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AThe goal of this project is to interface an image processing system

to a robot arm system. Computer vision is used to compute the location

and orientation of a block in the work space so that the block may be

grasped and manipulated by a robot arm. A detailed explanation of how

information flows from the image processor to the robot arm system is

given. This flow can be broken down into three different steps.

In the first step, a gradient map from a digitized image of the

work space is transferred, one line at a time, from the Grinnell image

processor to its host, a VAX 11/750. As each line of the gradient map

is uploaded, the coordinates of pixels on the edges of a block (edge

pixels) are stored in an array. Storing the coordinates of only the

edge pixels results in significant image compression.

The second step involves processing the edge pixel coordinate

array to extract relevant features. The location of the corners of a

block is all that is needed to compute the location of the centroid

and the orientation of the block in the work space.

In step three, the centroid and roll angle information is sent

from the VAX to the robot arm system host, a DUAL microcomputer. One

of the robot arms is selected and appropriate commands are sent to

that arm to grasp and manipulate the block.

Abstract approved: * .Maj ro eso - -R. TPerez, Ph.D.

Asst. Prof., Dept. of Comp. Sc. and Engineering
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vii

086 8 28 0



' .. Chapter I

INTRODUCTION

Our ability to interact with our environment is based on sensory

perception. Information about our environment is continuously collected

by our sensory mechanisms and is processed by our brain. Consequently,

this sensing/processing system gives us the extensive information we

require to function effectively [1].

One of our senses, in particular, has extraordinary sensitivity.

The human visual system can detect the location, motion, shape, size,

color, and texture of objects without making any physical contact.

Duplicating this sensitivity electronically, in even rudimentary form,

requires an immense amount of memory and programming. However, since

this highly valuable sensory input enables robots to interact very

effectively with their environment, vision in robotics has become an

area of intense research activity [2], and some applications have

become commercially feasible.

Gonzalez and Safabaksh divided computer vision techniques into

three levels of processing: low, medium, and high-level vision (3].

To understand the relationship of these levels of processing, one could

think of low-level vision as a procedure that finds the edges of an

object, medium-level vision as a process that recognizes an object as

a distinct entity in the work space, and high-level vision as a means

of interpreting a scene and determining the interrelationships, if any
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exist, among several objects (e.g., a big block next to, or u.tear, a

small block). This project implemented medium-level vision techniques

to determine the location and orientation of a block in the work space.

This was accomplished by augmenting and integrating the previously

completed work of two fellow graduate students. Their work is briefly

described below.

Majumdar [4] used low-level vision techniques to detect the edges

of an object in the work space. He developed several edge detection

algorithms that execute in the Grinnell image processor under the

control of a program running in the host computer, a VAX 11/750. The

most significant aspect of his work is the speed in which edges are

detected. Using Roberts' cross operator on a 480 by 512 pixel image,

an edge map is generated in approximately 300 milliseconds. However,

it is important to note that, upon completion of his edge detection

t.- .algorithms, the edge map remains in the image memory of the Grinnell.

Thus, any application that requires the edge map for further processing,

which cannot be accomplished by the Grinnell, must upload the map to

the host.

Koutsourelis [5] implemented a high-level robot arm command

language to provide concurrent operation, and coordination, of multiple

robot arms. Simultaneous movement of the arms is obtained by creating

separate processes running in parallel under the UNIX operating system

".F [6]. This software is available in the robot arm system host computer,

a DUAL System 83 microcomputer.

The results of Majumdar's edge detection algorithms provide the

input for the algorithms designed and implemented in this work. These

algorithms determine the location and orientation of a block in the

,%
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work space. This information is then transmitted from the VAX to the

DUAL to be used as input to Koutsourelis' robot arm command language

which is used to send appropriate commands to the robot to grasp and

manipulate the block.

1.1 HARDWARE CONFIGURATION AND INFORMATION FLOW

The USF Computer Science and Engineering Robotics Laboratory

(hereinafter referred to as the Robotics Laboratory) is equipped with

a Grinnell 2800-32 image processing system (the Grinnell) configured

as a peripheral device of the host computer, a VAX 11/750 (the VAX).

A GE Model 2507 CID TV camera, mounted orthogonal to, and above, the

work space, provides the video input for the Grinnell. A black and

white video monitor displays the scene viewed by the camera. The

camera/monitor/Grinnell/VAX configuration is often referred to as the

image processing system.

A block in the work space will ultimately be grasped by one of

the two MICROBOT Alpha robot arms or the Mitsubishi RM-501 robot arm.

Each of these robots is connected to the DUAL System 83 MC68000-based

microcomputer via an RS-232 interface. The MICROBOT/Mitsubishi/DUAL

configuration is often referred to as the robot arm system.

