! - -y - . U
Uy Yy s 453 2% 1,V ¥ ' 1 R 5
n'ﬂ"’.‘ ’I‘g’!'"_l r,l‘t,l‘:h‘ﬁﬁw. 'r’l 'y, .1_ ‘:"'!,_‘,'05 l....' |.’| ‘ 'C.. V.80, 8 o

11

first is the time series Fis Tgs F3s «ees My formed from the radius
vector lengths. The second is the series 61, 62,..., eN formed from the
angles between Pis Toseees Ty

Qut of the four methods, two were actually implemented. Both
implementations formed a time series from the radius vector lengths. One
time series was formed using the equal angle sampling method and the other
time series was formed using the equal arc length sampling method. Let
us make a requirement that the boundary be closed and that it may not
cross over itself. We then have a discrete time series that is stationary

and periodic.

2.2.2 The General Autoregressive Model

In the general AR model the current value of the process is expressed
as a finite, linear aggregate of previous values of the process and a zero
mean white noise term ey [Box and Jenkins, 1976]. If we let the values of
the process at equally spaced time intervals t, t-1, t-2, .... be Yes Yeoqo

Yg_ps +--- then

yt = ¢'Iyt_'| + ‘Dzyt_z + LRI + (Dpyt‘p + et (2.2.])
This is called an autoregressive process of order p. In Equation 2.2.1
the present value of variable y is regressed on the previous values of

itself. Thus the model is autoregressive. The above equation can be

written more compactly as

Yy = 121 2 ¥e-i * ey (2.2.2)
2

The model contains p+1 unknown parameters d1s P9y 0

, and o~ which have

P
to be estimated from the data. The additional parameter 02 is the

variance of the white noise process €.
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o In the frequenecy domain the AR model can be formed into a transfer
N
o function which has no zeros. Therefore the AR model is also called the
e
. P" . » ] P -
'5;; all-pole model. The AR model is also linked with the maximum entropy
N
4?3 method (MEM) in the area of spectral analysis.
sﬁ?; 2.2.3 The Specific Autoregressive Model
s < As shown by Dubois [Dubois, 1984] an effective AR model for use in
LN
. shape recognition is:
éagg r, = a+ ? g.r + /Buw (2.2.3)
- t Lot t T
,,;. J=1
> whose form was originally suggested by Kashyap and Chellappa [Kashyap
L2 ,
s and Chellapa, 1981]. 1In this form we have:
‘h-'.h
EE; r. = current radius vector length
o rt-j = the radius vector length detected j time intervals
o before the current Ty Collectively these are called
fi: the lag terms.
oS
e m = model order
4
Fre, Bwt = current error
192
ﬁ{{ {wt} = a sequence of random, independent, zero mean samples
fn/y.
b o) (white noise sequence) which has unit variance, i.e.
E;&‘ E(wiwj) =1 if i=j and = 0 otherwise
:QQ: e],...,em = the AR parameters or lag coefficients to be
[ 1
;55; estimated from the time series
ﬁf; {a,B} = unknown constants to be estimated.
I
o Looking back at the general autoregressive model of Equation 2.2.1
\7,":
:;3' we see that the specific model used for shape recognition contains two
JE; additional terms o and /g. Comparing the two equations, /Egt corresponds
2
[ to the e, term of the general model.
L)
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X 2.2.3.1 Estimating o and 8 of the Specific AR Model. Let us assume
e that we already know the 85 i=1, ..., m. Then we still need to find
1
fﬁ estimates of o and 8 in Equation 2.2.3. Now we will define the average
) radius vector length as r so that |
2 =] %' r (2.2.4)
W TN -
i: where N is the number of radius vectors in the object boundary representa-
- tion. We can rewrite the general form of Equation 2.2.2 to model the set
;S of differences r, -r as:
) ¢ m
:‘;.. ry-F = JZ] 95(ry_37F) + /Bu (2.2.5)
L or

¥ . . m

‘ = + +r - .

o re Z 93 t-j Buy *+ T JZ]eJr

%

“; Substituting in Equat1on 2.2.2 for e and cancelling the common terms we
M find the constant o can be estimated by the equation:

. ) m
o~ a=r (1 - .Z ej) (2.2.6)
bt : )

) Note that « is directly proportional to the mean radius vector length and
“
f' thus is an indicator of a shape's size.
Q'
. Now that we have an estimate for o we still need to find an estimate
¥
w of 8. Rewriting Equation 2.2.3 to separate the term we have

:’ o
:;' Buy = Py - o - Z eJ t-] (2.2.7)
;ﬁ Squaring both sides and taking the expectation of the results we get
i m

2 2

2 8E[w,“] = E[(r, - a - J a.r, 7]
b t t IBRAR
;? Since the sequence of wy has unit variance we call g the residual variance
: and it can be estimated as:

3 1Y T 5r, )2
! B = & r, - a - CIN S (2.2.8)
; Vi ot j=1 3t

Pl 4" " A"

1'! o .'

et O R X e R S S LSS TR T



.:i ke At i e it A R AR R Ale Aite et Al Aha- Al A% i - A ~ W‘v‘vv\v‘*
‘0. .
'ﬂ‘
3
. 14
_:
“
3, Looking at Equation 2.2.8 we see that 8 is roughly proportional to the
o average of the squared radius vector lengths. We may conclude then that
>3 a possible size invariant shape descriptor would be in the form //3.
:
- 2.2.3.2 Estimating the Coefficients of the Specific AR Model It has
i been shown in the thesis of Dubois [Dubois, 1984] that the AR parameters
Y
:2 a], cevs 9, @ cCan be found by using the method of least squares. In that
' work the model parameters were chosen so as to minimize the expected value
o of the squared error term g in Equation 2.2.8. In the experimental work
. of Dubois the equations were solved using matrix methods which required
;' (m+])3/3 plus on the order of (m+1)2 operations and (m+1)2 storage
y locations [Makhoul, 1975].
f Due to the special properties of the AR equations in terms of the
4
auto-correlation function the parameters of the model can be estimated
'i recursively.
g
ﬁ We use the general form of the AR equation which models the set of
2 -
differences re-t in Equation 2.2.5. With the 2 term as defined in
; Equation 2.2.6 we find that the general AR model of Equation 2.2.2 based
on these differences, is equivalent to the specific AR model of Equation
2.2.3 suggested by Kashyap and Chellappa.
& If we multiply both sides of Equation 2.2.5 by the term (rt_k-F) we
. get [Box and Jenkins, 1976]:
k- ) _om X i )
. (rt_k-r)(rt-r) = jzlvj(rt_k-r)(rt_j-r) + (rt_k-r)/got
b Finding the expectation of both sides leads to:
fﬁ - } m )
: Ll P g o PID = B e P (g 5o+ By Py
: k = o,...,m (2.2.9)
e
k.
\l
X
¥
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The term E[(rt_k-F)/Ebt] vanishes for k>0 since the sequence w_ is un-

t
correlated with the (rt_k-F) term. For k=0 this term is
m
2 . . 2 . ) 2
E[.Z]Bjrt-j/gut + 8, "] which is equal to 8E[u,°] and is defined as o °.
Let us define

N
Ry-j = E[(rt_k-r)(rt_j—r)] N tZ](rt'k r)(rt_j r)
which is the covariance function. Note that R_, = R;. Rewriting Equation

2.2.9 and changing the order of summations on the right side we get:

Rk = ele_] + 82Rk_2 + ... % emRk-m for k>0 (2.2.10)

We now have the autoregressive difference equation in terms of the auto-
correlation function of the sampled data.

Equation 2.2.10 applies for any model order of the AR process. Since
there is a different set of parameters for each model order we will denote
the kth coefficient in an AR process of order m as Ik - The last co-
efficient at k = m is thus o’ This term is known as the partial auto-
correlation coefficient and also is referred to as the mth reflection co-

efficient. We can now form a set of equations, one for each model order.

R Rt * 2meRi-2 * oo ¥ % na1Riemel * PmmRkem

fork =1, ..., m (2.2.11)

k - 5m1

These are called the Yule-Walker equations. In matrix form these equations

may be written

"Ro Rl R2 Y RmQT ?MT .R1—
Ry Ry Ry """ Roof om2 Ry
Ry Ry Ry "' Rt 'mal T Ry

(2.2.12)

x - - -
T - - -
0 - - -
X - = -

'(,“"(I‘.IF""W"""I""‘T
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ékj since all the elements along the diagonal are identical. Also the matrix
ﬁ is positive definite which follows from the positive definite property
EEQ of the autocorrelation function.

F;EE If all the terms in the mxm matrix of Equation 2.2.12 are normalized

to RO, the correlation lag at t = 0, the Yule-Walker equations can be

o
25{ written in terms of the resultant normalized autocorrelation coefficients
-:‘.::.
- [Makhoul, 1975]. Thus we get
L N A B G
g c, 1 o c
3 1 G m-2| |°m2 2
- [N =
G & 1 Cn-3| |%m3 C3 (2.2.13)
t ) ) ] 6 C
‘n1 Cn-2 Cmes ™ "
R;
where C, = = i=0,...,m
i Ro

By recognizing that the right hand column vector contains mostly the same
elements as in the autocorrelation matrix, the equations can be solved
using simple algebraic reduction techniques as shown in Box and Jenkins
[Box and Jenkins, 1976].

The solution of the equations reduces to the following recurrence

equations:
mil
cC - 9 .C_ .
) . m Ly m=1,37m=] .
'mm J=1 J=t, oo, me (2.2.14a)
m;]
T- )9 .C.
J':] m-] sJ J
‘mi T Pme1,3 7 Y me1 - (2.2.14b)

y e 'q\'.-'-'w'h."\ ‘-w'u T T -"..';-"r..‘..'('.'}‘}" 4"-(.:":
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~1 These equations are attributed to Durbin [Durbin, 1960]. They show how
;f the parameters at the desired model order are ca]cu]gted using the para-
?‘ meters of all the previous model orders. To find the mth order process
EV parameter set, the parameter sets {e]]}, {62],622},..., {em],emz,...,
? emm} are all calculated. This recursive method requires only 2m storage
§§ Tocations and m2 plus on the order of m operations [Makhoul, 1975]. We
:: can now augment Equation 2.2.12 which represent the k=1,...,m equations
of 2.2.9 with the k=0 equation: R = J_Ii]ejRJ. + °m2' The result becomes:
I, -
y R R, R b R | (T o
a o 1 2 m m
i Ry R Ry 0 R B 0
9 Ro Ry Ry 0 Raaf (82| = |0
X
> Voo ' | '
«. [} 1 ' ] [ ]
E: R Rm-]Rm-Z C Ro °m 9__
) To solve the above equations we use a set of recurrence relations which
i: produce the same 9,8 as the Durbin algorithm, except for a ;ign change
: on the parameters due to assuming the general AR model is ‘ZO ejyt-j = 8.
. The algorithm is initialized by: !
g 811 = -Ry/R, (2.2.15a)
3 0,7 = (1-0,,° )R (2.2.15b)
4 the recursion for k = 2,3,...,m is given by
" 2
ek " -[Rk + jZ1 ek_]’ij_j]/o k-1 (2.2.15¢)
i T k-1, T kK1 ke (2.2.15d)

I
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Ay
y 2 2, 2
e o = (1= 8,,5)6% (2.2.15e)
eﬁls This form of the recurrence equations has two advantages over the original
RN
q? . equations 2.2.14. First, the correlation coefficients need not be
t) N
o ) .
e normalized before being passed to the algorithm. Also the ck2 term can
gﬁﬁ be used in the model order selection process. The correct model order is
W .
bl chosen when the AR model has arrived at the best fit to the observed
'1:'3
r time series.
ﬁ% If the model order is chosen too high or too low, the AR model will
¥,
s&* not provide an accurate representation of the sampled process. In the
e
" okz equation (Equation 2.2.15¢c) we see that ckz is dependent solely on
{2
’ﬁﬁ{ the present and past values of the partial correlation coefficient. The
,f: term is thus an indicator of the error and has the property that it de-
>
o creases (or remains the same) as the order of the model increases
Kot [Makhoul, 1975]. A suitable model order for the process can be chosen
5
) ¢x when the change in the error term i.e., ok2 - OZK_] is below a specified
’\p:
e tolerance level.
;:‘..t
:ﬁﬁ 2.2.4 The Autoregressive Model Parameters as Shape Descriptors
,
8
oy The shape descriptors form a feature vector which is a string or
an set of numbers which represent the features or characteristics of the
AN
Y shape. Since the physical features of a shape are invariant to rotation,
o
fCHE translation, and scale, so should the numerical shape descriptors be in-
; ; variant to rotation, translation and scale. Also the numerical shape
SN
"
;:5 descriptors should be invariant to where the sampling process begins.
I
Jt From the previous section we have estimated the following AR parameters:
?‘i 8 i=1,...,mestimated using the recursive algorithm of Equation
"
;{~. 2.2.15, « as in Equation 2.2.6 and 3 from Equation 2.2.8. These parameters
R,
‘;:.
n:.’i
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in vector form [e], 855 ...,em, a//E]t produce a feature vector which has
the desired invariant properties [Dubois, 1984]. However, it should be
noted that, in using the equi-angle boundary sampling method, the rotation
and starting point invariance property only applies when the change in
rotation or starting point is a multiple of 2n/N. If N is sufficiently

large, this no longer is a problem.
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CHAPTER 3
CLASSIFICATION OF THE TRANSFORMED FEATURE VECTOR

Using the theory from Chapter 2, it is possible to form a feature
vector from the set of AR parameters which describe the shape of an
object's boundary. If we had a bin full of the exact same object and if
we found the feature vector of the outer boundary of each object using
the same method, we would find that most feature vectors would be slightly
different from the rest. This is due not only to minor variations in
rotation, i.e. not exact multiples of 2x/N, but also to pixel quantization
error and round-off errors in the system. Considered as a class however,
all these feature vectors will be roughly the same. It is then possible
to use a classification scheme based on the feature vector of the samples
of each class. Some of these classification schemes as found in the
literature will be described in the next section. It will become apparent
that there is usually a need for further processing of the feature vector
in order to correctly classify the shape of the object's boundary. This
is especially true for objects with very similar shape. Thus the
Karhunen-Loeve (K-L) expansion will be introduced and two implementations
of the K-L expansion will be described. The last section of this chapter
will be devoted to the particular classification rule used in the

experimental work of this thesis.

3.1 Background of Classification Theory

The pattern classification problem is essentially the problem of

partitioning the feature space so as to assign each possible feature

ORI OO ) U/ ™) % ) d
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% _
i vector or point in that space to the proper pattern class. The classi-

. fication techniques in the literature form three groups depending on how
st
: 5; much a priori information about the feature vector to be classified is

,\')-
%,24 known. The first group comprises the deterministic techniques wherein no
s

. assumptions are made on the statistical properties of a pattern class.
-\. When the statistical properties of the feature vector are known, then it
1
o is possible to use the group of statistical classification techniques. A
L’;' I

third group which allows incomplete knowledge of the statistical properties
;~§ of the feature vectors is the group of trainable classifiers. These three
Ay
'“; methods of classification will be described in further detail in the
)
z“f next pages.
o
t:;' 3.1.1 Deterministic Classification Techniques
'
ﬁ&f
This group of classification techniques depends on the formulation of

‘.\é mathematical, deterministic, discriminant functions which are used to

< partition the feature space. These functions assume that the feature vector
3%
:; components are deterministic quantities. The hyperplane classification
i )
,?&- method, the third technique used in the thesis of Dubois [Dubois, 1984],
‘ool
N is an implementation of a deterministic discriminant function.
o
R The general form of a discriminant function is as follows [Fu, 1968].
X,
if“ Let W sWoe e s sl be designated as the ¢ possible pattern classes to be re-
& cognized and let
0 -
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y
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be the feature vector where Y5 represents the ith feature. The dis-

criminant function Dj(Y) associated with pattern class Wy j=1,..., ¢

is such that if the feature vector Y is in class w; then the value of

Di(Y) must be the largest (or possibly the smallest) of all the Dj(Y) for
J#i. The discriminant functions form decision boundaries between regions

associated with class wy and Wy which can be expressed as:

Di(Y) - Dj(Y) =

An example of the discriminant function for a two class problem is shown

in Figure 3.1.1.

Class 1
~ 01(Y)>DZ(V)
AN
1
N 1 1
N
~
~ 1 1 1
< 1
11
2 A
N 1 1
N
N
2 2
2 <
C‘l?s§ 2 " 2 N
B,(Y)>0,(Y
2 1 2 2 ~ 1: Class 1
2 ~ 2: Class 2
2 N
Decision <«
8oundary
01(Y) DZ(Y) = 0

Figure 3.1.1 Example of a Discriminant Function for a 2 Class Problem

An important class of linear deterministic classifiers uses as the
classification criterion the distance between the unlabelled feature
point and the labelled points of the feature space. A discriminant

function for such a so called minimum distance classifier is:

N [d 7172
25tv) = nZ1 121(Y‘ R, T i=The
- - (3.1.1)
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where N is the number of samples of the jth class and Rj n.i is the ith
component of the nth sample of the jth class. Equation 3.1.1 can be
implemented more simply without loss of information as:
N d
2 2
D.(Y) = % ¥ (Y. -R, .)
J nZ) q=1 0 1 M

j=1,...,c
Classification of the unlabelled feature vector Y is based on the smallest
class distance Dj(Y). The performance of the minimum distance classifier
is dependent on whether or not the training sample points form tight
clusters that are well separated from each other. In classification
terminology we wish for the training samples to form clusters such that

their intraset, or within-class, distances are small and their interset,

or between-class, distances are large.

3.1.2 Statistical Classification Techniques

In the deterministic classification techniques, it is assumed that
the feature vector components are deterministic quantities. However, in
many cases the noise effect due to large variations in the feature vector
components cannot be neglected. I[f we assume that for each class the
probability density function of the feature vector is known and the pro-
bability of the ith class occurring is known, then the classification
problem becomes a statistical problem. The task of the classifier is
then to minimize the probability of misclassification [Fu, 1968].

The statistical approach to the pattern recognition problem is
generally based on the Bayes rule which presents an optimum measure of
classification performance [Tou and Gonzalez. 1974]. The classifier that
uses the Bayes rule is called a Bayes classifier. One basic Bayes

classifier is the implementation of the following discriminant function:
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ﬁ\
:
e DJ-(Y) = P(Y/wj)p(wj) i=1,...,¢
o A pattern vector Y is assigned to class w5 if for that class
ek .
KR Dj(Y) > Di(Y) for all i#j. The main problem with the statistical
%4?1 classification techniques is that of estimating the probability density
& e
:&_, function characterizing each of the different pattern classes. This
ey
'%f?' implies that the computational requirements of these techniques will
29
i%;% probably be greater than for the deterministic classification techniques.
ﬁﬁ% 3.1.3 Trainable Pattern Classifiers
i
" The trainable pattern classifiers produce discriminant functions by
'-(:.'0
15 N2
i»k means of iterative learning algorithms. These classifers can use either
\ )
;‘ﬁj the deterministic or statistical techniques or a combination of both to
22
Jbﬁ; produce the desired discriminant functions. The main use of a trainable
. classifier is when the required information for optimal pattern classi-
iiﬁﬁ fication is only partially known. During its operation the classifier
? i
B 1 e
WS learns the needed information. If the learned information gradually
R
) approaches the true information, then the decisions based on the learned
s
:25 information will eventuallly approach the optimal decision as if all
o,
A5 . . . . . o
qﬁ . the information required is known [Fu, 1968]. The trainable classifiers
.'l'c...
- are divided into two groups: the supervised classifiers and the un-
l.f" ‘,‘
ﬁ:ﬁ supervised classifiers. The difference between the two groups is that
o
?;: the supervised classifiers have available the correct classification of
Qs
"\ 5 the observed patterns while the unsupervised classifiers don't. Again,
. »
g&?- the computational demands of the trainable classifier algorithms are
\b.o generally greater in comparison to the deterministic techniques.
~.
l‘l
)
N
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K
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3.2 The Karhunen-Loeve Expansion

It is our goal to classify objects as quickly and accurately as
possible. Thus it is desired that the actual classifier should be a
simple deterministic minimum distance classifier. As was stated pre-
viously, for the minimum-distance classifier to give accurate results,
it is necessary for the feature space to form tight clusters well
separated from each other. Also if the feature vector dimension can be
reduced, the classification time will decrease. In this section we
will introduce the Karhunen-Loeve expansion and its properties which allow
us to achieve quick, accurate classification of feature vectors of re-
duced dimension. Two implementations of the K-L expansion will be de-
scribed and finally the actual minimum-distance classifier used in this

work will be introduced.

