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INPUT IMPEDANCE OF AN INFINITE LINEAR SCANNED ARRAY OF FLAT RECTANGULAR
STRIPS INSIDE A DIELECTRIC LOADED PARALLEL PLATE WAVEGUIDE

I. INTRODUCTION

In most phased array studies the main objective has been to achieve
a wide angle impedance match, preferably with a wide bandwidth. Different
configurations and techniques have bteen proposed for this purpose. For
instance, Magill and Wheeler [1], and also Munk with his co-workers [2]
proposed different dielectric loading for achieving wide-angle impedance
match. The geometry of the problem can play an important role in satisfy-
ing some requirements. For example, a parallel plate waveguide can be
Lsed advantageously to study the H-plane and E-plane scans independ-
ently. With these general objectives of wide-angle and wideband H-plane
performance, this paper is aimed at deriving an analytical expresstn for
the input impedance of an infinite linear array of flat rectangular probes
{monopoles) inside a dielectric loaded parallel plate wavegulde using some
simplifying assumptions, so that theoretical results can predict the cor-~
responding experimental data reasonably. The parallel plate waveguide is
short circuited at a distance z= -L from the array of probes [Fig. 11].
The mounopoies are flat rectangular strips fed from coaxial lines. The
most difficult point of this kind of analysis is in the determination of
the current distribution along the prcbes. This can ve done, in prin-
ciple, by solving an integral equation, which involves a ted:ocus task of
numerical computations. In order to alleviate this difficulty, it has
become common to assume a sinusoidal current distribution along a current

element [2]-[7). This, one of the simplifying assumptions used here, is
Manusciipt approved May 27, 1986.




an approximation and, therefore, any theoretical analysis based on this
can only approximately ‘redict the corresponding experimental results.
Another simplifying assumption consists of neglecting the effect of the
gap at the junction betwaen the probe and 1its coaxial feed line [4,5].
One of the results of this study is, therefore, to find how much agreement
between these approximate theoretical results ana thae corresponding
experimental data is achieved. This will be shown mainly tarough
graphical display.

With the above objectives and assumptions in mind, a mathematical
formulation of the problem which includes 3everal dielectric sheets, {2
presented in section II. In section III, a sinuscidal current distribu-
tion i< introduced and then the unknown complex amslitudes of the figid
components are determined. A msthod to improve the accuracr of this cur-
rent distribution by using the stationary property of tne input impedance
is also discussed. A theoretical expression for uhie input impedance of
the infinite 1linear array of the probes is derived in section IV. In
gsection V, various special cases, including the .ur:<spoundénce between the
infinite 1linear array and its equivalent simulators, are discussed.
Various theoretical and experimental results obtained from 4different
sources are compared in section VI. This section also includes the com~
parison belween theoretical and experimertal results of the input impe-
dence of an infinite linear array of flat rectangular probes inside a
jarallel plate waveguide 1loaded with and without dielestric sheets.
Experiments were performed using several waveguide simulators. However,
results involving only one simulator are presented for economy of space.
It was found that the theory based on the simplifying assumptiocns

mentioned earlier can predict the general or qualitative behavior of input
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% impedance or VSWR. It hasg also teen shown that a dielectric 3heet with a
%gi relatively low dielectric constant can improve the bandwidth and match of
;;3 the array. Munk and nis coworkers [2] had also shown that a sheet of low
;{% dielectric constant can improve scanning characteristics. The relative
[ X% s
§§§ position between the diclectric slab and the array chosen in ref. [2] is,

however, different from that conslde.ed here. The frequenecv range used
for this investigation was abcut 3.0 GHz to 4.0 GHz, over which the

experimental data show a good impedance match. This freguency range

in. cates a bandwidth of 28% with respect to the center frequency 3.5 GHz
tiaving VSWR <2. The corresponding theoretical resuit shows somewhat lower
bandwiach.
II. MATHEMATICAL FCRMULATION OF THE PROBLEM