Information flows from the work space to the robot arm system via

a circuitous path (see Figure 1). After a block is placed in the work

space: (1) an image is transmitted from the TV camera to the Grinnell

where a gradient map is generated, (2) the gradient map is uploaded to

the VAX and the coordinates of pixels on the edges of the block (edge

pixels) are stored in an array, (3) relevant information is extracted

from the edge pixel coordinate array and location and orientation data

"r ., ,% . . V
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Place block in work space

Grab image and generate
gradient map in Grinnell

14 P

Upload gradient map from Grinnell
to VAX and determine coordinates

of edge pixels

Compute location (centroid) and
orientation (roll angle) of block

Send centroid and roll angle
data from VAX to DUAL

Send commands from DUAL to
robot arm to manipulate block

Figure 1. High-level Flowchart of Robot Vision System
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is computed, (4) the location of the centroid and the roll angle is

sent to the DUAL, and finally (5) one of the robots is instructed to

grasp and manipulate the block. This process may be repeated as many

times as is desired.

1.2 ORGANIZATION

Chapter II describes the procedure used to acquire and process an

image of the work space. The data structures used to store lines of

the image for intermediate processing (the pixel buffer) and to store

the coordinates of edge pixels (the coordinate array) are described as

well.

Extracting the relevant features of an object is the topic of

Chapter III. To classify an object requires knowledge about certain

features of the object. Some of these features are: area, centroid,

perimeter length, maximum dimension, etc. [1,4]. For this project,

only the location and orientation of the object are required. The

location of a block can be determined by locating the four corners of

the block; the orientation can then be determined from the lengths of

two of the four edges between three of the four corners.

Prior to using this vision system, the robot arm system must be

initialized and physically connected to the image processing system.

Chapter IV describes the initialization procedure and the actions

required to connect the VAX to the DUAL. Grasping and manipulating a

block is also discussed along with actions taken in response to error

conditions.

Chapter V provides a summary of this project and suggested topics

for future research. Although this is a very simple implementation of
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computer vision, this project provides a base for the development of

more complex applications. Additional work could transform this simple

vision system into a more powerful, and versatile, academic tool for

demonstrating the use of computer vision in robotics applications.

Appendix A includes a complete User's Guide. This guide was

written with the assumption that the user would be familiar with the

location, and general configuration, of the various devices that form

the image processing system and the robot arm system. Step-by-step

instructions for using this vision system are provided.

Appendix B describes the procedure used to determine the location

of the camera's field of view on the xy plane of the work surface. It

is important to note that the position of the camera fixes the location

of the work space! Should the position of the camera change, the

location of the work space will change as well. This procedure may

be used to reestablish the location of the work space.

,.

.
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Chapter II

IMAGE ACQUISITION

The TV camera is mounted orthogonal to, and approximately 27 inches

above, the surface of the table on which the robots have been placed. A

black and white video monitor displays the scene viewed by the camera.

To implement this vision system, it was necessary to determine the field

of vision (i.e., "visual" work space) of the robots. Consequently, we

had to determine the location, and size, of the area of the table viewed

by the camera. Thus, determining the robots' work space is analogous to

determining the camera's field of view. A procedure to do this is given

in Appendix B.

When a robot has been placed relative to the work space, its arm

is situated such that part of it appears within the camera's field of

view. Prior to analyzing a scene, the robot is instructed to move to

the side to keep its arm from appearing within the image.

When instructed to "grab an image," the Grinnell accepts a frame

of data from the camera. An analog-to-digital converter in the Grinnell

converts the analog signal into a gray-scale digital image. This image

is then stored in one of the Grinnell's twelve 512 by 512 pixel image

memory banks. The intensity of each pixel in the image is represented

by an 8-bit value. A value of 0 represents minimum intensity, or black-

level; a value of 255 represents maximum intensity, or white-level.

Algorithms to detect the edges of objects in the work space have



8

been implemented in the Grinnell [4]. These algorithms are implemented

using several methods discussed in the literature (1,3,4,7,8]. The

concept of using a gradient operator to detect the edges of an object in

the work space is briefly reviewed in the following section.

2.1 GENERATING THE GRADIENT MAP

To isolate the edges of an object, a gradient map is generated by

applying a gradient operator to every pixel in the image. The operator

serves to indicate the presence, and magnitude, of local discontinuities

in intensity within the image. The magnitude of the gradient values of

edge pixels will be large, but less than 255; whereas, the magnitude of

the gradient values of all other pixels will be close to zero.

Majumdar designed and implemented algorithms that use both Sobel's

3 by 3 operator and Roberts' cross operator. Although it provides more

complete edge segments, Sobel's operator takes more than three times

longer to generate a gradient map than does Roberts' operator [4]. For

this application, the quality of edges is not a major concern. The

corner finding algorithm developed for this project, and described in

3.1, is not sensitive to the quality of edge segments - it simply

attempts to locate corner points. Thus, Majumdar's algorithm that

implemented Roberts' cross operator was chosen for this particular

application.

2.2 UPLOADING THE GRADIENT MAP

As a special purpose computer with a bit-slice ALU and a pipelined

video processor, the Grinnell was designed for high-speed graphics and

image processing applications. Due to the special purpose nature of

this architecture, we have yet to find ways to implement conventional
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programming logic in the Grinnell. Consequently, for any processing of

this type, it is necessary to upload the gradient map to the VAX.

2.2.1 Transferring Data

The Grinnell is configured as a peripheral device of the VAX. The

Intelligent Host Interface in the Grinnell is connected to the Host

Resident Adaptor Board in the VAX through a 16-bit parallel data cable.