3.2.1 Basic Theory of Karhunen-Loeve Coordinace Axes

Let us, first of all, introduce the Karhunen-Loeve expansion. We
know that a periodic function can be expanded into a Fourier series:
x(t) = ) Xp exp(jnwot) (3.2.1)
n=-w
where Wy is the angular frequency and the X, are the Fourier coefficients.
A similar expansion can be formed for a non-periodic function x(t) where

x(t) = 1 yu(t) O<t<T (3.2.2)
n=1

Suppose we use only D discrete sampling points to approximate the time
function during the time interval 0<t<T, then x(t) becomes the column
vector x. Also the generalized Karhunen-Loeve expansion of Equation 3.2.2

becomes




)
o
Y

o

Y,
‘.\. 1) 22(5
z ~
5 11
ey D
A X = ) YU, (3.2.3)
an n=1
ié%: where the vectors Y, form a deterministic orthornormal basis set. The
) 4
fﬁ)_ basis vector Yy is D-dimensional and represented as
(R Ty
m
Un2
y, © f (3.2.4)
b InD
N
;ﬁx The derivation of the Karhunen-Loeve coordinate axes from the K-L
L
,;:1 expansion is described next, following the method of Devijver and Kittler
L
:J;‘ [Devijver and Kittler, 1982]. We start by making an approximation to x
S R
Qx. of Equation 3.2.3. Let's call this approximation x, and let it have
S
A dimension d where d<D i.e.
' X ‘f (3.2.5)
el X = y.u 3.2.5
-_I: n=1 "N
43¢; The problem is now of finding the vectors u, such that the mean square
f.r‘ '

error (MSE) between x and its approximation g_is minimized. Let this

r

}<

error be called e where

\i

) ~ t: ~

35} e = E{(x-x)*(x-x)} (3.2.6)
L

q{f and the expected value E{} is over all samples in a class. Substituting
'"ﬁ% in the expansions for x and gﬁwe get

o ) )] ) (3.2.7)
b e = E{( y. u y.u )} 3.2.7
jg? n=d+1 " pader TN

;Qﬁu Due to the orthonormality property of the basis vectors we know that

“t

ol ¢

ey Up U = S (3.2.8)
Y N)

gr? where 6nm is the Kronecker delta and equals 1 if n=m and 0 otherwise. The
it

ﬁéﬁ error of Equation 3.2.7 reduces to

o

»‘i‘a

M

i{i

b

AT R PO o P o T O S A e e s B o T T TR 340 5
S et e R A N Tt T T S R S g N P A, W2daA LA 0 AVA S

|||||



27
D 2
e=El )y} (3.2.9)
n=d+1
Since we still want to minimize the error in terms of the vectors L
let us find Yn in terms of U Since n is a dummy variable we can
rename it and rewrite Equation 3.2.3 as
) )
X = y.u (3.2.10
m= mem
We can now mulitiply both sides of Equation 3.2.10 by gnt to get
D
t, ., t
Yo x = U mz] Yol (3.2.11)

Using the orthonormality property of Equation 3.2.8 we find that the

right side of Equation 3.2.11 will be zero except when m=n. Thus we get:

Yo = !nté_ n=1,...,D (3.2.12)
which can be substituted back into Equation 3.2.9 i.e.:
D
t, .t
e = E{ u_ "X X°u_} (3.2.13)
n=§+1 e

Since the Y, basis vectors are deterministic the order of summation and

expectation can be interchanged to get:

e = ? u “[E(x x%}]u (3.2.14)
n=d+1 " = TN
We can denote the expectation term as y where
v = E{x Lt} (3.2.15)
then the MSE of the approximation becomes
A |
e = U, yu (3.2.16) -
n=d+¢1 " T

Since we wish to minimize the error ¢ at the same time as maintaining the

3§ constraint in Equation 3.2.8, we need to find a form of the error equation
o

N where the desired constraint is explicit. To find this we use the method
: of Lagrange multipliers. First we can rewrite the constraint as:

¢

E

0
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t =

4ot oy, - 1=0 (3.2.17)

Multiplying both sides of Equation 3.2.17 by a constant A doesn't change
the equality. Thus Equation 3.2.16 can be written as a function of u, as:
Dt

t
g(u.) = Y u ", - A (u,u -1) (3.2.18)
“n n=ge] NN n=§+1 n‘=n =n

If the above equation is differentiated with respect to Uy and the result
is set equal to zero we get the following condition:

(-2 Dy, =0 (3.2.19)
Thus the optimal vectors u, are the eigenvectors of the matrix , and the
constants Ap are the corresponding eigenvalues. Since y is a DxD symmetric
matrix, it will have at most D linearly independent, orthogonal eigen-
vectors and D real eigenvalues [Lanczos, 1956].

We still need to find the d eigenvectors out of the set of D in order

to form the approximation i in Equation 3.2.5. From Equation 3.2.19 we

know that W, = An!n' Substituting this into Equation 3.2.16 and using
the orthonormality condition again, we get the error in terms of the

eigenvalues of y, i.e.

0 e,
e = u S = A (3.2.20)
n=d+1 " " =g+ "

Here we can see that to minimize ¢, the sum on the right should include
the smatlest eigenvalues of the matrix w. This implies that X should be
formed from the eigenvectors corresponding to the d largest eigenvalues

of . i.e.:
o
X = ) y u (3.2.20)
nsp NN

Where the eigenvalues 'n corresponding to Yy satisfy

3:il\d:.)~D (3.2.21)

A

b A R

The vectors u form what are called the Karhunen-Loeve coordinate axes.

o
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It has just been shown that in using the eigenvectors corvesponding
to the largest eigenvalues of the matrix v, the mean square error be-
tween the original vector and its approximation is minimized. Also it
can be shown [Devijver and Kittler, 1982] that the coefficients ¥, of
the expansion are uncorrelated. This suggests how the K-L coordinate
axes can be used to reduce the dimension of the input vector by de-
correlating the components and removing the axes which do not convey much

information [Kittler, 1975].

3.2.2 Application of the Karhunen-Loeve Coordinate System to the

Recognition Problem

Using the results of Chapter Two we can form an m+1 dimensional
feature vector from the parameters of the AR model. Let's say we would

like to transform this feature vector into a d dimensional vector where

d < m+l. Then the K-L coordinate axes can be applied to produce the
desired reduced dimension transformed vector y, i.e.

y= vt X (3.2.22)

The vector x represents the original m+] dimensional feature vector and V
is a Dxd matrix whose columns are formed from the eigenvectors of what is
referred to as a K-L coordinate generating matrix [Devijver and Kittler,
1982].

In a previous section we found that the Karhunen-Loeve coordinate
axes were found by solving for the eigenvalues and corresponding eigen-
vectors of matrix y defined as:

v = Eix x%} (3.2.23)

We could use this definition in our pattern recognition problem, but we

wouldn't be taking advantage of the fact that the input data will be a
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e
&
‘ mixture set containing elements of many classes Wi i=1,...,c where
3:* c is the number of pattern classes. If we assume that the samples of
\.,
;:; each class are normally distributed about the class mean vector, then
e
4 each class of samples can be completely described by its mean vector, m.
- and its covariance matrix C, [Tou and Gonzalez, 1974] where C; is de-
P
: fined as:
B ¢, = E[(ymi)(ﬁ-mi)t] i=1,...5c
i n‘i
At N ] t .
N = — ) [x-m){x-m:)"] i=1,...,c (3.2.24)
n. e AR
3 i k=1
Y
o where n. is the number of samples of the ith class and
‘;i m, = Elx] T=1,..c
i "y
s ¥y 1oy i=1,....c (3.2.25)
N Nj k=1 K T '
- Using this additional information we can form a within class scatter matrix
*5 Sw [Devijver and Kittler, 1982] which is the average of all the class co-
- variance matrices i.e.:
2N C
" Sw = .2 Pici (3.2.26)
g i=1
:E where Pi is the apriori probability of a sample of the mixture set being
3! from the ith class. If a sample is equally likely to come from one class
=Y as any other then:
'-:’ _ ]
K Pi = (3.2.27)
g and the matrix S_ becomes:
P w
iy o N
s =1 5 15 (x. -m)(x: -m)t (3.2.28)
N w € .-.n, L, =ik M4k ce.
o i=1 i k=1
::E Hence the columns of the matrix U in Equation (3.2.22) can be formed from
15 .
. the eigenvectors of Sw ordered by the decreasing value of their
Pl corresponding eigenvalues.
-
o
>
o

K ?
P
3

-y w
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It can be shown that the population entropy can be minimized by

forming the matrix V from the eigenvectors of matrix Sw corresponding to
the smallest eigenvalues [Devijver and Kittler, 1982]. A good measure
of intraset dispersion is the entropy function given by:

H = -E[Tog p(y)]
where p(y) represents the class probability density function [Tou and
Gonzalez, 1974].

It is noted that the within class scatter matrix Sw is symmetric and
positive semi-definite, thus the eigenvalues will be real and greater than
or equal to zero. The eigenvectors point in the direction of the
principle axes of a hyperellipsoid whose shape is defined by the co-
variance matrix and the corresponding eigenvalues determine the length of
these axes. In other words, the eigenvalues represent the variance of the
data in the direction of the corresponding eigenvectors in the feature

space.

3.3 The Optimal Karhunen-Loeve Coordinate System

There are many variations to the Karhunen-Loeve coordinate system in
the literature. These variations are specially tailored to their particular
type of pattern recognition problem and essentially differ in the choice of
the K-L system generating matrix. These techniques are inferior to the
next method to be described in the sense that they do not utilize the
class mean information in an optimal manner [Kittler, 1975]. In this
section the theory of the optimal Karhonen-Loeve coordinate axes will be

described.
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3 |
ayi Generally the most important discriminating information is contained
1y in the class mean vectors m,. Let us then introduce a new matrix based

N
e
-ﬁ& on the class mean variances referred to as the between class scatter matrix
'fﬁ Sy [Devijver and Kittler, 1982] where:

s Z P, (m, -m) (m .-m) (3.3.1)
Ed
Y Here m. is the class mean vector as defined in Equation 3.2.25 and m is
o
Y

i the average of the class mean vectors i.e.:

. c :
B P o= l. ] m, (3.3.2)
S =1
f\;: When there are c classes, the space spanned by the class mean vectors will
L be at most c-1 dimensional [Devijver and Kittler, 1982]. Here we see that
S8y
*it by using matrix Sb as the K-L coordinate system generating matrix we may
r}-:

j{ achieve a more efficient way of reducing the dimension of the pattern
. vector.

'~
i:' The algorithm as suggested by Kittler in [Devijver and Kittler, 1982]
o
¢ is described next. We first set out to decorrelate the noise on the
-y pattern vectors. From the previous section we found that this is done by
0
A
5:§ the transformation matrix V in Equation 3.2.22 formed from the eigen-

»

433 vectors of Sw. We then would like to normalize the variances of the
;é noise components of the pattern vectors to unity. To do this we form a

i: matrix A whose diagonal elements are the eigenvalues corresponding to the
t;: eigenvectors of V. Combining the two matrices we achieve the desired
AN
P results by using the transformation matrix B where
v -1/2
j:’ B=VA (3-303)

Lo

"

o on the matrix S i.e
e W
, BYs B = I (3.3.4)
g
t‘,'l
":l:‘

e
1":?
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Similarly we can decorrelate and prewhiten the between class scatter
matrix Sb of EquationA3.3.1 to form Sb' i.e.
T
Sb = B SbB (3.3.5)
We find the optimal coordinate system by finding the eigenvalues and eigen-
vectors of the matrix Sb'. The optimal feature extracting transformation

matrix is now W where
1/2

W=UrA"""Y (3.3.6)
where V is the matrix whose columns are formed from the eigenvectors of

Sb' in order of the descending values of the corresponding eigenvalues.

Finally the transformed, reduced dimension feature vector of Equation

3.2.22 becomes

y' o= Wi (3.3.7)

where x is the original m+1 dimensional feature vector.

3.4 The Classifier

By using either Equation 3.2.22 or Equation 3.3.7 we can reduce the
dimension of the feature vector and also decorrelate their components.
Thus the resultant transformed sample space should have fairly well de-
fined boundaries between the classes. For classification, all we need is
a simple minimum distance classifier as described in Section 3.1.1. The

classifier implemented in this work is:
d

2 _ - 2
0" = L (B - Yl
where
Di = total distance for the ith pattern class
b = the kth dimension of the transformed unlabelled (input)

feature vector

Yi = average kth component for the ith class of transformed

training vectors.
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The classification decision is chosen in favor of the smallest class
distance Diz. This means that the input vector is categorized as be-
longing to the pattern class whose average sample it is nearest. Once
the classifier has been trained the only information it needs to classify
an input object is the transformation matrix and the mean sample trans-
formed feature vector of each expected object boundary.

In this chapter we have shown how the dimension of the feature vector
can be reduced by projecting the vector onto a reduced system of K-L
coordinate axes. It was also shown how the class mean information can be
optimally used to maximize the interset distances. The next chapter will
present the necessary hardware and software algorithms to implement the

theory of this and the previous chapter,
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B CHAPTER 4

3

1

o] CREATING THE PATTERN RECOGNITION SYSTEM

ﬁv; This chapter deals with the realization of the operational pattern

L/

i&g recognition system and the details of the algorithms used in this system.

R

et The first section of the chapter will describe the system hardware and

?ﬁ\ how the original scene is digitized for computer use. The second

¥

"y section discusses the thresholding technique used on the digital re-

t. .

O»

Znﬁ presentation of the scene. In the third section the algorithms used to

4

c{: extract the raw data from which the features can be selected, are de-

;‘\‘.’

.23 scribed. The fourth section describes how to extract and use the

S

e additional information provided by the multiple edges of an object. The
i last section describes and provides the flow charts of the software
N

;Eg written for this pattern recognition system.

‘h
\ 4.1 Object Sensing

).' .

0

; . We have been assuming that the machine that will do the necessary

Mo data manipulation for feature selection and classification is the digital

%} computer. However the computer doesn't have eyes to see the object! We |
> .
t. now describe how, by the use of the proper hardware and special software,

g.; the computer can receive data just as if it could see.

o

o 4.1.1 Description of the System Hardware

[/

G

?f. The main hardware elements of the object recognition system developed

QE; in this work are: 1) the Matsushita Panasonic WV-241 TV camera using the

b1 35

oA

‘08
O - 20 OO y o AT S AN "'-t" o
I3 4_\.' '.. ) u‘ :-l g t.( '5‘,2“‘:‘0?:* “.:37"&' *e&" + 4' ‘.,.’. m ¥ " .& QXA



v 36
RS-170 standard, 2) the Image Technology Inc. (ITI) IP-512 series image

acquisition board containing the AP-512 Analog Processor and the FB-512

~

ﬁQ Frame Buffer, 3) the VAX 11-730 digital computer and 4) the Panasonic
Y,
:;H TR-920M monitor (black and white). See Figure 4.1.1 for the system

design.

i s
Rl
: -u;':.‘

3Vf The TV camera scans the scene and produces an analog, video signal

ﬁk} which reproduces the variations in the scene intensity. This analog signal

e is sent to the ITI image acquisition board where it is flash converted

};?* by the circuits of the AP-512 Analog Processor into a data stream of 8 bit

“35 bytes. Each byte is a pointer to one of 256 elements of a programmable

Eii Took-up-table (LUT). If the byte represents the number 8 then the

ézﬁ contents of the 8th element of the LUT is put into an appropriate location

'?i of a 256-K byte RAM called the FB-512 Frame Buffer. The portion of the

o frame buffer memory actually used in the system is called the active

§E§ video window. This window is a 480 row by 512 column two dimensional

i?; array of 8 bit numbers (called grey levels) which stores the digitized

?31 representation of the complete scene as viewed by the TV camera. Each

?£% element of this digitized representation is called a picture element or

:Q pixel. Since the TV camera starts its scanning cycle at the top leftmost

;:i; corner of the scene, the origin of the active video window is also at the i
QEii top leftmost corner (as seen on the monitor). Figure 4.1.2 shows the

§§§ origin of the video screen coordinate system of the active video window.
éﬁi The x values increase to the right and the y values increase downward.
“EES The contents of the frame buffer are flash converted from digital to
'ﬁt analog for real-time viewing on the monitor. By the use of the ITI

'jt software applications package, the Fortran programs running on the VAX

2o

b |
{E% |
T

i
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;{ Figure 4.1.2 Active Video Window Coordinate System
§S§E computer can access the contents of the frame buffer and the hardware
:Q&f functions of the analog processor.
i
_‘»_: 4.1.2 The Digital Image
e In order to provide the computer with data in the form that it can
Tg; accept, the scene containing the objects is sampled. What we have

ﬁ: stored in the frame buffer then is a digital representation of the
:r% original continuous scene. Each pixel of this representation is a rec-
Jfg tangular element which has an 8 bit value which quantizes the image
? intensities to any one of 256 gray levels.
si? As a direct result of this quantized representation formed from

;fi these rectangular pixels there arise two problems which must be con-
‘:% sidered in the implementation of the system. First, the shape of the pixel é
'f{ causes the distance measurements (radius vector lengths), based on pixel
%j* location, to vary with changes in object rotation or translation. In the
Qﬁ digital representation 4 increments in the x direction have the same

:y;' physical distance as 5 increments in the y direction. This is referred to
= as the pixel aspect ratio.

- [y
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e
:kﬁ{ To eliminate the problem due to the rectangular pixel shape, we
;w.‘ introduce a pixel aspect correcting factor of 5/4 to the x distance values
EE ? in our calculations.
:’ - A second problem that arises is the effect of the quantization pro-
Wyl | cess on the original scene. Instead of the smooth edges which exist in the
32 original scene the representative edges are uneven and sometimes jagged.
g%ﬁ Also, the number of pixels on the object boundary will vary with slight
Y changes in boundary position. Thus we see variations in the representa-
,:%A tion of similar objects if they differ slightly in two dimensional
f%? translation or rotation., These variations are collectively referred to
_r§\ as quantization noise. The significance of this noise can be reduced by
’Ea; decreasing the size of the pixels or by increasing the relative size of
;fkg the objects in the representation.
“15: 4.2 Preprocessing of the Digital Image
5y .
Kti' Once we have acquired the digital representétion of a scene, we
r‘;. generally like to preprocess the representation so as to make the
?Lfl feature selection algorithms simpler and quicker. The bag of tricks
gsb which allows us to perform this preprocessing comes under the heading of
?;2 Digital Image Processing. However, due to the time constraint on a
;ﬁé pattern classifier, the preprocessing of the image is kept to an
:E% essential minimum. In this section we will describe the thresholding
% i done to the digital image in order to simplify the boundary detection
. algorithms,
23
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4.2.1 Image Thresholding

In order to implement a quick and simple boundary detection scheme,
the boundaries of the objects must be distinct from the background and
they must be uniform in intensity. A simple way to produce these desired
properties is to transform the image into a binary picture which contains
objects of uniform intensity against a background of a different
intensity. The process of producing such a binary image is called
thresholding.

To perform this thresholding process we use a single programmable
look-up-table on the ITI image acquisition board. On the board there are
actually 2 groups of 4 input LUTs, and 3 groups of 4 output LUTs. The 2
input groups allow two possible camera inputs and the 3 output groups
allow for the three color groups (RGB of a color system). Each of the
four LUTs in any group can be preprogrammed or pre-loaded before actual
use. Then during execution, the program can switch LUTs and instantly
transform the scene. For our purposes, however, we don't need to trans-
form the scene from moment to moment, but we do need to threshold the
image before it is stored in the frame buffer. To do this the 256
Tocations of the chosen input LUT are loaded with one of two grey-
levels. The locations below a certain location (called the threshold)
are loaded with one grey level, for example 0, and the locations on and
above the threshold are loaded with a different grey level, for instance
255. Imagine that we have a light object on a dark background and a grey
scale of 0 (black) to 255 (white). If the LUT has been preloaded as

described, then as the scene is initially viewed, the data bytes are

immediately converted to either one of the two designated grey levels.
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E:F The light areas of the scene where the intensity is above the threshold
W are stored as grey level 255 in the frame buffer and the dark areas
3 ‘\'
i::I below the threshold are stored as grey level 0.
o
o
» 4.3 Feature Selection
%59
f:% We now assume that we have a binary, thresholded representation of
i
1S
< the original scene stored in the frame buffer. We still need, however,
S to form the time series from the radius vector lengths of a sampled
e
§2 boundary in order to calculate the components of a feature vector.
,'0
N To do this, an object must first be detected. Once an object is
’Ea detected, the boundaries need to be traced and the boundary centroids
{, estimated. When we have a centroid pixel position, the radius vector
%; lengths can be calculated and the corresponding time series can be

produced. It is only when the complete time series is formed that the
AR parameters can be calculated using the algorithm described in chapter

two.

-

: V{r’“" N
- i "x:

In the next pages we will describe the various techniques used to

)
‘:; provide the raw measurements from which the features can be selected.
-

e

iy 4.3.1 Search for a Boundary Starting Pixel

:

\ hd

\j: This pattern recognition system allows the existence of more than
ok . .

:}: one object in the scene viewed by the camera. Also the objects may have
N9

e more than one closed edge. In order to recognize these multiple edges,

pa .

ﬁ? it is necessary to scan the entire scene stored in the frame buffer.
3

< : :

& To speed up this scanning process not all of the pixels are read.
4 The search for object edges begins at the origin of the active video
o
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window in the frame buffer. The search continues along the constant y
row where only the x values which are multiples of a previously prompted
for increment are read. Once the end of the row has been reached, the
search continues at the beginning of the next y row which is a multiple of
the increment. For example, if the incremental step is 8, the following
pixels on the first row are read: (0,0), (8,0), (16,0), .... The pixels
which are read on the next row are: (0,8), (8,8), (16,8), and so on.
The search continues in the same manner until a transition occurs in-
dicating an object has been detected or the bottom right corner of the
scene has been reached.

A transition is detected when the difference between the present

pixel grey level and the previous grey level is equal to the difference in

intensity between the object and the background (in our case 255). Due to
the manner of hopping across the rows of the frame buffer in search of
objects, there is no guarantee that the pixel where the transition is first
encountered is an edge pixel. Thus the search backtracks pixel by pixel

on the same row until the transition indicating the actual edge is
detected. This pixel where the boundary is first detected is referred

to as the start pixel.

4.3.2 The Turtle Boundary Detector

When an object in its two-dimensional representation is of uniform
intensity and its edge doesn't contain spurious gaps, then it is possible
to use a "turtle" boundary detection algorithm. In this work a modified
version of the turtle algorithm used in the work of Dubois [Dubois, 1984]

is implemented. In this algorithm the boundary between the object and its

background is followed in a cliockwise manner by a symbolic device referred
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to as the "turtle". Once the boundary start pixel has been found as de-
scribed in the previous pages the turtle proceeds to trace the edge

according to the following two rules [Duda and Hart, 1973]:

1) If the turtle is in the object it will turn left
and take a step.
2) If the turtle is in the background it will turn

right and then take a step.
The turtle stops when it has returned back to the start pixel.
Since a great portion of the classification time is spent turtling
around the boundaries of the objects in the scene it is advantageous to
speed up the algorithm. To do this, the turtle algorithm of Dubois

[Dubois, 1984 ] was modified in the following ways:

1) The direction of the turtle movements is governed
by decisions based on logical flags indicating past
and present turtle position.

2) A1l subroutine calls have been eliminated in pre-
ference for a quicker straight through code.

3) As each boundary pixel is detected, the x and y
locations are temporarily stored and counted for
later use by the radius vector calculation
algorithms,

4) Also, as each boundary pixel is detected, its grey level

intensity is changed. This marking of the boundary
is to prevent repeat turtling of the edge as the
entire frame buffer is scanned. Also the boundary
marking provides identification for later determination
of which edges are inside other edges. An example of

the scene with marked edges is shown in Figure 4.3.1.
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Figure 4.3.1 Example of a scene showing marked edges
Note that the edges are marked with the intensity level which
corresponds to their order of detection. For instance the boundary
closest to the top left corner is detected first and is thus

marked with the grey level intensity 1.