The geometry of the problem 1is shown in fif. 1. It consists of a
parallel plate waveguide of width b and short circuited at a distance z=
-L from an infini{te linear array of y-directed flat rectangular probes (or
monopocle} located in the plane z=0. In the positive 2z direction, the

waveguide extends to infinity. The probes are separated a distance a in

%f the x-direction. All elements (i.e., protes) of the array are excited

i%% with equal amplitude. The phase shift per unit length is a constant h,

';t’ which is a function of frequency and scan angle. In tils formulation, it

is assumed that tiie array 1is inside a dielectric slab with relative

dielectric constant e,. which again is sandwiched between two other slabs

having relative dielectric constants ¢, and €3 respectively. These

£ Jieuectric slabs are incluued for hettar matching. The primary reason for

§§§ shoosing flat roctangular probe, instead of circular, is for achieving

332 vettor bandwidth., Since the width of the probe is very small compared to
o

the wavelength in the medium in whicht the probe is embedded, the current




in the probe can be assumed "o he confined to the y-direction (along the
length of the probe) only. The electromagnetic field satisfies the

following time harmonic Maxwell's equations.
Y x E= ~juu H (1)

Py ¥ = Juc s E o+ y d {2)
where ;o is the unit vector in the y-direction. The relatlive dielectric
constant €4 is a piecewise constant having cdifferent values, in general,
in different regions of the z-dimension. The assumed harmonic time
dependence exp(jwt) is suppressed for convenience. The effeat of the gap
at the juncticn between a probe and its coaxial feed is neglected.

The x-dependent part of the current on the prode array can be
represented by an infinite number of delta functions in the following way.

) e BN g (o ~na) (2a)

n:-»@
where the factor exp(-jhnz) represents the uniform phase shift in the x~
direction. Since the expression (2a) is a periodic function, it can also

be represented by a Fourler-series of the following forum.

® ® 2m, , . .,
2 e-‘jhnas(x-x'ma) - la_ z e"J (h&-—;--)(}."’x )

nE=—e ==

(2b)

The right-hand side of (2a) implies that the x-dependence nf the fields

will also have a sirilar infinite series representation containing a

factor expl~j(h+2nn/aYxj. It may be noted that this expression is also




equivalent to a Floquet mode [7] or an unnormalized mode function

associated with a one dimensionai grating [8].

Since the electric current is in the y-direction, in absence of anv
dielectric slab the electromagnetic field could have been expressed ia
terms of a single component Ay of a vector potential K [4]. However,
this approach is not valid in the present situation where cielectric slabs
are present. Therefore, a more general method, namely. modal analysis [8]
appropriate for a linear infinite array will be adopted nere. In this
method, let us introduce two transverse scalar mode functions, ¢nm(x,y)
and wnm(x,y). The werd trinsverse means x,y-dimensions (which is perpen-

dicular to the propagation direction z). These functions are defined by

A TR
.

1/2
B - -g ? --—-—‘l » “:'!K = M—y-
@ (Xo¥) (ab ) g e *"xn” sin ( = ) (3a)
tnm
1/2
« [ 2-8om . ~JK % any
Vo Xo¥) (-——-—-—ab ) g~ e cos ( b) (3b)
tnm
where

1 when m=0
om { 0 when m#0 } (3e)
Kxn = h + 2nw/a (3d)

2 ?.1/2

K nm [k wn + (m7/d) ] (3e)

Note thact the functions given by (3a) and (3b) have the same x-dependence

i

siown in (2b). Furthermore, ¢nm(X.y) and g. wnm(x’y' vanish at y = o and
2

v = b, Define two vector functicns by

gy Bt T O gy ey T e o T TV a3 £
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@nm(x,y) = - Vt¢nm(x,y) (ka)

->
wnm(x,y) = -Vtwnm(x.y) (4b)
~ 3 ~ a ~ ~ .
where Vt xo % + yo 3y ° xo and y° are unit vectors in the respective

coordinate directions. Note that 3nm(x,y) and ?nm(x.y) have the follow-

ing properties.

> R 2 »
Vt Vt . onm(x,y) = 'Ktnm onm(x,y) (5a)

-

<>
v, - [¢nm(y,x) x zo] =0 (5b)

%

tnm nm(x’y) (6a)

&>
vtvt . Vnm(x,y) = =K

-

v, [wnm(x,y) X zo] =0 (6b)

-~

where Zo is the unit vector in the z-direction.