Although the time required to physically transfer data is on the order

of microseconds, system overhead for each I/O operation is on the order

of milliseconds. To upload the gradient map from the Grinnell requires

480 transfers of 512 16-bit gradient values (the high-order eight bits

of each value are padded with zeroes). Thus, a very large percentage of

the time required to upload the gradient map is due to system overhead

resulting from I/O operations between the Grinnell and the VAX.

- To effect the transfer of data, the applications programmer uses

existing software routines, the Primary Interface Primitives. These

primitive functions define the lowest level of interaction between a

program running in the VAX and the Grinnell device driver. The primi-

tive used to upload the gradient map is described below.

2.2.2 i8uss: Upload Sequential - Sequential

This function transfers a block of data from the Grinnell to the

VAX. Data is accessed in the Grinnell at sequentially increasing

addresses and is placed into sequentially increasing addresses in the

VAX. Refer to [41 for a more detailed explanation of this, and other,

primitive functions.

4.., The following is an example of uploading one line of the gradient

map from a Grinnell image memory bank to a buffer in the VAX:

VI Y

.4 %~ - -j.. -~;~-p.9 4
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/* Create Buffer */

unsigned short pixel buffer[512];

/* Address of Line 5 - Image Card 1 (101) */

up_addr - 0200052000L;

/* Upload Line 5 */

i8uss(GrinnellFD, pixelbuffer, 'p__addr, 512);

The programs designed and implemented for this project were written

in C. Refer to [9] for more information on this programming language.

2.3 LOCATING EDGE PIXELS

Lighting is a very important factor in image processing work. Its

effects vary with the shape, color, texture, and location of objects in

the work space. Because of this, we provided a mechanism to allow the

user to select the value above which a pixel is considered to be an

edge pixel. Edge pixels are located by applying this global intensity

threshold to every pixel in the gradient map. Pixels with intensity

value above the threshold are edge pixels - they are "on the edges" of

the object; and, pixels with intensity value below the threshold are

not edge pixels. Occasionally, extraneous pixels are encountered in

the gradient map. These pixels are usually the result of incorrect

lighting adjustment or are caused by some other type of noise. Refer

to Appendix A, steps 8 and 9, for more information on lighting adjust-

ment and threshold selection.

2.5 DETERMINING EDGE PIXEL COORDINATES

Because the focal point of the lens in the TV camera is behind the

lens, all objects in the work space appear in an inverted orientation
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both on the video monitor and in the Grinnell's image memory. An object

placed in the lower-left area of the work space would appear in the

upper-right area of both the monitor and the Grinnell's memory. Thus,

the coordinates of pixels in the gradient map do not correspond to the

the pixel coordinates of the image, the gradient map is processed in

reverse order. Instead of starting with the pixel in the upper-left

corner and proceeding in the normal top-down, left-to-right order, we

start with the pixel in the lower-right corner and process the map in

bottom-up, right-to-left order.

An illustration of a simplified image in gradient map form is

given in Figure 2. In this image, edge pixels are those pixels with

gradient value greater than 70. Note that, in an actual image, the

edges would be more than one pixel wide and there would be clusters of

pixels at the vertices of the edges. Although there are routines in

the VAX for thinning edges, it was not necessary to use these routines

in this application because the inaccuracies caused by wider edges

were negligible when finding corner locations.

The gradient map is uploaded to the VAX, one line at a time, under

the control of a for-loop. The for-loop index, y, is initialized to

479 and is decremented by 1 until the index is equal to -1 (480 itera-

tions). As each line is uploaded, the gradient values are temporarily

stored in a 512-word buffer, the pixel buffer. The for-loop index, y,

serves as the line number of the line currently in the buffer. Thus,

the map is uploaded in bottom-up order.

A for-loop is also used to process the gradient values in the pixel

buffer. The for-loop index, x, is initialized to 509 and is decremented
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3 3 3 3 3 3 3 3 3 5
0 0 1 1 1 1 1 1 1 .. I

0 .. 8 9 0 1 2 3 4 5 6 1
o~

126 4 3 5 16 41 68 35 4 3

127 1 2 6 13 52 132 47 17 2

128 5 4 3 58 124 8 129 65 15

129 3 21 55 121 13 5 9 130 29

130 13 46 117 17 3 11 129 69 13

131 62 119 18 6 17 123 59 28 9

132 19 66 103 14 105 39 24 8 5

133 11 25 62 99 63 16 9 6 3

134 2 1 19 48 51 32 8 4 2

479

Figure 2. Partial Gradient Map in Grinnell Image Memory
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by I until the index is equal to 2. Thus, lines from the gradient map

are processed in right-to-left order. Also, note that the values in the

two right-most, and two left-most, locations of the pixel buffer are not

processed. This was done intentionally due to noise at the boundary of

the image.

Each gradient value in the buffer, except those noted above, is

compared to the global intensity threshold. Gradient values less than

the threshold are ignored. A gradient value greater than the threshold

indicates that an edge pixel has been located. The coordinates of this

pixel are stored in the edge pixel coordinate array.

If it were necessary to store the entire image, a 480 by 508 word

matrix would be required. This would occupy 243,840 words of memory!