4.3.2.1 The Centroid of the Boundary. The center of the two-

dimensional representation of the object can be approximated by calculat

ing the average of the boundary pixel locations. Thus the Xc and Ye

coordinates or the boundary center are:

?b ':b
Lo X LY
n=1 " n=1 "
X_ = . y. = (4.3.1)
c Nb c Nb

where Nb is the number of boundary pixels and Xn and Y are the x and y
coordinates of the nth boundary pixel. 'The advantage of finding the

boundary centroid is that despite changes in the object's rotation and

translation the relative position of the centroid remains the same. The
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centroid position can then be used as the origin of a set of reference
axes needed for the determination of the boundary intersection radius

vector lengths.

4.3.3 Formation of the Time Series from the Radius Vector Lengths

A
:i; With the position of the boundary centroid known, the two types of
‘S?f time series formed from the radius vector lengths, as described in

2? chapter two, can be produced. The type of time series formed depends on
m§§§ the relationship between each radius vector of the boundary representation,
:" Two methods based on two types of relationships are explored in this
‘r? work and described below:
oo
~ﬁ§ 4.3.3.1 Equi-angle Method. In this method the intersections of the
ﬁnﬁ radius vectors with the boundary are such that the angles between the
:fﬁj radius vectors are all constant and equal to Zn/Nr radians, where Nr is
K ﬁ the number of radius vectors. The algorithm actually implemented is a
. {5 modified version of the algorithm written by Dubois [Dubois, 1984]. The
“j; main modification of the original algorithm is the use of the boundary
f*%é locations stored in an array during initial boundary detection. This
ﬁf eliminates the additional time of turtling around the boundary for a
,,?. second time. However the trade off is the additional temporary storage
iﬂgi requirement for the boundary locations. Another modification is the use
3;2§ of straight through code which also increases the speed of forming the
ifi time series.

$§E The basic steps needed to form the desired time series using this
_*; method are described next. Initially the origin of a cartesian co-
é:‘ ordinate system is shifted to the centroid of the object boundary, see
!::' Figure 4.3.2.
3,
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distance
measurements

Figure 4.3.2 Example of the Equi-Angle Radius Vector
Boundary Intersection Method

The radius vectors are then imagined to project, equally spaced by 2"/Nr
radians, from the origin to the object boundary. Each section formed
by a pair of radius vectors is referred to as a sector. Note that in
determining the intersection of the radius vector with a boundary pixel,
we are only concerned with the relative position of the pixel with
respect to the radius vectors of the sector. Thus only the magnitudes
of the slopes of the first quadrant of the reference plane need to be
calculated. These slopes are calculated once and stored in an array
before the actual search for boundary intersections begins. The slope

of the jth radius vector is calculated using

slope(j) = 5/4 * tan(Zn/Nr*j) j=0,...,(Nr/4) -1 (4.3.2)
The 5/4 factor is introduced in Equation 4.3.2 to deal with the rectangular

pixel shape and to prevent the factor from having to be included in each

pixel slope calculation during the search.
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The search for radius vector boundary intersections begins with the
start pixel. The slope of the imaginary radial line drawn from the start
pixel (xs’ ys) to the centroid pixel (Xc’ yc) is given as:

[xg-x.|
s]ope = TSI_'.Y—T (4.3.3)
S YC

This slope value is compared with the slope values stored in the array
and the appropriate sector is found. The two slope vectors of both edges
of the sector form reference lines for calculating the relative position
of the pixel in the sector. After the start pixel has found its

sector and the relative position in the sector has been noted, the second
pixel next to the start pixel is checked. Its relative position is

noted with respect to the reference vectors also. If the distance
measurements, showing the relative pixel position, change signs from

one pixel to the next, then it can be assumed that the most recently
checked pixel is either on or it has crossed a radial line. The radius

vector length between this pixel (x,y) and the centroid can be calculated,

i.e.

r(1) =/ ((x-x,) * 5/4)° + (y-y,)° (4.3.4)

This radius vector length becomes part of the time series in the order in
which it is detected. This process repeats till all the boundary pixels
have been checked and the start pixel has been encountered once again.

The details of the implementation of this method are described in the work

of Dubois [Dubois, 1984].

4.3.3.2 Equi-Arc Length Method. In this method the intersections

of the radius vectors with the boundary are such that the arc length
between intersections is constant and equal to a certain number of pixels.

In the implementation of this method the constant arc length (A),
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measured in pixels, is determined by dividing the total number of boundary

pixels (Nb) by the desired number of radius vectors (Nr) i.e.

N
A = arclength = NE (4.3.5)
r

Thus the time series is formed from the radius vector lengths correspond-
ing to every Ath stored boundary pixel where the length from pixel to
centroid is calculated using Equation 4.3.4. This method is simpler and
quicker than the equi-angle method since it doesn't need to check each

boundary pixel for radius vector intersections.

In both radius vector length calculating methods, the (xmax’ymax)
position of the boundary intersection pixel of the maximum radius vector
is stored. Also the length of the maximum radius vector is stored.

From this length we have an indication of the size of shape. Using the
position we can calculate the orientation of the maximum radius vector

and thereby have ar indication of the orientation of entire shape. The

orientation of maximum radius vector in the Cartesian coordinate plane is

calculated as

~(Yax=Ye)
orientation (degrees) = Arctan {h Xmax_xc
—'"max “c

The negative sign is due to the origin of the video coordinate system
being at the top left corner of the scene.

We are now capable of forming two types of time series for any inner
or outer object boundary encountered in the scene. Thus it is possible
to calculate the AR parameters {9 .,9 54 ...\ “ 00 a/v/8} of each boundary
at any model order. These parameters can be stored in vector form during
the acquisition of training data and transformed later, or they can be

transformed immediately for classification purposes. The next section
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laﬂ‘ deals with the extraction of additional information from the inner
@ boundaries of an object and how that information can be used in the
'}} classification process. |
L 4.4 Extraction of Additional Information from the
; Inner Boundaries of an Object
1o
4494 . . . . . .
oy The additional information provided by the inner boundaries of an
- object can be used to hasten the classification process in many ways. If
P\
NN the number of inner boundaries or holes is unique i.e. no other object
ol
:?Q has that number of holes, then the classification of that object can be
+ %Y
* based solely on that number. Also the relative position of the edge
\"‘_
*3 used in conjunction with the vector of transformed AR parameters can
oG
b3 provide additional information. If the object has more than one hole then
i it is possible to calculate the AR parameters of the pr’ygonal shape formed
)
o,
$;H by connecting the boundary centroids with straight 1ines. In this work
Y]
\§: the AR parameters of the polygon were not calculated but the number of
) holes and the relative position of the holes inside the object were found.
.
>
${2 In order to count the number of holes belonging to an object it is first
s
.“Eg necessary to determine which holes are owned by which object. The tech-
[
h‘j nique of determining hole ownership is described next.
3
0 4.4.1. Determination of Hole Ownership
e
r Once the boundaries have been detected and marked as in Figure
?i 4.3.1, hole ownership can be determined using the following technique.
L
‘} For each boundary the algorithm is as follows:
. I3
| 1) Begin at the start pixel and proceed to read
2
3“3 every pixel on the row to the right of the
'h: start pixel.

Y3 A S s



2) Keep track of any occurrence of a pixel intensity
which is neither the object intensity or the back-
ground intensity. Once a pixel intensity denoting
an edge is detected, ignore any occurrences of the
same intensity if they happen to occur immediately
after the first encounter.
3) Return to the start pixel and repeat the process on
the same row but now going towards the left.
4) Keep a separate record of the occurrences of
the edge pixels as in Step 2).
Once both right and left sections of the row containing the start pixel
have been read, it is then possible to determine which boundary the edge
in question is inside. If the same boundary intensity is detected an odd
number of times in both the right and left scans, then it can be assumed
that the edge in question is inside the boundary corresponding to the
intensity. Figure 4.4.1 shows an example of how this method can be used

to determine that edge 2 is inside boundary 1.

1 crossing detected in 3 crossings detected in
left search right search
\ Edge ]
- —0— __Edge 2 __

Figure 4.4.1 Example of the Method for Determining Hole Ownership
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Once the inner holes of an object have been identified it is a simple
matter to count them. It is also possible to order them according to the
distance between their centroids and the centroid of the outer boundary.
In this work the inner edges were ordered such that the edges whose
centroids were furthest away from the outer boundary centroid, were put
on the top of the list. When the inner edges have been detected, counted,
and ordered, it is then possible to classify an object simply by the hole

count or by the classification of each one of its edges.

4.5 Description of System Software

The algorithms described in the preceeding pages were coded into
Fortran-77 for the VAX 11-730 computer. The two main programs for the
pattern recognition system are called TRAIN and CLASSIFY. Program TRAIN
is used to provide the classifier with the training data for each ex-
pected object edge. Program CLASSIFY is used to classify objects with
one or more edges by the classification of each edge or by the total

number of inner edges. An additional program called MAKLIB was written

to create a library file (LIB.DAT) of AR parameters of the edges. !
This Tibrary file increased the speed of system tests since it eliminated
the need for recalculating the AR parameters of the edges for each test.

A complete listing of TRAIN and CLASSIFY and the subroutines they call can

be found in the Appendix at the end of this work.

4.5.1 Program TRAIN

Program TRAIN is an interactive program which trains the classifier
with the data of the edges of the expected objects. This program pro-

duces a TRAIN.DAT file which contains the M+1 columns of the trans-
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ﬁ‘: formation matrix and also the average of the transformed samples of each 2
15 ; class. Multiple edges are allowed in the scenes, however all edges of the
‘i% objects in view must be identical. [See Figure 4.5.1 for the general

;%g flowchart of program TRAIN.] The program begins by initializing the ITI
o hardware and then prompts the user for the scan step, the AR model

;}ﬂ order, and the number of radius vectors. It also prompts for the desired
?gé transformation technique which can be either the basic Karhunen-Loeve

. (KLSEL), the minimum entropy K-L (MESEL), or the optimal prewhitened K-L
;ﬁg (PREKL) coordinate axes generating technique. Once the scene has been

EE? viewed, thresholded, and frozen, it is scanned in order to find the start

i f pixel of each boundary. As soon as a boundary start pixel is detected,

;&; the entire boundary is traced and the centroid is calculated. After the
g&: entire scene has been scanned, the radius vector lengths of each boundary

T ] are determined so that the AR parameters can be calculated. Once the

;Eé feature vectors are formed from the AR parameters, the process repeats

;; and another scene can be viewed. When enough samples of each class have

,;) been accumulated, all the AR parameter feature vectors are passed to the
§§5 desired subroutine which then forms the average covariance matrix and

.§E finds the particular K-L coordinate axes. After the K-L axes are calculated
4 - and the transformation matrix is formed, the original feature vectors are
EE transformed and the average transformed vectors are found. These vectors
::; are stored along with the transformation matrix in the training data

: file.

“:
‘:jz 4.5.2 Program CLASSIFY

v

;;: Program CLASSIFY is an interactive program which can recognize objects
.%é with one or more edges. The program allows many different objects to be
f§: present in the scene. It also calculates the rotation of the objects. The
ey
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program starts by initializing the hardware and prompts for the desired
constants aS in Program TRAIN. It also prompts for the desired dimension
of the average transformed feature vectors. Once the constants have been
accepted, the program scans the frame buffer and turtles around all
edges, calculating the centroid after detecting each edge. When all the
edges have been detected and also marked, the program then determines which
holes are owned by which objects. The inner holes of the objects are
counted and if the count is unique, then the object can be classified.
The edges of the yet unclassified objects now need to be classified so
the radius vector lengths are determined and the AR parameters are
calculated. Then using the transformation matrix provided by the training
program, the AR parameters of each edge are transformed. Now the
transformed feature vectors can be classified using the minimum-distance
algorithm as discussed in Chapter 3. Once all the edges of the object
are classified, the object can be classified. This is done by matching
the edge classifications and the number of holes data with the object
data contained in a file called OBJECT.DAT. This data file is created

by the user in the same way that an ordinary text file is created. The
object data is typed in one line per object. For example, suppose we
have an object with label 3 which has 2 holes labelled 5 and 7. If the
centroid of hole 7 is further away from the outer boundary centroid than
hole 5, then we would type in the sequence: 3 2 7 5. Once all the
objects have been classified, the program is ready to accept another

scene full of objects or the session can be terminated. See Figure

4.5.2 for the general flowchart of Program CLASSIFY.
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CHAPTER 5
NUMERICAL EXAMPLE AND SYSTEM TESTS AND RESULTS

In the previous chapters, we described the theory and implementation
of our pattern recognition algorithms. It is well known that any
theoretical study is incomplete without examples and experimental tests.
Thus this chapter is divided into two parts, the first part provides a
numerical example of the feature selection, transformation, and
classification theory. The second part describes the series of tests
and their results, of the entire recognition system. In all examples
and system tests the image threshold was set at 120, the scan step was 8

pixels, and the desired number of radius vectors was 64.

5.1 Numerical Example

We used programs TRAIN and CLASSIFY to provide for the following
examples of the theories and algorithms used in this pattern recognition
system. Two examples have been provided, the first is of the system using
the equal angle boundary sampling method. The second example shows the
system using the equal arc length boundary sampling method. The shapes
chosen for these examples are the familiar S (class 1) and N (class 2)
used in the work of Dubois [Dubois, 1984]. These shapes were chosen for
two reasons. The first is that the AR parameters of both classes are
very similar and thus they show the need for a type of transformation

H

technique. Also they were chosen to allow quick comparison of the two

different pattern recognition systems. The actual size of these shapes
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W are considerably Targer than normal text. The letter S is approximately
g 6 inches tall and the N is about 4-1/2 inches tall.
~x
LN »_-.'.
o 5.1.1 Example of the System Using the Equal Angle Boundary Sampling Method
b
. The equal angle boundary sampling technique described in Chapter Two
RO
:}ﬂj is used in this example. Figure 5.1.1 shows the sampled shapes of class 1
A
BN and class 2. Note that portions of the letters are not sampled as would
be expected. This is due to the radius vector boundary intersection
QY
J X .
Jik; algorithm rejecting radius vector measurements if they occur on the same
b e n
B "i,‘. 3 3 . -
o slope as the previous radius vector length measurement. This rejection
+ NN
(g- was done to prevent the occurrence of a disproportionately large number of
Fo,
'}j} similar radius vectors measurements if the slope of the boundary happened
~ N
N to coincide with the slope of a radius vector. Below the shape of each
-3
letter is the corresponding time series formed from the radius vector
:%:i lengths. Notice the fast vertical changes. These unnatural transitions
3&:' are the direct result of the sampling process skipping or by-passing
. '_,‘_
J certain sections of the boundary. These quick transitions increase the
o . : .
.:i; high frequency content of the time series wave shape and thus it can be
o
:}fl expected that the resultant AR model order will be higher for this type of
B | 3
b T .
- wave shape than for a waveform that doesn't have these sharp transitions.
%q:? Table 5.1.1 shows the original training set data comprising 10
‘Eﬁi samples of each class. As can be seen, the samples varied in size and
T
..“* rotation. The size variation can be observed in the changes of the
‘?a:j length (in pixels) of the maximum radius vector from one sample to the
N
AN . . i . .
in next. Notice also that the changes in rotation are not strict multiples
) 'in
RN of 27/Nr. This was done to mimic a realistic setting where the position
U'
iﬂj{ and rotation of an object is generally completely arbitrary.
.:. 'f:
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o Figure 5.1.1 Shapes for Numerical Example: Equal Angle
Boundary Sampling Method
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‘; Table 5.1.1 Training Set Data

o Equal Angle Sampling Method

‘ (AR Model Order: 1)

i

L Length of

’ Sample N, 8 a/vVB Max Rad Vec. Rotation

\0

5\ Class 1

'34 1 95  -0.97653  1.73521 183 251.4

el 2 88 -0.97261 1.8513 187 207.1
3 84  -0.96371 1.82773 188 166.0

e 4 88  -0.97306  1.80995 187 339.0

a0 5 90  -0.96508  1.7982] 193 313.8

9! 6 90  -0.96442  1.86203 196 56.5

nf 7 80  -0.95070  2.10665 203 13.7

N 8 84  -0.96093  1.81376 204 339.0

g 9 91 -0.97108  1.67467 214 326.0

b 10 86  -0.91653  1.92008 209 278.0

i

e

o Class 2

- 1 110 -0.97338  1.91497 160 236.0

Y- 2 110 -0.97753  1.96800 165 193.8

. 3 113 -0.97996  1.88319 168 159.2

D8 4 112 -0.97825  1.91980 166 326.0

2 5 112 -0.98253  1.96457 . 174 303.1

& 6 110 -0.97322  1.93067 177 39.7

e 7 113 -0.97945  1.94201 182 345.9

L2 8 113 -0.97759  1.92446 190 20.6

B 9 110 -0.97306  1.93831 186 128.5

RAT 10 111 -0.97896  1.95099 188 213.5
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The AR parameters 6] and a//8 cluster around their average class
value as can be seen in Figure 5.1.2a. However looking at Table 5.1.1,
some 61 values and also some o/vB values overlap between the classes.
Thus it can be seen that it is desirable to reduce or possibly eliminate
these overlaps by using a transformation technique. Table 5.1.2 shows
the results of transforming the original AR parameters using the basic
K-L, the minimum entropy K-L and the optimal K-L transformation matrices
as described in Chapter 3. The plots of these transformed points are
shown in parts b,c,d of Figure 5.1.2.

To understand how the K-L coordinate axes can reduce the dimension
of the feature vector, observe how the transformation rotates the
original coordinate axes so they now point in the direction of maximum

and minimum variance. In the basic K-L transformed system, the first

61

axis or x axis, points in the direction of maximum within class variance.

Looking at plot (b) in Figure 5.1.2, it is noticed that the major axis
of the ellipsoid formed from the cluster of class 1 points of plot (a)
is now parallel with the x axis. We can also see that along the y axis
corresponding to the direction of minimum variance, there is no over-
lapping between the classes. It is possible to draw a straight line
parallel to the x axis between the class clusters such that the classes
do not overlap. An unlabelled input feature vector can be classified by
its position along the y axis alone. Thus the dimension of the feature
space has been reduced.

Plot (c) in Figure 5.1.2 shows the effect of the minimum entropy
transformation. Comparing this plot with plot (b) we see that plot (c)
is the same as (b) but with the axes reversed. In the minimum entropy

transformed system, the x axis points in the direction of the minimum

--------- 3 o MR LR AT AR ALY ORI N R . S TR «
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Table 5.1.2 Transformed Training Data

Sample Basic K-L Min Entropy K-L Optimal K-L

; T T2 T T2 T T2

L]

i Class 1

. 1 1.685 1.061 1.061 1.685 263.35 54.1

t 2 1.801 1.063 1.063 1.801 269.21 52.84

" 3 1.778 1.053 1.053 1.778 266.64 52.41

; 4 1.760 1.062 1.062 1.760 268.67 53.23

. 5 1.748 1.053 1.053 1.748 266.51 52.76
6 1.812 1.056 1.056 1.812 267.35 52,17
7 2.057 1.054 1.054 2.057 267.81 49,09
8 1.764 1.050 1.050 1.764 265.73 52.33
9 1.625 1.053 1.053 1.625 266.06 54.25
10 1.870 1.056 1.056 1.870 267.55 51.46

Class 2

] 1.864 1.067 1.0671 1.864 270.40 52.35
2 1.917 1.074 1.074 1.917 272.25 52.18
3 1.832 1.072 1.072 1.832 271.52 53.08
4 1.869 1.072 1.072 1.869 271.68 52.65
5 1.913 1.079 1.079 1.913 273.43 52.56
6 1.880 1.067 1.067 1.880 270.60 52.20
7 1.891 1.075 1.075 1.891 272.32 52.54
8 1.874 1.072 1.072 1.874 271.58 52,56
9 1.888 1.068 1.068 1.888 270.68 52.12
10 1.900 1.075 1.075 1.900 272.34 52.43
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Figure 5.1.2 Plots Showing the Effects of the Different Transformation
(a) Original AR Parameters, (b) Basic K-L Transformed
Parameters, (c) Minimum Entropy K-L Transformed Parameters, (d)
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within class variance. This is to be expected since the transformation
matrix is formed from the exact same eigenvectors as the K-L trans-
formation matrix, but reversed in order. Since this reversal of’eigen-
vectors does not enhance the basic K-L system, the minimum entropy
transformation was not investigated further. However, if it is known a
priori that all the class covariance matrices of a training set are equal,
then it is shown [Tou and Gonzalez, 1974] that the minimum entropy

method produces better results than the basic K-L transformation.

Plot (d) in Figure 5.1.2. shows the effect of the optimal K-L
transformation. The x-axis points in the direction of maximum between
class variance. Now the class means fall on a line parallel to the x-
axis. It is also noted that the intraset distances along the x-axis
have been reduced in comparison to the original clusters. Thus any un-
labelled input vector can be categorized according to its position along
the x axis.

In this 2 class problem, we do not observe a distinct advantage of
the optimal K-L transformation. However, as the feature space increases
and includes more classes the ability of the basic K-L transformation to
divide the feature space decreases. This is because the K-L trans-
formation is based on the within class variances which do not contain a
great amount of discriminatory information. On the other hand the optimal
K-L transformation uses the prewhitened between class variances and thus
maximizes the use of the discriminatory information contained in the
class means.

