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i INTRODUCTION

"

e

8 Basic queueing theory begins with an arrival process, a

gi service mechanism, and a queue discipline. Practical appli-

j; cations can extend this beginning into a network where the é
fg nodes would be service mechanisms of one or more servers. |
a
;3 Such applications include communication systems, computer _
t? time sharing processes, medical care facilities, assembly |
;ﬁ' operations, and so on. The analysis of such networks

?ﬁ involves the solution of large scale systems of equations
‘x and computational problems of large dimensions. Due to the

f intractability of the mathematical models, computer simula-

tion is a commonly employed analysis approach.

iﬂ Simulation, however, 1is an experimental approach rather

3 than an analytical one, and presents a host of issues

o inherent in sampling. These issues include the choice of

i input distributions, statistical methods for analyzing out-

.

j? put, the comparison of alternative systems, model verifica-

gj tion and validation, and techniques used to improve the

e precision of estimators. The last issue 1is commonly

2

,*; referred to as variance reduction and is the topic of this

{

L1 research.
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! A simulation of queueing networks is partially driven by
'fﬁ' sampling realizations of random variables; therefore, the
oo .
;ﬁb outputs produced are also random variables. These outputs
o
AV are generally mapped into estimates of interest through an
fﬁf output function (e.g. a sample mean for instance). These
Ko .
{:{ estimators possess sampling distributions usually having
i
Sy . . .
bl unknown means. The precision of these estimators is meas-
,xv ured by their variances: the smaller the variance the
>
"o
IE% greater the precision. Therefore, reducing the variance is
)
e a method for increasing the efficiency of the simulation.
5;; One technique employed for variance reduction is the use
s
jﬁ of contreol variates. This technique uses the correlation
q.
o,
Lo’ between specified random variables to achieve a variance
f ; reduction. One type of control variate is the external
)
gy
; §: control, which is obtained by simulating a similar system
&'p ‘;"
e whose performance measures can be analytically computed or
y
syl closely approximated. A variance reduction can be obtained
E. l’, .
, , . . . L
o if the output of the second simulation is positively corre-
g
ot lated with its counterpart from the original simulation.
] A number of gqueueing networks can be categorized as
By
A , )
jﬁﬂ Jackson networks, for which the analytical computation of
SN
\ L] . . .
e various performance measures is possible. Jackson networks
‘%3 have been considered as possible control variates for simu-
) ’v‘.\:-
jﬁ$ lating more general networks. There are at least two ways
e
W in which Jackson networks can be used to obtain control
Pz
i:"
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>
$ % 3
e
‘.‘| >,
Kol
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3
variates. The first method, as described above, involves
running a second simulation of a similar Jackson network
and using the corresponding output of this second simula-
tion as the control variate. This method is commonly
referred to as external control variates. A formidable
drawback with this approach is the cost of the second simu-
lation.

The other method for obtaining a control variate is to
use the difference between two performance measures calcu-
lated from the Jackson model as the control variate. One
measure is computed by substituting the known input parame-
ters into the Jackson equations. These parameters could be
the mean arrival or service rates used to drive the simula-
tion. The other performance measure is computed by substi-
tuting estimates of these same parameters obtained from the
simulation into the Jackson equations. This type of con-
trol variate is referred to as an analytic control since it
is obtained from an analytical operation rather than a sec-
ond simulation. The advantage of this approach is eliminat-
ing the cost of the second simulation. This is a new
approach.

The purpose of this research is to study the effective-
ness of Jackson networks as external and analytic controls
for queueing network simulations. The approach taken is to

experiment with a small but representative set of networks

Ay W T Y . N AT Ny, =
1 ' X 5 NN NS . DU h ; Ty "
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with an eye toward drawing general conclusions about the
. performance of this variance reduction technique. Nelson
[15,16] notes that prior knowledge of the system in ques-
" tion is a key component in the selection of an appropriate
h variance reduction technique. The conclusions drawn from
l this research should provide the analyst some prior knowl-

edge for selecting the appropriate variance reduction tech-

& nique.

.

% This research will attempt to add to this prior knowl-
N

ﬁ‘ edge by studying the performance of Jackson based external

™~ and analytic controls on various gqueueing performance meas-
ures, by investigating the impact of the service distribu-
K tions, traffic intenstity, and network structure. In

addition, the suitability of automating this approach and

A

areas of future research will be discussed. The remainder

. A

s

of this work includes a background on queueing networks and
control variates, the methodology used in this research,

results and conclusions.
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by '
e
o BACKGROUND
-
W
';o':
é- The purpose of this chapter is to present an integrated
Ry . . .
' review of the literature relevant to this research. The
31’ review is divided into three sections: the first presents a
§
l‘l'v
ﬁ% brief introduction to queueing networks and formally
W
l“"i
v”f defines a Jackson network; the second presents the theory
a
)
fzg and development of control variates, and the third discuss-
o‘ "
K . . .
3¢§ es the results of the control variate techniques applied to
i
% . . .
’ gueueing network simulations.
Pia
po
'ii : QUEUEING NETWORKS
o .. |
37 In general, qgueueing networks are classified as open or 3
o ‘
A closed networks. In an open network customers arrive from
'
1 C s s
gg“ outside the network; this characteristic is called exoge-
b
e’f‘ \
“ nous arrivals. In general customers may enter the network 1
i |
:: at any node. Customers then proceed through the network \
’ ,‘
H‘ according to their needs or in some random manner and may
S

depart the network from any node. A closed network is simi- |
lar in structure to an open network; however, there are no !

exogenous arrivals and customers never depart the network.

RN O IO Y
B O A A
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There is always some fixed number of customers present in a

,ﬁ? closed network. Figure 1 shows examples of the open and
1;5 closed network types. This network contains a number of
#k ‘ points where customer routing decisions must be made. These
ﬁﬂ points are called switches and their operation is governed
éi by switch rules. These rules may be imposed externally to
gk the system (e.g. a routing or dispatch form), internal to
%ﬁ the system (e.g. the server at node 1 may determine whether
k)

a customer goes to node 2 or 3), or the rules may be deter-
WO mined by the customers (e.g. customer selects the shortest

waiting line).

o
Uy
e
M -

e External Departure
el Arrival
Open Network

r EE

Closed Network(Number of Customers= C)

Figure 1l: Open and Closed Queueing Networks
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While the systems in Figure 1 illustrate the idea of
open and closed networks, more detailed symbols are needed
to model more complicated structures. Consider the network

in Figure 2.

Feedback

— OO

External Decomposition Recomposition Departure
Arrival Switch Switch

Figure 2: Sample Queueing Network

There are two basic types of switches: decomposition and
recomposition. A decompostion switch splits a single stream
of customers into a number of streams. A recomposition
switch merges a number of streams into one superposed
stream.

Another possible feature is feedback. A feedback point
is one where customers may be directed to repeat a service
node; direction is provided through feedback rules.

There are three principal methods for analyzing queueing
networks: first, analyze the network as a whole; second,

decompose the network into subnetworks; and third,

C
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K use computer simulation. In his survey paper Disney [3]
gq notes that the difficulties in mathematically analyzing
gg . gueueing networks arise from flow properties rather than
i | physical properties. Once customers enter a network the
5% combinatorial effect of service mechanisms, switch and
gﬁ feedback rules, and queue disciplines alter the flow within
< the system for the individual customer.

. Many of the techniques for analyzing networks as a whole
?: are based on the research of J.R. Jackson [7,8]. The major
éo thrust in this area has been studying the queue length pro-
?' cess and most of the known results are for steady-state
if behavior. The primary obstacles encountered are finding the
?3 solutions of large scale systems of equatioﬁs.

1 The second approach, decomposition, attempts to break
:; the network down into subnetworks whose characteristics are
'i well known. The most commonly used point for decomposition
Tﬁ; is at the switches. There are two basic technical problems
g% with this approach: first, determining the effect of
ﬁﬂ switching rules on the stochastic properties of network
ﬁ% flow; and second, determining the result of recombination
ﬁ% of the subnetworks. The primary obstacles encountered are
3¢, probabilistic as opposed to algebraic, and involve computa-
;c tional problems of large dimension.

.é The third approach, computer simulation is probably the
e

-

most commonly employed for general networks. Simulation is
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: °
an experimental approach rather than an analytical
approach. The obstacle faced is how to analyze the measures
obtained from the simulation. Often simulation output is
used to estimate a population mean. In general, the output
is correlated and highly variable. Estimation and the con-
trol of the variance of estimators is important, and 1is
reflected in the validity and width, respectively, of
interval estimators of these popluation means.

The characteristics of a queueing network are principal-
X ly determined by the arrival processes, service mechanisms,
J queue disciplines, switches, and feedback rules. The model
formulated by Jackson [7] properly defines these character-
istics so as to facilitate a generalization of the M/M/s
“ queue (Kendall notation meaning exponential interarrival

times/ exponential service times/s servers) to an intercon-

- o s

nected open network of service nodes. The defining charac-

' teristics of a Jackson network are listed below:
’ 1. The network contains more than one service node.
2. Each node can be a single or multiple server gueue

h with each server having an identical exponential ser-
vice time distribution. Service times are independent.
3. Arrivals from outside the network occur in a Poisson

fashion. Outside arrivals to any node are independent.

4. Arrivals at any given node may come from outside the

network or from any other nodes.

s ol "2}
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" 10

. 5. The effective arrival rate at every node is less than

3 its potential service rate.

i? 6. When a customer completes service at a node, he may

leave the network or be routed to another node.

@ 7. There is unlimited waiting s;pace at every service
node.

8. The queue discipline is first come first served.

Although the parameters are fairly restrictive, the mod-

{ el is still quite general. Subsets of Jackson networks are

t 1. A finite number of M/M/s queues in tandem; tandem net-

: works have only one exogenous arrival point and one

- path through the network.

2. An acyclic network of M/M/s queues; these are networks
where customers may visit a node only once.

3. A network of M/M/s queues with feedback.

[ e A Rl )

A 1T X 4 X4

Jackson proved the important result that in steady

state conditions, each node in the network functions as an

independent M/M/s queue with Poisson input. This fact
N allows the decomposition into subnetworks and the pursuant
2 application of M/M/s results. Another important fact is
: that although feedback destroys the Poisson property of the
& input stream, the nodes of the Jackson network continue to
g- function as though the input process was Poisson.

) Lemoine [13] presented a survey of equilibrium results

for general Jackson networks. If the network is open, the

™
-

)
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equilibrium rate of flow through node i, ei , is the sum of
the external input rate, )\i, and the total rate of inter-
nal inputs to node i. This balance equation can be written

as

A, + ) i
e1= i + J;l rjl ej 1—1,-..,N (1)

where rji is the probability a customer is routed from
node j to node i, and N is the number of service nodes in
the network.

Since the effective arrival rate at e;ch node 1 must be
less than its potential service rate, or else the number of

customers in the system will continually grow as time goes

on, the traffic intensity Qi must satisfy

Qi=ei/(siui)<1 i=1,...,N (2)

where si is the number of servers and uy is the service

rate at node 1i.

Another equilibrium flow condition derived from the open
network is that the total input flow rate must equal the
external departure rate. For any node 1, the probability

that any customer leaves the network is

qi= 1~ ﬁ rij (3)

L AL NS NN W s e o L.
N A e R el X e RO 0
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therefore,

N
ﬁ)‘f igl i 9 (4)

i=1

In his work Jackson [7] used as a state variable a vec-
tor whose components represent the number of customers
present at each node in the network. His analysis showed
that under equilibrium conditions the probabilty of the
system being in state k, p(k), could be factored into a

product of the marginal probabilities:

P(Ky, ..., kg)=p; (K;) «.. Pylky) (5)
where
%i—l . si 1 -1
p;(9)= (ei/ui) + (e;/uy) (6)
x! s;0 (1-9;)
k=0 ]
and
( p;(8) (e;/u;)" k=8,1,...,8, (7)
k!
p; (k)=
Pi(ﬂ) (ei/ui)k k>Si
k-85.
L SL (s ) sl
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o
'

2

s 13 ‘
ﬁ" ‘
%d The preceding two equations can be recognized as those
o of the basic M/M/s model with effective arrival rate, e
' »

_ﬂ
R; replacing A‘i' This generalization permits the decomposi-
o)
%; tion of the Jackson network into a collection of multi-
w server subnetworks.

f

X,
i Using the above results and Little's [14] formula the
L))

" following measures of performance can be obtained:

¢§ Long run queue length (LQ.)=p.(@) (e /u.)si'( Q.) (8)
0 i!7Pj i/Y i
W l 2
i 50 (1-05)

5 de length (L, )=LQ. .

" Long run node leng ( l) Lo, + ei/ul (9)
e
‘@ The long run node length is the sum of the number of cus-
il
AN tomers in service and the number in the queue.

l,
gg Long run queue time (WQi)=LQi/ei (19)
; : Long run node time (wi)szl + 1/ui (11)
ks
e Nelson [17) extended the results for Jackson networks
oY

x: by deriving the probability distribution for the total
* . :
- waiting time (excluding service time) for a customer to
R pass completely through the network. This result was
K
7.
p: obtained by the convolution of waiting time distributions
e
fﬁ' at each node.
Sl">
i
0:, i
U
0
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Eg The sojourn time of a customer in a network is the time

a spent at each of the nodes visited (queue and service time
§§ ' combined) plus travel time between the nodes. Travel time
3# : in a Jackson network is assumed to be zero. For most net-
: works the sojourn time problem is unsolved. Burke [1] and
;& Reich [18] present results for small special case networks.
2§ Gordon and Newell ([6] analyze a closed network of N
T interconnected nodes and C customers. Each node has si .
:s i=l,...,N, parallel servers each with service rate u,. The
3: routing from node to node is the same as a Jackson network
b

g except customers do not depart the network. The system is
[}

()

vrw'a

equivalent to some open networks where the number of cus-

AT

tomers cannot exceed C. The authors' principal result was

- pu
P -
-

an expression for the eguilibrium distribution at each

Sj node. The expression is factored into product terms for
R "

- each node with the exception of an unknown normalizing con-
: stant that reflects the interaction between nodes.

B

?’ Buzen [2] developed an iterative technique for deter-
X

4 mining the normalizing constant. He also derived the margi-
z‘l‘_

” nal distributions of the number of customers present at the
s

3% nodes, the expected number of customers at each node and
a5 the steacdy state utilizations.

)

3 Solberg [19] developed a computationally efficient meth-
o

g- od for computing the normalizing constant.

