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CHAPTER I

INTRODUCTION

Basic queueing theory begins with an arrival process, a

service mechanism, and a queue discipline. Practical appli-

* cations can extend this beginning into a network where the

nodes would be service mechanisms of one or more servers.

Such applications include communication systems, computer

time sharing processes, medical care facilities, assembly

operations, and so on. The analysis of such networks

involves the solution of large scale systems of equations

and computational problems of large dimensions. Due to the

intractability of the mathematical models, computer simula-

tion is a commonly employed analysis approach.

Simulation, however, is an experimental approach rather

than an analytical one, and presents a host of issues

inherent in sampling. These issues include the choice of

input distributions, statistical methods for analyzing out-

put, the comparison of alternative systems, model verifica-

tion and validation, and techniques used to improve the

precision of estimators. The last issue is commonly

referred to as variance reduction and is the topic of this

research.

-1-
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A simulation of queueing networks is partially driven by

sampling realizations of random variables; therefore, the

outputs produced are also random variables. These outputs

are generally mapped into estimates of interest through an

output function (e.g. a sample mean for instance). These

estimators possess sampling distributions usually having

unknown means. The precision of these estimators is meas-

ured by their variances: the smaller the variance the

greater the precision. Therefore, reducing the variance is

a method for increasing the efficiency of the simulation.

One technique employed for variance reduction is the use

of control variates. This technique uses the correlation

between specified random variables to achieve a variance

reduction. One type of control variate is the external

control, which is obtained by simulating a similar system

whose performance measures can be analytically computed or

closely approximated. A variance reduction can be obtained

if the output of the second simulation is positively corre-
lated with its counterpart from the original simulation.

A number of queueing networks can be categorized as

Jackson networks, for which the analytical computation of

various performance measures is possible. Jackson networks

have been considered as possible control variates for simu-

lating more general networks. There are at least two ways

in which Jackson networks can be used to obtain control

%i,
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variates. The first method, as described above, involves

running a second simulation of a similar Jackson network

and using the corresponding output of this second simula-

tion as the control variate. This method is commonly

referred to as external control variates. A formidable

drawback with this approach is the cost of the second simu-

lation.

The other method for obtaining a control variate is to

use the difference between two performance measures calcu-

lated from the Jackson model as the control variate. One

measure is computed by substituting the known input parame-

ters into the Jackson equations. These parameters could be

the mean arrival or service rates used to drive the simula-

tion. The other performance measure is computed by substi-

tuting estimates of these same parameters obtained from the

simulation into the Jackson equations. This type of con-

trol variate is referred to as an analytic control since it

is obtained from an analytical operation rather than a sec-

ond simulation. The advantage of this approach is eliminat-

ing the cost of the second simulation. This is a new

approach.

The purpose of this research is to study the effective-

ness of Jackson networks as external and analytic controls

for queueing network simulations. The approach taken is to

experiment with a small but representative set of networks
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with an eye toward drawing general conclusions about the

performance of this variance reduction technique. Nelson

[15,16) notes that prior knowledge of the system in ques-

tion is a key component in the selection of an appropriate

variance reduction technique. The conclusions drawn from

this research should provide the analyst some prior knowl-

edge for selecting the appropriate variance reduction tech-

nique.

This research will attempt to add to this prior knowl-

edge by studying the performance of Jackson based external

and analytic controls on various queueing performance meas-

ures, by investigating the impact of the service distribu-

tions, traffic intenstity, and network structure. In

addition, the suitability of automating this approach and

areas of future research will be discussed. The remainder

of this work includes a background on queueing networks and

control variates, the methodology used in this research,

results and conclusions.



CHAPTER II

BACKGROUND

The purpose of this chapter is to present an integrated

review of the literature relevant to this research. The

review is divided into three sections: the first presents a

brief introduction to queueing networks and formally

defines a Jackson network; the second presents the theory

and development of control variates, and the third discuss-

es the results of the control variate techniques applied to

queueing network simulations.

QUEUEING NETWORKS

In general, queueing networks are classified as open or

closed networks. In an open network customers arrive from

outside the network; this characteristic is called exoge-

nous arrivals. In general customers may enter the network

at any node. Customers then proceed through the network

according to their needs or in some random manner and may

depart the network from any node. A closed network is simi-

lar in structure to an open network; however, there are no

exogenous arrivals and customers never depart the network.

5
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There is always some fixed number of customers present in a

closed network. Figure 1 shows examples of the open and

closed network types. This network contains a number of

points where customer routing decisions must be made. These

points are called switches and their operation is governed

by switch rules. These rules may be imposed externally to

the system (e.g. a routing or dispatch form), internal to

the system (e.g. the server at node 1 may determine whether

a customer goes to node 2 or 3), or the rules may be deter-

mined by the customers (e.g. customer selects the shortest

waiting line).

External Departure
Arrival

Open Network

Closed Network(Number of Customers= C)

Figure 1: Open and Closed Queueing Networks
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While the systems in Figure 1 illustrate the idea of

open and closed networks, more detailed symbols are needed

to model more complicated structures. Consider the network

in Figure 2.

External Decomposition Recomposition Departure
Arrival Switch Switch

Figure 2: Sample Queueing Network

There are two basic types of switches: decomposition and

recomposition. A decompostion switch splits a single stream

*of customers into a number of streams. A recomposition

switch merges a number of streams into one superposed

stream.

VP Another possible feature is feedback. A feedback point

V is one where customers may be directed to repeat a service

node; direction is provided through feedback rules.

There are three principal methods for analyzing queueing

networks: first, analyze the network as a whole; second,

decompose the network into subnetworks; and third,
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use computer simulation. In his survey paper Disney [3]

notes that the difficulties in mathematically analyzing

queueing networks arise from flow properties rather than

physical properties. Once customers enter a network the

combinatorial effect of service mechanisms, switch and

feedback rules, and queue disciplines alter the flow within

the system for the individual customer.

Many of the techniques for analyzing networks as a whole

are based on the research of J.R. Jackson [7,8). The major

thrust in this area has been studying the queue length pro-

cess and most of the known results are for steady-state

behavior. The primary obstacles encountered are finding the

solutions of large scale systems of equations.

The second approach, decomposition, attempts to break

the network down into subnetworks whose characteristics are

well known. The most commonly used point for decomposition

is at the switches. There are two basic technical problems

with this approach: first, determining the effect of

switching rules on the stochastic properties of network

flow; and second, determining the result of recombination

of the subnetworks. The primary obstacles encountered are

probabilistic as opposed to algebraic, and involve computa-

tional problems of large dimension.

The third approach, computer simulation is probably the

most commonly employed for general networks. Simulation is
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an experimental approach rather than an analytical

approach. The obstacle faced is how to analyze the measures

4 obtained from the simulation. Often simulation output is

used to estimate a population mean. In general, the output

is correlated and highly variable. Estimation and the con-

trol of the variance of estimators is important, and is

reflected in the validity and width, respectively, of

interval estimators of these popluation means.

The characteristics of a queueing network are principal-

ly determined by the arrival processes, service mechanisms,

queue disciplines, switches, and feedback rules. The model

formulated by Jackson [7] properly defines these character-

istics so as to facilitate a generalization of the M/M/s

queue (Kendall notation meaning exponential interarrival

times/ exponential service times/s servers) to an intercon-

nected open network of service nodes. The defining charac-

teristics of a Jackson network are listed below:

1. The network contains more than one service node.

2. Each node can be a single or multiple server queue

with each server having an identical exponential ser-

vice time distribution. Service times are independent.

3. Arrivals from outside the network occur in a Poisson

fashion. Outside arrivals to any node are independent.

4. Arrivals at any given node may come from outside the

network or from any other nodes.

- - ' . 00
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5. The effective arrival rate at every node is less than

its potential service rate.

6. When a customer completes service at a node, he may

leave the network or be routed to another node.

7. There is unlimited waiting space at every service

node.

8. The queue discipline is first come first served.

Although the parameters are fairly restrictive, the mod-

el is still quite general. Subsets of Jackson networks are

1. A finite number of M/M/s queues in tandem; tandem net-

works have only one exogenous arrival point and one

path through the network.

2. An acyclic network of M/M/s queues; these are networks

where customers may visit a node only once.

3. A network of M/M/s queues with feedback.

Jackson proved the important result that in steady

state conditions, each node in the network functions as an

independent M/M/s queue with Poisson input. This fact

allows the decomposition into subnetworks and the pursuant

application of M/M/s results. Another important fact is

that although feedback destroys the Poisson property of the

input stream, the nodes of the Jackson network continue to

function as though the input process was Poisson.

Lemoine [13J presented a survey of equilibrium results

for general Jackson networks. If the network is open, the



equilibrium rate of flow through node i, ei . is the sum of

the external input rate, A V' and the total rate of inter-

nal inputs to node i. This balance equation can be written

as

ei=X. + Z r.. e. i=l,...,N (1)
i 3=1ji J

where r.. is the probability a customer is routed fromJi

node j to node i, and N is the number of service nodes in

the network.

Since the effective arrival rate at each node i must be

less than its potential service rate, or else the number of

customers in the system will continually grow as time goes

V on, the traffic intensity qi must satisfy

g imei/(siui)<l i=l,...,N (2)

where s. is the number of servers and ui is the service1

rate at node i.

Another equilibrium flow condition derived from the open

network is that the total input flow rate must equal the

external departure rate. For any node i, the probability

that any customer leaves the network is

q - l ri j  (3)

7R~
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therefore,

N eq (4)

In his work Jackson [73 used as a state variable a vec-

tor whose components represent the number of customers

present at each node in the network. His analysis showed

that under equilibrium conditions the probabilty of the

system being in state k, p(k), could be factored into a

product of the marginal probabilities:

pkf..TkN)pkl "'PN (k N) (5)

where

6k S.
.iO= e/u.) + (ei/ui) (6)

and

P.(0) (e.iu.) k k=0,1,...,s .(7

k1

P1 (k)=

p1 (0) (ei/ui) k ks

5j~( 5*k-s.
1

W r~p~* - ,*~~ '?s
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The preceding two equations can be recognized as those

of the basic M/M/s model with effective arrival rate, e.,

replacing A This generalization permits the decomposi-

tion of the Jackson network into a collection of multi-

server subnetworks.

Using the above results and Little's [14] formula the

following measures of performance can be obtained:

Long run queue length (LQi)=pi(O) (ei/ui) 8(i) (8)

(1- ) 2
12

Long run node length (L.)=LQi + ei/u i  (9)

The long run node length is the sum of the number of cus-

tomers in service and the number in the queue.

Long run queue time (WQi)=LQi/ei  (10)

Long run node time (Wi)=WQ, + 1/ui  (11)

Nelson [17] extended the results for Jackson networks

:4 by deriving the probability distribution for the total

waiting time (excluding service time) for a customer to

pass completely through the network. This result was

obtained by the convolution of waiting time distributions

at each node.
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The sojourn time of a customer in a network is the time

spent at each of the nodes visited (queue and service time

combined) plus travel time between the nodes. Travel time

in a Jackson network is assumed to be zero. For most net-

works the sojourn time problem is unsolved. Burke [1] and

Reich [183 present results for small special case networks.

Gordon and Newell [6] analyze a closed network of N

interconnected nodes and C customers. Each node has si

i=l,...,N, parallel servers each with service rate u. The

routing from node to node is the same as a Jackson network

except customers do not depart the network. The system is

equivalent to some open networks where the number of cus-

tomers cannot exceed C. The authors' principal result was

an expression for the equilibrium distribution at each

node. The expression is factored into product terms for

each node with the exception of an unknown normalizing con-

stant that reflects the interaction between nodes.

Buzen [2] developed an iterative technique for deter-

mining the normalizing constant. He also derived the margi-

nal distributions of the number of customers present at the

nodes, the expected number of customers at each node and

the steady state utilizations.

Solberg [19] developed a computationally efficient meth-

od for computing the normalizing constant.
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In summary, the analysis of Jackson networks have the

following limitations:

1. Service time distributions must be exponential.

2. Service nodes must have identical servers.

3. Only probabilistic routing between nodes is permitted.

4. Customer oriented performance measures such as sojourn

times are difficult to obtain for other than special

cases.

5. Travel time between nodes is assumed to be zero.

The scarcity of analytical results for other than special

cases makes using network models difficult for practical

applications. In general computer simulation often becomes

the analysis approach and, as mentioned previously, estima-

tors of the performance measures will possess some degree

of variability. Reducing this variability to increase the

estimator's precision becomes a major concern. One way of

addressing this concern is the use of control variates.

.1 CONTROL VARIATES

N The central idea of control variates is to use the correla-

tion between specified random variables to achieve a vari-

ance reduction. A random variable, C, is a control variable

for the random variable Y, if it has a known expectation,

7, and is correlated with Y.
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Let Y be an unbiased estimator of 9, the quantity of

interest, obtained from a single simulation run. Then for

any constant b, an estimator of Y can be written as

Y(b) = Y - b(C - 7) (12)

Equation (12) is also an unbiased estimator of 0. The vari-

ance of Y(b) is given by

Var[Y(b)]=Var[Y] + b2Var[C] - 2bCov[Y,CJ (13)

which is the same as

Var[Y(b)]=Var[Y] + b2Var[C] - 2bqVar[Y] Var[C] (14)

where 9 is the coefficient of correlation between Y and C.