Tabies 5.1.3 and 5.1.4 show the data of the classification process.
The classifier initially retrieves from storage the transformation

matrix, which was used to transform the training samples, and the
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Table 5.1.3 Classification Data Using Basic K-L Transformation
(AR Model Order: 1, Transformed Dimension: 2)

INPUT TRAINING DATA

Transformation Matrix: Mean Transformed Training Samples:
T T2

|0.04958 -0.99877 Class 1: 1.78981 1.05600

|0.99877 0.04958 Class 2: 1.88286 1.07206

CLASSIFICATION DATA

Length of
3 a/VB T T2 Max Rad Vec Rotation Decision

Class 1
-0.95892 1.85477 1.805 1.050 190 66.8 1
-0.96278 1.76381 1.714 1.050 195 27.0 1
-0.96952 1.69998 1.650 1.053 195 0.0 1
-0.97158 1.88558 1.835 1.064 192 326.2 1
-0.97213 1.75851 1.708 1.058 209 319.2 1
-0.97280 1.84680 1.796 1.063 204 122.9 1
-0.97630 1.67335 1.623 1.058 198 246.8 1
-0.97096 1.80878 1.758 1.059 201 213.3 1
-0.97648 1.68312 1.632 1.059 221 213.7 1
-0.96265 1.98290 1.933 1.074 219 146.1 2

Class 2
-0.97963 1.92738 1.876 1.074 180 219.8 2
-0.98326 1.89282 1.842 1.076 186 172.7 2
-0.97366 1.91872 1.868 1.068 185 7.0 2
-0.97945 1.92982 1.878 1.074 183 314.0 2
-0.98020 1.94440 1.894 1.075 198 313.8 2
-0.97278 1.94115 1.891 1.067 197 39.8 2
-0.98261 1.95360 1.902 1.078 200 338.9 2
-0.97505 1.93480 1.884 1.070 206 13.9 2
-0.97879 1.91234 1.861 1.072 208 339.0 2
-0.97175 1.91964 1.869 1.066 205 123.2 2

CONFUSION MATRIX
1 2
|
1 g 1 95.0% correct
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|
}: Table 5.1.4 Classification Data Using Optimal K-L Transformation
. (AR Model Order: 1, Transformed Dimension: 2)
)
- | INPUT TRAINING DATA
4 .
?ﬁ Transformation Matrix: Mean Transformed Training Samples:
A%

T T2
W - _
%p -246.90 -70.75 Class 1: 267.388 52.467
’): _15.70 - 8.63 Class 2: 271.682 52.467
W CLASSIFICATION DATA
; - Length of
b 9 1/vV8 T T2 Max Rad Vec Rotation Decision
2y Class 1
;‘ -0.97576  1.79706 269.13 53.53 183 260.8 1
- -0.97308 1.81335 268.73 53.20 184 231.3 1
L -0.95263 2.00491 266.69 50.10 186 186.9 1
- -0.95786 1.82341 265.13 52.04 186 139.8 1
N -0.97406 1.79275 268.65 53.45 181 94.4 1
< -0.96344 1.84091 266.78 52.28 196 71.7 1
N -0.96077 1.87224 266.61 51.82 200 39.8 1
" -0.95672 1.90406 266.11 51.26 201 345.8 1
By -0.97174 1.71986 266.93 53.91 204 326.0 1
;; -0.95385 2.16893 269.56 48.77 200 288.2 2
18
L Class 2
X -0.97945 1.93141 272.15 52.63 170 134.2 2
N -0.97635 1.97708 272.10 52.02 172 200.7 2
A -0.97666 1.88894 270.80 52.80 173 186.6 2
f, -0.97523 1.87643 270.25 52.81 172 152.5 2
N -0.98230 1.93227 272.87 52.83 174 0.0 2
& -0.98010 1.93268 272.33 52.67 170 297.8 2
i -0.97795 1.98704 272.66 52.05 187 33.7 2
o -0.97538 1.93191 271.16 52.34 189 346.0 2
' -0.98182  1.93898 272.86 52.73 200 288.2 2
¥ -0.97969 1.94883 272.49 52.50 198 123.2 2
)
! CONFUSION MATRIX
3.
g; a2
; 1ol 95.0% correct
¥ 2 1o 10
.
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¢Q§ formed training sample of each class. The table shows the original AR

” parameters and the transformed parameters of the test set. The maximum
tfb} radius vector length and the rotation of the object are also listed.
';:3 Like the training samples, the test samples are random. The resultant
‘;' classifier decisions are shown in the right column. For both sets of
? . classification data, the basic K-L transformed and the optimal K-L
-Eﬁ. transformed, the classifier recognized the input shape correctly for all
:: test samples except one. This misclassification occurred in both sets
h&; for a sample in which the original AR parameters vary more than the
i*ﬁ rest. It is suspected that this difference is due to a large segment of
j:; the boundary not being sampled. It is expected that the classification
g;ﬁ performance at this low model order (i.e. M=1) will be improved by the
3?& equal arc length boundary sampling method. This will be investigated next.
5y 5.1.2 Example of the System Using the Equal Arc Length Sampling Method
%
iﬁﬁ The equal arc length boundary sampling method as described in

f! Chapter Two is used in this example. Figure 5.1.3 shows the sampled
év: shapes of class 1 and class 2. Below each sampled shape is the re-
%b; sultant time series. As can be observed in these time series plots, the
e sharp vertical transitions, which occurred in the time series of the
,%g previously discussed sampling method, do not occur. The waveforms show
'E% the gradual changes in the contour of the boundary as it is sampled.
?ﬁy Tables 5.1.5 and 5.1.6 show the training and classification data. For
f}:} this example, only the optimal K-L transformation was used. As expected,
:;5 the AR parameters and thus the transformed parameters cluster closely
f;ﬁ about their respective class means. As a result we see a perfect
i

%*.
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Table 5.1.5 Training Set DATA Using the Equal Arc Length Sampling
Method and the Optimal K-L Transformation
(AR Model: 1)

Transformed Samples

Length of (Optimal K-L)
Sample 3 af/ VB Max Rad Vec Rotation T1 T2
Class 1
1 -0.97331 2.26854 202 229.5 -270.4 1479.1
2 -0.97314 2.31667 203 193.8 -271.4 1479.9
3 -0.97040 2.34302 200 144.7 -271.4 1476.6
4 -0.97041 2.46447 204 329.6 -274.3 1479.4
5 -0.97226 2.38723 219 78.9 -272.9 1480. 3
6 -0.97322 2.29049 217 30.7 -270.8 1479.5
7 -0.97209 2.35664 216 348.4 -272.1 1479.4
8 -0.96968 2.44291 220 299.1 -273.6 1477.8
9 -0.97061 2.43155 225 280.3 -273.5 1478.9
10 -0.97228 2.30699 183 26.0 -271.0 1478.5
Class 2
1 -0.96430 2.89333 184 111.5 -282.9 1480.3
2 -0.96269  2.94088 188 180.0 -283.6 1478.9
3 -0.96187 2.91875 188 137.5 -282.9 1477.3
4 -0.96357 2.88612 187 335.1 -282.6 1479.0
5 -0.96345 2.91985 186 78.7 -283.3 1479.6
6 -0.96316  2.90567 199 270.6 -282.9 1478.9
7 -0.96178 2.95423 203 336.4 -283.7 1477.9
8 -0.96132  2.99844 199 296.0 -284.7 1478.3
9 -0.96314 2.89153 204 276.2 -282.6 1478.5
10 -0.96405 2.92276 202 113.8 -283.5 1480.6
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NN Table 5.1.6 Classification Data Using the Equal Arc Length
e Sampling Method and the Optimal K-L Transformation
Sy
.:§2 (AR Model Order 1: Transformed Dimension: 1)
R
Ot INPUT TRAINING DATA
: :: Transformation Matrix: Mean Transformed Training Samples:
1wl T T2
R 723.52 -1466.18 Class 1: -272.15 1478.9
Y -23.27 22.96 Class 2: -283.27 1478.9
.
" CLASSIFICATION DATA
I
o Length of
o) 3 2/ VB T1 Max Rad Vec  Rotation Decision
Pl
nl Class 1
i o\
f;ﬁ* -0.97266 2.35135 -272.14 186 260.9 1
}.y{ -0.97328 2.28844 -270.81 188 231.0 1
K< -0.97302 2.29317 -270.86 190 192.4 1
e -0.97031 2.40888 -272.95 186 146.9 1
- -0.97180 2.33380 -271.54 197 147.7 1
: 3 -0.97035 2.44807 -273.87 196 317.8 1
) ‘3 -0.97194 2.36741 -272.35 198 77.9 1
P -0.97324 2.29135 -270.87 200 26.4 1
‘:# -0.97202 2.28805 -270.52 208 27.5 1
A -0.97262 2.30752 =271.11 206 346.5 1
2
"
:
X @% Class 2
Ve -0.96444 2.88873 -282.81 170 289.9 2
. -0.96061 2.93651 -283.06 177 8.9 2
Ao -0.96100 2.93754 -283.17 176 321.7 2
t:ﬁ -0.96298 2.89563 ~-282.64 170 276.5 2
4SO -0.96398 2.91838 -283.39 169 242.3 2
e -0.96461 2.88745 -282.82 179 114.0 2
i < -0.96244 2.91625 ~-283.00 183 199.2 2
N -0.96240 2.94407 -283.64 184 142.2 2
~ -0.96264 2.91241 -282.96 191 12.8 2
,4* -0.96283 2.92158 -283.21 190 295.6 2
%
T CONFUSION MATRIX
Ml 1110 o0 100% correct
L) o
Al 2| 0 10
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&;' classification performance using only one dimension of the transformed
- space. This example shows how the equal arc length sampling method

:E produces excellent results at a low AR model order.

N

>0

< 5.2 System Tests and Results
;ES We used programs TRAIN, CLASSIFY and MAKLIB to test the performance
3{5 of the pattern recognition system. We tested the system with different

] shape categories and with varying numbers of shapes in each category. In
'g all the tests the training data for all the desired model orders was
.E acquired from a library data file containing the AR parameters for model
k’ orders 1-10 for the samples of the particular shape category. Thus for
ﬁg each shape category the training data for model orders 1 through 10 was
.EE formed from the same set of samples.

ﬁ For each test we have provided a table of results showing the overall
iE: percent correct classifications of the shapes category at a certain
j§ transformed dimension and particular model order. The percent calculation
7# value was calculated as the average of the class percent correct classi-
?ﬂ fications. This method of calculating percentages downgrades the classifier
f; more if the misclassifications occur for one particular class than if the
?5 misclassifications occurred randomly among all the classes.
;5 A1l the shapes used in the tests were cut out of white paper and
;E viewed against a black background. This was done to eliminate the
it' effects of shadows, reflections, and texture on the performance of this

+ pattern recognition system. In all the tests the objects were translated
E§ and rotated randomly in the scene. Also the camera was lowered and
aﬁ elevated randomly between samples to change size of the viewed object.

{s In all the tests, except the multi-edge object and timed tests, the

i

¥

T O L e e e R R YA e




..$~" 

s
l‘l

! Pl )
R Y

5

S

E Ay

LN g 2D
AR

g

72

classification data was provided by the same Tibrary file as was used in
the training process. This was done to speed up the tests since the AR
parameters could simply be pulled out of storage instead of calculated.
We felt that the system would still give accurate results since the only
data the classifier uses in its decision making process is the mean class
transformed training samples where the means are calculated over 25

samples.

5.2.1 Industrial Shapes Test

This was the first test done and it was used to compare the basic
K-L vs the optimal K-L transformation techniques. We chose this set to
again allow comparison of our system with the system of Dubois. The 8
industrial shapes (see Figure 5.2.1) in this test are scaled down versions
of the industrial shapes tested by Dubois. These shapes were originally
collected from the literature concerning industrial shape pattern
recognition.

Table 5.2.1 shows the classification results of the system using
both the basic K-L transformation and the optimal K-L transformation. As
can be observed the basic K-L transformed system produces classification
rates of 91.5 to 98.5 percent at the maximum transformed dimension for
model orders 1 through 10. A significant improvement is seen in the
classification results of the optimal K-L transformed system. At model
orders 3 through 10 we see perfect classification rates and for model
orders 5,7, and 9 these perfect rates occur when using only two dimensions

of the transformed feature vector space. Generally the misclassifications

occurred when the classifier confused objects 1 and 8 and objects 4 and 5.
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Figure 5.2.1 Industrial Shapes

(reduced to 74%)
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Results of the Industrial Shapes Test Using the Basic K-L
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5.2.2 Military Shapes Test

This test checked the system performance on a category of 4 military
shapes as shown in Figure 5.2.2. One aspect of this test was to demonstrate
how this system could be used for military target classification. Also,
since all the silhouettes are long and pointed, another aspect was to
see how the system would perform in the classification of fairly similar
shapes. The optimal K-L transformation matrix was used and both boundary
sampling methods were impiemented in this test.

The test results in Table 5.2.2 show that the classifier performed
perfectly using the equal angle sampling method and 1 dimension of the
transformed feature space. The classifier performed slightly less well
for the equal arc length sampling method. The misclassifications
occurred when the classifier confused shapes 1 and 3. Note that shape 1 is

the smallest of the shapes in this category.

5.2.3 Geometric Shapes Test

Many two dimensional representations of objects are fairly geo-

metrical in shape, i.e. the shapes are symmetric and composed of lines
and curves. Thus a test was performed on a set of 8 geometric shapes
(see Figure 5.2.3). This test also provided the individual edge
classification results which could then be compared with the results of
the next test where the edges are combined to form multiple edge shapes.
As in the military shapes test, the optimal K-L transformation matrix
and both boundary sampling methods were implemented.

Table 5.2.3 shows the classification results. Note that the

classification rate ranges from 93.5% to 99.5% for the maximum transformed
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Figure 5.2.2 Military Shapes

(original size)
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Table 5.2.2 Results of the Military Shapes Test Using the Optimal

K-L Transformation and Both Boundary Sampling Methods
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(25 Test Samples = 25 Training Samples)

% Correct Classification

Model Transformed Dimension
Order 1 2

EQUAL ANGLE SAMPLING METHOD
1 100.0 100.0
2 100.0 100.0

EQUAL ARC LENGTH SAMPLING METHOD
1 89.0 97.0
2 97.0 100.0
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5\ :
%ﬁ\ . Table 5.2.3 Results of the Geometric Shapes Test Using the Optimal K-L
B N ) -
: ) Transformation and Both Boundary Sampling Methods
s
fip (25 Test Samples = 25 Training Samples)
o]
ﬁ%ﬁ’ % Correct Classification
""_!
A Transformed Dimension
3;,7 Model
oty Order 1 2 3 4 5 6 7 8 9
o
1 95.5 98.0

. 2 53.5 94.5 98.5

NN 3 79.5 96.0 97.0 93.5
i 4 51.5 92.0 98.5 98.5 95.0
N 5 68.0 99.0 99.5 98.0 98.5 98.5
.«{h 6 58.5 93.5 98.5 99.0 99.0 99.0 99.5
e 7 77.5 95.0 98.0 99.0 98.5 99.0 99.0 99.0
iiﬁ- 8 80.5 95.0 97.0 98.5 98.5 99.0 99.0 99.0 99.0
:;;i EQUAL ARC LENGTH SAMPLING METHOD

. 1 89.0 98.5
40 2 72.5 91.5 93.0

;X 3 58.5 82.5 83.5 84.5

AS41 4 71.0 86.5 87.5 88.5 89.0

<1 5 83.0 89.5 85.5 86.5 87.0 87.0
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dimensions of the system using the equal angle sampling method. Note

also that the best recognition rate for the equal arc length sampling

E&S method occurs at the lowest model order. It is evident upon looking at
é:Q the top half of Table 5.2.3 that 2 samples (from class 5) of the library
0 _ data file had AR parameters that deviated too far from the class mean and
.S thus were consistently misclassified. If the test had used all random,
TS new samples, we would probably see an occasional perfect classification
® score. However, the table does show how the AR parameters can deviate
E? 3 so far from the class mean that even the best transformation technique
3;3 cannot completely eliminate the effect of this variance.
1 5.2.4 Multi-Edge Shape Test
zﬁs
;; This multi-edge shape test is simply an extension of the geometric
.V:. shapes test. It demonstrates how the pattern recognition system can be
;5:5 used to recognize shapes with multiple edges. For this test we produced
Eiﬁ 12 shapes with multiple edges by cutting geometrical shapes out of the
;r geometric shapes of the previous section. See Figure 5.2.4 for the re-
;éé presentative shapes. The training data for this test was formed from the
iE% same samples that were used in the previous test. During classification
:Lﬁ however, the test data was formed from random, new samples. Thus this is
:\*? the first test where the test and training data samples are mutually
:zh exclusive.
{;: | The confusion matrix of one run of this test at model order 5 and
E,; transformed dimension 2 is shown in Figure 5.2.5. The confusion matrix
'*é shows the number of each of the classifier decisions for a shape, where
K each shape was submitte. to the classifier 20 times. It is observed that
3$§ some samples were not classified at all, especially samples of shape 1.
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(AR Model Order: 5, Transformed Dimension: 2)
(20 Test Samples; 25 Training Samples)
Classifier Decision
1 2 3 4 5 6 7 8 9 10 11 12
|
2
20
9 11
20
20
20
18
15
1 117
20
1 17
[ 20
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This problem was caused by the individual edge classifications not matching
the actual object vector edge classifications. This apparently high

rate of misclassification is due mostly to the greatly reduced size of

the interior edges. When the size of an edge becomes very small the pixel
quantization problem becomes increasingly significant. The resultant
increased noise decreases the overall signal to noise ratio which ulti-
mately degrades system performance. The most common effect of the

lowered signal to noise ratio was the classifier confusion of edge 6 with

5 in object 1.

5.2.5 Large Number of Shapes Test

In this test we investigated the performance of the system when the
classifier was given a large training set. For this test the sample data
files of the industrial, military and geometric shapes were combined to
form a single 20 shape data file. The classifier was trained and tested
with the samples of this data file using the optimal K-L transformation
technique. A1l the AR parameters in the data file were formed from the
time series produced by the equal angle boundary sampling method.

The results of this test are shown in Table 5.2.4. The individual
runs of this test started at model order 5 since it was desired that a
recognition rate of at least 99% occur for the individual categeries be-
fore the combination was tested. As can be seen, the classification per-
formance degrades somewhat in comparison to the individual tests. This
was expected since the feature vector space becomes more crowded as more

shapes are included in the training set.
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Table 5.2.4 Results of the Combined Shapes Test Using the
~ Optimal K-L Transformation
% Correct Classification

Transformed Dimension

1 2 3 4 5 6 7 8 9
53.2 88.0 93.8 95.2 95.4 95.6
57.8 89.2 91.4 95.0 95.4 96.2 97.0
56.2 90.6 94.0 95.4 95.8 97.0 96.6 97.6
44.2 83.8 96.2 90.8 92.6 94.2 94.2 95.0 96.0
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5.2.6 Classification Speed

In the previous sections we have investigated the accuracy of the
pattern recognition system. Another equally important aspect of a
pattern recognition system is classification speed. Usually the classifier
is trained off-line, since it is an interactive process, so training speed
is desirable but not critical. What is critical and what also determines
the possible applications of a pattern recognition system is the speed of
classification combined with the accuracy.

In the process of classifying a single edge, the edge is first
detected and traced. Then the radius vectors are calculated and the AR
parameters are recursively estimated. The AR parameters are then trans-
formed and categorized according to the nearest class mean in the feature
space. For multiple edge objects this process is repeated for each edge.
Then all the individual edge classifications are ordered and matched to
the correct object vector as described in Chapter Four. If the multi-
edge object has a unique number of inner boundaries, then it is not
necessary to calculate the AR parameters thus reducing the classification
time.

The most time consuming tasks of the classification process, using the
equal angle boundary sampling method, are ordered below with the most time
consuming task first:

1) scanning the entire frame and tracing the
boundaries
2) radius vector length calculation

3) AR parameter estimation
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The rest of the processes: determining hole ownership, ordering the
boundaries, and actual classification do not contribute a significant
amount of time to the total classification process. Each of the above
tasks are accomplished within a range of times depending on the factors
as listed next to each task number below:
1)  scan step size, number of edges, total length
of each edge
2) number of desired radius vectors, length of the
edge (equal angle sampling method)
3}  number of resultant radius vectors, and AR
model order.

The observed times for scanning the scene and turtling the boundaries
range from 0.25 seconds, for no objects in the scene (scan step = 8), to
greater than 2.2 seconds for a scene with many objects with multiple edges.
Table 2.25 shows the radius vector and AR parameter calculation times for
the class 1 (S) shape of the numerical example in the first sgction of this
chapter. The length of the boundary for this shape was 1308 pixels and the
scan and turtle time was approximately 0.83 seconds.

Average total times for the classifications of the large shapes of
the numerical example are 1.32 seconds using the equal angle sampling
method and 1.01 seconds for the equal arc length sampling method. For
smaller shapes the total classification time for a single edge is less

than one second.

In this chapter we used the programs described in Chapter Four to

demonstrate the system theories and the system accuracy. In the first

section we present two examples of the feature selection and feature
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& Table 5.2.5 Processor Times for Calculating the Radius
o Vectors and the AR Parameters
s
. (Fractions of a Second)
L)
‘\l ) Model Equal Angle Equal Arc Length
0 Order Sampling Method Sampling Method
'. U
3 1 .3398 .0391
s 2 .3398 .0508
3 .3515 .0560 |
Y 4 .3789 .0703 ]
2 5 13789 .0781 5
¥ 6 .3984 .0781
. 7 .4023 .0898
) 8 -4102 .1094
' 9 .4180 121
oy 10 .4336 121
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bt vector transformation methods. The second section describes a series of
system tests and the resultant classifier performance. In the last part

:
.2 of the tests and results section we summarize the time requirements of
)
)

¥ this pattern recognition system.
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CHAPTER 6
CONCLUSIONS AND SUGGESTED IMPROVEMENTS

In this thesis we have developed a pattern recognition system
capable of classifying two dimensional shapes with many edges. Also the
system is capable of classifying many shapes in a single scene. Since the
problem presented by the existence of many edges in a shape can be con-
sidered as a simple extension of the single edge problem, we proceeded to
concentrate on improving the single edge classification process. In so
doing, we used the work of Dubois [Dubois, 1984] as a starting point and
continued by improving some of the existing algorithms and developing a
more efficient classification scheme. By applying the theory of the
Karhunen-Loeve transformation onto the feature vectors formed from the AR
model parameters of an objects boundary, we were able to reduce the
dimension of the feature vector space and thus further reduce training
data storage space and also classification time.

We have split the contents of this chapter into two sections. The
first section provides comments on the work just completed. The second
section suggests future work that can be done to enhance the performance

of our system.