1.
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In summary, the analysis of Jackson networks have the

following limitations:

1. Service time distributions must be exponential.

2. Service nodes must have identical servers.

3. Only probabilistic routing between nodes is permitted.
4. Customer oriented performance measures such as sojourn

times are difficult to obtain for other than special
cases.
5. Travel time between nodes is assumed to be zero.
The scarcity of analytical results for other than special
cases makes using network models difficult for practical
applications. In general computer simulation often becomes
the analysis approach and, as mentioned previously, estima-
tors of the performance measures will possess some degree
of variability. Reducing this variability to increase the
estimator's precision becomes a major concern. One way of

addressing this concern is the use of control variates.

CONTROL VARIATES

The central idea of control variates is to use the correla-

tion between specified random variables to achieve a vari-

ance reduction. A random variable, C, is a control variable
for the random variable Y, if it has a known expectation,

7: and is correlated with Y.

T AT Y A T e e . ‘
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Let Y be an unbiased estimator of o, the quantity of
interest, obtained from a single simulation run. Then for

any constant b, an estimator of Y can be written as

Y(b) =Y - b(c - V) (12)
Equation (12) is also an unbiased estimator of O. The vari-
ance of Y(b) is given by

var[Y(b)Jl=vVar[¥] + b?var[C] - 2bCov[Y,C] (13)

which is the same as

var[Y(b)J=var[Y] + b?var[C] - 2bgVar[Y] Var[C] (14)

where @ is the coefficient of correlation between Y and C.
The value of b, b*, which minimizes the Var{Y(b)] can be

found by differentiating (13) with respect to b and is giv-

en by
*
b = Cov[Y,C] (15)
var[C]

Substituting the above into (12) yields the optimal control

variate estimator Y(b*). The variance of this estimator is
then

* 2
var[Y(b )J=var[Y] (1-0Q°) (16)
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Equation (16) indicates the greater the correlation between
X Y and C, the greater the reduction in variance.

Kleijnen [9] discusses extensions to multiple control

i variates

n
* Y(b)=Y - igl b (c;= ;) (17)

where n is the number of control variables.
Law and Kelton [12] present two general methods for
obtaining control variables. The first is to use input ran-
: dom variables, such as arrival rates, service rates, and
.z routing probabilities, since their expectations are known
and the sign of the correlation with the output may be
known. This type of control variate is known as internal or
? concomitant. Since they are generated by the simulation to
obtain the outputs, using them adds 1little to the cost of

the simulation.

A second method for obtaining control variates is to
" simulate a similar system whose desired performance measure
can be analytically computed. This simulation uses the same

random numbers as the first simulation to induce positive

- - B,

correlation. The corresponding output of the second simu-
lation can then be used as the control variate. This type
of control variate is called an externali control variate.
X The desired outcome is that the output of the second simu-

lation is positively correlated with its counterpart from

‘l I;.
.‘3*101 ’l |

5. BN o etg d ‘
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the original simulation. Unlike internal control variates
the cost of a second simulation is incurred, which in some
cases may be prohibitive. Thus the covariance between the
outputs will have to be larger than for the internal con-
trol variates to make this approach worthwhile.

A third method for obtaining control variates, suggested
by Nelson [15), is an amalgam of the internal and external
approaches. He suggests simulating the system to obtain the
desired performance measures and the means of the input
parameters observed during the simulation run. The control
variate 1is derived by substituting these observed input
means into a parametric analytical model of a similar sys-
tem. The mean of this control variate would be derived in a
similar fashion, except the known input means, rather than
the observed means, would be substituted into the paramet-
ric model. Expressed in the linear control variate format,

the control estimator of Y would be

Y(b)=Y - b (A - f') (18)

where Y is the crude estimator obtained from the simula-
tion; A=g(§i), is the control variate where ﬁi is the
observed mean of the input X, driving the simulation that
produced Y and i=l,...c, where ¢ 1is the number of input
parameters in the parametric model function g; and

r;g(E[ii]) where E[?ij is the input mean. Equation (18)
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need not be unbiased since the expectation of a function is
not in general a function of expectations.

From a cost standpoint the analytic approach has an
advantage over the true external in that the cost of the
second simulation is avoided. The effectiveness of this
approach using the Jackson network as the parametric model
is the focal point of this research.

Once a control variate method has been selected the
problem of specifying the control coefficient, b, must be
addressed.

Consider ihe case where there is only one control vari-
ate, C, and (12) is used as the control estimator. Then the
optimal value of b, b*, is expressed in (15). In general
CovY,C] and the Var[C)] are not known; therefore, b* needs
to be estimated.

Kleijnen [9] presents a method for estimating b* from
the simulation results. He suggests replacing Cov[Y,C] and
var[C] with their sample equivalents. Consider making n
independent replications to obtain n independent and iden-
tically distributed (iid) observations of Y and C. Then the

sample covariance of Y and C, covly,c], is given by

n
covly,Cl=_1 Z (yi-?) (c;-C) (19)
n-l o1

and the sample variance of C, vir[c] is

n
var[cl=_1 Z (c;-2)2 (20)
n-l 4=

e T NN T AN AT
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:5 . then the estimator for b, D is given by
W

W b= cbv[Y,C] (21)

) var[c]

g This produces a final point estimator of ©

R v(b")= ¥-b"(T-7 ) (22)

*
* It should be noted that Y(b ) may not be unbiased since %*

-
-

R LR R
PR D AP

-
-

. . * .
and C are not usually independent, since b* is a function

of C as given by (21). The author discusses two tech-

nigues, splitting and jackknifing, for reducing the bias of
[ 3K 4

Y(b ).

b The case of multiple control variates is addressed by

! Lavenberg and Welch [19]. The following notation is adopted

vﬁ?. to rewrite (17) in matrix form. Let X be a column vector,

$ and X' be its transpose. Then C 1is a column vector of Q

i control variates and :Z is the mean vector corresponding to

C where ’Yi=E[Ci]. Let b be a vector of constants. Then an

]

CA =

o &
3

estimator of © is

PR AN

AN T\—'

YR)=Y-B (- L) (23)

CARAEF .
t"v'_.{-? :-»1'

=i lp

5
}

The vector h* which minimizes var[Y(R)] is

|‘,';
":'f'f‘. p’= Z-é Tyc (24)
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where ZC is the covariance matrix of C and IYC is the
Q-dimensional vector whose components are the covariances
between Y and the Ci, i=1l,...,Q. This leads to a minimum

*
variance for Y(h ):

*
var[Y(p )]= (1-R§c) var[Y] (25)
where
2 - [] -1
’Hrc - g—Yc Zc -qyc (26)
var[Y]
and (l-Réc) is called the minimum variance ratio. R%c

is the square of the multiple correlation coefficient
between Y and C.
*
As with the single control variate b is unknown and

. . *
must be estimated. An estimator of b is

A*— -l
k= z:c: 2’1:'c (27)

where Z:C is the sample covariance matrix and iZYC is the

sample covariance vector.

E; To derive interval estimates the authors consider obser-
v

g; vations from J statisically independent but otherwise iden-
i; tical runs. Then £ would be a vector of control variates
35 whose components are the values of Qj on the jth replica-

tion. Then

j
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* *
Y (R)=v b (cs-1) (28)
and
J
AR AR
¥ (b )=_% z; Yj(b ) | (29)
J=

In general Y(%*) is not an unbiased estimator of © and the
t-distribution with J-1 degrees of freedom cannot be used
to derive the interval estimate. The authors derive con-
fidence intervals for the multiple control case based on
the assumption that the vector (Y,Cl,...,cQ) has a multi-
variate normal distribution. Under this assumption stan-
dard regression techniques can be used to produce

var[¥(b")1]

¥(b")-e ~ t(J-0-1) (39)

tvar[¥(d*)33°3
where t(J-Q-1) is the appropriate ordinate from the
t~distribution with J-Q-1 degrees of freedom.

In addition the ratio

- A
vVar[Y(b )]= J~2 (1-R (31)

2
yc!

var[Y] J-Q-2

-
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The above equation indicates that if J, the number of rep-
lications , is not large with respect to Q, the number of
control wvariates, the variance reduction produced by
(l-Ric) will be diminished. The authors report experi-
mentation which showed this factor accurately predicted

losses in variance reduction.

APPLICATION OF CONTROL VARIATES

The control variate approach was applied to gqueueing net-
work simulations by Lavenberg, Moeller and Welch [11], and
Gaver and Schedler [5]. A summary of these works follows.
Lavenberg et al. [11] considered the application of
internal control variates to a broad class of closed net-
works. These networks allowed priorities, blocking, differ-
ent customer types and arbitrary service time distribu-
tions. Their network consisted of n finite interconnected
nodes with one or more servers, and d=1,...,D customer )
types. A type d event is the departure of a type d custom-
er. Customer routing through the network was controlled by ‘
an (nxn) transition probability matrix. The following meas-
ures were obtained: W, (d), the expected queue time for type

d customers at node i; A(d), the expected rates at which

o
2 8 @ g

S

events occur for type d customers; T(d), the expected time

'q) .I

4

for type @ customers to cycle through the network and

return to the first node.
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The authors experimented with three types of control
variates, all of which were internal control variates. The

first, work variables, represented the sum of service times

for type d customers at node i for type d events in the

system. The second, flow variables, represented the frac-

tion of type d events at node i. The third, service vari-

ables, represented the sample mean service times for type d

customers at node i.

The authors reported substantially larger variance

reductions using work variables as opposed to flow or ser-

vice variables. Experimentation was then limited to work

variables. For a

network consisting of four to six nodes

and one customer type, they report predicted actual vari-
ance ratios using six control variates (Q=6) of .30 to .85.
Predicted actual variance ratios were obtained by multiply-
ing the estimated minimum variance ratios by the theoreti-
cal loss factor. Estimated variance ratios ranged from .16
to .77, and are ratios of the variance of the point estima-
tor with work variables to the variance of the crude point

estimator. The largest variance reductions for waiting
times were achieved at the node having the largest utiliza-
tion factor.

Wilson and Pritsker [21] performed a similar study using
standardized work variables. Work variables are standard-

ized for a specific time period by correcting each variable

. - - - . L] - a " - -~ - - L & e "
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S observed by its mean and standard deviation. This is per-
;;ﬁ formed so the control variates would be asymptotically sta-
52; ble, ensuring efficiency gains are sustained over increas-
aR ing statistic accumulation intervals. The authors report
%ﬁ% variance reductions of 20 to 90 percent. They stated their
%ﬁ standardized work variables could not be extended to simu-
. lations of open and mixed networks.

;i; Gaver and Schedler [5] applied external control vari-
3% ates to a closed network. Their study was the only one
;: found reporting results for external controls. Their net-
;:; work contained two service nodes each offering three dif-
Ezg ferent types of services. They allowed for priority service
i and a mixture of arbitrary and exponential service time
‘; distributions. Steady state utilization factors were the
:f# performance measures of interest. Their control variate
‘; was the utilization obtained from the simulation of a simi-
ig: lar but numerically tractable model.

o Results were reported for control variate estimators
Al

o using a control coefficient equal to one and an estimated
55 optimal control coefficient based on (21). For the control
ij : coefficient equal to one variance reductions of 51 to 99
ﬁ& percent were achieved with one exception: a node with 99
.;; perecent utilization produced a 29 percent increase in var-
O o

52& iance. For the estimated optimal control coefficient case
"

'f variance reductions of 81 to 99 percent were achieved. The
2'

g

o

: (N
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lp
S authors note the latter estimates may not be unbiased since
N b was estimated from the data; however, this bias decreases
LS
&
}: as the sample size increases. No direct conclusions could
:.‘.'! -
™ be drawn about the relationship of utilization and variance
)
‘ﬂ reduction. The results did indicate a trend in which uti-
%! lization estimates with large sample variances showed the
» &
Y,
L)
* largest variance reductions after the application of con-
ﬁﬁ trol variates.
&
:{ As stated in Chapter 1 the purpose of this research is
#. f
X
- to study the effectiveness of Jackson networks as external
oY and analytic control variates for open gqueueing networks.
I
' . . » 03 .
e Figure 3 places this research in the context of previous
atyd
o work in this area.
)
3
iy Control Variates in Queueing Network Simulations
i. / \
o Closed Open(this research)
;‘ )
)
W Internal Lavenberg et al External
L)
. External Gaver and Schedler Analytic
b Figure 3: Context of the Research
A
i;
3 The study of external and analytical control variates
§
c: applied to open queueing networks is largely without prec-
s
W edent. The network structures to be tested and the
5
b
y
v
‘|.
0
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: methodology of carrying out these tests are very experimen-
A

tal. This makes it difficult to predict in advance the

s
B
& ' suitability of these controls for this class of simulation

-

problems.
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CHAPTER II1I

METHODOLOGY

The primary objective of this research is to investigate
the effectiveness of the Jackson model as a control variate
for gueueing network simulation. Three different network
structures were investigated, each meeting the restrictions
of the Jackson model with the exception of service time
distributions. Service distributions investigated were the
exponential, the Weibull, and the uniform. For each network
two types of control variates were obtained: the tradition-
al external control variate and the analytic control varai-
ate. These controls were obtained to estimate the steady
state measures of server utilization factor and customer
queue time at each node.

The utilization factor was selected because it serves as
an indicator of the 1level of activity or degree of con-
gestion at a particular node i. The gueue time provides the
long run waiting time a customer will experience in a given
queue (excluding service time), and when applied 1in Lit-
tle's formula, LO.=e, WQ,, yields the 1long run queue

i
length. Additionally, the steady state values for the
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total time spent at a service node i, wi, and the number of
customers at the node, Li' can be found by substituting WQi

and LQi into (9) and (11).

TYPES OF CONTROL VARIATES

The classical external control variate requires two simula- |
tions. The first simulation is of the network of interest
and estimates the utilization factor and queue time for
each node. The second simulation 1s of a Jackson network
approximation of the original system. Since the exponential
distribution yields the Jackson model itself, external con-
trol variates are obtained only for the Weibull and uniform
cases. For each of these distributions a second simulation
was run with common random numbers using the means of the
Weibull and uniform distributions as the parameters of the

exponential, and the two desired performance measure esti-

mates were obtained. Using these means and the Jackson mod-
el equations, the corresponding steady state measures were
obtained analytically. The control variate estimators at
each node i (i=l,...,N) for the utilization factor, RO.Ci,
and queue time, WQ-Ci, based on external control variates

are given by

RO.C,=RO.5,-b(RO.E;~RO(J) ;) (32)

wo.Ci=WQ.Si-b(WQ.Ei-WQ(J)i) (33)

R L o IR L TN 2 o Y
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where RO.Si is the crude estimator of the utilization fac-
tor at node 1 obtained from the simulation; RO.Ei is the
external control variate obtained from the second simula-

tion; and RO(J)i is the analytic value of the steady state

Jackson network based on the parameters 2&, PR WQ.Si,
WQ-Ei, and WQ(J)i are defined similarly for the queue
times.