The value of b, b which minimizes the Var[Y(b)] can be

found by differentiating (13) with respect to b and is giv-

en by

b = Cov[Y,C] (15)

Var[C]

Substituting the above into (12) yields the optimal control

variate estimator Y(b*). The variance of this estimator is

then

Var[Y(b*)]=Var[Y] (1- 92) (16)

-o°9

4.]
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Equation (16) indicates the greater the correlation between

Y and C, the greater the reduction in variance.

Kleijnen [9] discusses extensions to multiple control

variates

n
Y(b)= Y - I bi(Ci-Ti) (17)

where n is the number of control variables.

Law and Kelton [12) present two general methods for

obtaining control variables. The first is to use input ran-

dom variables, such as arrival rates, service rates, and

routing probabilities, since their expectations are known

and the sign of the correlation with the output may be

known. This type of control variate is known as internal or

concomitant. Since they are generated by the simulation to

obtain the outputs, using them adds little to the cost of

the simulation.

A second method for obtaining control variates is to

simulate a similar system whose desired performance measure

can be analytically computed. This simulation uses the same

random numbers as the first simulation to induce positive

correlation. The corresponding output of the second simu-

lation can then be used as the control variate. This type

of control variate is called an external control variate.

The desired outcome is that the output of the second simu-

lation is positively correlated with its counterpart from
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the original simulation. Unlike internal control variates

the cost of a second simulation is incurred, which in some

cases may be prohibitive. Thus the covariance between the

outputs will have to be larger than for the internal con-

trol variates to make this approach worthwhile.

A third method for obtaining control variates, suggested

by Nelson [15), is an amalgam of the internal and external

approaches. He suggests simulating the system to obtain the

desired performance measures and the means of the input

parameters observed during the simulation run. The control

variate is derived by substituting these observed input

means into a parametric analytical model of a similar sys-

tem. The mean of this control variate would be derived in a

similar fashion, except the known input means, rather than

the observed means, would be substituted into the paramet-

ric model. Expressed in the linear control variate format,

the control estimator of Y would be

Y(b)= Y - b (A - ) (18)

where Y is the crude estimator obtained from the simula-
A &

tion; A=g(Xi), is the control variate where Xi is the

observed mean of the input Xi driving the simulation that

produced Y and i=l,...c, where c is the number of input

parameters in the parametric model function g; and

r=g(E[XJi) where EX ij is the input mean. Equation (18)
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need not be unbiased since the expectation of a function is

not in general a function of expectations.

N From a cost standpoint the analytic approach has an

advantage over the true external in that the cost of the

second simulation is avoided. The effectiveness of this

approach using the Jackson network as the parametric model

is the focal point of this research.

Once a control variate method has been selected the

problem of specifying the control coefficient, b, must be

addressed.

Consider the case where there is only one control vari-

ate, C, and (12) is used as the control estimator. Then the

optimal value of b, b*, is expressed in (15). In general

Cov[Y,C] and the Var[C] are not known; therefore, b needs

to be estimated.

Kleijnen [9) presents a method for estimating b* from

the simulation results. He suggests replacing CovlY,C) and

e, Var[C] with their sample equivalents. Consider making n

independent replications to obtain n independent and iden-

tically distributed (iid) observations of Y and C. Then the
A

sample covariance of Y and C, Cov0Y,C], is given by

A n

C.cv[YDC)= 1 (19)
n-il

and the sample variance of C, VAr[C] is

n

NV*ArEC)= 1 (C~~) (20)
n-li=
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then the estimator for b, b is given by

b Cov[Y,CJ (21)

VAr[C]

This produces a final point estimator of 9

Y(b*)= -Y-b* (-7) (22)

It should be noted that Y(T*) may not be unbiased since 1*

and C are not usually independent, since 6* is a function

of C as given by (21). The author discusses two tech-

niques, splitting and jackknifing, for reducing the bias of

The case of multiple control variates is addressed by

Lavenberg and Welch [10). The following notation is adopted

to rewrite (17) in matrix form. Let.X be a column vector,

andX' be its transpose. Then-C. is a column vector of Q

control variates and T is the mean vector corresponding to

C where Ti=E[Ci). Let b be a vector of constants. Then an

estimator of e is

Y(..= Y - .( - (23)

The vector 2* which minimizes Var[Y(a)] is

C YC
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where Z C is the covariance matrix of C and iYC is the

Q-dimensional vector whose components are the covariances

between Y and the Ci, i=l,...,Q. This leads to a minimum

variance for Y(11.):

Var[Y(a )]= (1-R C) Var[Y] (25)

where

2c Y YC (26)

Var[Y]

and (1-R2c) is called the minimum variance ratio. R2C

is the square of the multiple correlation coefficient

between Y and C.

As with the single control variate b is unknown and

must be estimated. An estimator of b* is

_* C - (27)

where C is the sample covariance matrix and _9yc is the

sample covariance vector.

To derive interval estimates the authors consider obser-

vations from J statisically independent but otherwise iden-

tical runs. Then L would be a vector of control variates

whose components are the values of j on the jth replica-

tion. Then
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y =y (28)Yjl *l= -lJ-)11

and

J
1b1 y(b (29)

j=l
Y(b

In general b(b*) is not an unbiased estimator of e and the

t-distribution with J-1 degrees of freedom cannot be used

to derive the interval estimate. The authors derive con-

* fidence intervals for the multiple control case based on

the assumption that the vector (YC 1 ,...,CQ) has a multi-

variate normal distribution. Under this assumption stan-

dard regression techniques can be used to produce

Yb*)-e . tla-0-1) (30)

where t(J-Q-1) is the appropriate ordinate from the

t-distribution with J-Q-1 degrees of freedom.

In addition the ratio

Var[Y(*) J-2 (I-R c) (31)

Var[i?] J-Q-2a.
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The above equation indicates that if J, the number of rep-

lications , is not large with respect to Q, the number of

control variates, the variance reduction produced by

r(lRC) will be diminished. The authors report experi-

mentation which showed this factor accurately predicted

losses in variance reduction.

APPLICATION OF CONTROL VARIATES

The control variate approach was applied to queueing net-

work simulations by Lavenberg, Moeller and Welch [11), and

Gaver and Schedler [5]. A summary of these works follows.

A Lavenberg et al. [11) considered the application of

internal control variates to a broad class of closed net-

works. These networks allowed priorities, blocking, differ-

ent customer types and arbitrary service time distribu-

tions. Their network consisted of n finite interconnected

nodes with one or more servers, and d=l,...,D customer

types. A type d event is the departure of a type d custom-

er. Customer routing through the network was controlled by

an (nxn) transition probability matrix. The following meas-

ures were obtained: Wi(d), the expected queue time for type

d customers at node i; A(d), the expected rates at which

events occur for type d customers; T(d), the expected time

for type d customers to cycle through the network and

return to the first node.
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The authors experimented with three types of control

variates, all of which were internal control variates. The

first, work variables, represented the sum of service times

for type d customers at node i for type d events in the

system. The second, flow variables, represented the frac-

tion of type d events at node i. The third, service vari-

ables, represented the sample mean service times for type d

customers at node i.

The authors reported substantially larger variance

reductions using work variables as opposed to flow or ser-

vice variables. Experimentation was then limited to work

variables. For a network consisting of four to six nodes

and one customer type, they report predicted actual vari-

ance ratios using six control variates (Q=6) of .30 to .85.

Predicted actual variance ratios were obtained by multiply-

ing the estimated minimum variance ratios by the theoreti-

cal loss factor. Estimated variance ratios ranged from .16

to .77, and are ratios of the variance of the point estima-

tor with work variables to the variance of the crude point

estimator. The largest variance reductions for waiting

times were achieved at the node having the largest utiliza-

tion factor.

Wilson and Pritsker (21] performed a similar study using

standardized work variables. Work variables are standard-

ized for a specific time period by correcting each variable

,'
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observed by its mean and standard deviation. This is per-

formed so the control variates would be asymptotically sta-

i *ble, ensuring efficiency gains are sustained over increas-

ing statistic accumulation intervals. The authors report

variance reductions of 20 to 90 percent. They stated their

standardized work variables could not be extended to simu-

lations of open and mixed networks.

Gaver and Schedler [5] applied external control vari-

ates to a closed network. Their study was the only one

found reporting results for external controls. Their net-

V. work contained two service nodes each offering three dif-

ferent types of services. They allowed for priority service

and a mixture of arbitrary and exponential service time

distributions. Steady state utilization factors were the

performance measures of interest. Their control variate

was the utilization obtained from the simulation of a simi-

lar but numerically tractable model.

Results were reported for control variate estimators

using a control coefficient equal to one and an estimated

optimal control coefficient based on (21). For the control

coefficient equal to one variance reductions of 51 to 99

percent were achieved with one exception: a node with 99

perecent utilization produced a 29 percent increase in var-

iance. For the estimated optimal control coefficient case

variance reductions of 81 to 99 percent were achieved. The
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authors note the latter estimates may not be unbiased since

b was estimated from the data; however, this bias decreases

as the sample size increases. No direct conclusions could

be drawn about the relationship of utilization and variance

reduction. The results did indicate a trend in which uti-

lization estimates with large sample variances showed the

largest variance reductions after the application of con-

trol variates.

As stated in Chapter 1 the purpose of this research is

to study the effectiveness of Jackson networks as external

and analytic control variates for open queueing networks.

Figure 3 places this research in the context of previous

work in this area.

Control Variates in Queueing Network Simulations

Closed Open(this research)

Internal Lavenberg et al -External

External Gaver and Schedler Analytic

Figure 3: Context of the Research

The study of external and analytical control variates

applied to open queueing networks is largely without prec-

edent. The network structures to be tested and theI,
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methodology of carrying out these tests are very experimen-

tal. This makes it difficult to predict in advance the

suitability of these controls for this class of simulation

problems.

%'
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p..



CHAPTER III

METHODOLOGY

The primary objective of this research is to investigate

the effectiveness of the Jackson model as a control variate

for queueing network simulation. Three different network

structures were investigated, each meeting the restrictions

of the Jackson model with the exception of service time

distributions. Service distributions investigated were the

exponential, the Weibull, and the uniform. For each network

two types of control variates were obtained: the tradition-

al external control variate and the analytic control varn-

ate. These controls were obtained to estimate the steady

state measures of server utilization factor and customer

queue time at each node.

The utilization factor was selected because it serves as

an indicator of the level of activity or degree of con-

gestion at a particular node i. The queue time provides the

long run waiting time a customer will experience in a given

queue (excluding service time), and when applied in Lit-

tle's formula, LQi=e. WQ i, yields the long run queue
* i i i

length. Additionally, the steady state values for the

-28 -
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total time spent at a service node i, Wi, and the number of

customers at the node, Li, can be found by substituting WQ 1

and LQ into (9) and (11).1

TYPES OF CONTROL VARIATES

The classical external control variate requires two simula-

tions. The first simulation is of the network of interest

and estimates the utilization factor and queue time for

each node. The second simulation is of a Jackson network

approximation of the original system. Since the exponential

distribution yields the Jackson model itself, external con-

trol variates are obtained only for the Weibull and uniform

cases. For each of these distributions a second simulation

was run with common random numbers using the means of the

Weibull and uniform distributions as the parameters of the

exponential, and the two desired performance measure esti-

mates were obtained. Using these means and the Jackson mod-

el equations, the corresponding steady state measures were

obtained analytically. The control variate estimators at

each node i (i=l,...,N) for the utilization factor, RO.Ci,

and queue time, WQ.Ci, based on external control variates

are given by

RO.C.=RO.S.-b(RO.mE-RO(J)i) (32)

WQ.C.=WQ.S.-b(WQ.E.-WQ(J)i ) (33)
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where RO.S. is the crude estimator of the utilization fac-

tor at node i obtained from the simulation; RO.E is the

external control variate obtained from the second simula-

tion; and RO(J)i is the analytic value of the steady state

Jackson network based on the parameters ,_, ui, lr ; WQ.Si,

WQ.Ei, and WQ(J) i are defined similarly for the queue

times.

*Q The major drawback of this type of control variate is

the cost of the second simulation and the associated prob-

lem of synchronization. A system is synchronized when a

random number used for a purpose, such as arrival or ser-

vice tkimes, in one system is used for the same purpose in

the other systems being compared. The random numbers are

those generated from the uniform (0,1) distribution and

mapped through an inverse transformation into the desired

probability distribution, such as Poisson or exponential.

Synchronization tries to solve the problem of insuring that

differences between the two simulations are due to model

performance and not random number sequences or coding

structure. If the systems were not synchronized the com-

parison of control variate performance might be influenced

by the misapplication of random numbers.

In contrast, the analytic control variate requires only

simulation of the network of interest. To obtain the ana-

lytic control variate additional coding is added to the
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simulation program to record the vectors of observed mean
A A

arrival rates, LI service rates, u ,and the observed frac-
A

tion of customers routed to the various nodes, r .The ana-

lytic control variates at each node i for the utilization

factor, RO(J)i, and queue time, WQ(J )i, are obtained from

the Jackson model equations

RO(J)i=ei/(siui) (34)

A
WQ(J) i=LQi/e i  (35)

where ei is defined in (1) and LQi is defined in (8). The

analytic Jackson values for the steady state utilization

factors and queue times were calculated in the same way as

the external control variates. Analytic control variate

estimates could then be calculated from

A

RO.Ci=RO.Si-b(RO(J)i-RO(J)i) (36)

WQ.Ci=WQ .Si-b(WQ(J) i-WQ(J)i) (37)

Equations (32) and (33) are the same as (36) and (37) with

the exception of the control variate terms. In (32) and

(33) the control variates RO.E, and WQ.Ei are obtained

from a second simulation of a network modelled as a Jackson

network. In (36) and (37) the control variates are
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obtained by substituting ^ , ! into the Jackson equa-

tions.