6.1 Concluding Remarks

On the feature selection techniques:
- The recursive estimation of the AR parameters speeded up

classification time without degrading the system performance.
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o It is noted that most of the time spent in the production of
o the AR parameters of a given time series is not in the recursion
e itself, but in calculating the correlation coefficients used by

the recursive equations.

- The recursive algorithm did not alter the invariance properties

o
a§§ of the AR parameters.
5;,. - The performance of the AR model, and thus of the classifier, is
g&é dependent on the size of the shape. When the size of the shape
}35. as viewed on the monitor decreases, the pixel quantization error
?%i increases. Thus the noise on the samples of the time series
“.ﬁ increases and the AR parameters will deviate further from the
‘; class means.
‘;f‘ - The equal angle radius vector length calculation method of
ijé Dubois was speeded up. The average time was previously 1.68

f' seconds, this can be compared with the average time of .33
;f‘: seconds on our system. However, this decreased time is partly
%;2‘ at the expense of an increased temporary storage requirement
i for the boundary pixels.
o
%%ﬁ - The equal arc length boundary sampling technique can be
%ﬁg‘ successfully implemented at very low AR model orders. This
%{: technique results in an average .31 second reduction in
sz; classification time compared with the time of the equal angle
~S$E ‘ sampling method.
Egg.
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The equal angle boundary sampling method consistently provided
better results than the equal arc length sampling method at AR

model orders greater than 1.

On the transformation techniques:

* 4’5'“?@3 4,0y

I!f\

I

The basic and the optimal Karhunen-Loeve transformation
techniques are effective in decorrelating the components of

the feature vector. By removing the correlated components
corresponding to the smallest eigenvalues of the K-L covariance
matrices, the original feature vectors are Spproximated by

vectors of lower dimension.

The optimal K-L transformation technique proves to be better
than the basic K-L transformation when there are more than 2
classes in the feature space. This is because the optimal
transformation is based on a between class scatter matrix
whereas the basic K-L transformation is based on a within
class scatter matrix. In the optimal K-L system the scatter
matrix is prewhitened to remove the individual sample vari-
ances. This is done to provide maximum use of the dis-

criminatory information contained in the class mean vectors.

In the industrial shapes test the optimal K-L transformation
technique proved to be more effective in separating the feature
space than the rotated coordinate system of Dubois. For this
test the shapes, which were scaled down versions of the shapes
used by Dubois, were correctly classified at AR model orders 3

through 10. Also model orders 5,7,9 required only 2 dimensions

' A ; &) 06,0 OF o 2O O OO 1 HCREN 30
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o of the transformed space to achieve correct classification.

o This can be compared with the results of a similar test by

gi' Dubois where correct classification was achieved only at model
gﬁ! order 5 and maximum dimension of the feature space.

sy . . _ .

$¢l - As in the rotated coordinate system in the work of Dubois, the
§§? K-L transformation matrices are based on the eigenvectors of the
Yif covariance matrices of the feature vectors. These covariance
f%é matrices become singular whenever the number of training

%gg samples is less than M+2, where M is the model order. Since we
. consistently used 25 training samples for all our system tests
t;~ we did not encounter any singular matrices. However we would
?;5 like to note that this singular matrix problem can very well

. occur, especially at high model orders.

2

;tq - We did not concern ourselves with finding the optimal model

géi order for the tests since the shapes used in the tests were so
;ﬂ$ varied. Generally the best results were obtained with model
:?5 orders 3 through 10 and with model order 1 for the equal arc
%%: length boundary sampling method.

§g; - The permanent storage requirements for the trained classifier
,E?‘ in this system consists of an (m#1) x (m+1) dimensioned trans-
?h” formation matrix and ¢ (m+1) transformed class mean feature

[é;e vectors. As we saw in the examples of Sections 5.1.1 and 5.1.2
g:% where ¢=2 and m=1, the storage requirement consisted of 8

ﬁq‘ values. This aspect of th's pattern recognition system makes
e;g it ideal for the classification of a large set of shapes since
fbk' the storage requirements for each shape is minimal.
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On the original work in this thesis:
- A boundary marking and bookkeeping system was devised to allow

multiple shapes with multiple edges in the scene.
- A simple method of determining hole ownership was devised.

- The theory of the Karhunen-Loeve expansion was applied to the

vectors formed from the parameters of the AR model of the edges

of a shape.

- A special purpose program (MAKLIB) was written to collect the
AR parameters at model orders 1 through 10 for any desired

edge. This collection of AR parameters was used for classifier

training and testing.

- Finally, a complete set of software (TRAIN and CLASSIFY) was
developed into a pattern recognition system which not only
classifies shapes but also produces size and rotation indicators

based on the length and position of the maximum radius vector.

As initially stated, we set out to classify objects with multiple edges.

We conclude that we were successful.

6.2 Suggested Improvements

The two most important aspects of a pattern recognition system are
speed and accuracy. Hence it is the goal of this section to present

suggestions which will increase the classification speed and accuracy.

To increase the classification speed:

- Implement the turtle algorithm in assembly language.
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For multiple edge objects - find the AR parameters of the
shape formed by connecting the centroids with straight line
segments. This will avoid the time needed to classify each

individual edge.

- Segment the scene before scanning to quickly determine the

approximate location of an object.

To increase classification accuracy:
- Improve the equal angle boundary sampling technique so that it

does not skip over sections of the boundary.

- Determine the optimum AR model order by using Equation 2.2.15e
as described in Chapter Two and then use the value as

additional information in the classification process.

Also to increase the versatility of the system:

- Modify program TRAIN so that it can train on entire objects

without having to isolate the edges.

- Investigate different thresholding techniques to deal with
the reflection, shadow, and texture problems of real three

dimensional objects.
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. c
‘o c FILE TRAIN.EOK LAST REVISION JULY 1,198S
?
c AUTHOR: KRUTH D. KENNETT
. c
aﬂ, c THIS EILE CONTAINS:
g.l c
W c PROGRAM TRAIN
0 c
553 c TO LINK TYPE:
4 c
4
Rt c LINK TRAIN,COLLECT,WOKK1,RADLl,PARAM,REGIS,KLSEL,MESEL,PREKL,EIGV,-
?
c USPKD,SYS$LIBRARY:VIDEOLIB
"‘ C
ftﬁ CARKARKKARAARAAARARARARAAKARRKARAKRARARKAKARAKRAKKAKKRRKRAKAAAR KR KRR AR A KA KA
s c PROGRAM TRAIN
I CARARAARKAAAXKAAKRARARARAAARARRARAARRAARRRRARAARKRARAKAKARKAKARKKRARAA KA KA AR
Byt c
Si&\ c THIS PROGRAM TRAINS THE CLASSIEIER EY INTERACTIVELY TAKING SAMFLES
iy c OF THE CLASSES REPRESENTING THE EDGES UF THE EXPECTED OBJECIS.
{5 c ONCE THE USER HAS THE DESIRED NUMBER OF SAMPLES OF EACH CLASS, THE
c SAMPLES ARE THEN SENT T0 ONE OF THE DESIRED TRANSFORMATION ROUT-
. c INES: KLSEL,MESEL,PKREKL,
( J
A5 c
A
b2 INTEGER DEV, IN,OUT,STEP, INRAD,H
228 INTEGER DIM,NSAMP,NCLASS,CLASS,BNDCT,SAMP
T INTEGER PCLASS,TOTCLS
INTEGER INCODE,TRCODE
] INTEGER NEWLUN,OLDLUN
W INTEGER XPIX(2500,10),YPIX(2500,10)
N INTEGER BOUND(10,10)
5 REAL RAD(~-2:250,10),0RIENT(10)
) REAL X(11,2%5,20),THETA(11,10)
:; REAL IRANs<11,11),r<:s,11,2o)
- REAL TA(11,20)
oF REAL LIB("O,-J,IO,II),ALL(IO,II,IO)
- CHARACTERA1l INST
)"l
B COMMQN DEV, IN,OUT,STEP, INKAD,M
: DATA IN,0UT/S,S/
.a' DATA TRANS/12140.0/
W
W) NEWLUN = 1
BN OLDLUN = 2
OPEN(UNIT=NEWLUN,FILE= *TRAIN.DAT’, STATUS='NEW’)
g OPEN(UNIT=OLDLUN,EILE='LIB.DAT’,STATUS='0LD")
f c
¥
;ﬁ; c SETUP THE IMAGING HAKRDWARE AND PROMPT FOR DESIRED PARAMETERS
o) c
;ﬁ'; CALL SETUP
Rt CALL THRESH
i
! WRITE(QUT,A) 'TYPE 1 - TO TRAIN WITH NEW SAMPLES’
e WRITECOUT,%) ‘TYPE 2 - TO TRAIN WITH SAMPLES EFROM LIB.DAT’
’lz.'V
00K READCIN,2) INCOBE
h 2 FORMAT(I2)
X
Afﬂ. WRITE(OUT,4)> ‘TYPE 1 - EOUR MESEL (MINIMUM ENTROPY) '
l.l..
»‘;3
.oﬁ
‘I»
)
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WRITE(OUT,4> ‘TYPE 2 - EOR KLSEL (KARHUNEN-LOEVE)’
WRITE(QUT,%) ‘TYPE 3 - FOR PREKL (OPTIMAL KARHUNEN-LOEVE)
READ(IN,3) TRCODE
FORMAT(I1)
DIM = M + 1
NCLASS = 0
PRECLS = 0
IF(INCODE .NE. 2) GOTO 9
READ (OLOLUN, %) TOTCLS
READ(OLDLUN, %) CLASS,SAMP
IE(CLASS .EQ. 0) BOTI0 65
DO 7 I = 1,10
READ(OLDLUN,A) (LIB(CLASS,SAMP,I,J),J=1,I+1)
CONT INUE
G070 6
NSAMP = 0
GOTO 30

IFC(INCODE .EG. 2) GOTO 65
WRITE(OUT,15) NCLASS,NSAMP
FORMAT(1X,‘CLASS: ‘,I2,’
WRITE(OUT,20)
EORMAT(1X,‘FINISHED WITH SAMPLING? (TYPE Y FOR YES)
READ( IN,25) INST

FORMAT (A1)
IE(INST .EQ.

NUMBER OF SAMPLES: ’,I2)

Y

’Y’) GOTO 100

CALL VIEW

WRITE(OUT, 35)

FORMAT(1X, ‘ENTER CLASS NUMBER:
READ(IN,x) CLASS

. 8)

IF(CLASS .EG. PRECLS) GOTO 40 -
NCLASS = NCLASS + 1

PRECLS = CLASS

NSAMP = 0

CALCULATE THE AK PARAMTERS OF THE EDGES OF THE TRAINING OBRJECTS

CALL SNaF
CALL SCAN(BNDCT,BOUND,XPIX,YPIX)
IF(BNDCT .EQ. 0> GOTO 99
DO 45 N = 1,BNDCT
Tl = SECNDS(0.0)
CALL GETRAD(XPIX(1,N),YPIX(1,N),N,ROUND,RAD)
CALL PARAM(N,RAD,THETA,ALL)>
DELTA = SECNDS(T1)
WRITE(DEV, %) ‘TIME EOR
CONT INUE

GETRAD AND PARAM IS: ‘,DELTA

EORM THE SAMPLE FEATURE VECTORS FROM THE AR PARAMETERS

DG 60 I = 1,BNDCT
NSAMP = NSAMP + 1
DO 50 I = 1,DIM

X(I,NSAMP,CLASS) = THETA(I,J)

)
b,

U O
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5,': ] S0 CONT INUE
“ 60 CONT INUE
B ¢
c CALCULATE THE ORIENTATION OF THE EDGES
- c
B . CALL ROTATE(BNDCT,BOUND,ORIENT)
Y, CALL QUTPUT(BNDCT,BOUND,RAD,ORIENT)
; 1 GOTG 99
't ]
ﬁ. 65 WRITE(OUT,67)
Ihl 67 EORMAT(1X, EINISHED WITH TRAINING? (TYPE Y FOR YES): ‘$)
KEADCIN,68) INST
eva 68 FORMAT(AL)
DL IECINST .EG. ‘Y‘) GOTO 100
T WRITE(OUT,70)
4 70 FORMAT(1X, ' INPUT CLASS NUMBER: ’$)
§$’~ READ(IN,80) CLASS
ALH WRITE(OUT,7S)
Y 75 FORMAT(1X,’ INPUT DESIRED NUMBER OF SAMPLES: '$)
- READ(IN,80) NSAMP
L 80 FORMAT (I3)
e
L\ DO 90 SAMP = 1,NSAMNP
B DO 85 I = 1,DIM
N X(I,SAMP,CLASS) = LIB(CLASS,SAMP,M,I)
oy 8s CONT INUE
» 90 CONT INUE ,
.) é
IF(CLASS .EQ. PRECLS) GUTO 99
Y\ NCLASS = NCLASS + 1
Q%, PRECLS = CLASS
Bt c
z&ﬁ c LOOP BACK TO GET MORE SAMPLES
ca¥el c
iy 99 50T0 10
’O:u' c
_ c TRANSFORM THE FEATURE VECTORS
[ N ¢
ﬁ%f 100 G0T0(110,120,130) TRCODE
d' dJ
b 110 CALL MESEL(X,NSAMP,NCLASS,TRANS,T)
N GOTO 150
Moy 120 CALL KLSEL(X,NSAMP,NCLASS,TRANS,T)
= G0T0 150
- 130 CALL PREKL(X,NSAMP,NCLASS,TRANS,T)

e

c
c FIND THE AVERAGE OF THE TRANSFORMED SAMPLES
c

3

" 150 N0 180 K = 1,NCLASS
" DO 170 J = 1,DIM
s SUM = 0.0
3 DO 160 I = 1,NSAMP
. SUM = SUM + T(I,JI,K)
d 160 CONTINUE
o TA(J,K) = SUM / ELOAT(NSAMP)

1
i c
k [

170 CONT INUE
180 CONTINUE

WRITE THE TRANSFORMED SAMPLE FEATURES TO A TRAIN.DAT FILE

.

®,

. w "y - ™ - .~ ®
A At R D JL0d DR IRt A Tl LS PR




iy
) "‘ N

X 102
‘:"

DO .
W
..”“
e
l"‘l
Mty
Wyl
'. »

L) c

: ¢ ’ 200 WRITE(NEWLUN,*) DIM

Ay

_— DO 210 I = 1,DIM
o WRITE(NEWLUN,205) (TRANS(I,J),J=1,DIM)
& 208 EORMAT(1X,<DIM>F11.5)

AN 210 CONTINUE

LA

«; ? WRITE(NEWLUN,230) NSAMP,NCLASS

O.rh 230 EORMAT(1X,21I3)

Lado )

D0 260 K = 1,NCLASS
oy WRITE(NEWLUN,255) (TA(J,K),J=1,DIM)
Uy 255 FORMAT(1X,<DIM>EL1.5)
s 260 CONTINUE

cree

IF(DIM-2 .GT. 0) GOTO 290
WRITE(DEV,283) (I,I=1,DIM)
FORMAT('0‘,'THE Ak PARAMETERS OF THE TKAINING DATA'//,

e
1)
@

n

L, & CLASS SAMPLE *,7X,<DIM:C¢'M’,I2,7X)/)
b 30T0 305
' 290 WRITE(DEV,300) (I,I=1,DIM)

Al 300 FORMAT(‘0’,‘THE AR PARAMETERS OF THE TRAINING DATA’//,
‘-ﬂa k ’ CLASS SAMPLE *,7X,<DIM=1>(’M‘,I2,7X),’H’,12,3X,/)

oy
" 305 DO 350 K = 1,NCLASS

I DO 340 J = 1,NSAMP

WRITE(DEV,330) K,J,(X(I,J,K),I=1,DIM)

o 330 EORMAT (1X,2(13,5X),<DIM>F10.5)
pein 340 CONT INUE
1 Q 3s0 CONT INUE
L
Lot WRITE(DEV,400) (I,I=1,DIM)

- 400 FORMAT(’0’,'THE TRANSFORMED PARAMETERS OF THE TRAINING DATA’//,

4 % ‘ CLASS SAMPLE ' ,7X,<DIN>(’'T’,12,7X)/)

N DO 450 K = 1,NCLASS

- DO 440 I a 1,NSAMP
£ WRITE(DEV,430)K,I,(T(I,J,K),J=1,DIM)
S 430 FORMAT(1X,2(13,5X),<DIN:E10.4)
TH 440 CONTINUE
?‘::' 450 CONT INUE

\
W CLOSE(UN1T=NEWLUN)

CLOSE(UNIT=OLDLUN)

w» a

‘9. STOF
» .:.. END
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c
c FILE WORK1.FOR LAST REVISION JULY 1,1985
c
c ROUT INES CONTAINED IN THIS FILE ARE:
c
c SETUP
C THRESH
c SCAN
C GETCEN
c INTPLT
[ OBPLOT
[ EINPLT
c RADPLT
c
CARAAAKARAARRAKAARARARKAAAAKRAKRARAARRAKRAARARKRARKRAKRAXRRKAAKAKK KA KK A KKK
C _____________________________________________________________________
c SETUP
C _____________________________________________________________________
SUBROUT INE SETUP
[
C THIS SUBROUTINE INITIALIZES THE IMAGING SYSTEM HARLWARE AND
c PROMPTS THE USER FOR DESIRED VALUES
c
INTEGER DEV, IN,QUT,STEP, INRAD, M
COMMON DEV, IN,OUT,STEP, INRAD,M
CALL SELGRP(1)
CALL APINIT
CALL FBINIT
CALL LUINIT
CALL SYNC(O)
CALL VIEW
WRITE(OUT,40)
40 FOKRMAT (1X,  INPUT DESIRED OUTPUT DEVICE: ‘,$)

READCIN,4A) DEV

WRITE(OUT,SO)
S50 FORMAT(1X, ' INPUT DESIRED SCAN STEP: ’,$)
READCIN, %) STEP

WRITE(OUT,100)
100 FORMAT(1X, ' INPUT NUMBER OF RADIUS VECTOKRS: ’,$)
READCIN,A) INRAD

WRITE(OUT,110)
110 FORMAT(1X, * INPUT THE DESIRED AR MODEL ORDER NUMBRER: ‘,$)
READCIN,A) M
RETURN
END

[ e T Tt T B e T e T
c THRESH

SUBROUTINE THRESH

-E‘--\\.ti YL LN Py P ; '*"'I’;’: : '
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THIS SUBROUTINE SETS THE IMAGE THRESHOLD AND FILLS IHE FRAME BUFFER

aaon

INTEGER DEV, IN,OUT,ANS,YES,THKS,CHTHRS, I
COMMUN DEV, IN,0OUT

THRS = 120

CHTHRS = 0
100 WRITE(QUT,110) THRS
110 FORMAT(1X, THRESHOLD = *,I4,’ ADD: ‘,$)
READC(IN,120) CHTHES
120 FORMAT(I3)
IE(CHTHKS .EQ. 0) GOTO 200
THRS = [HRS + CHTHRS
G0T0 100

200 CALL SELLUT(0,0)
Dg 300 I = 0,255
IE(I .LT. THRY) CALL SETLUTC(I,INTLO)
IF(I .&5E. THRS) CALL SETLUTC(I, INTHID)
300 CONTINUE

RETURN
END

SUBROUTINE SCAN(BNDCT,BOUND,X,Y)

THIS SUBROUTINE SCANS THE FRAME RUFFER FOR ALL OF THE THRESHOLDED
EDGES OF THE OBJECTS IN THE IMAGE. ONCE AN EDGE IS FOUND IT CALLS
GETCEN TO CALCULATE THE CENTROID, AND GETRAD TO CALCULATE THE RADIUS
VECTOR LENGTHS.