The major drawback of this type of control variate is
the cost of the second simulation and the associated prob-
lem of synchronization. A system is synchronized when a
random number used for a purpose, such as arrival or ser-
vice times, in one system is used for the same purpose in
the other systems being compared. The random numbers are
those generated from the wuniform (9,1) distribution and
mapped through an inverse transformation into the desired
probability distribution, such as Poisson or exponential.
Synchronization tries to solve the problem of insuring that
differences between the two simulations are due to model
performance and not random number sequences or coding
structure. If the systems were not synchronized the com-

parison of control variate performance might be influenced

t by the misapplication of random numbers.

W . . .

_5 In contrast, the analytic control variate requires only
W

Y

h simulation of the network of interest. To obtain the ana-

lytic control variate additional coding is added to the
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simulation program to record the vectors of observed mean

A
arrival rates, 2&, service rates,_ﬁ ,and the observed frac-
tion of customers routed to the various nodes, 2 .The ana-
lytic control variates at each node i for the utilization

factor, RO(3)i, and queue time, wo(ﬁ)i, are obtained from

the Jackson model equations

A
RO(J) =e, /(s u;) (34)
W 3) (35)
o] { i=LQi/ei
where e, is defined in (1) and LQ, is defined in (8). The

analytic Jackson values for the steady state utilization
factors and queue times were calculated in the same way as
the external control variates. Analytic control variate

estimates could then be calculated from
A
RO.Ci=RO.Si-b(RO(J)i—RO(J)i) (36)

WQ.C,=WQ.S, -b(WQ(J) Wa(J),) (37)

Equations (32) and (33) are the same as (36) and (37) with
the exception of the control variate terms. In (32) and
(33) the control variates RO.Ei, and WQ.Ei are obtained
from a second simulation of a network modelled as a Jackson

network. In (36) and (37) the control variates are

P
Ao N T
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obtained by substituting i&, ﬁ, i into the Jackson equa-
tions.

The tradeoff in using the analytic control variate 1is
the additional code required to obtain 2&, ﬁ, _ﬁ . This
additional coding is insignificant relative to the cost of
a second simulation. Once the controls or data needed to
compute the controls has been obtained the computational
effort to obtain the control variate estimates is the same
for both type of control variates.

One drawback of the analytic control variate is at high
traffic intensities (Q=.9) it is possible to obtain sample
values for 2&. .ﬁ, 2 which violate Jackson model assump-
tions, specifically ei/(siui)<l. This does not permit the
calculation of an analytic control variate based on the
Jackson equations. A possible solution could be to observe

the effective arrival rates, € , rather than observing 2 '

and'i. This approach was employed with one of the net-

works. Further studies of these two calculation methods is
required to determine the benefits and tradeoffs of each
method. Another drawback is that, in general, the expecta-
tion of a function 1is not equal to the function of the
expectation (e.g. E[RO(J)i]¥RO(J)i); however, because it is
a method of moments estimator, it is consistent. Therefore

using the observed mean arrival and service rates 1in the

Jackson model equations will result in a biased control
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}%* variate. A study to determine the severity of this bias is

5\; an area open to future reseach, since reduced variance at
ﬁg the expense of significantly large mean squared error is

1§ unacceptable.

il

A

*6 NETWORKS

%ﬁ To obtain a representative appraisal of the effectiveness

a? of Jackson model control variates, three networks with dif-

2§ ferent structure and complexity were simulated using common

ZA' random numbers. The first network consists of two nodes,

3; each with its own external arrival process. Customers com-

A

Q%; pleting service at each node may be routed to the other
»: node for service or may depart the system entirely.

'; The second network is a three node tandem, acyclic net-

;:g work. Tandem means the nodes are arranged in series and

3" acyclic means customers will visit each node once. External
ﬁq arrivals occur only at the first node where customers com=-

3? plete service and move to the second and then third nodes
§n for service. Departure from the network occurs only when
U service is completed at the third node.

;? The third network consists of four nodes with an exter-

;# nal arrival process at the first node. Customers completing

;& service at the first node are routed either to the second
<.

iﬁ: or third nodes and then on to the fourth. Customers com-
f pleting service at the fourth node may be fed back to the
;

l;) first node or depart the system entirely.
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e Three service time distributions were studied for each
A of the above networks. The first distribution, the exponen-
M) )
i? tial, is the requisite for the Jackson model. It has an
eI
%u ) infinite tail, is highly variable, and provides analytical-
g'j ly tractable performance measures for comparing the control
fﬁ variate estimators. The second distribution, the Weibull,
) -
) -
,! is similar to the exponential. It also has an ainfinite
‘: tail, but it is not as variable as the exponential, as
kL \l
IQ’ L]
z& characterized by the coefficient of variation. By setting
o : R
oY the Weibull shape parameter to 2 a humped distribution was
- Y o .
. obtained, thereby providing another reference point to
Y
_3§ measure the effectiveness of the Jackson controls. The
Y
S
hy third distribution, the uniform, was selected for its mark-
g ed difference from the exponential. It has finite range and
A&
b, e, is considerably less variable. The selection of these dis-
12N
N
A% tributions provides three references for studying the Jack-
5y son controls: the exponential, the requisite for the Jack-
P
P
o son model, infinite in the tail, and highly variable; the
o
> Weibull, similar to the exponential but humped in our exam-
i: ples; and the uniform, a finite range distribution with
|-\ .
,ij considerably less variability.
-
b, Other features of the networks studied include traffic
[T intensity and the number of servers at each node. To study
A,
\f, the effect of congestion on control variate performance
o both high, @ =.90, and low, Q =.5¢, traffic intensities
'3
b )
'.‘
1l \
)
s
5
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were studied. Traffic intensity measures the fraction of
the systems service capacity being utilized on the average
by arriving customers. Traffic intensities close to 1 mean
there will rarely be idle servers, s0 customers will be
found backing up into the queues. Queue times and lengths
will therefore be larger. Single and multiple servers were
studied in each network.

In summary, the basic experiment was to investigate two
types of Jackson control variates, external and analytic,
for estimating the utilization factors and waiting times in
three different queueing networks. The control variates for
each network were obtained for three service time distribu-
tions: exponential, Weibull, and uniform; and at both hagh
and low traffic intensities. Figure 4 proyides an outline
of the basic experiment for a given network. Figures 5-7
provide schematics and parameters for each of the three

networks.

EXPONENTIAL WEIBULL UNIFORM

ANALYTIC ANALYTIC EXTERNAL ANALYTIC EXTERNAL

Figure 4: Outline of the Basic Experiment
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-—-— 1
Sl=l
External _
Arrival Departure
)\1=1
Departure External
Arrival
)\2=.4
SERVICE DISTRIBUTIONS
EXPONENTIAL
NODE MEAN( Q =.9) MEAN(Q =.5)
1 .8308 .4616
2 2.1589 1.2000
WEIBULL (ALPHA=2)
NODE BETA(Q =.9) BETA(Q =.5)
1 .9375 .5209
2 2.4371 1.3541
UNIFORM(a,b)
. (R=.9) (€ =.5)
' NODE a a b
1 .4616 1.2000 .3232 . 6000 !
1 2 1.8196 2.5000 . 9900 1.5000 |
i Figure 5: Network I and parameters
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-———+<Z> > 2 )(€> > Departure

SERVICE DISTRIBUTIONS

EXPONENTIAL
MEAN(Q =.9) MEAN(¢ =.5)
. 9000 . 5000
1.7999 1.0000
2.6998 1.4999
WEIBULL(ALPHA=2)
BETA(Q =.9) BETA(¢ =.5)
1.0156 .5642
2.0319 1.1282
3.0464 1.6925
UNIFORM(a,b)
(Q=.9) (@=.5)
a b a b
. 4000 1.4000 .2500 . 71500
1.3998 2.2000 . 7000 1.3009
2.1996 3.2000 1.0988 1.9000

Network I1 and parameters

Rac e A he AL

e * R AT AT Xy e T ) T T N WEVE A D
’“-‘..5.'- .h . g L " ‘ * hy \ g » ‘ LEJt T Mom ‘Q‘ '?#g ‘.i&.»,i,‘_‘la'h.




— TV T U T O T DR O TR TN "J'mmmﬁwj"T*."-"""'!'H‘W'F‘WT'FV'Y‘K‘U"-"L“‘V"\T

38

2
r12=.6 r41=.25
External 4
Arrival — P Departure
1=1
51=1 r =,4 S4=
13 °
26
S3=l
SERVICE DISTRIBUTIONS
EXPONENTIAL

NODE MEAN(Q =.9) MEAN(Q =.5)

1l .6750 .3750

2 2.2502 1.2500

3 1.6875 .9376

4 1.3501 .7500

WEIBULL (ALPHA=2)

NODE BETA(Q =.9) BETA(Q =.5)

1 . 7955 .4232

2 2.5392 1.41065

3 1.9042 1.8579

4 1.5234 .8463

UNIFORM(a,b)
(Q =.9) (@ =.5)

NODE a b a b

1 . 3600 1.0500 . 3000 .4500

2 1.7504 2.7500 . 5000 2.0000

3 1.2750 2.1000 .4752 1.4000

4 .9502 1.7500 . 2500 1.2500

Figure 7: Network III and parameters
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h EXPERIMENTAL DESIGN
{y The basic computational steps required to obtain the ana-
1
) . . . .
1 lytic control variate estimators are defined by (36) and
W
i (37).
>} Previously it was mentioned that under high traffic
”
;; intensity conditions it was not always possible to obtain a
)
)
fe control variate for a given batch (defined below). In these
5& cases the vectors }L- iL _& may produce utilization factors
B0
o)
ﬂ: greater than or equal to one, a violation of the Jackson
¥,
§ 13 . . ]
f’ model assumptions. To handle this case the ratio of arrival
Y
}3 rate to service rate was set equal to .9999 whenever the
7
>
*y utilization factor was greater than or egual to one. This
Q
! in effect is the use of control variates from all the
:3 batches at the expense of introducing some bias into the
‘t
o control estimator.
O
& The discussion pertaining to (21) outlined the proce-
- dure for obtaining the estimated optimal control coeffi-
3f cient. The procedure required n independent replications to
-
K obtain n iid observations of the crude estimator and its
:? control. From these n values the sample variance and covar-
o
|J iance terms of (21) can be calculated.
*-¥ Since the performance measures of interest are steady
o0 state measures, an initial bias period for each replication
53
}b would have to be deleted. If the initial transient is long,
N
' as will be discussed later, the cost of deleting n initial
Yy !
a
I
Ky
N
i
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A
o bias periods becomes excessive. To avoid this costly
g: approach a simulation run consisting of J approximately
\5 independent batches of time length t was used instead of
Yo

! the n independent replications.
) Following this procedure, the Y and C of equations
Lo
3$ (19) through (21) are now replaced by §6.Sij, and §b(3)ij,
()
!

where §6'Sij is the batch mean for the crude estimator of

?- the wutilization factor at node i in batch j, where
.\'
,ﬁ i=l,...,N and j=1,...,J. RO(3)ij is the analytic control
?"l A
i“ variate derived from A , ﬁ,,_i in batch j. Let

N
f

' J

". R_O.S = l Z FO-S. . i=1,-oo,N (38)
. o 1]
o j=1
198
I
i

. J
Uy A A

N, G, .=1 ) R, (39)

J J

o =1
At

o J

u.' . A by A - A

i VAr[RO(3),3=1 ) (Ro(3), -Ro(d),.)? (40)
/2 i === ij i

Y J-l s |
X! =1 |
s
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Cov[ﬁb.si,ﬁa(J)i]=_A_ j{:(ﬁb.sij-ﬁb.si.) (41)

31 55

x(§6(3)ij-§6(3)1.)

Using (21) the estimated value for the optimal control

coefficient of the utilization factor at node i is

b= c8v[Ro.s,,R0(3),] (42)
vartﬁﬁ(ﬁ)ij

An analagous procedure was followed to obtain %* for wWQ.C.
The value of b computed in (42) can be used to compute

the control variate estimate for the run by using
RO.C, =RO b (RO () (43)
-C,=RO.S;.-b (RO(J),.-RO(J);)

Since the utilization factor is a time persistent per-
formance measure, computing §6.Si from batches of equal
time length produces an unbiased estimator assuming each of
the RU.Si are identically distributed. This is not the

case for the gueue time performance measure. WQ is a

RN M

semissizied
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- discrete performance measure, therefore batching by time
. produces a random number of customer queue times observed
; . in each of the j batches. The overall mean queue time for a

run, WB.Si. is given by

% I - FIR
WQ.Si.—% Z WQ.Sij (44)
j=1

P g
o
n
—
L
=]
m
w

- e
T A

where Bj is the set of all indices of queue times during

((3-1)t,jt), and dj=lBj[. Therefore

BN

v

: D

b Py —

§ WQ.Si.#J_ Z Q'Sin (45)
w D

Y n=1

Q. ]
3

a where D is the total number of gueue times observed in the

run. To accommodate the discrete case, the grand mean for

'

4
{3 all the queue times for the run, Wﬁ-si, was used to calcu-
ﬁ late the control variate estimate. WE.SI is given by

. D

- WQ.s;= 1 Z wQ.S, (46)
. D

" n=1

'(
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The control variate estimator of the queue time for the

run is given by
WQ.C.=@0.5, =D (Fe(d) (47)
Q.C,=WQ.5,-b ( i--wald) )

The identical approach is taken to obtain the external
control variate estimators. The only difference being sub-
stituting Fb.Ei and WE.Ei for ﬁb(ﬁ)i and'WE(S)i respective-
ly in (43) and (47). In practice these external controls
would be obtained by simulating the network of interest as
a Jackson network. Since exponential service yields the
Jackson model itself, the values of RO.E1 and WQ.E, equal
RO-Si and wo.si from the networks with exponential service
times.

The batch means approach serves two purposes. First,
the J batches per run provide a sequence of observations to
compute %* and the control variate estimators. Second, K
runs of J batches each can be obtained by simulating a
total of K-J batches. This will produce a sequence of K
control variate estimates so that the properties of the
estimator can be evaluated. The primary design issues with
this approach are the batch length t, and the number of

batches to be collected within a run, and within the entire

experiment.
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The number of batches selected for a particular run was
based on cost considerations and the loss of variance
reduction caused by estimating %*. This loss was expressed
in (31) as a function of the number of control variates and
the number of batches used to estimate %*.
While multiple controls are possible, this research
studies only a single commensurate control; that is, the
corresponding performance measure for the Jackson network.