All that is really needed, however, is to store the (x,y) coordinates

of the edge pixels. A structured array of 1000 elements is used to

store the coordinates of edge pixels from the images of objects used

in this project. Each element of the edge pixel coordinate array

contains two values - the horizontal position of the edge pixel and

the vertical position of the edge pixel, the x, and y, components of

the edge pixel coordinate pair, respectively. Using this storage scheme

results in significant image compression.

The coordinates of an edge pixel are stored as follows: the x

5 component of the coordinate pair becomes equal to 511 minus the value

of the for-loop index, x, and the y component becomes equal to the

value of the for-loop index, y, the line number. Thus, by processing

the gradient map in reverse order and by using the for-loop indices in

this manner, the coordinates of the edge pixels from the gradient map

are reoriented so that they correspond to the physical position of the
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object in the work space.

Figure 3 illustrates the process of determining the coordinates of

edge pixels. In Figure 3(a), line 130 of the gradient map (from Figure

2) has been uploaded and stored in the pixel buffer. With an intensity

threshold value of 70, the gradient values in locations 310 and 314 of

the buffer qualify as edge pixels. In Figure 3(b), the coordinates of

these pixels are stored in the edge pixel coordinate array. Note that,

to reorient the coordinates of edge pixels in the buffer, the buffer is

processed in right-to-left order. Thus, the coordinates of the edge

pixel at location 314 were stored in the array before the coordinates

of the edge pixel at location 310. This figure also shows the contents

of the coordinate array after the entire gradient map has been uploaded

a' and processed.

Vo



15

x

x-

-4

'

-4)

cn 4J

0 U

L" -n C-4 C ICI' W W r

-n M m Cw Qn nC*C4 -4-4-C-4-4 -4I-4-4-4-

-0 -4 -. 4

0 (0
a) 0) - 4

4-h I- Li o , o - r , m

E-- -, TIl 0 m~-4C o -'.0 m Omr--O'm

:3 $4 Cq -4C4 - C1- 1
0 E-4

a) CD 0

00 -4)-4 - $4 m0)

04)

I-

p4* C ~ -4 -

.. . . . ..0
-4%



TWW W 7

16

.1*

*4

Chapter III

FEATURE EXTRACTION

The shape of objects recognized by the vision algorithms designed

for this project was intentionally restricted. The reason for doing

this was to facilitate the initial implementation of computer vision

in the Robotics Laboratory. The feature extraction algorithm was

specifically designed to determine the location and orientation of

either a rectangular block or a cube. Hereinafter, the term "block"

is used to refer to either a rectangular block or a cube.

Restricting the shape of objects to be recognized reduces the

number of relevant features that must be determined. Because we are

working with blocks, we need to extract only two features from an

image of the work space. These are the location and the orientation

of the block. The location of a block can be determined by locating

its four corners. The orientation of this block can be determined

from the relationship that exists between the lengths of any two

perpendicular edges between any three corners.

This chapter describes the procedures that were designed and

implemented to compute the location and orientation of a block in

the work space. The effect of planar projective mapping is discussed

~as is the algorithm that was designed to compensate for its effects.

Figure 4 provides a high-level flowchart of the feature extraction

a ith algorithm.
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S Determine pixel coordinates

of four corners

SConvert pixel coordinates to 1

~work space coordinates

Adjust coordinates to compensate
for planar projective mapping

SCompute centroid

_ionP

Determine orientation

eCompute roll angle

*Send centroid and roll angle
from VX gto DUAL

Figure 4. High-level Flowchart of Feature Extraction Algorithm
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3.1 THE CORNER FINDING ALGORITHM

The basic assumption made in this algorithm is that, regardless of

the orientation of an object in the work space, the first edge pixel

encountered represents a corner of the object and the last edge pixel

encountered also represents a corner. Thus, the first and last pair of

coordinates in the edge pixel coordinate array represent two of the four

corners of the object in the work space.

Figure 5 illustrates the corner labeling convention used in this

project. In Figure 5(a), the inverted orientation of a block is shown

as it would look in the Grinnell's image memory. Figure 5(b) shows

the reoriented pixel coordinates of the four corners of this block.

The goal of the corner finding algorithm is to determine the pixel

coordinates of the four corners of a block. A detailed description of

this algorithm is given below. Refer to Figures 5(a) and 5(b) for

corner locations.

Step 1: From the edge pixel coordinate array, select the first

and last coordinate pair as the coordinates for C1 and

C3, respectively.

Step 2: Search the edge pixel coordinate array for the coordinate

pair with the maximum x component. Select this coordinate

•4 pair as the coordinates for C2.

*At this point, the coordinates of Cl, C2, and C3 have been found.

Now, we know that the object in the image is either a rectangular block

or a cube; therefore, the edge between Cl and C2 should be perpendicular

to the edge between C2 and C3. However, in actual practice, this was

simply not the case!