[Ny EsNeNyNe]

INTEGER RAPIX,RPIXEL,XL,ZF,XN,YN,ZN
INTEGER BNDCT,BOUND(10,10)

INTEGER X(2500,10),Y(2500,10),Z,NUMPIX
INTEGER DEV,IN,DUT,STEP, INRAD

INTEGER FIRSIX,LASTX, INCX,STOPX
INTEGER EIRSTY,LASTY

INTEGER EDGE,BCKGND,0BJ,XTEST

INTEGER BUF(0:SI1)

CHARACTER INST

LOGICAL YESPLT,GOTONE

COMMON DEV, IN,OUT,STEP, INRAD

FOR WHITE OBJECT ON BLACK BACKGROUND: BCKGND = O AND 0BJ = 25
=

S
FOR BLACK OBJECT ON WHITE BACKGROUND: BCKGND = 255 AND OBlJ ]

o000

BCKGND 0

=
0BJ = 255

EDGE = 23§
FIRSTX = 0

-
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A
0 LASTX = 511
K> INCX = STEP
’ STOPX = (LASTX-EIRSTX+l) / STEF
FIRSTY = 0 ‘
o LASTY = 479 ‘
P BNDCT = 0 !
X c WRITE(S,50)
\ € S0 FORMAT(1X,'TYPE "Y* IF THE OBJECT PLOT IS DESIRED: ,$) !
nﬁ. c READ(S,SS) INST i
LN C sS FORMAT(AL)
. YESPLT = .EALSE. !
O IFCINST .NE. ‘Y’) GOTO 100 :
b 5 YESPLT = .TRUE. |
: A CALL INTPLT |
i‘h 100 T1 = SECNDS(0.0)
& =
ol DELTA = 0.0 ‘
L DO 500 YN = FIRSTY,LASTY,STEF
s c i
s c READ EVERY INCX FROM YN LINE IN THE ERAME BUFFER INTO EUFE
32 c
WAy CALL RSCAN(YN,EIRSTX,LASTX, INCX,RUE)
2N ZP = BUE(O0)
) DO 400 XL = 1,STOPX
4 ZIN = BUF(XL)
c
ot c CHECK FOR AN EDGE AND TRACE BACK FROM HOP TO REAL EDGE
3} c
vy c FOR WHITE ON BLACK USE (ZN-ZP) IN NEXT STATEMENT
B c FOR BLACK ON WHITE USE (ZP-ZN) IN NEXT STATEMENT
3 iﬂ c
4
IF((ZN-ZP) .NE. EDGE) GOTO 300
XN = (STEP % XL) + FIRSTX
wa 150 XTEST = XN - 1
Qﬁ 2 = RPIXEL(XYEST,YN)
Y IF(Z .GT. BCKGND .AND. Z .LE. BNDCT) GOTO 300
IE(Z .EB. BCKGND) GOTO 200
g AN = XTEST
a G010 150
;"g.: c
' C TURTLE AROUND THE EDGE AND CALCULATE THE CENTROID
c
’ 200 N = BNDCT + 1
o CALL GETCEN(XN,fN,X(1,N),Y(1,N),BNDCT,ROUND,GOTONE)
y IE(.NOT. GOTONE) GOTO 300
] c
: c PLOT OUT EDGES
() c
v IF(.NOT. YESPLT) GOTO 300
P DELTA = DELTA + SECNDS(T1)
3 NUMPIX = BOUND(6,BNDCT)
N CALL OBPLDT(X,Y,NUMPIX)
A" Tl = SECNDS(0.0)
N\ 300 ZP = ZN
b 400 CONT INUE
Wy 500 CONTINUE
l,x.
5
?"l
4
¢
0
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24
Ny . DELTA = DELTA + SECNDS(TI1)
L. c IE(YESPLT) CALL FINPLT
WRITE(OUT,600) DELTA
w 600 FORMAT(1X, ‘THE SCAN AND TURTLE TIME IS: ‘,F18.6,’ SEC’/)
g 1000  RETURN
28 END
5?
"W gy gy g gy Sy
c GETCEN
c ....................................... e — " - - — - - - - -
Y
éﬁ SUBROUTINE GETCEN(XS,YS,X,Y,BEND.I,BOUND,GOTONE)
el c
'y c THIS SUBROUTINE CALULATES THE CENTROID OF THE ROUNDARY. THE EDGE
X
g C IS TRACED USING A TURTLE ALGORITHM.
& c
W INTEGEK XS,YS,BNDCT,BOUND(10,10)
{ . INTEGER XTEST
20 INTEGER RPIXEL,RAPIX,XT,YT,Z,BNDINT
Bn ! INTEGER XREG,YREG,NUMPIX,XC,YC
b INTEGER X(2500),Y(2500)
: = INTEGER N,TOL,BCKGND
; LOGICAL OBJECT,RIGHT,UP,GOTONE
1
!.c.
TOL = 25
. BCKGND = 0
4/. N = BNDCT + 1
3 BNDIN
o DINT = N
§o CALL WPIXEL(XS,YS,BNDINT)
“AQ:‘ XREG = XS
iy YREG = YS
NUMPIX = 1
' X(NUMPIX) = XS
0@ Y(NUMPIX) = YS
Y XT = X§ - 1
ot YT = YS - 1
y UP = .TRUE.
’ﬁﬂ 190 Z = RPIXEL(XT,YT)
O

IF(Z .EQ. BCKGND) GOTO 250

IE((XT.EQ.XS) .AND. (YT.EQ.YS) .AND. (NUMPIX.GI.10)) GOTO S00 !
IE(Z .LT. BNDINT) GOTO 500

*_ 200 QOBJECT = .TRUE.

§

e, IE((XT.EQ.X(NUMPIX)).AND.(YT.EG.Y(NUMPIX))) GOTO 260
S XREG = XREG + XT

MY YREG = YREG + YT

o NUMPIX = NUMPIX + 1

o X (NUMPIX) = XT

Y(NUMPIX) = YT

x CALL WPIXEL(XT,YT,BNDINT)
oy GOTO 260

4 250 OBJECT = .FALSE.

c
c MOVE UP OR DOWN
c

B UG s = TS . : A0
40 b4, RN i ‘.l‘ WhaN S K E A N ! ! IR

P X
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SEN
v};; 260 IEC((UP.AND.OBJECT).OR. ((.NOT.UP).AND.(.NOT.GBJECT))) GOTO 27S
y XT = XT + 1
‘ RIGHT = .TRUE.

GOTO 290
by 275 XT = XT -1
2 RIGHT = .FALSE.
.ﬁb c
343 g CHECK FOR ORJECT PIXEL
3
{gg 290 Z = RPIXEL(XT,YT)
2t IF(Z .EQ. BCKEND) GOTO 350

IF((XT.EG.XS) .AND. (YT.EG.YS) .AND.(NUMPIX.GT.10)) GOTO S00
nda IE(Z .LT. BNDINT) 30TO 500
o 300 OBJECT = .TRUE.
Wy IFC(XT.EQ.X(NUMFIX)) .AND. (YT.EQ.Y(NUMPIX))) 50TO 360
K~ XREG = XREG + XT
Q\ YREG = YREG + YT
Wi NUMPIX = NUMNPIX + 1
e X(NUMPIX) = XT
raln Y(NUMPIX) = YT
A CALL WPIXEL(XT,YT,ENDINT)
. 30TO 360
L, 350 OBJECT = .FALSE.
A c
*5} g MOVE UP OR DOWN
2{4 360 IF((RIGHT.AND.OBJECT).OR.((.NOT.RIGHT).AND.(.NOT.OBJECT)))
. A  GOTO 375
. YT = YT + 1
g UP = .FALSE.
7 G0TO 390
4; . 375 YT = YT - 1
559 UP = .TRUE.
‘28 390  GOTO 190
508 c
. c CALCULATE THE XC,YC OF THE CENTROID PIXEL

: c
- $00 IF(NUMPIX .GT. TOL) GOTO 600
oS B30TONE = .FALSE.

My 50T0 1000

Al 600 ENDCT = BNDCT + 1
| ROTONE = .TRUE.
o XC = XKEG / NUMPIX

i YC = YREG / NUMPIX
v"

[ X(NUMPIX+1) = XS
Al Y (NUMPIX+1) = YS

] BOUND(1,N) = BNDINT
-23 BOUND(2,N) = XS
e BOUND(3,N) = YS
;Qg. BOUND(4,N) = XC
i BOUND(S,N) = YC
ifﬁ BOUND(G,N) = NUMPIX

e 1000  RETURN
h : END
: , e e e e e e e e o o e o o e e
b c INTPLT

.
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SUBROUTINE INTPLT

THIS SUBROUTINE INITIALIZES THE PLOTTER.

oo

INTEGER LUN
COMMON /DEV_DAT/LUN

LUN = §

CALL IXICLER
CALL PLTINT
CALL PLTICLE

FLOT THE EFRAME

[wBeNe]

CALL PLTCUER(0,0)
CALL PLIVEC(S11,0)
CALL PLTVEC(S11,479
GALL PLTVEC(0,479)
CALL PLTVEC(0,07

RETURN
END

[ e - o o o = = - - = - - - -
c OBPLOT

S Py S Ly ——————
SUBROUTINE OBPLOT(X,Y,NUMPIX)

THIS SUBROUTINE PLOTS OUT THE POINTS COMPRISING THE EDGE COORDIN~
ATES HELD IN ARRAY X AND ARRAY Y.

acoo

INTEGER X(3000),Y(3000),NUMPIX

1,NUMPIX
IX
IY Y
CALL PLTPNT(IX, IY)
100 CONT INUE

00 100 I

RETURN
END

SUBROUTINE FINPLT

THIS SUBROUTINE PRINTS OUT A HARID' COPY OF THE PLOT IF THE USER SO
DESIRES 1IT.

OO0

CHARACTER INST

WRITE(S,S0)

it |

3t SLA N L VAR R R S
SLNL -‘ o -‘ : 2y
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[&]
o

FORMAT(1X, TYPE "Y' IF HARD COPY IS DESIRED: ‘,$)
READ(S,55) INST
EORMAT(AL)

(X))
(4]

IFCINST .NE. ’Y’) GOTO 100
CALL HARDCOPY

100 CALL PLTCLR
CALL TXTCLR
CALL FLTOFE

RETURN

END
(e e e mmmm e mmm e m— e mammmmmmam————————————
c RADFLT
[ i Ttk L T L I

SUBROUTINE RAOFPLI(RAD,EDGE)

INTEGER EDGE,NUMRAD

REAL RAD(-2:350,10)
N = EDGE
MAXY = 479

RNUMRAD = RAD(-2,N)

NUMRAD = INT(RAD(-2,N))
INC = S12 7/ NUMRAD

IXB = 0

IYB = MaXY

DO 100 I = 1,NUMRAD
IXB = INT(FLOAT(I)A511.0/RNUMRAD)
IYT = MAXY - (INT(RADCI,N)) % 2)
CALL PLTCUKCIXB,IYT)
CALL PLTVEC(IXEB,IYR)
100 CONTINUE

RETURN
END

o T S T R T A R A TR




(] *
A5, l.:’"|‘

L%

- » .~ AT n . T SN
'ﬁ\.."i.t‘l.\.u KA . o 4% |..‘ .\ Al .‘d ( r- ‘

T T TTETITITe T i W LTV w = WL WU WYASN TN EFEY Ty TMEEsE T s T8 &

110

CARKAKRKRRRARRARARARARARRAAKRAAKRAARAARKAKRKAKAARRAAAKRAKAAKRAAKKKAAKKKKAXAK %A

EILE RAD1.FOR LAST REVISION JULY 1, 198S

>
[
€ THIS FILE CONTAINS THE SUBROUTINE:
c
c GETRAD
C

SUBROUTINE GETRAD(X,Y,EDNSE, BOUND,RAD)

THIS SUBROUTINE EINDS AND CALCULATES THE RADIUS VECTORS OF

AN OBJECT EDGE. IT USES AN EQUI-ANGLE ALGOKRITHM SIMILAK

TO DUBUIS [1984]. THIS SUBROUTIME REALS THE EDGE PIXEL LOCATIONS
WHICH ARE TEMPORAKRILY STORED IN THE X AND Y ARRAYS.

OO0 0

INTEGER X(2500),Y(2500),BOUND(10,10),EDGE
INTEGERK DEY, IN,OUT,I,N,M,XC,YC,NUMPIX
INTEGEK INKAD,NSLOPE,LOWVEC,HIVEC,SEC
INTEGER XMAX,YMAX

REAL RAD(-22250,10) ,SLOFPE(0:90) ,PI,PHI
REAL VEC,XDIF,YDIF,YTRY1,YTRY2,YDR1,YDR2
REAL YD1,YD2,MAXRAD

LOGICAL START,STOP

COMMON DEY, IN,QUT,STEP, INKAD

DATA PI1/3.141592654/

N = EDGE

XC = BOUND(4,N)

YC = BOUND(3I,N)

NUMPIX = BOUNDC(G,N)

NSLOPE = INRAD/4 - 1

PHI = (2.0 & PI) / ELOAT(INRAD)

po SO0 I = O0,NSLOFE
SLOPE(I) = TAN(PHI & FLOAT(I)) % (5.0/4.0)
20 CONTINUE
SLOPE(NSLOPE + 1) = 1250.0

STQF = .FALSE.

START = .TRUE.
I =20
PREVEC = 0
SEC = 0
M =0
MAXRAD = 0.0
c
c CALCULATE THE SLOPE OF THE LINE FROM THE EDGE PIXEL TO THE CENTROID
c
100 I =1+1

IF(I .GE. NUMPIX) STOP = .TRUE.

XDIF = FLOAT(X(¢I) - XC)

YDIE = FLOAT(YC(I) - YC)

IF(XDIF .EQ. 0.0) B0TO 700

VEC = ABS(YDIF/XDIF)

IF(ABS(VEC - PREVEC) .LE. .0001) GOTO 100
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VEC

c EIND OUT WHICH SECTOR WE AKE IN

110 IF(VEC .GE. SLOFE(LOWVEC) .AND. VEC .LE. SLOPE(LOWVEC+1))
% G0OTO 120

IF(VEC .LE. SLUPE(LOWVEC) .AND. VEC .GE. SLOPE(LOWVEC-1))
4 GOTO 140

IE(LOWVEC .GE. NSLOFE) 3G0OTO 113
LOWVEC = LOWVEC + |
G0TO0 110
11S LOWVEC =1
GOTO 110

12¢ HIVEC = LOWVEC + 1
G30T0 200
140 HIVEC = LOWVEC - 1

c
[ CALCULATE THE REFERENCE POSITION BETWEEN LOVEC AND HIVEC
v

200 fTRY1l = ABS(XDIF) % SLOPE(LOWVEC)
YTRY2 = ABS(XDIF) % SLOPE(HIVEC)
YOR1 = ABS(YDIF) - YTIRY1
YDR2 = ABS(YDIF) - YIRY2

c
C LOOK AT THE NEXT POSITION ALONG THE EDGE
[of
3

00 I =1+1
IF(I .GE. NUMPIX) STOP = .IRUE.
XDIF = ELOAT(X(I) - XO)
YDIF = FLOAT(Y(I) -YC)
IF(XDIF .EQ. 0.0) GOTO 700

20T0 800
700 HIVEC = NSLOPE + 1
LOWVEC = NSLOPE
G0TO0 1000
c
€ CALCULATE THE NEW POSITION WITH RESPECT TO HIVEC AND LOWVEC
c
800 YTRYl = ABS(XDIF) % SLOPE(LOWVEC)
YTRY2 = ABS(XDIF) & SLOPE(HIVEC?»
YDl = ABS(YDIF) - YTRYI
YD2 = ABS(YDIF) - YTRYZ
[o4
[ CHECK IF WE HAVE CROSSED LOQVEC
[o4
IE((YD]l .GE. 0.0 .AND. YDRl .LE. 0.0) .OR. (YDl .LE. 0.0
4 JAND. YDR1 .GE. 0.0)) GOTO 900
c
c CHECK IF WE HAVE CROSSED HIVEC
c
IE((YD2 .GE. 0.0 .AND. YDR2 .LE. 0.0) ,O0R. (YD2 .LE. 0.0
4k J.AND. YDRZ .GE. 0.0)) GOTO 1000
c
c HAVEN'T CROSSED LOVEC OR HIVEC YET, SO GET THE NEXT EDGE PIXEL
c
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YDK1
YDR2
IE(STOF) GQTO 2000
G0TO0 300

YDl
YD2

YEH, MADE IT ACROSS A SLOPE MARKER (LOVEC OR HIVEC)
NOW WE CAN CALCULATE THE RADIUS VECTOR LENGTH

CROSSED LOVEC

IF(LOWVEC .EQ. SEC) GOTO 100

M =M+ 1

RAD(M,N) = SQART((XDIFAL1.29)%42 + TDIF%%2)
SEC = LOWVEC

" IF(STOF). GOTO 2000

30T0 1200
CROSSED HIVEC

IF(HIVEC .EQ. SEC) GOTO 100

M =M+ 1

RAD(M,N) = SURT((XDIFA1.25)4x2 + YDIEx%2)
SEC = HIVEC

IF (STOP) GOTIO 2000

IF(RAD(M,N) .LE. MAXRAD) GOTO 100
MAXRAD = RAD(M,N)

XMAX = X(I)

YMAX = Y(I)

G0T0 100
RAD(-2,N) = FLOAT(M)
RAD(-1,N) = MAXRAD

BOUNDC(9,N) = XMAX
BOUND(10,N) = YMAX
CALL EINPLT

CALL INTFPLT
CALL RADPLTI(KAD,EDGE)
CALL FINPLT

RETURN
END
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c EILE RADZ.FOR LAST REVISION JULY 26,1985
. c
S0 c SUBRUUTINES CONTAINED IN THE EILE:
EORS c
Kt c GETRAD
2“% CARAARRAARRARRAARARARAARRARRARARAARAKAAAAARRRARARAR KA AR A
4.9
! SUBROUTINE GETRAD(X,Y,BNDCT,BOUND,RAD)
c
“adk c THIS SUBROUTINE CALCULATES THE OBJECT EDGE RADIUS LENGTHS
23Q~ c USING THE EQUAL ARC LENGTH ALGORITHM .
9 c
8
:{5 INTEGER DEV, IN,OUT,STEP, INRAD
Aﬂﬁ INTEGER X(2500),Y(2500),BNDCT, EOUND(10,10)
oy INTEGER XC,YC,NUMPIX, INC
et INTEGER XMAX,YMAX
4 REAL RAL(-22300,10),XDIE, YDIF, HAXKAD
o
o\ COMMON DEV, IN,OUT,STEP, INRAD
.&n
'3{ N = BNDCT
a'n XC = BOUND(4,N)
S YC = BOUND(S,N)
h) NUMPIX = BOUND(6,N)
-~ MAXRAD = 0.0
W
Q; DO 200 I = 1,INRAD
B INC = I & NUMPIX / INRAD
o XDIE = ELDAT(X(INC) - XC)
4 YDIE = ELOAT(Y(INC) - YC)
W RADCI,N) = SQRT((XDIFA1.25)A42 + YDIFA2)
“ c CALL PLTCUR(XC,YC)
. ¢ CALL PLTVEC(XCINC),YCINC))
‘4.‘.; IE(RAD(I,N) .LT. MAXKAD) GOTO 200
Wy MAXRAD = RADCI,N)
o XMAX = X(INC)
.gr YMAX = Y(INC)
;va' 200 CONT INUE
L}
o RAD(=2,N) = ELOAT(INRAD)
RAD(-1,N) = MAXRAD
vt BOUND(9,N) = XMAX
&gl BOUND(10,N) = YMAX
:@i c CALL EINPLT
Bl
o c CALL INTPLT
;#ﬁ c CALL RADPLT(RAD,N)
A c CALL EINPLT
Ak RETURN
= END
.:‘ $
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FILE PARAM.FOR LAST REVISION JULY 1,198S
THIS FILE CONTAINS:

TEST ROUTINE EOR PARAM
PARAM

ARXAARKRRRRAKRARKRRAARRAARARARAARARAKRAAAKRRKRRARAARAAKRAKAAARAAARRRAAARAKAKAKK

10

THIS IS A TEST ROUTINE USED TO CHECK THE AR COEFF-
ICIENTS AND THE SUBROUTINE PARAM WHICH CALCULATES

THE AUTOCORRELATION AND THE AUTOREGRESSIVE COEFFICIENTS
OF THE TIME SERIES.

THE TEST ROUTINE

INTEGER DEV

REAL RALI(-2:300,10),ALPH(11,10),KX(0:10,10)
COMMON DEV

DEV = §

N =1

RAD(L,N) = 1.

RAD(2,N) = 1.44

RAD(3,N) = 1.44%RAD(2,N) - 1.26

DO 10 J = 4,40
RAD(I,N) = 1.444RADCI-1,N) - 1.26kRAD(J-2,N) + .8LARAD(I-3,N)
CONT INUE

RAD(-2,N) = 40.
CALL PARAM(N,RAD,ALPH,RX)

STOP
END

SURRQUTINE PARAM(EDGE,RAD,THETA,ALL)

THIS SUBKOUTINE CALCULATES THE FEATUKRE VECTOR PARAMETERS OF THE
EDGES OF THE OBJECT. THE PARAMETERS ARE THE AR COEFFICIENTS AND
THE TEKM ALPHA/SQRT(BETA).

INTEGER DEV, IN,QUT,STEP, INRAD, M

INTEBER EDGE,NUMRAD

REAL SUM,SUML,SUM2

REAL ALPHA ,BETA,ALBET

REAL RAD(-22:25%0,10),THETA(11,10),RX(0:10,10)
REAL ALL(10,11,10)

REAL RXN(0:10,10)

REAL SIGMAS(10),A(10,10)

COMMON DEV, IN,OQUT,STEP, INRAD,M

N = EDGE
Do 30 J = 1,10
DO 20 I = 1,10
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ACL, 1) = 0.0
CONT INUE
CONT INUE

NUMRAD = INT(RAD(-2,N))

CALCULATE THE MEAN

1,NUMKAD

SUM + RADCI,N)
CONT INUE

MEAN = SUM / FLOAT(NUMKAD)

CALCULATE THE AUTUCORRELATION COEFFICIENTS

DO 100 I = O,M
SUM = 0.0
00 75 1 = 1,NUMRAD
K =3¢+ 1L
IF(K .GT. NUMRAD) K = K - NUMRAL
SUM = SUM + ((RAD(JI,N) - MEAN) % (RADCK,N) - MEAN))
CONTINUE
RX(I,N) = SUM / ELUAT (NUMKAD)
RXNCI,N)> = RXCI,N) / RX(O,N)
CONTINUE

CALCULATE THE AUTOREGRESSIVE COEFFICIENTS USING THE DURBIN
RECURSIVE ALGORITHM

A(l,1)> = -RX(1,N) / RX(O,N)
SIGMAS(1) = (1.0 - (A(l,1) & A(1,1))) % RX(O,N)
DO 300 K = 2,M
SUM = 0.0
Do 250 J = 1,K -1
SUM = SUM + (A(K-1,1) A& RX(K-J,N))
CONTINUE
ACK,H)Y = =(RX(K,N) + SUM) / SIGMAS(K-1)
00 275 1 = 1,K-1
ACK,I) = A(K=-1,I) + (ACK,K) & A(K-1,K-1))
CONTINUE
SIGMAS(K) = (1.0-(A(K,K) & A(K,K))) 4 S1GMAS(K-1)
CONTINUE

FORM THE FEATURE VECTOR FOR THE EDGE FROM THE LAST COLUMN
OF THE MATRIX A. THIS COLUMN CORRESPONDS f0O THE DESIRED

AR MODEL ORDER NUMBER. ALSO EORM THME SUM OF THE PARAMETERS
NEEDED IN THE CALCULATION OF ALPHA.

