
AD-AI1 294 THE CLASSIFICATION OF MULTI-EDGE SHAPES USING AN 112
AUTOREGRESSIVE MODEL AND. (U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH R D KENNETT DEC 85

U C SIFIED AFIT C I/NR-86-i2TF/G64NL

Ehhhhhsonhhso hhhhEl
mhhhmhhhhhhhhI
EhhhhhmohhohhhI
EhhhhhmhhmhhhE
EhhhhhhhshhhhI
EhhhhhmhEEEshE

1.0 1& j8Q

U___ mmg UU

MICROCOPY RESOLUT'JN TEST CHART

NATIONAL RURE
A J

OF STAND
ARDS -

19
6 3 - A

L xxx

SECURITY CLASSIFICATION OF THIS PAGE (When DatapEntered). ___

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
RPRBEFORE COMPLETING FORM

I. REPORT NUMBER "' 2. GOVT ACCESSION NO. 3." RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 86- 132T_
4. TITLE (and Subtitle) 5. TYPE OF REPORT 6 PERIOD COVERED

The Classification Of Multi-Edge Shapes Using An THESIS/D F77 ?Y/
Autoregressive Model And The Karhunen-Loeve

j Expansion 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

SI Ruth DeBeurs Kennett

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKI AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: University of New Hampshire

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR 1985

WPAFB OH 45433-6583 13. NUMBER OF PAGES

136
14. MONITORING AGENCY NAME & ADDRESS(I1 different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLAS

Isa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) -

\1A
I8. SUPPLEMENTARY NOTES 0*OA3j

APPROVED FOR PUBLIC RELEASE: lAW AFR 190-1 D~an for Research and
Professional Development

AFIT/NR
19. KEY WORDS (Continue on reverse side if necessary and Identifty by block number)

I...

20. ABSTRACT (Contfnue on reverse side It necessary and Identity by block number)

u.J

ATTACHED.

DD IJA~N73 1473 EDITION OF I1NOV 65 IS OBSOLETE ~ 4 ~ -g
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

S._" ," " . "'.,." '. ... ,. , ;. r l / , .;." " ;. , . . :;. '
1' .,' i ' ' " - v* ' ' - '*

'' ' 1'*.; - '"" . i" J "

THE CLASSIFICATION OF MULTI-EDGE SHAPES
USING AN

AUTOREGRESSIVE MODEL
AND THE

KARHUNEN-LOEVE EXPANSION

BY

RUTH DEBEURS KENNETT

B.S.E.E., University of New Hampshire, 1983

A THESIS

Submitted to the University of New Hampshire
in Partial Fulfillment oft

the Requirements for the Degree of

Master of Science
in

Electrical Engineering -

D r

December, 1985 ' I

FIW @ f'l N ~ w' I ,' 'i F " ' "I •,,. .

This thesis has been examined and approved.

Thesis director, Filson H. Glanz
Associate Professor of Electrical and
Computer Engineering

Paul J. Nahin, Associate Professor of
Electrical and Computer Engineering

Gordon L. Kraft, Agsist~nt Professor of
Electrical and Computer Engineering

Date

i%

ACKNOWLEDGEMENTS

I thank Dr. Filson H. Glanz for his excellent guidance and thoughtful

encouragement during the progress of this thesis. I also thank my

family, Crosby, Rachel, and Raymond for their unselfish support of this and

all my previous academic endeavors.

I also wish to thank the following special individuals: Carl Piel

for his expert knowledge of the VAX system, Aaron Pailes for his helpful

suggestions and Nan Collins for her beautiful typing.

iii

111111 j '11"

TABLE OF CONTENTS

ACKNOWLEDGEMENTS --

LIST OF TABLES -- vii

LIST OF FIGURES -- viii

ABSTRACT -- ix

CHAPTER 1 INTRODUCTION ---

CHAPTER 2 FEATURE SELECTION THEORY ------------------------------- 5

2.1 Feature Selection Background ----------------------- 5

2.1.1 Syntactical Approach to Feature Selection 6
2.1.2 Mathematical Approach to Feature Selection 6

2.2 The Autoregressive Model 7------------------------------- 7

2.2.1 Boundary Representation Schemes ------------------ 8

2.2.1.1 Equi-Angle Sampling ----------------------- 8
2.2.1.2 Equal Arc Length Sampling ---------------- 10

2.2.2 The General Autoregressive Model ----------------- 11
2.2.3 The Specific Autoregressive Model ---------------- 12

2.2.3.1 Estimating a and a of the Specific
AR Model --------------------------------- 13

2.2.3.2 Estimating the Coefficients of the
Specific AR Model ------------------------- 14

2.2.4 The Autoregressive Model Parameters as
Shape Descriptors ------------------------------- 18

CHAPTER 3 CLASSIFICATION OF THE TRANSFORMED FEATURE VECTOR ------- 20

3.1 Background of Classification Theory --------------------- 20

3.1.1 Deterministic Classification Techniques ---------- 21
3.1.2 Statistical Classification Techniques ------------ 23
3.1.3 Trainable Pattern Classifiers -------------------- 24

3.2 The Karhunen-Loeve Expansion --------------------------- 25

3.2.1 Basic Theory of the Karhunen-Loeve Coordinate
Axes -- 25

iv

3.2.2. Application of the Karhunen-Loeve Coordinate
System to the Recognition Problem --------------- 29

3.3 The Optimal Karhunen-Loeve Coordinate System ------------ 31
3.4 The Classifier --------------------------------------- 33

CHAPTER 4 CREATING THE PATTERN RECOGNITION SYSTEM ---------------- 35

4.1 Object Sensing --------------------------------------- 35

4.1.1 Description of the System Hardware --------------- 35
4.1.2 The Digital Image ------------------------------ 38

4.2 Preprocessing of the Digital Image --------------------- 39

4.2.1 Image Thresholding ------------------------------ 40

4.3 Feature Selection ------------------------------------ 41

4.3.1 Search for Boundary Starting Pixel --------------- 41
4.3.2 The Turtle Boundary Detector ----------- 42

4.3.2.1 The Centroid of the Boundary -------------- 44

4.3.3 Formation of the Time Series from the Radius
Vector Lengths --------------------------------- 45

4.3.3.1 Equi-Angle Method ------------------------ 45
4.3.2.2 Equi-Arc Length Method ------------------- 47

4.4 Extraction of Additional Information from the Inner
Boundaries of an Object -------------------------------- 49

4.4.1 Determination of Hole Ownership ------------------ 49

4.5 Description of the System Software --------------------- 51

4.5.1 Program TRAIN ---------------------------------- 51
4.5.2 Program CLASSIFY -------------------------------- 52

CHAPTER 5 NUMERICAL EXAMPLE AND SYSTEM TESTS AND RESULTS ---------- 57

5.1 Numerical Example ------------------------------------- 57

5.1.1 Example of the System Using the Equal Angle
Boundary Sampling Method ------------------------ 58

5.1.2 Example of the System Using the Equal Arc
Length Boundary Sampling Method ------------------ 67

5.2 System Tests and Results ------------------------------- 71

5.2.1 Industrial Shapes Test -------------------------- 72
5.2.2 Military Shapes Test ---------------------------- 75

V

5.2.3 Geometric Shapes Test --------------------------- 75
5.2.4 Multiple Edge Shapes Test ----------------------- 80
5.2.5 Combined Shapes Test --------------------------- 83
5.2.6 Classification Speed --------------------------- 85

CHAPTER 6 CONCLUSIONS AND SUGGESTED IMPROVEMENTS ---------------- 89

6.1 Concluding Remarks ----------------------------------- 89
6.2 Suggested Improvements -------------------------------- 93

REFERENCES-- 95

APPENDIX FORTRAN LISTINGS ------------------------------------- 98

vi

* ' '

LIST OF TABLES

5.1.1 Training Set Data: Equal Angle Boundary Sampling
Method --- 60

5.1.2 Transformed Training Set Data -------------------------- 62

5.1.3 Classification Data Using Basic K-L Transformation 65

5.1.4 Classification Data Using Optimal K-L Transformation --- 66

5.1.5 Training Set Data: Equal Arc Length Sampling
Method --- 69

5.1.6 Classification Data Using Optimal K-L Transformation
and Equal Arc Length Sampling Method ------------------- 70

5.2.1 Results of the Industrial Shapes Test ------------------ 74

5.2.2 Results of the Military Shapes Test -------------------- 77

5.2.3 Results of the Geometric Shapes Test ------------------- 79

5.2.4 Results of the Combined Shapes Test -------------------- 84

5.2.5 Processor Times for Calculating the Radius Vector
Lengths and the AR Parameters -------------------------- 87

vii

LIST OF FIGURES

1.1.1 Block Diagram of a Pattern Recognition System ---------- 1

2.2.1 Example of Equal Angle Boundary Sampling Method 8

2.2.2 Example of Boundary Sampling Where a Portion of the
Boundary is Skipped ------------------------------------ 9

2.2.3 Example of Equal Arc Length Boundary Sampling Method --- 10

3.1.1 Example of a Discriminant Function for a 2 Class
Problem --- 22

4.1.1 Block Diagram of the Pattern Recognition System

Hardware -- 37

4.1.2 Active Video Window Coordinate System ------------------- 38

4.3.1 Example of a Scene With Marked Edges -------------------- 44

4.3.2 Example of Equi-Angle Radius Vector Boundary
Intersection Detection -------------------------------- 46

4.4.1 Example of Method for Determining Hole Ownership -------- 50

4.5.1 General Flowchart of Program TRAIN --------------------- 53

4.5.2 General Flowchart of Program CLASSIFY ------------------- 55

5.1.1 Shapes for Numerical Example: Equal Angle Boundary
Sampling Method -------------------------------------- 59

5.1.2 Plots Showing the Effect of the Different Transformation
Techniques --- 63

5.1.3 Shapes for Numerical Example: Equal Arc Length
Boundary Sampling Method ------------------------------- 68

5.2.1 Industrial Shapes ------------------------------------- 73

5.2.2 Military Shapes --------------------------------------- 76

5.2.3 Geometric Shapes -------------------------------------- 78

5.2.4 Multi-Edge Shapes ------------------------------------- 81

5.2.5 Confusion Matrix of Multi-Edge Shapes Test -------------- 82

viii

THE CLASSIFICATION OF MULTI-EDGE SHAPES
USING AN

AUTOREGRESSIVE MODEL
AND THE

KARHUNEN-LOEVE EXPANSION

by

Ruth DeBeurs Kennett

University of New Hampshire, December, 1985

,In this thesis a pattern recognition system capable of classifying

two dimensional shapes with multiple edges was developed. The problem

of multiple edge classification was treated as an extension of the single

edge problem. For each edge, a feature vector was formed from the para-

meters of an autoregressive model of a time series representing the shape

of the edge. The dimension of these feature vectors was further re-

duced by the use of a transformation based on the Karhunen-Loeve

expansion. A minimum distance classification rule was used to classify
4.

an input transformed feature vector according to the nearest class mean

in the transformed feature space.

Two boundary sampling methods as well as two versions of the

Karhunen-Loeve transformation were investigated. An illustrative

* numerical example and the description of the system tests are provided.

Using an equal angle boundary sampling technique and the pre-whitened

Karhunen-Loeve transformation, an industrial shapes test showed 100%

-4 correct classification results with an average classification time of

1.27 seconds. The complete Fortran listings of the routines written for

this system are included in the Appendix at the back of this work.

ix

CHAPTER 1

INTRODUCTION

The purpose of this thesis is to classify objects with multiple

edges using the method of classification based on a Karhunen-Loeve trans-

formation of the autoregressive model parameters which represent the

shapes of the boundaries detected in thresholded, digital images of the

objects.

The human ability to recognize a particular object can be broken

down into a series of logical steps. For instance in order to recognize

a cat, a person looks at the cat and unconsciously collects the unique

discriminating features of the animal. Then a comparing process occurs

where the just collected information is compared to the vast storehouse

of labelled features. A match occurs when the newly collected features

agree with the features remembered as those belonging to a cat.

An automatic pattern recognition system uses the same principles.

The block diagram of a simple pattern recognition system is shown below

in Figure 1.1.

X, I ×

Pre- x II X2Processing 2Further , Classi-

Feature Processing I fication
Selection I II

Figure 1.1.1 Block Diagram of a Pattern Recognition System

2

A sensing device such as a TV camera passes the raw data to a storage

device. In the storage area the two-dimensional image can be digitized,

thresholded, segmented and preprocessed in any way to enhance the dis-
F

criminating features of the object. Once the image has been satisfactor-

ily preprocessed, the physical features or the structural relationships

(or both) can be selected and put into array (also called pattern vector

or feature vector) form for computer manipulation. At this point the

pattern vector can undergo further processing, or it can go directly to

a classifier or categorizor. Generally the classifier has been pre-

viously trained with examples of expected pattern vectors called training

samples and their corresponding labels. Pattern classification occurs

when the input data is assigned to one of a finite number of categories

'A or pattern classes.

In this thesis a pattern recognition system which is capable of

classifying a broad set of objects is developed. The feature vectors of

the objects are formed from the parameters of a particular linear differ-

ence equation called the autoregressive (AR) equation. The AR equation

has been shown to be an effective model for the shape of an object's

boundary [Dubois, 1984]. To further reduce storage space and classifi-

cation time, the AR parameters are then projected onto the Karhunen-

Loeve (K-L) coordinate axes. By making use of the special properties of

the K-L expansion, the dimension of the feature vector can be further

reduced. The result of this work has been the development of an efficient

object recognition system that requires very little training data

storage space and no extra dedicated hardware.

The list of applications for an automatic pattern recognition system

is almost endless. At present, recognition systems are being used in

.v-.

.,... .a.a.a... ,. a ,. - ,

3

industry to inspect and identify parts. As a part moves down an

assembly line the vision system can inspect for quality and can also make

sure that the right part is moving down the line at the proper time.

Electronic suppliers use vision systems to ensure proper placement of

circuit board components [Beavers and Hubach, 1984]. Industrial robots

are currently in use for parts inspection, sorting, and material handling.

Two specialized bin-picking robots are already finding their way into

factories; one is the GE Bin Vision robot and the other is the ORS (Object

Recognition System) system called i-bot 1 [Edson, 1984]. Much research

is being done for the autonomous robot where the ability to recognize

obstacles is necessary to prevent the robot from walking into things or

falling off precipices.

4, Other areas for the application of a pattern recognition system are

in the military and the medical fields. A recognition system such as the

one developed in this work could be adapted for use in the classification

of objects in remotely sensed images. Other military applications for a

pattern recognition system include automatic undersea searching and

target classification. In the medical field this work could be imple-

mented to classify cells or chromosomes.

The vision systems in use today generally require a great amount of

training data in order to classify an object. A reduction in the amount

of data needed to characterize an object would allow more storage space

for the training data of additional objects. This would allow the vision

system to be able to recognize more objects and less time would be needed

for retraining. The recognition of three dimensional shapes may require

the storage of many views of the same object. This is only possible if

the amount of data to describe one view is minimal. The development of

4

a recognition system that could classify an object using a few parameters

would be beneficial to any system that needed to classify a large number

of objects.

The subsequent chapters will introduce and then describe in detail

the theory and implementation of the pattern recognition system developed

in this work. Chapter 2 introduces some feature selection techniques

found in the literature. The rest of the chapter then focuses on the

particular autoregressive model and the parameter estimation algorithm

used to produce a feature vector. Chapter 3 describes the classifi-

cation process and how that process is made simpler and quicker by trans-

forming the feature vector onto a set of Karhunen-Loeve coordinate axes.

Chapter 4 discusses the actual software implementation of the pattern

recognition theory in order to produce a working system. Chapter 5

provides a numerical example of the system theories and also covers the

tests of the system and their results. Chapter 6 concludes this work

with some comments on the test results and suggestions for further

improvements.

% A6 .#W 06

CHAPTER 2

FEATURE SELECTION THEORY

According to George S. Sebestyen "Pattern recognition is a process

of decision making in which a new input is recognized as a member of a

given class by comparison of its attributes with the already known

pattern of common attributes of members of that class" [Sebestyen, 1962].

It is the job of the feature selector to form the set of attributes which

are most representative of the common features of a class.

As a way of introducing the problems encountered in the feature

selection process, some algorithms found in the literature will be

described and compared in the first section. The second section will

present the feature selector used in this work. Included in that section

will be the description of some boundary representation schemes, and

also the theory and parameter estimation of the model used to produce

the feature vector.

2.1 Feature Selection Background

Feature selection algorithms are divided into three basic groups.

NThe first group is comprised of heuristic algorithms which are based on

ad hoc rules dependent on the particular objects to be classified. Since

we are not dealing with any one particular type of object, we are more

interested in general algorithms which can be applied to any type of

object. These algorithms form the following two categories: the

syntactical and the mathematical. The main difference between the two

5

PW20 1,1.1,d1 ri 11,1112. ;.v ~~'-v .

6

types of algorithms is that the syntactical algorithms deal with the

structural information of the image. This differs from the mathematical

approach which fits an analytic model to the physical features of an

image. These two types of algorithms are described in further detail in

the following paragraphs.

2.1.1 Syntactical Approach to Feature Selection

Just as the meaning of a word is often context dependent so is the

shape of an object's feature. Thus it can be assumed that the handle of

a cup will be curved and will probably join the cup at two contact points.

The syntactic or linguistic approach decomposes complex patterns re-

cursively into simpler subpatterns in the same way that a sentence can be

decomposed into letters. Patterns are described by their basic elements

or subpatterns along with a set of syntactic rules or pattern grammar.

In the classification of patterns described by a syntactic algorithm, the

classifier performs a syntax analysis while parsing the pattern and

answers the question of whether or not the pattern belongs to the language

generated by the grammar. As can be deduced, this method is very complex

to implement due to the very broad range of objects it tries to classify.

Much research is being done in this area.

2.1.2 Mathematical Approach to Feature Selection

One of the earliest mathematical feature selection techniques is the

method of moments. In this method a pattern is represented by its two

dimensional moments calculated from a density distribution function with

respect to a pair of axes fixed in the visual field [Hu, 1962]. These

moments and other moments found in a similar manner can be formed into

I 'Q*. ,

7

'4

linear combinations called "moment invariants." These are so-called

since they are invariant under a number of similarity transformations.

The major disadvantage of this method is that although the first few

moments convey significant information for simple objects, they fail to

do so for more complicated ones. Furthermore the computational re-

quirements are substantial [Pavlidis, 1978].

Another mathematical feature selection technique is based on the

values of the Fourier Transform of some characteristic of the pattern.

This technique is the basis of algorithms which involve the calculation

of the Discrete Fourier Transform (DFT) of an object's characterizing

function which is commonly the boundary. The boundary samples can be

expressed in terms of tangent angle vs arc length. They can also be

expressed as terms of the complex function formed from the boundary

sample position where the x axis of the reference plane corresponds to

the real part of the sample and the y axis denotes the imaginary part.

The main disadvantage of the resultant Fourier coefficient shape de-

scriptors is that not all of the coefficients are invariant to translation

and rotation LGranlund, 1972].

In the next section we will describe the theory of a different

mathematical technique for feature selection based on the autoregressive

equation. In that section we will describe how the AR model parameters

can be estimated and how they are formed into a feature vector.

2.2 The Autoregressive Model

The autoregressive model is a probability model or stochastic model

of an observed time series. It has been applied in the areas of spectral

8

analysis, speech recognition and transmission, and economic forecasting.

In this section we will show how the autoregressive (AR) model can be

used in shape recognition.

2.2.1 Boundary Representation Schemes

It is our goal to compress as many of the discriminating features of

an object boundary(s) into as few AR parameters as possible. This goal

emphasizes the need to accurately sample the boundary to catch the dis-

criminating features. However we also need the resultant real valued

time series to maintain the same form despite changes in the object's

orientation, size, and initial sample point. If the object's centroid

is known, there arise many possible methods of sampling the boundary to

form the desired time series. These methods will be described below.

2.2.1.1 Equi-Angle Sampling. Consider that the object centroid is

the origin of the cartesian system. Then N radius vectors can be pro-

jected from the origin to the boundary of the object as shown below.

dN

rN r2 d2

,33

Figure 2.2.1 Example of Equal Angle Boundary Sampling Method

9

Let us make the requirement that the angle between consecutive radius

vectors is constant and equal to 2w/N. As Figure 2.2.1 shows, there are

two possible time series produced from this type of representation. The

first is the time series r, r2, r3, ..., rN formed from the lengths of

the radius vectors. The second time series is dl, d2, d3, ... , dN formed

from the distances along the boundary between consecutive radius vector

to boundary intersection points. Using this equal-angle sampling method,

the portions of the boundary closer to the centroid are sampled relatively

more frequently than the portions farther away from the centroid. Also

in the case of highly curved shapes, a large segment of the boundary may

not be sampled at all. For example in Figure 2.2.2 the tips of the

letter S aren't sampled.

,,", 4. / '

'I\
," / 1 \,

Figure 2.2.2 Example of Boundary Sampling Method Showing How
Sections of Boundary Can Be Skipped

10

This makes the letter look cut off at the ends and the time series re-

presentation of this will differ from the one when the letter is rotated

so that the tip is sampled.

A way to eliminate these problems is to sample the boundary so that

one sample is always the same distance away from another sample. This

method is described in the next section.

2.2.1.2 Equal-Arc Length Sampling. As before, consider the origin

of the Cartesian coordinate system to be the centroid of the object

boundary. Again we project N radius vectors from the centroid to the

boundary. However, this time we make the requirement that the arc-length

between boundary intersctions remain the same and proportional to the

total length of the boundary. This boundary representation is shown

below in Figure 2.2.2.

'2

u'3 p

Figure 2.2.3 Example of Equal Arc Length Boundary Sampling Method

As can be seen, the boundary is now uniformly sampled. As before, we

can form two time series from this method of boundary sampling. The

first is the time series rl, r2, r3, ..., rN formed from the radius

vector lengths. The second is the series el, e2, eN formed from the

angles between rl, r2,..., rN.

Out of the four methods, two were actually implemented. Both

implementations formed a time series from the radius vector lengths. One
Atime series was formed using the equal angle sampling method and the other

time series was formed using the equal arc length sampling method. Let

us make a requirement that the boundary be closed and that it may not

cross over itself. We then have a discrete time series that is stationary

and periodic.

2.2.2 The General Autoregressive Model

In the general AR model the current value of the process is expressed

as a finite, linear aggregate of previous values of the process and a zero

mean white noise term et [Box and Jenkins, 1976]. If we let the values of

the process at equally spaced time intervals t, t-l, t-2, be Yt, Yt-l'

Yt-2. then

Yt= lYt-l + 02Yt-2 + ... + p Yt-p + et (2.2.1)

This is called an autoregressive process of order p. In Equation 2.2.1

the present value of variable y is regressed on the previous values of

itself. Thus the model is autoregressive. The above equation can be

written more compactly as

Yt = + et (2.2.2)
i=l 'y-

The model contains p+l unknown parameters €I' 2' p . and 2 which have

2
to be estimated from the data. The additional parameter a is the

variance of the white noise process et.

M-.O.M.-..*,-.** -

12

In the frequ.ency domain the AR model can be formed into a transfer

function which has no zeros. Therefore the AR model is also called the

all-pole model. The AR model is also linked with the maximum entropy

method (MEM) in the area of spectral analysis.

2.2.3 The Specific Autoregressive Model

As shown by Dubois [Dubois, 1984] an effective AR model for use in

shape recognition is:

m
rt = + elejrt-j + /Vt (2.2.3)

whose form was originally suggested by Kashyap and Chellappa [Kashyap

and Chellapa, 1981]. In this form we have:

rt = current radius vector length

rt- j = the radius vector length detected j time intervals

I;:- before the current rt. Collectively these are called

the lag terms.

m = model order

V7Wt = current error

{wtl = a sequence of random, independent, zero mean samples

(white noise sequence) which has unit variance, i.e.