The tradeoff in using the analytic control variate is

A A A
the additional code required to obtain j, , r • This

additional coding is insignificant relative to the cost of

a second simulation. Once the controls or data needed to

compute the controls has been obtained the computational

effort to obtain the control variate estimates is the same

for both type of control variates.

One drawback of the analytic control variate is at high

traffic intensities ( Q=.9) it is possible to obtain sample

values for , , k which violate Jackson model assump-

tions, specifically ei/(siui)l. This does not permit the

calculation of an analytic control variate based on the

Jackson equations. A possible solution could be to observe

* the effective arrival rates, e , rather than observing
A

and X. This approach was employed with one of the net-

works. Further studies of these two calculation methods is

required to determine the benefits and tradeoffs of each

method. Another drawback is that, in general, the expecta-

tion of a function is not equal to the function of the

expectation (e.g. E[RO(J) i.RO(J)i); however, because it is

a method of moments estimator, it is consistent. Therefore

using the observed mean arrival and service rates in the

Jackson model equations will result in a biased control
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variate. A study to determine the severity of this bias is

an area open to future reseach, since reduced variance at

the expense of significantly large mean squared error is

unacceptable.

NETWORKS

To obtain a representative appraisal of the effectiveness

of Jackson model control variates, three networks with dif-

ferent structure and complexity were simulated using common

random numbers. The first network consists of two nodes,

each with its own external arrival process. Customers com-

pleting service at each node may be routed to the other

node for service or may depart the system entirely.

The second network is a three node tandem, acyclic net-

work. Tandem means the nodes are arranged in series and

acyclic means customers will visit each node once. External

arrivals occur only at the first node where customers com-

plete service and move to the second and then third nodes

for service. Departure from the network occurs only when

service is completed at the third node.

The third network consists of four nodes with an exter-

nal arrival process at the first node. Customers completing

service at the first node are routed either to the second

or third nodes and then on to the fourth. Customers com-

pleting service at the fourth node may be fed back to the

first node or depart the system entirely.
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Three service time distributions were studied for each

of the above networks. The first distribution, the exponen-

tial, is the requisite for the Jackson model. It has an

infinite tail, is highly variable, and provides analytical-

ly tractable performance measures for comparing the control

variate estimators. The second distribution, the Weibull,

is similar to the exponential. It also has an infinite

tail, but it is not as variable as the exponential, as

characterized by the coefficient of variation. By setting

the Weibull shape parameter to 2 a humped distribution was

obtained, thereby providing another reference point to

measure the effectiveness of the Jackson controls. The

third distribution, the uniform, was selected for its mark-

ed difference from the exponential. It has finite range and

is considerably less variable. The selection of these dis-

tributions provides three references for studying the Jack-

son controls: the exponential, the requisite for the Jack--.

son model, infinite in the tail, and highly variable; the

Weibull, similar to the exponential but humped in our exam-

ples; and the uniform, a finite range distribution with

considerably less variability.
U%,

Other features of the networks studied include traffic

intensity and the number of servers at each node. To study

the effect of congestion on control variate performance

V both high, 9 =.90, and low, =.50, traffic intensities

"V.
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were studied. Traffic intensity measures the fraction of

the systems service capacity being utilized on the average

by arriving customers. Traffic intensities close to 1 mean

there will rarely be idle servers, so customers will be

found backing up into the queues. Queue times and lengths

will therefore be larger. Single and multiple servers were

studied in each network.

In summary, the basic experiment was to investigate two

types of Jackson control variates, external and analytic,

for estimating the utilization factors and waiting times in

three different queueing networks. The control variates for

each network were obtained for three service time distribu-

tions: exponential, Weibull, and uniform; and at both high

and low traffic intensities. Figure 4 proyides an outline

of the basic experiment for a given network. Figures 5-7

provide schematics and parameters for each of the three

networks.

NETWORK(High or Low traffic Intensity)

EXPONENTIAL WEIBULL UNIFORM

ANALYTIC ANALYTIC EXTERNAL ANALYTIC EXTERNAL

Figure 4: Outline of the Basic Experiment
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T 21 = '

External 

r1 22 4

Arrival 1 2 Departure

Departure External
Arrival

X2 = .4

SERVICE DISTRIBUTIONS
EXPONENTIAL

NODE MEAN(I?=.9) MEAN(Q '=.5)
1 .8308 .4616
2 2.1589 1.2000

WEIBULL(ALPHA=2)
NODE BETA(Q =.9) BETA(Q =.5)
1 .9375 .5209
2 2.4371 1.3541

UNIFORM(a,b)( ~~ =.9)( =5

NODE a b a b
1 .4616 1.2000 .3232 .600
2 1.8196 2.5000 .9000 1.5000

Figure5: Network I and parameters
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External
Arrival Departure

51=1 62=2 53=3

SERVICE DISTRIBUTIONS
EXPONENTIAL

NODE MEAN(Q =.9) MEAN(q =.5)
* 1 .9000 .5000

2 1.7999 1.0000
3 2.6998 1.4999

WEIBULL(ALPHA=2)
NODE BETA(Q =.9) BETA(q =.5)
1 1.0156 .5642
2 2.0310 1.1282
3 3.0464 1.6925

UNIFORM(a,b)
(9=.9) (Q=.5)

NODE a b a b
1 .4000 1.4000 .2500 .7500
2 1.3998 2.2000 .7000 1.3000
3 2.1996 3.2000 1.0988 1.9000

Figure 6: Network II and parameters

S. ?. o,. -, .....-. .:: .:. -.... <... ':: <:: .
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52=2

r 12=.*6 r 41=.25

External
Arrival -1 4 Departure

1=1
s1= r3 4s4=2

r 3=1

SERVICE DISTRIBUTIONS
EXPONENTIAL

NODE MEAN(q =.9) MEAN(q =.5)
1 .6750 .3750
2 2.2502 1.2500
3 1.6875 .9376
4 1.3501 .7500

WEIBULL(ALPHA=2)
NODE BETA(Q =.9) BETA(q =.5)
1 .7955 .4232
2 2.5392 1.4105
3 1.9042 1.0579
4 1.5234 .8463

UNIFORM(a,b)
(£=.9)( =5

NODE a b a b
1 .3600 1.0500 .3000 .4500
2 1.7504 2.7500 .5000 2.0000
3 1.2750 2.1000 .4752 1.4000
4 .9502 1.7500 .2500 1.2500

Figure 7: Network III and parameters
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EXPERIMENTAL DESIGN

The basic computational steps required to obtain the ana-

lytic control variate estimators are defined by (36) and

(37).

Previously it was mentioned that under high traffic

intensity conditions it was not always possible to obtain a

control variate for a given batch (defined below). In these

cases the vectors 1 u, j may produce utilization factors

greater than or equal to one, a violation of the Jackson

model assumptions. To handle this case the ratio of arrival

rate to service rate was set equal to .9999 whenever the

utilization factor was greater than or equal to one. This

in effect is the use of control variates from all the

batches at the expense of introducing some bias into the

control estimator.

The discussion pertaining to (21) outlined the proce-

dure for obtaining the estimated optimal control coeffi-

cient. The procedure required n independent replications to

obtain n iid observations of the crude estimator and its

Ycontrol. From these n values the sample variance and covar-

iance terms of (21) can be calculated.

Since the performance measures of interest are steady

state measures, an initial bias period for each replication

would have to be deleted. If the initial transient is long,

as will be discussed later, the cost of deleting n initial

.. %P_.. * .w *..., ~ .. ~~~~



9 40

bias periods becomes excessive. To avoid this costly

approach a simulation run consisting of J approximately

independent batches of time length t was used instead of

the n independent replications.

Following this procedure, the Y and C of equations

(19) through (21) are now replaced by 9-.Sij, and R-(J)ij,

where F.S.. is the batch mean for the crude estimator of

the utilization factor at node i in batch j, where

i=l,...,N and j=l,...,J. RO(3 )ij is the analytic control
A

variate derived from , u , in batch j. Let

RO.S 1 Z -"ij i=l,...,N (38)

j=l

J
A

J)IM(J . (39)

j=l

A - (ThSO)((S)) (40)
AriJ)J 1o i R J

*J-1l~

'V

'VU

S,. , . . . ., . .,.. . . .. ... - .. , . . ., . .. . .. ..... . .. .. . . . ... .-. ° - -. ,. - - , , , ,
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J
-i

COEM__R- )i=L (-0SjF-S (41)
j=l

X (T ( -) 1

Using (21) the estimated value for the optimal control

coefficient of the utilization factor at node i is

AA

A*= CAv -. S , A~ i (42)
b =COV[RO.S..,RO(J).

An analagous procedure was followed to obtain b for WQ.C.

The value of b computed in (42) can be used to compute

the control variate estimate for the run by using

A*

RO- Ci =RO. i.-b lFlJ)i.-RO(Jli) (43)

Since the utilization factor is a time persistent per-

formance measure, computing RO.S. from batches of equali

time length produces an unbiased estimator assuming each of

the R-.S i  are identically distributed. This is not the

case for the queue time performance measure. WQ is a

SJI
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discrete performance measure, therefore batching by time

produces a random number of customer queue times observed

in each of the j batches. The overall mean queue time for a

run, WQ.S . is given by

W-s. . = Yw .S (44)

j=l

= f-. WQ.Sin
Sj=l neB

where B. is the set of all indices of queue times during

((j-l)t,jt), and d.= lBj . Therefore

D

.~ s(45)
D n=l

where D is the total number of queue times observed in the

run. To accommodate the discrete case, the grand mean for
all the queue times for the run, W.S., was used to calcu-

late the control variate estimate. W.S is given by
1

--%: D

Q .Si= in WQS (46)
D nnn=l1

'p
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The control variate estimator of the queue time for the

run is given by

-I A* A
WQ. Ci=Q. i-b (W-(J)i-WQ(J)i)  (47)

The identical approach is taken to obtain the external

control variate estimators. The only difference being sub-

stituting R-.Ei and WQ.E i for RO( J) i and WQ(J) i respective-

ly in (43) and (47). In practice these external controls

would be obtained by simulating the network of interest as

a Jackson network. Since exponential service yields the

Jackson model itself, the values of RO.E i and WQ.Ei equal

RO.Si and WQ.Si from the networks with exponential service

times.

The batch means approach serves two purposes. First,

the J batches per run provide a sequence of observations to

compute b and the control variate estimators. Second, K

runs of J batches each can be obtained by simulating a

total of K.J batches. This will produce a sequence of K

control variate estimates so that the properties of the

estimator can be evaluated. The primary design issues with

this approach are the batch length t, and the number of

batches to be collected within a run, and within the entire

experiment.

1.

-'N
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The number of batches selected for a particular run was

based on cost considerations and the loss of variance

reduction caused by estimating b . This loss was expressed,,
in (31) as a function of the number of control variates and

the number of batches used to estimate b

While multiple controls are possible, this research

studies only a single commensurate control; that is, the

corresponding performance measure for the Jackson network.

The single control approach was adopted to contain the cost

of gathering control variate statistics and to facilitate

automation. In addition, if the number of control variates

is large with respect to the number of batches, considera-

ble loss in variance reduction will result. Since Q=I the

loss factor, LF, can be expressed as

LF = J-2 (48)

J-3

where J is the number of batches in a run. Table 1 lists

various loss factors and their corresponding number of

batches.

Based on the above comparison and cost factors, the number

of batches, J, was set at 25. The tradeoff of estimating

b was then a 5 percent loss in variance reduction.

The batcn length issue centers on choosing a time

length, t, large enough to secure approximate independence

between the batch means. It is assumed the output sequence

• ,,,.
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Table 1

Loss Factor Comparison

J Loss Factors(LF)

10 1.14
15 1.08
20 1.06
25 1.05
30 1.04
50 1.02

of crude estimators and their counterpart control variates

is covariance stationary, and the batch length will be

large enough so that the resulting batch means will be

approximately normally distributed. To select the batch

length, t, an independence test given by Fishman [4) was

employed for each network to evaluate the independence of

queue times at each node.

The results of this testing produced a batch size andK corresponding number of batches based on a type I error

level of .05. The results for the node in each network

requiring the largest number of observations per batch are

listed in Table 2.

The number of batches was fixed at 25 for cost and loss

factor considerations as previously discussed. Since the

S effective number of customer arrivals at each network was

approximately 1.0, it was assumed that over the long run at

least one queue time would be observed per unit of time.
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Table 2

Results for Batch Means Independence Test

NETWORK NODE NO. BATCHES SIZE TOTAL OBS.
1 1 49 64 3136
2 1 23 128 2944
3 4 12 512 6144

This assumption facilitates the conversion from discrete

batch size to continuous time batch length. This is done by

dividing the total number of observations from Table 2 by

25. Results are listed in Table 3.

Table 3

Selected Batch Lengths

Selected
NETWORK OBS./Batch Batch Length(time units)

1 125.4 150
2 117.8 200
3 245.8 300

The major concern in deciding the number of runs K, the

"macro" replications for computing the point and interval

estiamtes, was cost. The CPU time required to simulate the

two node network for 10 runs was 1.3 seconds, the time for

20 runs was 1.7 seconds, an approximate 24 perecnt increase

in CPU time. This time will also increase with network

%~~ .. - %'.
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size. Given the total simulation requirements of this

research and its associated cost, the number of runs, K,

for each experiment was fixed at 10.