The single control approach was adopted to contain the cost

of gathering control variate statistics and to facilitate

NSRS

automation. In addition, if the number of control variates

is large with respect to the number of batches, considera-

XN

:
1n,

ble loss in variance reduction will result. Since Q=1 the

loss factor, LF, can be expressed as

Vs
P

e A |
e

LF = J=2 (48)

J=-3
where J 1s the number of batches in a run. Table 1 lists
various loss factors and their corresponding number of
batches.
Based on the above comparison and cost factors, the number
of batches, J, was set at 25. The tradeoff of estimating
%* was then a 5 percent loss 1n variance reduction.
The batch length issue centers on choosing a time

length, t, large enough to secure approximate independence

between the batch means. 1t is assumed the output sequerice

P T e atae gy e A
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Table 1

Loss Factor Comparison

J Loss Factors(LF)
10 1.14
15 1.08
20 l.06
25 1.85
30 1.04
50 1.02

of crude estimators and their counterpart control variates
is covariance stationary, and the batch 1length will be
large enough so that the resulting batch means will be
approximately normally distributed. To select the batch
length, t, an independence test given by Fishman [4] was
employed for each network to evaluate the independence of
gueue times at each node.

The results of this testing produced a batch size and
corresponding number of batches based on a type 1 error
level of .05. The results for the node in each network
requiring the largest number of observations per batch are
listed in Table 2.

The number of batches was fixed at 25 for cost and loss
factor considerations as previously discussed. Since the
effective number of customer arrivals at each network was
approximately 1.8, it was assumed that over the long run at

least one gqueue time would be observed per unit of time.

SNy }}:-ff.-}}ii'-ix'{bid
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Table 2

Results for Batch Means Independence Test

NETWORK NODE NO. BATCHES SIZE TOTAL OBS.

1 1 49 64 3136
2 1 23 128 2944
3 4 12 512 6144

This assumption facilitates the conversion from discrete
batch size to continuous time batch length. This is done by
dividing the total number of observations from Table 2 by

25. Results are listed in Table 3.

Table 3

Selected Batch Lengths

Selected
NETWORK OBS./Batch Batch Length(time units)
1 125.4 150
2 117.8 200
3 245.8 300

The major concern in deciding the number of runs K, the

O "macro" replications for computing the point and interval
estiamtes, was cost. The CPU time required to simulate the

two node network for 10 runs was 1.3 seconds, the time for

20 runs was 1.7 seconds, an approximate 24 perecnt increase

in CPU time. This time will also increase with network
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* size. Given the total simulation requirements of this
% research and its associated cost, the number of rumns, K,
5 for each experiment was fixed at 10.

The performance measures being investigated are steady
. state means; therefore, a procedure to eliminate the ini-
N
tial transient was employed at the start of each experi-
ment. To approximate the length of the initial transient,
a pilot run 1listing the cumulative mean of the queue time

at each node in intervals of 100 time units was executed.

[

The results showed that from empty and idle conditions the

build up to steady state was very slow. The system appeared

YR

5N

very erratic during the first 10,000 time units before set-

[

tling down in a more predicable region around the steady

state conditions. Therefore a conservative policy of elim-

inating the statistics collected during the first 10,000

time units after starting from empty and idle conditions
N was adopted.

\ The pilot runs indicated that those networks with high
feedback tended to reach steady state sooner than those
with lesser or no feedback. We can only speculate that the
Mg high feedback tends to congest the system sooner, which in

turn has a stabilizing effect allowing the system to reach
. steady state at a faster rate. It should be noted that
this effect was studied only at high traffic intensities

( Q =.9) and for exponential service.
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To summarize, the simulation of a given network struc-
ture involved deleting an initial transient of 10,000 time
units and collecting output for 10 runs, each run consist-
ing of 25 batches. In addition to the basic control vari-
ate estimators previously described, estimators computed
using b=1, and the analytic control variate calculated
using 2&, g_,_i were also obtained.
The variance reduction achieved through a particular
strategy was estimated as follows:
1. Compute the means of both the crude estimator and con-
trol variate estimator over the K runs.
2. Compute the variance of the crude and control estima-
tors over the K runs
3. Assuming normality compute confidence intervals for
the variance ratio of the control variate estimator to

the crude estimator.
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CHAPTER 1V

RESULTS

The results of the control variate experimentation on each
of the three networks are listed in this chapter. Three
control variate estimates are reported: the analytic, the
modified analytic, and the external. The experimentation
was conducted to produce control variate estimates using
control coefficients equal to 1 and equal to the estimated
optimal control coefficient %*. When the control coeffi-
cient was set to 1 the variance reductions for the utiliza-
tion factor estimates were slightly greater than those
obtained for %*; however, this was not true for the gueue
time estimates. Variances of these estimates were greatly
increased when the control coefficient was set to 1; vari-
ance reductions for this measure were achieved only when %*
was used. Therefore results are reported only for esti-
mates based on %*.

The effectiveness of a particular control variate will
be reported in terms of the variance reduction ratio; that
is, the ratio of the variances of the control variate esti-

mate to the crude estimate. Ratios greater than 1 indicate

- 49 -
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a1

an increase in the estimate's variance. A 90 percent confi-

0]

dence interval is computed for each ratio. Ratios involv-

" o oo

ing the expenditure of computer effort are also possible,

PR SR

but not considered here.

The chapter is divided into three sections corresponding

Mes X

to the three networks studied. Results for each network are
reported in the following format: a table listing the
M steady state Jackson values for each performance measure, a
) table listing the crude estimator and its variance for a
; given traffic intensity, and a table for each of the three
g control variate estimators listing the point estimate, its
variance, the variance reduction ratio, and the upper and
lower bounds of the 9¢ percent confidence interval. Vari-

ance reduction ratios appear under the ratio column, the

fo e X

lower bound under the L column, and the upper bound under
; the U column. Estimates with variances less than .00805 are
reported as "<.90005".

N The simulation was coded using SIMSCRIPT II.5 and all
required output written to a file. A FORTRAN program was
y used to perform the control variate analysis. Samples of

both programs are in the Appendix.

RESULTS FOR NETWORK 1

Table 4 lists the steady state Jackson values for the uti-
lization factors and queue times of network I depicted in

Figure 5.
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Table 4

Steady State Jackson Values for Network I.

R=.9 R=.5
NODE RO(J) wQ(J) RO(J) wQ(J)
1 . 9000 7.4771 . 5000 .4616
2 .8999 9.1999 . 5000 . 4091

The following table lists the crude estimates and their
variances for each of the three distributions tested at the

high traffic intensity level.

Table 5

Crude Estimates for Network I (P=.9)

Exponential Service

NODE RO.S VAR wWQ.s VAR
1 .8872 0008 5.9196 2.1802
2 .9076 . 0006 9.6711 4.3639

Weibull Service

1 .8934 . 00805 4.1025 .8210
2 .9033 . 0003 4.9167 1.0489

Uniform Service

1 . 8991 .8002 3.7309 .5230
2 9023 . 0002 3.9522 4220

Table 6 lists results for the analytic control varaiate
estimates at the high traffic intensity.
Table 6 listed results for analytic control variates
N A A L. . .
based on zL,'g, and x. Additional experimentation was con-

A
ducted to determine if other combinations of A , _ﬁ, and i
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Table 6

Analytic Estimates for Network I (f=.9)

Exponential Service

NODE RO.C VAR L RATIO U
1 .9025 .0001 . 9487 .1550 +4929
2 .9130 . 0002 .1019 . 3240 1.0303
NODE WQ.C VAR L RATIO U
1 5.0694 1.1656 .1682 . 5350 1.7013
2 8.4098 3.3497 .2420 . 7695 2.4470

Weibull Service

NODE RO.C VAR L RATIO u
1 . 9010 . 0001 . 0401 1275 . 4055
2 .9034 <.00005 .9471 .1499 -4767
NODE wQ.C VAR L RATIO U
1 3.7813 .5469 . 2095 .6661 2.1182
2 4.1912 .5425 .1626 .5172 1.6447

Uniform Service

NODE RO.C VAR L RATIO U
1 9023 <.00005 .0718 .2284 .7263
2 9017 <.00005 .P752 .2392 . 7607
NODE wQ.C VAR L RATIO U
1 3.3113 . 3808 2290 .7281 2.3154
2 3.4828 . 3020 .2250 .7154 2.2750

would produce a better control variate. A pilot run of Net-
work I showed a modified analytic control variate based on
Zu u, and.ﬁ, that is based on the observed mean arrival
rates, the input mean service time, and the observed rout-
ing probabilities, was the most promising. These modified

analytic control variate estimators for the utilization

factor and gqueue time are denoted as RO(M) and WQ(M)
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respectively. Results for this modified estimator are
reported in Table 7.
Table 7
i Modified Estimates for Network I (0=.9)
)
' Exponential Service
4
! NODE RO(M) VAR L RATIO U
1 . 8889 . 9085 .1974 .6278 1.9964
2 .9016 .P0P4 .2145 .6821 2.1691
NODE WQ(M) VAR L RATIO U
1l 5.6553 1.6779 .2419 .7692 2.4461
2 9.3293 4.8245 . 3477 1.1055 3.5155
Weibull Service
NODE RO(M) VAR L RATIO 9]
1 .8936 . 0002 .1398 4445 1.4135
2 .8979 . 0002 .1504 .4783 1.5210
NODE WQ(M) VAR L RATIO U
1 3.8313 .5795 .2219 .7058 2.2444
2 4.3954 . 5804 .1740 .5533 1.7595
Uniform Service
NODE RO (M) VAR L RATIO U
1 .8990 <.00005 .@716 .2277 . 7241
2 .8970 .P201 .8856 .2722 .8656
NODE WQ(M) VAR L RATIO U
1 3.3723 .3727 .2241 .7126 2.2661
2 3.4859 .2790 .2079 .6611 2.1023
Table 8 lists results for the external control in Net-

work I at a traffic intensity of .9.

Tables 9-12 list the same type results for Network 1 at

A K A\ 8

a traffic intensity of .5.
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Table 8

External Estimates for Network I (P=.9)

RO.C
.9017
. 8990

WQ.C
4.6927
4.6992

RO.C
.9016
. 9004

WQ.C
3.9298
3.8757

Weibull Service

VAR L RATIO
<.00005 .0146 0464
8001 .1397 .4443
VAR L RATIO
.5279 .2022 . 6430
.4128 .1237 .3935

Uniform Service

VAR L RATIO
. 0001 . 2048 .6514
.0001 .1608 .5114

VAR L RATIO

.8453 .5083 1.6164

.2829 .2108 . 6704
Table 9

U
.1476
1.4129

U
2.0447
1.2513

U
2.08715
1.6263

U
5.1402
2.1319

Crude Estimates for Network I (f=.5)

RO.S
+ 4940
.5038

4965
.5026

.4986
.5012

Exponential Service

VAR wWQ.8
.0003 .4481
. 0002 .3922

Weibull Service

. 0002 .2933
. 0001 .2512

Uniform Service

.0P01 2420
L0001 . 2064

VAR

PB15
vo42

0003
0004

0002
P02
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Table 10

Analytic Estimates for Network I (P=.5)

RO.C
.4996
.4982

wQ.C
.4513
.3574

RO.C
.4996
. 4982

wQ.C
.2950
.2380

RO.C
. 4995
.4981

WQ.C
. 2494
. 2017

o ,'.‘","' g d‘.'

Exponential Service

VAR L RATIO
<.00005 .0003 . 0009
<.90005 .0011 .P036

VAR L RATIO

. 8005 .1058 .3363

.0018 .1318 .4190

Weibull Service

VAR L RATIO
<.00005 .0P03 . 0008
<.00005 .0018 . 0056

VAR L RATIO

. 0002 .2254 .7169

.0003 .2083 .6625

Uniform Service

VAR L RATIO
<.00005 .P0O3 .0011
<.P0005 .0024 .0076

VAR L RATIO

- 00082 .2308 .7341

-9002 .2558 -8134

ﬁ‘?:ﬂﬁﬁw“ BN NS

- ¥ l-
PRI L7 B AR TR R D . W AR "'

U
.90829
.0114

U
1.9694
1.3324

U
0025
.9178

U
2.2797
2.1068

P35

0242

2.3344
2.5866
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Table 11

Modified Estimates for Network I (f=.5)

Exponential Service

NODE RO(M) VAR L RATIO U
1 «4913 . PPl .1152 .3663 1.1648
2 .4955 . 0001 .1473 .4685 1.4898
NODE wQ(M) VAR L RATIO U
1 «4343 . 0007 .1419 4512 1.4348
2 .3733 . 0631 .2279 . 7246 2.3042

Weibull Service

NODE RO(M) VAR L RATIO U
1 +4940 <.P0@B5 .0796 .2530 . 8045
2 4940 <.00005 .0924 . 2939 . 9346
NODE wQ(M) VAR L RATIO U
1 .2854 .0001 0796 2530 . 8045
2 .2357 .000@3 .1998 .6353 2.8203

Uniform Service

NODE RO(M) VAR L RATIO U
1 .4970 <.00005 .0215 .0685 .2178
2 .4942 <.00005 .0106 .2338 1875
NODE WQ(M) VAR L RATIO U
1 .2362 0002 . 2685 .8538 2.7151
2 .1958 .0002 .2869 .9124 2.90814
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L Table 12
w External Estimates for Network I (9=.5)
{ﬁ‘ Weibull Service
‘0
P, NODE RO.C VAR L RATIO U

] 1 .5007 <.00085 .0392 .1246 .3962
L 2 .5007 <.00005 .9379 .1206 .3835
- NODE WQ.C VAR L RATIO U
i 1 .3025 .9004  .3276 1.06418  3.3129
'y 2 .2552 . 00085 .3473 1.1044 3.5120

Uniform Service

o s

>
Ut
o

. NODE RO.C VAR L RATIO 8]
}. 1 . 5008 <.00005 .2564 .8155 2.5933
?‘ 2 .4998 <.@00005 .1793 .5703 1.8136
0 NODE WQ.C VAR L RATIO U
72 1 .2492 - 0006 . 8307 2.6416 8.4003
3 2 .2061 . 0002 . 2659 .8455 2.6887
-,
:k- RESULTS FOR NETWORK II
o
Oy Table 13 lists the steady state Jackson results for the
e
K- utilization factors and queue times of Network II depicted
;\ in Figure 6.
2
’I
.“.
By .’.
o, Table 13
3{ Steady State Jackson Values for Network II.
5
oS €=.9 P=.5
e NODE RO(J) WQ(J) RO(J) wQ(J)
‘W 1 . 9001 8.1089 . 5000 . 5009
b 2 .8999 7.6667 . 5000 +3333
e 3 . 9901 7.3466 . 50800 .2368
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e
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Tables 14-17 1list results for Network II1 at a traffic

intensity of .9.