E(wi) = 1 if i=j and = 0 otherwise

m = the AR parameters or lag coefficients to be

estimated from the time series

S{ci} =unknown constants to be estimated.

Looking back at the general autoregressive model of Equation 2.2.1

we see that the specific model used for shape recognition contains two

additional terms a and J . Comparing the two equations, V/ t corresponds

to the et term of the general model.

•-"

-- - -- -- -- --- -- - ----

13

2.2.3.1 Estimating a and B of the Specific AR Model. Let us assume

that we already know the ei, i 1, ..., m. Then we still need to find

estimates of a and in Equation 2.2.3. Now we will define the average

radius vector length as r so that

tI rt (2.2.4)

t= 1

where N is the number of radius vectors in the object boundary representa-

tion. We can rewrite the general form of Equation 2.2.2 to model the set

of differences rt- r as:

j=l
or

m m
rt = jejrt_j I Vlwt+r- e.r

j~l j=

Substituting in Equation 2.2.2 for rt and cancelling the common terms we

find the constant a can be estimated by the equation:

m
= F (1- I ej) (2.2.6)

j=l

Note that a is directly proportional to the mean radius vector length and

thus is an indicator of a shape's size.

Now that we have an estimate for a we still need to find an estimate

of B. Rewriting Equation 2.2.3 to separate the term we have

m
". t = rt - - j=I jrt_j (2.2.7)

Squaring both sides and taking the expectation of the results we get
2 ~ m 2

E[E[(rt - - m .rtj)2]
t t j=1 J~

Since the sequence of wt has unit variance we call 6 the residual variance

and it can be estimated as:

I N m)2

= X (rt -m- 2r ej (2.2.8)
t rt'

14

Looking at Equation 2.2.8 we see that is roughly proportional to the

average of the squared radius vector lengths. We may conclude then that

4 a possible size invariant shape descriptor would be in the form Y/VT.

2.2.3.2 Estimating the Coefficients of the Specific AR Model It has

been shown in the thesis of Dubois [Dubois, 1984] that the AR parameters

,l' I m' a can be found by using the method of least squares. In that

work the model parameters were chosen so as to minimize the expected value

of the squared error term in Equation 2.2.8. In the experimental work

of Dubois the equations were solved using matrix methods which required

(m+l)3/3 plus on the order of (m+l) 2 operations and (m+l) 2 storage

locations [Makhoul, 1975].

Due to the special properties of the AR equations in terms of the

auto-correlation function the parameters of the model can be estimated

recursively.

We use the general form of the AR equation which models the set of

differences r t- in Equation 2.2.5. With the a term as defined in

Equation 2.2.6 we find that the general AR model of Equation 2.2.2 based

on these differences, is equivalent to the specific AR model of Equation

2.2.3 suggested by Kashyap and Chellappa.

If we multiply both sides of Equation 2.2.5 by the term (rt-k-r) we

get [Box and Jenkins, 1976]:

m
(rt-k F)(rt-F) j tl j(rtk-F)(r tj-r) + (rtk-)vBwt

Finding the expectation of both sides leads to:

m
E[(rtk-F)(rtr-)] = E[j e (rtk-i)(rt j-)] + E[(rtk-)/#t]

j=l °

k = 0,...,m (2.2.9)

N.. 61

* 15

The term E[(rt k-r)vrt] vanishes for k>O since the sequence wt is un-tun-

correlated with the (rt-k-r) term. For k=O this term is
m 2 . .2 . .2Lert j:. ':.t EL t (E[Jt2] 2

E[I + I which is equal to aE[wt I and is defined as am, j=l -m
i Let us define

i. RR-j = E[(rt-k-F)(rt-j-r)] = - ff 1 (tFrt~l -r

which is the covariance function. Note that R = Ri. Rewriting Equation

2.2.9 and changing the order of summations on the right side we get:

Rk = OlRk 1 + e2Rk_2 + ... + emRk-m for k>O (2.2.10)

We now have the autoregressive difference equation in terms of the auto-

correlation function of the sampled data.

Equation 2.2.10 applies for any model order of the AR process. Since

there is a different set of parameters for each model order we will denote

the kth coefficient in an AR process of order m as 6mk. The last co-

efficient at k = m is thus a This term is known as the partial auto-

correlation coefficient and also is referred to as the mth reflection co-

efficient. We can now form a set of equations, one for each model order.

Rk ml Rk-l + am2Rk-2 + ... + 6m,n-R k-m+l + 'mmRk-m

for k = 1, ... , m (2.2.11)

S These are called the Yule-Walker equations. In matrix form these equations

may be written

0 R1 2 - '1 ml
,R 1 Ro0 R1 , Rm-2 ' m2 RR R Ro R

2 1 R0 R 3 3 3 (2.2.12)

I I I II

I ! I I I I

R R R R 'Rm-l m-2 i-3 0 mm

The above equations form an mxm autocorrelation matrix which is Toeplitz

16

since all the elements along the diagonal are identical. Also the matrix

is positive definite which follows from the positive definite property

of the autocorrelation function.

If all the terms in the mxm matrix of Equation 2.2.12 are normalized

to Ro , the correlation lag at t = 0, the Yule-Walker equations can be

written in terms of the resultant normalized autocorrelation coefficients

[Makhoul, 1975]. Thus we get

T C1 C2 ' Cm-_ -M-

C1 1 C1 Cm 2 em2 C2
C,. C Cl C
C2 C1 1 m-3

6m3 3 (2.2.13)

I"4 ,' I I I I

[I I I I

Cm 1 C m-2 C m-3 1 M Cml

where Ci -R- C i = 0i...vetm

By recognizing that the right hand column vector contains mostly the same

elements as in the autocorrelation matrix, the equations can be solved

using simple algebraic reduction techniques as shown in Box and Jenkins

[Box and Jenkins, 1976].

The solution of the equations reduces to the following recurrence

equations:

m- 1

Wmm m j=lm j=, ... , m-1 (2.2.14a)

M-1

j= m-l'j j

S)mj = m- Ij - "mm'm- 1,m-j (2.2.14b)

-A

17

These equations are attributed to Durbin [Durbin, 1960]. They show how

the parameters at the desired model order are calculated using the para-

meters of all the previous model orders. To find the mth order process

parameter set, the parameter sets fell}, {e2l,8221..., {emlsem2,...,

emm} are all calculated. This recursive method requires only 2m storage

locations and m2 plus on the order of m operations [Makhoul, 1975]. We

can now augment Equation 2.2.12 which represent the k=l,...,m equations
=m 2of 2.2.9 w4th the k=O equation: Ro = m + am . The result becomes:

j~l

Ro R1 R2 Rm I am

R1 Ro R I Rml 11 0

R R R o ' Rm e2 = 0
* I I ! I I

* I I i I I

p I I I I I I

Rm Rm iRm-2 Ro em 0

To solve the above equations we use a set of recurrence relations which

produce the same ais as the Durbin algorithm, except for a sign change
m

on the parameters due to assuming the general AR model is ojYt_j = et.
j=0

The algorithm is initialized by:

011 = -Rl/R 0 (2.2.15a)

a1 = (l-0112)Ro (2.2.15b)

the recursion for k = 2,3,...,m is given by

k-l 2
3kk = -[Rk + j l kl,jRkj]/a k-i (2.2.15c)

eki 0 °k-l,i + 0 kk 3k-l,k-i (2.2.15d)

"I~ ~~~~~ ~~~ 1 U1 ' '
,, ':," "" "" " , , " " " C, -"

18

2 k (kk2)a 2 (2.2.15e)

This form of the recurrence equations has two advantages over the original

equations 2.2.14. First, the correlation coefficients need not be

normalized before being passed to the algorithm. Also the ak2 term can

be used in the model order selection process. The correct model order is

chosen when the AR model has arrived at the best fit to the observed

time series.

If the model order is chosen too high or too low, the AR model will

not provide an accurate representation of the sampled process. In theS2 k2.

ak equation (Equation 2.2.15c) we see that ak is dependent solely on

the present and past values of the partial correlation coefficient. The

term is thus an indicator of the error and has the property that it de-

creases (or remains the same) as the order of the model increases

* [Makhoul, 1975]. A suitable model order for the process can be chosen

when the change in the error term i.e., Ok2 2 is below a specified

tolerance level.

2.2.4 The Autoregressive Model Parameters as Shape Descriptors

The shape descriptors form a feature vector which is a string or

set of numbers which represent the features or characteristics of the

shape. Since the physical features of a shape are invariant to rotation,

translation, and scale, so should the numerical shape descriptors be in-

variant to rotation, translation and scale. Also the numerical shape

descriptors should be invariant to where the sampling process begins.

From the previous section we have estimated the following AR parameters:

f i' i = 1,...,m estimated using the recursive algorithm of Equation

2.2.15, a as in Equation 2.2.6 and s from Equation 2.2.8. These parameters

19

in vector form [el' 62, . 6m9 a//]t produce a feature vector which has

the desired invariant properties [Dubois, 1984]. However, it should be

noted that, in using the equi-angle boundary sampling method, the rotation

and starting point invariance property only applies when the change in

rotation or starting point is a multiple of 27r/N. If N is sufficiently

large, this no longer is a problem.

,l

.I

CHAPTER 3

CLASSIFICATION OF THE TRANSFORMED FEATURE VECTOR

Using the theory from Chapter 2, it is possible to form a feature

vector from the set of AR parameters which describe the shape of an

object's boundary. If we had a bin full of the exact same object and if

we found the feature vector of the outer boundary of each object using

the same method, we would find that most feature vectors would be slightly

different from the rest. This is due not only to minor variations in

rotation, i.e. not exact multiples of 27r/N, but also to pixel quantization

error and round-off errors in the system. Considered as a class however,

all these feature vectors will be roughly the same. It is then possible

to use a classification scheme based on the feature vector of the samples

of each class. Some of these classification schemes as found in the

literature will be described in the next section. It will become apparent

that there is usually a need for further processing of the feature vector

in order to correctly classify the shape of the object's boundary. This

is especially true for objects with very similar shape. Thus the

Karhunen-Loeve (K-L) expansion will be introduced and two implementations

of the K-L expansion will be described. The last section of this chapter

will be devoted to the particular classification rule used in the

experimental work of this thesis.

3.1 Background of Classification Theory

The pattern classification problem is essentially the problem of

partitioning the feature space so as to assign each possible feature

20

21

vector or point in that space to the proper pattern class. The classi-

fication techniques in the literature form three groups depending on how

much a priori information about the feature vector to be classified is

" known. The first group comprises the deterministic techniques wherein no

assumptions are made on the statistical properties of a pattern class.

NWhen the statistical properties of the feature vector are known, then it

is possible to use the group of statistical classification techniques. A

third group which allows incomplete knowledge of the statistical properties
of the feature vectors is the group of trainable classifiers. These three

methods of classification will be described in further detail in the

next pages.

3.1.1 Deterministic Classification Techniques

This group of classification techniques depends on the formulation of

N mathematical, deterministic, discriminant functions which are used to

is partition the feature space. These functions assume that the feature vector

components are deterministic quantities. The hyperplane classification

method, the third technique used in the thesis of Dubois [Dubois, 1984],

is an implementation of a deterministic discriminant function.

The general form of a discriminant function is as follows [Fu, 1968].

Let w lw2, ...,c be designated as the c possible pattern classes to be re-

cognized and let

'l' Y2

y 14

%y= '

:RIN

22

be the feature vector where yi represents the ith feature. The dis-

criminant function D.(Y) associated with pattern class wj, j=l,..., c

is such that if the feature vector Y is in class wi then the value of

Di(Y) must be the largest (or possibly the smallest) of all the D(Y) for

j'i. The discriminant functions form decision boundaries between regions

associated with class wi and wj which can be expressed as:

Di(Y) - D(Y) = 0

An example of the discriminant function for a two class problem is shown

in Figure 3.1.1.

Class 1

D1 (Y)'0 2(Y)

NI

" 1 1
'. Nj 1 1

2 1

2 2 N

Class 2 2 N,D2(YJ01 (Y) 2 2 1: Class 1

2 2: Class 2

2N
Decision N
Boundary
DI(Y)-0 2 (Y) x 0

Figure 3.1.1 Example of a Discriminant Function for a 2 Class Problem

An important class of linear deterministic classifiers uses as the

classification criterion the distance between the unlabelled feature

point and the labelled points of the feature space. A discriminant

function for such a so called minimum distance classifier is:

..(-) n 1 1CYi' jn,i) 2j = .

-(3.1.1)

23

where N is the number of samples of the jth class and R ,n,i is the ith

component of the nth sample of the jth class. Equation 3.1.1 can be

implemented more simply without loss of information as:

2 N d)2

D.(Y)= (Yi R j nl .,• ~n=l i=lni"

Classification of the unlabelled feature vector Y is based on the smallest

class distance D.(Y). The performance of the minimum distance classifier

is dependent on whether or not the training sample points form tight

clusters that are well separated from each other. In classification

terminology we wish for the training samples to form clusters such that

their intraset, or within-class, distances are small and their interset,

or between-class, distances are large.

3.1.2 Statistical Classification Techniques

In the deterministic classification techniques, it is assumed that

the feature vector components are deterministic quantities. However, in

many cases the noise effect due to large variations in the feature vector

components cannot be neglected. If we assume that for each class the

probability density function of the feature vector is known and the pro-

bability of the ith class occurring is known, then the classification

problem becomes a statistical problem. The task of the classifier is

then to minimize the probability of misclassification [Fu, 1968].

The statistical approach to the pattern recognition problem is

generally based on the Bayes rule which presents an optimum measure of

classification performance [Tou and Gonzalez. 1974]. The classifier that

uses the Bayes rule is called a Bayes classifier. One basic Bayes

classifier is the implementation of the following discriminant function:

24

D.(Y) = P(Y/wj)p() j =.

A pattern vector V is assigned to class wj if for that class

D Dj(Y) > Di(Y) for all i~j. The main problem with the statistical

classification techniques is that of estimating the probability density

function characterizing each of the different pattern classes. This

implies that the computational requirements of these techniques will

probably be greater than for the deterministic classification techniques.

3.1.3 Trainable Pattern Classifiers

The trainable pattern classifiers produce discriminant functions by

means of iterative learning algorithms. These classifers can use either

the deterministic or statistical techniques or a combination of both to

'S.. produce the desired discriminant functions. The main use of a trainable

classifier is when the required information for optimal pattern classi-

fication is only partially known. During its operation the classifier

learns the needed information. If the learned information gradually

approaches the true information, then the decisions based on the learned

information will eventuallly approach the optimal decision as if all

the information required is known [Fu, 1968]. The trainable classifiers

are divided into two groups: the supervised classifiers and the un-

supervised classifiers. The difference between the two groups is that

the supervised classifiers have available the correct classification of

the observed patterns while the unsupervised classifiers don't. Again,

*the computational demands of the trainable classifier algorithms are

generally greater in comparison to the deterministic techniques.

U

25

3.2 The Karhunen-Loeve Expansion

It is our goal to classify objects as quickly and accurately as

possible. Thus it is desired that the actual classifier should be a

simple deterministic minimum distance classifier. As was stated pre-

viously, for the minimum-distance classifier to give accurate results,

it is necessary for the feature space to form tight clusters well

separated from each other. Also if the feature vector dimension can be

reduced, the classification time will decrease. In this section we

will introduce the Karhunen-Loeve expansion and its properties which allow

us to achieve quick, accurate classification of feature vectors of re-

duced dimension. Two implementations of the K-L expansion will be de-

scribed and finally the actual minimum-distance classifier used in this

work will be introduced.

3.2.1 Basic Theory of Karhunen-Loeve Coordinate Axes

Let us, first of all, introduce the Karhunen-Loeve expansion. We

know that a periodic function can be expanded into a Fourier series:

x(t) = Y xn exp(jnw0 t) (3.2.1)

where w is the angular frequency and the x n are the Fourier coefficients.

A similar expansion can be formed for a non-periodic function x(t) where

x(t) y u t) O<t<T (3.2.2)
n r

Suppose we use only D discrete sampling points to approximate the time

function during the time interval O<t<T, then x(t) becomes the column

vector x. Also the generalized Karhunen-Loeve expansion of Equation 3.2.2

becomes

26

D
x 1 Ynyn (3.2.3)

n=1

where the vectors u form a deterministic orthornormal basis set. The--n1

basis vector un is D-dimensional and represented as

U nll
Un1 l

u n2

u (3.2.4)n

The UnD

The derivation of the Karhunen-Loeve coordinate axes from the K-L

expansion is described next, following the method of Devijver and Kittler

[Devijver and Kittler, 1982]. We start by making an approximation to x

of Equation 3.2.3. Let's call this approximation x, and let it have

dimension d where d<D i.e.

d
x = I YnUn (3.2.5)

n=1

The problem is now of finding the vectors u n such that the mean square

error (MSE) between x and its approximation x is minimized. Let this

error be called E where

: E{(x-x x-x)} (3.2.6)

and the expected value El} is over all samples in a class. Substituting

in the expansions for x and x we get

E = E{(ynu)t(y n)} (3.2.7)
n=d+l n=d+l

Due to the orthonormality property of the basis vectors we know that

Unt2m = ,nm (3.2.8)

where nm is the Kronecker delta and equals 1 if n=m and 0 otherwise. The

error of Equation 3.2.7 reduces to

27

D

E{ yn 2 (3.2.9)
n=d+l

Since we still want to minimize the error in terms of the vectors n'

let us find yn in terms of un" Since n is a dummy variable we can

rename it and rewrite Equation 3.2.3 as

D
I y u (3.2.10)

m=l

We can now multiply both sides of Equation 3.2.10 by !nt to get
t t D

n nx = untm~l ym m (3.2.11)

Using the orthonormality property of Equation 3.2.8 we find that the

right side of Equation 3.2.11 will be zero except when m=n. Thus we get:

Yn = u t x n = 1,...,D (3.2.12)

which can be substituted back into Equation 3.2.9 i.e.:

D t t
E = E{ I U X xu n} (3.2.13)

n=d+l

Since the un basis vectors are deterministic the order of summation and

expectation can be interchanged to get:

D t[Efx xt}]U (3.2.14)

n=d+l

We can denote the expectation term as w where

p = E{x x t } (3.2.15)

then the MSE of the approximation becomes

0
u -u=n 'tPun (3.2.16)

n=d+l
Since we wish to minimize the error c at the same time as maintaining the

constraint in Equation 3.2.8, we need to find a form of the error equation

where the desired constraint is explicit. To find this we use the method

of Lagrange multipliers. First we can rewrite the constraint as:

28

UM t 1 =0 (3.2.17)-nt -

Multiplying both sides of Equation 3.2.17 by a constant xn doesn't change

• ikthe equality. Thus Equation 3.2.16 can be written as a function of un as:

: "D D

g(un) = t Un U - A (utu - 1) (3.2.18)

n=d+l n=d+l

If the above equation is differentiated with respect to u and the result

is set equal to zero we get the following condition:

('-nI)Un = 0 (3.2.19)

Thus the optimal vectors un are the eigenvectors of the matrix v and the

constants X are the corresponding eigenvalues. Since ip is a DxD symmetricn
matrix, it will have at most D linearly independent, orthogonal eigen-

vectors and D real eigenvalues [Lanczos, 1956].

We still need to find the d eigenvectors out of the set of D in order

to form the approximation x in Equation 3.2.5. From Equation 3.2.19 we

know that Pn = XnAn" Substituting this into Equation 3.2.16 and using

the orthonormality condition again, we get the error in terms of the

eigenvalues of -p, i.e.

= t Z X (3.2.20)

n=d+l n=d+l

Here we can see that to minimize c, the sum on the right should include

the smallest eigenvalues of the matrix w. This implies that x should be

formed from the eigenvectors corresponding to the d largest eigenvalues

of , i.e.:
d

x 3 y u (3.2.20)n-l

Where the eigenvalues ,n corresponding to u satisfy
n-

1" - 2- '3 >
- d - (3.2.21)

The vectors u form what are called the Karhunen-Loeve coordinate axes.

"

" -,.., . . - . .. - .'. ',-.

29

It has just been shown that in using the eigenvectors corresponding

to the largest eigenvalues of the matrix Y, the mean square error be-

tween the original vector and its approximation is minimized. Also it

can be shown [Devijver and Kittler, 1982] that the coefficients yn of

the expansion are uncorrelated. This suggests how the K-L coordinate

axes can be used to reduce the dimension of the input vector by de-

correlating the components and removing the axes which do not convey much

information [Kittler, 1975].
,1

3.2.2 Application of the Karhunen-Loeve Coordinate System to the

Recognition Problem

Using the results of Chapter Two we can form an m+l dimensional

- feature vector from the parameters of the AR model. Let's say we would

like to transform this feature vector into a d dimensional vector where

d < m+l. Then the K-L coordinate axes can be applied to produce the

desired reduced dimension transformed vector y, i.e.

y = Vt x (3.2.22)

The vector x represents the original m+l dimensional feature vector and V

is a Dxd matrix whose columns are formed from the eigenvectors of what is

-i referred to as a K-L coordinate generating matrix [Devijver and Kittler,

1982].

In a previous section we found that the Karhunen-Loeve coordinate

axes were found by solving for the eigenvalues and corresponding eigen-

-vectors of matrix p defined as:

E{x t } (3.2.23)

We could use this definition in our pattern recognition problem, but we

wouldn't be taking advantage of the fact that the input data will be a

30

mixture set containing elements of many classes wi' i = 1,...,c where

c is the number of pattern classes. If we assume that the samples of

each class are normally distributed about the class mean vector, then

each class of samples can be completely described by its mean vector, mi

and its covariance matrix Ci [Tou and Gonzalez, 1974] where Ci is de-

fined as:

- [xmC(-~ t] i -'.'

1 n t[(x-m)x-m..) I i l,...,c (3.2.24)
i -=-

where ni is the number of samples of the ith class and

m= E[xji] i ..1,c

ni

n. x xk i 1,. c(3.2.25)
1 k=l

Using this additional information we can form a within class scatter matrix

Sw [Devijver and Kittler, 1982] which is the average of all the class co-

W~.p variance matrices i.e.:

c
Sw i PiC (3.2.26)

where Pi is the apriori probability of a sample of the mixture set being

from the ith class. If a sample is equally likely to come from one class

as any other then:
P = (3.2.27)

1 c

and the matrix S becomes:
w 1 I n

S(X ik - m)t (3.2.28)i w = c- ln i k 2-i k li(xik -i

i=l i k=l

N Hence the columns of the matrix U in Equation (3.2.22) can be formed from

the eigenvectors of Sw ordered by the decreasing value of their

corresponding eigenvalues.

31

It can be shown that the population entropy can be minimized by

forming the matrix V from the eigenvectors of matrix Sw corresponding to

the smallest eigenvalues [Devijver and Kittler, 1982]. A good measure

of intraset dispersion is the entropy function given by:

H = -E[log p(y)]

where p(y) represents the class probability density function [Tou and

Gonzalez, 1974].Ii It is noted that the within class scatter matrix Sw is symmetric and

positive semi-definite, thus the eigenvalues will be real and greater than

or equal to zero. The eigenvectors point in the direction of the

principle axes of a hyperellipsoid whose shape is defined by the co-

variance matrix and the corresponding eigenvalues determine the length of

these axes. In other words, the eigenvalues represent the variance of the

data in the direction of the corresponding eigenvectors in the feature

space.

3.3 The Optimal Karhunen-Loeve Coordinate System

There are many variations to the Karhunen-Loeve coordinate system in

the literature. These variations are specially tailored to their particular

type of pattern recognition problem and essentially differ in the choice of

the K-L system generating matrix. These techniques are inferior to the

next method to be described in the sense that they do not utilize the

class mean information in an optimal manner [Kittler, 1975]. In this

section the theory of the optimal Karhonen-Loeve coordinate axes will be

described.

