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I. INTRODUCTION

Several fast aerodynamic prediction codes for missiles were written in
the last decade. These codes were intended for aiding missile designers in
obtaining quick engineering estimates for the aerodynamic coefficients and the
dynamic stability of their particular configurations.

These fast codes are based on 1) basic and simplified theorems, 2) exper-
imental data which are algebraically or numerically fitted, and 3) some
empirical formulae based on observations and some personal experience. Metho-
oolog~y of these codes is based on missile component build-up with adjustments

for component interference (interaction) effects. These codes were required
to be fast, usually using less than 60 CPU seconds on a typical mini-computer
(such as a VAX-11/780) for each flight condition. They originally were meant
to give escimates for the basic aerodynamic cGefficients, in particular:
Co. CN, CM, CMC, CNo over a range of Mach numbers and angles of attack.

Now It is required that these codes yield more accurate predictions, to
provide all the aerodynamic coefficierts, and to cover a larger variety of
missile configurations. It is also necessary to examine the application of
such missile codes to gun-launched projectiles, both for spin- and fin-
stabilized configurations. For this application the L/D ratio is usually
smaller than those of missiles.

At present, due to more sophisticated projectile and missile appli-
cations, there is a desire to develop such codes to provide more accurate
predictions, rather than merely a rough tool to yield engineering estimates.
To be useful in that sense, the following accuracy guidelines for the basic
five coefficients, should be targeted.

CD within + 5%

CNM, CM within + 15%

C.- and (CM + CM) within + 25%'4 -

These demands of accuracy are more relaxed than the accuracy achieved in
actual firing tests in the ranges as provided by Rogers.' This relaxation is
intentionally allowed because codes cover a wide variety of body configur-
ations and different speed regimes where different methods may be used and 4
extrapolation of experimental data may be allowed. Rogersi estimates the
accuracy of the free-flight measurements to be as follows:

I-
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Ly

CO within + 1%

CN within + 5%

CH within t 2%

(Cmq + C m within + 15%

q &-

This required accuracy of the codes has not been achieved for the present
application as will be discussed in section IV for the results. However, for
more traditional configurations in the low supersonic speed regime (Mach num-
ber 1.S to 2.5), the results are usually more accurate and can fall within
these targeted accuracy guide lines.

It is the purpose of this work to gauge the results of the two fast codes
based on the results obtained through an application to the hybrid missile-
projectile configuration of the Copperhead. The Copperhead projectile is a
laser guided, gun-launched projectile with two sets of spring-out fins. The
geometry will be discussed in detail in the next section.

The two codes examined are the Naval Surface Weapons Center Aerodynamic
Prediction (NSWCAP) Code 2 and the Air Force Missile DATCOM Code. 3 The former
code was developed during the 70's and provided a good tool for design config-
uration •tudies. The latter code is a more recent code which is built to make
use of all the methodologies of the former code, with modifications and im-
provements. The code was built to reflect updated theories, include more
recent and accurate experimental data, add more options for practical missile
applications (such as non-axisymmetric bodies, effects of inlets and rozket
motor thrust), and reconstruct the code into a more modular form.

Several studies were made by different researchers with regard to the
capabilities of several existing fast prediction codes. Some of these codes
have narrow capabilities in terms of applicable configurations, flight speed,
estimating specific coefticients only, amoig other restrictions. Reference 4
compares the capabilities and results obtained using MISSILE-2 and DEMON-
Series codes. Reference 5 list, and compares some of the methods in ten
different codes, among them are the NSWCAP and Missile DATCOM codes. Refer-
ence 6 evaluates the NSWCAP and MISSILE-2 codes and refers to several other
codes. Reference 7 evaluates methods used for component build-up that were
later used in the Missile DATCOM code. Reference 8 is a discriptlon of the
hSqCAP code, its capabilities, and its analytical techniques as viewed by its
authors. Reference 9 is a description of Missile DATCOM coae with regard to
its different methods, as viewed by its principal authors.

,..-

It is not the purpose of this work to survey or compare such variety of
codes but rather to apply two particular codes, which are of more general
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nature and which are of interest to the Army, to a particular hybrid pro-
Jectile-missile configuration. The objective is to assess the accuracy of

these two codes as applied to this configuration. A second objective is to
identify areas of needed development in both codes for possible futureimprovements.