Table 14

Crude Estimates for Network II (P=.9)

Exponential Service

NODE RO.S VAR WQ.S VAR
1 .8872 . 0095 6.3363 1.1857
2 . 8947 0001 7.3719 4.4346
3 . 8906 . 0004 6.1086 3.0807

Weibull Service

1 .8941 0002 4.2966 . 4055
2 . 8939 0001 2.9552 .4286
3 .8918 . 0002 2.2526 .2985

Uniform Service

1 . 8964 .9201 4.1722 3479
2 . 8946 0001 1.0114 .8388
3 . 8950 .8001 .5184 0072

i/

Tables 18-21 1list results for Network 1II at a traffic

intensity of .5.
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X Table 15
L Analytic Estimates for Network II (©=.9)
: Exponential Service
NODE RO.C VAR L RATIO U
. 1l . 9008 <.00005 .0239 .B759 .2414
? 2 .9010 <.00005 .1134 .3607 1.1470
b 3 . 8985 .P001 .1013 .3222 1.8246
% )
g NODE wQ.C VAR L RATIO u
M 1 5.6212 .2973 .0788 .2507 .7972
2 6.4935 1.8028 .1278 . 4065 1.2927 ;
K 3 5.6782 2.5672 . 2608 .8295 2.6378 |
Y ;
p Weibull Service 3
o NODE RO.C VAR L RATIO u |
B .8997 <.00005 .0197 .0625 .1988
.8999 <.00005 .0398 .1267 .4029
.8978 <.00085 .0619 .1968 .6258
WQ.C VAR L RATIO U
3.8640 .1924 <1492 .4744 1.5086
2.7459 .3320 .2436 7747 2.4635
5; 2.1985 .2648 <2790 .8872 2.8213
L
E\ Uniform Service
R RO.C VAR L RATIO U
.9015 <.00005 .0477 .1516 .4821
g . 8995 <.00005 0371 .1181 .3756
‘Q . 8996 <.00005 .0481 .1530 . 4865
D
K WQ.C VAR L RATIO U
p) 3.8384 .4355 .1775 . 5645 1.7951
. .9515 .0314 .2549 .8105 2.5774
> .4910 . 0054 .2373 . 7545 2.3993
-
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Table 16

Modified Estimates for Network II (P=.9)

Exponential Service

NODE RO(M) VAR L RATIO U
1 . 8805 . 0003 .2214 . 7041 2.2390
2 .8971 .0001 .3334 1.0602 3.3714
3 .8917 0004 2730 .8682 2.7609
NODE WQ(M) VAR L RATIO U
1 6.1244 1.1639 . 3087 .9816 3.1215
2 7.1038 3.7865 .2685 .8539 2.7154
3 6.0812 3.4835 .3539 1.1255 3.5791

Weibull Service

NODE RO(M) VAR L RATIO U
1 .8932 . 0001 .1515 .4818 1.5321
2 .8961 <.00005 .20873 .6592 2.0963
3 .8934 .0001 .1563 . 4971 1.5808
NODE WQ(M) VAR L RATIO U
1 4.9569 . 3096 .2401 .7634 2.4276
2 2.8120 .3552 .2607 .8289 2.6359
3 2.2232 .2692 .2836 . 9020 2.8684

Uniform Service

NODE RO (M) VAR L RATIO U
1 . 8988 <.00005 .1184 .3766 1.1976
2 . 8965 <.00805 .0599 .1906 6061
3 .8970 <.00005 .0476 .1513 .4811
NODE WQ(M) VAR L RATIO U
1 3.9215 .2612 .2361 . 7507 2.3872
2 . 9486 .0314 . 2549 .8105 2.5774
3 .4953 0056 .2435 .7743 2.4623
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Table 17

External Estimates for Network II (f=.9)

61

Weibull Service

RO.C VAR L RATIO
. 9009 <.000865 .0195 .0619
.8976 <.00065 .1520 .4835
.8972 <.00005 .0265 .9843
wWQ.C VAR L RATIO
5.2104 .4523 .3508 1.1154
3.1890 .1155 .9847 .2694
2.5559 .1728 .1821 .5790
Uniform Service
RO.C VAR L RATIO
.9003 .29091 . 2906 .9242
.8965 00091 .3332 1.0596
.8968 <.08005 .1527 .4855
wWQ.C VAR L RATIO
4.4618 .3898 .3523 1.1203
1.90130 .0319 .2589 .8232
.5032 .0074 . 3258 1.8359

Fata"an

Table 18

Crude Estimates for Network 11

U
.1968
1.5375
.2681

U
3.547¢
.8567
1.8412

U
2.9390
3.3695
1.5439

U
3.5626
2.6178
3.2942

(0=.5)

Exponential Service

RO.S VAR WQ.S

. 4931 0001 . 4800
.4973 <.00005 .3472
.4947 . 0001 .2278

Weibull Service

. 4955 . 0001 .3114
. 4971 <.00005 .1473
.4958 . 0001 .9984

Uniform Service

. 4980 <.00005 «2763
.4972 <.00005 .0561
+ 4975 <.00005 0320

VAR

.0012
. 0006
. 0006

. 0004
0001
0001

. 0002

<.00005
<.0P0005
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Table 19

Analytic Estimates for Network II (0=.5)

RO.C
.4999
.4997
. 4996

WQ.C
.4829
.3550
.2299

RO.C
.4999
.4999
.4997

wWQ.C
.3136
.1457
.0995

RO.C
. 5000
. 5000
. 5000

wQ.C
.2759
.85061
.0320

T 0 A
B y.‘lﬁ .l ‘ .W\

Exponential Service

VAR
<.00005
<.00085
<.00005

VAR
. 0009
. 0004
.0014

L

. 0005
0064
. 0028

L
. 2191
.1975
.7819

RATIO
.0016
.0204
. 0090

RATIO
.6968
.6280
2.4865

Weibull Service

VAR
<.00005
<.00005
<.00005

VAR
. 0095
0801
.0001

L
0012
. 0049
. 0028

L
.3875
.2642
.4986

RATIO
.0037
.8156
. 0089

RATIO
1.2321
. 8402
1.5854

Uniform Service

VAR
<.00005
<.00005
<.00005

VAR

. 0002
<.08005
<.00005

LSy

3.' ¢. ln

L
0032
. 0040
. 0028

L
.2534
. 3201
+3655

RATIO
.0101
.0126
. 0089

RATIO
. 8057
1.8179
1.1624

U
. 0051
.0649
. 0286

u
2.2158
1.9970
7.9071

U
.9118
.@496
.0283

U
3.9181
2.6718
5.0416

U
.0321
. 0401
.0283

U
2.5621
3.2369
3.6964
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2 Table 20
,:‘," Modified Estimates for Network II (Q=.5)
)
]
:;:‘:' Exponential Service
S
» NODE RO(M) VAR L RATIO U
A 1 .4932 .8001 . 2045 .6503 2.0680
O 2 .4981 .9001 .3856 1.2263 3.8996
%, 3 .4959 . 0001 .1539 .4894 1.5563
el NODE WQ(M) VAR L RATIO U
G 1 .4739 . 0099 .2403 .7643 2.43¢5
2 .3413 . D005 .2904 .9234 2.9364
o\ 3 .2262 .8907 .3731 1.1863 3.7724
o
2?. Weibull Service
b3
K NODE RO (M) VAR L RATIO U
e 1 .4957 <.00005 .1272 .4045 1.2863
a; 2 .4976 <.00805 .2222 .7865 2.2467
gd 3 .4961 <.00005 .0743 .2362 .7511
N’.
3 NODE WQ(M) VAR L RATIO U
o 1 . 3080 .9003 .2426 .7716  2.4537
2 .1448 .00081 .3964 1.2604 4.0081
i: 3 .0971 .0001 .3494 1.1110 3.5330
at}' Uniform Service
.‘;:
Yoy NODE RO(M) VAR L RATIO U
1 .4984 <.00005 .0892 .2837 .90922
‘N 2 .4975 <.00905 .0153 .0486 .1545
™ 3 .4979 <.00005 .0205 .0653 .2077
X
3 NODE WQ(M) VAR L RATIO U
- 1 .2473 .2003 .3616 1.1498 3.6564
} 2 .0554 <.00005 .2763 .8786 2.7939
W 3 .9315 <.00005 .3875 1.2324 3.9199
o
"n_
"-_
L &
i
I

s, '

(A . . . . R )
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Table 21

External Estimates for Network I1I (P=.5)

Weibull Service

NODE RO.C VAR
1 . 5004 <.90005
2 . 4990 <.00P005
3 . 4996 <.00005
NODE Wo.C VAR
1 .3225 . 008082
2 . 1449 <.00005
3 .10827 <.00005

L RATIO U
.0236 .9751 .2388
.0792 .2519 .801¢
0109 .9346 1100

L RATIO U
.1824 . 5801 1.8447
.0418 .1330 4229

.1038 . 3302 1.8500

Uniform Service

NODE RO.C VAR
1 .5002 <.00005
2 .4983 <.00085
3 . 4994 <.P0005
NODE wo.cC VAR
1 .2805 . 0004
2 .9560 <.@Q005
3 2319 <.00905

RESULTS FOR NETWORK IIIX

L RATIO U
.3651 1.1610 3.6920
. 3060 .9730 3.0941

.0821 .2611 .8303
L RATIO U

« 5099 l.6216 5.1567

. 2915 .9269 2.9475

.3700 1.1766 3.7416

64

Table 22 lists the steady state Jackson values for the uti-

lization factors and queue times of Network III depicted in

Figure 7.

Table 22

Steady State Jackson Values for Network III.

R=.9
NODE RO(J) WQ(J)
1 . 9000 6.0787
2 . 9001 9.6031
3 . 9000 15.1853
4 . 9000 5.7589

€=.5
RO(J) wQ(J)
- 5000 3750
. 5000 .4167
. 5000 <9377

. 5000 . 2500
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fic intensity of .9.
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Tables 23-26 list the results for Network III at a traf-

Table 23

Crude Estimates for Network III (P=.9)

NODE RO.S

B WN - » W N =

oW N

.8912
.8999
.8874
.8972

.9320
.8943
.8943
.8963

.9353
.8939
. 8946
.8935

Exponential Service

Tables 27-30 list

intensity of .5.

...........

'.r.-z.f.-

ny

NI o e J-"-‘ "':':"-f')"f-ﬂ"f"') ¢ .. { J- -\.-

N

VAR
0005
.0903
.0006
.0003

WQ.S
6.9750
9.0400

13.1571
5.4977

Weibull Service

.90903
.0001
0003
. 0001

6.5081
4.3736
7.9743
1.9755

Uniform Service

. 0002
0002
. 0004
0002

results for Network 111

6.0980
2.8475
5.3534

.5270

VAR
7.5294
8.1951

12.4821

.5474

6.2433
. 7746
4.4438
9951

7.2565

. 2466
1.0206
.80856
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Table 24

Analytic Estimates for Network III (9=.9)

RO.C
. 8989
. 9853
. 9044
.9019

WwQ.C
5.4466
7.8587

10.8947
5.0025

RO.C
.9132
. 9007
. 9047
. 8990

wWQ.C
5.7123
4.9249
7.2919
1.8792

RO.C
.9143
.9019
. 9043
.8977

wQ.C
5.2239
2.5843
4.5992
.5125

e %% el LRI R I N Wy W AP T
o S L S R I S L

Exponential Service

VAR

. 0001
<.90005
0001
. 0001

VAR
4.2202
4.6498
6.9876

.7746

L
.0382
<0567
0642
-1107

L
.1763
.1784
1760
+ 4450

RATIO
.1215
.1804
. 2041
. 3519

RATIO
. 5605
. 5674
.5598
1.4150

Weibull Service

VAR

. 0001
<.00005

. 0001
<.00005

VAR
4.1207
. 5064
3.0851
.0878

L
. 0606
0723
. 9896
.1021

L
. 2075
. 2056
.2185
+2903

RATIO
+1927
. 2300
. 2850
. 3248

RATIO
. 6600
«+6537
. 6948
«9233

Uniform Service

VAR

. 0001
<.00005

. 0001
<.00005

VAR
4.9088
.1150
.6964
.0P053

L
.l686
0261
.0464
8772

L
<2127
+ 1466
+ 2146
<2977

RATIO
.5361
. 0829
1476
. 2455

RATIO
.6765
+4663
.6823
- 9466

U
. 3864
5737
. 6490
1.1190

U
1.7824
1.8043
1.7802
4.4997

U
.6128
.7314
. 9063

1.8329

U
2.0988
2.0788
2.20895
2.9361

U
1.7048
. 2636
.4694
. 7807

U
2.1513
1.4828
2.1697
3.0102
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Table 25

Modified Estimates for Network III (0=.9)

RO(M)
. 8927
.90621
.8927
.8999

WQ(M)
5.7936
8.6201

12.6169
5.3743

RO (M)
9340
. 8985
.8973
.8991

WQ(M)
6.1046
4.1846
7.2838
1.9310

RO(M)
.9387
.8991
.9015
.8961

WQ(M)
5.6317
2.6042
4.6425

.5123

Exponential Service

VAR L RATIO
. 0002 .1575 .5008
. 0001 .1756 .5583
0003 .1860 -5916
. 0003 .2756 .8763
VAR L RATIO
8.6035 . 3593 l.1426
6.8833 .2641 .8399
18.2152 .2574 .8184
.4023 .2311 .7350

Weibull Service

VAR L RATIO
.0001 .1216 . 3867
<.000085 .0726 .2308
0001 .9997 .3169

. 0001 .1627 .5173
VAR L RATIO
5.8130 .2926 . 9306
. 6406 .2601 .8271
2.8174 .1995 .6345
.0734 . 2429 7724

Uniform Service

VAR L RATIO
.0001 .0798 .2539
<.00005 .0322 . 1024
. 0001 .0516 .1642
. 0001 0945 . 3004
VAR L RATIO
4.3992 .1987 . 6063
.1369 .1746 .5551
. 6922 .2133 .6782

P854 . 3068 .9755

U
1.5925
1.7754
1.8813
2.7866

U
3.6335
2.6709
2.6029
2.3373

U
1.2297
.7339
1.0077
1.6450

U
2.9593
2.6302
2.0177
2.4562

U
.8074
. 3256
.5222
.9553

U
1.9280
1.7652
2.1567
3.1021
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Table 26

External Estimates for Network III (P=.9)

Weibull Service

RO.C VAR L RATIO U
.9374 . 0001 .1164 .3702 1.1772
. 8940 .9001 .2039 .6483 2.0616
.8977 .0001 .1371 .4361 1.3868
.8976 .8001 .1537 .4888 1.5544
wQ.C VAR L RATIO U
6.6310 1.4742 0742 .2361 . 7508
4.5533 .7773 .3156 1.0036 3.1914
8.2056 4.5019 .3186 1.0131 3.2217
2.0323 .0617 . 2041 6490 2.0638