32

Generally the most important discriminating information is contained

in the class mean vectors ai. Let us then introduce a new matrix based

on the class mean variances referred to as the between class scatter matrix

Sb [Devijver and Kittler, 1982] where:
4C

c --

Sb = I Pi(!Ii-)(ai -) (3.3.1)
i1=1

Here ai is the class mean vector as defined in Equation 3.2.25 and m- is

the average of the class mean vectors i.e.:
- 1 c
iM = Z I ai (3.3.2)

i=1
When there are c classes, the space spanned by the class mean vectors will

be at most c-i dimensional [Devijver and Kittler, 1982]. Here we see that

by using matrix Sb as the K-L coordinate system generating matrix we may

achieve a more efficient way of reducing the dimension of the pattern

vector.

The algorithm as suggested by Kittler in [Devijver and Kittler, 1982]

is described next. We first set out to decorrelate the noise on the

pattern vectors. From the previous section we found that this is done by

the transformation matrix V in Equation 3.2.22 formed from the eigen-

vectors of Sw. We then would like to normalize the variances of the

noise components of the pattern vectors to unity. To do this we form a

matrix A whose diagonal elements are the eigenvalues corresponding to the

eigenvectors of V. Combining the two matrices we achieve the desired

results by using the transformation matrix B where

B = V A- 11 2 (3.3.3)

on the matrix Sw i.e.

BtSwB = I (3.3.4)

7 ~ ~., N 3.3.4'

33

Similarly we can decorrelate and prewhiten the between class scatter

matrix Sb of Equation 3.3.1 to form Sb' i.e.

bb bSb ' = B tSb
B (3.3.5)

We find the optimal coordinate system by finding the eigenvalues and eigen-

vectors of the matrix Sb*' The optimal feature extracting transformation

matrix is now W where

W = UA-1/2V (3.3.6)

where V is the matrix whose columns are formed from the eigenvectors of

Sb' in order of the descending values of the corresponding eigenvalues.

Finally the transformed, reduced dimension feature vector of Equation

3.2.22 becomes
Y_ I' = Wtx (3.3.7)

where x is the original m+l dimensional feature vector.

3.4 The Classifier

By using either Equation 3.2.22 or Equation 3.3.7 we can reduce the

dimension of the feature vector and also decorrelate their components.

Thus the resultant transformed sample space should have fairly well de-

fined boundaries between the classes. For classification, all we need is

a simple minimum distance classifier as described in Section 3.1.1. The

classifier implemented in this work is:

Di2 (bk - Yik)

where k-l

D = total distance for the ith pattern class

bk = the kth dimension of the transformed unlabelled (input)

feature vector

Yik = average kth component for the ith class of transformed

training vectors.

P1 34
The classification decision is chosen in favor of the smallest class

distance Di2. This means that the input vector is categorized as be-

longing to the pattern class whose average sample it is nearest. Once

the classifier has been trained the only information it needs to classify

an input object is the transformation matrix and the mean sample trans-

formed feature vector of each expected object boundary.

In this chapter we have shown how the dimension of the feature vector

can be reduced by projecting the vector onto a reduced system of K-L

coordinate axes. It was also shown how the class mean information can be

optimally used to maximize the interset distances. The next chapter will

present the necessary hardware and software algorithms to implement the

theory of this and the previous chapter.

V

,. .e,.

CHAPTER 4

CREATING THE PATTERN RECOGNITION SYSTEM

This chapter deals with the realization of the operational pattern

recognition system and the details of the algorithms used in this system.

The first section of the chapter will describe the system hardware and

how the original scene is digitized for computer use. The second

section discusses the thresholding technique used on the digital re-

presentation of the scene. In the third section the algorithms used to

extract the raw data from which the features can be selected, are de-

scribed. The fourth section describes how to extract and use the

additional information provided by the multiple edges of an object. The

last section describes'and provides the flow charts of the software

written for this pattern recognition system.

4.1 Object Sensing

We have been assuming that the machine that will do the necessary

data manipulation for feature selection and classification is the digital

computer. However the computer doesn't have eyes to see the object! We

4now describe how, by the use of the proper hardware and special software,

*the computer can receive data just as if it could see.

4.1.1 Description of the System Hardware

The main hardware elements of the object recognition system developed

in this work are: 1) the Matsushita Panasonic WV-241 TV camera using the

35

36

RS-170 standard, 2) the Image Technology Inc. (ITI) IP-512 series image

acquisition board containing the AP-512 Analog Processor and the FB-512

Frame Buffer, 3) the VAX 11-730 digital computer and 4) the Panasonic

TR-920M monitor (black and white). See Figure 4.1.1 for the system

design.

The TV camera scans the scene and produces an analog, video signal

which reproduces the variations in the scene intensity. This analog signal

is sent to the ITI image acquisition board where it is flash converted

by the circuits of the AP-512 Analog Processor into a data stream of 8 bit

bytes. Each byte is a pointer to one of 256 elements of a programmable

look-up-table (LUT). If the byte represents the number 8 then the

contents of the 8th element of the LUT is put into an appropriate location

of a 256-K byte RAM called the FB-512 Frame Buffer. The portion of the

frame buffer memory actually used in the system is called the active
9.

video window. This window is a 480 row by 512 column two dimensional

array of 8 bit numbers (called grey levels) which stores the digitized

representation of the complete scene as viewed by the TV camera. Each

element of this digitized representation is called a picture element or

pixel. Since the TV camera starts its scanning cycle at the top leftmost

corner of the scene, the origin of the active video window is also at the

top leftmost corner (as seen on the monitor). Figure 4.1.2 shows the

origin of the video screen coordinate system of the active video window.

The x values increase to the right and the y values increase downward.

The contents of the frame buffer are flash converted from digital to

analog for real-time viewing on the monitor. By the use of the ITI

software applications package, the Fortran programs running on the VAX

'.;

-' ~ ',. ., - ,

37

0~

0

L

o0

0

'n Ul) 4

4(-

0
E

I-

cm

* ~ -

0c

38

(0101

y

Figure 4.1.2 Active Video Window Coordinate System

computer can access the contents of the frame buffer and the hardware

functions of the analog processor.

4.1.2 The Digital Image

In order to provide the computer with data in the form that it can

SI accept, the scene containing the objects is sampled. What we have

stored in the frame buffer then is a digital representation of the

9 original continuous scene. Each pixel of this representation is a rec-

tangular element which has an 8 bit value which quantizes the image

intensities to any one of 256 gray levels.

As a direct result of this quantized representation formed from

these rectangular pixels there arise two problems which must be con-

sidered in the implementation of the system. First, the shape of the pixel

causes the distance measurements (radius vector lengths), based on pixel

location, to vary with changes in object rotation or translation. In the

digital representation 4 increments in the x direction have the same

physical distance as 5 increments in the y direction. This is referred to

as the pixel aspect ratio.

39

To eliminate the problem due to the rectangular pixel shape, we

introduce a pixel aspect correcting factor of 5/4 to the x distance values

in our calculations.

A second problem that arises is the effect of the quantization pro-

cess on the original scene. Instead of the smooth edges which exist in the

original scene the representative edges are uneven and sometimes jagged.

'N Also, the number of pixels on the object boundary will vary with slight

changes in boundary position. Thus we see variations in the representa-

tion of similar objects if they differ slightly in two dimensional

translation or rotation. These variations are collectively referred to

as quantization noise. The significance of this noise can be reduced by

* . decreasing the size of the pixels or by increasing the relative size of

the objects in the representation.

4.2 Preprocessing of the Digital Image

Once we have acquired the digital representation of a scene, we

generally like to preprocess the representation so as to make the

feature selection algorithms simpler and quicker. The bag of tricks

which allows us to perform this preprocessing comes under the heading of

Digital Image Processing. However, due to the time constraint on a

pattern classifier, the preprocessing of the image is kept to an

essential minimum. In this section we will describe the thresholding

done to the digital image in order to simplify the boundary detection

algorithms.

40

4.2.1 Image Thresholding

In order to implement a quick and simple boundary detection scheme,

the boundaries of the objects must be distinct from the background and

they must be uniform in intensity. A simple way to produce these desired

properties is to transform the image into a binary picture which contains

objects of uniform intensity against a background of a different

intensity. The process of producing such a binary image is called

thresholding.

To perform this thresholding process we use a single programmable

look-up-table on the ITI image acquisition board. On the board there are

actually 2 groups of 4 input LUTs, and 3 groups of 4 output LUTs. The 2

input groups allow two possible camera inputs and the 3 output groups

allow for the three color groups (RGB of a color system). Each of the

four LUTs in any group can be preprogrammed or pre-loaded before actual

use. Then during execution, the program can switch LUTs and instantly

transform the scene. For our purposes, however, we don't need to trans-

form the scene from moment to moment, but we do need to threshold the

image before it is stored in the frame buffer. To do this the 256

locations of the chosen input LUT are loaded with one of two grey-

levels. The locations below a certain location (called the threshold)

are loaded with one grey level, for example 0, and the locations on and

) above the threshold are loaded with a different grey level, for instance

255. Imagine that we have a light object on a dark background and a grey

scale of 0 (black) to 255 (white). If the LUT has been preloaded as

described, then as the scene is initially viewed, the data bytes are

immediately converted to either one of the two designated grey levels.

41

The light areas of the scene where the intensity is above the threshold

are stored as grey level 255 in the frame buffer and the dark areas

below the threshold are stored as grey level 0.

4.3 Feature Selection

We now assume that we have a binary, thresholded representation of

the original scene stored in the frame buffer. We still need, however,

to form the time series from the radius vector lengths of a sampled

boundary in order to calculate the components of a feature vector.

To do this, an object must first be detected. Once an object is

detected, the boundaries need to be traced and the boundary centroids

estimated. When we have a centroid pixel position, the radius vector

lengths can be calculated and the corresponding time series can be

produced. It is only when the complete time series is formed that the

AR parameters can be calculated using the algorithm described in chapter

two.

In the next pages we will describe the various techniques used to

provide the raw measurements from which the features can be selected.

4.3.1 Search for a Boundary Starting Pixel

This pattern recognition system allows the existence of more than

one object in the scene viewed by the camera. Also the objects may have

more than one closed edge. In order to recognize these multiple edges,

it is necessary to scan the entire scene stored in the frame buffer.

To speed up this scanning process not all of the pixels are read.

The search for object edges begins at the origin of the active video

-'I ... , - , , . - , .
'V # .. , ', . , ,, , , '.," _ 4' . ..

42

window in the frame buffer. The search continues along the constant y

row where only the x values which are multiples of a previously prompted

5. for increment are read. Once the end of the row has been reached, the

search continues at the beginning of the next y row which is a multiple of

*, the increment. For example, if the incremental step is 8, the following

pixels on the first row are read: (0,0), (8,0), (16,0), The pixels

which are read on the next row are: (0,8), (8,8), (16,8), and so on.

The search continues in the same manner until a transition occurs in-

dicating an object has been detected or the bottom right corner of the

scene has been reached.

A transition is detected when the difference between the present

pixel grey level and the previous grey level is equal to the difference in

intensity between the object and the background (in our case 255). Due to

the manner of hopping across the rows of the frame buffer in search of

objects, there is no guarantee that the pixel where the transition is first

encountered is an edge pixel. Thus the search backtracks pixel by pixel

on the same row until the transition indicating the actual edge is

detected. This pixel where the boundary is first detected is referred

to as the start pixel.

4.3.2 The Turtle Boundary Detector

.When an object in its two-dimensional representation is of uniform

intensity and its edge doesn't contain spurious gaps, then it is possible

to use a "turtle" boundary detection algorithm. In this work a modified

version of the turtle algorithm used in the work of Dubois [Dubois, 1984]

is implemented. In this algorithm the boundary between the object and its

background is followed in a clockwise manner by a symbolic device referred

43

to as the "turtle". Once the boundary start pixel has been found as de-

scribed in the previous pages the turtle proceeds to trace the edge

according to the following two rules [Duda and Hart, 1973]:

1 1) If the turtle is in the object it will turn left

and take a step.

2) If the turtle is in the background it will turn

right and then take a step.

The turtle stops when it has returned back to the start pixel.

Since a great portion of the classification time is spent turtling

around the boundaries of the objects in the scene it is advantageous to

speed up the algorithm. To do this, the turtle algorithm of Dubois

LDubois, 1984J was modified in the following ways:

1) The direction of the turtle movements is governed

by decisions based on logical flags indicating past

and present turtle position.

2) All subroutine calls have been eliminated in pre-

ference for a quicker straight through code.

3) As each boundary pixel is detected, the x and y

locations are temporarily stored and counted for

later use by the radius vector calculation

algorithms.

4) Also, as each boundary pixel is detected, its grey level

intensity is changed. This marking of the boundary

is to prevent repeat turtling of the edge as the

entire frame buffer is scanned. Also the boundary

marking provides identification for later determination

,. ~p. of which edges are inside other edges. An example of

the scene with marked edges is shown in Figure 4.3.1.

W'

44

1
2

3 4

0i

Figure 4.3.1 Example of a scene showing marked edges

Note that the edges are marked with the intensity level which

corresponds to their order of detection. For instance the boundary

closest to the top left corner is detected first and is thus

marked with the grey level intensity 1.

4.3.2.1 The Centroid of the Boundary. The center of the two-

dimensional representation of the object can be approximated by calculat-

ing the average of the boundary pixel locations. Thus the xc and yc

coordinates or the boundary center are:
Nb Nb

x n ' Yc n431

nl n n=l n
xc Nb ' c Nb (4.3.1)

where Nb is the number of boundary pixels and x and yn are the x and yb n n

coordinates of the nth boundary pixel. 'The advantage of finding the

boundary centroid is that despite changes in the object's rotation and

translation the relative position of the centroid remains the same. The

45

centroid position can then be used as the origin of a set of reference

axes needed for the determination of the boundary intersection radius

vector lengths.

4.3.3 Formation of the Time Series from the Radius Vector Lengths

With the position of the boundary centroid known, the two types of

time series formed from the radius vector lengths, as described in

chapter two, can be produced. The type of time series formed depends on

the relationship between each radius vector of the boundary representation.

Two methods based on two types of relationships are explored in this

work and described below:

4.3.3.1 Equi-angle Method. In this method the intersections of the

radius vectors with the boundary are such that the angles between the

radius vectors are all constant and equal to 27/Nr radians, where Nr is

the number of radius vectors. The algorithm actually implemented is a

modified version of the algorithm written by Dubois [Dubois, 1984]. The

main modification of the original algorithm is the use of the boundary

locations stored in an array during initial boundary detection. This

eliminates the additional time of turtling around the boundary for a

second time. However the trade off is the additional temporary storage

requirement for the boundary locations. Another modification is the use

of straight through code which also increases the speed of forming the

time series.

The basic steps needed to form the desired time series using this

method are described next. Initially the origin of a cartesian co-

ordinate system is shifted to the centroid of the object boundary, see

Figure 4.3.2.

. -,- --- ,- % % * *5' *-,-5,~ ,, , , , ,C,- -,- ' .-* . % ' % ' -

9 46

:
"*distance I measurements

Figure 4.3.2 Example of the Equi-Angle Radius Vector

Boundary Intersection Method

The radius vectors are then imagined to project, equally spaced by 2 r/Nr

radians, from the origin to the object boundary. Each section formed

by a pair of radius vectors is referred to as a sector. Note that in

determining the intersection of the radius vector with a boundary pixel,

we are only concerned with the relative position of the pixel with

respect to the radius vectors of the sector. Thus only the magnitudes

of the slopes of the first quadrant of the reference plane need to be

calculated. These slopes are calculated once and stored in an array

before the actual search for boundary intersections begins. The slope

of the jth radius vector is calculated using
K

slope(j) = 5/4 * tan(27/Nr*j) j=0,...,(Nr/4) - 1 (4.3.2)

The 5/4 factor is introduced in Equation 4.3.2 to deal with the rectangular

pixel shape and to prevent the factor from having to be included in each

pixel slope calculation during the search.

V. '..*%*

47

The search for radius vector boundary intersections begins with the

start pixel. The slope of the imaginary radial line drawn from the start

pixel (x s, yS) to the centroid pixel (xc, yc
) is given as:

slope = JysYcj (4.3.3)

This slope value is compared with the slope values stored in the array

and the appropriate sector is found. The two slope vectors of both edges

of the sector form reference lines for calculating the relative position

of the pixel in the sector. After the start pixel has found its

sector and the relative position in the sector has been noted, the second

pixel next to the start pixel is checked. Its relative position is

noted with respect to the reference vectors also. If the distance

-p measurements, showing the relative pixel position, change signs from

one pixel to the next, then it can be assumed that the most recently

checked pixel is either on or it has crossed a radial line. The radius

vector length between this pixel (x,y) and the centroid can be calculated,
.i.e.

rt(i) = / ((X-xc) * 5/4)2 + (y-yc)2 (4.3.4)

This radius vector length becomes part of the time series in the order in

which it is detected. This process repeats till all the boundary pixels

have been checked and the start pixel has been encountered once again.

The details of the implementation of this method are described in the work

of Dubois [Dubois, 1984].

4.3.3.2 Equi-Arc Length Method. In this method the intersections

A of the radius vectors with the boundary are such that the arc length

between intersections is constant and equal to a certain number of pixels.

In the implementation of this method the constant arc length (A),

. , . . . - ., ~ . - , -. , - - -

48

measured in pixels, is determined by dividing the total number of boundary

pixels (Nb) by the desired number of radius vectors (Nr) i.e.

A = arclength = b (4.3.5)

Thus the time series is formed from the radius vector lengths correspond-

ing to every Ath stored boundary pixel where the length from pixel to

i centroid is calculated using Equation 4.3.4. This method is simpler and

quicker than the equi-angle method since it doesn't need to check each

boundary pixel for radius vector intersections.

In both radius vector length calculating methods, the (xmaxYmax)

A position of the boundary intersection pixel of the maximum radius vector

is stored. Also the length of the maximum radius vector is stored.

From this length we have an indication of the size of shape. Using the

position we can calculate the orientation of the maximum radius vector

and thereby have an indication of the orientation of entire shape. The

orientation of maximum radius vector in the Cartesian coordinate plane is

calculated as

orientation (degrees) = Arctan - (x -x_c]

The negative sign is due to the origin of the video coordinate system

being at the top left corner of the scene.

V, We are now capable of forming two types of time series for any inner

or outer object boundary encountered in the scene. Thus it is possible

to calculate the AR parameters faml e m2 .. mm /} of each boundary

at any model order. These parameters can be stored in vector form during

the acquisition of training data and transformed later, or they can be

transformed immediately for classification purposes. The next section

49

deals with the extraction of additional information from the inner

boundaries of an object and how that information can be used in the

classification process.

4.4 Extraction of Additional Information from the

Inner Boundaries of an Object

The additional information provided by the inner boundaries of an

object can be used to hasten the classification process in many ways. If

the number of inner boundaries or holes is unique i.e. no other object

has that number of holes, then the classification of that object can be

based solely on that number. Also the relative position of the edge

used in conjunction with the vector of transformed AR parameters can

provide additional information. If the object has more than one hole then

it is possible to calculate the AR parameters of the pr'ygonal shape formed

by connecting the boundary centroids with straight lines. In this work

the AR parameters of the polygon were not calculated but the number of

holes and the relative position of the holes inside the object were found.

In order to count the number of holes belonging to an object it is first

necessary to determine which holes are owned by which object. The tech-

nique of determining hole ownership is described next.

4.4.1. Determination of Hole Ownership

Once the boundaries have been detected and marked as in Figure

4.3.1, hole ownership can be determined using the following technique.

For each boundary the algorithm is as follows:

1) Begin at the start pixel and proceed to read

every pixel on the row to the right of the

start pixel.

50

2) Keep track of any occurrence of a pixel intensity

which is neither the object intensity or the back-

ground intensity. Once a pixel intensity denoting

an edge is detected, ignore any occurrences of the

same intensity if they happen to occur immediately

after the first encounter.

3) Return to the start pixel and repeat the process on

the same row but now going towards the left.

4) Keep a separate record of the occurrences of

Athe edge pixels as in Step 2).

Once both right and left sections of the row containing the start pixel

have been read, it is then possible to determine which boundary the edge

in question is inside. If the same boundary intensity is detected an odd
number of times in both the right and left scans, then it can be assumed

that the edge in question is inside the boundary corresponding to the

intensity. Figure 4.4.1 shows an example of how this method can be used

to determine that edge 2 is inside boundary 1.

1 crossing detected in 3 crossings detected in
. left search right search

Edae 1

-_Ed e2

Start
Pixel

Figure 4.4.1 Example of the Method for Determining Hole Ownership

- - ,-~ ..'

51

Once the inner holes of an object have been identified it is a simple

matter to count them. It is also possible to order them according to the

distance between their centroids and the centroid of the outer boundary.

In this work the inner edges were ordered such that the edges whose

centroids were furthest away from the outer boundary centroid, were put

on the top of the list. When the inner edges have been detected, counted,

and ordered, it is then possible to classify an object simply by the hole

count or by the classification of each one of its edges.

4.5 Description of System Software

The algorithms described in the preceeding pages were coded into
Fortran-77 for the VAX 11-730 computer. The two main programs for the

pattern recognition system are called TRAIN and CLASSIFY. Program TRAIN

is used to provide the classifier with the training data for each ex-

pected object edge. Program CLASSIFY is used to classify objects with

one or more edges by the classification of each edge or by the total

number of inner edges. An additional program called MAKLIB was written

to create a library file (LIB.DAT) of AR parameters of the edges.

This library file increased the speed of system tests since it eliminated

the need for recalculating the AR parameters of the edges for each test.

A complete listing of TRAIN and CLASSIFY and the subroutines they call can

be found in the Appendix at the end of this work.

4.5.1 Program TRAIN

Program TRAIN is an interactive program which trains the classifier

with the data of the edges of the expected objects. This program pro-

duces a TRAIN.DAT file which contains the M+l columns of the trans-

V' .~4% . '~

52

formation matrix and also the average of the transformed samples of each

class. Multiple edges are allowed in the scenes, however all edges of the

objects in view must be identical. [See Figure 4.5.1 for the general

flowchart of program TRAIN.] The program begins by initializing the ITI

hardware and then prompts the user for the scan step, the AR model

order, and the number of radius vectors. It also prompts for the desired

transformation technique which can be either the basic Karhunen-Loeve

(KLSEL), the minimum entropy K-L (MESEL), or the optimal prewhitened K-L

(PREKL) coordinate axes generating technique. Once the scene has been

viewed, thresholded, and frozen, it is scanned in order to find the start

pixel of each boundary. As soon as a boundary start pixel is detected,

the entire boundary is traced and the centroid is calculated. After the

entire scene has been scanned, the radius vector lengths of each boundary

are determined so that the AR parameters can be calculated. Once the

feature vectors are formed from the AR parameters, the process repeats

and another scene can be viewed. When enough samples of each class have

been accumulated, all the AR parameter feature vectors are passed to the

desired subroutine which then forms the average covariance matrix and

finds the particular K-L coordinate axes. After the K-L axes are calculated

and the transformation matrix is formed, the original feature vectors are

transformed and the average transformed vectors are found. These vectors

.4 are stored along with the transformation matrix in the training data

file.
A' .

4.5.2 Program CLASSIFY

Program CLASSIFY is an interactive program which can recognize objects

with one or more edges. The program allows many different objects to be

present in the scene. It also calculates the rotation of the objects. The

53

Begin

7 Initialize Hardware &

Set Threshold (SETURTRESH)

Input: scan step, M, Nr

i

View the Scene

Input Class *

Freeze the Image

Detect all Edges and 1
CAlculate the Centroids,

Clculate Radius Vector Lengths (GEMD)
of all Edges

Calculate AR Parameters

of all Edges (PARAM)

Ye Collect
YesMore

Data?