SuM = 0.0
DO 400 K = 1,H
THETA(K,N) = A(M,K)
SUM = SUM + THETA(K,N)
CONT INUE

ALPHA = MEAN A& (1.0 - SuM)
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c CALCULATE BETA
c
BETA = 0.0
DO 420 I = 1,NUMRAD
o SUM = 0.0
4y DO 410 J = 1,M
{ K=1+13
WA IE(K .GT. MUMRAID K = K - NUMRAD
.F; SUM = SUM + THELA(J,N) #% RAD(K,N)
s 410 CONTINUE
sﬁ"l..
SUM1 = RAD(I,N) - ALPHA - SUM
EETA = BETA + SUMLA#2
W 420 CONTINUE
(}
A BETA = BETA / FLOAT (NUMKAL)
U c BETA = SIGMAS(M)
3:h ALBET = ALPHA / SQGRT(BETA)
‘5%; THETA(M+1,N) = ALBET
&
P e )
bt c WRITE(DEV,435) (I,(ACK,I),K=1,M),I=1,M)
W C 425 EORMAT(1X,I3,3X,<M>E8.3)
i
' c WRITE(DEV,450) (J,SIGMAS(I),J=1,M)
§b C 450 FORMAT(1X,I3,E18.6)
?uﬁ
c WRITE(DEV,700)
- C 700 FORMAT(1X,/’ THE AUTUCORRELATION COEEEICIENTS (PARAM): */)
;:’ ; c WRITE(DEV,705) (J,(RX(J,N),N=1,BNOCT),J = 0,M)
3
3} c WRITE(DEV,702)
\' C 702 FORMAT(1X,/’ THE NORMALIZED AUTOCORRELATION COEFS (PARAM): ‘/)
W c WRITE(DEV,7035) (J,(RXN(I,N),N=1,BNDCT),J=0,M)
e C 705 FORMAT(1X,I3,3X,<BNDCT+F10.5)
pﬁ‘ c WRITE(DEV,710)
9 C 710 EORMAT(1X,/’ THE AUTOREGRESSIVE COEEFICIENTS (PARAM): */)
\ c WRITE(DEV,715) (J,(THETACI,N) ,N=1,ENDCT),J = 1,M+1)
g C 715 FORMAT(1X,13,3X,<ENDCT>F10.5)
T
Y, .\
A KRETUKN
END
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N C FILE KLSEL.FOR LAST REVISION  JULY 4, 1985
c
,.;;g C THIS FILE CONTAINS SUBKOUTINE:
c
ky c KLSEL
W c
33\ CAARAAARARKARARKARKRKARARRARRAKARAKAKRAKRARAKRKKKAAKKARKAAARAK Ak R KAk
LX) e
WY c KLSEL
C ____________________________________________________________________
C
e SUBROUTINE KLSEL(X,NSAMP,NCLASS,TRANS,Y)
10 [
? c THIS SUBROUTINE CALCULATES THE KAKHUNEN-LOEVE EXFANSION
et c TRANSEORM MATRIX AND TRANSEORMS THE SAMFLES OF EACH
? ' c PATTEKN CLASS OF THE TRAINING SET.
H ¢
bt
L7 INTESER DEV, IN,OUT,STEP, INRAD,H
INTEGER 0IM,JOBN,IZ,IER
INTEGER NCLASS,NSAMP,MAXI
REAL AC100),WK(100),D(11),2(100)
REAL X(11,25,10),XMN(11,25,10),R(11,11,10),C(11,11)
REAL MEAN(11,10),MMT(11,11,10)
REAL SCALE,MAXE
REAL TRANS(11,11),Y(25,11,10)
" COMMON DEV, IN,OUT,STEFP, INRAD,M
iy
: N DATA R/1210%0.0/
¢ DATA C/12140.0/
q }
§ T1 = SECNDS(0.00)
g DIN = M + 1
c
f“; C CALCULATE THE MEAN SAMPLE FOR EACH CLASS
c
:‘.: » SCALE = 1.0 / ELOAT(NSAHP)
Wi 00 30 N = 1,NCLASS
Ao 00 40 [ = 1,DIM
ALY SUM = 0.0
i Y 00 30 1 = 1,NSAMP
23 SUM = SUM + X(I,J,N)
30 CONT INUE
Nl MEAN(I,N) = SUM * SCALE
petsy 40 CONT INUE
) S0 CONT INUE
3 c
E}) € SUBTRACT THE MEAN EROM EACH SAMPLE IN THE CLASS
- c
o DO 100 N = 1,NCLASS
i DO 75 K = 1,NSAMP
e DO 60 I = 1,DIM
: XMNCI,K,N) = X(I,K,N) - MEANCI,N)
¥ 60 CONT INUE
., 75 CONT INUE
X 100 CONT INUE
‘ t
§
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FORM THE COVARIANCE MATRIX OF EACH CLASS

0o 200 N = 1,NCLASS
po 175 K = 1,NSANMP

DO 150 I = 1,DINM
00 125 3 = 1,DIM
RCILI,N) = RCILI,N) + XMNCI,K,N) & XMNCI,H,N)
CONT INUE
CONT INUE
CONT INUE
CONT INUE

CALCULATE THE AVERAGE COVARIANCE MATRIX

SCALE = 1.0 / FLOAT(NCLASS A NSAHMP)
00 300 I = 1,01IM
o 275 J = 1,0IN
U0 250 N = 1,NCLASS
C(1,I> = C(I,1) + (SCALE 4% R(I,J,N))
CONTINUE
CONT INUE
CONTINUE
Do 3235 I = 1,DIM
WRITE(DEV,4) ‘C /,I,¢CC(I,IY,] = 1,DIM)
CONTINUE

PUT THE LOWER TRAINGLE OF MATRIX C INTO ARRAY A (SYMMETRIC STORAGE
MODE)

K =1
0o 340 I =1,
D0 335 1 1,1
A(K) ccI,n
WRITE(DEV,%) ‘A
K =K=+1
CONT INUE
CONTINUE

M

"o

T LACK)

CALCULATE THE EIGENVALUES AND THE EIGENVECTOKS
JOBN = 2
I1Z = DIM

CALL EIGRS(A,D'IM,JOBN,D,Z, IZ,WK, IER)

K =1
DO 3%0 I = 1,DINM
WRITE(DEV,4)
WRITE(DEV, %)
WRITE(DEV,*)
DO 348 N = 1,DIN
WRITE(DEV, %)
{ = K + ]
CONTINUE
CONTINUE

"EIGENVALUE: ’, D(I)

‘EIGENVECTOR: - ,Z(K)
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WRITE(S, &) ‘WK(1) ‘,WK(1)

EORM THE COLUMNS OF THE TRANSFORMATION MATRIX FROM THE EIGENVECTOKS
CORRESPONDING TO THE LAKGEST EIGENVALUES.

IMAX = DIM % (DIM - 1)
BO S25 1 = 1,DIM
DO S1S I = 1,DINM
TRANS(I,J) = Z(IMAX+I)

CONTINUE
IMAX = IMAX - DIM
CONT INUE

WRITE(DEV,4) ‘THE TRANSFOKRMATION MATRIX~’
WRITE(DEV,S27) ((TRANS(I,I)>,J=1,DIM),I=1,DIM)
FORMAT(1X,<DIM-E15.6)

TRANSFORM THE ORIGINAL SAMPLES OF EACH CLASS

Y(I,N,K) = Y(I,N,K) + (TRANS(I,N) % X<(I,J,K))
CONTINUE
CONTINUE
CONTINUE
CONT INUE

DELTA = SECNDS(TI1)

WRITE(DEV,A) 'KLSEL EXECUTION TIME IS: ‘,DELTA

WRITE(DEV,4) ‘THE TRANSFORMED SAMPLES’

WRITE(DEV,700) (((Y(J,N,K),N=1,DIM),J = 1,NSAMP),K = 1,NCLASS)
EORMAT(1X,<DIM:E1S.6)

RETURN
END

U PO ¢

50 W hy



e Laiat i dac ta® g Sasd

120

CAAAARARAAKARARRARARRRRARRRRAARARAKKKRRRRARAKKKAARKARAAKRRARKAAKAKRKAKA XA
c MESEL
CARAAKRAKRARRARKARRAARAKKRAKRARARRARARKRAARARARKAARARARRAKAARA KKK KA AAR KA KA

SUBROUT INE MESEL IS EXACTLY THE SAME AS SUBROUTINZ KLSEL EXCEPT
THAT THE ORDERING QF THE EIGENVECTORS IN THE RESULTING TRANS-
FORMATION MATKRIX IS REVERSED. TO AVOID REPETITION, THE LISTING
HAS BEEN OMITITELD.
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FILE PREKL.FOR LAST REVISION JULY 6,198%
THIS FILE CONTAINS SUBROUTINE:

PREKL

CARRAARRARKARAARARRARRARARRARAKARARARKRAKKRKKRAKRAKARRAKAARRARARARKRRRAKRAKRK KK

OO0

oo

-
100

150
17%
200

SUBROUTINE PREKL(X,NSAMP,NCLASS,TRANS,Y)

INTEGER DEV,IN,OUT,STEP, INRAD,M
INTEGER DIM,JOBN,IZ,IER

INTEGER NCLASS,NSAMP

REAL SCALE, SUM

REAL X(11,25,20) ,TRANS(11,11),Y(25,11,20)
REAL MEAN(11,20),XMN(11,25,20),AVEMEAN(11)
REAL SW(11,11),R(11,11,20)

REAL A€100),2¢121),D(11),WK(150)

REAL B(11,11)

REAL SBSUB(11,11),SBPRIME(11,11),5R¢11,11)

COMMON DEV, IN,0OUT,STEP, INRAD,M

DATA R/242040.0/
DATA SW/12140.0/
DATA SB/12140.0/

Tl = SECNDS(0.00)
DIM = M + 1
SCALE = 1.0 7 FLOAT(NSAMP)

CALCULATE THE MEAN

DO 100 N = 1,NCLASS
DO 75 I = 1,DIM
SUM = 0.0
00 50 J = 1,NSAMF
SUM = SUM + X(I,J,N)
CONT INUE
MEAN(I,N) = SUM % SCALE
CONTINUE
CONT INUE

CALCULATE THE MEAN VECTOR % MEAN VECTOR (TKRANSPOSED) FOR EACH
CLASS

00 200 N = 1,NCLASS
DO 175 K = 1,NSAMP
DO 1S0 I = 1,DIM
XMNC(I,K,N) = XC(I,K,N) - MEANCI,N)
CONT INUE
CONT INUE
CONT INUE

121
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CALCULATE PART OF THE COVARIANCE MATRIX FOK EACH CLASS

o0oo

00 300 N = 1,NCLASS
a0 DO 275 K = 1,NSAMF
0o 250 I = 1,DIM

¢ DO 225 J = 1,DIM
1 RCOILI,N) = ROI,J,N) + XMNCILKE,N) & XMNCI,H,N)
a0 225 CONT INUE
250 CONT INUE
L 275 CONT INUE
300 CONT INUE
.
I ¢
ﬂ 1 c FORM THE AVERAGE CLASS COVARIANCE MATKIX
» C
fbh SCALE = 1.0 / FLUAT(NSAMP % NCLASS)
n ()
A U0 400 I = 1,0IM
00 375 7 = 1,0IM
g 00 350 N = 1,NCLASS
& SW(I,J) = SW(I,J) + (SCALE # R¢I,J,N))
S 350 CONT INUE
S 375 CONT INUE
o 400 CONT INUE
% c DO 410 I = 1,DIM
&f; c WRITE(DEV, %) (SW(I,J)>,J = 1,DIM)
. C 410 CONTINUE
c
cig: c PUT THE LOWER TRIANGLE OF MATRIX SW INTO ARRAY A (FOR SYMMETRIC
gg* c STORAGE MODE)
G c
:".l K =1
o, DO 450 I = 1,DIM
DO 425 7 = 1,1
W, ACKY = SW(I, I
¢ X = K + 1
W 425 CONTINUE
4) 450 CONT INUE
B A c
v f c CALCULATE THE EIGENVALUES AND EIGENVECTORS OF SW (IN ARRAY A)
‘ c
:ﬁ JOBN = 2 :
s 1Z = DIA
i CALL EIGRS(A,DNIM,JOEN,D,Z,1Z,WK,IER)
c
e c FORM MATRIX B FROM THE EI1GENVECTORS / SQRT(EIGENVALUE)
L}
-" C
o IMAX = DIM & (DIM - 1)
o DO S25 J = 1,DIM
o5y K= DIM - J + 1
'/ c WRITE(DEV, %)
= c WRITE(DEV,x) ‘EIGENVALUE: *,D(K)
N c WRITE(DEV, %)
3, Al 00 S10 I = 1,DIM
'? c WRITE(DEV,A> ’'EIGENVECTOR: *,Z(IMAX+I)
r B(I,J) = ZC(IMAX+I) / SQRT(D(K))
Y (o WRITE(DEV,4) °B(I,I) *,I,3,B(I, D)
¥ 510 CONT INUE
' IMAX = IMAX - DIM
ﬂ"l
.,’
3
53
)
g
)
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25 CONTINUE

c

c CALCULATE THE AVERAGE CLASS MEAN VECTOK
C

SCALE = 1.0 7/ FLOAT(NCLASS)
Do 700 I = 1,DIM
SUM = 0.0
DO 675 N = 1,NCLASS
SuUM = SUM + MEANCI,N)?

CONTINUE
AVEMEAN(I) = SUM 4 SCALE
700 CONT INUE
C
C SUBTRACT THE AVERAGE CLASS MEAN FROM EACH CLASS MEAN VECTOK
[

e P = A LIRS PRl ad
[
~
wu

00 750 I = 1,DIM
DO 725 N = 1,NCLASS
MEAN(I,N) = MEANCI,N) - AVEMEANC(I}
CONTINUE
CONTINUE

=24}

FORM THE MEAN SCATTER MATRIX SH

OO0

D0 800 K = 1,NCLASS
b0 775 1 = 1,DINM
DO 760 J = 1,DIM
SB(I,J) = SB(I,J) + SCALE x (MEANCI,K) %k MEAN(I,K}))
760 CONTINUE
775 CONT INUE
800 CONT INVUE

CALCULATE SBSUB = MATRIX SB % MATRIX R

anon

DO 900 T = 1,BIM
DO 875 1 = 1,DINM
SUM = 0.0
D0 850 K = 1,DIM
SUM = SUM + SB(I,K) % B(K,I)

850 CONT INUE

SBSUR(I,J) = SUM
875 CONT INUE
900 CONT INUE

c
[ CALCULATE SBFRIME = MATRIX B (TKANSPOSED) A MATRIX SESUR
c

DO 1000 I = 1,DIM
DO 975 1 = 1,DIM
SUM = 0.0
DO 950 K = 1,DIN
SUM = SUM + B(K,I) % SBSUB(K,D

950 CONT INUE
SBPRIME(I,J) = SUM

979 CONTINUE

1000 CONTINUE

[ PUT THE LOWER TRIANGLE OF MATRIX SEPRIME INTO ARRAY A (FOR
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St [ SYMMETRIC STORAGE MODE)
N c

&
(4 '.‘v

K =1
DO 1050 I = 1,nIM
pO0 1025 J =1,1I
A(K) = SBPRIME(I,I)
K=K+ 1
1028 CONTINUE
1050 CONT INUE

T AT T
S S ¥

CALCULATE THE EIGENVALUES ANDI EIGENVECTOKRS OF SEPKRIME (IN &)

(s N gNy]

CALL EIGRS(A,DIM,JOBN,D,Z,I1Z,WK,IER)

IMAX =-DiM & (DIM - 1)

o 0o 1100 J = 1,01
ﬁ; K= OIM - 1 + 1
N WRITE(DEY, %)
WRITE(DEV,%)> ‘EIBENVALUE: ',D(K)
WRITE(UEV, %)

DO 1075 I = 1,01
WRITE(DEV, %) "EIGENVECTOR: ‘,Z(IMAX + ID
CONTINUE
IMAX = IMAX - DIM
1100 CONTINUE

FORM THE TRANSFORMATION MATRIX BY MULTIPLYING THE B MATRIX
TIMES THE FIRST EIGENVECTOR

[y NNy Ny Nyl O0OOoOO0O0OO000O00o00
—
(o)
N
(4]

WRITE(DEV,4x) °"THE TRANSFORMATION MATRIX:~
DO 1150 I = 1,DINM
00 1125 N = 1,DIM
po 1115 J = 1,DIM
TRANS(I,N) = TRANS(I,N) + B(I,J) % Z(J+DIMACDIM-N))

1115 CONT INUE
1125 CONT INUE
c WRITE(DEV,%) ‘TRANS(1,N)’ ,(TRANSCI,N),N=1,0IM)

: 1150 CONTINUE

".l C

2, ¢ TRANSEURM THE OKIGNAL SAMPLES OF EACH CLASS
Ay ¢

‘ﬁ\ DO 1200 K = 1,NCLASS
b 00 1175 1 = 1,NSAMP
= B0 1160 N = 1,DIM
oy Y(JI,N,K) = 0.0
e 0O 1155 I = 1,01IM
w) Y(I,N,K) = YCI,N,K) + (TRANSCI,N) & X(I,J,K})
" 1155 CONT INUE
-ry 1160 CONT INUE
. 1175 CONT INUE

wd 1200 CONT INUE

.
e DELTA = SECNDS(T1)
e WRITE(DEY,4) ‘PREKL EXECUTION TIME IS: ,DELTA
o c WRITE(DEV,*)’THE TRANSEORMED SAMPLES:’
G c WRITE(DEV,1250) (((Y(J,K,N),K=1,DIM),J=1,NSAMP),N=1,NCLASS)
i~ C1250 FORMAT(1X,<TRDIM}E1S.6)
:J$ RETURN
! END
e
‘.l.
o
]
\‘:
%

- .
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CARAARARARARKARARRRARARAARARAKARAARARARARARAKARARARARARARRAARARAKARRARARAARK

FILE CLASSIFY.FOK LAST REVISION JULY 24,1985
AUTHOR RUTH [. KENNETT

THIS FILE CONTAINS:
PROGKAM CLASSIEY
CLSHOLE
CLSEDGE
CLSOBJ
OUTCONFUS
TO LINK:
LINK CLASS1FY,COLLECT,WOKRK1,RADl,PARAM,REGIS,S S$LIBKARY:VIDEQLIE
ARAARARKRKARARARRRARARKARKAARRARXRKKARRRRRRRRRRKKAAKARAARRRRRRAKAKRAKRARAAR
PROGRAM CLASSIFY
ARRARAKARAKRKRRRRARRAARKRARRRARRKARKAARARARARKAAAKRRAARARAKARKAAAARARARKARRAKA

THIS PROGRAM CLASSIFYS THE OBJECTS

OOO00O00OMO0O00000000000000

INTEGER DEV, IN,OUT,STEP, INRAD, M

INTEGER DIM,TRDIM,NSAMP,NCLASS

INTEGER TIRN,IST,O0DAT

INTEGER OBJECT,O0BJCT,O0BJDAT(0:10,20),NUMHOLE
INTEGER BOUND(10,10),BNDINT

INTEGER XPIX(2500,10),YPIX(2500,10)

INTEGER CLASS(20),EDGECLASS(I0)

INTEGER BNDCT,EDGE,OBJ,PLACE

INTEGER DECIS,CONFUS(20,20)

INTEGER G00D(20),BAD(20),COUNT

INTEGER TOTAL,GRDTOTAL,TOTSQOD

REAL ORIENT(10),LIST(2,10,10)

REAL CLDIS(10)

REAL TRANS(11,11),Y(11,20)

REAL TA(11,20),T¢25,11,20)

REAL RAD(-2:2%50,10),THETA(11,10),ALLC10,11,10)
REAL pI1S,CLSDIS,MINDIS,MAXDIS

REAL PERCENT

CHAKRACTER INST,SHAPE

COMMON DEV, IN,UUT,STEP, INRAD, M

BATA MAXDIS/1.7E37/

DATA IN,0UT/S,S/

DATA CONFUS/ 40040/

DATA G00D,BAD/20A0,2040/
IRN = 1

IST = 2

ODAT = 3

BNDINT = 1

QUTEDG = 7

OPEN(UNIT=TRN, FILE='TRAIN.DAT’, STATUS='0LD’)
OPEN(UN1T21ST, FILE='TEST.DAT’,STATUS=’NEW’)
OPEN(UNIT=0DAT,FILE='0BJECT.DAT ,STATUS="0LD")
CALL SETUP

CALL THRESH




1

';mmmmm‘—mvw R ke m R ol T R R A T N
e T

‘A.I
PP

aa
L £

126

> ow -
L ’0.‘1“
PLIE W

>
"‘

+

I{. i

l.:‘\

S WRITE(OUT,10)

.}\ 10 FORMAT(1X,  INPUT DIMENSION OF TRANSFORMED SAMPLES: ’,3%)

READCIN,18) TRDIM

15 FORMAT(I1)

WRITE(OUT,20)

FORMAT(1X,  INPUT THE SHAPE CATEGORY: ,$%)
READ(IN,2S) SHAPE

9
(=]

o 25 FORMAT(AL)
%\: c
S c REAll IN THE OBJECT [DATA
5 c
READ(ODAT, %) OBJCT
DO 100 N = 1,0BJCT
REAL(ODAT ,A)0RJ,NUMHOLE, (OBJDAT(K,0RJ) ,K=1,NUMHOLE+1)
OBIDAT(O,0BI) = NUMHOLE
100 CONTINUE
c
[o4 READ IN THE DIMENSION OF THE STOKRED DATA AND CHECK FOR VALIDITY
c
READCTRN,A) DIM
M = DIM - 1
c READ IN THE STORED DATA: THE TRANSFORMATION MATRIX AND
c THE TRANSFORMED SAMPLES UF THE CLASSES
c

08 110 1 = 1,DINM
READ(TRN,A) (TRANS(I,J),J=1,DIM)
110 CONT INUE

READ(TRN,Ax) NSAMP,NCLASS
00 160 K = 1,NCLASS

READ(TRN, &%) (TACJT,K),JI=1,D01IM)
160 CONT INUE

WRITE(TST,A) ' TEST SET DATA: ’
WRITE(TST, %)
WRITE(TST,162) (I,I=1,0IM-1)
162 FORMAT(1X, 'OBJECT HOLES ROTATE(DEG) MAXEKAD’,3X,
c k DIM-25( 'M7,I1,7%X), M’ ,I1,3X, ALPHA/SQRIC(BETAY // )

A M7,I1,3X, ALPHA/SQRT(RETA) " //)

WRITE(DEV,*x) ~ CLASSIFICATION DATA:’
WRITE(DEV, %)
WRITE(DEV,170) M,TRDIM,SHAFE
170 EFORMAT(1X, AR MODEL ORDER: °,12,/’ GLIMENSION OF TRANSFORMED ’,
x ‘SAMPLES: ‘,13,/’ SHAPES CATEGORY: ’,Al,//)

WRITE(DEV,175) (J,J=1,TRDIM), (J,J=1,NCLASS)

17S FORMAT(1X, ORJECT EDGE’,3X, TRDIM:(’T’,I2,7X),2X,
% <NCLASS:(‘’D’,Il,8X), ‘EDGE ORJECT’/)

COUNT = 0
200 CALL VIEW
WRITE(QUT,210) COUNT

.
4 .