In an actual image, there are clusters of edge pixels around the

-Ilk
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Figure 5. Corner Labeling Convention
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corners of an object. From the cluster of edge pixels around C1, we

arbitrarily let the coordinates of the first edge pixel be the coordi-

nates of Cl; and, from the cluster around C3, we arbitrarily let the

coordinates of the last edge pixel be the coordinates of C3. From the

cluster of edge pixels around C2, we arbitrarily selected the coordi-

nates of the edge pixel with the maximum x component as the coordinates

of C2. Thus, the arbitrary selection of these three points is the

reason the edge between Cl and C2 is not perpendicular to the edge

between C2 and C3. Furthermore, the coordinates of C4 are projected,

based on the relationship of C2 to C1 and C3; and, because the coordi-

nates of C2 are inaccurate, the coordinates of C4 will be inaccurate

as well. Finally, subsequent computations will use the coordinates of

C3 and the coordinates of either C2, or C4, depending on the orientation

of the block, to determine the robot's roll angle. Should the coordi-

nates of C2 be used as selected in Step 2, the roll angle would be

adversely affected. So, the coordinates of C2 must be adjusted. A

procedure to do this is given below.

Step 3: Place the center of a 9 by 11 matrix at C2. Beginning

with the point (pc2x-5, pc2y+4), determine the coordinates

of the point in this matrix that yields the "best fit" for

a right angle between Cl and C3. Select the coordinate

pair of this point as the coordinates for C2.

Step 4: Compute the coordinates of C4 as follows:

pc4x = pc3x - (pc2x - pclx);

pc4y = pc3y - (pc2y - pcly);

3.2 LOCATION OF OBJECTS IN THE WORK SPACE

The camera's field of view on the xy plane of the work surface was

-N A &Pr
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located using the procedure in Appendix B. The horizontal length of the

work space is 22 inches and the vertical length is 21.1875 inches. To

convert image coordinates (pixels) to work space coordinates (inches),

the pixel coordinates of the four corners of a block are divided by a

scale factor equal to the number of pixels per inch along the x, and y,

axis, respectively.

3.2.1 Work Space Coordinates

The scale factor along the x axis, sx, is computed as follows:

sx = Horizontal Resolution / Horizontal Distance

= 512 pixels / 22 inches

= 23.272727 pixels per inch

The scale factor along the y axis, sy, is computed as follows:

sy = Vertical Resolution / Vertical Distance

* = 480 pixels / 21.1875 inches

= 22.654867 pixels per inch

In the equations below, the pixel coordinates of Cl, pclx and

pcly, are converted to work space coordinates, iclx and icly. Note

that this must be done for the other three corners as well.

iclx = pclx / sx;

icly = pcly / sy;

3.2.2 Planar Projective Mapping

Accurately locating an object in the work space is affected by

the use of a wide angle lens in the camera of the image processing

system. Due to the effect of planar projective mapping (i.e., mapping

a 3-dimensional object onto a 2-dimensional plane) [10], an object that

%is placed near the periphery of the work space appears to be distorted.

% %



22

Objects that are closer to the optical axis have less distortion than

objects that are farther from the optical axis. Thus, a significant

portion of the work space is affected by this mapping phenomenon.

To compensate for this effect, an algorithm was developed to adjust

the "projected" corner coordinates so that they more accurately reflect

the physical location of the object in the work space. A detailed

description of this algorithm is given below. Refer to [10] for a

more complete treatment of this rather complex problem.

In the following steps, the coordinates of a single "projected"

corner, (pcx,pcy), are used to show the effect of planar projective

mapping. Refer to Figure 6(a) for Steps 1 thru 4 and to Figure 6(b)

for Steps 5 thru 8 below.

Step 1: Compute the distance between (oax,oay,0) and (pcx,pcy,0):

dx =pcx - oax;

dy = pcy - oay;

d oa-pc = sqrt(pow(dx,2.) + pow(dy,2.));

Step 2: Compute the ratio of the legs of the large triangle:

ratio = d oa pc / oaz;

Step 3: Compute the distance between (oax,oay,h) and (cx,cy,h):

d oa c - (oaz - h) * ratio;

Step 4: Compute the distance between (cx,cy,O) and (pcx,pcy,0):

d = doapc - d oa c;

Step 5: Compute the distance between (oax,oay,O) and (pcx,oay,O):

d_pcx = oax - pcx;

Step 6: Compute adjustment for x component:

dx - (d * d_pcx) / d oa pc;

'$4.
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Figure 6: Effect of Planar Projective Mapping
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Step 7: Compute the distance between (pcx,oay,O) and (pcx,pcy,O):

d_pcy = oay - pcy;

Step 8: Compute adjustment for y component:

dy = (d * dpcy) / d oa_pc;

Step 9: Adjust the "project" work space coordinates:

cx =pcx + dx;

cy = pcy + dy;

These nine steps must be accomplished for each of the four corners

of the block.

3.2.3 Computation of Centroid

Typically, the best location for a robot to grasp an object of

uniform mass is at the center of mass, or centroid. For the objects

used in this project, the computation of the centroid is trivial. The

centroid of a block, or cube, is located at the midpoint of either

diagonal and inside the blo:k, or cube, a depth equal to one-half the

height. The equations below yield the coordinates of the centroid.

centroid x = (iclx + ic/x) 2.;

centroid_y = (icly + ic3y) / 2.;

centroid z = h / 2.;

where, iclx, icly = work space coordinates of corner 1,

ic3x, ic3y = work space coordinates of corner 3,

and h = height of block.