No

E Transform the Samples (KLSEL/MESEL/PREKL)
4,

Calculate the Class Average
of all Transformed Samples

Store Training Data in

File TRAIN.DAT

tStoP

Figure 4.5.1 General Flowchart of Program TRAIN

54

program starts by initializing the hardware and prompts for the desired

,* constants as in Program TRAIN. It also prompts for the desired dimension

of the average transformed feature vectors. Once the constants have been

accepted, the program scans the frame buffer and turtles around all

edges, calculating the centroid after detecting each edge. When all the

edges have been detected and also marked, the program then determines which

holes are owned by which objects. The inner holes of the objects are

counted and if the count is unique, then the object can be classified.

The edges of the yet unclassified objects now need to be classified so

the radius vector lengths are determined and the AR parameters are

calculated. Then using the transformation matrix provided by the training

.. program, the AR parameters of each edge are transformed. Now the

transformed feature vectors can be classified using the minimum-distance

algorithm as discussed in Chapter 3. Once all the edges of the object

are classified, the object can be classified. This is done by matching

the edge classifications and the number of holes data with the object

data contained in a file called OBJECT.DAT. This data file is created

by the user in the same way that an ordinary text file is created. The

object data is typed in one line per object. For example, suppose we

have an object with label 3 which has 2 holes labelled 5 and 7. If the

centroid of hole 7 is further away from the outer boundary centroid than

hole 5, then we would type in the sequence: 3 2 7 5. Once all the

objects have been classified, the program is ready to accept another

scene full of objects or the session can be terminated. See Figure

4.5.2 for the general flowchart of Program CLASSIFY.

% %

55

Begin

Initialize Hardware & Threshold
the Scene (SETUPTHRESH)

I' IRead Edge and Object Data
From Files

Input: M, Transform Dim.

I-I

SInput: Object 'lumber

. Freeze the Image

Scan tie Scene, Detect All Edges (SCAN,GETCEN)
and Calculate Centroids

Determine Hole Ownership (INSIDE)
i!

Classify Objects by Their
Number of Holes (CLSHOLE)

I'I

Form Ordered List of Edgesfor Eacn Object (ORDER)

Continue Yes

Figure 4.5.2 General Flowchart of Program CLASSIFY

; Er1' ww" nr R r

56

.0

Calculate Radius Vector Lengths (GETRAD)
of Single Edge

Calculate AR Parameters of Edge (PARAM)

Transform the AR Parameters
and Classify the Edge (CLSEDGE)

* * edges
of object N a

Classify the Object (CLSOBJ)

F2

-' Figure 4.5.2 Continued

V.

,.

CHAPTER 5

NUMERICAL EXAMPLE AND SYSTEM TESTS AND RESULTS

In the previous chapters, we described the theory and implementation

of our pattern recognition algorithms. It is well known that any

theoretical study is incomplete without examples and experimental tests.

Thus this chapter is divided into two parts, the first part provides a

numerical example of thp feature selection, transformation, and

classification theory. The second part describes the series of tests

and their results, of the entire recognition system. In all examples

and system tests the image threshold was set at 120, the scan step was 8

pixels, and the desired number of radius vectors was 64.

'- 5.1 Numerical Example

We used programs TRAIN and CLASSIFY to provide for the following

examples of the theories and algorithms used in this pattern recognition

system. Two examples have been provided, the first is of the system using

the equal angle boundary sampling method. The second example shows the

system using the equal arc length boundary sampling method. The shapes

chosen for these examples are the familiar S (class 1) and N (class 2)

used in the work of Dubois [Dubois, 1984]. These shapes were chosen for

two reasons. The first is that the AR parameters of both classes are

very similar and thus they show the need for a type of transformation

technique. Also they were chosen to allow quick comparison of the two

different pattern recognition systems. The actual size of these shapes

57

-upg AM ~.' IL' 1 .

V a

58

are considerably larger than normal text. The letter S is approximately

6 inches tall and the N is about 4-1/2 inches tall.

5.1.1 Example of the System Using the Equal Angle Boundary Sampling Method

The equal angle boundary sampling technique described in Chapter Two

is used in this example. Figure 5.1.1 shows the sampled shapes of class 1

and class 2. Note that portions of the letters are not sampled as would

be expected. This is due to the radius vector boundary intersection

algorithm rejecting radius vector measurements if they occur on the same

slope as the previous radius vector length measurement. This rejection

was done to prevent the occurrence of a disproportionately large number of

similar radius vectors measurements if the slope of the boundary happened

to coincide with the slope of a radius vector. Below the shape of each

letter is the corresponding time series formed from the radius vector

lengths. Notice the fast vertical changes. These unnatural transitions

are the direct result of the sampling process skipping or by-passing

certain sections of the boundary. These quick transitions increase the

high frequency content of the time series wave shape and thus it can be

expected that the resultant AR model order will be higher for this type of

wave shape than for a waveform that doesn't have these sharp transitions.

Table 5.1.1 shows the original training set data comprising 10

samples of each class. As can be seen, the samples varied in size and

rotation. The size variation can be observed in the changes of the

length (in pixels) of the maximum radius vector from one sample to the

next. Notice also that the changes in rotation are not strict multiples

of 2 ,/14r. This was done to mimic a realistic setting where the position

and rotation of an object is generally completely arbitrary.

59

Class 1 Class 2

2401 2401

0 90 0 - IND. i 101111

Figure 5.1.1 Shapes for Numerical Example: Equal Angle
Boundary Sampling Method

60

Table 5.1.1 Training Set Data

Equal Angle Sampling Method

(AR Model Order: 1)

Length of

Sample Nr 61 Max Rad Vec. Rotation

Class 1

1 95 -0.97653 1.73521 183 251.4
2 88 -0.97261 1.8513 187 207.1
3 84 -0.96371 1.82773 188 166.0
4 88 -0.97306 1.80995 187 339.0
5 90 -0.96508 1.79821 193 313.8
6 90 -0.96442 1.86203 196 56.5
7 80 -0.95070 2.10665 203 13.7
8 84 -0.96093 1.81376 204 339.0
9 91 -0.97108 1.67467 214 326.0

10 86 -0.91653 1.92008 209 278.0

Class 2

1 110 -0.97338 1.91497 160 236.02 110 -0.97753 1.96800 165 193.8
3 113 -0.97996 1.88319 168 159.2
4 112 -0.97825 1.91980 166 326.0
5 112 -0.98253 1.96457 174 303.1
6 110 -0.97322 1.93067 177 39.7
7 113 -0.97945 1.94201 182 345.9
8 113 -0.97759 1.92446 190 20.6
9 110 -0.97306 1.93831 186 128.510 ill -0.97896 1.95099 188 213.5

..

ROW

61

The AR parameters 01 and a/J cluster around their average class

value as can be seen in Figure 5.1.2a. However looking at Table 5.1.1,

some 01 values and also some a/v/ values overlap between the classes.

Thus it can be seen that it is desirable to reduce or possibly eliminate

these overlaps by using a transformation technique. Table 5.1.2 shows

the results of transforming the original AR parameters using the basic

K-L, the minimum entropy K-L and the optimal K-L transformation matrices

as described in Chapter 3. The plots of these transformed points are

shown in parts b,c,d of Figure 5.1.2.

* To understand how the K-L coordinate axes can reduce the dimension

of the feature vector, observe how the transformation rotates the

original coordinate axes so they now point in the direction of maximum

and minimum variance. In the basic K-L transformed system, the first

axis or x axis, points in the direction of maximum within class variance.

Looking at plot (b) in Figure 5.1.2, it is noticed that the major axis

of the ellipsoid formed from the cluster of class 1 points of plot (a)

is now parallel with the x axis. We can also see that along the y axis

corresponding to the direction of minimum variance, there is no over-

lapping between the classes. It is possible to draw a straight line

parallel to the x axis between the class clusters such that the classes

do not overlap. An unlabelled input feature vector can be classified by

its position along the y axis alone. Thus the dimension of the feature

space has been reduced.

Plot (c) in Figure 5.1.2 shows the effect of the minimum entropy

transformation. Comparing this plot with plot (b) we see that plot (c)

is the same as (b) but with the axes reversed. In the minimum entropy

transformed system, the x axis points in the direction of the minimum

'1V

62

Table 5.1.2 Transformed Training Data

Sample Basic K-L Min Entropy K-L Optimal K-L

Ti T2 TI T2 TI T2

Class 1

1 1.685 1.061 1.061 1.685 263.35 54.11
2 1.801 1.063 1.063 1.801 269.21 52.84
3 1.778 1.053 1.053 1.778 266.64 52.41
4 1.760 1.062 1.062 1.760 268.67 53.23
5 1.748 1.053 1.053 1.748 266.51 b2.76
6 1.812 1.056 1.056 1.812 267.35 52.17
7 2.057 1.054 1.054 2.057 267.81 49.09
8 1.764 1.050 1.050 1.764 265.73 52.33
9 1.625 1.053 1.053 1.625 266.06 54.25
10 1.870 1.056 1.056 1.870 267.55 51.46

Class 2

1 1.864 1.067 1.0671 1.864 270.40 52.35
z 1.917 1.074 1.074 1.917 272.25 52.18
3 1.832 1.072 1.072 1.832 271.52 53.08
4 1.869 1.072 1.072 1.869 271.68 52.65
5 1.913 1.079 1.079 1.913 273.43 52.56
6 1.880 1.067 1.067 1.880 270.60 52.20
7 1.891 1.075 1.075 1.891 272.32 52.54
8 1.874 1.072 1.072 1.874 271.58 b2.56
9 1.888 1.068 1.068 1.888 270.68 52.12

10 1.900 1.075 1.075 1.900 272.34 52.43

63

owl T2

2.20 1.10

2.00-L108i 2

2 22 22

\2
:2

11

1.80+~p 1.064 1

0.94 0.96 0.98 10, I0 1.80 2.00 T

T2 72

2.20- 51.

122

122

2.00 1 52 2 2

22i

2 222

2

I~0 .11

1,80+6 1 1O.-6;

1. 41.06 1.068 T I 240 2 02 0T

(C1 (d)

Figure 5.1.2 Plots Showing the Effects of the Different Transformation
4 Techniques: (a) Original AR Parameters, (b) Basic K-L Transformed

Parameters, (c) Minimum Entropy K-L Transformed Parameters, (d)
Optimal K-L Transformed Parameters

\ 1

64

within class variance. This is to be expected since the transformation

matrix is formed from the exact same eigenvectors as the K-L trans-

formation matrix, but reversed in order. Since this reversal of eigen-

vectors does not enhance the basic K-L system, the minimum entropy

transformation was not investigated further. However, if it is known a

priori that all the class covariance matrices of a training set are equal,

then it is shown [Tou and Gonzalez, 1974] that the minimum entropy

method produces better results than the basic K-L transformation.

Plot (d) in Figure 5.1.2. shows the effect of the optimal K-L

transformation. The x-axis points in the direction of maximum between

class variance. Now the class means fall on a line parallel to the x-

axis. It is also noted that the intraset distances along the x-axis

have been reduced in comparison to the original clusters. Thus any un-

labelled input vector can be categorized according to its position along

the x axis.

In this 2 class problem, we do not observe a distinct advantage of

the optimal K-L transformation. However, as the feature space increases

and includes more classes the ability of the basic K-L transformation to

divide the feature space decreases. This is because the K-L trans-

formation is based on the within class variances which do not contain a

great amount of discriminatory information. On the other hand the optimal

- ' K-L transformation uses the prewhitened between class variances and thus

maximizes the use of the discriminatory information contained in the
-J

class means.

Tables 5.1.3 and 5.1.4 show the data of the classification process.

The classifier initially retrieves from storage the transformation

matrix, which was used to transform the training samples, and the

ill6 1lIII ii ~ ni

- -rvrs v r|.7 - -.- rhr ..

65

Table 5.1.3 Classification Data Using Basic K-L Transformation

(AR Model Order: 1, Transformed Dimension: 2)

INPUT TRAINING DATA

Transformation Matrix: Mean Transformed Training Samples:

Tl T2

1-.04958 -0.99877 Class 1: 1.78981 1.05600
10.99877 0.04958 Class 2: 1.88286 1.07206

CLASSIFICATION DATA

Length of
1 Tl T2 Max Rad Vec Rotation Decision

Class 1

-0.95892 1.85477 1.805 1.050 190 66.8 1
-0.96278 1.76381 1.714 1.050 195 27.0 1
-0.96952 1.69998 1.650 1.053 195 0.0 1
-0.97158 1.88558 1.835 1.064 192 326.2 1
-0.97213 1.75851 1.708 1.058 209 319.2 1
-0.97280 1.84680 1.796 1.063 204 122.9 1
-0.97630 1.67335 1.623 1.058 198 246.8 1
-0.97096 1.80878 1.758 1.059 zol 213.3 1
-0.97648 1.68312 1.632 1.059 221 213.7 1
-0.96265 1.98290 1.933 1.074 219 146.1 2

Class 2

-0.97963 1.92738 1.876 1.074 180 219.8 2
-0.98326 1.89282 1.842 1.076 186 172.7 2
-0.97366 1.91872 1.868 1.068 185 7.0 2
-0.97945 1.92982 1.878 1.074 183 314.0 2
-0.98020 1.94440 1.894 1.075 198 313.8 2
-0.97278 1.94115 1.891 1.067 197 39.8 2
-0.98261 1.95360 1.902 1.078 200 338.9 2
-0.97505 1.93480 1.884 1.070 206 13.9 2
-0.97879 1.91234 1.861 1.072 208 339.0 2
-0.97175 1.91964 1.869 1.066 205 123.2 2

CONFUSION MATRIX

1 2

1 9 1 95.0% correct

2 0 10

. - - . -, .- ,,-.------ . - ,.', ..- , ,., -. - ,,-.. .~

66

Table 5.1.4 Classification Data Using Optimal K-L Transformation

(AR Model Order: 1, Transformed Dimension: 2)

INPUT TRAINING DATA

Transformation Matrix: Mean Transformed Training Samples:

Tl T2

-246 .90 -70.75 Class 1: 267.388 52.467
15.70 - 8.63 Class 2: 271.682 52.467

CLASSIFICATION DATA

Length of

1I /V Ti T2 Max Rad Vec Rotation Decision

Class 1

-0.97576 1.79706 269.13 53.53 183 260.8 1
-0.97308 1.81335 268.73 b3.20 184 231.3 1
-0.95263 2.00491 266.69 50.10 186 186.9 1
-0.95786 1.82341 265.13 52.04 186 139.8 1
-0.97406 1.79275 268.65 53.45 181 94.4 1
-0.96344 1.84091 266.78 52.28 196 71.7 1
-0.96077 1.87224 266.61 51.82 200 39.8 1
-0.95672 1.90406 266.11 51.26 201 345.8 1
-0.97174 1.71986 266.93 53.91 204 326.0 1
-0.95385 2.16893 269.56 48.77 200 288.2 2

Class 2

-0.97945 1.93141 272.15 52.63 170 134.2 2
-0.97635 1.97708 272.10 52.02 172 200.7 2
-0.97666 1.88894 270.80 52.80 173 186.6 2
-0.97523 1.87643 270.25 52.81 172 152.5 2
-0.98230 1.93227 272.87 52.83 174 0.0 2
-0.98010 1.93268 272.33 52.67 170 297.8 2
-0.97795 1.98704 272.66 b2.05 187 33.7 2
-0.97538 1.93191 271.16 52.34 189 346.0 2
-0.98182 1.93898 272.86 52.73 200 288.2 2
-0.97969 1.94883 272.49 52.50 198 123.2 2

CONFUSION MATRIX

1 2

1 9 1 95.0% correct

2 0 10

V

,% UPRE

67

formed training sample of each class. The table shows the original AR

parameters and the transformed parameters of the test set. The maximum

radius vector length and the rotation of the object are also listed.

Like the training samples, the test samples are random. The resultant

classifier decisions are shown in the right column. For both sets of

classification data, the basic K-L transformed and the optimal K-L

transformed, the classifier recognized the input shape correctly for all

test samples except one. This misclassification occurred in both sets

for a sample in which the original AR parameters vary more than the

rest. It is suspected that this difference is due to a large segment of

the boundary not being sampled. It is expected that the classification

performance at this low model order (i.e. M=l) will be improved by the

equal arc length boundary sampling method. This will be investigated next.

5.1.2 Example of the System Using the Equal Arc Length Sampling Method

The equal arc length boundary sampling method as described in

Chapter Two is used in this example. Figure 5.1.3 shows the sampled

shapes of class 1 and class 2. Below each sampled shape is the re-

sultant time series. As can be observed in these time series plots, the

sharp vertical transitions, which occurred in the time series of the

previously discussed sampling method, do not occur. The waveforms show

the gradual changes in the contour of the boundary as it is sampled.

Tables 5.1.5 and 5.1.6 show the training and classification data. For

this example, only the optimal K-L transformation was used. As expected,

the AR parameters and thus the transformed parameters cluster closely

about their respective class means. As a result we see a perfect

e,

68

Class 1 Class 2

240 240

200
--a hZI

a-op - 64 0 t 64

%

Figure 5.1.3 Shapes for Numerical Example: Equal Arc Length
Boundary Sampling Method

69

Table 5.1.5 Training Set DATA Using the Equal Arc Length Sampling

Method and the Optimal K-L Transformation

(AR Model: 1)

Transformed Samples
Length of (Optimal K-L)

Sample a/V7 Max Rad Vec Rotation Tl T2

Class 1

1 -0.97331 2.26854 202 229.5 -270.4 1479.1
2 -0.97314 2.31667 203 193.8 -271.4 1479.9
3 -0.97040 2.34302 200 144.7 -271.4 1476.6
4 -0.97041 2.46447 204 329.6 -274.3 1479.4
5 -0.97226 2.38723 219 78.9 -272.9 1480.3
6 -0.97322 2.29049 217 30.7 -270.8 1479.5
7 -0.97209 2.35664 216 348.4 -272.1 1479.4
8 -0.96968 2.44291 220 299.1 -273.6 1477.8
9 -0.97061 2.43155 225 280.3 -273.5 1478.9

10 -0.97228 2.30699 183 26.0 -271.0 1478.5

Class 2

1 -0.96430 2.89333 184 111.5 -282.9 1480.3
2 -0.96269 2.94088 188 180.0 -283.6 1478.9
3 -0.96187 2.91875 188 137.5 -282.9 1477.3
4 -0.96357 2.88612 187 335.1 -282.6 1479.0
5 -0.96345 2.91985 186 78.7 -283.3 1479.6
6 -0.96316 2.90567 199 270.6 -282.9 1478.9
7 -0.96178 2.95423 203 336.4 -283.7 1477.9
8 -0.96132 2.99844 199 296.0 -284.7 1478.3
9 -0.96314 2.89153 204 276.2 -282.6 1478.5
10 -0.96405 2.92276 202 113.8 -283.5 1480.6

70

Table 5.1.6 Classification Data Using the Equal Arc Length

Sampling Method and the Optimal K-L Transformation

(AR Model Order 1: Transformed Dimension: 1)

INPUT TRAINING DATA

Transformation Matrix: Mean Transformed Training Samples:

TI T2

223.52 -1466.18 Class 1: -272.15 1478.9
--23.27 22.96 Class 2: -283.27 1478.9

CLASSIFICATION DATA

Length of
I /j Ti Max Rad Vec Rotation Decision

Class 1

-0.97266 2.35135 -272.14 186 260.9 1
-0.97328 2.28844 -270.81 188 231.0 1
-0.97302 2.29317 -270.86 190 192.4 1
-0.97031 2.40888 -272.95 186 146.9 1
-0.97180 2.33380 -271.54 197 147.7 1
-0.97035 2.44807 -273.87 196 317.8 1
-0.97194 2.36741 -272.35 198 77.9 1
-0.97324 2.29135 -270.87 200 26.4 1
-0.97202 2.28805 -270.52 208 27.5 1
-0.97262 2.30752 -271.11 206 346.5 1

Class 2

-0.96444 2.88873 -282.81 170 289.9 2
-0.96061 2.93651 -283.06 177 8.9 2
-0.96100 2.93754 -283.17 176 321.7 2
-0.96298 2.89563 -282.64 170 276.5 2
-0.96398 2.91838 -283.39 169 242.3 2
-0.96461 2.88745 -282.82 179 114.0 2
-0.96244 2.91625 -283.00 183 199.2 2
-0.96240 2.94407 -283.64 184 142.2 2
-0.96264 2.91241 -282.96 191 12.8 2
-0.96283 2.92158 -283.21 190 295.6 2

CONFUSION MATRIX

1 2

1 10 0 100% correct
2 0 10

71

classification performance using only one dimension of the transformed

space. This example shows how the equal arc length sampling method

produces excellent results at a low AR model order.

5.2 System Tests and Results

We used programs TRAIN, CLASSIFY and MAKLIB to test the performance

of the pattern recognition system. We tested the system with different

shape categories and with varying numbers of shapes in each category. In

all the tests the training data for all the desired model orders was

acquired from a library data file containing the AR parameters for model

orders 1-10 for the samples of the particular shape category. Thus for

• each shape category the training data for model orders 1 through 10 was

formed from the same set of samples.

For each test we have provided a table of results showing the overall

percent correct classifications of the shapes category at a certain
-4

transformed dimension and particular model order. The percent calculation

value was calculated as the average of the class percent correct classi-

fications. This method of calkulating percentages downgrades the classifier

more if the misclassifications occur for one particular class than if the

misclassifications occurred randomly among all the classes.

All the shapes used in the tests were cut out of white paper and

viewed against a black background. This was done to eliminate the

effects of shadows, reflections, and texture on the performance of this

pattern recognition system. In all the tests the objects were translated

and rotated randomly in the scene. Also the camera was lowered and

elevated randomly between samples to change size of the viewed object.

In all the tests, except the multi-edge object and timed tests, the

.. ' . *4 F.4 4ei. ?.'. .- .2'i -k .. R ft'.% 'N .

72

classification data was provided by the same-library file as was used in

,: the training process. This was done to speed up the tests since the AR

parameters could simply be pulled out of storage instead of calculated.

We felt that the system would still give accurate results since the only

data the classifier uses in its decision making process is the mean class

transformed training samples where the means are calculated over 25

samples.

5.2.1 Industrial Shapes Test

" This was the first test done and it was used to compare the basic

K-L vs the optimal K-L transformation techniques. We chose this set to

again allow comparison of our system with the system of Dubois. The 8

industrial shapes (see Figure 5.2.1) in this test are scaled down versions

of the industrial shapes tested by Dubois. These shapes were originally

collected from the literature concerning industrial shape pattern

recognition.

Table 5.2.1 shows the classification results of the system using

both the basic K-L transformation and the optimal K-L transformation. As

can be observed the basic K-L transformed system produces classification

rates of 91.5 to 98.5 percent at the maximum transformed dimension for

model orders I through 10. A significant improvement is seen in the

classification results of the optimal K-L transformed system. At model

orders 3 through 10 we see perfect classification rates and for model

orders 5,7, and 9 these perfect rates occur when using only two dimensions

of the transformed feature vector space. Generally the misclassifications

occurred when the classifier confused objects 1 and 8 and objects 4 and 5.