> >

ffonm(x,y) « oX. o(x,y) dxdy = § .6 . (Ta)

[} (x,y) « %", .{x,y) dxdy = &_ .8 (70)
nm "’ n‘m’ "’ nn’"mm’

ff3 (x,y) - ; x ¥%, ,(x y)éxdy = 0 (7e)
nm "’ 0 n‘m"’

The asterisk signs in (7a) to (7¢) indicate respective ccmplex con-
Jjugates. The symbols Gnn’ and Gmm’ represent Kronecker delta functions

with the usual meaning. The region of integration in (Ta) to (7c¢) is the




unit cell, i.¢., ~= s x S and 0 Sy Sb. With these orthonormal vector

2

mode functions @nm(x,y,) and @nm(x.y,), the complete eleztromagnetic

field can be represented in the following manner [8]:

E () =] 2 v NEINCRIID) z VE)E (x,y)x;° (8a)
na-= mneo n==® M=o

B(Ry = 7§ Z I’ (z)z b () e ] zzi(z)inm(x,y) (8b)
n= - m=o n= =® m=o

jmeoeiEz(;) = 7 z I (z)K (x,y) (8e)

Ne =® M=o tnm®nm

Jup H (F) = § Z v (z)K
0z n= ~» Qao

IR CRY) (8a)

The subseripts t and z denote transverse (i.e., X,y) and z components of
the respective field vectors. The functions V (z) and I (z; are the

modal voltage and current amplitudes for TM waves. Similarly, JTE( )

and Izi(z) belong to the TE~type waves. Adopting the procedures similar
to that in ref. [8], it can be shown that these modal voltage and current

amplitudes obey the following transmission line differential equations.

4 ™ ™ ™
= " * Tnfing Inp(? (9a)
d _™ » +>
® ° *
= 1.2 = rinm o nm( z) + [f Vo * 9%, (x,¥)d (r)dxdy (9b)




where

AENWILEINE T IR R LU AR DL RSB LIN B

A4 B et ASill + WS NS T RS TR e T

—— TE TE TE _TE \
dz vnm(Z) quolnm(Z) B I‘inm inm nm(Z) (10a)
= TEGy ap, yTELTE () [[x_¥* (x.y)0, (F)dxd (10b)
dz “nm'Z tnm inm' inm'Z s Xo ¥am XY y r/dxdy
2 2 1/2
Tnm " [Ktnm Koei] (11a)
K, = o Y ¥, (11b)
i =1,2,3and 4 (11¢)
TE TE
2,7 = 1/, = juu /T
inm inm o inm (11d)
= modal impedance for TE-waves
™ ™
zinm 1/Yinm - rinm/Jweoei

» I(y) "
I, - -gl- 5(2) = J_(y)6(2)

for |x| s —g— and o Sy sd

modai impedance for TM-waves

(11e)

(12)

W = width of che flat rectangular probe in the x direction

d = effective length of the probe.



Note that the probe is infinitely thin in the z dimension. The integra-
tions in (9b) and 10b) are over the surface of the prcobe as defined in
(12). The propagation constant rinm given by (11a) is different in
different regions and when it is real, the corresponding waves are

evanescent. For propagating modes (such as main beam and grating lobes)
TE ™

rinm is purely imaginary. For convenience, let us introduce Unm and Unm
defined respectively by
TE _ L I(y)
v jwuoifxo ¥ (x,y) =L dxdy (13a)
and
F o S (3 oo 1)
:"J‘g - - . * ~
. U ™~ Toors, %o @ #optny) S axay (13b)
Qﬁ 002 3
X

o

™ ™ TE,_ TE -
In order to solve for Vnm(z). Inm(z). Vnm(z,. and Inm(z), it is con

venient to obtain a second order differential equation for each V:g(z) and

TE
nm

-
¥V "(z). This can be dme by eliminating 122(2) and Izg(z) from (9a),

(9b) and {10a), (10b). The results are (using (12), (13a) and (13b)

2
d 2y . ™
( d22 rinm ) Vnm(z) Unmé(z) (14a)
and
d2 2 TE TE
( -, °) v i(z) = -~ U 78(2) (1tb)
d22 inm nm nm

a PP PP PRI T T2 L P WY vy wrroen
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These two equations must be sclved subject to the fellowing boundary
conditions.

&% the scurce (l.e.- at z=g)

(zao*) . V (z-o ) (15a)

L v;‘::u-w - S ThizaeT) tokdl (15b)

(z-o*) = V (z-o ) (16a)

gz (z~o ) - "%E- ¥ (z-o-) - -Ugg (16b)

Since there is no otie~ sources, (z). TM’* Vzi(z) and Izg(z) are

T8
i - -
continucus at 2 22, 6 and 65 + 63‘ Inm(z) and {

{z) can be deter-
mined from V; (z) and V (z), raspectively, via Egs. (9a) and (10a). 1In
B, ™ N LTS
Is) & -
addition,¥ m‘ z) ang Vq (z) must vanish at z L. For z>68+o3, &nm(z)
and V iz) behave like outgoing waves.
The sclutions of (1la) and {1Lb) subject tc the boundary conditions

discussed above can now be expressed in the following manner.