Uniform Service

RO.C VAR L RATIO U
.9393 .0002 .2631 .8367 2.6607
. 8948 . 0002 .2281 . 7255 2.3071
. 8969 0003 .2488 .7912 2.5160
.8957 .0092 . 3649 1.1603 3.6898
WQ.C VAR L RATIO U
6.0883 2.5200 1177 .3743 1.1963
3.0071 .3502 .4466 1.4202 4.5162
5.4661 1.6297 3173 1.0089 3.2083
.5298 . 0062 . 3503 1.1141 3.5428
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A Table 27 |
i
N Crude Estimates for Network III (P=.5) |
' Exponential Service
9 NODE RO.S VAR WQ.S VAR
1 .4942 .0002 .3677 .9009
2 .4969 .8901 .4379 .0041
3 3 .4957 L0001 .9249 .0074
§ 4 .4976 .0001 .2400 .0003
)
3‘ Weibull Service
14 1 .4970 .0001 .2373 .8091
! 2 .4976 0001 . 2508 . 0007
L 3 .4983 .0001 .5549 .900825
. 4 .4999 .8001 .1063 <.000805
: Uniform Service
; 1 .4976 .0001 .1867 .0901
1 2 .4952 .0001 .1928 .9003
; 3 . 5007 L0001 . 4486 . 9006
4 .4967 .0001 .9731 <.00005
>
‘
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Table 28

Analytic Estimates for Network III (Q@=.5)

Exponential Service

NODE RO.C VAR L RATIO U
1 .4995 <.00005 .00O5 0015 . 0048
2 . 5003 <.00005 .0008 9025 . 0080
3 .5014 <.00005 .0019 . 9061 .9194
4 .4996 <.00005 .0023 .0073 0232
NODE WQ.C VAR L RATIO u
1 .3726 . 0003 .8926 +2945 .9365
2 .4242 0027 .2036 .6476 2.8594
3 . 9284 0067 .2839 . 9028 2.8709
4 .2363 .0901 .1412 . 4490 1.4278

Weibull Service

NODE RO.C VAR L RATIO U
1 .4995 <.00005 .0012 .0038 .9121 ;
2 . 50805 <.00005 .0007 0022 . 0079 |
3 .5013 <.00005 .0007 0022 .0070 |
4 .4995 <.00085 .0012 .0038 .0121 :
NODE wQ.C VAR L RATIO U
1 2399 0001 .1336 .4250 1.3515
2 . 2498 0005 .2347 . 7462 2.3729
3 .5518 0011 .1355 .4310 1.37086
4 .1055 <.00085 .1779 .5656 1.7986

Uniform Service

NODE RO.C VAR L RATIO 9]
1 .4995 <.P0P05 .0007 0022 0079
2 . 5002 <.P0PB5 .POBYS 0017 .P054
3 .5015 <.00005 .0VO5 .00817 .0054
4 . 4996 <.00005 .0002 . 0006 .0019
NODE wWQ.C VAR L RATIO U
1 .1872 . 0001 .1245 .3959 1.2590
2 .1929 . 00021 1413 . 4492 1.4285
3 <4442 . 0023 .1419 .4513 1.4351
4 8733 <.08005 .1222 . 3886 1.2357
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Table 29

Modified Estimates for Network III (¢=.5)

RO (M)
. 4956
. 4992
4946
+4999

WQ(M)
.3673
. 4308
.9149
.2413

RO (M)
.4967
.4984
. 4960
.4991

WQ(M)
2354
<2479
.5379
.1052

RO (M)
.4986
.4975
.4993
. 4974

WQ(M)
.1862
.1893
. 4400
.0722

Exponential Service

VAR L RATIO
. 0001 .2993 .3159
<.00005 .0154 .0491
<.00005 .1109 .3527
0001 . 2875 .9142
VAR L RATIO
. 0006 . 2097 .6668
.0023 .1716 .5458

.0065 .2779 .8837
. 0005 4626 1.4712

Weibull Service

VAR L RATIO
<.PPPO5 .0479 .1522
<.90005 .0096 8306
<.00005 .09430 .1367
<.00005 .@755 .2402

VAR L RATIO

. 0001 .1958 .6228

. 0006 .2623 .8341

.0013 .1661 .5283

<.09P0B5 .3547 1.1289

Uniform Service

VAR L RATIO
<.00065 .P039 0123
<.P0005 .0163 .0326
<.00005 .0088 . 9281
<.0Q005 .0279 . 0886

VAR L RATIO
<.00005 .1108 .3525

.P001 .1394 .4432

0002 .1148 .3651
<.00005 .0711 2260

U
l1.0046
.1561
1.1216
2.9072

U
2.1204
1.7356
2.8102
4.6784

U
. 4840
.0973
.4347
.7638

U
1.9805
2.6524
1l.6800
3.5870

U
0391
1937
. 0894
.2817

U
1.1210
1.4094
l.1610

.7187
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Table 30

External Estimates for Network III (@=.5)

Weibull Service

RO.C VAR L RATIO
.5011 <.00005 .0708 .2253
.4992 <.PPBO5S .0795 .2529
.4984 <.PPYB5 .2362 .7510
. 4998 <.000Y5 .1035 3292
WQ.C VAR L RATIO
.2398 <.00005 .1007 .3201
.2538 . 0009 .4155 1.3212
.5573 .0041 5073 1.6132
.1986 <.00005 .2761 .8779

Uniform Service

RO.C VAR L RATIO
. 5008 <.Q0005 .1669 .5308
. 4965 .9001 .2167 . 6890
. 5014 .0001 .2286 .7270
.4966 . 0001 .2325 . 7393
WQ.C VAR L RATIO
.1890 . 0001 .2299 7312
.1938 . 0002 .2526 .8032
.4529 . 0004 .2352 .7478
.8740 <.PPPB5 .4015 1.2768

2
1

1

N b

NN

BN

U
.7165
. 842
. 3882
.0469

U
.0179
.2014
<1300
. 7917

.6879
.1919
.3119
.3510

.3252
.5542
.3780
.0602
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CHAPTER V

CONCLUSIONS

The purpose of this research was to study the application
of Jackson networks as control variates in queueing simula-
tions in order to make some general conclusions about their
effectiveness for variance reduction. These conclusions
hold their importance in that they add to the store of pri-
or knowldge an analyst can draw on in deciding the appro-
priate variance reduction technique. Also, these results
indicate whether or not continued research in this area is
warranted.

The results of this study indicate the potential of ana-
lytic controls based on Jackson networks to produce vari-
ance reductions in utilization factor estimates. Jackson
based controls for the gueue time estimates were not as
effective as the utilization controls in producing variance
reductions. In each network studied the gueue time con-
trol variates produced little or no variance reduction and
indicated the potential to increase this estimate's vari-
ance. In some cases these controls could increase the con-

trol estimate's variance up to eight times that of the

a4,

B e e R AL AT N T
t . A a A A o A b 3 L8 A

A

v
235 Al

LAY




P
A '
w4 SR

€ XC R
-J.:I.

+

s

R
PRI

74
crude estimate's variance. The analytic controls for the
utilization factor showed more promise.

In Network I the analytic controls for the utilization
factor produced variance reductions in the range of 68 to
88 percent for traffic intensities of .9, and approximately
99 percent for traffic intensities of .5. The modified ana-
lytic controls produced variance reductions of approximate-
ly 75 percent only for the uniform service time case. Per-
formance in the exponential and Weibull cases indicated the
potential to add variance to the estimate. External con-
trols for the utilization factor were poor and again indi-
cated the potential to add variance.

Analytic controls for the wutilization factor in Network
II produced consistent variance reductions for the Weibull
and uniform service cases. Reductions for these controls
ranged from 80 to 94 percent at traffic intensities of .9,
and approximately 98 percent for traffic intensities of .5.
The modified analytic controls performed well only for the
uniform service case at traffic intensities of .5. Here the
reductions ranged from 71 to 93 percent. External controls
were generally poor with the exception of the Weibull ser-
vice case at the .5 traffic intensity level where the v ri-
ance reductions ranged from 74 to 96 percent.

Network 1II was structured so that each service node

would experience the same effective arrival rate in steady
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state conditions. The service rate was the same at each
node, but the number of servers was varied from one to
three (see Figure 6). The purpose was to observe the
impact of the number of servers on control variate perform-
ance. The results did not indicate any observable connec-
tion between the number of servers and control variate per-
formance.

In Network III the analytic controls for the utilization
factor at the .9 traffic intensity level showed modest per-
formance. Their performance at the .5 traffic intensity
level was greatly improved producing variance reductions
of approximatley 99 percent. For modified analytic con-
trols at the .9 traffic intensity level, variance reduc-
tions were acceptable only in the wuniform service case
where the reductions ranged from 70 to 90 percent. At the
.5 traffic level intensity these controls showed good per-
formance for both the Weibull and uniform service cases
producing reductions in the range of 76 to 98 percent.
Performance of the external controls was generally poor.

The results did show the analytic control variates for
the utilization factor worked well at the .5 traffic inten-
sity level. The same statement could not be made about the
queue time controls since their performance was so erratic
at both traffic intensity levels studied. No conclusive
statement could be made concerning the impact of the ser-

vice distribution on control variate performance.
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R The Jackson based analytic controls indicate promise as
LA
%y effective control variates for the utilization factor. One
L
% possible explanation for the difference in performance
W,

\
i between the utilization factor and gqueue time controls may
! "

$¢ be suggested by the form of these two performance measures.
g
ﬁr The utilization factor is a ratio based on effective arri-
)

Q. A

B val and service rates. The queue time measure has a more
~o¥
?’ complex form incorporating the probability distribution of
1%
*v the number of customers at a service node and the fraction
;'l
§/ of the customer load carried by the servers; see (8) and
~}3 (19). This may suggest the variance of the gqueue time or
2-

:,< . .

L. similar measure may be too complex to be fully captured by
W

’ the control variate approach. This should not preclude
bv: future research in the application of control variates in
b . : :

o queueing network simulations. One approach may may be to
.': A A A .

) observe different forms of 2&. u, and r to obtain the con-
» {n : : .
;b trol variates, such as observing pi(g) of (10) directly
D A
’ﬁﬁ from the simulation rather than computing it from AL, .ﬁ,
l.' A
e and r. Another approach worth considering is to search for
W

o models which provide close approximations for the perform-
)
k& ance measures of interest as opposed to the exact analyt-
]
;*, ical value provided by the Jackson model. The use of
L/ \g

< approximation models may very well broaden the class of
4

:ﬁ queueing networks receptive to the control variate
? approach. Whitt [20] has investigated the use of open
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?f networks to approximate the performance of closed queueing
<, networks. The opportunity of expanding the use of control
> variates in open systems as approximations for closed net-
% works would be enhanced by further research in this area.

Mg Another possible approach to improving control variate
'E performance is to obtain a more precise estimate of the

vy control coefficient b. One way to accomplish this would be

Y. to increase the number of batches in a replication. A
3 »
.i pilot run increasing the number of batches from 25 to 50
W
h) was performed on Network I with Weibull service at the .9

traffic intensity level. Little improvement was noted in
the performance of the utilization controls; however, con-
siderable improvement was seen in the queue time controls.
Variance reductions doubled for the analytic, modified ana-

lytic, and external controls. This may suggest the poor

o

e

- performance of the Jackson based gueue time controls is not
o solely due to the Jackson model. The ability or inability

. v

ot . * . .

:ﬁ to accurately estimate b may have a major impact on con-
e

iy trol variate performance for these systems. The methodology
. for estimating the control coefficient is open to further
oy

" study.

W6

R Other sources which may explain the poor performance of
:} the control variates lie in the methodology of this study.
4

(% A%
g In order to obtain an interval estimate and a value for b
o

¢

- the batch means approach was employed rather than running a

o

e

%

oM

b
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%94

e series of independent replications. This is not an uncommon
’§R practice and is employed to reduce the cost of the simula-
'#ﬁ ) tion. The batch means approach, however, produces only
R approximate independence between the batches. Determining
%ﬁ the batch size is critical to this independence and is com-
&: pPlicated by network structure. A batch size may work well
Y for one particular node and not as well for the remaining
;%. service nodes. Further study is needed to determine the
t% usefulness of the batch means approach in this methodology.
g% Another source for error is the initial bias. These net-
_; works tended to have long and erratic initial bias periods.
aﬁ This study took a fairly conservative approach in deletinn
R this bias; however, further study of the initial bias in
;E networks is needed to improve the application of control
'% variates for steady state analyses.

KA~

", The results of this study do highlight the potential of
5; analytic control variates in simulation. Depending on the
?i& parametric model selected to serve as the basis for the
N control, the effort required to obtain variance reduction
$§ would be small compared to reducing the variance through
}3 additional run time or the second simulation required by
};? external controls. This holds considerable promise for
:Ej automating or incorporating the analytic control approach
ESj in existing simulation languages. 1In software designed for
? a specific user this approach could be incorporated by the
K

3
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addition of a statistical collection mechanism and a rou-
tine to derive the controls from these statistics. The ben-
efit of this endeavor would be to avail a wider range of
variance reduction techniques to the Qser community and

enhance the analysis provided through computer simulation.