The performance measures being investigated are steady

state means; therefore, a procedure to eliminate the ini-

tial transient was employed at the start of each experi-

ment. To approximate the length of the initial transient,
a pilot run listing the cumulative mean of the queue time

at each node in intervals of 100 time units was executed.

The results showed that from empty and idle conditions the

build up to steady state was very slow. The system appeared

very erratic during the first 10,000 time units before set-

tling down in a more predicable region around the steady

state conditions. Therefore a conservative policy of elim-

inating the statistics collected during the first 10,000

time units after starting from empty and idle conditions

was adopted.

The pilot runs indicated that those networks with high

feedback tended to reach steady state sooner than those

with lesser or no feedback. We can only speculate that the

high feedback tends to congest the system sooner, which in

turn has a stabilizing effect allowing the system to reach

steady state at a faster rate. It should be noted that

this effect was studied only at high traffic intensities

( Q =.9) and for exponential service.
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To summarize, the simulation of a given network struc-

ture involved deleting an initial transient of 10,000 time

units and collecting output for 10 runs, each run consist-

ing of 25 batches. In addition to the basic control vari-

ate estimators previously described, estimators computed

using b=l, and the analytic control variate calculated

using k, . , were also obtained.

The variance reduction achieved through a particular

strategy was estimated as follows:

1. Compute the means of both the crude estimator and con-

trol variate estimator over the K runs.

2. Compute the variance of the crude and control estima-

tors over the K runs

3. Assuming normality compute confidence intervals for

the variance ratio of the control variate estimator to

the crude estimator.



CHAPTER IV

RESULTS

The results of the control variate experimentation on each

of the three networks are listed in this chapter. Three

control variate estimates are reported: the analytic, the

modified analytic, and the external. The experimentation

was conducted to produce control variate estimates using

control coefficients equal to I and equal to the estimated

'p optimal control coefficient *. When the control coeffi-

cient was set to 1 the variance reductions for the utiliza-

tion factor estimates were slightly greater than those

obtained for *; however, this was not true for the queue

time estimates. Variances of these estimates were greatly

increased when the control coefficient was set to 1; vari-

ance reductions for this measure were achieved only when b

was used. Therefore results are reported only for esti-

mates based on b

The effectiveness of a particular control variate will

be reported in terms of the variance reduction ratio; that

is, the ratio of the variances of the control variate esti-

mate to the crude estimate. Ratios greater than 1 indicate

-49-
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an increase in the estimate's variance. A 90 percent confi-

dence interval is computed for each ratio. Ratios involv-

ing the expenditure of computer effort are also possible,

but not considered here.

The chapter is divided into three sections corresponding
A

to the three networks studied. Results for each network are

reported in the following format: a table listing the

steady state Jackson values for each performance measure, a

* table listing the crude estimator and its variance for a

, given traffic intensity, and a table for each of the three

control variate estimators listing the point estimate, its

variance, the variance reduction ratio, and the upper and

lower bounds of the 90 percent confidence interval. Vari-

ance reduction ratios appear under the ratio column, the

lower bound under the L column, and the upper bound under

the U column. Estimates with variances less than .00005 are

reported as "<.00005".

The simulation was coded using SIMSCRIPT 11.5 and all

required output written to a file. A FORTRAN program was

used to perform the control variate analysis. Samples of

both programs are in the Appendix.

RESULTS FOR NETWORK I

Table 4 lists the steady state Jackson values for the uti-

lization factors and queue times of network I depicted in

Figure 5.

'4.
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Table 4

Steady State Jackson Values for Network I.

NODE RO(J) WQ(J) RO(J) WQ(J)
1 .9000 7.4771 .5000 .4616
2 .8999 9.1999 .5000 .4001

The following table lists the crude estimates and their

variances for each of the three distributions tested at the

high traffic intensity level.

Table 5

Crude Estimates for Network I (?=.9)

Exponential Service

NODE RO.S VAR WQ.S VAR
1 .8872 .0008 5.9196 2.1802
2 .9076 .0006 9.6711 4.3639

Weibull Service

1 .8934 .0005 4.1025 .8210
2 .9033 .0003 4.9167 1.0489

Uniform Service

1 .8991 .0002 3.7309 .5230
2 .9023 .0002 3.9522 .4220

Table 6 lists results for the analytic control variate

estimates at the high traffic intensity.

Table 6 listed results for analytic control variates

-A A
based on ., .2, andL. Additional experimentation was con-

A A Aducted to determine if other combinations of , u. and r
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Table 6

Analytic Estimates for Network I (P-.9)

Exponential Service

NODE RO.C VAR L RATIO U
1 .9025 .0001 .0487 .1550 .4929
2 .9130 .0002 .1019 .3240 1.0303

NODE WQ.C VAR L RATIO U
1 5.0694 1.1656 .1682 .5350 1.7013
2 8.4098 3.3497 .2420 .7695 2.4470

Weibull Service

NODE RO.C VAR L RATIO U
1 .9010 .0001 .0401 .1275 .4055
2 .9034 <.00005 .0471 .1499 .4767

NODE WQ.C VAR L RATIO U
1 3.7813 .5469 .2095 .6661 2.1182
2 4.1912 .5425 .1626 .5172 1.6447

Uniform Service

NODE RO.C VAR L RATIO U
V 1 .9023 <.00005 .0718 .2284 .7263

2 .9017 <.00005 .0752 .2392 .7607

NODE WQ.C VAR L RATIO U
1 3.3113 .3808 .2290 .7281 2.3154
2 3.4828 .3020 .2250 .7154 2.2750

would produce a better control variate. A pilot run of bet-

work I showed a modified analytic control variate based on
A A

& 3, and r, that is based on the observed mean arrival

rates, the input mean service time, and the observed rout-

ing probabilities, was the most promising. These modified

analytic control variate estimators for the utilization

factor and queue time are denoted as RO(M) and WQ(M)

6?jn 6
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respectively. Results for this modified estimator are

reported in Table 7.

Table 7

Modified Estimates for Network I ( =.9)

Exponential Service

NODE RO(M) VAR L RATIO U
1 .8889 .0005 .1974 .6278 1.9964
2 .9016 .0004 .2145 .6821 2.1691

NODE WQ(M) VAR L RATIO U
1 5.6553 1.6770 .2419 .7692 2.4461
2 9.3293 4.8245 .3477 1.1055 3.5155

Weibull Service

NODE RO(M) VAR L RATIO U
1 .8936 .0002 .1398 .4445 1.4135
2 .8979 .0002 .1504 .4783 1.5210

NODE WQ(M) VAR L RATIO U
1 3.8313 .5795 .2219 .7058 2.2444
2 4.3954 .5804 .1740 .5533 1.7595

Uniform Service

NODE RO(M) VAR L RATIO U
1 .8990 <.00005 .0716 .2277 .7241
2 .8970 .0001 .0856 .2722 .8656

NODE WQ(M) VAR L RATIO U
1 3.3723 .3727 .2241 .7126 2.2661
2 3.4059 .2790 .2079 .6611 2.1023

Table 8 lists results for the external control in Net-

work I at a traffic intensity of .9.

Tables 9-12 list the same type results for Network I at

a traffic intensity of .5.



54

Table 8

External Estimates for Network I (P=.9)

Weibull Service

NODE RO.C VAR L RATIO U
1 .9017 <.00005 .0146 .0464 .1476
2 .8990 .0001 .1397 .4443 1.4129

.,NODE WQ.C VAR L RATIO U
1 4.6927 .5279 .2022 .6430 2.0447
2 4.6992 .4128 .1237 .3935 1.2513

Uniform Service

NODE RO.C VAR L RATIO U
1 .9016 .0001 .2048 .6514 2.0715
2 .9004 .0001 .1608 .5114 1.6263

NODE WQ.C VAR L RATIO U
1 3.9298 .8453 .5083 1.6164 5.1402
2 3.8757 .2829 .2108 .6704 2.1319

Table 9

ACrude Estimates for Network I (P=.5)

Exponential Service

NODE RO.S VAR WQ.S VAR
1 .4940 .0003 .4481 .0015
2 .5038 .0002 .3922 .0042V2

Weibull Service

1 .4965 .0002 .2933 .0003
2 .5026 .0001 .2512 .0004

.4-. Uniform Service

1 .4986 .0001 .2420 .0002
2 .5012 .0001 .2064 .0002

.0

i~
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Table 10

Analytic Estimates for Network I (9=.5)

Exponential Service

NODE RO.C VAR L RATIO U
1 .4996 <.00005 .0003 .0009 .0029
2 .4982 <.00005 .0011 .0036 .0114

NODE WQ.C VAR L RATIO U
1 .4513 .0005 .1058 .3363 1.0694
2 .3574 .0018 .1318 .4190 1.3324

Weibull Service

NODE RO.C VAR L RATIO U
V 1 .4996 <.00005 .0003 .0008 .0025

2 .4982 <.00005 .0018 .0056 .0178

NODE WQ.C VAR L RATIO U
1 .2950 .0002 .2254 .7169 2.2797
2 .2380 .0003 .2083 .6625 2.1068

Uniform Service

NODE RO.C VAR L RATIO U
1 .4995 <.00005 .0003 .0011 .0035
2 .4981 <.00005 .0024 .0076 .0242

NODE WQ.C VAR L RATIO U
1 .2404 .0002 .2308 .7341 2.3344
2 .2017 .0002 .2558 .8134 2.5866
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Table 11

Modified Estimates for Network I (P=.5)

Exponential Service

NODE RO(M) VAR L RATIO U
1 .4913 .0001 .1152 .3663 1.1648
2 .4955 .0001 .1473 .4685 1.4898

NODE WQ(M) VAR L RATIO U
1 .4343 .0007 .1419 .4512 1.4348
2 .3733 .0031 .2279 .7246 2.3042

Weibull Service

A NODE RO(M) VAR L RATIO U
1 .4940 <.00005 .0796 .2530 .8045
2 .4940 <.00005 .0924 .2939 .9346

NODE WQ(M) VAR L RATIO U
1 .2854 .0001 .0796 .2530 .80452 .2357 .0003 .1998 .6353 2.0203

Uniform Service

NODE RO(M) VAR L RATIO U
1 .4970 <.00005 .0215 .0685 .2178
2 .4942 <.00005 .0106 .0338 .1075

NODE WQ(M) VAR L RATIO U
1 .2362 .0002 .2685 .8538 2.7151
2 .1958 .0002 .2869 .9124 2.9014

S.. A

t-" " ,'  , " " " -" "' . ', " ], ' " " -.. " . ' ' , - " . . " . " . ". - , . -, - ., . ., ,. .

• S ,, .. , " ' - - . .. . " "".-., ' ' ' ". ', " ", , " "'
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Table 12

External Estimates for Network I (Q=.5)

Weibull Service

NODE RO.C VAR L RATIO U
1 .5007 <.00005 .0392 .1246 .3962
2 .5007 <.00005 .0379 .1206 .3835

NODE WQ.C VAR L RATIO U
1 .3025 .0004 .3276 1.0418 3.3129
2 .2552 .0005 .3473 1.1044 3.5120

Uniform Service

NODE RO.C VAR L RATIO U
1 .5008 <.00005 .2564 .8155 2.5933
2 .4998 <.00005 .1793 .5703 1.8136

NODE WQ.C VAR L RATIO U
1 .2492 .0006 .8307 2.6416 8.4003

2 .2061 .0002 .2659 .8455 2.6887

RESULTS FOR NETWORK II

Table 13 lists the steady state Jackson results for the

utilization factors and queue times of Network II depicted

in Figure 6.

Table 13

Steady State Jackson Values for Network II.

,' =.9 9=.5

NODE RO(J) WQ(J) RO(J) WQ(J)
1 .9001 8.1089 .5000 .5000

2 .8999 7.6667 .5000 .3333
3 .9001 7.3466 .5000 .2368

.4

,S

-4'VL
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Tables 14-17 list results for Network II at a traffic

intensity of .9.

Table 14

Crude Estimates for Network II (9=.9)

Exponential Service

NODE RO.S VAR WQ.S VAR
1 .8872 .0005 6.3363 1.1857
2 .8947 .0001 7.3719 4.4346
3 .8906 .0004 6.1086 3.0807

Weibull Service

1 .8941 .0002 4.2966 .4055
2 .8939 .0001 2.9552 .4286
3 .8918 .0002 2.2526 .2985

Uniform Service

1 .8964 .0001 4.1722 .3479
2 .8946 .0001 1.0114 .0388
3 .8950 .0001 .5184 .0072

Tables 18-21 list results for Network II at a traffic

intensity of .5.