11., GEOMETRY OF THE COPPERHEAD PROJECTILE

The Copperhead projectile, Figure 1, has a total length of 54 inchesI . (1371.6 mm) and a diameter of 6.09 inches (155 amm). It has a spherical nose
cap and a conical section of semi-vertex angle of 12.50 connecting the nose
and the body sections. There is an obturator ring at the end of the body.I The base of the projectile is solid with no holes in it.

The projectile is laser guided with two sets of spring-out fins. The
rear fins (tail) spring out shortly after the projectile leaves the gun
tube. The projectile travels in this configuration, usually called the launch
configuration, unguided and with a speed decreasing from Mach number of 1.8 to
about 0.95.

The front set of fins (wings) springs out in the subsonic Mach range from
0.95 - 0.80, and the rear control fins (tail) are then activated to guide the
projectile to its target. The projectile is said to be in its maneuvering
configuration at this Mach range with both wing and tail fin sets deployed.

The rear fin geomEtry is shown in Figure 2. The fin is swept back 20°
and is tapered in thickness from the root to the tip section. The cross-
section near the root is of diamond shape with leading and trailing edge
rounding. The fins are controlled through stems, with 0.2 inches (5.0I8 mm)
clearance between the body and the fit, root. The pitching panels, fins number
2 and 4 of Figure 3, are located .75 inches (19.05 mm) ahead of the yaw fins,
fins number 1 and 3

The front fins (wings) are similar to the tall fins except for two dif-
ferences. First, the semi-span length is 7.149 inches (181.6 mm), compared to
5.974 inches (147.2 imm) for the tail fins. Second, there is no noticeable
clearance between the fin root section and the projectile body surface, since
these fins are fixed and are not used to guide the projectile.

Both sets of fins have slightly different shapes of slots In the projec-
tile body where they are housed before deployment. Both sets of fins have
tip notches for the releasing mechanisms to hold the fins before they are
sprunt, out from their housing locations. Geometry of both sets of fins is
listek in Table (1).

III. APPLICATION OF THE TWO CODES

Both codes were applied for sea level conditions with a Reynolds number
of 6.18 X 106 per Mach number per foot. For M - 1.8. the Reynolds number
is 11 X 106 per foot.

3
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Both codes were applied for both launch and maneuvering configurations in
the range of Mach number 0.3 4 M < 1.8. Some modifications in the fin geo-
mmetry had to be made to suit the input capability of each code. For example,
the fin swept tip chord had to be made horizontal and the semi-span was ad-
justed to account for that. Also, the tail fin body gaps were not considered,
and the tail fins were assumed to extend continuously to the root section.
Also, the details of the obturator were ignored and the obturator was modeled
as if it was a small "bump" on the body, with a certain height as is usually
the case for simulating a "rotating band".

The zero lift case was always computed in addition to the small angle of
attack case (a - 2°).

IV. RESULTS AND COMPARISONS

Free-flight data are availabla in Reference 10, while wind tunnel results
are obtained from Reference 11.

1. LAUNCH CONFIGURATION

First, four flight conditions were chosen from Reference 10 and both
codes were run at Mach number and angle of attack of (1.77, 2.90), (1.47,
1.80), (1.20, 1.1') and (0.81, 0.9*). The results for CO. CM , CL and XCp

are considered reasonable. The results of (CMq + CM.) as obtained by NSWCAP

is largely inaccurate especially for M - 0.8 . For subsonic speeds, the
NSWCAP code does not include CM., therefore the value of (CMq + CM.) is not

properly calculated in that speed regime. In fact, for the case of (M - 0.81,
a - 0.9') the range result showed an unstable flight condition based on pitch
damping, while the code predicts a stable condition. Range data are compared
to the computed results in Table (2).

Second, the two codes were applied in the Mach range of 0.3 to 1.8 and at
zero angle of attack. The 'results for CD is shown in Figure 4. Both codes

underpredict the wind tunnel and range data. This may be expected due to lack
of consideration of the effects of the fin slots of the projectile body, in
both codes. Also body-fin clearance (gap) effects which should be applied to
the tail fins are not considered by either code. In addition, the DATCOM code
does not include the obturator effect, which Is usually modeled as a rotating
band. The computed results of both codes agree better with the experimental
data in the supersonic regime (K > 1.2). they worsen in the transonic regime
(M- 0.8 to 1.2) and they deteriorate further at subsonic speeds (M < .8).