10




™
Vnm(z) - {&

™
BZHm[exp(

™ =
Cnm[exp( I

{r1nm(3+L } ~L§z5~2

r

Ine

MLV R W BT - t=d g -

2

z )= R;;r(nm)‘exp{-PZHm(2£2+z)}],~£2$z50

z) Reff(n,m)~exp{-r (2ss-z)i, 08258

2nm 2nm

3

(17a)

(179)

{17¢)

11 . _ iox
2)* By 4(n,m) exp| Fanm( 23528 z2)}], 55256 +6

{174
™ - . .
Dnmexp( raan) zaos+53 {17e)
A Mg nn {r, (z+L)} ~LSz2s~¢., (18a)
nm nm 2
BIE [exp(T 2)-nb (n,m)-exp|- T (2% +2) }] ~§, 5250
1nm 2n eff 2 ' %
{18b)
| { s
an[exp( Tonm?) R;?r(n,m)~exp{*P2nm(253-z),}, 5225€
{18e)

TE
cnm[exp( r

TE

3nm

DnmeXp(-rhan)

11

z)+R%.u(n,m)-exp{-r3nm(2as+263~z)}]. 63$z$63+63

{18d)

(18e)




b 1
el,t.(n.m) [R 2\n.m)+a*nl~2r (L-% )}] [1+R1,2(n,m)-exp{~2r1nm(L-£2};

{19a)
11
(n m)=(¢ & om -€2r1nm)/(e1r2nm*ezr1nm) (19b)
R (n m)=[R}(n,m)+R} m)-exp(=2r,_ & ]/[1+R 5(m,m) R y(nom)e
eff & 2’3 ] 3,1‘ a9 3nm 3 2 >
+ exp {ozfgnm53}j (19¢}
1 I
Ry 3(n.m) = {-2 3nm™3 rany) (g1 3om * €37z0m) (194d)
11 - - 3 .
83 y(n,m) = (¢3rnnm r3nm,/(e3runm + anm) (1Se)
UTM
™ nm 11
Bipm -5?;; [1+ ef°(n m)e exp(~2P 8 )]/fl Reer(n,m)-ﬁeff(n,m)
raxp {2y (2,48)}] (197)

STM 5 BTH T

_*11 . - 11 . o \
oam = Binm' L1 Rapp(nom) exp( 2r2nm22)]/[1+ﬂefr(n,m) exp( ‘rznmaa)] {13g)

™ ™ . . fy.
am ™ Bing €2  1nm exp(- “Tonn? 2)[1 R (n,m))]/[ £ 2nm°03h{r1nm‘L 22}]
(19h)
™
c - m. - - 611' L4 {"
nm =8, exp{ GS(Pan P3nm)} 1+ err(“' m) ][ Ry y{n,m) cexp( 2r3nm53)]
(191)

12




ng [1+R3,u(n,m)]-exn {(s s 6

A

™
3.m 3nm]1§'cnm (193)

§
é?,(n,mﬁ {ﬁ%!zin.m) + exp i-zrinm{b-zzji}/[1+R$’2(n,m)-

* 8Xp {~cr1 \L'ﬁz)}] (20a)

N
H]

3
o]
:
3
a?
-
e ]

]
~3

inm

e

) (20b)

{wop
.expl~ ~.3nm53)} {20c)
i .
{ - - r 3 ) \
Ry 5{n,m) (r2nm r3nm}/[,2nm * Tang) {20d}
: b b
! - T
ALY (P3nm ‘Qnm’/(r3nm * Tung? (20e)
TE
TE ] .
- nm -i H
Siam * e (1ot poexp(-2r, s 11/[14RL (momyerd 0,00
z}
2nm
wexpl-ar, (%,+s }}] (20£)

[ g -rE -~ . .
S;:m“ Byl 1™ éfa(n,m) exp(-2r,, xa)]!{

13

9‘-!- Mile - 2 1
1eRE. (n,m) exp( “‘anés)j
(20g)




TE _ ,IET -l .
Ag = By 2nm exp(-Fanzz){1+Reff(n,m)]/[r1nmcosh{r1nm(b~x2)}]
(20n)
TE, TE . f < (0 _n F1amt! U | coxo(~
C .= By exp| 53(‘2nm 13nm)} [1+Reff(n,m)]/11+R3’u(n,m) exp( 2r3nm63)]
(201i)
o 1 . T8
Dnm [1+33,H<n’m)]°exp{[6s+63)(r3nm runm)} Cnm (203)

III. PROBE CURRENT DISTRIBUTION

J-“M L .