P R s ARG
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210 FORMAT(1X, I3, CLASSIFICATIONS, DONE YEI? (TYPE Y FOR YES): /,$)
READ(IN,230) INST

220 FORMAT(AL)
IECINST .EQ@. ‘Y’) GOID 900

WRITE(QUT,230)

230 FORMAT(1X, ' INPUT THE OBJECT NUMBER: ’,3)
READ(IN,240) OBJECT

240 EORMAT(I2)

SCAN THE FRAME BUFFER FOR THE EDGES OF THE UNCLASSIFIED OBJECT

aoo0n

Tl = SECNDS(0.00)
DO 250 I = 1,10

CLASS(I) = 0.0
CONTINUE

-

tJ
w
o

Tl = SECNUS(0.00!

-

CALL SNAP
. CALL SCAN(BNDCT,BOUNL,XPIX,YPIX)
3 IEC(BNDC. .EG. 0) (0TO 999
CALL INSIDE(BNUCT,BOUND)

- -

CLASSIFY USING HOLE INFORMATION (IF POSSIBLE)

- a2

CALL CLSHOLE(OBJECT,BNDCT,BOUND,CLASS,0BJDAT,0BJCT)

LIST THE INNER EDGES IN ORDER OF THE DISTANCE BETWEEN THE INNER EDGE
CENTROID AND THE OUTER EDGE CENTROID (LARGEST DISTANCE IS FIRST IN
LIST)

A
o000 aon

CALL ORDER(BNDCT,BOUND,LIST)

- o -

CLASSIFY THE REST OF THE OBJECT USING THE AUTOREGRESIVE PARAMETERS
OF THE OBJECT EDGES

0000

4 DO 800 UBJ = 1,BNDCT
) IF(CLASS(UBJ) .EQ. 0) GOTO 400
C WRITE(IST,300) OBJECT,EOUND(8,0E]),0RIENT(QERI),
c * INT(RAD(-1,0B1))
€ 300 FORMAT(1X,2(13,3X),F8.2,3X,1%)
50T0 700
400 PLACE = 1
S00 IFE(LIST(BNDINT,PLACE,OBRJ) .NE. 0.0) GOTO S50
IF(PLACE .GT. 1) G(0TO 600
G0T0 800
350 EDGE = INT(LIST(BNDINT,PLACE,Q0BI))

T

E CALCULATE THE RADIUS VECTOR LENGTHS

CSGO CALL GETRAD(XPIX(1,EDGE),YPIX(1,EDGE),EDGE,RQUND,RAD)
g CALCULATE THE AUTOREGRESSIVE PARAMETERS

.! ‘ CALL PARAM(EDGE,RAD,THETA,ALL)

v WRITE(TST,S57%) OBJECT,BOUND(8,EDGE),URIENT(EDGE),

* INT(RAD(-1,EDGE)), (THETA(I,EDGE), I=1,01IM)
FORMAT(1X,2¢(13,3X),fF8.2,3X,15,3X,-DIM-1:-F9.5,F11.35)

(L)
~
(L]
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CLASSIFY THE EDGE USING THE TRANSFORMED PARAMETEKS

CALL CLSEDGE(OBJECT,EDGE,THETA,TRANS,TA,TKDIM,NCLASS,DECIS)
EDGECLASS(PLACE) = DECIS

PLACE = PLACE + 1

GOTO S00

CLASSIFY THE OBJECT BASEDL ON ALL THE EDGE CLASSIFICATIONS

CALL CLSOBJ(OBJECT,OBRJ,EDGECLASS,DBRIDAT,O0RICT,CLASS,
BOUND(8,08J), TRDIM,NCLASS)

DELTA = SECNDS(T1)

WRITE(DEV,?72S) OBJECT,CLASS(QRJ),DELTA

FORMAT(1X, 0OBJECT ‘,I2,’ IS: 7,I2,/° CLASSIFY TIME IS: ~
F10.6/)

14

CALCULATE THE OKRIENTATION OF THE EDGES

CALL ROTATE(EDGE,BOUND,QRIENT)
CALL OUTPUT(EDGE,BOUND,RAD,ORIENT)

COUNT = COUNT + 1
CONFUS(OBJECT,CLASS(0OBJ)) = CONFUS(OBJECT,CLASS(OBJI)) + 1
IE(CLASS(0BI) .EG. OBJECTI) GQIOQ 730
BAD(OBJECT) = BAD(OBJECT) + 1
GOTO 800
GOOD(OBJECT) = GOOD(OBJECT) + 1
CONT INUE

G070 200
CALL OUTCONFUS(CONFUS,0BICT)

WRITE(DEY,4)
WRITE(DEV,A) 'CLASS  PERCENT CORRECT’
GRDTOTAL = 0.0
DO 950 K = 1,0RICT
TOTAL = GOUD(K) + BAD(K)
IE(TOTAL .EG. 0) GOTO 950
PERCENT = 100.0 % FLOAT(HOOD(K)) / ELOAT(TOTAL)
WRITE(DEV,940) K,PERCENT
EURMAT(1X, £3,5X,E10.5)
GRDTOTAL = GROTOTAL + PERCENT
CONTINUE

PERCENT = GRDPTOTAL / FLOAT(OBJCT)
WRITE(DEV,360) PERCENT

FORMAT(1X, 'OVERALL PERCENT CORRECT: ’,Fl10.5)
G0TO0 1000

WRITE(OUT,A) ‘NO OBJECTS FOUND’

CLOSE(UNIT=QDAT)
CLOSE(UNIT=TRN)
CLOSE(UNIT=TIST)
STOP

END
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P
c CLSHOLE
C ----------------------------- - - — . - — - = " = - - = - - - -
SUBROUTINE CLSHOLE(OBJECT,BNDCT,BOUND,CLASS,0BJIDAT,0BICT)
c
c THIS SUBROUTINE CLASSIEIES THE OBJECT ON THE BASIS OF THE NUMBER
¢ OF HOLES IT HAS.
c
INTEGER DEV, IN,OUT
INTEGER BNDCT,BOUND(10,10),CLASS(10)
INTEGER BND,OBJ
INTEGER MAXHOLE,NUMHOLE,NHOLE(2,10)
INTEGER OBJECT,O0BJCT,O0BIDAT(0:10,20)
COMMON DEV, IN,OUT
DATA  NHOLE/20%0/
BND = 1
0BJ = 2
MAXHOLE = 10
D0 100 I = 1,10
D0 50 J = 1,2
NHOLE(I,I) = 0
50 CONT INUE
v, 100  CONTINUE
RS DO 400 N = 1,BNDCT
g PO 300 K = 1,0B3CT
'y IE(BOUND(8,N) .NE. OBJDAT(O0,K)) GOTO 300
X NUMHOLE = BOUND(8,N)
3 IF (NHOLE (BND,NUMHOLE) .EQ. 0) GOTO 250
. g NHOLE( BND, NUNHOLE) = -1
M 50T0 300
, 250 NHOLE (BND,NUMHOLE) = N
I NHOLE(OBJ,NUMHOLE) = K
Al 300 CONT INUE
::;:‘ 400 CONT INUE
0 D0 SO0 NUMHOLE = 1,MAXHOLE
W IE (NHOLE ( BND, NUMHOLE) .LE. 0) GOTO 500
iy CLASS (NHOLE (BND,NUMHOLE)) = NHOLE(OBJ,NUNHOLE)
e c WRITE(DEV,450) OBJECT,NHOLE(BND,NUMHOLE) ,NUNHOLE,
- c * NHOLE(OBJ,NUMHOLE)
N 450 FORMAT(1X,2(13,3X), CLASSIEICATION BASED ON: ‘,I1,’ HOLES:’,I3)
T 500  CONTINUE
5 CLOSECUNIT=LUN)
S RETURN
= END
. . c ——————————— - - = D = - -  n - - - - - - - - - -
A c CLSEDGE
v - RN S, —
\r
, SUBROUTINE CLSEDGE(OBJECT,EDGE,THETA, TRANS,TA, TRD IN,NCLASS,DECIS)
K
O
.‘.'
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THIS SUBROUTINE CLASSIFIES AN EDGE OF THE OBJECT. THE CLASSIFICATION
IS BASED ON THE SMALLEST DISTANCE EFROM THE TRANSFORMED PARAMETERS 0F
THE UNCLASSIFIED EDGE TO THE AVERAGE OF THE TRANSFORMED SAMPLES OF THE
TRAINING SET OF EDGES.

INTEGER DEV,IN,OUT,STEP, INRAD,M
INTEGER EDGE,TRDIM,NCLASS,DECIS
INTEGER OBJECT,MINCLS

REAL MAXDIS,MINDIS

REAL THETA(11,10),TA(11,20)
REAL TRANS(11,11),Y(11,20)
REAL CLSDIS(10)

COMMON DEV, IN,OUT,STEF, INRAD,N
DATA MAXDIS/1.7E37/

N = EDGE
DIM = M + 1

TRANSEORM THE AR PARAMETERS OF THE UNCLASSIFIED EDGE

Lo 200 J = 1,TRDINM
Y(J,N) = 0.0
DO 150 I = 1,DIN
Y(I,N) = Y(I,N) + (TRANS(I,J) 4 THETA(I,N))
CONT INUE
CONT INUE

FIND THE SMALLEST DISTANCE TO A CLASS

MINDIS = MAXDIS
MINCLS = ©
D0 400 K = 1,NCLASS
CLSDIS(K) = 0.0
DO 300 J = 1,TRDIM
CLSDIS(K) = CLSDIS(K) + (Y(J,N) - TA(J,K))A42
CONTINUE
IF(CLSDIS(K) .GT. MINDIS) GOTO 400
MINDIS = CLSDIS(K?
MINCLS = K
CONTINUE

DECIS = MINCLS

WRITE(DEV,450) OBJECT,EDGE,(Y(I,N),J=1,TRDIM),(CLSDIS(K),K=1,NCLASS),
DECIS

EORMAT(1X,2¢13,3X), TRDIM:F12.7, NCLASS:F12.7,8X,13)

RETURN
END

- - - > " - - . - - - - -

CLSOBJ

- 0 = = = e T e T e A - -

SUBROUTINE CLSOBJ(OBJECT,O0BJ,EDGECLASS,0BJDAT,0BJCT,0BJCLASS,THOLE,
TRDIM,NCLASS)

L]
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INTEGER DEV, IN,OUT

INTEGER EDGECLASS(10),0BJDAT(0:10,20)
INTEGER OBJECT,0BJ,0BJCT,0BJCLASS(10)
INTEGER COUNT,0BJHOLE,THOLE

INTEGER TRDIM,NCLASS

|

i

|

l

THIS SUBROUTINE CLASSIFIES THE OBJECT USING THE EDGE CLASSIFICATIONS l
\

COMMON DEV, IN,OUT

1
N=1 |
100 IE(N .GT. OBJCT) GOTO 600 (
OBJHOLE = OBJDAT(O,N) |
IE(THOLE .NE. OBJHOLE) GOTO 300 ‘

COUNT = ©

00 200 1 = 1,0BJHOLE+]
IF(EDGECLASS(J) .NE. OBJDAT(I,N)) G0TO 200
COUNT = COUNT + 1

200 CONT INUE

IE(COUNT .EQ. OBJHOLE+1) GOTIO S00

300 N=N=+1
GOTO 100

500 O0BJCLASS(OBJ) = N
GOTO 1000

600 0BJCLASS(QBJ) = O

1000  CONTINUE
C 1000 WRITE(DEY,1010) OBICLASS(OBI)
C 1010 FORMAT(1X,12X,<TRDIM>(8X),<NCLASS>(10X),14X,I3)

RETURN
END
Cememmmvececcc—cecm————————— e mm e e mem ;e mm——mm—mmmm e e m————————-——
c OUTCONEUS
gy g gy g
SUBKROUTINE OUTCONFUS(CONFUS,NCLASS)
c
[ THIS SUBRUTINE WRITES OUT THE CONFUSION MATRIX OF THE CLASSIFI-
c CATION DATA
c

INTEGER CONFUS(20,20),NCLASS
INTEGER DEV

COMMON DEV

WRITE(DEV,100)
100 FORMAT(1X, 'THE CONFUSION MATRIX OF THE CLASSIFICATION DATA‘//)

WRITE(DEV,150) (I,I=1,NCLASS)
150 FORMAT(1X,6X, NCLASS>I%,/7X, NCLASSAS:("="))

DO 400 I = 1,NCLASS

,‘ WRITE(DEV,200) I,(CONFUS(I,J),J=1,NCLASS)
, 200 FORMAT(1X, IS, |’ ,<NCLASS:IS)
a 400 CONT INUE

reTuURN

two
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CAAAAARARARRAKRRAARRAAKRRRKARAKRRARAKRAARARARARKARAARRRKAKKAKAKKAKKRKAAKK KK KK H k& k& AX

c
c FILE COLLECT.EOR  LAST REVISION JUNE 10, 1985
c
c
c SUBROUTINES CONTAINED IN THIS FILE ARE:
c
c INS IDE
c ROTATE
c OUTPUT
c ORDER
c
CAAAAARAARAAARARARARAARRRRRAARRRRAAARAARAAKRAAAARARARAKRAKAAARKAAARARARKAKAAAAAKRRAX
C ——————————————————————————————————————————————————————————————————————————————
C INSIDE
C ______________________________________________________________________________
SUBROUTINE INSIDE(BNDCT,BOUND)
c
c THIS SUBROUTINE FINDS OUT WHICH BOUNDARIES ARE INSIDE OTHER BOUNDARIES
c
INTEGER BNDCT,BOUND(10,10),BNDINT
INTEGER XR,XL,XPREV,RPIXEL,Z
! INTEGER DEV, IN,0UT,STEP, INRAD
e INTEGER 0BJ,COUNT
o INTEGER YLINE,FIRSTX,LASTX,STARTX,XINC,BUFF(0:511)
A LOGICAL EDGE,RBND(20),LBND(20)
a4
» COMMON DEV, IN,OUT,SIEP, INRAD
NN ) DO 40 I = 1,BNDCT
oy BOUND(7,1) = 0
M BOUND(8,1) = 0
“Q“ 40 CONT INUE
'5 ._l
aﬂ}' EIRSTX = 0
o0 LASTX = S11
. XINC = 1
- EDGE = .TRUE.
’ o] Cc
K ﬁg c LOOP FOR EACH EDSE
% } c
I DO 600 N = 1,BNDCT
, BNDINT = BOUND(I,N)
W STARTX = BOUND(2,N)
- YLINE = BOUND(3,N)
> 0, DO 100 I = 1,BNDCT
Bh REND(I) = .FALSE.
*Q? LBND(I) = .FALSE.
W' 100 CONT INUE
b
ey c
4}, c SEARCH FOR EDGES ON THE RIGHT
e c
s XPREV = 0
';\' CALL RSCAN(YLINE,EIRSTX,LASTX,XINC,BUFE)
Les
LA DO 200 XR = STARTX,LASTX
! 2 = BUEF(XR)
b IE((2.EQ.0).UR.(Z.EQ.255) .0R. (Z.EG.BNDINT)) GOTO 200
0 ’1
o
’?55
'l:;li
'6.1'.
'0{“
‘u‘q’.‘
B
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IF(XR .NE. (XPREV + 1)) GOTO 150

XPREV = XR
G0T0 200
150 RBND(Z) = RBND(Z) .NEGY. EDGE
XPREV = XR
", 200 CONT INUE
1yt c
'%‘ g SEARCH FOR EDGES ON THE LEET
)
-a. XPREV = 0
o DO 300 XL = STARTX,FIRSTX,-1
N Z = BUFE(XL)
IF((Z.EQ.0).0K.(2.E6.2%5).0R.(Z.EQ.BNDINT)) GOTO 300
. IF(XL .NE. (XPREV - 1)) GOTO 250
§ XPREV = XL
b 3070 300
te 250 LBND(Z) = LBND(2) .NEGV. EDGE
‘ XPREV = XL
300 CONT INUE
" c
h c CUMPARE THE RIGHT AND LEFT TALLIES
9 c
R COUNT = 0
1) DO 400 I = 1,BNDCT
I+ IF(.NOT.(RBND(I) .AND. LEND(I))) GOTO 400
e COUNT = COUNT + 1
' 0Bl = I
i BOUND(7,N) = 1 {FOUND AN OUTER EDGE
e 400 CONT INUE
IE(COUNT .EG. 1) GOTO 450
s BOUND(7,N) = 0
y. GOTO 600
rd 450 BOUND(8,0BJ) = BOUND(8,0BJ) + 1 'COUNT HOLES INSIDE OUTER EDGE
s% 600 CONTINUE
&
:ﬁ RETURN
" END .
- Commmm e em T -——--
O c ROTATE
Cm e e e e e e e e e e e e e e e e e e =
B
" SUBROUTINE ROTATE(BNDCT,BOUND,ORIENT)
, c
\?: c THIS SUEROUTINE CALCULATES THE ROTATION OF THE MAXIMUM RADIUS VECTOR
c (IN DEGREES) IN REFERENCE TO THE STANDAKD CARTESION COORDINATE SYSTEM.
c
! INTEGER BNDCT,BOUND(10,10)
KX . INTEGER XC,YC,XMAX,YMAX
) REAL ORIENT(10)
,? REAL XDIF,YDIF,THETA
J
? XC = 4
4 YC = S
. XMAX = 9
" YMAX = 10
ﬁt
K DO 500 I = 1,BNDCT
X XDIF = FLOAT(BOUND(XMAX,I) - BOUND(XC,I))
X YDIF = ~ELOAT(BOUND(YMAX,I) - BOUND(YC,I))
l:.
o,
)
]
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IEC(XDIF .NE. 0.0) GOIO 400
IE(CYDIF .5T. 0.0) GOIOQ 300
THETA = 90.0

3010 490
300 THETA = 270.0
GOTO 490
400 THETA = ATAND(YDIE/XDIE)

IE(XDIE .LT. 0.0) THELA = THETA + 180.0
IE(THETA .LT. 0.0) THETA = THEIA + 3G0.0
490 QRIENT(I) = THETA
200 CONT INUE

RETURN
END
B it -t = = A = - - = = - —— - — - ——
c OUTPUT
[ e e - o o = e = T~ —— - — -
SUBROUTINE OUTFUT(BNDCT,BOUND,RAD,ORIENT)
c
c THIS SUBROUTINE PRODUCES THE OUTPUT OF THE OBJECT DATA
c
INTEGER BNDCT,BOUND(10,10)
INTEGER DEV
REAL RAD(-2:300,10),0RIENT(10)
W COMMON DEV
‘ WRITE(DEV,50)
-3 50 FORMAT(1X,’EDGE’,6X, ‘START’,8X, CENTER’,6X, NUMPIX‘,2X,
! * *INSIDE’,2X,’ HOLES’,’ ROT (DEG)’,’ # RAD VEC’,
k * * MAX RAD VEC (PIX)’/)
I DG BOO N = 1,BNDCT
Bt WRITE(DEV,750) (BOUND(I,N),I=1,8),0R1ENT(N),KAD(-2,N),
* RAD(-1,M)
" 750 FORMAT(1X,I3,5X, (", I3,",7,13,7)7,5X, (", 13,7,",
i A 13,7)7,4X,14,2¢(5X, I3),6X,ES.1,2(4X,E8.2))
o 800 CONT INUE
i}
()

WRITE(DEV,920) I,(RAD(I,N),N=1,BNDCT)
920 FORMAT(1X,I13,8F10.4)
950  CONTINUE

R c WRITE(DEV,810)(N,N = 1,BNICT)
Q. C 810  EORMAT(//,<BNDCT>(6X,  EDGE’)/<BNOCT:(7X,’ (’,I11,7)"),/)
o) c WRITE(DEV,820)
e C 820 EGRMAT(/,’ NUMBER OF RADIUS VECTORS:’,/)
) c WRITE(DEV,825) (RAD(-2,N),N=1,BNDCT)
Y C 825 EORMAT(1X,3X,8F10.4)
! ? c WRITE(DEV,830)
i C 830 FEORMAT(/,’ MAXIMUM RADIUS VECTOR: ’,/)
oy c WRITE(DEY,835) (RAD(-1,N),N=1,BNDCT)
- C 835 FEORMAT(1X,3X,8F10.4)
c
ol c WRITE(DEV,850)
; C 850 EOKMAT(/,’ RADIUS VECTOR LENGTHS:‘/)
c
4 c DO 950 I = 1,INRAD+1
c
€
c
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WHBRFORE U UEERNERS NTENEBINRSA RIS

IF(LIST(DIS,PLACE+1,0BJ) .EQ. 0.0) GOTO 320
PLACE = PLACE + 1
G0I0 310

LIST(BNDINT,PLACE+1,0BJ) = LIST(BNDINT,FPLACE,O0B])

LISTI(DIS,PLACE+1,0BJ) = LISI(DI5,PLACE,O0BI)
IF(PLACE .LE. MARK) GUTO 340

PLACE = PLACE - 1

GOTO 320

LIST(BNDINY,PLACE,0BJ) = FLOAT(ND
LIST(DIS,PLACE,Q0BJ) = DIST

500 CONTINUE

c WRITE(DEV,550)
€ S%0 FORMAT(1X,//’ OUTER EDGE

INNER EDGE ORDER

pO 800 OBJ = 1,BNDCT

730

73%
c
C 740

FLACE = 1

IE(LIST(BNDINT,PLACE,0BJ) .EQ. 0.0) 30TO 800
INEDGE = INT(LIST(BNDINT,PLACE,0BI))

IE( INEDGE .EQ. OBJ) GOTO 730

ORD = PLACE

GOTO 735

INEDGE = 0

ORD = 0

CONT INUE

WRITE(DEV,740) OBJ, INEDGE,ORDB,LIST(DIS,PLACE
FORMAT(1X,16,9X,13,11X,12,7X,E10.4)

PLACE = PLACE + 1

GOTO 720

800 CONTINUE

RETURN

END
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