Reference 12 was first to report the effects of fin slots on the normal
and axial forces of the Copperhead. Wind Tunnel tests were made on a full- 4
scale projectile at both subsonic (M - 0.5) and supersonic (M - 1.5) speeds.

References 13-16 have also reported the effects of body slots. Such
information should be used in the future for modeling in both codes. Also,

4



Reference 15 suggests a modification to account for the fin-body gap (clear-
ance) effects.

Figure 5 shows the slope of the normal force, CN , as it varies with

the Mach number. The two codes gave close values to each other but they both
considerably overpredicted the range results in the transonic regime between
Mach number 0.8 and 1.2. It is surprising that the wind tunnel results are
also significantly higher than those of the free flight range tests. The
normal force predictions of the codes can be improved if the fin gap effect
has been accounted for and if an average roll orientation angle is considered.

Figure 6 shows the slope of the pitching moment about the C.G.
Consistent with the overprediction of CN . both codes overpredict the pitching

moment slope. The predictions are twice or three times larger than free-
flight data. The DATCOM code is closer to the experimental data than the
NSWCAP, due to better prediction of the location of the center of pressure.
The same dilemma of the wind tunnel data being considerably higher than the
range data is also observed.

Figure 7 shows the DATCOM results for the XC location to be more

accurate then those of NSWCAP. Compared to free-flight data of Reference 10,
the DATCOM results are more accurate, but still overpredict XC by about 0.4
cali bers. P

Figure 8 shows the NSWCAP predictions for the pitch damping coefficient.
The DATCOM code, on the other hand, does not compute this derivative. The
trend shown agrees with the range results only in the supersonic Mach range
down to M a 1.2 . The numerical values are about 67% larger than those
measured in rhe free-flight range. It is suggested that the unsteady pitch
damping coefficient, CM., is largely in error possibly due to fin flutter or

to unsteady flow effects in and out of the body slots and arcund fin-body gaps
which are not considered in the code. Howeve". for transonic and subsonic
speeds, the code fails to predict the trend as well as the values. The lack
of including CM. for those speed regimes is a possible reason for such
failure.

2. MA4NEUVERING CONFIGURATION

With the wing fins deployed, the projectile decelerates from Mach 0.95
down to Mach 0.3. Computations were made, however, for this B-W-T configur-
ation for the Mach range of 1.8 to 0.3.

Figure 9 shows the total drag coefficient for this configuration in com-
parison to the launch configuration (B-T). The increase in drag is due to wing 4

fin drag less the reduction in drag due to the interference of the wing fins
on the tail fins. The DATCOM code shows smaller increase than that of the
NSWCAP code, due to vortex tracking corrections included in DATCOM, while the
larger effect as computed by the NSWCAP, is due to the lack of consideration
of wing-tail interference effects. It should be pointed out that a recent

5
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nonlinear vortex tracking procedure has been developed' 7 and proved to give
* more accurate predictions.

Figure (1Oa) shows the normal force slope, where the increase caused by
the wing fin lift is smaller for the DATCOM code than the increase predicted
by the NSWCAP code. The cause for this is the reduction in lift of the tail
fin due to the trailing vortex of the wing, as accounted for In the DATCOM
code. Figure (lOb) shows the change in normal force slope as predicted by
DATCOM Code, due to the deployment of the wing fins. Three Mach numbers .95,
.9 and .8 were chosen for the projectile speed at deployment.

Figure (Ila) shows the pitching moment slope for a range of Mach num-
bers. For the B-W-T configuration, the wing normal force pushes the center a,
pressure forward towards the nose, thus causing the pitching moment about the
C.G. to be smaller. Thus the projectile Is less stable. Figure (11b) dis-
plays a decrease in the dynamic stability of the projectile due to the reduc-
tion in pitching moment slope from -25. to -5. The location of the center of
pressure, X C, is shown in Figure (12a) to shift towards the C.G. and away

from the projectile base. Figure (12b) shows the sudden shift in the location
of the due to wing deployment.