The amplitude factors U:g and U:z given by {13a) and (13b) which

P

-
iy

depend on the current distribution on the probe still remain unknown. 1In

-
-

reality, it is difficult to caiculate the exact current distribution in an
environment shown in Fig., 1. Therefore, various apprcximate methods are
sought, For example, one may assume a %nown current distributicn {3,4,
5,6] which has been found to be valid in some situations. For a probe
this current distribution is taken tc be sin[K(d-y)l, where d is the
length of the probe, y is the coordinate along which the current varies
and K is tne free space wave number of the surrounding medium. If b is
the height of the waveguide in the y-direction, it has alsc been shown
experimentally [5,6] that theoretical results based on the assumption of
this sinusoidal current are in good agreement with those of experimental
for ds+5h and ds$A/4, wiere A=2n/K. On the other hand, if the probe is at
the interface between two media with propagation constants K; and X5, then
the effective ourrent distribution may be taken [9] as sin[K (d~y)], where

All these results are, of course, derived for an antenna in an otherwise

, assuming that the permeability is the same for both media.

free gpace.

o
&




Another approach to derive an approximate form of current distribu-
tion follows from the stationary property of the input inpedance of the
probe with respect to the current distribution. It is shown [4,10] that
the input impedance of a probe can be cast into a variational form with
respect to the variation of current distribution in the probe. Then the
current distribution may be expressed in terms of two or more arbitrary
parameters which are computed by requiring that the partial derivative of
the input impedance with respect to each of these unknown parameters
vanishes. When the expression for the input impedance is too complex,
this procedure becomes tedious.

Most of the theoretical models deal with idealized situations. For
example, for a prcbe, one may assume a current distribution either as a
known function or a trial function having a few arbitrary parameters.
Even an integral equation for the current may be set up using an idealized
probe geometry. However, in actual practice, the probe geometry compris-
ing the coaxial feed system differs from the idealized theoretical config-
uration. As a result, the actual ocurrent may depart substantialiy from
the theoretically computed one. Therefore, in order to minimize the com-
plexity in theoretical computation, the following approach will be chosen
here.

The current distribution on the probe will be assumed to be known

and has the following form (see Eq. 12}.

= r -y
I(y) IosinLKe(d ¥)] (21)

osysd, |x|sw/2
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where Ke is the effective propagation constant. If the medium in which

the probe is embedded has a relative dielectric¢ constant then K€ =

€59
w v HoEon = KOJ“EZ . On the other hand, if the probe lies at the

interface bhetween two media with relative dielectric constants e, and ¢.,

i J

then Ke = hov (ei+€j)/2 .

B
Using now (21), the amplitude factors U:; and ng can be calculated

from Eqs. (13a) and (i12b). The results are:

K, 2-8 K S F
TE . . 2¢ ed omy1/2¢ xn n em -
U = -2 e K sin ( 3 X} - ) 7 ) = (22a)
tnm X
em
21 X K , S F
U:;: - - 3‘0 e rzn 2'81!‘12(—;9')(-2-5)1/2*(2“/1)) *n em (22b)
WELES m tnm K2
em
. 2; .2
F, = 1 -sin (mwd/2b)/sin (Ked/z) (23a)
s = sin (xon/z)/(xon/z) (23b)
S22 2
em (m=/b) Ky (23¢)

IV. INPUT IMPEDANCE CF THE INFINITE LINEAR ARRAY OF PROBES
The input impedarice Zj, is defined [3,4] by the ratio of the complex

power radiated by the probe and the mean square input current, i.e.,
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[ 3, (x,y.zm0)ey 2¥t)as/[F]3(0)}?] . (24)
s o

£

¥

£
v
1
3
Yo

oy

The 1integration is over the probe surface inside the unit cell

ik gt

containing the origin. Jy(y) is given by (12) and (21). The electric
field Et’x,y,z-o) can be calculated from (82) usinz (172). {(18c), (19g),
(20g), (22a), and (22b). Carrying cut the indicatea cperations in (24),

the input impedance Zin can be expressed as

2

2 2
JZKK o o (2-5_)fk F S
. ooe 2 om’ { “xn emn) .|
Z, p— tan (Ked/Z) y (1-: )( = )T