3.3 ORIENTATION OF OBJECTS IN THE WORK SPACE

In order to grasp an object in the work space, the robot must be

instructed to roll its gripper such that the fingers of the gripper

are parallel to the longest edges of the object. Before the roll angle
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can be computed, the orientation of the object must be determined. This

is because the roll angle computation uses the coordinates of C3 and the

coordinates of either C2, or C4, depending on the orientation.

The algorithm developed to determine the orientation (i.e., which

corners should be used in the roll angle computation) is described

below. Refer to Figure 5(b) for corner locations. Note that the first

letter of the corner coordinate names has been changed from "p" to "i"

to reflect the conversion from pixels to inches.

Step 1: Compute the length of the edge between CI and C2:

dx = iclx - ic2x;

dy = icly - ic2y;

1 cl c2 = sqrt(pow(dx,2.) + pow(dy,2.));

- Step 2: Compute the length of the edge between C2 and C3:

dx = ic2x - ic3x;

dy = ic2y - ic3y;

1_c2_c3 = sqrt(pow(dx,2.) + pow(dy,2.));

Step 3: If 1_clc2 is less than 1_c2_c3, then use C2 and C3 to

compute the roll angle.

Step 4: If 1 cl c2 is greater than 1_c2_c3, then use C4 and C3 to

compute the roll angle.

Step 5: If I cl c2 is equal to 1 c2 c3, then the object is a

cube. Use C2 and C3 to compute the roll angle.

3.3.1 Computation of Roll Angle

The standard convention for the sign of an angle measured in a

clockwise direction is negative; and, the sign of an angle measured in

a counterclockwise direction is positive. However, for the robot's

S°
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gripper to roll in the proper direction relative to the orientation of

the object in the work space, this sign convention must be reversed.

0'. Thus, clockwise angles will have a positive sign and counterclockwise

angles will have a negative sign.

The roll angle of the robot's gripper is computed as follows:

Step 1: If 1_clc2 is less than, or equal to, 1_c2_c3, then

dy = ic2y - ic3y;

dx = ic2x - ic3x;

theta = - atan(dy/dx);

Step 2: If 1_clc2 is greater than 1_c2_c3, then

dy = ic4y - ic3y;

dx = ic4x - ic3x;

theta = - atan(dy/dx);

Step 3: Special case: When 1_clc2 is equal to 1 c2_c3, the

0. object is a cube. If theta is greater than 45 degrees,
0-.

some "roll time" can be saved by having the robot grasp

the cube from the other direction. In this case, theta

is complemented as follows:

theta = 90 + theta;

Step 4: Convert theta from radians to degrees as follows:

theta = theta * (I80/pi);

The image processing system is now ready to send the location and

orientation information to the DUAL so that one of the robot arms may

be selected to grasp and manipulate the block.

..
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Chapter IV

GRASPING AND MANIPULATING THE OBJECT

Having determined the location (centroid) and orientation (roll

angle) of the block, the image processing system has nearly completed

its task as sufficient data is now available to enable the robot to

grasp and manipulate the block. First, however, the robot must be

placed at a location close enough to the work space so that it can

reach the block; then, the coordinate system of the robot must be

synchronized with the coordinate system of the work space. That is,

the robot must be "told" where it has been placed; otherwise, it does

not "know" where it is in respect to the origin of the work space,

and, the robot will not be able to grasp the block.

At this point, a program running in the DUAL will accept the

location and orientation data from the VAX. Then, using commands from

Koutsourelis' robot arm command language, this program will instruct

the robot to fetch the block.

4.1 ROBOT INITIALIZATION

To enable the arm to reach as much of the work space as possible,

the home position of the robot's gripper was chosen as (0,10.5,0) in

the work space coordinate system. Initialization routines in the robot

arm command language assume the gripper has been placed at (5,0,0) in

the robot coordinate system. Therefore, the origin of the robot's
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coordinate system is located at (-5,10.5,0) relative to the origin of

the work space (0,0,0). Thus, whenever the robot is instructed to move

, to a point relative to the origin of the work space, the x component of

the location is increased by 5 inches and the y component is increased

by 10.5 inches. Synchronization of the robot's coordinate system with

the work space coordinate system is thus achieved. Whenever the robot

is instructed to move relative to its own coordinate system, it is not

necessary to adjust the coordinates as the arm moves to the (x,v,z)

location relative to its origin of (0,0,0).

4.2 COMMUNICATION BETWEEN THE VAX AND THE DUAL

Communication of data from the VAX to the DUAL is accomplished as

a simple port-to-port transfer of data. Ports for both computers are

located on the patch panel in the Robotics Laboratory. Prior to using

this vision system, the ports must be physically connected by using an

RS-232 serial data cable with DB-25 connectors on each end. Also, the

baud rate for the DUAL port must be reset to 9600. This port is used

to send data to a printer and the baud rate is usually set to 600.

Detailed instructions for connecting the VAX to the DUAL can be found

in Appendix A.