p
The dynamic stability for pitch disturbance remains almost unchanged for

the B-W-T configuration (compared to the B-T) in the supersonic regime as pre-
dicted by the NSWCAP code and shown in Figure 13. The DATCOM code, on the
other hand, does not compute this lerivative. The trend shown agrees with the
range results only in the supersonic Mach range down to M a 1.2. The
numerical values are about 67% larger than those measured in the free-flight
range. It is proposed that the unsteady pitch damping coefficient, CM , is

largely in error possibly due to fin flutter or to unsteady flow effects in
and out of the body slots and around fin-body gaps which are not considered in
the code. However, for transonic and subsonic speeds, the code fails to
predict the trend as well as the values. The lack of including C for
those speed regimes seems to be the reason for such failure.

Figure 14 shows the longitudlal stability chart for small a's and

moderate deflection angles, 6, at Mach number 0.5. It is shown that the
NSWCAP code overpredicts both CM and CN for all cases, more than the

DATCOM code does, For the same c, the discrepancy increases with increase
in 6, Similar results are also show'n in Figure 15 for Mach number 0.95. It
is noticed that the discrepancy increased for this transonic speed as was no-
ticed earlier in Figures 5 and 6 for CN and CM . The DATCOM code shows

a a
better results than the NSWCAP, especially for large 6 due to the Inclusion
of the equivalent angle of attack approach of Reference ly,

The roll damping coefficient was computed for both configurations only by
the NSWCAP code since the DATCOM code does not presently have this capabi-
lity. The results for B-T configuration are shown in Table 3, where reason-
able agreement with the wind tunnel results can be observed especially when
excluding the transonic speed range. However, the results become extremely
large for the B-W-T configuration, and is attributed to lack oa consideration
of wing-tail interference effects in that code,

(6
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oe vV. AREAS OF NEEDED DEVELOPMENT

In Table 4, a list is given for areas of needed development in both

codes. This list was compiled through the application to the Copperhead pro-jectile case as well as to other cases. The order in which they are listed

does not reflect the order of importance, because the latter depends on theobjectives of each user of the codes.

VI. CONCLUSIONS

Through the application of the two codes-NSWCAP and Missile DATCOM-to.the
C, >rhead projectile geometry, the following conclusions have been drawn.

1I. The DATCOM code generally gave slightly better results, compared with

experiment, than those of the NSWCAP.

2. Both codes badly estimated the slopes of the normal force and
pitching moment coefficients due to fin slot and fin gap effects which are not
Included in either code.

3. The effects of the deflection angles of the control surfaces are no,
explicitly computed in either code. Both codes failed to provide this infor-
mation which is essential to guided projectile configurations.

4. The dynamic derivatives of the NSWCAP code are not accurate for this
configuration. Furthermore, they are not calculated in the present version of
the DATCOM code.

5. Both codes gave poor estimates for all aerodynamic coefficients in

both the subsonic (M < .8) and transonic (0.8 < M < 1.2) speed regimes.

6. The DATCOM code, being developed more recently, is written in a
modular form allowing ease of modification and checking. The NSWCAP, being a
pioneer code, lacks this feature.

Other areas of needed development in both codes were identified and listed in
Table 4 for future development. ihese codes serve an important function and
should te developed to better meet user's needs.

7i 1
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TABLE I. Copperhead Wing and Tail Fin Geometry.

Wing Fin Dimensions

Semi-Span (exposed) (in) 7.149 (181.58 ram)
Chord (root and tip, theoretical 3.051 (77.49 rnm)

parallel to body (in)
Area (single panel, one surface) 20.309 (1.31 x 104 inm2 )

Sweep Angle (degrees), baseline 20
Root chord thickness ratio 0.0743
Tip chord thickness ratio 0.0197
Leading edge location of root chord (in) 32.32 (820.93 mam)

Tail Fin

Semi-span (exposed) (in) 5.974 (151.74 mm)
Chord (root and tip, theoretical) 3.051 (77.49 mm)

parallel to body (in)
Area (single panel exposed) (in 2) 16.891 (1.09 x 10 ram 2 )
Sweep angle (degrees), baseline 20
Root chord thickness ratio 0.0743
Tip chord thickness ratio 0.0196
Leading edge location of root chord (in)

Fins 1,3 48.640 (1235.47 mn)
Fins 2,4 47.992 (1218.99 amn)