Appendix A

COMPUTER CODE

77 JOB ,

77 REGION=768K, TIME=7

7*JOBPARM LINES=5000,V=S,DISKI0=5000

/7 EXEC SIM93CGC,TIME.GO=6

//CMP.SYSIN DD x

**ANTHONY P. SHARON ADVISOR: DR. BARRY L. NELSON
**DEPT: ISE THES IS RESEARCH

' * APPLICATION OF JACKSON NETWORKS AS EXTERNAL CV
**FOR QUEUEING SIMULATIOR SYSTEM: 2 NODES

* *ARRIVAL: EXPONENTIAL SERVICE: EXPONENTIAL

**BATCH LENGTH: 13560 INITIAL DELETION: 10000

**NO. OF MACROS: 10 BATCHES PER MACRO: 23
*CATIMCD) INTERARRIVAL TIME AT NODE I

**BR(I) INPUT BRANCHING PROBABILITIES FROM

v NODE I TO RODE J

' *BUSY( D) NO. OF BUSY SERVERS AT NODE I

' *CUST CUSTOMER

* *LAMBDA(I) EXTERNAL ARRIVAL RATE AT RODE I
*UMUCT) SERVICE RATE AT NODE 1

' *NODT ERTRY TIME AT A NODE

**O.R(I,J) OBSERVED BRANCHING FROM NODE I TO J
**R(I,J) COMPARISON ROUTING MATRIX BASED ON BR(I, J)
' *RCUST( 1,5 NO. OF CUSTOMERS ROUTED FROM NODE I TO J
*U8CID NO. OF SERVERS AT IODE I

**STIMCD) SERVICE TIME AT NODE

* *TCUSTC I) NO. OF CUSTOHERS COHPLETING SERVICE

> AT NODE

**WTIM(D QUEUE 'l'lH.E AT NODE 1

PREAMBLE LAST COLUMN IS 72°°’
EVENT NOTICES INCLUDE RESET, OUTPUT
EVERY ARRV HAS A NODE.A
DEF INE NODE A AS AN INTEGER VARIABLE
EVERY EOS HAS A CUST.E, A RODE.E
DEF INE CUST E., NODE.E AS INTEGER VARIABLES
PERMARENT ENTITIES
EVERY NODE HAS AN ATIM, A BUSY, A LAMBDA, A MU, AN S,
AN AWQ, AN STIM, A TCUST, A WTIM AND OWNS A QUEUE
DEF INE BUSY, §, TCUST AS INTEGER VARIABLES
TEMPORARY ENTITIES
EVERY CUST HAS AN NODT AND MAY BELONG TO THE QUEUE
DEFINE RCUST AS A 2-DIMENSIONAL INTEGER ARRAY
DEFINE BR, O.R, R AS 2-DIMENSIONAL ARRAYS
DEFINE NM,C AS VARIABLES
ACCUMULATE A.BUSY AS THE MEAN OF BUSY
TALLY A.WQ AS THE MEAN OF WTIM
TALLY A.AR AS THE MEAR OF ATIM
TALLY A.SR AS THE MEAN OF STIM
TALLY G.AWQ AS THE MEAN OF AwQ
END * * PREAMBLE

MAIN

DEFINE 1 AS AN INTEGER VARIABLE

LET NM=1

CREATE EVERY NODE (2) '°‘'NO. OF NODES

RESERVE BR(*,*), R(*,%), RCUST(x%,%), O.R(x,%) AS§ 2 BY 2
READ BUSY, LAMBDA, S8

START NEW RECORD

READ MU
START NEW RECORD
READ BR
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FOR 1=1 TO 2 , DO **RO. OF NODES
FOR J= 1 TO 2, DO '*NO.OF NODES
LET CR= BR(I,J) + CR
LET R(1,J)= CR

LOOP

LET CR=0
LOOP
PRINT 1 LINE THUS

ECHO INPUT
SKIP 2 LlNES
FOR I=1 TO 2, DO * *NO.OF NODES
PRINT 8 LINES WITH 1, LAMBDA(I), MUCD)Y,
BUSY(1), S(I) THUS
INPUT VALUES FOR NODE =

ARRIVAL RATE: XX, XKXX
SERVICE RATE: XX, kXXX
NO. BUSY SERVERS: =*x
NO. OF SERVERS: %

SKIP 2 LINES
LOOP
SKIP 2 LINES

SKIP 2 LINES
' *SCHEDULE ARRIVAL FOR NODES WITH EXTERNAL ARRIVALS
FOR 1=1 TO 2, DO
LET NODE= 1
LET UA=RANDOM.F(NODE)
LET ATIM(NODE)=(-1.6/LAMBDA(NODE))*(LOGC.E.F(UA))
SCHEDULE AN ARRV GIVEN NODE IN ATIM(NODE) UNITS

LooP

SCHEDULE A RESET IN 10000.6 UNITS '*TIME TO DELETE BIAS
SCHEDULE AN OUTPUT 1IN 10156.6 UNITS *°*END OF FIRST BATCH
START SIMULATION

STOP
ERD ' °*MAIN
EVENT RESET °’DELETES BIAS, RESETS FOR NEXT BATCH
FOR EACE_NODE RESET THE TOTALS OF ATIM, STIM, BUSY, WTIN
FOR I=1 TO 2, DO "*NO. OF NODES
LET ATIN(1)=@
LET STIM(1)=@
LET WTIM(1)=@
LET TCUST(1)=@

LOOP
FOR 1=1 TO 2, DO
FOR J=1 TO 2,D0
LET RCUST(1,J)=0
LET O0.R(1,J)=0
LOOP
LOOP

RETURN
END *°"EVERT RESET
EVENT ARRV GIVEN NODE * *EXTERNAL ARRIVAL AT GIVER NODE
DEFINE NODE AS AN INTEGER VARIABLE
CREATE A CUST
LET RODT( CUST)= TIME.V
T UA=RANDOM. F(NODE) )
LET AT IM( RODE)=( -1.6/LAMBDA(NODE) ) *(LOC.E.F(UA))
SCHEDULE AN ARRV GCIVEN NODE IN ATIM(NODE) UNITS

SRSE RO 0 e et .MQJ
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N IF guswnom:)- S(NODE), FILE CUST IN QUEUE(NODE)
o LET BUSY(NODE)= BUSY(NODE) + 1
b LET WTIM(NODE)=@
K . LET AWQ(NODE)=9
ho LET US=RANDOM.F(NODE+3)
4 LET STIM(NODE)=(-1.6/MU( NODE) ) *(LOG.E.F(US))
. SCHEDULE AN EOS GIVEN CUST, NODE IN STIM(NODE) UNITS
Al ALVAYS
WY RETURN
XL END  °*°'EVENT ARRV
. EVENT EOS GIVEN CUST, NODE ''END OF SERVICE EVENT
! DEFINE CUST, NODE AS INTEGER VARIABLES
Pt LET TCUST(NODE)= TCUST(NODE) + 1
W CALL ROUTE2 CIVEN CUST,NODE
RETURN
- END ' 'EVENT EOS ‘
X! EVENT OUTPUT |
N DEFINE 1, J AS INTEGER VARIABLES
Ld FOR 1=1 TO 2, DO i
£y FOR J=1 TO 2, DO :
"y P1.!:'1‘ 0.R(1,J)= RCUST(I,J)/TCUST(D) ‘
b

100 |
- . WRITE 1.0/A.ARCD), 1.6/A.SR(D), O.R(I,1), 0.R(I,2) |

X AS ¢ D(10,4) USING UNIT 1
P, WRITE AS / USING UNIT 1 |
Y A WRITE A.BUSY(I)/S(I), A.WQ(I) AS 2 D(10,4)
Ny USING UNIT 1
1,00 . _WRITE AS 7 USING UNIT 1 |
! \.; LOOP :
. LET I=1

4 LET C=C+1

PRINT 6 LINES WITH NM,C, I, I+1,1.0/A.AR(1), 1.0/A.AR(I+1),
1.8/A.8R(1),1.0/A.8R([+1) ,A.BUSYC(I)/8(1),A.BUSY(I+1)/8C(I+]),

o5y A.Wa(l1), A.¥WQ(I+1) THUS
A RESULTS FOR MACRO #x.% BATCH *x, x
oy NODE = NODE =

s ARRIVAL= %xx.%xkx ARRIVAL: %%, xx&x%
e SERVICE= %x.%x%xx SERVICE= **. %xxx

AN RHO= *.%%xx RHO= =%, %x%xx%kx

) WOz RXR , KXKR WOz KE% REKX

PRINT 1 LIKE THUS
OBSERVED ROUTING PROBABILITY MATRIX (0.R)

J
L LIST O.R
B SKIP 1 LIRE
2o IF C LT 25.0
o : SCHEDULE A RESET KOW
»o SCHEDULE AN OUTPUT IN 150.0 UNITS
D ELSE PRINT 1 LINE WITH G.AWQ(1), G.AWQ(2) THUS
OVERALL MEAN FOR WQ( 1) sk, k¥xx WQ(2) =kkx , Rex
" SKIP 1 LINE
> LET C=0
el LET NM=RM+1
LYy FOR EACH NODE RESET THE TOTALS OF AwQ
ot FOR I*1 TO 2, DO *°NO. NODES
00y LET AWQ(D)=0
Ty LooP
T IF NM LE 10.0
fas SCHEDULE A RESET NOW
:? SCHEDULE AN OUTPUT IN 156.0 UNITS
\J
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3 ELSE STOP
-5.'1 ALWAYS
st ALVAYS
» RETURN
< END ' °'EVERT OUTPUT
R ROUTINE ROUTE2 GIVEN CUST, NODE °'FOR TWO NODE NETWORK
s DEFINE CUST, NODE, NEXT AS INTEGER VARIABLES
LET DEST = RANDOM.F(5)
“w IF DEST LE R(NODE, 1), LET NEXT=1
) LET NODT(CUST)=TIME.V
4 LET RCUST(NODE,NEXT)= RCUST(NODE,NEXT) +
ot IF BUSY(NEXT)= S(NEXT), FILE CUST IN om:unumxn
hved ELSE  LET BUSY(NEXT)= BUSY(NEXT) +1
N LET WTIM(REXT)=0
", LET AWQ(NEXT)=0
LET US=RANDOM. F( NEXT+5)
LET STIM(NEXT)=(~-1.0/MU(NEXT) ) *(LOC.E.F(US))
[0 SCHEDULE AN EOS GIVEN CUST, NEXT IN STIM(NEXD) UNITS
) ALWAYS
bt ELSE IF DEST LE R(NODE,2)
.: LET NEXT = 2
o LET NODT(CUST) = TIME.V
3¢ LET RCUST(NODE,NEXT)= RCUST(NODE,NEXT) + 1
sl IF BUSY(NEXT) = S(NEXT)
O FILE CUST IN QUEUE(NEXT)
v ELSE LET BUSY(NEXT)= BUSY(NEXT) + 1
IS LET WTIM(NEXT)=0
N LET AWQ(NEXT)=@
e LET US=RANDOM.F( NEXT+5)
o, LET STIM(NEXT) =(-1.6/MU( NEXT) ) *(LOC.E.F(US))
s u_wnscmm AN EOS GIVEN CUST, NEXT IN STIM(NEXT) UNITS
* ELSE DESTROY CUST
- ALVWAYS
o ALVAYS
[ IF QUEUE(NODE) 1S EMPTY
g, LET BUSY(NODE):= BUSY(NODE) - 1
e, RETURN
j;_-: ELSE REMOVE THE FIRST CUST FROM QUEUE(RODE)
S LET WTIM(NODE)= TIME.V - NODT(CUST)
' LET AWQ(NODE)= TIME.V-NODT(CUST)
W LET US=RANDOM.F(NODE+5)
o LET STIM(NODE)=(~1.0/MU(NODE) ) x(LOG.E.F(US))
SCHEDULE AN EOS CIVEN CUST, NODE IN STIM(NODE) URITS
b END '°ROUTINE ROUTE2
M ROUTINE SNAP.R
wWiy LIST TCUST
e SKIP 1 LINE
LIST RCUST
) SKIP 1 LIKE
¢ LIST ATTRIBUTES OF EACH EOS IN EV.S(I.E0S) ‘
! SKIP 1 LINE
Pl LIST ATTRIBUTES OF EACH ARRV IR EV.S{I.ARRV)
N RETURN
'.J:. ERD °*SNAP.R
t‘.é' 7%
T
7
*
Y
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77 JOB

7/ REGION=768K

7% JOBPARM LINES=5000

7781 EXEC  FORTVCG, IMSLIB=SINGLE

//FORT SYSIN DD %

CCC ROGRAM ANALYZES SIMULATION RESULTS FOR VARIARCE REDUCTION
Ccc PROGMH COMPUTES EFFECTIVE ARRIVAL RATES AND PERFORMANCE
CCC  MEASURES FOR A GIVEN NETWORK USING AN IMSL ROUTINE

CCC TO SOLVE THE BALANCE EQUATIONS. CRUDE AND CONTROL

CCC VARIATE ESTIMATES ARE COMPUTED AND THEIR VARIANCES

CCC  ARE COMPARED.

CCC DEF INITIONS OF MAJOR VARIABLES

ccc NO. OF NODES

CCC RB NO. OF BATCHES PER MACRO

CccC NO. OF MACROS PER EXPERIMENT

ccc SUBSCRIPTS FOR DEFINITIONS

CccC I=NO. OF NODES, J=NO. OF BATCH, K=NO. OF MACRO

CCC RO(D LONG RUN UTILIZATION, NODE I

CCC wacl) LONG RUN QUEVUE TIME, NODE I

CCC KOTE: STATISTICS ARE DEFINED FOR RO ONLY; NOTATION IS
CCC SIMILAR FOR W@

c€CCC ROJ(D) JACKSON STEADY STATE FOR RO(ID)

CCC ROA(1,J) ANALYTIC CONTROL FOR RO(I,J)

CCC ROS(I,J) SIMULATION ESTIMATE FOR RO(I,J)

CCC AROS(I,D MEAN FOR ROS(I,J) OVER MACRO K

CCC  AROA(D MEAN FOR ROA(1,J) OVER A MACRO

CCC VROA(D VARIARCE FOR RO(I1,J) OVER A MACRO

CCC CRO(D) COVARIANCE(ROS(1,J) ,ROA(1,J)) OVER A MACRO
CCC  BCRO(D) ESTIMATED CONTROL COEFFICIENT, B, FOR RO(I)
€CCC BROC(1,K CONTROL ESTIMATOR FOR RO(I) IN MACRO K

CCC RoCcI, CONTOL ESTIMATOR,B=1, FOR RO(I) IN MACRO K
CCC  MROC(I) MEAN OF ROC(1,K)

CCC VROC(D) VARIANCE OF ROC(],K)

CCC MBROC(ID) MEAN OF BROC(I,K)

CCC  VBROC(D) VARIARCE OF BROC(I.K

CCC  MAROS(I) MEAN OF AROS(1,K)

CCC  VAROS(ID) VARIANCE OF AROS( I,

CCC  VRROC(D) VARIANCE REDUCTION FROH ROC(D)

CCC  VRBROC(I) VARIANCE REDUCTION FROM BROC(I)

CCC Mwaes(1,B OVERALL MEAN OF WQS AT NODE I, MACRO K

CCC CGMwas(I OVERALL MEAN OF WQS AT NODE 1 FOR ALL K
CCC NOTE: A LIST OF OTHER PROGRAM VARIABLES FOLLOWS

CCC A(I,1D EFFECTIVE ARRIVAL RATE MATRIX

CCC B(D ARRIVAL( INPUT) 7EFFECTIVE ARRIVAL( OUTPUT)
€cC 1A RO¥ DIMERSION OF A(I1,11)

CCC 1DGT ACCURACY TO DECIMAL PLACE OF LEQT1F SOLUTION
CCC 1ER LEQTIF WARN FLAG ( ACCURACY OR SINGULARITY)
CCC  LEQTIF IMSL LINEAR EQUATION SOLVER

ccc M NO. OF RIGHT HANRD SIDES

€ce N NO. OF ROWS IN B(I)

CCC R(i, 1D PR. OF ROUTINC FROM NODE I TO 11

CCC 8D NO. OF SERVERS AT NODE I

CCC WKAREA( D DIMENSION GT OR EQ TO N

CccC VICE RATE AT NODE !