= ..
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Table 15

Analytic Estimates for Network II (=.9)

Exponential Service

NODE RO.C VAR L RATIO U
1 .9008 <.00005 .0239 .0759 .2414
2 .9010 <.00005 .1134 .3607 1.1470
3 .8985 .0001 .1013 .3222 1.0246

NODE WQ.C VAR L RATIO U
1 5.6212 .2973 .0788 .2507 .7972
2 6.4935 1.8028 .1278 .4065 1.2927
3 5.6702 2.5672 .2608 .8295 2.6378

Weibull Service

NODE RO.C VAR L RATIO U
1 .8997 <.00005 .0197 .0625 .1988
2 .8999 <.00005 .0398 .1267 .4029
3 .8978 <.00005 .0619 .1968 .6258

NODE WQ.C VAR L RATIO U
1 3.8640 .1924 .1492 .4744 1.5086
2 2.7459 .3320 .2436 .7747 2.4635
3 2.1985 .2648 .2790 .8872 2.8213

Uniform Service

NODE RO.C VAR L RATIO U
1 .9015 <.00005 .0477 .1516 .4821
2 .8995 <.00005 .0371 .1181 .3756
3 .8996 <.00005 .0481 .1530 .4865

NODE WQ.C VAR L RATIO U
1 3.8384 .4355 .1775 .5645 1.7951
2 .9515 .0314 .2549 .8105 2.5774
3 .4910 .0054 .2373 .7545 2.3993
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Table 16

Modified Estimates for Network II (P=.9)

Exponential Service

NODE RO(M) VAR L RATIO U
1 .8805 .0003 .2214 .7041 2.2390
2 .8971 .0001 .3334 1.0602 3.3714
3 .8917 .0004 .2730 .8682 2.7609

NODE WQ(M) VAR L RATIO U
1 6.1244 1.1639 .3087 .9816 3.1215
2 7.1038 3.7865 .2685 .8539 2.7154
3 6.0812 3.4835 .3539 1.1255 3.5791

Weibull Service

NODE RO(M) VAR L RATIO U
1 .8932 .0001 .1515 .4818 1.5321
2 .8961 <.00005 .2073 .6592 2.0963
3 .8934 .0001 .1563 .4971 1.5808

NODE WQ(M) VAR L RATIO U
1 4.0569 .3096 .2401 .7634 2.4276
2 2.8120 .3552 .2607 .8289 2.6359
3 2.2232 .2692 .2836 .9020 2.8684

Uniform Service

NODE RO(M) VAR L RATIO U
1 .8988 <.00005 .1184 .3766 1.1976
2 .8965 <.00005 .0599 .1906 .6061
3 .8970 <.00005 .0476 .1513 .4811

NODE WQ(M) VAR L RATIO U
1 3.9215 .2612 .2361 .7507 2.3872
2 .9486 .0314 .2549 .8105 2.5774
3 .4953 .0056 .2435 .7743 2.4623

%'

.................................................
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Table 17

External Estimates for Network II (P=9)

Weibull Service

NODE RO.C VAR L RATIO U
1 .9009 <.00005 .0195 .0619 .1968
2 .8976 <.00005 .1520 .4835 1.5375
3 .8972 <.00005 .0265 .0843 .2681

NODE WQ.C VAR L RATIO U
1 5.2104 .4523 .3508 1.1154 3.5470
2 3.1890 .1155 .0847 .2694 .8567
3 2.5559 .1728 .1821 .5790 1.8412

Uniform Service

NODE RO.C VAR L RATIO U
1 .9003 .0001 .2906 .9242 2.9390
2 .8965 .0001 .3332 1.0596 3.3695
3 .8968 <.00005 .1527 .4855 1.5439

NODE WQ.C VAR L RATIO U
1 4.4618 .3898 .3523 1.1203 3.5626
2 1.0130 .0319 .2589 .8232 2.6178
3 .5032 .0074 .3258 1.0359 3.2942

Table 18

Crude Estimates for Network II (Q=.5)

pExponential Service

NODE RO'S VAR WQS VAR
1 .4931 .0001 .4800 .0012
2 .4973 <.00005 .3472 .0006
3 .4947 .0001 .2278 .0006

Weibull Service

1 .4955 .0001 .3114 .0004
2 .4971 <.00005 .1473 .0001
3 .4958 .0001 .0984 .0001

Uniform Service

1 .4980 <.00005 .2763 .0002
2 .4972 <.00005 .0561 <.00005
3 .4975 <.00005 .0320 <.00005

H' .



62

Table 19

Analytic Estimates for Network II ( ,.5)

Exponential Service

NODE RO.C VAR L RATIO U
1 .4999 <.00005 .0005 .0016 .0051
2 .4997 <.00005 .0064 .0204 .0649
3 .4996 <.00005 .0028 .0090 .0286

NODE WQ.C VAR L RATIO U
1 .4829 .0009 .2191 .6968 2.2158
2 .3550 .0004 .1975 .6280 1.9970
3 .2299 .0014 .7819 2.4865 7.9071

Weibull Service

NODE RO.C VAR L RATIO U
1 .4999 <.00005 .0012 .0037 .0118
2 .4999 <.00005 .0049 .0156 .0496
3 .4997 <.00005 .0028 .0089 .0283

NODE WQ.C VAR L RATIO U
1 .3136 .0005 .3875 1.2321 3.9181
2 .1457 .0001 .2642 .8402 2.6718
3 .0995 .0001 .4986 1.5854 5.0416

Uniform Service

NODE RO.C VAR L RATIO U
1 .5000 <.00005 .0032 .0101 .0321
2 .5000 <.00005 .0040 .0126 .0401
3 .5000 <.00005 .0028 .0089 .0283

NODE WQ.C VAR L RATIO U
1 .2759 .0002 .2534 .8057 2.5621
2 .0561 <.00005 .3201 1.0179 3.2369

* 3 .0320 <.00005 .3655 1.1624 3.6964
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Table 20

Modified Estimates for Network II (Q=.5)

Exponential Service

NODE RO(M) VAR L RATIO U
1 .4932 .0001 .2045 .6503 2.0680
2 .4981 .0001 .3856 1.2263 3.8996
3 .4950 .0001 .1539 .4894 1.5563

NODE WQ(M) VAR L RATIO U
1 .4739 .0009 .2403 .7643 2.4305
2 .3413 .0005 .2904 .9234 2.9364
3 .2262 .0007 .3731 1.1863 3.7724

Weibull Service

NODE RO(M) VAR L RATIO U
1 .4957 <.00005 .1272 .4045 1.2863
2 .4976 <.00005 .2222 .7065 2.2467
3 .4961 <.00005 .0743 .2362 .7511

NODE WQ(M) VAR L RATIO U
1 .3080 .0003 .2426 .7716 2.4537
2 .1448 .0001 .3964 1.2604 4.0081
3 .0971 .0001 .3494 1.1110 3.5330

Uniform Service

NODE RO(M) VAR L RATIO U
1 .4984 <.00005 .0892 .2837 .9022
2 .4975 <.00005 .0153 .0486 .1545
3 .4979 <.00005 .0205 .0653 .2077

NODE WQ(M) VAR L RATIO U
1 .2473 .0003 .3616 1.1498 3.6564
2 .0554 <.00005 .2763 .8786 2.7939
3 .0315 <.00005 .3875 1.2324 3.9190

* a
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Table 21

External Estimates for Network II (9=.5)

Weibull Service

NODE RO.C VAR L RATIO U
1 .5004 c.00005 .0236 .0751 .2388
2 .4990 (.00005 .0792 .2519 .8010
3 .4996 <.00005 .0109 .0346 .1100

NODE WQ.C VAR L RATIO U
1 .3225 .0002 .1824 .5801 1.8447
2 .1449 (.00005 .0418 .1330 .4229
3 .1027 <.00005 .1038 .3302 1.0500

Uniform Service

NODE RO.C VAR L RATIO U
1 .5002 <.00005 .3651 1.1610 3.6920
2 .4983 (.00005 .3060 .9730 3.0941
3 .4994 <.00005 .0821 .2611 .8303

NODE WQ.C VAR L RATIO U
1 .2805 .0004 .5099 1.6216 5.1567
2 .0560 (.00005 .2915 .9269 2.9475
3 .0319 (.00005 .3700 1.1766 3.7416

RESULTS FOR NETWORK III

Table 22 lists the steady state Jackson values for the uti-

lization factors and queue times of Network III depicted in

Figure 7.

Table 22

Steady State Jackson Values for Network III.

9 =5
NODE RO(J) WQ(J) RO(J) WQ(J)
1 .9000 6.0787 .5000 .3750
2 .9001 9.6031 .5000 .4167
3 .9000 15.1853 .5000 .9377
4 .9000 5.7589 .5000 .2500i

' M ,,l - i -,,& ->> .-.. ;..- . ....w.. '-..,
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Tables 23-26 list the results for Network III at a traf-

fic intensity of .9.
,'

Table 23

Crude Estimates for Network III (P=.9)

- Exponential Service

NODE RO.S VAR WQ.S VAR
1 .8912 .0005 6.0750 7.5294
2 .8999 .0003 9.0400 8.1951
3 .8874 .0006 13.1571 12.4821
4 .8972 .0003 5.4977 .5474

Weibull Service

1 .9320 .0003 6.5081 6.2433
2 .8943 .0001 4.3736 .7746

* 3 .8943 .0003 7.9743 4.4438
4 .8963 .0001 1.9755 .0951

Uniform Service
1 .9353 .0002 6.0980 7.2565

2 .8939 .0002 2.8475 .2466
3 .8946 .0004 5.3534 1.0206
4 .8935 .0002 .5270 .0056

Tables 27-30 list results for Network III at a traffic

intensity of .5.

-I-

to~
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Table 24

Analycstimates for Network III ( =.9)

Exponential Service

NODE RO.C VAR L RATIO U
1 .8989 .0001 .0382 .1215 .3864
2 .9053 <.00005 .0567 .1804 .5737
3 .9044 .0001 .0642 .2041 .6490
4 .9019 .0001 .1107 .3519 1.1190

NODE WQ.C VAR L RATIO U
1 5.4466 4.2202 .1763 .5605 1.7824
2 7.8507 4.6498 .1784 .5674 1.8043
3 10.8947 6.9876 .1760 .5598 1.7802
4 5.0025 .7746 .4450 1.4150 4.4997

Weibull Service

NODE RO.C VAR L RATIO U
1 .9132 .0001 .0606 .1927 .6128
2 .9007 <.00005 .0723 .2300 .7314
3 .9047 .0001 .0896 .2850 .9063
4 .8990 <.00005 .1021 .3248 1.0329

NODE WQ.C VAR L RATIO U
1 5.7123 4.1207 .2075 .6600 2.0988
2 4.0249 .5064 .2056 .6537 2.0788
3 7.2919 3.0851 .2185 .6948 2.2095
4 1.8792 .0878 .2903 .9233 2.9361

Uniform Service

NODE RO.C VAR L RATIO U1 .9143 .0001 .1686 .5361 1.7048

2 .9019 <.00005 .0261 .0829 .2636
3 .9043 .0001 .0464 .1476 .4694
4 .8977 <.00005 .0772 .2455 .7807

NODE WQ.C VAR L RATIO U
1 5.2239 4.9088 .2127 .6765 2.1513
2 2.5843 .1150 .1466 .4663 1.4828
3 4.5992 .6964 .2146 .6823 2.1697
4 .5125 .0053 .2977 .9466 3.0102

..4
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Table 25

Modified Estimates for Network III (=.9)

Exponential Service

NODE RO(M) VAR L RATIO U
1 .8927 .0002 .1575 .5008 1.5925
2 .9021 .0001 .1756 .5583 1.7754
3 .8927 .0003 .1860 .5916 1.8813
4 .8999 .0003 .2756 .8763 2.7866

NODE WQ(M) VAR L RATIO U
1 5.7936 8.6035 .3593 1.1426 3.6335
2 8.6201 6.8833 .2641 .8399 2.6709
3 12.6169 10.2152 .2574 .8184 2.6029
4 5.3743 .4023 .2311 .7350 2.3373

Weibull Service

NODE RO(M) VAR L RATIO U
1 .9340 .0001 .1216 .3867 1.2297
2 .8985 (.00005 .0726 .2308 .7339
3 .8973 .0001 .0997 .3169 1.0077
4 .8991 .0001 .1627 .5173 1.6450

NODE WQ(M) VAR L RATIO U

1 6.1046 5.8130 .2926 .9306 2.9593
2 4.1846 .6406 .2601 .8271 2.6302
3 7.2838 2.8174 .1995 .6345 2.0177
4 1.9310 .0734 .2429 .7724 2.4562

UnifQrm Service

NODE RO(M) VAR L RATIO U
1 .9387 .0001 .0798 .2539 .8074
2 .8991 <.00005 .0322 .1024 .3256
3 .9015 .0001 .0516 .1642 .5222
4 .8961 .0001 .0945 .3004 .9553

NODE WQ(M) VAR L RATIO U
1 5.6317 4.3992 .1907 .6063 1.9280
2 2.6042 .1369 .1746 .5551 1.7652
3 4.6425 .6922 .2133 .6782 2.1567
4 .5123 .0054 .3068 .9755 3.1021

V

"
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Table 26

External Estimates for Network III (P=.9)

Weibull Service

NODE RO.C VAR L RATIO U
1 .9374 .0001 .1164 .3702 1.1772
2 .8940 .0001 .2039 .6483 2.0616
3 .8977 .0001 .1371 .4361 1.3868
4 .8976 .0001 .1537 .4888 1.5544

NODE WQ.C VAR L RATIO U
1 6.6310 1.4742 .0742 .2361 .7508
2 4.5533 .7773 .3156 1.0036 3.1914
3 8.2056 4.5019 .3186 1.0131 3.2217
4 2.0323 .0617 .2041 .6490 2.0638

Uniform Service

NODE RO.C VAR L RATIO U
1 .9393 .0002 .2631 .8367 2.6607
2 .8948 .0002 .2281 .7255 2.3071
3 .8969 .0003 .2488 .7912 2.5160
4 .8957 .0002 .3649 1.1603 3.6898

NODE WQ.C VAR L RATIO U
1 6.0083 2.5200 .1177 .3743 1.1903
2 3.0071 .3502 .4466 1.4202 4.5162
3 5.4661 1.0297 .3173 1.0089 3.2083
4 .5298 .0062 .3503 1.1141 3.5428

9".
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Table 27

Crude Estimates for Network III ( =.5)

Exponential Service

NODE RO.S VAR WQ.S VAR
1 .4942 .0002 .3677 .0009
2 .4969 .0001 .4379 .0041
3 .4957 .0001 .9249 .0074
4 .4976 .0001 .2400 .0003