The program running in the DUAL accepts location and orientation

!] i, data from the VAX by issuing an fscanf(vaxport, ...), from C, or a

eivfreadln(vaxport, ...), from PASCAL. Of course, the "file" assigned to

the port must have been opened prior to making the I/0 request. After

issuing the fscanf, or readln, the UNIX I/0 handler will wait until the

+I I+request has been satisfied (i.e., when the VAX writes data to the port)

before resuming execution of the program. Communication from the DUAL

V.
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to the VAX is performed in a similar manner.

4.3 GRASPING THE OBJECT

After receiving the location of the centroid and the roll angle,

the program running in the DUAL sends a series of "moveto" commands [5]

to the robot arm. These commands cause the arm to grasp and manipulate

the object. A typical sequence of arm movements during the process of

grasping a block is given below.

Move 1: Move 3 inches above the (x,y) coordinate of the centroid

4... with a roll angle of theta degrees and open the gripper.

Move 2: Move down to the z coordinate of the centroid.

Move 3: Close the gripper.

Move 4: Lift the block 3 inches above the work space.

Move 5: Move the block to an arbitrary location.

Move 6: Lower the block to the surface of the table and open the

gripper.

Move 7: Return to the home position and wait until instructed to

fetch another block.

If the block is placed in the work space such that the robot arm

cannot reach the centroid of the block, the program controlling the

robot sends an appropriate error message to the user's terminal and

instructs the robot arm to return to the home position and wait until

instructed to fetch another block.

Wi
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Chapter V

SUMMARY AND CONCLUSIONS

N,' The major objective of this project was to interface the image

processing system (i.e., camera/monitor/Grinnell/VAX) to the robot arm

system (i.e., MICROBOT/Mitsubishi/DUAL). The goal was to demonstrate

the ability to use computer vision to locate and manipulate a simple

object in the robot's work space.

To achieve this goal, numerous procedures and algorithms were

designed and implemented. A procedure was developed to determine the

location of the camera's field of view (i.e., the work space) on the

robot's work surface. A data transfer algorithm was implemented to

upload a gradient image from the Grinnell to the VAX. The corner

finding algorithm was used to locate the four corners of a block in

the work space. An algorithm was also developed to compensate for the

distortion resulting from planar projective mapping. Additionally, an

algorithm to determine the orientation of a block in the robot's work

space was implemented. This was required in order to determine which

corners to use in computing the roll angle at which the robot's gripper

must be placed to grasp the block. Finally, a procedure was implementedII to enable the transfer of location and orientation data from the VAX to

the DUAL.

The time required from when the camera grabs the image to when
N,'

" the robot arm grasps the block is approximately 23 seconds due to the

pAL
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I/O overhead between the Grinnell and the VAX. Thus, a vision system

such as this would not find acceptance in industrial applications. For

academic purposes, however, the excessive I/O time provides the student

with an opportunity to experience, firsthand, the effect of slow data

transfer on a computer vision system. It underscores the need for, and

importance of, high-speed communication between a vision processor and

its host computer, especially for robots operating in an environment

where they must analyze changing scenes in real time. The communication

and computational requirements of computer vision place a tremendous

demand on an image processing system. There have been estimates made

that processor speeds on the order of I to 100 billion operations per

second will be required to solve some of the current problems in image

processing [111.

5.1 SUGGESTIONS FOR FUTURE RESEARCH

Now that the goal of interfacing the image processing system to

the robot arm system has finally been demonstrated, additional research

projects related to computer vision could be undertaken. Some ideas

for future research related to the use of computer vision with multiple,

coordinated robot arms are given below.

5.1.1 Noise Suppression

In its present form, the corner finding algorithm is extremely

fragile in that any noise in the image will cause the algorithm to

fail (i.e., the coordinates of the corners will be incorrect). To make

this a more robust, fault-tolerant algorithm, additional steps should be

added to ignore isolated pixels and to suppress other noise in the

image.
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5.1.2 Multiple Object Recognition

The corner finding algorithm was designed and implemented to locate

the four corners of a single object, either a rectangular block or a

N cube, in the robot's work space. It would be very desirable to extend

the capability of this algorithm so that it could identify more than

one object at a time. With more than one object in the work space, the

user s applications programs would encounter several new and challenging

problems (e.g., interpreting a scene to determine the interrelationships

among multiple objects so as to prevent colliding with one object while

attempting to grasp another).

5.1.3 Stereo Imaging

In this project, the robot can "see" only the xy plane of the work

space. The height of an object in the work space is input to the vision

algorithms from the keyboard. A second camera aimed at the z axis could

be used to determine the height of an object, or objects, in the work

space. Also, objects that may appear to be a particular shape when

viewed from the perspective of the overhead camera may turn out to be

an entirely different shape when viewed from the perspective of the

camera along the z axis. Hence, objects could be identified much more

accurately with stereo images.

5.1.4 Chain Coding

Objects used in this project were very simple, geometrically

symmetrical objects of uniform mass. Identifying and locating more

complex shapes would, indeed, make this a more powerful vision system.

Implementation of chain coding in the host computer would allow the

vision system to accomodate complex, or irregularly shaped objects.

p .q
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Appendix A

USER'S GUIDE

This guide was written with the assumption the user is familiar

with the location, and general configuration of the various devices

that comprise the image processing system and the robot arm system.

To have a robot grasp a block in the work space, the following steps

should be accomplished.

1. Turn on the robot to be used.

2. Place the robot at the desired location outside the perimeter

of the work space.