MU( SER!
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCC  DECLARE AND DIMENSIOR VARIABLES

INTEGER NN, KM, NB, M, N, IER, lA, IDGT, 8 ,FACT,CRUDE
REAL MWQS(2, 10) ,CHWAS(2) , GVWAS(2)

REAL ROJ(2), ROA(2,50), AROS(2,10), AROA(2), VROA(2),

84
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CRO(2), BCRO(2), BROC(2,10), ROC(2,10), MROC(2),
VROC(2), MBROC(2), VBROC(2), MAROS(2), VAROS(2),
VRROC(2), VRBROC(2)

REAL WQJ(2), WQA(2,50), AWGS(2,10), AWQA(2), VWQA(2),
CWQ(2), BCWQ(2), BWQC(2,10), WaC(2,10), MWQC(2),
VWQC(2), MBWQC(2), VBWQC(2), VRWQC(2), VRBWQC(2)

REAL B(2), WKAREA(4), MU(2), R(2,2), A(2,2)
CCC  LABELED COMMON STMT
COMMON /SIMMEA- ROS(2,23), WQS(2,2%), 8(2)
CCC READ IN NETWORK PARAMETERS AND IMSL ARGUMENTS
READ(S,*)NN, NM, NB, M, N, JA, IDGT
CcCC ggAgoJAgxfoguPhﬂAﬂETEBS AND FORM ACI,II1) MATRIX
READ(3,x)B(I), MU(D), S(I), R(I,1), R(1,2) ]
20 CONTINUE !
€CC  READ OVERALL MACRO MEANS FOR W@
DO 25 K=1,NM
READ(5,%)MWas(1,K, Mwas(2.K)
25 CONTINUE
DO 406 1=1,NKR
po 360 I1=1,RNN
IF(1.EQ. 11)THEN
E(l.ll)Sl-R(l.ll)

ACI,ID= -RC(II, D)
DIF

EN
30 CONTINUE
40 CORTINUE
CCC  ECHO INPUT
WRITE(6,41)
41 FORMAT('@’, 15X, 'ECHO INPUT’)
WRITE(6,%) *KN=", KN, 'NB=°*, NB, 'NM=', NN, °‘M:*, M, 'N=", N,
*1A=', 1A, *1DGT=", IDGT
DO 60 I=1,NN
WRITE(6,42)I, B(I), MU(D, S(D)
42 FORMAT( '@’ ,*NODE', 13,2X,'B(I)=',F10.4,2X,"MU(])=",F10.4,
+ 2X,°'S(D=",1I3)
Do 86 11=1,RN
WRITE(6,43)1, 11, RC(I,ID, ACI,ID
43 FORMAT( @', 'PROBABILITY FROM',13,1X,°'TO',13,1X,'=",F10.4,
+ 1X,’ACI,IDD=" ,Fl10.4)
50 CONRTINUE

66 CONTINUE
CCC SOLVE FOR JACKSON EFFECTIVE ARRIVAL RATES
CCC CALL IMSL ROUTINE LEQTIF
CALL LEQTIF(A, M, N, [A, B, IDGT, WKAREA, lER)
IFCIER.GT.®) THEN
WRITE(6,x) "ERROR FLAG=', 1ER, 'JACKSON’
STOP
ERDIF
ccc SOTPUTE JACKSON MEASURES
CALL PERF(RN, NB, J, B, MU, ROA, WQA, CRUDE)
DO 726 1=1,RN
ROJ(1)=ROA(1,J)
WQJ( 1) =WQA(I,J)
70 CORTINUE
CCC ECHBO JACKSOR MEASURES
DO 116 I=1, NN
WRITE(6,75)1, ROJ(I), WQJ(D)

+4 44
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73 FORMAT( *9°, *JACHSON VALUES NODE', I18,2X, *RO=',F10.4,2X,
[ + ‘wo=*,F10.4)
f 110 CONTINUE
ccce ;8“253“1(““:?0 COMPUTE MEASURES AND CV'S
< .1
~ ccC FOR ggcn BA’IEB nmn“ READ PARAMETERS AND SIM. ESTIMATES
4% 140
N CCC FOR EACH NODE READ PARAMETERS AND ESTIMATES
e DO 130 I=1,NN
g8 READ(3,%)B(I), MU(D), R(I,1), R(1,2)
READ(3,%)ROS(I1,J), WaS(1,J)
A 130 CONTINUE
e DO 136 I=1,RN
Do 135 11=1,RN
IFC1.EQ. I1) THEN
o ACI,ID=z1-R(I,ID
e ELSE
SO ACL,ID= -RC(II, D)
ERDIF
135 CORTINUE
o 136 CONTINUE
AW CCC COMPUTE EFFECTIVE ARRIVAL RATE FOR A BATCH
» CCC  CALL IMSL ROUTINE LEQTIF
3 CALL LEQT1F(A, M, N, IA, B, IDCT, WKAREA, IER)
A IF(IER.GT.®) THEN
O WRITE(6,%) "ERROR FLAG BATCH', J,K, '=', IER
N STOP
Y ENDIF
ha ccc COMPUTE BATCH MEASURES FOR EACH NODE
A CALL PERF(NK, NB, J, B, MU, ROA, WQA, CRUDE)
e 140 CONTINUE
WRITE(6, 141} K, CRUDE
o 141 FORMAT( @', ' IN MACRO'’, 13,2X,'RHO GE 1.0',13,2X, TIMES')
A ccc COMPUTE MEANS, VAR'S, COV, BSTAR, FOR BATCH OUTPUT
- DO 240 1=1,NN
- Do 156 J=1,KB
Ot AROS(1,K0= ROS(1,J)+AROS(1,K)
AWQS(1,K) = WaS([,J)+AWeS(1,K)
iy AROA( 1) eROAC T, JY+AROA( I)
) : VROA(I)= ROACI,J)*ROACI,J)+VROA( D)
- AWQAC(I)= WQACI,J)+AWQA(I)
~ VWQA( 1) =WQA(I,J)*xWQA(I,J)+VWQA(D)
o 150 CONTINUE
Lo ccc COMPUTE MEAR, VAR FOR MEASURE AT NODE I
o AROS(I,KD= AROS(1,K)/(NB)
So% VROA( [)=VROAC 1) /(NB-1)-AROAC 1) %AROA( 1)/
> + ((KB~1)*(NB))
s < AROA( D)= AROA(I)/(NB)
.. AWAS(1,K= AWQS(I,K)/(NB)
v VWQA(I)= VWQA(I)/(NB-1)-AWQA( 1) XAWQA( )/
N + ( (NB-1)*®(RB))
AWQA(I)= AWQA(I)/(NB)
ccc COMPUTE COVARIANCES
o DO 160 Je1,NB
) CRO( )= (cnos:}).n-nosu +K))x(ROACI,J)-AROA(I))+
ALY +*
- cwacn = (wg‘slti).n AWQS(1,K) )% (WQA(T,J)=-ANQA( D))+
h +
e 160 CONTINUE
o ccc COMPUTE COV AND BSTAR
‘l:’l
o
e
)
W0
nr i
)
i
i
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ccce

260

270 CONTINUE
CccC
Do 390

280
€Cccc

WaC

PRINT DATA SUMMARY F
WRITE(6, 179)
FORMAT( ‘@', ‘RES
WRITE(6G, l“)llDJ

FORMAT(®* *, °

'QOV(RO)". 10.4
2X,°ROC=', F10.4
WRITE(O, zoo;mxn. nwesc1,K, Cwacn, BCwacl) ,pwac(I,\ D,

(1,K)
FORMAT(® °*
Fl10.4,2X,* BSTARS'.FIO 4, 2X, *BWaC=',F10.4, 2x.'woc=’.no &

CORTINUE
lllTlALlZlE)oBA'lﬁll

CONTI
COMPUTE VARIANCE /MEARNS
VROC( I)= VROC( 1) /(NM-1)-MROC( 1) *MROC( 1) /( (N}~ 1) *NID

L e o g

R LT LT B OO WY

87

UL'I‘S FOR IODE’ 13,8X, ' MACRO*, I3)
AROS(1,K), 'CROC 1), BCROCI) +BROC(1,D,

% Flo.4,2X, AROS*' F10.4,2X,
X, *BSTAR=* ,F10.4,2X, * BROC= " F1o.4,

‘WaJ=*,F10.4,2X, 'AVOS="*,F10.4,2X, ‘COV(WQ =",

ARRAYS
260 I=1,NN
DO 280 J=i,NB
ROA(I,J)=0
WQACI, )=

COMPUTE VARIANCE REDUCTION SUMS

MROC(1)= MC(] K)+MROC( 1

VROC(1)= ROC(1,K)%ROC(I, D*VM( n
MWaC(I)= WC(I.DHIVOC(I) !
VWQC(1)= WaC(1,K0%2WaC( I, K +VWaC( I) ]
MBROC( I)= BROC(],X)+MBROC(1) ]
VBROC( 1)= BROC(1,K)*BROC(I, nwm\ot:( | §)
MBWQC( I)= BWAC(1.K)+ MBWOC( I

VBWAC( I)= BWAC(]1,K2BWQC(1, K)* VBWQC( ) J
MAROS(1)= AROS(1,K)+ MAROS(1) ‘
VAROS(1)= AROS(1,K)®AROS(1,K)+ VAROS( 1) |
CMWAS(I)= MWOS(], K+ cHwas( 1 |
chHOS(l)l MWaS( 1,0 *xMwas(1,K)+ GVWaS( 1) i

MROC( 1)= MROC(1)/KM
VWOC( I)s VWaC( 1) /(BM-1)~MWOC( 1) xMWOC( 1) 7¢ (NN-1) 2N
MWQC(I)s Mwac(1)/N1




VBROC( 1) =VBROC( 1) /( N~ 1) ~MBROC( 1) *MBROC( I} /( ( NM-1) *NID
MBROC( 1)= MBROC( I)/NM
VBWQC( 1) *VBWQC( 1) /( NM-1)-MBWOC( 1) *MBWQC( 1) 7/ (NN~ 1) *NMD
MBWQC( 1)= MBWQC(I)/KNM
VAROS( 1) sVAROS( 1) /(NM-1)~MAROS( 1) *MAROS{( 1) 7/( ( NM-1) #N}D
MAROS( 1)= MAROS(])/NM
GVVWAS( 1) =CVWAS( ) /7(NM-1)-GMWAS( 1) xCMWAS( 1) 7( (NM-1) *NM)
CMWasS(1)= CMWAS(1)/NM
ccc COMPUTE VARIANCE REDUCTION
VRROC( I) = (VAROS( 1)-VROC( 1)) /VAROS( 1)
VRBROC( 1) =( VAROS( 1) =VBROC( 1) ) /VAROS( I)
VRWQC( ) =(GVWAS( 1) -VWQC( 1)) /CVWaAS( 1)
VRBWQC( 1) = (GVWAS( ])~VBWQC( 1)) 7GVWaS( 1)
ccC PRIRT VARIANCE RDUCTIONS

)1
290 FORMAT(*0', °'VARIANCE REDUCTION AT NODE °*, I3
WRITE(6,300)ROJ( 1), MAROS(1), VAROSC(I)
300 FORMAT(® °*, 'ROJ=°’, F10.4,3X, 'MEAN GIM RO=', F10.4,3X,

+ *VAR(SIN RO)=*, F10.4)
WRITE(6, SIOJHBMO(D. VBROC( 1), MROC(1),VROC(I])
10 FORMAT(® *, "MEAN BROCs', F10.4,3X, ‘'VAR(BROC)=', F1@. 4,
+ SX, "MEAR ROC=°, F10.4, X, *VAR(ROC)=', F10.4)
WRITE(6, 820) VRBROC( 1) , | VRROC(

D
320 FORMAT(‘@*, 'VAR REDUCE BROC=', F10.4,8X, VAR REDUCE ROC=°',

F10.4
WRITE(6, 830)“.’( 1), CMWGS(1I), CVWaS(1)
830 FORMAT(*@°, 'WaJs*, F10.4, SX.'HEA! llH Waz=', F10.4,3X,
+ *VAR(SIN W=, 710.4
WRITE(6, MO)HBWQC(I). VBM(!). HWQC(I) VWaC( D
340 FORMAT( * ' ‘MEAN BWOC=', F10.4,3X, 'VAR(BWQC)=", l"l. 4,

+ SX, 'MEAN WQC=", rie. 4, SX.'VAR(VQC)". F10.4
WRITB(G 350) VRBNGC( 1), VRWaC(1
330 FORMAT(® °*, 'YA& REDUCE DWQC". F10.4,3X, 'VAR REDUCEWQC=",
+ .
996 CONTINUE '
STOP
END

CcCC INTEGER FUNCTIOR TO COMPUTE A FACTORIAL
INTEGER FUNCTION FACT( ISERV)
KSERV= 1
IFCISERV.CT. 1) THEN
DO 560 1=}, ISERV
KSERV: KSERV* 1
§e0 ]CONTIIUE

ENDIF
FACT=KSERV
RETURN

END
CCC SUBROUTIRE TO COMPUTE PERFORMANCE MEASURES
SUBROUTINE PERF(NN, IB' J, B, MU, ROA, WQA,CRUDE)
COMMON /SIMMEA/ROS(2,28), WS(2,25), 8(2)
INTEGER RK,NB,J, FACT, 8, CRUDE
REAL B(2), MU(2), ROA(2,25), WQA(2,25), L@A
CcC COMPUTE MEASURES FOR EACH NODE
DO 820 [I=],NKN

Ti=@
ROACL, J)=B( 1) /(B(1*MU( 1))
CCC IF RO GREATER THAN ONE, REPLACE RO VITH .9999
TO COMPUTE MEASURES

CcC
IF(ROA(1,J).GE. 1) THEN




89

ROAC l.J)'.M’
CRUDEs CRUDE+1

x>

ENDIT
T2=((ROAC1, Jnsunus« 1))/7(FACT(B( 1)) #( 1-ROAC1,J)))
po eie 1J=0,(8( -
Tis ((ROA( 1, J)%8( l))“lJ)ﬂAC‘l‘(lJ) +T1

810 CONTINUE

PRO® _1/(T1+T2)

UM'PMQ((MA(I HeS( 1 )HIaS 1 HIEROACL, J)/

FACT(S( 1)) (l-le .muzn

WOACT,J)= WB (@ })

820 OOITINUE
RETURN

END
7/8YSIN DD % .
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