: %'

-- - -r.rrw r~w -ww.w n-,.r-r n - w-n r~ r r rr ~ fl rff rv l73

37

4*4

* 5

D7 8

Figure 5.2.1 Industrial Shapes

(reduced to 74%)

74

Table 5.2.1 Results of the Industrial Shapes Test Using the Basic K-L

and the Optimal K-L Transformation Matrices

(25 Test Samples = 25 Training Samples)

% Correct Classification

Transformed Dimension

* Model
Order 1 2 3 4 5 6 7 8 9 10

BASIC K-L

1 96.0 96.0
2 91.5 92.0 97.0
3 90.5 91.0 93.5 93.5
4 94.5 91.0 91.0 91.5 91.5
5 89.0 90.0 95.5 96.0 96.0 96.0
6 49.0 87.5 88.5 91.5 91.5 91.5 91.5
7 62.5 89.5 89.5 96.5 96.5 98.0 98.5 98.5
8 58.5 78.0 80.5 89.0 93.5 97.5 97.5 97.5 98.0
9 83.0 84.5 86.0 84.0 92.0 94.0 96.0 96.5 97.0 97.0

OPTIMAL K-L

1 85.0 94.5
2 87.5 98.0 99.0
3 86.5 95.5 100.0 100.0
4 80.0 94.5 100.0 100.0 100.0
5 77.0 100.0 100.0 100.0 100.0 100.0
6 84.5 99.0 100.0 100.0 100.0 100.0 100.0
7 96.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
8 88.0 99.0 98.5 99.0 100.0 100.0 100.0 100.0 100.0
9 91.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 90.5 98.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

75

5.2.2 Military Shapes Test

This test checked the system performance on a category of 4 military

shapes as shown in Figure 5.2.2. One aspect of this test was to demonstrate

how this system could be used for military target classification. Also,

since all the silhouettes are long and pointed, another aspect was to

see how the system would perform in the classification of fairly similar

shapes. The optimal K-L transformation matrix was used and both boundary

sampling methods were implemented in this test.

The test results in Table 5.2.2 show that the classifier performed

perfectly using the equal angle sampling method and I dimension of the

transformed feature space. The classifier performed slightly less well

for the equal arc length sampling method. The misclassifications

occurred when the classifier confused shapes 1 and 3. Note that shape 1 is

the smallest of the shapes in this category.

5.2.3 Geometric Shapes Test

Many two dimensional representations of objects are fairly geo-

metrical in shape, i.e. the shapes are symmetric and composed of lines

and curves. Thus a test was performed on a set of 8 geometric shapes

(see Figure 5.2.3). This test also provided the individual edge

classification results which could then be compared with the results of

the next test where the edges are combined to form multiple edge shapes.

As in the military shapes test, the optimal K-L transformation matrix

and both boundary sampling methods were implemented.

Table 5.2.3 shows the classification results. Note that the

classification rate ranges from 93.5% to 99.5% for the maximum transformed

b 76

3 4

Figure 5.2.2 Military Shapes

(original size)

V 1111l11111IP I

77

Table 5.2.2 Results of the Military Shapes Test Using the Optimal

K-L Transformation and Both Boundary Sampling Methods

(25 Test Samples = 25 Training Samples)

% Correct Classification

Model Transformed Dimension

Order 1 2

EQUAL ANGLE SAMPLING METHOD

1 100.0 100.0

2 100.0 100.0

EQUAL ARC LENGTH SAMPLING METHOD

1 89.0 97.0

2 97.0 100.0

i.

78

.44

6

1I0~

Figure 5.2.3 Geometric Shapes

(reduced to 74%)

79

Table 5.2.3 Results of the Geometric Shapes Test Using the Optimal K-L

Transformation and Both Boundary Sampling Methods

(25 Test Samples = 25 Training Samples)

% Correct Classification

Transformed Dimension

Model
Order 1 2 3 4 5 6 7 8 9

1 95.5 98.0
2 53.5 94.5 98.5
3 79.5 96.0 97.0 93.5
4 51.5 92.0 98.5 98.5 95.0
5 68.0 99.0 99.5 98.0 98.5 98.5
6 58.5 93.5 98.5 99.0 99.0 99.0 99.5
7 77.5 95.0 98.0 99.0 98.5 99.0 99.0 99.0
8 80.5 95.0 97.0 98.5 98.5 99.0 99.0 99.0 99.0

EQUAL ARC LENGTH SAMPLING METHOD

1 89.0 98.5
2 72.5 91.5 93.0
3 58.5 82.5 83.5 84.5
4 71.0 86.5 87.5 88.5 89.0

* 5 83.0 89.5 85.5 86.5 87.0 87.0

80

dimensions of the system using the equal angle sampling method. Note

also that the best recognition rate for the equal arc length sampling

method occurs at the lowest model order. It is evident upon looking at

the top half of Table 5.2.3 that 2 samples (from class 5) of the library

data file had AR parameters that deviated too far from the class mean and

thus were consistently misclassified. If the test had used all random,

new samples, we would probably see an occasional perfect classification

score. However, the table does show how the AR parameters can deviate

so far from the class mean that even the best transformation technique

cannot completely eliminate the effect of this variance.

5.2.4 Multi-Edge Shape Test

This multi-edge shape test is simply an extension of the geometric

shapes test. It demonstrates how the pattern recognition system can be

, used to recognize shapes with multiple edges. For this test we produced

12 shapes with multiple edges by cutting geometrical shapes out of the

geometric shapes of the previous section. See Figure 5.2.4 for the re-

presentative shapes. The training data for this test was formed from the

same samples that were used in the previous test. During classification

however, the test data was formed from random, new samples. Thus this is

the first test where the test and training data samples are mutually

exclusive.

The confusion matrix of one run of this test at model order 5 and

transformed dimension 2 is shown in Figure 5.2.5. The confusion matrix

shows the number of each of the classifier decisions for a shape, where

each shape was submitte to the classifier 20 times. It is observed that

some samples were not classified at all, especially samples of shape 1.

0
0

f 4 6

78

010

101

Figure 5.2.4 Multi-Edge Shapes

(reduced to 36%)

82

Figure 5.2.5 Confusion Matrix of the Multi-Edge Shape Test

(AR Model Order: 5, Transformed Dimension: 2)

(20 Test Samples; 25 Training Samples)

Shape Classifier Decision

1 2 3 4 5 6 7 8 9 10 11 12

2 20 F
3 9I11

-";420
_ K5 _ 20__

7 18
8 15

!11 9 71_12 _ _ _

S10 __ __1 __ '__ _o_

-I

..

* " . - '% U

83

This problem was caused by the individual edge classifications not matching

the actual object vector edge classifications. This apparently high

rate of misclassification is due mostly to the greatly reduced size of

the interior edges. When the size of an edge becomes very small the pixel

quantization problem becomes increasingly significant. The resultant

increased noise decreases the overall signal to noise ratio which ulti-

K mately degrades system performance. The most common effect of the

lowered signal to noise ratio was the classifier confusion of edge 6 with

' 5 in object 1.

5.2.5 Large Number of Shapes Test

In this test we investigated the performance of the system when the

classifier was given a large training set. For this test the sample data

files of the industrial, military and geometric shapes were combined to

-! form a single 20 shape data file. The classifier was trained and tested

with the samples of this data file using the optimal K-L transformation

technique. All the AR parameters in the data file were formed from the

time series produced by the equal angle boundary sampling method.

The results of this test are shown in Table 5.2.4. The individual

runs of this test started at model order 5 since it was desired that a

recognition rate of at least 99% occur for the individual categcries be-

fore the combination was tested. As can be seen, the classification per-

formance degrades somewhat in comparison to the individual tests. This

was expected since the feature vector space becomes more crowded as more

shapes are included in the training set.

84

Table 5.2.4 Results of the Combined Shapes Test Using the

Optimal K-L Transformation

% Correct Classification

Transformed Dimension

Model
Order 1 2 3 4 5 6 7 8 9

5 53.2 88.0 93.8 95.2 95.4 95.6
6 57.8 89.2 91.4 95.0 95.4 96.2 97.0
7 56.2 90.6 94.0 95.4 95.8 97.0 96.6 97.6
8 44.2 83.8 96.2 90.8 92.6 94.2 94.2 95.0 96.0

J

P.

85

N 5.2.6 Classification Speed

In the previous sections we have investigated the accuracy of the

pattern recognition system. Another equally important aspect of a
pattern recognition system is classification speed. Usually the classifier

is trained off-line, since it is an interactive process, so training speed

is desirable but not critical. What is critical and what also determines

the possible applications of a pattern recognition system is the speed of

: classification combined with the accuracy.

In the process of classifying a single edge, the edge is first

detected and traced. Then the radius vectors are calculated and the AR

parameters are recursively estimated. The AR parameters are then trans-

formed and categorized according to the nearest class mean in the feature

space. For multiple edge objects this process is repeated for each edge.

Then all the individual edge classifications are ordered and matched to

the correct object vector as described in Chapter Four. If the multi-

edge object has a unique number of inner boundaries, then it is not

necessary to calculate the AR parameters thus reducing the classification

time.

The most time consuming tasks of the classification process, using the

equal angle boundary sampling method, are ordered below with the most time

consuming task first:

1) scanning the entire frame and tracing the

boundaries

2) radius vector length calculation

3) AR parameter estimation

pA"

86

The rest of the processes: determining hole ownership, ordering the

boundaries, and actual classification do not contribute a significant

amount of time to the total classification process. Each of the above

tasks are accomplished within a range of times depending on the factors

as listed next to each task number below:

1) scan step size, number of edges, total length

of each edge

2) number of desired radius vectors, length of the

edge (equal angle sampling method)

3) number of resultant radius vectors, and AR

model order.

The observed times for scanning the scene and turtling the boundaries

range from 0.25 seconds, for no objects in the scene (scan step = 8), to

greater than 2.2 seconds for a scene with many objects with multiple edges.

Table 2.25 shows the radius vector and AR parameter calculation times for

the class 1 (S) shape of the numerical example in the first section of this

chapter. The length of the boundary for this shape was 1308 pixels and the

scan and turtle time was approximately 0.83 seconds.

Average total times for the classifications of the large si.apes of

the numerical example are 1.32 seconds using the equal angle sampling

method and 1.01 seconds for the equal arc length sampling method. For

smaller shapes the total classification time for a single edge is less

than one second.

In this chapter we used the programs described in Chapter Four to

demonstrate the system theories and the system accuracy. In the first

:4 section we present two examples of the feature selection and feature

e, r e-r>%L&JVt fci'-t

AD-fll71 294 THE CLASSIFICATION OF MULTI-EDGE SHAPES USING AN2/
AUTOREGRESSIVE MODEL AND .(U) AIR FORCE INST OF TECH
IRIGHT-PATTERSON AFS ON R D KENNETT DEC 95

UN LSSIFIED A iTCCI/N-86-132TF/G 6/4 NL

Ehhhhson hhhhhhhIso
EhhhhhhhhhhhhI
IEEE......mm

_lomom

lii.

lUU IL.-- I

1.25 1.4 ____

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANOAROS-1963-A

87

Table 5.2.5 Processor Times for Calculating the Radius

Vectors and the AR Parameters

(Fractions of a Second)

Model Equal Angle Equal Arc Length
Order Sampling Method Sampling Method

1 .3398 .0391
2 .3398 .0508
3 .3515 .0560
4 .3789 .0703
5 .3789 .0781
6 .3984 .0781
7 .4023 .0898
8 .4102 .1094
9 .4180 .1211

10 .4336 .1211

am

88

vector transformation methods. The second section describes a series of

system tests and the resultant classifier performance. In the last part

of the tests and results section we summarize the time requirements of

this pattern recognition system.

"S

I

.

4..

CHAPTER 6

CONCLUSIONS AND SUGGESTED IMPROVEMENTS

In this thesis we have developed a pattern recognition system

capable of classifying two dimensional shapes with many edges. Also the

system is capable of classifying many shapes in a single scene. Since the

problem presented by the existence of many edges in a shape can be con-

sidered as a simple extension of the single edge problem, we proceeded to

concentrate on improving the single edge classification process. In so

doing, we used the work of Dubois [Dubois, 1984] as a starting point and

continued by improving some of the existing algorithms and developing a

more efficient classification scheme. By applying the theory of the

Karhunen-Loeve transformation onto the feature vectors formed from the AR

model parameters of an objects boundary, we were able to reduce the

dimension of the feature vector space and thus further reduce training

data storage space and also classification time.

We have split the contents of this chapter into two sections. The

first section provides comments on the work just completed. The second

section suggests future work that can be done to enhance the performance

*of our system.

6.1 Concluding Remarks

On the feature selection techniques:

- The recursive estimation of the AR parameters speeded up

classification time without degrading the system performance.

89

90

It is noted that most of the time spent in the production of

the AR parameters of a given time series is not in the recursion

itself, but in calculating the correlation coefficients used by

the recursive equations.

The recursive algorithm did not alter the invariance properties

of the AR parameters.

The performance of the AR model, and thus of the classifier, is

dependent on the size of the shape. When the size of the shape

as viewed on the monitor decreases, the pixel quantization error

increases. Thus the noise on the samples of the time series

increases and the AR parameters will deviate further from the

class means.

The equal angle radius vector length calculation method of

Dubois was speeded up. The average time was previously 1.68

seconds, this can be compared with the average time of .33

seconds on our system. However, this decreased time is partly

at the expense of an increased temporary storage requirement

for the boundary pixels.

The equal arc length boundary sampling technique can be

successfully implemented at very low AR model orders. This

technique results in an average .31 second reduction in

classification time compared with the time of the equal angle

sampling method.

91

The equal angle boundary sampling method consistently provided

better results than the equal arc length sampling method at AR

model orders greater than 1.

On the transformation techniques:

The basic and the optimal Karhunen-Loeve transformation

techniques are effective in decorrelating the components of

the feature vector. By removing the correlated components

corresponding to the smallest eigenvalues of the K-L covariance

matrices, the original feature vectors are approximated by

vectors of lower dimension.

- The optimal K-L transformation technique proves to be better

than the basic K-L transformation when there are more than 2

classes in the feature space. This is because the optimal

transformation is based on a between class scatter matrix

whereas the basic K-L transformation is based on a within

class scatter matrix. In the optimal K-L system the scatter

matrix is prewhitened to remove the individual sample vari-

ances. This is done to provide maximum use of the dis-

criminatory information contained in the class mean vectors.

In the industrial shapes test the optimal K-L transformation

technique proved to be more effective in separating the feature

space than the rotated coordinate system of Dubois. For this

test the shapes, which were scaled down versions of the shapes

used by Dubois, were correctly classified at AR model orders 3

through 10. Also model orders 5,7,9 required only 2 dimensions

1~~~ 1,11 iii P M b W;_ "

92

of the transformed space to achieve correct classification.

This can be compared with the results of a similar test by

Dubois where correct classification was achieved only at model

order 5 and maximum dimension of the feature space.

As in the rotated coordinate system in the work of Dubois, the

K-L transformation matrices are based on the eigenvectors of the

covariance matrices of the feature vectors. These covariance

matrices become singular whenever the number of training

samples is less than M+2, where M is the model order. Since we

consistently used 25 training samples for all our system tests

we did not encounter any singular matrices. However we would

like to note that this singular matrix problem can very well

occur, especially at high model orders.

We did not concern ourselves with finding the optimal model

order for the tests since the shapes used in the tests were so

varied. Generally the best results were obtained with model

orders 3 through 10 and with model order I for the equal arc

length boundary sampling method.

The permanent storage requirements for the trained classifier

in this system consists of an (m+l) x (m+l) dimensioned trans-

formation matrix and c (m+l) transformed class mean feature

vectors. As we saw in the examples of Sections 5.1.1 and 5.1.2

where c=2 and m=l, the storage requirement consisted of 8

values. This aspect of t's pattern recognition system makes

it ideal for the classification of a large set of shapes since

the storage requirements for each shape is minimal.

93

-- On the original work in this thesis:

- A boundary marking and bookkeeping system was devised to allow

multiple shapes with multiple edges in the scene.

- A simple method of determining hole ownership was devised.

- The theory of the Karhunen-Loeve expansion was applied to the

vectors formed from the parameters of the AR model of the edges

of a shape.

- A special purpose program (MAKLIB) was written to collect the

AR parameters at model orders 1 through 10 for any desired

edge. This collection of AR parameters was used for classifier

training and testing.

- Finally, a complete set of software (TRAIN and CLASSIFY) was

developed into a pattern recognition system which not only

classifies shapes but also produces size and rotation indicators

based on the length and position of the maximum radius vector.

As initially stated, we set out to classify objects with multiple edges.

We conclude that we were successful.

6.2 Suggested Improvements

The two most important aspects of a pattern recognition system are

speed and accuracy. Hence it is the goal of this section to present

suggestions which will increase the classification speed and accuracy.

To increase the classification speed:

- Implement the turtle algorithm in assembly language.

- ."~. , III %

94

For multiple edge objects - find the AR parameters of the

shape formed by connecting the centroids with straight line

segments. This will avoid the time needed to classify each

individual edge.

Segment the scene before scanning to quickly determine the

approximate location of an object.

To increase classification accuracy:

- Improve the equal angle boundary sampling technique so that it

does not skip over sections of the boundary.

- Determine the optimum AR model order by using Equation 2.2.15e

as described in Chapter Two and then use the value as

additional information in the classification process.

Also to increase the versatility of the system:

- Modify program TRAIN so that it can train on entire objects

without having to isolate the edges.

Investigate different thresholding techniques to deal with

the reflection, shadow, and texture problems of real three

dimensional objects.

4

REFERENCES

Hi

REFERENCES

1. Beavers, A.N. and Hubach, R.A.: "Business Outlook: Robot
Applications Enhance Vision Sales," High Technology, pg. 61,
June 1984.

2. Box, G.E.P. and G.M. Jenkins: Time Series Analysis: Forecasting
and Control, San Francisco: Holden-Day, 1976.

3. Brogan, W.L.: Modern Control Theory, New York: Prentice-Hall,
1982.

4. Devijver, P.A. and J. Kittler: Pattern Recognition: A Statistical
Approach, London: Prentice-Hall, 1982.

5. Dubois, S.R.: "The Classification of Objects by the Use of Auto-
regressive Models of Their Images," Master's Thesis, Dept. Elec. and
Comp. Eng., University of New Hampshire, 1984.

6. Duda, R.O. and P.E. Hart: Pattern Classification and Scene
Analysis, New York: Wiley, 1973.

7. Durbin, J.: "The Fitting of Time Series Models," Rev. Inst. Int.
de Stat., Vol. 28, pp. 233-244, 1960.

8. Edson, D.: "Bin-Picking Robots Punch In," High Technology, pp. 57-
60, June 1984.

9. Fu, K.S.: Sequential Methods in Pattern Recognition and Machine
Learning, New York: Academic Press, 1968.

10. Granlund, G.H.: "Fourier Preprocessing for Hand Printed Character
Recognition," IEEE Transactions on Computers, Vol. 21, pp. 195-201,
Feb. 1972.

11. Hu, M.K.: "Visual Pattern Recognition by Moment Invariants," IRE
Transactions on Information Theory, Vol. IT-8, pp. 179-187, 1962.

12. Kashyap, R.L. and R. Chellappa: "Stochastic Models for Closed
Boundary Analysis: Representation and Reconstruction," IEEE
Transactions on Information Theory, Vol. IT-27, pp. 627-637, 1983.

13. Kay, S.M. and S.L. Marple: "Spectrum Analysis - A Modern Per-
spective," Proceedings of the IEEE, Vol. 69. No. 11, pp.1380-1419,
1981.

14. Kittler, J.: "Mathematical Methods of Feature Selection in Pattern
Recognition," International Journal of Man-Machine Studies, Vol. 7,
pp. 609-637, 1975.

15. Lanczos, C.: Applied Analysis, Englewood Cliffs, N.J.: Prentice-

Hall, 1956.

96

97

16. Makhoul, J.: "Linear Prediction: A Tutorial Review, " Proceedings
of the IEEE, Vol. 63, No. 4, pp. 561-580, 1975.

17. Pavlidis, T.: "A Review of Algorithms for Shape Analysis," Computer
Graphics and Image Processing," Vol. 7, pp. 243-258, 1978.

18. Sebestyen, G.S.: Decision-Making Processes in Pattern Recognition,
New York: MacMillan, 1962.

19. Tou, J.T. and R.C. Gonzalez: Pattern Recognition Principles,
Reading, Mass.: Addision-Wesley, 1974.

V.

.'.

;.4

'p
Sj

99

C

C FILE TRAIN.FOR LAST REVISION JULY 1,1985

C AUTHOR: RUTH D. KENNETT
C
C THIS FILE CONTAINS:
C
C PROGRAM TRAIN
C
C TO LINK TYPE:
C
C LINK TRAIN,COLLECT,WORK1 ,RAD1 ,PARAM,REGIS,KLSEL,MESEL,PREKL,EIGV,-
C USPKD,SYS$LIBRARY:VIDEOLIB
C

C PROGRAM TRAIN

C

C THIS PROGRAM TRAiNS THE CLASSIFIER BY INTERACTIVELY TAKING SAMPLES

C OF THE CLASSES REPRESENTING THE EDGES OF THE EXPECTED OBJ9CTS.