3. Use the Teach Control Box to place the gripper at (5,0,0)

with the gripper closed and just barely touching the work

space. The gripper should be parallel to the base of the

robot arm.

4. At the patch panel, disconnect the cable from the port

labeled ttyd2. This cable is for the printer (/dev/lp)

connected to the DUAL.

5. Connect one end of the DUAL/VAX cable to the port labeled

ttyd2 and connect the other end to the port labeled VAX

(Direct). The latter is actually port ttylO on the VAX;

and, this port DOES NOT go through the USF Dataswitch.

6. Turn on the video monitor.

7. Turn on the Terak monitor.
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8. Turn on the lights around the work surface and adjust the

intensity until very little glare is visible on the video

monitor.

9. Log on to the VAX (i.e., vax2 or unix) and execute the program

findobject by entering the following command:

/usr/robotics/wingate/programs/findobject nnn

where nnn is an intensity threshold value between 0 and 255.

Experimental results have shown that a threshold value in the

range of 40 - 70 yields the best edges.

10. Log on to the DUAL and set the baud rate of ttyd2 to 9600

by entering the following command:

stty 9600 ) /dev/ttyd2 (or, stty 9600 ) /dev/lp)

11. Execute the program getobject by entering the following

command:

/a/wingate/getobject

* 12. When prompted to do so, press the "mode" button on the

robot's Teach Control Box.

13. Place a block in the work space.

14. When prompted to do so, enter the height of the block placed

in the work space.

15. The robot will pick up the block and set it down outside the

4 work space. To repeat this operation, respond 'y' to the

prompt on the DUAL terminal. To exit, go to step 17.

16. Place a block in the work space and press 'return' on the

DUAL terminal. Steps 14 thru 16 may be repeated as many

times as is desired.

17. Respond nW to the prompt on the DUAL terminal. This will
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terminate program findobject in the VAX and program getobject

in the DUAL.

18. Reset the baud rate of ttyd2 to 600 by entering the following

command:

stty 600 ) /dev/ttyd2 (or, stty 600 ) /dev/lp)

19. Log off the DUAL terminal.

20. Disconnect the DUAL/VAX cable and plug the gree end of the

printer cable back into the port labeled ttyd2.

21. Log off the VAX terminal.

22. Turn off the Terak monitor.

23. Turn off the video monitor.

24. Turn off the lights around the work surface.

25. Turn off the robot.
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Appendix B

DETERMINING THE CAMERA'S FIELD OF VIEW

To grasp an object, the robots must be placed relative to the xy

axes of the work space. Before the robots can be placed, the location

of the work space must be determined. Determining the location of the

work space is analogous to determining the location of the camera's

field of view. It is important to note that whenever the camera's

position is changed the location of the work space is changed as well!

To determine, or redetermine, the location of the camera's field

of view, the following procedure should be used. Refer to Figure 7(a)

for block placement in the work space and Figure 7(b) for corresponding

positions on the Terak monitor (i.e., a block placed near position 1 in

the work space will appear near position 1 on the Terak monitor).

1. If applicable, remove the tape, or other material, used to

mark the boundary of the old work space.

2. Log on to the VAX (i.e., vax2 or unix).

3. Change directories by entering the following command:

cd usr/robotics/wingate/programs

4. Perform steps 6 thru 8 in the User's Guide at Appendix A.

5. Place a block near location 0 in the work space and run the

program view by entering the command:

view nnn

where nnn is an intensity threshold value between 0 and 255.
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Experimental results have shown that a threshold value in the

range of 40 - 70 yields the best edges. Observe the Terak

monitor and, if necessary, adjust the threshold value or the

position/intensity of the lights, or both, and rerun the

program. Repeat this step until you are satisfied with the

quality of the edges, then go to the next step.

6. Place a corner of the block near position 1 in the work space,

rerun the program, and observe the Terak monitor. The goal

is to repeatedly move the block, run the program, and observe

the monitor until the corner of the block is just barely

visible near position I of the Terak monitor. Barely visible

means just that - if more than 2 - 3 pixels are visible, the

block should be moved again. This step requires a lot of

patience!

7. When you are satisfied that you have located the boundary of

the camera's field of view at this position, place a piece of

tape, or some other marker, at this location.

8. Repeat steps 6 and 7 for positions 2 thru 8 of the work space

observing the corresponding positions on the Terak monitor

each time.

9. After all eight positions have been marked, place a strip of

tape on the surface of the table such that it just barely

touches the outside of the markers placed at positions 1 and

2. Repeat this step, using the appropriate positions, to form

the other three sides of the work space. Trim any excess tape

to form neat corners. The work space is inside this rectangle.

10. When this paper was written, the length of the x axis was 22
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inches and the length of the y axis was 21.1875 inches. If the

new length of the x axis is less than 21.75 inches or greater

than 22.25 inches, or, if the new length of the y axis is less

than 20.9375 inches or greater than 21.4375 inches, then the

variables for the lengths of the axes in the findobject-series

of programs should be updated. Variables hd, and vd, for the

horizontal distance and vertical distance, respectively, should

be changed to reflect the new values. The programs should then

be recompiled and relinked.
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