TABLE 2. Comparison of Code Results with Measured Data

Launch Configuration (B-T)

CD CM CM XCP q
Mach Number, Predictign 'CG. (Cal- CM.)
Angle of Attack Method ad Rad Base)

Rad Rad Sec/Rad

Range .740 -0.06 5.51 3.69 -99
M - 1.77, Test Results*

a- 2.9* NSWC Code .654 -2.930 7.253 3.30 -210.12

DATCOM Code .698 -1.77 6.915 3.454 ---4t

Range .760 -0.88 5.07 3.53 -200

M - 1.47, Test Results* _ _

a 1.80 NSWC Code .671 -9.606 8.445 2.56 -228.9

DATCOM Code .733 -6.648 8.073 2.89 t

". ... Continued
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Continued

Range .803 -10.52 6.96 2.24 -132

M - 1.20. Test Results*

S1.10 NSWC Code .663 -22.14 11.33 1.74 -248.6

DATCOM Code .746 -18.53 11.35 2.08 .... t

Range .398 -10.56 0.31 2.43 15 4
M - 0.81 Test Results*

a - 0.9, NSWC Code .296 -22.78 11.88 1.78 -252.8

DATCOM Code .320 -18.14 10.33 1.95 ---- "

* R. McCoy, March 1981, Reference 10.
t DATCOM Code does not compute this coefficient.

TABLE 3. NSWCAP Code Results for Roll Damping Cofficlent

Ct [RAD/SEC-"
P

Launch Configuration (B-T)

Mach Number 0.5 0.8 0.9 0.95 1.2 1.5 1.8

NSWCAP Code -14.07 -15.84 -19.06 -20.16 -20.65 -14.6 -11.32

Wind Tunnel _[0i.50 -11 -11.4 -12 -16 -11.1 -9.8

Maneuvering Configuration (B-W-T)
6 a 0%, a - 0'

Mach Nlumber 0.5 0.8 0.9 0.95 1.2 1.5 1.8

NSWCAP Code -34.97 -38.74 -45.0 -47.0 -50.92 -38.5 -30.49

Wind Tunnel -20 -22 -23.5 -24.2 -28 -25.2 -23

77.
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TABLE 4. Capability Comparison and Areas of Needed Development

NSWCAP Code Missile DATCOM Code

I. Fins
la) Only 2 or 4 fin panels only. in la) Only 2 or 4 fin penels*,

cruciform "Plus" position only arbitrary roll angle
b) No roll angle aerodynamics ib) Arbitrary roll orientation

2) Limited to two sets of fins 2) Limited to two sets of fins**
3) No body fin-slot effects 3) No body fin-slot effects
4) No fin-body gap effects 4 No fin-body gap effects
5) No fin side-sweep angle effects 5 No fin side-sweep angle

effects
6) No Interdigitated wing and tail 6) No interdigitated wing and

fins tall fins
7) No aft-body fins 7) No aft-body fins
B) No wing-tail interference 8) Includes a linear vortex

correction for down-wash
effects

9) No wrap-around fins 9) No-wrap around fins
10) Limited fir, cross-section 10) Limited fin cross-section

geometry options geometry options
11) Gives erroneous results for 11) Gives much worse results

perfect delta fin (or close to for perfect delta fin (or
perfect delta planform close-to-perfect delta

pl anform
12) Only tip and root fin cross- 12) Multi fin cross-section

sections be specified eofetries can be specified
?Max. of 10)

13) Assumes parallel line of sources 13) Does not assume parallel
for fin geometry line of sources for fin

geometry
14) Does not include lifting surface 14) Includes the equivelant

non-linearity at high angle of angle of attack for non-
attack linearity at high a

Il, Body Aerodynamics I.
Ia) Computes base pressure drag 1a) Computes base pressure dragU~ ... UVUS UVI. UU1 I:but Moo not -lll .it %.U UA

or drag forces I V
b) Base pressure drag deteriorates b) Base pressure drag is not

at large a (>10°) function of a
(owefpredl cted)

*Arbitrary number of fins capability is now being added to the newer version
of the code.

.P :+ **A third set of fins is being added in the newer version of the code.
***P,esently bein, added in the newer version of the code.