C ONCE THE USER HAS THE DESIRED NUMBER OF SAMPLES OF EACH CLASS, THE

C SAMPLES ARE THEN SENT TO ONE OF THE DESIRED TRANSEORMATION ROUT-
C INES: KLSEL,MESEL,PREKL.
C

INTEGER DEV,IN,OUT,STEP,INRAD,M

INTEGER DIM,NSAMP,NCLASS,CLASS,BNDCT,SAMP
INTEGER PCLASS,TOTCLS
INTEGER INCODE,TRCODE
INTEGER NEWLUN,OLDLUN
INTEGER XPIX(2500,1O),YPIX(2500,10)
INTEGER BOUND(1O,1O)
REAL RAD(-2:250,1O),ORIENT(1O)
REAL X(11,25,2O),THETA(11,1O)

REAL TRANS(11,11),T(25,11,20)
REAL TA(I1,20)

REAL LIB(20,25,1O,11),ALL(1O,11,1O)
CHARACTER l INST

COMMON DEV,IN,OUT,STEP,INRAD,M
DATA IN,OUT/5,5/
DATA TRANS/121A0.O/

NEWLUN = 1
OLDLUN x 2
OPEN(UNIT=NEWLUN,FILE= 'TRAIN.DAT', STATUS='NEW')
OPEN(UNIT=OLDLUN,FILE='LIB.DAT',STATUS='OLD')

C
C SETUP THE IMAGING HARDWARE AND PROMPT FOR DESIRED PARAMETERS
C

CALL SETUP
CALL THRESH

WRITE(OUT,A) 'TYPE I - TO TRAIN WITH NEW SAMPLES'

WRITE(OUT,A) 'TYPE 2 - TO TRAIN WITH SAMPLES FROM LIB.DAT'

READ(IN,2) INCODE

2 FORMAT(12)

WRITE(OUT,A) 'TYPE I - FOR MESEL (MINIMUM ENTROPY),

100

WRITE(OUT,*) 'TYPE 2 - FOR KLSEL (KARHUNEN-LOEVE)'
WRITE(OUT,*) 'TYPE 3 - FOR PREKL (OPTIMAL RARHUNEN-LOEVE)'
READ(IN,3) TRCODE

3 FORMAT(I1)

DIM = M + 1
NCLASS - 0
PRECLS = 0
IF(INCODE .NE. 2) GCJTO 9

READ(OLDLUN,A) TOTCLS
G REAL'(OLDLUN,A) CLASS,SAMP

IE(CLAGS .Ea. 0) GOTO GS
DO 7 I = 1,10

READ(OLDLUN,A) (LIB(CLASS,SAMP,1,J) ,J=1,I+1)
~w~)7 CONTINUE

GOTO 6

S9 NSAMP= 0
GOTO 30

10 IF(INCODE Ea0. 2) GOTO G5
WRITE(OUT,15) NCLASS,NSAMP

is FORMAT(lX,'CLASS: ',12,' NUMBER OF SAMPLES: ',12)
WRITE(OUT,20)

20 FORMAT(lX,'FINISHED wITH SAMPLING? (TYPE Y FOR YES) '$

READ(IN,25) INST
25 FORMAT(Al)

IF(INST EQ0. 'Y') GOTO 100

CALL VIEW
30 WRITE(OUT,35)
35 FORMAT(1X,'ENTER CLASS NUMBER: '$

READ(IN,A) CLASS

IF(CLASS E50. PRECLS) GOTO 40
NCLASS - NCLASS + 1
PRECLS = CLASS
NSAMP = 0

C
C CALCULATE THE Ak PARAMTERS OF THE EDGES OF THE TRAINING OBJECTS
C
40 CALL SNAP

CALL SCANDBNDCT,BOUND,XPIX,YPIX)
IF(BNDCT .EQ. 0) GOTO 99
DO 45 N - I,BNDCT

Ti - SECNDS(0.0)
CALL GETRAJJ(XPIX(1,N) ,YPIX(1,N),N,BOUND,RAD)
CALL PARAM(N,RAD,THETA,ALL)
DELTA - SECNDS(T1)
WRITE(DEY,A) 'TIME FOR GETRAD AND PARAM IS: ',DELTA

45 CONTINUE

C
C FORM THE SAMPLE FEATURE VECTORS FROM THE AR PARAMETERS
C

DO 60 J = 1,BNDCT
NSAMP - NSAMP + 1
DO 50 I a 1,DIM

X(I,NSAMP,CLASS) - THETAUI,J)

101

50 CONTINUE
60 CONTINUE

C
C CALCULATE THE ORIENTATION OF THE EDGES
C

CALL ROTATE(BNDCT,BOUND,ORIENT)
CALL OUTPUT(BNDCT,BOUND,RAD,ORIENT)

GOTO 99

65 WRITE(OUT,67)
67 FORMAT(1X,'FINISHED WITH TRAINING? (TYPE Y FOR YES): '$)

READ(IN,68) INST
G8 EORMAT(Al)

IFINST .EQ. 'Y') GOTO 100
WRITE(OUT,70)

70 FORMAT(lX,'INPUT CLASS NUMBER: '$)
READ(IN,80) CLASS
WRITE(OUT,75)

75 FORMAT(1X,'INPUT DESIRED NUMBER OF SAMPLES: '$
READ(IN,80) NSAMP

80 FORMAT(I3)

DO 90 SAMP = 1,NSAMP
DO 85 I = 1,DIM

X(I,SAMP,CLASS) = LIB(CLASS,SAMP,M,I)
85 CONTINUE
90 CONTINUE

IF(CLASS .EQ. PRECLS) GOTO 99
NCLASS = NCLASS + 1
PRECLS = CLASS

C
C LOOP BACK TO GET MORE SAMPLES
C
99 GOTO 10

C
C TRANSFORM THE FEATURE VECTORS
C

100 GOTO(110,120,130) TRCODE

110 CALL MESEL(X,NSAMP,NCLASS,TRANS,T)
GOTO 150

120 CALL KLSEL(X,NSAMP,NCLASS,TRANS,T)
GOTO 150

130 CALL PREKL(X,NSAMP,NCLASS,TRANS,T)
C
C FIND THE AVERAGE OF THE TRANSFORMED SAMPLES
C
150 DO 180 K = 1,NCLASS

DO 170 3 1,DIM
SUM = 0.0
DO 160 I = 1,NSAMP

SUM = SUM + T(I,J,K)
* 160 CONTINUE

TA(J,K) SUM / FLOAT(NSAMP)
170 CONTINUE
1SO CONTINUE

C
C WRITE THE TRANSFORMED SAMPLE FEATURES TO A TRAIN.DAT FILE

ZI

102

C2 0 0 WRITE(NEWLUN,*) DIM

DO 210 1 - 1,DIM
WRITE(NEWLUN,205) (TRANS(1,3) ,J=1,DIM)

205 FORMAT(lX,<DIM>Fll.5)
210 CONTINUE

WRITE(NEWLUN,230) NSAMP,NCLASS
230 EORMAT(1X,21I3)

DO 2G0 K = 1,NCLASS
WRITE(NEWLUN,-55) (TA(J,K) ,J=1,DIM)

2554 FORMAT (IX,K-DIM>Ell.s)
2G0 CONTINUE

IF(DIM-2 .GT. 0) rGOTO 290
WRIT EEV,23z5) (I, I=1,DIM)

265 FORMAT('0','THE AR PARAMETERS OF THE TRAINING DATA'//,
'CLASS SAMPLE ',7X,<DIM):('M',I2,7X)/)

GOTO 305

290 WRITE(DEV,300) (I,I=1,DIM)
300 FORMAT('0','THE AR PARAMETERS OF THE TRAINING DATA'//,

-~ * ' CLASS SAMPLE ',7X,<DIM-1>('M',I2,7X),'M',12,3X,/)

305 DO 350 K = 1,NCLASS
DO 340 J = 1,NSAMP

WRITE(DEV,330) K,J, (X(1,3,1), I=1,DIM)
330 FORMAT(lX,2(I3,5X),<DIM>FlO.S5
340 CONTINUE
350 CONTINUE

WRITE(DEV,400) (I, I=1,DIM)
400 FORMAT('0','THE TRANSFORMED PARAMETERS OF THE TRAINING DATA'//,

A 'CLASS SAMPLE ',7X,<DIM>('T',12,7X)/)
DO 450 K = 1,NCLASS

DO 440 I - 1,NSAMP
WR ITE (EV ,430)K, I, (T(I, 3,1) , =,DIM)

430 FORMAT(lX,2(I3,SX),rJ'IM:Y.'FlO.4)
440 CONTINUE
450 CONTINUE

CLOSE(UN li-NEWLUN)
CLOSE (UN IT=OLDLUN)

STOP
END

103

C
C FILE WORI1.FOR LAST REVISION JULY 1,1985
C
C ROUTINES CONTAINED IN THIS FILE ARE:
C
C SETUP
C THRESH
C SCAN

C GETCEN
C INTPLT
C OBPLOT
C FINPLT
C RADPLT
C

C---
C SETUP
C---

SUBROUTINE SETUP
C
C THIS SUBROUTINE INITIALIZES THE IMAGING SYSTEM HARDWARE AND
C PROMPTS THE USER FOR DESIRED VALUES
C

INTEGER DEV,IN,OUT,STEP,INRAD,M
COMMON DEV,INOUT,STEP,INRAD,M

CALL SELGRP(1)
CALL APINIT
CALL FBINIT

CALL LUINIT
CALL SYNC(O)
CALL VIEW

WRITE(OUT,40)
40 FORMAT(IX,'INPUT DESIRED OUTPUT DEVICE: ",S)

READ(IN,*) DEV

WRITE(OUT,50)
50 FORMAT(lX,'INPUT DESIRED SCAN STEP: ',$)

READ(IN,*) STEP

WRITE(OUT,100)

100 FORMAT(IX,'INPUT NUMBER OF RADIUS VECTORS: ',$)
READ(IN,*) INRAD

WRITE(OUT,110)

110 FORMAT(IX,'INPUT THE DESIRED AR MODEL ORDER NUMBER: I,$)
READ(INA) M

RETURN
END

C ---
C THRESH
C ---

SUBROUTINE THRESH

104

C
C THIS SUBROUTINE SETS THE IMAGE THRESHOLD AND FILLS THE FRAME BUFFER
C

INTEGER DEV,IN,OUT,ANS,YES,THRS,CHTHRS,I
*COMMUN DEV,IN,OUT

THRS = 120

INTLO = 0
*INTHI = 255

CHTHRS = 0
100 WRITE(OUT,110) THRS
110 FORMAT(IX,'THRESHOLD = ',14,' ADD: ',$)

READ(IN,120) CHIHRS
120 FORMAT(13)

IF(CHTHRS .EQ. 0) GOTO 200
THRS = IHRS + CHTHRS
GOTO 100

200 CALL SELLUT(0,0)
DO 300 I = 0,255

IF(I .LT. THRI) CALL SETLUT(I,INTLO)
IF(I .GE. IHRS) CALL OETLUT(I,INTHI)

300 CONTINUE

RETURN
END

C---
C SCAN
C---

SUBROUTINE SCAN(BNDCTBOUNO,XY)
C
C THIS SUBROUTINE SCANS THE FRAME BUFFER FOR ALL OF THE THRESHOLDED
C EDGES OF THE OBJECTS IN THE IMAGE. ONCE AN EDGE IS FOUND IT CALLS
C GETCEN TO CALCULATE THE CENTROID, AND GETRAD TO CALCULATE THE RADIUS
C VECTOR LENGTHS.
C

INTEGER RAPIX,RPIXEL,XLZP,XN,YN,ZN

INTEGER BNDCT,BOUND(10,10)
INTEGER X(2500,10),Y(2500,10),Z,NUMPIX
INTEGER DEV,IN,OUT,STEP,INRAD
INTEGER FIRSTX,LASTX,INCX,STOPX

INTEGER FIRSTY,LASTY
INTEGER EDGE,BCKGND,OBJ,XTEST
INTEGER BUF(0:511)

*CHARACTER INST
LOGICAL YESPLT,GOTONE

COMMON DEV,IN,OUT,STEP,INRAD
C
C FOR WHITE OBJECT ON BLACK BACKGROUND: BCKGND = 0 AND OBJ = 255
C FOR BLACK OBJECT ON WHITE BACKGROUND: BCKGND = 255 AND OB = 0
C

BCKGND = 0
OBJ 255

EDGE = 255
FIRSTX = 0

105

LASTX m 511
INCX = STEP
STOPX = (LASTX-EIRSTX+I) / STEP
FIRSTY = 0
LASTY = 479
BNDCT a 0

C WRITE(5,50)
C 50 FORMAT(IX,'TYPh 'Y' IF THE OBJECT PLOT IS DESIRED: ',$)
C READ(5,55) INST
C 55 FORMAT(A1)

YESPLT = .FALSE.
IF(INST .NE. 'Y') GOTO 100
YESPLT = .TRUE.
CALL INTPLT

100 Ti = SECNDS(O.0)
DELTA = 0.0

DO 500 YN = FIRSTY,LASTY,STEP
C
C READ EVERY INCX FROM YN LINE IN THE FRAME BUFFER INTO BUFF
C

CALL RSCAN(YN,FIRSTX,LASTX,INCX,BUF)
ZP = BUF(0)
DO 400 XL x 1,STOPX

ZN = BUF(XL)
C
C CHECK FOR AN EDGE AND TRACE BACK FROM HOP TO REAL EDGE
C
C FOR WHITE ON BLACK USE (ZN-ZP) IN NEXT STATEMENT
C FOR BLACK ON WHITE USE (ZP-ZN) IN NEXT STATEMENT
C

IF((ZN-ZP) .NE. EDGE) GOTO 300
XN = (STEP A XL) + FIRSTX

150 XTEST - XN - 1
Z = RPIXEL(XTEST,YN)
IF(Z .GT. BCK(UND .AND. Z .LE. BNICT) 0OTO 300
IF(Z .E0. BCKGND) GOTO 200
XN = XTEST
GOTO 150

C
C TURTLE AROUND THE EDGE AND CALCULATE THE CENTROID
C
200 N - BNDCT + 1

CALL GETCEN(XN,YN,X(I,N),Y(I,N),BNDCT,BOUND,GOTONE)
IF(.NOT. GOTONE) GOTO 300

C
C PLOT OUT EDGES
C

IF(.NOT. YESPLT) GOTO 300
DELTA * DELTA + SECNDS(T1)
NUMPIX = BOUND(G,BNDCT)
CALL OBPLOT(X,Y,NUMPIX)
TI = SECNDS(O.0)

300 ZP - ZN
400 CONTINUE
500 CONTINUE

...i, > - . . >?

106

DELTA -DELTA + SECNDS(Tl)

WRITE(OUT,600) DELTA
GO FORMATUIX,'THE SCAN AND TURTLE TIME IS: '1., SEC'/)

1000 RETURN
END

C--
C GETCEN
C--

SUBROUT INE GETCEN(XS ,YS,X, Y,BN-: ,BOUND, GOTOHE)
C THSSBOTN CAUASTH CNTOrOFTE OUDR. TEEE

VC TIS TRACEDUSING A TURATSE LGORTM. O TEBUNAY TEEG
C ISTAE USN ATUTEAGRTM

INEEcSYNCON(1,0
INTEGER XTSTYNCOUD1,0
INTEGER XELAIXYZBDN
INTEGER PXRE,RAIPIX,XC,YC,,NDN
INTEGER X(250,YEGNUP00) ,Y

INTEGER N,TOL,BCKGND
LOGICAL OBJECT,RIGHT,UP,GOTONE

TOL - 25
BCKGND - 0
N m BNDCT + 1
BNDINT - IN

CALL WPIXEL(XS,YS,BNDrNT)
XREG - XS
YREG = YS
NUMPIX = 1
X(NUMPIX) = XS
Y(NUMPIX) - YS
XT = XS - 1
YT = YS - I
UP = .TRUE.

1,90 Z = RPIXEL(XT,YT)
IF(Z .EQ. BIIGIND) GOTO 250
IE((XT.EO.XS) .AND. (YT.EO.YS) .AND. (NUMPIX.GI.10)) GOTO 500
IE(Z .LT. BNDINT) GOTO 500

200 OBJECT = .TRUE.
IF((XT.EQ.X(NUMPIX)).ANU. (YT.Ea.Y(NUMPIX))) GOTO 260
XREG = XREG + XT
YREG = YREG + YT
NUMPIX = NUMPIX + 1
X(NUMPIX) - XT
Y(NUMPIX) - YT
CALL WPIXEL(XT,YT,BNDINT)
GOTO 260

C5 OBJECT - P~ALSE.

C MOVE UP OR DOWN
C

P K

107

260 IFC UP.AND.OBJECT).OR. (C.NOT.UP) .ANO.(.NOT.OBJECT))) 6070 275
XT = XT + 1
RIGHT = .TRUE.
6070 290

275 XT -XT -1
RIGHT = FEALSE.

C
C CHECK(FOR OBJECT PIXEL
C
290 Z = RPIXELCXT,YT)

IF(Z EQ0. BCKGND) GOTO 350
IEC(XT.E0.XS) .AND. (YT.EO.YS) .AND.(NUMPIX.GT.10)) GOTO 500
IF(Z .LT. ENDINT) G070 500

300 OBJECT = .TRUE.
IF((XT.EO.X(NUMPIX)) .ANDJ. (YT.EO.YCNUMPIX))) GOTO 360
XREG = XREG + XT
YREG = YREG + YT
NUMPIX = NUMPIX + 1
X(NUMPIX) = XT
YCNUMPIX) = YT
CALL WPIXEL(XT,YT,BNDINT)
6070 360

350 OBJECT = .FALSE.
A C

C MOVE UP OR DOWN
C
360 IF((RI6NT.AND.OBJECT) .OR. C .NOT.RIGHT) .AND. C.NOT.OBJECT)))

A 007 375
Y7= 'f7 + 1

UP = .FALSE.
6070 390

375 YT=zYT- 1
UP = .TRUE.

390 6070 190
C
C CALCULATE THE XC,YC OF THE CENTROID PIXEL
C
500 IFCNUMPIX .01. TOL) 6070 600

GOTONE = FEALSE.
6070 1000

600 BNDCT =BNDCT + 1
GOTONE = TRUE.
XC = XREG / NUMPIX
YC = 'fREG / NUMPIX

X(NUMPIX+1) = XS
Y(NUMPIX+1) = YS
BOUNDC1,N) = BNDINT
BOUND(2,N) =XS

BOUNDC4,N) = XC
BOUNDC5,N) = YC
BOUND(6,N) = NUMPIX

1000 RETURN
END

C..
C INTPLT

.mmm aaaianaannn~~&~2. 7 -~ ;%

108

C--

SUBROUTINE INTPLT
C
C THIS SUBROUTINE INITIALIZES THE PLOTTER.
C

INTEGER LUN
COMMON /DEV DAT/LUN

LUN = 5
CALL TXTCLR
CALL PLTINT
CALL PLTCLR

C
C PLOT THE FRAME
C

CALL PLTCUR(O,O)

CALL PLTVEC(511,O)
CALL PLTVEC(511,479)
GALL PLTVEC(0,479)
CALL PLTVEC(O,0)

RETURN
END

C--
C OBPLOT
C--

SUBROUTINE OBPLOT(X,Y,NUMPIX)
C

C THIS SUBROUTINE PLOTS OUT THE POINTS COMPRISING THE EDGE COORDIN-
C ATES HELD IN ARRAY X AND ARRAY Y.
C

INTEGER X(3000),Y(3000),NUMPIX

DO IO0 I = 1,NUMPIX
IX = X(I)
IY = Y(I)
CALL PLTPNT(IX,IY)

100 CONTINUE

RETURN
END

C --
C FINPLT
C --

SUBROUTINE FINPLT

C
C THIS SUBROUTINE PRINTS OUT A HARD COPY OF THE PLOT IF THE USER SO
C DESIRES IT.
C

CHARACTER INST

WRITE(5,50)

109

50 FORMATlIX,'TYPE "Y' IF HARD COPY IS DESIRED: ',$)

READ(5,55) INST
55 FORMAT(A1)

IE(INST .NE. 'Y') GOTO 100
CALL HARDCOPY

100 CALL PLTCLR
CALL TXTCLR
CALL PLTOFF

RETURN
END

C--
C RADPLT
C- --

4SUBROUTINE RADPLT(RAD,EDGE)

INTEGER EDGE,NUMRAD
REAL RAD(-2:250,10)

N = EDGE
MAXY = 479
RNUMRAD = RAD(-2,N)
NUMRAD = INT(RAD(-2,N))
INC = 512 / NUMRAD

IXB = 0
IB = MAXY

DO 100 1 = 1,NUMRAD
IXB = INT(FLOAT(I)A511.O/RNUMRAD)
IYT = MAXY - (INT(RAD(I,N)) * 2)
CALL PLTCUR(IXB,IYT)
CALL PLTVEC(IXB,IYB)

100 CONTINUE

RETURN
END

Ni

r-- -- -- -- -- -- ---

110

C
C PILE RAD1.FOR LAST REVISION JULY 1, 1985
C
C THIS FILE CONTAINS THE SUBROUTINE:
C
C GETRAD
C

C--
C GETRAD
C --

SUBROUTINE GETRAD(X,Y,EDSE,BOUND,RAD)

C THIS SUBROUTINL FINDS AND CALCULATES THE RADIUS VECTORS OF

C AN OBJECT EDGE. IT USES AN EQUI-ANGLE ALGORITHM SIMILAR

C TO DUBOIS 1984J. THIS SUBROUTINE READS THE EDGE PIXEL LOCATIONS

C WHICH ARE TEMPORARILY STORED IN THE X AND Y ARRAYS.
C

INTEGER X(2500),Y(2500),BOUNDU1O,1O),EDGE
INTEGER DEV,IN,OUT,I,N,M,XC,YC,NUMPIX
INTEGER INRAD,NSLOPE,LOWVEC,HIVEC,SEC
INTEGER XMAX,YMAX
REAL RAD(-2:250,10),SLOPE(0:90),PI,PHI
REAL VEC,XDIF,YDIE,YTRY1,YTRY2,YDRI,YDR2
REAL YD1,YD2,MAXRAD
LOGICAL START,STOP
COMMON DEV,IN,OUT,STEP,INRAD
DATA PI/3.141592654/

N = EDGE
XC = BOUND(4,N)
'IC BOUND(5,N)
NUMPIX = BOUND(GN)
NSLOPE = INRAD/4 1

PHI = (2..0 A PI) / LOAT(INRAD)

DO 50 I = 0,NSLOPE
SLOPE(I) = TAN(PHI A FLOAT(I)) A (5.0/4.0)

50 CONTINUE
SLOPE(NSLOPE + 1) = 1250.0

STOP = .FALSE.
START = .TRUE.
I = 0
PREVEC = 0
SEC = 0s~M = 0
MAXRAD = 0.0

C
C CALCULATE THE SLOPE OF THE LINE FROM THE EDGE PIXEL TO THE CENTROID
C
100 I = I + 1

IF(I .GE. NUMPIX) STOP = .TRUE.
v,. XDIF = FLOAT(X(I) - XC)

YDIP = FLOAT(Y(I) - YC)
IF(XDIF .U. 0.0) GOTO 700
VEC - ABS(YDIF/XDIF)
IP(ABS(VEC - PREVEC) .LL. .0001) GOTO 100

4.