Weibull Service

1 .4970 .0001 .2373 .0001
2 .4976 .0001 .2508 .0007
3 .4983 .0001 .5540 .0025
4 .4990 .0001 .1063 <.00005

Uniform Service

1 .4976 .0001 .1867 .0001
2 .4952 .0001 .1928 .0003
3 .5007 .0001 .4486 .0006
4 .4967 .0001 .0731 <.00005
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Table 28

Analytic Estimates for Network III (Q.5)

Exponential Service

NODE RO.C VAR L RATIO U

1 .4995 <.00005 .0005 .0015 .0048
2 .5003 <.00005 .0008 .0025 .0080
3 .5014 <.00005 .0019 .0061 .0194
4 .4996 <.00005 .0023 .0073 .0232

NODE WQ.C VAR L RATIO U

1 .3726 .0003 .0926 .2945 .9365
2 .4242 .0027 .2036 .6476 2.0594

3 .9284 .0067 .2839 .9028 2.8709

4 .2363 .0001 .1412 .4490 1.4278

Weibull Service

NODE ROC VAR L RATIO U
1 .4995 <.00005 .0012 .0038 .0121

2 .5005 <.00005 .0007 .0022 .0070
3 .5013 <.00005 .0007 .0022 .0070

4 .4995 <.00005 .0012 .0038 .0121

NODE WQ.C VAR L RATIO U

1 .2390 .0001 .1336 .4250 1.3515

2 .2498 .0005 .2347 .7462 2.3729
3 .5518 .0011 .1355 .4310 1.3706

4 .1055 <.00005 .1779 .5656 1.7986

Uniform Service

NODE RO.C VAR L RATIO U
1 .4995 <.00005 .0007 .0022 .0070

2 .5002 <.00005 .0005 .0017 .0054

3 .5015 <.00005 .0005 .0017 .0054

4 .4996 <.00005 .0002 .0006 .0019

NODE WQ.C VAR L RATIO U

1 .1872 .0001 .1245 .3959 1.2590
2 .1929 .0001 .1413 .4492 1.4285

3 .4442 .0003 .1419 .4513 1.4351
4 .0733 <.00005 .1222 .3886 1.2357
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Table 29

Modified Estimates for Network III (9=.5)

Exponential Service

NODE RO(M) VAR L RATIO U
1 .4956 .0001 .0993 .3159 1.0046
2 .4992 <.00005 .0154 .0491 .1561
3 .4946 <.00005 .1109 .3527 1.1216
4 .4999 .0001 .2875 .9142 2.9072

NODE WQ(M) VAR L RATIO U
1 .3673 .0006 .2097 .6668 2.1204
2 .4308 .0023 .1716 .5458 1.7356
3 .9149 .0065 .2779 .8837 2.8102
4 .2413 .0005 .4626 1.4712 4.6784

Weibull Service

NODE RO(M) VAR L RATIO U
1 .4967 <.00005 .0479 .1522 .4840
2 .4984 <.00005 .0096 .0306 .0973
3 .4960 <.00005 .0430 .1367 .4347
4 .4991 <.00005 .0755 .2402 .7638

NODE WQ(M) VAR L RATIO U
1 .2354 .0001 .1958 .6228 1.9805
2 .2479 .0006 .2623 .8341 2.6524
3 .5379 .0013 .1661 .5283 1.6800
4 .1052 <.00005 .3547 1.1280 3.5870

Uniform Service

NODE RO(M) VAR L RATIO U
1 .4986 <.00005 .0039 .0123 .0391
2 .4975 <.00005 .0103 .0326 .1037
3 .4993 <.00005 .0088 .0281 .0894
4 .4974 <.00005 .0279 .0886 .2817

NODE WQ(M) VAR L RATIO U
1 .1862 <.00005 .1108 .3525 1.1210
2 .1893 .0001 .1394 .4432 1.4094
3 .4400 .0002 .1148 .3651 1.1610
4 .0722 <.00005 .0711 .2260 .7187

I
g'P X 1 a VU
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Table 30

External Estimates for Network III (9=.5)

Weibull Service

NODE RO.C VAR L RATIO U
1 .5011 <.00005 .0708 .2253 .7165
2 .4992 <.00005 .0795 .2529 .8042

- 3 .4984 <.00005 .2362 .7510 2.3882
4 .4998 <.00005 .1035 .3292 1.0469

NODE WQ.C VAR L RATIO U
1 .2398 <.00005 .1007 .3201 1.0179

-< 2 .2538 .0009 .4155 1.3212 4.2014
3 .5573 .0041 .5073 1.6132 5.1300
4 .1086 <.00005 .2761 .8779 2.7917

Uniform Service

NODE RO•C VAR L RATIO U
1 .5008 <.00005 .1669 .5308 1.6879

" 2 .4965 .0001 .2167 .6890 2.1910
3 .5014 .0001 .2286 .7270 2.3119
4 .4966 .0001 .2325 .7393 2.3510

NODE WQ.C VAR L RATIO U
1 .1890 .0001 .2299 .7312 2.3252
2 .1938 .0002 .2526 .8032 2.5542

V.. 3 .4529 .0004 .2352 .7478 2.3780
4 .0740 <.00005 .4015 1.2768 4.0602

, .
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CHAPTER V

CONCLUSIONS

The purpose of this research was to study the application

of Jackson networks as control variates in queueing simula-

*tions in order to make some general conclusions about their

effectiveness for variance reduction. These conclusions

hold their importance in that they add to the store of pri-

or knowldge an analyst can draw on in deciding the appro-

priate variance reduction technique. Also, these results

indicate whether or not continued research in this area is

warranted.

The results of this study indicate the potential of ana-

lytic controls based on Jackson networks to produce vari-

ance reductions in utilization factor estimates. Jackson

based controls for the queue time estimates were not as

effective as the utilization controls in producing variance

reductions. In each network studied the queue time con-

trol variates produced little or no variance reduction and

indicated the potential to increase this estimate's vari-

ance. In some cases these controls could increase the con-

trol estimate's variance up to eight times that of the

- 73 -
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crude estimate's variance. The analytic controls for the

utilization factor showed more promise.

In Network I the analytic controls for the utilization

factor produced variance reductions in the range of 68 to

88 percent for traffic intensities of .9, and approximately

99 percent for traffic intensities of .5. The modified ana-

lytic controls produced variance reductions of approximate-

ly 75 percent only for the uniform service time case. Per-

formance in the exponential and Weibull cases indicated the

potential to add variance to the estimate. External con-

trols for the utilization factor were poor and again indi-

cated the potential to add variance.

Analytic controls for the utilization factor in Network

II produced consistent variance reductions for the Weibull

and uniform service cases. Reductions for these controls

ranged from 80 to 94 percent at traffic intensities of .9,

and approximately 98 percent for traffic intensities of .5.

The modified analytic controls performed well only for the

uniform service case at traffic intensities of .5. Here the

reductions ranged from 71 to 93 percent. External controls

were generally poor with the exception of the Weibull ser-

vice case at the .5 traffic intensity level where the v ri-

*ance reductions ranged from 74 to 96 percent.

Network II was structured so that each service node

would experience the same effective arrival rate in steady

,..........

e. - • €
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state conditions. The service rate was the same at each

node, but the number of servers was varied from one to

three (see Figure 6). The purpose was to observe the

impact of the number of servers on control variate perform-

ance. The results did not indicate any observable connec-

* tion between the number of servers and control variate per-

formance.

In Network III the analytic controls for the utilization

factor at the .9 traffic intensity level showed modest per-

formance. Their performance at the .5 traffic intensity

level was greatly improved producing variance reductions

of approximatley 99 percent. For modified analytic con-

trols at the .9 traffic intensity level, variance reduc-

tions were acceptable only in the uniform service case

where the reductions ranged from 70 to 90 percent. At the

.5 traffic level intensity these controls showed good per-

formance for both the Weibull and uniform service cases

producing reductions in the range of 76 to 98 percent.

Performance of the external controls was generally poor.

The results did show the analytic control variates for

the utilization factor worked well at the .5 traffic inten-

sity level. The same statement could not be made about the

queue time controls since their performance was so erratic

at both traffic intensity levels studied. No conclusive

statement could be made concerning the impact of the ser-

vice distribution on control variate performance.
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The Jackson based analytic controls indicate promise as

effective control variates for the utilization factor. One

possible explanation for the difference in performance

between the utilization factor and queue time controls may

be suggested by the form of these two performance measures.

The utilization factor is a ratio based on effective arri-

val and service rates. The queue time measure has a more

complex form incorporating the probability distribution of

the number of customers at a service node and the fraction

of the customer load carried by the servers; see (8) and

(10). This may suggest the variance of the queue time or

similar measure may be too complex to be fully captured by

the control variate approach. This should not preclude

future research in the application of control variates in

queueing network simulations. One approach may may be to

observe different forms of &, a, and r to obtain the con-

trol variates, such as observing Pi(0) of (10) directly

from the simulation rather than computing it from. ,U,

A
and .X Another approach worth considering is to search for

models which provide close approximations for the perform-

ance measures of interest as opposed to the exact analyt-

ical value provided by the Jackson model. The use of

approximation models may very well broaden the class of

queueing networks receptive to the control variate

approach. Whitt [20] has investigated the use of open
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networks to approximate the performance of closed queueing

* networks. The opportunity of expanding the use of control

variates in open systems as approximations for closed net-

works would be enhanced by further research in this area.

Another possible approach to improving control variate

performance is to obtain a more precise estimate of the

control coefficient b. One way to accomplish this would be

to increase the number of batches in a replication. A

pilot run increasing the number of batches from 25 to 50

was performed on Network I with Weibull service at the .9

traffic intensity level. Little improvement was noted in

the performance of the utilization controls; however, con-

siderable improvement was seen in the queue time controls.

Variance reductions doubled for the analytic, modified ana-

lytic, and external controls. This may suggest the poor

performance of the Jackson based queue time controls is not

solely due to the Jackson model. The ability or inability

adV to accurately estimate b may have a major impact on con-

trol variate performance for these systems. The methodology

for estimating the control coefficient is open to further

study.

Other sources which may explain the poor performance of

the control variates lie in the methodology of this study.

In order to obtain an interval estimate and a value for b

the batch means approach was employed rather than running a
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series of independent replications. This is not an uncommon

practice and is employed to reduce the cost of the simula-

tion. The batch means approach, however, produces only

approximate independence between the batches. Determining

the batch size is critical to this inde±0endence and is com-

plicated by network structure. A batch size may work well

for one particular node and not as well for the remaining

service nodes. Further study is needed to determine the

usefulness of the batch means approach in this methodology.

Another source for error is the initial bias. These net-

works tended to have long and erratic initial bias periods.
4.

This study took a fairly conservative approach in deletini

this bias; however, further study of the initial bias in

networks is needed to improve the application of control

variates for steady state analyses.

The results of this study do highlight the potential of

analytic control variates in simulation. Depending on the

parametric model selected to serve as the basis for the

control, the effort required to obtain variance reduction

would be small compared to reducing the variance through

I. additional run time or the second simulation required by

external controls. This holds considerable promise for

automating or incorporating the analytic control approach

in existing simulation languages. In software designed for

a specific user this approach could be incorporated by the

1Y
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addition of a statistical collection mechanism and a rou-

tine to derive the controls from these statistics. The ben-

vefit of this endeavor would be to avail a wider range of

variance reduction techniques to the user community and

enhance the analysis provided through computer simulation.