10 ~Continued4
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Continued

2) No surface roughness or grooving 2) Includes surface roughness,
effects but no grooving effects

3) Includes rotating band contri- 3) Does not include rotating
bution to CD band effect on CD

4) Calculates high Mach number cases 4) Does not accept any nose
for blunt nose bluntness at high super-

sonic speed s (M - 4-5)
5) Yields fair blunt-nose hypersonic 5) Yields very poor blunt-nose

aerodynamics (M > 3) hypersonic aerodynamics ( I
(M > 3)

6) Yields poor subsonic and tran- 6) Yields fair subsonic and
sonic blunt nose aerodynamics transonic blunt nose
(M < 1.2) aerodynamics

7) No forebody vortex shedding 7) No forebody vortex shedding
effects effects

8) No intermediate body vortex 8) No intermediate body vortex
shedding effects shedding effects

111. Vehicle (Body and Fins) Dynamics

1) Conmputes roll damping CL and 1) Does not compute any dynamic

pitch damping (CM + C derivatives"*
coefficients q

2) CM is not computed for subsonic

or transonic speeds (M 4 1.2)
(set to zero)

3) (CM + CM& ) is not adjusted to In-

clude effects of deflection angle
of fins (i.e. it remains constant
with 6)

4) C. is fairly computed for one set
p

of fins only. However, it is
largely in error for wing-tail

Srncombination, (no wing-tail inter-
ference effects)

IV. Fin Control

1) Only two fins allowed pure pitching 1) Independe.it four-fin
No simultaneous yawing or combined deflection angles
yawing/pitching

2) No expressions or derivatives for 2) No expressions or deriva-
control surface efftctiveness; tives for control surface
(CM6 CM ) effectiveness (C,,, •M

Continued
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Cont inued

C3) (Cntf +lCM) is not corrected for 6 3) (CM +* CM) is not

(remains constant with variations calculated
in 6)

4) CN,( and CM) for any case with fin 4) No difficulty In computing

deflection is calculated as Cu/aa, CN and CM for

and is void when u - 0.0 configurations with control
surface deflection

V. General Features

1) Takes about 40 CPU seconds for a 1) Faster by a factor of 1.5
single Mach number and angle of (approximately)
attack case (on a VAX-11/780)

2) Accepts a single angle of attack, 2) Accepts several Mach numbers
and performs a loop for- up to 20 and performs a loop for many
Mach numbers angles of attack (minimum of

"two) for each Mach nuinber
3) Has no difficulty with redundant 3) Gives erroneous results If

input data redundant (but consistant)
input data is given

4) Uses input in feet only (combined 4) Can use either In, ft, cm or
with some input in calibers) meter units

... if
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LIST OF SYMBOLS

CD - Total drag coefficient, drag frrce/O.5p.U-Sref

CA . Roll moment coefficient, rolling moment/q.SrefLref - positive if

clockwise (viewed from rear looking forward)

C& • / 3C /ap
p

CM - Pitching monent coefficient, pitching moment/q.SrefLref (positive
when nose up)

CM - 3CM/Be (I/Rad) yp

a 
ICn . Yawl ng moment coefficient, yawing moment/q.S refL ref (Positive

when nose to right)

CN - Normal force coefficient, normal force/q.Sref

C N = aCNl/ca (i/Rad)

Cy = Side force coefficient

D . Body diameter
I

Dref = Body reference diameter

L . Body length

Lref - Reference length, usually the body diameter

M_ = Free stream Mach nunber

P - Spin (roll) rate (radian/sec)

4 * Pitching motion rate (radian/sec)

q, - Free stream dynamic pressure, O.5pU..

Sref - Reference area, wn ref /4

t . Time
x Location of center of pressure, measured from the C.Go towards the

XCP base of the projectile

= Angle of attack, positive when producing a positive normal force,

degrees

T Total angle of attack, including side slip angle, degrees

33..



LIST OF SYMBOLS (Continued)

'4/at

6 Fin deflection angle - for fin 1,2,3,4: positive when producing a
negative (counter clock-wise rolling moment (DATCOM notation)

- for fins 2,4: positive when trailing edge is
down (NSWCAP notation)

-Roll angle of the body cross- section

OF Fin orientation angle, measured clock-wise from the vertical
line of the •T plane
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