LOWVEC = SEC
PREVEC = VEC

C
C FIND OUT WHICH SECTOR WE AR(E IN
C
110 IE(VEC GfE. SLOPIE(LOWVEC) .AND. VEC .LE. SLOPE(LOWVEC+m

A GOTO 12-0

IF(VEC .Lh. SLOPE(LCJWVLC) .AND. VEC .GE. SLOPE(:LOWVEC-1))
A GOTO 140

IF(LOWVEC .GE. NSLOFE) GOTO 115
LOWVEC = LOWVEC +I

GOTO 110

.115 LOWVEC = 1
GOTO 110

120 HIVEC = LOWVEC + I
GOTO 200

140 HIVEC = LOWVEC - I

C
C CALCULATE THE REFERENCE POSITION BETWEEN LOVEC AND HIVEC
C
200 YTRYI = ABS(XOIF) A SLOPE(LOWVEC)

YTRY2 = ABS(XDLF) * SLOPE(HIVEC)
YDR1 = ABS(YDIF) - YTRYI
YDR2 = ABS(YDIF) - YTRY2

C
C LOOK AT THE NEXT POSITION ALONG THE EDGE
C
300 I = I + 1

IF(I .GE. NUMPIX) STOP = .TRUE.
XDIF = FLOAT(XI) - XC)
YDIF = FLOAT(YI) -YC)
IF(XDIF .EQ. 0.0) GOTO 700
GOTO 800

700 HIVEC =,NSLOPE + 1
LOWVEC = NSLOPE
GOTO 1000

C
C CALCULAIE THE NEW POS IT ION WITH RESPECT TO H IVEC AND' LOWVEC
C
800 YTRYI = A145(XDIF) * SLOPE(LOWVEC)

Y'TRY2 =A14(XDIF) A SLOPE(H-IVEC)
'(01 =ABS(YDIF) - '(TRYl
YD(02 ABS(YDIF) - YTRYZ

C
C CHECK IF WE HAVE CROSSED LOVEC
C

IF((YD1 .GE. 0.0 .AND. '(DRI .LE. 0.0) .OR. ('01 .LE. 0.0
A .AND. '(DRI .GE. 0.0)) GOTO 9I00

C
C CHECK IF WE HAVE CROSSED HIVEC
C

IFU(YD2 .GE. 0.0 .AND. YDR2 .LE. 0.0) .OR. ('(02 .LE. 0.0
A .AND. '(0R2 .GE. 0.0)) GOTO 1000

C
C HAVEN'T CROSSED LOVEC OR HIVEC YET, SO GET THE NEXT EDGE PIXEL
C

112

YDR1 = YD1
YDR2 = YDI
IF(STOP) GOTO 2000
GOTO 300

C
C Y'EH, MADE IT ACROSS A SLOPE MARKE~R (LOVEC OR HIVEC)
C NOW WE CAN CALCULATE THE RADIUS VECTOR LENGTH
C
C WE CROSSED LOVEC
C
900 IF(LOWVEC .EQ. SEC) G010 100

M= M+ I
RAD(M,N) = SQRT(UXDIF9A1.25)AA2 + YID1FAA2)
SEC = LOWVEC
IF(STOP). GOTO 2000
GOTO 1200

C
4.C WE CROSSED HIVEC

C
1000 IF(HIVEC .EQ. SEC) GOTO 100

M= M+1I
RAD(1,N) = SCRT((XDIF*1.25)*A2 + YDIEiA21)
SEC = HIVEC
IF (STOP) G010 2000

1200 IE(RAD(M,N) .LE. MAXRAD) G010 100
MAXRAD = RAD(M,N)
XMAX = X(I)
YMAX = Y (I)
GOTO 100

2000 RAD(-2,N) = FLOAT(M)
RAD(-l,N) = MAXRAD
BOUND(9,N) = XMAX
BOUND(10,N) = YMAX

C CALL FINPLT

c CALL INTPLT
c CALL RADPLT(RAD,EDGE)
c CALL FINPLT

RETURN
END

k p

113

C
C FILE RADZ.FOR LAST REVISION JULY --G,19J85
C
C SUBROUTINES CONTAINED IN THE FILE:
C
C GETRAD
C

SUBROUTINE GETRAD(X,Y ,BNDCT, BOUND,RAD)
C
C THIS SUBROUTINE CALCULATES THE OBJECT EDGE RADIUS LENGTHS
C USING THE EQUAL ARC LENGTH ALGORITHM
C

INTEGER DEV, IN,OUT,STEP, INRAD
INTEGER X(2-50O),Y(2 50),BNDCT,BOUND(1O,1O)
INTEGER XC,YC,NUMP IX, INC
INTEGER XMAX,YMAX
REAL RALK-2:300,10),XDIE,YDIF,MAXRAD

COMMON DEV, IN,OUT,STEP, INRAD

N =BNDCT

XC =BOUND(4,N)

YC =BOUND(5,N)

NUMPIX = BOUND(G,N)

MAXRAD = 0.0

DO 200 I 1,INRAD
INC = I * NUMPIX / INRAD
XDIF = FLOAT(X(INC) - XC)

* YDIF = FLOAT(Y(INC) - YC)
RAD(I,N) = SQRT(UXDIFA1.25)*A2 YDIF*A2)

C CALL PLTCUR(XC,YC)
C CALL PLTVEC(X(INC),Y(INC))

IF(RAD(I,N) .LT. MAXRAD) GOTO 200
MAXRAD = RAD(I,N)
XMAX = X(INC)
YMAX = Y(INC)

2.00 CONTINUE

RAD(-2, N) = FLOAT(lNRAD)
RAO(-l,N) = MAXRAD
BOUND(9,N) = XMAX
BOUND(10,N) = YMAX

C CALL FINPLT

C CALL INTPLT
C CALL RADPLT(RAD,N)
C CALL FINPLT

RETURN
END

%
MI

114

C
C FILE PARAM.FOR LAST REVISION JULY 1,1985
C
C THIS FILE CONTAINS:
C
C TEST ROUTINE FOR PARAM
C PARAM
C
Ckkk*** *A A***A* **AA***A*A**A**A*k*Akk*A*k* *k** A AA *****A ** AAA*AA*A

C
C THIS IS A TEST ROUTINE USED TO CHECK THE AR COEFF-
C ICIENTS AND THE SUBROUTINE PARAM WHICH CALCULATES
C THE AUTOCORRELATION AND THE AUTOREGRESSIVE COEFFICIENTS
C OF THE TIME SERIES.
C
C THE TEST ROUTINE
C
C INTEGER DEV
C REAL RAD(-2:300,10),ALPH(11,1O),RX(O:1O,1O)
C COMMON DEV
C DEV = 5
C
C N = I
C RAD(1,N) = 1.
C RAD(2,N) = 1.44

C RAD(3,N) = 1.44*RAD(2,N) - 1.26
C DO 10 J = 4,40
C RAD(J,N) = 1.44*RAU(J-1,N) - 1.26*RAD(J-2,N) + .91*RAD(J-3,MN)
C 10 CONTINUE
C
C RAD(-2,N) a 40.
C
C CALL PARAM(N,RAD,ALPH,RX)

C STOP
C END

C -- -- -------- ---------- ------- --------- ------------- ------- --------- -----
C PARAM
C ----------- ---------- -- ------ ------ --------------- ------ -- -------- ------

SUBROUTINE PARAM(EDGERAD,THETA,ALL)
C
C THIS SUBROUTINE CALCULATES THE FEATURE VECTOR PARAMETERS OF THE
C EDGES OF THE OBJECT. THE PARAMETERS ARE THE AR COEFFICIENTS AND
C THE TERM ALPHA/SORT(BETA).
C

INTEGER DEV,IN,OUT,STEP,INRAD,M
INTE13ER EDGE,NUMRAD

REAL SUM,SUMI,SUM2
REAL ALPHA,BETA,ALBET
REAL RAD(-2:2t0,O),THETA(11,10),RX(0:10,10)
REAL ALL(10,11,10)

REAL RXN(O:O,10O)

REAL SIGMAS(10),A(1O,10)
COMMON DEV,IN,OUT,STEP,INRAD,M

N = EDGE
DO 30 J - 1,10

DO 20 I = 1,10

, %- .

115

2 ,A(I,J) * 0.0
20 CONTINUE
30 CONTINUE

NUMRAD = INT(RAD(-2,N))
C
C CALCULATE THE MEAN
C

SUM = 0.0
DO 50 I = 1,NUMRAD

SUM = SUM + RAD(I,N)
50 CONTINUE

MEAN = SUM / F'LOAT(NUMRAD)

C CALCULATE THE AUTCCORRELATION COEFFICIENTS
C

DO 100 I - O,M

SUM = 0.0
DO 5 J 1 ,NUMRAD

IF(K .GT. NUMRAD) K = K - NUMRAD

SUM = SUM + ((RAD(J,N) - MEAN) A (RAD(K,N) - MEAN))
75 CONTINUE

RX(I,N) = SUM / FLOAT(NUMRAD)
RXN(I,N) = RX(IN) / RX(O,N)

100 CONTINUE

C CALCULATE THE AUTOREGRESSIVE COEFFICIENTS USING THE DURBIN
C RECURSIVE ALGORITHM
C

A(1,i) = -RX(1,N) / RX(O,N)

SIGMAS(1) = (1.0 - (A(l,I) A A(l,1))) * RX(O,N)

DO 300 K = 2,M

SUM = 0.0
DO 250 J = l,K - 1

SUM = SUM + (A(K-1,J) A RX(K-J,N))
250 CONTINUE

A(K,K) = -(RX(F,N) + SUM) / SIGMAS(K-1)

rO 275 I = 1,K-1
A(K,I) A(K-1,I) + (A(i{,K) A A(K-,K-I))

275 CONTINUE

SIGMAS(K) = (1.0-(A((,K) A A(K,())) A SlGMAS(K-1)
300 CONTINUE

C
C FORM THE FEATURE VECTOR FOR THE EDGE FROM THE LAST COLUMN
C OF THE MATRIX A. THIS COLUMN CORRESPONDS 10 THE DESIRED
C AR MODEL ORDER NUMBER. ALSO FORM THE SUM OF THE PARAMETERS
C NEEDED IN THE CALCULATION OF ALPHA.
C

DO 400 K = 1,MTETKN - A(M,K)

SUM = SUM + THETA(K,N)
400 CONTINUE

ALPHA = MEAN A (1.0 - SUM)

C

116

C CALCULATE BETA
C

BETA = 0.0
DO 420 1 1,NUMRAD

SUM =0.0

DO 410 J3 1,M
K =I+ J
IF(K .GT. HUMRAI) K =K - NUMRAD
SUM = SUM + THETA(J,N) A RAD0<,N)

410 CONTINUE

SUMi = RAD(I,N) - ALPHA - SUM
BETA = BETA + SUMlAA2

420 CONTINUE

BETA = BETA / FLOAT(NUMRAI)
C BETA = SIGMAS(M)

ALBET = ALPHA /SGRT(BETA)
THETA(M+1,N) =ALBET

C WRITE(DEV,425) (I, (A(K,,I) ,K1,M) ,I=1,M)
C 425 FORMAT(1X,I3,3X,M:.F.3)

C WRITE(DEV,45i0) (J,SIGMAS(J) ,1=1 ,M)
C 450 FORMAT(lXpI3,ElB.G)

C WRITE(DEV,700)
C 700 FORMAT(1X,/' THE AUTOCOI(RELATION COEFFICIENTS (PARAM):'I
C WRITE(DEV,705) (J,(RX(J,N),N=1,BNOCT),J = 0,M)

C WRITE(DEV,702)
C 702 FORMAT(IX,/' THE NORMALIZED AUTOCORRELATION COEFS (PARAM): I
C WRITE(DEV,705) (J, (RXN(2,N) ,N=1,BNOCT) ,J=0,M)
C 705 FORMATC1X,13,3X,<BNDCT>.;F1O.5)

C WRITE(DEV,710)
C 710 FORMAT(1X,/' THE AUTOREGRESSIVE COEFFICIENTS (PARAM):'I
C WRITE(DEV,715) (J,(THETA(3,N),N=1,BNDCT),3 1,M+l)
C 715 FORMAT(lX,I3,3X,i.BHDCT>,F1O.5)

RcETU RN
END

117

C
C FILE KLSEL.FOR LAST REVISION JULY 4, 1985
C
C THIS FILE CONTAINS SUBROUTINE:
C
C KLSEL
C
CAAkAAA*AAAkk**A*AAAAAAAAA**AAkkk*AA*AAkAAA*AkkAAAkAAkAAkA**AAAAAAk

C KLSEL
C--
C

SUBROUTINE KLSEL(X,NSAMP,NCLASS,TRANS,Y)

C
C THIS SUBROUTINE CALCULATES THE KARHUNEN-LOEVE EXPANSION

C TRANSFORM MATRIX AND TRANSFORMS THE SAMPLES OF EACH
C PATTERN CLASS OF THE TRAINING SET.

C

INTEGER DLV,IN,OUT,STEP,INRAD,M
INTEGER DIM,JOBN,IZ,IER
INTEGER NCLASS,NSAMP,MAXI
REAL A(I00),WK(10O),D(11),Z(100)
REAL X(11,25,10),XMN(11,25,10),R(11,11,1O),C(11,11)
REAL MEAN(11,10),MMT(i,L1,10)
REAL SCALE,MAXE

REAL TRANS(11,11),Y(25,11,10)

COMMON DEY,IN,OUTSTEPINRAD,M

DATA R/1210*O.O/

DATA C/121*0.0/

Ti = SECNDS(O.00)
DIM = M + 1

C
C CALCULATE THE MEAN SAMPLE FOR EACH CLASS
C

SCALE = 1.0 / FLOAT(NSAMP)
* DO 60 N = I,NCLASS
* DO 40 I = 1,DIM

SUM = 0.0
DO 30 J I,NSAMP

SUM = SUM + X(I,J,N)
30 CONTINUE

MEAN(I,N) = SUM A SCALE
40 CONTINUE
50 CONTINUE

9 C
C SUBTRACT THE MEAN FROM EACH SAMPLE IN THE CLASS
C

DO 100 N = I,NCLASS

DO 75 K = 1,NSAMP
DO GO I = 1,DIM

XMN(I,K,N) = X(I,K,N) - MEAN(I,N)
60 CONTINUE
75 CONTINUE

100 CONTINUE

*I \~.\.W C

118

C
C FORM THE COVAkIANCE MATRIX OF EACH CLASS

C
DO 200 N = 1,NCLASS

DO 175 K = J,NSAMP
DO 150 1

=
1,DIM

DO 125 J = 1,DIM
R(I,J,N) = R(I,J,N) + XMN(I,k{,N) , XMN(J,K,N)

125 CONTINUE
150 CONTINUE
15 CONTINUE
200 CONTINUE

C
C CALCULATE THE AVERAGE COVARIANCE MATRIX
C

SCALE
=

1.0 / FLOAT(NCLASS A NSAiP)

DO 300 1 = I,DIM

DO 275 J = l,DIM
DO 250 N - 1,NCLASS

C(I,J) = C(I,J) + (SCALE A R(I,J,N))

250 CONTINUE
275 CONTINUE
300 CONTINUE

C DO 325 1 = 1,DIM
C WRITE(DE,A) 'C ',1,(C(I,3),3 1,DIM)
C 325 CONTINUE
C
C PUT THE LOWER TRAINGLE OF MATRIX C INTO ARRAY A (SYMMETRIC STORAGE

C MODE)
C

K' = 1
DO 340 I = 1,DIM

DO 335 3 = 1,I
A(K) = C(I,J)

C WRITE(DEV,A) 'A ',A(f)
K = K + 1

335 CONTINUE
340 CONTINUE

C
C CALCULATE THE EIGENVALUES AND THE EIGENVECTORS
C

JOBN = 2
IZ = DIM

CALL EIGRS(A,DIM,JOBN,D,Z,IZ,WK,IER)

C K - I
C DO 350 I - 1,DIM
C WRITE(DEV,A)
C WRITE(DEV,*) 'EIGENVALUE: ', D(I)

C WRITE(DEV,A)
C DO 348 N = 1,DIM

C WRIIE(DEV,A) 'EIGENVECTOR: ',Z(0
C K = K + 1
C 348 CONTINUE
C 350 CONTINUE

119

C WRITE(5,A) 'WK(1) ',WK(I)
C
C
C FORM THE COLUMNS OF THE TRANSFORMATION MATRIX FROM THE EIGENVECTORS
C CORRESPONDING TO THE LARGEST EIGENVALUES.
C

IMAX = DIM A (DIM - 1)
00 525 3 = IDIM

DO 515 I = 1,DIM

TRANS(I,J) = Z(IMAX+I)
515 CONTINUE

IMAX = IMAX - DIM
525 CONTINUE

C WRITE(DEV,A) 'THE TRANSFORMATION MATRIX'
C WRITE(DEV,527) ((TRANS(I,J) ,J=l,DIM) , I=1,D IM)
C 527 FORMAT(1X,K..DIM:>15.G)

C
C TRANSFORM THE ORIGINAL SAMPLES OF EACH CLASS
C

[uO GO0 K = 1,NCLASS
DO 575 J = 1,NSAMP

DO 550 N = 1,DIM
Y(J,N,K) = 0.0

Ni DO 530 I = 1,DIM
Y(3,N,K) = Y(J,N,K) + (TRANS(I,N) A X(I,J,K))

530 CONTINUE
550 CONTINUE
575 CONTINUE
600 CONTINUE

DELTA = SECNDS(T1)
WRITE(DEV,A) 'KLSEL EXECUTION TIME IS: ',DELTA

C WRITE(DEV,A) 'THE TRANSFORMED SAMPLES'
C WRITE(DEV,700) (((Y(J,N,K),N=1,DIM),J = 1,NSAMP),K = 1,NCLASS)
C 700 FORMAT(IX,<:DIM>F15.G)

RETURN
END

.N

120

C MESEL

SUBROUTINE MESEL IS EXACTLY THE SAME AS SUBROUTINE KLSEL EXCEPT

THAT THE ORDERING OF THE EIGENVECTORS IN THE RESULTING TRANS-
FORMATION MATRIX IS REVERSED. TO AVOID REPETITION, THE LISTING
HAS BEEN OMITTED.

C---
C---

.%

-%.

a).), 4 L ,. .% ,p ., , ,, , , j',j".,' ,W .I"" -
'•

'w J J F, " "- ' " " w , ""' # ;(, " " ''" -" , " -.. £..,""""" ::% ,, '"-",,, ,, "". " " "' , ,"', , "' " r % ."',. , F . "

121

S

C
C FILE PREKL.FOR LAST REVISION JULY 6,1985
C
C THIS FILE CONTAINS SUBROUTINE:
C
C PREKL
C
C

C---
C PREXL
C---

NSUBROUTINE PREKL(X,NSAMP,NCLASS,TRANS.Y)

N INTEGER DEV,IN,OUT,STEP,INRAD,M

INTEGER DIM,JOBN,IZ,IER
INTEGER NCLASS,NSAMP
REAL SCALE,SUM
REAL X(11,25,20),TRANS(11,1),Y(25,11,20)

REAL MEAN(11,20),XMN(11,25,20),AUEMEAN(1)
2 REAL SW(11,11),R(llll,20)

, REAL A(100),Z(1-1),D(11),WK(150)
i%, REAL B(lI'I,)

REAL SBSUB(11,),SBPRME(llll),SB(11,11)

COMMON DEV,IN,OUT,STEP,INRAD,M

DATA R/2420A0.0/
DATA SW/121*0.0/
DATA SB/121AO.O/

Ti = SECNDS(O.00)
DIM = M + 1
SCALE = 1.0 / FLOAT(NSAMP)

C
C CALCULATE THE MEAN
C

DO 100 N = 1,NCLASS
DO 75 1 = 1,DIM

SUM = 0.0

DO 50 1 = 1,NSAMP
SUM = SUM + X(I,J,N)

50 CONTINUE
MEAN(I,N) = SUM A SCALE

75 CONTINUE
100 CONTINUE

C
C CALCULATE THE MEAN VECTOR A MEAN VECTOR (TRANSPOSED) FOR EACH
C CLASS
C

DO 200 N = 1,NCLASS
DO 175 K = 1,NSAMP

DO 150 I = 1,DIM
XMN(I,K,N) = X(I,K,N) - MEAN(I,N)

150 CONTINUE
175 CONTINUE
200 CONTINUE

~ %

122

C CALCULATE PART OF THE COVARIANCE MATRIX FOR EACH CLASS

C

DO 300 N = 1,NCLASS
DO 275 K = 1,NSAMP

DO 25O I = 1,DIM
DO 225 3 = 1,DIM

R(I,J,N) = R(I,J,N) + XMN(I,K,N) A XMN(J,K,N)
2-25 CONTINUE
250 CONTINUE
275 CONTINUE
300 CONT"INUE

C
C FORM THE AVERAGE CLASS COVARIANCE MATRIX~C

SCALE = 1.0 / FLOAT(NSAMP A NCLASS)

DO 400 I = 1,DIM
DO 375 J = I,DIM

DO 350 N = 1,NCLASS
SW(I,3) = SW(I,3) + (SCALE A R(I,J,N))

350 CONTINUE
375 CONTINUE
400 CONTINUE

C DO 410 I = 1,DIM
C WRITE(DEV,A) (SW(I,J),J = 1,DIM)
C 410 CONTINUE
C
C PUT THE LOWER TRIANGLE OF MATRIX SW INTO ARRAY A (FOR SYMMETRIC
C STORAGE MODE)
C

DO 450 1 = 1,DIM
DO 425 3 = 1,I

A(K) = SW(I,J)
K = K + 1

425 CONTINUE
450 CONTINUE

C
C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF SW (IN ARRAY A)
C

JOBN = 2
IZ = DIM
CALL EIGRS(A,DIM,JOBN,D,Z,IZ,WK,IER)

C
C FORM MATRIX B FROM THE ElGENVECTORS / SQRT(EIGENVALUE)
C

IMAX = DIM A (DIM - 1)
DO 525 J a1,DIM

K = DIM - J + 1
C WRITE(DEV,A)
C WRITE(DEV,A) 'EIGENVALUE: ',D00
C WRITE(DEV,,)

DO 510 I = 1,DIM
C WRITE(DEV,A) 'EIGENVECTOR: ',Z(IMAX+I)

B(I,J) - Z(IMAX+I) / SQRT(D00)
C WRITE(DEV,A) "B(i,i) ',I,3,B(I,3)
510 CONTINUE

IMAX = IMAX - DIM

a,,

123

525 CONTINUE
C
C CALCULATE THdE AVERAGE CLASS MEAN VECTOR
C

SCALE = 1.0 / ELOATCNCLASS)
DO 700 I 1 ,DIM

PitSUM =0.0

DO 675MN==1,NCLASS MA RMEC LS ENVCO

*~U U MEAN(I.N)- EMtNI
G75 CONTINUE

70 CONTINUE

C
C SUTATTEAERG LS MEAN SCATTE EATRI SES'MA VCO
C

D77 1 = 1,DIM
DO 760 IN = 1,DIMAS

MEA(,) = MEA(I,N) - SALEE AN(IRNtKlAIAtt,

775 CONTINUE
100 CONTINUE

C
C CALRULTE MEANSC ATRI SE MATRIX

* C
DO 900 K = 1,NCIMS

DO 875 1 = 1,DIM

DO 860 J = ,Drm
SUMJ = U SE(I,) +SAL A E'(K,3) MAK3,1

850 CONTINUE

875 CONTINUE
900 CONTINUE

C
C CALCULATE SE'PRIM x MATRIX SB (TASOS* MATRIX ESE
C

Do 100 I = 1DIM
D0 975 J I ,DIM

SUM =0.0

DO 850 K =1,DIM

SUM SUM + SB(,f) A B(K,)
950 CONTINUE

SBPRIM(I) = sum
875 CONTINUE
1000 CONTINUE

C
C CALUT TE LOWR RIANGL O= MARX TRXNSPRIED INT RRAX A(FOR

124

-C, SYMMETRIC STORAGE MODE)

C

DO 1050 I = 1,DIM
DO 1025 J = 1,Ip- A(0) = SBPRIME(I,J)

/. 1025 CONTINUE
L 1050 CONTINUE

C
C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF SDPRIME (IN A)
C

CALL EIGRS(A,DIM,JOBN,D,Z,IZ,WK,IER

C IMAX =-DIM A (DIM - 1)
C DO 1100 J = l,DIM

C K = DIM - 3 + I[. C WR ITE (DEV,A*)
C WRITE(DEV,A) 'EIGENVALUE: ',D(K)

C WRITE(DEV,*)
C DO 1075 I = 1,DIM
C WRITE(DEV,A) 'EIGENVECTOR: ',Z(IMAX + I)
C1075 CONTINUE

4 C IMAX = IMAX - DIM
Cll0 CONTINUE

C
C FORM THE TRANSFORMATION MATRIX BY MULTIPLYING THE B MATRIX
C TIMES THE FIRST EIGENVECTOR
C
C WRITE(DEV,A) 'THE TRANSFORMATION MATRIX:'

DO 1150 1 = 1,DIM

A DO 1125 N = 1,DIM
DO 1115 3 = 1,DIM

TRANS(I,N) = TRANS(I,N) + B(I,3) A Z(3+DIMA(DIM-N))
1115 CONTINUE
1125 CONTINUE
C WRITE(DEV,A) 'TRANS(1,N)' ,(TRANS(I,N),N=1,DIM)
1150 CONTINUE
C
C TRANSFORM THE ORIGNAL SAMPLES OF EACH CLASS

C
DO 1200 K = 1,NCLASS

DO 1175 J = 1,NSAMP

DO 1160 N = 1,DIM
Y(J,N,K) = 0.0
DO 1155 I = 1,DIM

* Y(J,N,K) = Y(J,N,K) + (TRANS(I,N) A X(I,J,K))
1155 CONTINUE
I160 CONTINUE
1175 CONTINUE
1200 CONTINUE

DELTA = SECNDS(T)
WRITE(DE'J,A) 'PREKL EXECUTION TIME IS: ',DELTA

C WRITE(DEV,A)'THE TRANSFORMED SAMPLES:'
C WRITE(DEV,1250) (((Y (JK,N) ,K=I ,DIM) , J=I,NSAMP) ,N=1,NCLASS)
C1250 FORMAT(IX, <TRDIM>FI5.6)

RETURN
END

I . 6.11

125

C PFOLRE CLASSIFY.RLS EIINJL 418

C AUHO RTHH1 KNNT

C THIUFIEOCNTANS
C

C TO LINK:

C LICCAS1LCOLCWRERD1,AAEISS$IRRYVDOI

C

C PTOOA CLASNK:

C

C THIS PROGRAM CLASS IFYS THE OBJECTS
C

INTEGER DEV, IN,OUT,STEP, INRAD,M
INTEGER DIM,TRDI?4,NSAMP,NCLASS
INTEGER TRN, TST,ODAT
INTEGER OBJECT,OBJCT,OBJDATCO:lO,210),NUMHOLE
INTEGER 9OUND'10,10),BNDINI
INTEGER XPIX(2500,10) ,YPIX(25O0,10)
INTEGER CLASS(20) ,EDGECLASS(-20)
INTEGER ONDCT,EDGE,OBJ,PLACE
INTEGER DECIS,CONFUS(20,20)

4kINTEGER 5OOD(20),BAD(20) ,COUNT
INTEGER TOTAL,GRDTOTAL,TOTGOOD
REAL ORIENT(1O) ,LIST(2,1O,10)
REAL CLDIS(1O)
REAL TRANS(II11),t(11,O0)
REAL TA(11,2O),T(25,11,20)
REAL RAD(-2:25O,1O),THETA(11,1O),ALL'iO,II,1O)
REAL DIS ,CLSD IS, MINDlIS ,MAXItiIS
REAL PERCENT
CHARACrER INST,SHAPE

COMMON DEV, IN,UUT,STEP, INRACi,M

DATA MAXDIS/1.7E37/
DATA IN,OUT/595/
DATA CONrUS/400A0/
DATA 6000,BAD/20*0,20AO/

TRN - 1
TST =2

ODAT - 3
ONDINT - 1
OUTEDG - 7
OPEN(UNIT=TRN, FILE='TRAIN.DAT', STATUS-'OLD')
OPEN(UNIT-TST, FILE='TEST.DAT',STATUS='NEW')
OPEN(UNIT-ODAT,FILE='OBECT.'AT',STATUS='OLD')
CALL SETUP
CALL THRESH

126

ii ~~~~~~~WRITE(OUT,10)CTGRY'$ SMLS:,)

I5 FORMAT(A1)

CREAD' IN THE OB'JECT DATA

C

READ(ODAT,*) OBJCT

READ(ODIAT,*)OBJ,NUMHOLE,(OPJDAT(,OJ),<=,NUMHOLEs-D
OBJDA(,OLI) = NUMHOLE

100 CONTINUE
C
C READ IN THE D IMENS ION OF THE STORED DIATA AND CHECK FOR VAL ID ITY
C

READ(TRN,A) DIM
M = DIM - I

C READ IN THE STORED DATA: THE TRANSFORMATION MATRIX AND
C THE TRANSFORMED SAMPLES UP THE CLASSES
C

DO 110 1 =1,DIM
READ(TRN,A) (TRANS(1,J) ,J=1,DIM)

110 CONTINUE

READ(TRN,*) NSAMP,NCLASS

A~A DO 160 K = 1,NCLASS
READ(TRN,A) (TA(J,K) ,1=1,DIM)

160 CONTINUE

WRITE(TST,A ' TEST SET DATA:
WRITE (TST, A)

p. wRrTE(TST,IG2) (I,I=1,DIM-1)
16 FORMAT(1X,'OBJECT HOLES ROTATE(IiEG) MAXRAD',3X,

C A *'DIM-2. ('M' , I,7X) ,'M' , I,3X, 'ALIFHA/SQIRT(I4ETA) '//
/ A 'M' ,Il,3X,'ALPHA/SQRT(EETA) 'II)

WRITE(DEV,A.' CLA~SSIFICATION DATA:'
UR ITE(DEV ,A)
WRITE(DEV, 170) M ,TRD IM,SHAPE

170 FORMAT(IX,'AR MODEL ORDER: 'I,'DIMENSION OF TRANSFORMED '

A 'SAMPLES: ',13,/' SHAPES CATEGORY: ',Al,//)

WRITE(DEV,175) (J,J=1,TRDIM) , (J,J=1,NCLASS)

175 FORMAT(lX,'OBJECT EDGE',3X, 'TRDIMS>:('T',12,7X),2X,

A <NCLASS ('D',Il,8X), 'EDGE OBJECT'/)

COUNT = 0
200 CALL VIEW

WRITE(OUT,210) COUNT

127

210 FORMAT(1X,I3,' CLASSIFICATIONS, DONE YET?' (TYPE Y FOR YES): ,
READ(IN,220) INST

:20 FORMAT(AI)
IF(INST .EQ. 'Y') '30T0 900

WRITE(OUT,230)
230 FORMAT1IX,'INPUT THE OBJECT NUMBER: '$

READ(IN,240) OBJECT
240 FORMAT(I2)

C
C SCAN THE FRAME BUFFER FOR THE EDGES OF THE UNCLASSIFIED OBJECT
C

Ti SECNDS(0.0O)
D0 250 I = 1,10

CLASS(I) = 0.0
250 CONTINUE

Ti = SECNUjS(.00)

CALL SNAP
CALL SCAN(BNOCT,BOUND,XPIX,YPIX)
IF(BNDC4 .Ea. 0) GOOo CJCJ9

CALL INSIDE(BNDjCT,BOUND)

C CLASSIFY USING HOLE INFORMATION (IF POSSIBLE)
C

CALL CLSHOLE(OBJECT,BNDCT,BOUND,CLASS,OBJDAT,OBJCT)
C
C L.IST THE INNER EDGES IN ORDER OF THE DISTANCE BETWEEN THE INNER EDGE
C CENTROID AND THE OUTER EDGE CENTROID (LARGEST DISTANCE IS FIRST IN
C LIST)
C

CALL ORDER(BNDCT,BOUND,LIST)
C
C CLASSIFY THE REST OF THE OBJECT USING THE AUTOREGRESIVE PARAMETERS
C OF THE OBJECT EDGES
C

DO 800 OBJ = 1,BNDCT
IF(CLASS(UBJ) EQ0. 0) G010 400
WRITE(TST,300) OBJECT,BOUND(8,OBJ),ORIENT0OBJ),

C A INT(RAD(-1,OBJ))
C 300 FORMAT(1X,2(13,3X) ,F8.2,JX, I5)

GOTO 700
400 PLACE =1
500 IF(LIST(BNDINT,PLACE,OBJ) .NE. 0.0) GOTO 550

IF(PLACE .0T. 1) G010 600
GOTO 800

550 EDGE = INT(LIST(BNDINT,PLACE,OBJ))
C
C CALCULATE THE RADIUS VECTOR LENGTHS
C
560 CALL GETRADXPIX(i,EDGE),YPX1,EDGE,EDGE,BOUND,RAD)

C
C CALCULATE THE AUTOREGRESSIVE PARAMETERS
C

CALL PARAM(EDGE.RAD,THETA,ALL)

WRITE(TST,575) OBJECT,BOUND(B,EDGE),URIENT(EDGE),
A INT(RAD(-1,EDGE)),(THETA I,EDGE),I=L,01M)

575 FORMAT(1X,2(I3,3X),FB.,3X,15,JX, DIM-i: F9.S,F11.5)

128

C CLASSIFY THE EDGE USING THE TRANSFORMED PARAMETERS
C

CALL CLSEDGE(OBJECT,EDGE,THETA,TRANS,TA,TRDIM,NCLASS,DECIS)
EDGECLASS(PLACE) = DECIS
PLACE = PLACE + 1
GOTO 500

C
C CLASSIFY THE OBJECT BASED ON ALL THE EDGE CLASSIFICATIONS
C
G00 CALL CLSOBJ(OBJECT,OBJ,EDGECLASS,OBJDAT,OBJCT,CLASS,

* BOUND(8,DJ),TRDIM,NCLASS)

700 DELTA = SECNDS(Tl)
C WRITE(DEV,725) OBJECT,CLASS(OBJ),DELTA
C 725 FORMAT(IX,'OBJECT ',12,' IS: ,1/'CLASSIFY TIME IS: '

C A F10.6/)
C
C CALCULATE THE ORIENTATION OF THE EDGES
C

CALL ROTATE(EDGE,BOUND,ORIENT)
CALL OUTPUT(EDGE,BOUND,RAD,ORIENT)

COUNT - COUNT + I
CONFUS(OBJECT,CLASS(OBJ)) = CONFUS(OBJECT,CLASSOBJ8 + 1
IE(CLASS(OBJ) .EO. OBJECT) GOTO 750
BAD(OBJECT) =BAD(OBJECT) + 1
GOTO 900

750 GOODIOBJECT) =GOOD(OBJECT) + 1
800 CONTINUE

GOTO 200

900 CALL OUTCONFUS(CONFUS,OBJCT)

WRITE (DEV, A)
WRITE(DEV,A) 'CLASS PERCENT CORRECT'
GRDTOTAL = 0.0
DO 950 K = 1,OBJCT

TOTAL = GOUD(K) + 9AD(0)
IF(TOTAL EQ. 0) GOTO 950
PERCENT = 100.0 A FLOAT(GOOD(K)) /FLOAT(TOTAL)
WRITE(DEV,940) K,PERCENT

940 fURMAT(IX, 13,5X,FlO.5)
GRDTOTAL = GRDTOTAL + PERCENT

950 CONTINUE

PERCENT - GRDTOTAL / FLOAT(OBJCT)
WRITE(DEV,9,0) PERCENT

960 FORMAT(1X,'OVERALL PERCENT CORRECT: ',FlO.5)
GOTO 1000

999 WRITE(OUT,A) 'NO OBJECTS FOUND'

1000 CLOSE(UNIT-ODAT)
CLOSE(UNIT-TRN)
CLOSE(UNIT=TST)
STOP
END

129

C---------------- ----------------------
C CLSHOLE
C--

SUBROUTINE CLSHOLE(OBJECT,BNDCT,BOUND,CLASS,OBJDAT,OBJCT)

C
C THIS SUBROUTINE CLASSIFIES THE OBJECT ON THE BASIS OF THE NUMBER
C OF HOLES IT HAS.
C

INTEGER DEV, IN,OUT
INTEGER BNDCT,BOUND(10,10),CLASS(10)
INTEGER BND,OBJ
INTEGER MAXHOLE,NUMHOLE,NHOLE(2,10)
INTEGER OBJECT,OB3CT,OBIDAT(0:10,20)
COMMON DEV,IN,OUT

DATA NHOLE/20*0/

9ND = I
OBJ=I

*~. rMAXHOLE 10
DO 100 1 =1,10

DO 50 J = 1,2
NHOLE(J,I) = 0

s0 CONTINUE
100 CONTINUE

DO 400 N z 1,BNDCT
DO 300 K a ,OD3CT

IE(BOUND(8,N) .NE. OBJDAT(0,K)) GOTO 300
NUMNOLE - BOUND(8,N)
IF(NHOLE(BND,NUMHOLE) .EQ. 0) GOTO 250
NHOLE(BND,NUMHOLE) = -1
GOTO 300

250 NHOLE(BND,NUMHOLE) = N
NHOLE(OBJ,NUMHaLE) = K

300 CONTINUE
400 CONTINUE

DO 500 NUMHOLE = ,?IAXHOLE
U IF(NHOLE(BND,NUMHOLE) .LE. 0) GOTO 500

CLASS(NHOLE(BND,NUMHOLE)) -NHOLE(OBJ,NUMHOLE)
C WRITE(DEV,450) OBJECT,NHOLS(BNDNUMHOLE) ,NUMHOLE,
c NHOLE(OBJ,NUMHOLE)
C450 FORMAT(lX,2(13,3X),'CLASSIFICATION BASED ON: ',Il,' HOLES:',I3)
500 CONTINUE

CLOSE(UNIZ=LUN)

RETURN
END

C---
C CLSEDGE
C---

SUBROUTINE CLSEDGE(OBJECT,EDGE,THETA,TRANS,TA,TRDLM,NCLASS,DECIS)

130

C
C THIS SUBROUTINE CLASSIFIES AN EDGE OF THE OBJECT. THE CLASSIFICATION
C IS BASED ON THE SMALLEST DISTANCE FROM THE TRANSFORMED PARAMETERS OF
C THE UNCLASSIFIED EDGE TO THE AVERAGE OF THE TRANSFORMED SAMPLES OF THE
C TRAINING SET OF EDGES.
C

INTEGER DEV,IN,OUT,STEP, INRAD,M
INTEGER EDGE,TRDIM,NCLASS,DECIS
INTEGER OBJECT,MINCLS
REAL MAXDIS,MINDIS
REAL THETA(11,10),TA(11 ,ZO)
REAL TRANS(11,11),Y(11,-20)
REAL CLSDIS(10)

COttMON 0EV, IN,OUT,STEP, INRAD,M

DATA MAXDIS/1.7E37/

IN = EDGE
DIM = M + 1

C
C TRANSFORM THE AR PARAMETERS OF THE UNCLASSIFIED EDGE
C

DO 200 J a 1,TRDIM

150,N aCONTN + (TRANS(I,J) *THETA(r,N))

200 CONT INUE
C
C FIND THE SMALLEST DISTANCE TO A CLASS
C

MINDIS = AXDIS
MINCLS =0
DO 400 K - 1,NCLASS

CLSDIS(K) =0.0

DO 300 3 =1,TRDIM

CLSDIS(K) = CLSDIS(K) +(Y(J,N) -TA(J,K))A*2

300 CONTINUE
IF(CLsDrso) .GT. MINDIS) GOTO 400
MINDIS =CLSDIS(K)

* MINCLS - K
400 CONTINUE

DECIS = MINCLS

WRITE(0EV, 450) OBJECT, EDGE, (,N) ,J=1,TRDIM) ,(CLSD 15(K), K=1 ,NCLASS)p
ADECIS

450 FORMAT(1X,2(I3,3X),.:TRDIM:F12:.7,. NCLASS:.F12.7,9X,I3)

RETURN
END

C---
C CLSOBJ
C---

SUBROUTINE CLSOBJ(OBJECT,OBJ,EDGECLASSpODJDAT,OBJCT,OBJCLASS,THOLE,
k TRDIM,NCLASS)

C

131

C THIS SUBROUTINE CLASSIFIES THE OBJECT USING THE EDGE CLASSIFICATIONS
C

INTEGER 0EV, IN,OUT
INTEGER EDGECLASS(10) ,OBJDAT(0:10,20)
INTEGER OBJECT,OBJ,OBJCT,OBJCLASS(10)
INTEGER COUNT,OBJHOLE,THOLE
INTEGER TRDIM,NCLASS

COMMON DEV,IN,OUT

N = 1
100 IF(N .GT. OBJCT) GOTO 600

OBJHOLE = OBJDAT(0,N>
IF(THOLE .NE. OBJHOL.E) GOTO 300

COUNT = 0
DO 2oo 1 = 1,CBJHOLE+l

IF(EDGECLASS(J) NE. OBJrAT(J,N)) GOTO 2oo
COUNT = COUNT + 1

200 CONTINUE

IF(COUNT E50. OBJHOLE+1) GOTO 500
300 N = N + 1

GOTO 100

500 OBJCLASS(OBJ) = N
A GOTO 1000

600 OBJCLASS(OBJ) = 0

1000 CONTINUE
C 1000 WRITE(DEV,1010) OBJCLASS(OBI)
C 1010 FORMAT(lX, 12X,<TRDIM>(8X),<NCLASS>(10X),14X,I3)

RETURN
END

C--
C OUTCONFUS
C--

SUBROUTINE OUTCONFUS(CONFUS,NCLASS)
* C

C THIS SUBRUTINE WRITES OUT THE CONFUSION MATRIX OF THE CLASSIFI-
*C CATION DATA

C
INTEGER CONFUS(20,20) ,NCLASS
INTEGER 0EV

* COMMON DEV

WRITE(DEV,100)

100 FORMAT(lX,'THE CONFUSION MATRIX OF THE CLASSIFICATION DATA'//)

WRITE(DEV,150) (I,1-1,NCLASS)
150 FORMAT(1X,GX,<NCLASS>I,,/7X,<NCLASSA5:.'-'))

DO 400 I a 1,NCLASS
WRITE(DEV,200) I,(CONFUS(IJ),1=1,NCLASS)

'100 FORMAT(IX,I5,'I',<NCLASS),15)

400 CONTINUE

terxi~m

132

CAA**AAA*A*A***AA A*AA*A'cAAAAAA *****A*A******AAAA
• C

C FILE COLLECT.FOR LAST REVISION JUNE 10, 1985

C
C
C SUBROUTINES CONTAINED IN THIS FILE ARE:
C

C INSIDE
C ROTATE
C OUTPUT
C ORDER
C

C---
C INSIDE
C --

SUBROUTINE INSIDE(BNDCT,BOUND)

C
C THIS SUBROUTINE FINDS OUT WHICH BOUNDARIES ARE INSIDE OTHER BOUNDARIES
C

INTEGER BNDCT,BOUND(10,10),BNDINT

INTEGER XR,XL,XPREV,RPIXEL,Z
INTEGER DEV,IN,OUT,STEP,INRAD

INTEGER OBJ,COUNT
INTEGER YLINE,FIRSTX,LASTX,STARTX,XINC,BUFF(0:511)
LOGICAL EDGE,RBND(20),LBND(20)

COMMON DEV,IN,OUT,STEP,INRAD

DO 40 1 = 1,BNDCT

BOUND(7,I) - 0
BOUND(8,I) = 0

40 CONTINUE

FIRSTX = 0
LASTX 511
XINC = 1
EDGE - .TRUE.

C
C LOOP FOR EACH EDGE
C

DO 600 N = 1,BNDCT
BNDINT = BOUND(I,N)
STARTX = BOUND(2,N)

YLINE = BOUND(3,N)

DO 100 1 = 1,BNDCT
RBND(1) .FALSE.
LBND(I) = .FALSE.

100 CONTINUE
C
C SEARCH FOR EDGES ON THE RIGHT
C

XPREV - 0
CALL RSCAN(YLINE,FIRSTX,LASTX,XINC,BUFF)

DO 200 XR - STARTX,LASTX
Z = BUFF(XR)
IF((Z.EQ.O).OR.(Z.El.255).OR.(Z.E.BNDINT)) GOTO 200

133

IF(XR .NE. (XPREV + 1)) GOTO 150
XPREV = XR
COTO 200

150 RDND(Z) = RBND(Z) .NEOV. EDGE
XPREV = XR

200 CONTINUE
C
C SEARCH FOR EDGES ON THE LEFT
C

XPREV = 0
DO 300 XL = STARTX,FIRSTX,-1

Z = BUFE(XL)
IF((Z.EO.O).OR.(Z.EO.255).OR.(Z.EO.BNDINT)) GOTO 300
IF(XL .NE. (XPREV - 1)) GOTO 250
XPREV = XL
GOTO 300

250 LBND(Z) = LBND(Z) .NEUV. EDGE
XPREV = XL

300 CONTINUE
C
C COMPARE THE RIGHT AND LEFT TALLIES
C

COUNT = 0
DO 400 I = 1,BNDCT

IF(.NOT.(RBND(I) .AND. LBND(I))) GOTO 400
COUNT a COUNT + 1
OBJ = I
BOUND(7,N) = I !FOUND AN OUTER EDGE

400 CONTINUE
I(COUNT .EU. 1) 6070 450
BOUND(7,N) = 0
GOTO 600

450 BOUND(8,OBJ) = BOUND(8,OBJ) + I !COUNT HOLES INSIDE OUTER EDGE
600 CONTINUE

RETURN
END

C ---
C ROTATE
C ---

SUBROUTINE ROTATE(BNDCT,BOUND,ORIENT)
C
C THIS SUBROUTINE CALCULATES THE ROTATION OF THE MAXIMUM RADIUS VECTOR
C (IN DEGREES) IN REFERENCE TO THE STANDARD CARTESION COORDINATE SYSTEM.
C

INTEGER BNDCT,DOUND(10,10)
INTEGER XC,YC,XMAX,YMAX
REAL ORIENT(10)
REAL XDIF,YDIF,THETA

XC - 4
YC - 5
XMAX - 9
YMAX - 10

DO 500 1 = 1,BNDCT
XDIF a FLOAT(BOUND(XMAX,I) - BOUND(XC,I))
YDIF -FLOAT(BOUND(YMAX,I) - BOUND(YCI))

w o . 0' or o-4. Ir -- LIN. .A

1 34

IE(XDIE :NE. 0.0) GOTO 400

THETA = 90.0
'3010 490

300 THETA = 270.0
'3010 490

400 THETA z ATAND(YDiE/XDrF)
IF(XDIF .LT. 0.0) THETA =THETA + 180.0
IF(THETA .LT. 0.0) THETA =THETA + 360.0

490 ORIENT(I) - THETA
500 CONTINUE

RETURN
END

C--
C OUTPUT

SUBROUTINE OUTPUT(BNDCT,BOUND,RAD,ORIENT)

C

INTEGER BNOCT,BOUND.10,l0)
INTEGESR DEV
REAL RAD(-2:300,10),ORIENT(I0)

COMMON DEV

WRITE(DEV,50)
s0 FORMAT1IX,'EDGE',6X,'START',8X,'CENTER',GX,'NUMPIX',2X,

A'LNSIDE',2X,' HOLES',' RUT (DEG)',' # RAD VEC',
A I MAX RAD V.EC (PIX)'/)

DO 900 N = 1,BNDCT
WRITE(DEV,750) (BOUND(I,N) ,1=1,8) ,ORlENT(N) ,RAD(-2,N),

A RAD(-1,N)
750 FORMAT(IX, 13,5X, '(',r3, '9',13,') ' ,X, - C',13,','

800 CONTINUE

C WRITE(DEV,810C(N,N a 1,BNDCT)
C 810 FORMAT,,,BNDC T::(X,'EDGE'ND CT::i(7 ,'',I,)'),,)
C WRITE(DEV,820)
C 820 FORMA(/,' NUMBER OF RADIUS VECTORS:',!)
C WRITE(DEV,825) (RAD(-2,N) ,N-1,BNDCT)
C 825 FORMAT(lX,3X,SFI0.4)
C WRITE(DEV,830)
C 830 FORMA(/,' MAXIMUM RADIUS VECTOR:',
C WRITE(DEV,835) (RADC-1 ,N) ,N=1 ,BNDCT)
C 835 FORMAT(1X,3X,SFLO.4)
C
C WRITE(DEV,850)
C 850 FORMAT(/,' RADIUS VECTOR LENGTHS:'/)
C
C DO 950 1 - 1,INRAD+l
C WRLTE(DE,920) I, CRAD(I,N) ,N-1 ,BNDCT)
C 920 FORMATCIX,13,SF10.4)
C 950 CONTINUE

136

310 IF(LIST(DIS,PLACE+1,OBJ) .EQ. 0.0) GOTO 320
PLACE = PLACE * 1
GOTO 310

320 LIST(BDINT,PLACE+l ,OBJ) = LIST(BNDINT,PLACE,083)
LIST(DIS,PLACE+1 ,ODJ) = LIST(DIS,PLACE,0BJ)
IE(PLACE .LE. MARK) GCJTO 340
PLACE = PLACE - 1
GOTO 320

340 LIST(BNDIMI,PLACE,OBJ) = FLOAT(N)
LIST(DIS,PLACE,OBJ) a DIST

500 CONTINUE

C WRITE(DEV,550)
C 550 FORMAT(1X,//' OUTER EDGE INNER EDGE ORDER DISTANCE' /

DO 800 083 1,BNDCT
PLACE =1

720 IF(LIST(BNDINT,PLACE,OBJ) .EQ. 0.0) GOTO 800
INEDGE - INT(LIST(BNDINT,PLACE,DBJ))
IF(INEDGE .EQ. 083) GOTO 730
ORD - PLACE
130TO 735

V730 INEDGE - 0
ORD -=0

735 CONTINUE
C WRITE(DEIJ,740) 093, INEDGE,ORD,LIST(DIS,PLACE,O9J)
C 740 FORMAT(lX, IG,9X, 13,11X, 12,7X,EIO.4)

PLACE 2 PLACE + 1
GOTO 720

800 CONTINUE

RETURN
END

-/

Nx

-