,

.,,



Appendix A

COMPUTER CODE

// JOB,

/*JOBPARH LINES=5000,VvS,DISKIO=500
// EXEC SIM93CG,TIME.G06
1CMP.SYSIN DD *
''ANTHONY P. SHARON ADVISOR: DR. BARRY L. NELSON
''DEFT: ISE THESIS RESEARCH
''APPLICATION OF JACKSON NETWORKS AS EXTERNAL CV
"FOR QUEUEING SIMULATION SYSTEM: 2 NODES
"ARRIVAL: EXPONENTIAL SERVICE: EXPONENTIAL
''BATCH LENGTH: 130 INITIAL DELETION: 100
''No. OF MACROS: 10 BATCHES PER MACRO: 23
''ATIN(I) INTERARRIVAL TIME AT NODE I
''BR(l) INPUT BRANCHING PROBABILITIES FROM

NODE I TO NODE J
''BUSYC I) NO. OF BUSY SERVERS AT NODE I
"CUST CUSTOMER
''LAEDAC I) EXTERNAL ARRIVAL RATE AT NODE I
I IMu(I1) SERVICE RATE AT NODE I
''NODT ENTRY TIME AT A NODE
''O.R(I,J) OBSERVED BRANCHING FROM NODE I TO J

'R(IJ) COMPARISON ROUTING MATRIX BASED ON BR(I,J)
''RCUST(IJ) NO. OF CUSTOMERS ROUTED FROM NODE I TO J
''S(I) NO. OF SERVERS AT NODE I
"STIM(I) SERVICE TIME AT NODE I
'TCUST(I) NO. OF CUSTOMERS COMPLETING SERVICE

AT NODE I
''vTIM(I) QUEUE TIME AT NODE I
PRVAMBLE LAST COLUMN IS 72''
EVENT NOTICES INCLUDE RESET, OUTPUT

EVERY ARRV HAS A NODE.A
DEF INE NODE. A AS AN INTEGER VARIABLE

EVERY EOS HAS A CUST.E, A NODE.E
DEFINE CUST.E, NODE.E AS INTEGER VARIABLES

PERMANENT ENTITIES
EVERY NODE HLAS AN ATIN, A BUSY, A LAMBDA, A MU, ANR S,

AN AWG, AN STIM, A TCUST, A WTIM AND OWNS A QUEUE
DEFINE BUSY, S, TCUST AS INTEGER VARIABLES

TEMPORARY ENT ITI1ES
EVERY CUST HAS AN NODT AND MAY BELONG TO THE QUEUE

DEFINE RCUST AS A 2-DIMENSIONAL INTEGER ARRAY
DEFINE BR, O.R, Rt AS 2-DIMENSIONAL ARRAYS
DEFINE NN,C AS VARIABLES
ACCUMULATE A.BUSY AS THE MEAN OF BUSY
TALLY A.WQ AS THE MEAN OF WTIM
TALLY A.ARl AS THE MEAN OF ATIM
TALLY A.SR AS T7HE MEAN OF STIM
TALLY G. AWQ AS THE MEAN OF AWQ
END ''PREAMBLE
MA IN
DEFINE I AS AN INTEGER VARIABLE
LET NM1
CREATE EVERY NODE (2) ''NO. OF NODES
RESERVE BR(*,*). R(*,*), RCUST(*,*). O.R(*,*) AS 2 BY 2
READ BUSY, LAMBDA, S
START NEW RECORD
READ M
START NEW RECORD
READ BR

-80-



FOR It '1 2 , DO "NO. OF NODES
FOR Ja I TO 2, DO "NO.OF NODES

LET CR- BR(I,J) + CR
LET R(I.J): CR

LOOP
LET CR=O

LOOP
PRINT I LINE THUSECHO INPUT
SKIP 2 LINES
FOR lI TO 2, DO "NO.OF NODES

PRINT 5 LINES WITH I, LAMBDA(I), MU(I),
BUSY( 1), S(!) THUS

INPUT VALUES FOR NODE *
ARRIVAL RATE:
SERVICE RATE:
NO. BUSY SERVERS: **

'3 NO. OF SERVERS: **
SKIP 2 LINES

LOOP
SKIP 2 LINES
LIST BR
SKIP I LINE
LIST R
SKIP 2 LINES
'SCHEDULE ARRIVAL FOR NODES WITH EXTERNAL ARRIVALS
FOR I1 TO 2, DO

LET NODE= I
LET UA= RANDOM. F(NODE)
LET ATIN(NODE) = (-I.•/LANBDA(NODE))*(LOG.E.F(UA))

LOOPSCHEDULE AN ARRV GIVEN NODE IN ATIM(NODE) UNITS

SCHEDULE A RESET IN 1)00.0 UNITS "TIME TO DELETE BIAS
SCHEDULE AN OUTPUT IN 1,150.0 UNITS "END OF FIRST BATCH
START S IMULAT ION

STOP
END "MAIN

* EVENT RESET "DELT BIAS, RESETS FOR NEXT BATCH
FOR EACH NODE RESET THE TOTALS OF ATIM, STIM, BUSY, WIN

4 FOR !=1 TO 2, DO "NO. OF NODES
LET ATIN(I)u@
LET STIM( I)z9
LET VTIM(!)=0

LOOPLET TUST( I) 0
FOR !1. TO 2, DO

FOR JI TO 2,DO
LET RCUST(I,J)u@
LET O.R(IJ)=S

LOOP
LOOP
RETURN
END "EVENT RESET
EVENT ARRV GIVEN NODE "EXTERNAL ARRIVAL AT GIVEN NODE
DEFINE NODE AS AN INTEGER VARIABLE
CREATE A CUST
LET NODT(CUST)m TIME.V

LET UA RANDOM. F(NODE)
LET ATIM(NODE) a (- 1.0/LAIIBD(NODE)) *(LOG. E. F(UA))
SCHEDULE AN ARRV GIVEN NODE IN ATIM(NODE) UNITS

a' ' .* .. '
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IF BUSY(NODE)a SCNODE), FILE CUST IN QUEUE(NODE)
ELSE

LET BUSY(NODE) a BUSY(NODE) + 1
LET VFIN(NODE) x0
LET AWQ(NODE)80
LET USRANDOM. F(NODE+S)
LET STIl(NODE)(-I.0/,U(NODE))*(LAG;.E.F(US))
SCHEDULE AR EOS GIVER CUST, NODE IN STIN(NODE) UNITS

ALWAYS
RETURN

~~iS END "EVENT ARRV
EVENT EOS GIVEN CUST, NODE "END OF SERVICE EVENT
DEFINE CUST, NODE AS INTEGER VARIABLES
LET TCUST(NODE)x TCUST(NODE) + I
CALL ROUTE2 GIVEN CUST, RODE
RETURN
END "EVENT OS

'WV .EVENT OUTPUT
DEFINE I, J AS INTEGER VARIABLES
FOR l=1 TO 2, DO

FOR Jal TO 2, DO
LET O.R(I,J)= RCUST(I,J)/TCUST(I)

LOOP
WRITE I.O/A.AR(I), I.0/A.SR(I), O.R(I,I), O.R(I,2)

AS 4 D(10,4) USING UNIT I
WRITE AS / USING UNIT I
WRITE A.BUSY(I)/S(I), A.WQ(I) AS 2 D(10,4)

USING UNIT 1
WRITE AS / USING UNIT 1

LOOP
LET l1i
LET CsC+I
PRINT 6 LINES WITH RIM,C, I, I+I,t.9/A.AR(I), 1.S/A.AR(I+1),
1.0/A.SR( I), I.S/A.SR( 1+1),A. BUSY( 1)/S( I),A.BU-Y( 1+1)/6( I+1),

A.WQ(I), A.WQ(I+1) THUS
RESULTS FOR MACRO **.* BATCH **.*
NODE * NODE *

• ,.' ARRIVAL= *8.4*4* ARRIVAL- **.****
SERVICE= *8.8*8 SERVICE= **.****

RO= 8. 8*8 RHO. 8.8*8
M7**8** VQ=***.**

PRINT I LINE THUS
OBSERVED ROUTING PROBABILITY MATRIX (O.R)
LIST O.R
SKIP I LINE
IF C LT 25.0

SCHEDULE A RESET NOW
".1 '. SCHEDULE AN OUTPUT IN 150.0 UNITS

ELSE PRINT I LINE WITH G.AWQ(I), G.AWQ(2) THUS
OVERALL MEAN FOR WQ(I)r***.**** 1Q(2) z
SKIP I LINE

LET C=.
LET NN=NM I
FOR EACH NODE RESET 71E TOTALS OF AW
FOR li TO 2, DO ''1O. NODES

LET AWQ(I).
LOOP

IF NN LE 10.0
SCHEDULE A RESET NOW
SCHEDULE AN OUTPUT IN 150.0 UNITS
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ELSE SMP
ALWAYS

ALWAYS
RETURN
END "EVENT OUTPUT
ROUTINE MOUTE2 GIVEN CUST, NODE "FOR TWO NODE NETWRK
DEFINE CUST, NODE, NEXT AS INTEGER VARIABLES
LET DEST a RA1IDOM.F(5)

A IF DEST LE R(NODE, I), LET NE)lcI'Z
LET NODT( CUST) :TIME. 'P
LET RCUST(NODENEXT)r RCUST(NODE.NEXT) + I
IF DUSYC NEXT)r S( NEXT), FILE GUST IN QUEUE( NEXT)

ELSE LET DUSY( NEXT) u BUSY( NEX)~ +1
LET WTIM(NEXT)=0
LET AWQ( NEXT) :0
LET US: RANtDOM. F( NEXT+5)
LET STIN(NEX)z(-1.0/MU(NEX))*(LOG.E.F(US))
SCHEDULE ANR LOS GIVEN CUST, NEXT IN STIN(NEXT) UNITS

ALWAYS
ELSE IF DEST LE R(NODE,2

LET NEXT r 2
LET NODT(CUST) a TIPIE.V
LET RCUST( NODES NEXT) * RCUST( NODE, NEXT) + I
IF BUSY(NEXT) a S(NEX)

FILE CUST IN QUEUE( EX)
ELSE LET DUSYC NEXT): DUSY( NEXT) + I

LET WFIM(NEXF)mS
LET AWQ(INEXT) =0
LET US: RANDOM. F( NEXT+5)
LET STIM(NEXT)C(-I.@/NU(NEXT) )*(LOG.E.F(US))
SCHEDULE AN EOS CIVE14 CUST, NEXT IN STIM(NE) UNITS

AL WAYS
ELSE DESTROY CUST
ALWAYS

* ALWAYS
IF QUEUE(NODE) IS EMPTY

LET BUSY(NODE)m BUSYC RODE) - 1
RETURN

ELSE REMOVE THE FIRST CUST FROM QUEUE(NODE)
LET WTIM(NODE)m TIMIE.V - NODT(CUST)
LET AWQ(NODE): TIME.V-NODT(CUST)
LET US:RAMDOI. F( NODE+5)
LET STIM(NRODE)(-I.0/N[U(NODE))*(LOG.E.F(US))
SCHEDULE AN EOS GIVEN CUST, NODE IN STIN ODE) UNITS

RETURN
END "ROUTINE ROUTE2

* ROUTINE SNAP.R
LIST TCUST
SKIP I LINE
LIST RCUST
SKIP I LINE
LIST ATTRIBUTES OF EACH EOS IN EV.S(I.EOS)
SKIP I LINE
LIST ATTRIBUTES OF EACH ARRv' IN EV.S%&I.ARRV)
RETURN
END 'SNAP.R
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JOB
// REGION=768K
*/JOBPARN LI NES250

//SI EXEC FORTVCG,INSLIBzSINCLE
//FORT.SYSIN DD *

S.. ". CCC PROGRAM ANALYZES SIMULATION RESULTS FOR VARIANCE REDUCTION
CCC PROGRAM CONPUTES EFFECTIVE ARRIVAL RATES AND PERFORMANCE
CCC MEASURES FOR A GIVEN NETWORK USING AN INSL ROUTINE
CCC TO SOLVE THE BALANCE EQUATIONS. CRUDE AND CONTROL
CCC VARIATE ESTIMATES ARE COMPUTED AND THEIR VARIANCES
CCC ARE COMPARED.
CCC DEFINITIONS OF MAJOR VARIABLES
CCC NN NO. OF NODES
CCC NB NO. OF BATCHES PER MACRO
CCC WN NO. OF MACROS PER EXPERIMENT
CCC SUBSCRIPTS FOR DEFINITIONS
CCC ImNO. OF NODES, JuNO. OF BATCH, K=NO. OF MACRO
CCC ROC I) LONG RUN UTILIZATION, NODE I
CCC WQ(I) LONG RUN QUEUE TINE, NODE I
CCC NOTE: STATISTICS ARE DEFINED FOR RO ONLY; NOTATION IS
CCC SIMILAR FOR VO
CCC ROJ( I) JACKSON STEADY STATE FOR RO( I)
CCC ROA(I,J) ANALYTIC CONTROL FOR RO(I,J)
CCC ROS(I,J) SIMULATION ESTIMATE FOR RO(I,J)
CCC AROS(I,K) MEAN FOR ROS(I,J) OVER MACRO K
CCC AROA(I) MEAN FOR ROA( I, J) OVER A MACRO
CCC VROA(I) VARIANCE FOR RO(I,J) OVER A MACRO
CCC CRO(I) COVARIANCE(RO(I,J),ROA(I,J)) OVER A MACRO
CCC BCRO(I) ESTIMATED CONTROL COEFFICIENT, B, FOR RO(I)
CCC BROC( IK) CONTROL ESTIMATOR FOR RO(I) IN MACRO K
CCC ROC(I,K) CONTOL ESTIMATORB-I, FOR RO(I) IN MACRO K
CCC NROC( I) MEAN OF ROC(I,K)
CCC VROC(I) VARIANCE OF ROC(I,I)

i."4. CCC NBROC(I) MEAN OF BROC(I,K)
CCC VBROC(I) VARIANCE OF BROC( I,I
CCC NAROSCI) MEAN OF AROS( 1,I)
CCC VAROS(I) VARIANCE OF AROS(I,K)
CCC VRROC(I) VARIANCE REDUCTION FROM ROC(I)
CCC VRBROC(I) VARIANCE REDUCTION FROM BROC(I)
CCC NWQS(I,K) OVERALL MEAN OF 1(S AT NODE I, MACRO K
CCC GMWQS(I) OVERALL MEAN OF VQS AT NODE I FOR ALL K
CCC NOTE: A LIST OF OTHER PROGRAM VARIABLES FOLLOWS
CCC A(I,11) EFFECTIVE ARRIVAL RATE MATRIX
CCC B(!) ARRIVAL( INPUT) /EFFECTIVE ARRIVAL(OUTPUT)
CCC IA ROW DIMENSION OF A(I,i)
CCC IDGT ACCURACY TO DECIMAL PLACE OF LETIF SOLUTION
CCC IER LEQTIF WARN FLAG ( ACCURACY OR SINGULARITY)
CCC LEQTIF INSL LINEAR EQUATION SOLVER
CCC N NO. OF RIGHT HAND SIDES

" ccC N NO. OF ROWS IN B(!)
ccc K(I1,1) PR. OF ROL TfNG FROM NODE I TO II
CCC S(1) NO. OF SERVERS AT NODE I
CCC WKAREA(I) DIMENSION GT OR EQ TO N
CCC KU(I) SERVICE RATE AT NODE I
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCC DECLARE AND DIMENSION VARIABLES

INTEGER NN, N. NB, ff N, IER, IA, IDCT, S ,FACT,CRUDE
REAL MWQS(2, 10),GMWQS(2),GVWQS(2)
REAL ROJ(2), OA(2,50), AROS(2,10), AROA(2), VROA(2),

o% ~ 4 ... ~ - ~ ~ v'~-'.~. .* . . . . . .
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*+ CRO(2), uiinO(2), DlUACI2,1UJ, ROC(2,10), flflLP(A)

+ VROC(2). MBROC(2), VBROC(2). MAROS(2), VAROSC2),
+ VRROC(2), VRBROC(2)
REAL WQJC2), VQA(2,50), AWQS(2,10). AWQA(2), WQA(2),

+ CWQ(2), BCWQ(2), BWOCC2,10), WGC(2.IS). !IWQC(2).
+ VWQC(2). NBWQCC2), VBWQC(2). VRWQC(2). VRBWGC(2)
REAL B(2), VKAREA(4), MU1(2), R(2.2). A(2.2)

CCC LABELED COMMON STMT
COMMON /SIM!IEA/ R08(2,25), WS(2,25), S(2)

CCC READ IN NETWORK PARAMETERS AND IMSL ARGUMNlTS
READ(3,*)NI, Nil, NB, M. N, IA. IDCT

CCC READ JACKSON PARAMETERS MID FORK A( I, I) MATRIX
DO 20 1I,N

READ(5,*)B(I), MUCI), S(d), R(I,l), R(I,2)
20 CONTINUE

CCC READ OVERALL MACRO WEARS FOR WQ
DO 25 Kzl,NM

BEAD5,*)NfWQS(,K), HWQS(2,K)
25 CONTINUE

DO 40 1.1,113
DO 30 IItI,NN

IF( 1. EQ. 11) THEN
AC 1, II)* -Rd 1,11)

ELSE

END IF
s0 CONTINUE
40 CONTINUE

CCC ECHO INPUT
WRITE(6 :41)

41 FORMAT('09,15X, 'ECHO INPUT')
WRITE(6,*)-NNm-, NN3, 'NB=*. NB, 'NNH:'. NSM, NO ON", NO,

+ *IA='. IA. 'IDGT-', IDGT
DO 60 Im.N

WRIT7E(6,42)I, B(I), MU1(I), SC!)
42 FORMATC'O','NODE', 13,2X,'BCI)=',FIO.4,2X,'NfUCI)',F1O.4.

+ 2X,'IS(1)',13)
DO 50 11=1,113

WRITE(6.43)I, 11, R(1,11), AC1,11)
43 FORIIATC'0','PROBABILITY FROM',13,1X,'TO',13,JX,'u',FI0.4,

so CONTINUE),F1.
60 CONTINUE

CCC SOLVE FOR JACKSON EFFECTIVE ARRIVAL RATES
CCC CALL IMSL ROUTINE LEQTIF

CALL LEQT1F(A. M. SO [A, B, IDCT, WKAREA, lEft)
IFC IER.CT.O)THER

WRITEC6,*) 'ERROR FLAG',l lEft, 'JACKSON'
"V. STOP

END IF
*CCC COMPUTE JACKSON MEASURES

Jz1
CALL PERFCNN, NB, J, BO MU, BOA, WQA, CRUDE)
DO 70 1.2,113

RDJ( I)ROAC 1,J)
WQJC I)zWQAC IJ)

70 CONTINUE
CCC ECHO JACKSON MEASURES

DO 110 IsINN
WRITECI,75)I, ROJ(I), WQJ(I)

p.F&
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75 FOBI AT('0','JACHSON VALUES NODE',J3,2X,'RO='.,FI9.4,2X,
+. 'WR:',F10.4)

110 CONTINUE
CCC FOR EACH MACRO COMPUTE MEASURES AND CV'S

DO 270 K=1,NM
CCC FOR EACH BATCH READ BEAD PARAMETERS AND SIM. ESTIMATES

DO 140 J:1,WB
CCC FOR EACH NODE BEAD PARAMETERS AID ESTIMATES

DOREIAiNN )~) MU( I), R(i.1), R( 1.2)

130 CONTINUE
DO 136 II,N

DO 135 J1:1N
IF( I.EQ. II)THEW

ELSE

END IF
135 CONTINUE
136 CONTINUE

*CCC COMPUTE EFFECTIVE ARRIVAL BATE FOR A BATCH
CCC CALL IHSL ROUTINE LEQT1F

CALL LEQTIF(A. M. N. IA. B, IDCT, VKAREA. IER)
IF( JER. GT.0) THEN

WRITE(6,*)'ERROR FLAG BATCH', JK, I'.' TER

END IF SO

CCC COMPUTE BATCH MEASURES FOR EACH NODE
CALL PERF(AN, NB, J, B, MU, BOA, WQA, CRUDE)

140 CONTINUE
VRITE(6, 141)K,CRUDE

141 FORMAT('0,'I1I MACRO', 13,2X,'BBO GE I.0',I3,2X,'T~IffS')
CCC COMPUTE MEANS, VAR'S, COy, BSTAR, FOR BATCH OUTPUT

DO 240 I11,N
DO 150 Jcl.NB

AROS(1,1 ROS(I,J)4AROS(I,K)
AWQS(I.K)a WQS(I.J)+AWQS(JK)
AROA( 1)r.OA( IJ)+AROA( I)
VBOA(I)z BOA(I,J)*ROA(I,J)+VBOA(I)
AWQA(I)z WQA(I.J)+AWQA(I)
VWQA( I):VQA( J,J)*WQA( 1,J)+VWQA( I)

150 CONTINUE
CCC COMPUTE MEAN, VAR FOR MEASURE AT NODE I

AROS(IKJ: AROS(1,K)/(NB)
VBOA( I)aVROA( I)/(NB-)-AROA( I)*AROA( I)/

+. ((NqB-I)*(NB))
AROA( I)z AROA(I)/(NB)
AWQS(I.,K1 AWQS(I,K)/(NB)
VWQA(J)x VWQA(J)/(NB-l)-AWQA(I)*AWQA(I)/

+ ((NB-1)*( NB))
AWQA( J)r AWQA(I)/(NB)

CCC COMPUTE COVAR lANCES
'. ~ DO 160 Jw1,NH

+ CRO(I1)

+ CWQ(I):2160 CONTINUE
-. CCC COM4PUTE COV AND ESTAR
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CW(I)a CVQ()/(NB-1)
BCWO 1) 8 CROC 1) /MA( 1)
BCVQ( 1) 8 CW( 1) /VVQA( 1)

CCC CONFUTE CONTROL VARIATE EST IMATES FOR RUN K
33OC(1,D)B AROS(I,10-SCRO(I)*(AROAC)-MJ(I))
ROCC 1,K)sAROSC I.K)-AROA( I)4ROJCI)
BWQC I,K)u NWQCI,10-BCWQ( I)*(AQAC I)-VQJC I))
'40CCIl~ MWS'1( I,K)-AWQAC I)+WQJCI)

CCIC PRINT DATA SUMMARY FOR RUN X
WRITECO, I70) I ,

170 FORMAT('' 'RESULTS FOR NODE', I8,SX. 'MACRO' is)
VRITEC6, 180)ROJC ) AROSC I,K) * CROCI), 9 CROM I) .30C ,10

+ ROC(IlK)
I"0 FOIUIATC' 'F 'ROJm', F19.4,2XIIIABOSa', FIG.4.2X.

I 'CORO) F10. 4.2X, - STAI 'F 10. 4,2X, IBROCuF 10. 4,
+. 2X " ROCa', F10.4)

WRITeCO,2)Wc I), IfalC ,K0, WIDC(11DWc1,,
* V0CCI,K)

200 FORRATC' I, 'VQJ.',F1.4.2X,'AVOS:',F10.4,2X,'COVCVQW I+ FIO.4.2X, '3STAra' ,FO.4,2X, 'IVOC. * .1.4,2X, 'WQC 'FI@.4)
240 CONTINUE

CCCC INITIALIZE BATCH MCASUR ARRAYS
DO 260 ImlNN
DO 250 JzIsNB

AC 1,J)80
VQACI,J)n*

250 CONTINUE
AIROA( 1 Is 0
VROAC 1)z0
CRO( 1) x0
BCROC 1) a0
AWOAC 1) w0
JVWQA( 1) s0
CVQ( 1) me
DCWQ( I)=0

.4260 CONTINUE

270 CONTINUE RDR
CCC COMPUTE VARIANCE REDUCTION SUMS

Do 890 131,31
-DO 280 Ku1,NM

MOWCC1)s ROCC 1,104.NOCC I)
1VIOC( I)w ROC( 1,10*30CC 1.K)VRoC( I)
MWQCC 1)w WC1,D+WQCC1)

VBROCC1)w DROCCI1,K) *BROCC1, K) +VBROCC1)
NBVQC( I)* B3QC1,1D+ PHBQC1I)
VBWQCC 1)a BQ( 1,10*10CC 1,10 VBWQ( I)
NAROOC 1)3 8£ROBC 1,1+ MAROSI )
VAROS(1)m hROSCI9K)*AROSCI.K)4 VAROSCI)
GNVVSC 1)3 a MC I,DN WQS( 114.01(1

280 CONTINUE
CCCCIC COMPUTE VARIANCE /MEANS

VROCC 1)a VROC( 1)/(NN-)-fiCCI)*Iin( I)/(NN-l)NW)
KNOCI). RCC)N



YDROC( 1) wVROCC 1)/001-)-laRme( 1) *NBROCC 1) /C((nf-i) *NM)
HBROC( 1)3 aNBROC( 1) /NH
VDWQC( 1) RVDWC( 1) /CMM- I)-NBV0C( 1) *NBWQC( 1)/C (NI-i1) *MM)
IIBVQCC1)w NBVC( 1)/Nfl
VAROS( 1) wVARO6( 1) /(N- )-ARIOS( 1) *AROS( 1) /( (NM- 1)*MR)
MAROSC 1). aAROS( 1) /NH
GVWOSC 1) mCVWQS( 1) /C NH--i)-NWOS( 1) *GNWQS( 1)/(N*-i1) *N)
CMWQS(J)w GNVOS(I)/NN

CoC COPUTE VARIANCE REDUCTION
VRIOC( 1) (VAROSC 1) -VROC( 1)) /VAROS( 1)
VIIDROC( 1) a(VARO( 1) -VBROC( 1)) VAIOS( 1)
VRWQCC I)a(CVWQS I)-VQCC i))/CVVQS( 1)
VRBWQC( 1) CVWQSC 1)-VBWQC( 1)) /GVWQS: 1)

CCC PRINT VARIANCE RDUCTIONS
VRITEC6,290) I

290 FORMAT('0', 'VARIANCE REDUCTION AT NODE ', 18)
WR1TEC6,300)MJ(I), NAROS(I), VAROS(I)

a" FORMAT(, ', 9M91' FIO.4.K, -MEAN SIR '. Fit.4.SX,
+ lVARCI DO0)W, F16.4)

+ SX. 'HEAMR 3.Cm'. F10.4,8X, 'VAII(ROC)u', F1S.4)
WRITE(6,920)VRDROC( I), VRROC( I)

820 FOPIAT('*'. 'VAR REDUCE BROCa', FI@.4,5X.'VAR REDUCE ROC',
*F F10.4)

WRITE(6,8S0)WJ(I), GNWQ(l), CVVQS(I)
380 FORMIAT(C'01, 'O~o , IO.S4,SX, INPEAM S1INW:' F19.4,SX,

+ lVAR(SIHWm'a, F16.4)
WRITE(6II840)NBWOC( 1), VDWQC( I), HWIC I), VWC(I)

849 FORMAT(' Is 'NEAM BWCs', FIS.4.8X,IVARCBVQC)z', F16.4,
+ SX,INEAN VOC*', Fi0.4,SX,VARAWQ)ml9 F10.4)

WRITE(6,S50OVRDWOC( 1), VRWQC( 1)
350 FORMAT(' 9. 'VARl REDUCE BW0Cu*, F10.4,SX,'VAR REDUCEVQC=',

3' 90 +CONTINUE FG4
STOP
END

CCC INTEGER FUNCTION TO CONPUTE A FACTORIAL
INTEGER FUNCTION FACTC ISERV)
]MERV* 1

DO 509 ImI,ISERV
SERV2 ISERV* I

599 CONTINUE
ENDI F
FACTS UERV
RETURN
END

CCC SUBROUTINE TO CONPUTE PERFORMANCE MEASURES
SUBROUTINE FEERN, NB, J, 3, NU, MOA, WQA,CRUDE)

COMMON /SIHHEA/ROS(2,25), WOSC2,25), S(2)
INTEGER NWN11,J, FACT: U, CRUDE
REAL B(2), MU1(2), ROA(2,25), WQA(2,25), LQA

CCC COMPUTE MEASURE.S FOR EACH NODE
DO 620 IrnINNf

CCC IF RO GREAE THAN ONE, REPLACE 30 WITH .9999
*CCC TO COMPUTE MEASURES

IFC MAC I.J) .GE. I)TNE
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CRDmt' CRUM+* I

DO0 t*JEOf,(S(Dl)

$to CONTIMMU

Lfl*e1M*((ROA( I,J)*3(Dj)**S( 1))*rAA( 1.J)#'
+ 4C(~)*( kAiJ)*)

VA( 1,J) aLOA/B( 1)
820 COIITIIMU

RETUMJ
Z1D

Or/Min DD
/CO.mFsF*S)l DD ,gwstSS93S.72UIDISU'

I.
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