T
n=-® M=o 2nm

2 s . /by2 IFonS 11

o e mr Yem n

- e ———— {* <> ma—— 9 'y

oK o ar (Kedldl ) (K ) ranm - Tnm (2%a)
o 2 n=® f=x0 tnm ¥

where

1

[1+pl  (n.m)eexo(~ 2L tnm)eexn(-
L [1+rL. . (n,m) exp( 2r2nm63)][1 Repp(nom) exp( 2r2nm22)]

- T =T (Zio)
[1+Rerf(n.m) Reff(n.m)-exp{-ZPan(Ez*Ss]}]
[1\»8n (n,m)-exp(-2r, & )][1-&11 (n,m)-exp(-2r, 2.)]
T11= eff '’ 2nm s eff ™’ 2nm 2 (24c)
nm Coe 1 "1 ; _
[lvHeff(n,m)-Rerr(n,m) exp| 2r2nm(22+63]}]
Zo -y uy/€, . (2ud)
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Phased arrays are generally designed in such a way that oaly the
lowest order mode or the main beam (for which n=oc=m in (242)) pro-
pagates. However, due to dielectric loading the first few higher order
modes (i.e., grating lobes, such as when n=xi, m=0; n=0, m=!, etc.) may
become propszating waves inside a dielectric layer. Even in this case,

rinm is real for large values of n and m (which represent evanescent
11

medes).” Trerefore, for large values of n and m, both T%m and Tnm tend to
approach unity.
Frem Egs. (3d), “3e), (11a), and 23a) to (23¢), one finds that Kyn

Ktnm anad T behave like n as n tends to infinity Jor a fixed m. On the
inm
other hand, for a finite value of ¥, Sn is on the order of 1/n as n+e,
3 9, bud % .
¥hen n remains fixed and m beccmes very large Etnm and Finm tend to m
2

Fem and gém approacﬁ unity and m®, respectively, as m assuwes a large
value. From this observation, it follows that the first term (double
seriea) of (zia) converges like 1/n3and 1/m7as n «nd m tena to infinity,
respectively. The second term of (2U4a), however, converges like 1/n3 and
1/m3 as n and m approach infinity, respectively. On the otherhand, if
(Kon) is very small, the impedance series converges slowly with respect
Lo n.

V. SPECIAL CASES

A. 1IN ABSENCE OF ANY DIELECTRIC SLAB

In this case € ™8, = €3 =€y = 1

r, =TI =V 2, 2,1=1,2,3,4
inm nm Ktnm Kc

1 11

Reff(n,m) Rﬁff(n.m) o
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Rl in,m) = R“

{ = -’ -
<Pt esp (M) exp| er, (L 12)}

l .M cexp (=
TS =T =1 -exp ( 2anL)

2
JZK K o @ (2-§_ ) K F S
g 2 2
0oQ e 2 om’ [ Xl em n
Z s tan (K as2) I ] (% ( = ) [1-exp( 2anL)]
na=< Mm=Q nm tnm K
. em
-jZ K « = F S
. 2 2
w20 tan(k a/2) ¥ T (E)r (-EBB)[1-exp(~2r_ L)] . (25)
ab e K rmt L, nm
n==o M=o tnm K

em

In this case, Ke may be taken as K0 = g uoeo . In the absence of any

short cireuit at z = ~L, one may take e >‘nm”

= 0. This is jJustified by
taking the limit L + o, with the assumption that Rernm>c for all n and
m. For propagating modes, this assumptionr implies inclusicn of slight
loss in the medium.

B. PROBE AT THE CENTER OF THE BROAD FACE OF A RECTANGULAR WAVEGUIDE

In Fig. 1, a 1s taken to ba the distanne betyeen the ccnslcutive
probes of a linear array in the x-dimension. This 1s also shown in Fig.
2a for convenience. The width of the parallel plate waz.eoguide is b in the
y-dimension. In this special case, the rectangular waveguide has dimen-
sions a and b in the X and y directions, respectively.

The center of the probe is at x=a/2. This probe at the center of a
rectangular waveguide is equivalent to a 1linear array of probes whose
adjacent elements are 180° out of phase in a parallel plate waveguide as

shown in Fig. 2b. This observation follows from image theory. Therefore,

when the uniform phase shift h associated with the probes in Fig. 1 or
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Fig. 2a, is given the value 1n/a, the problem of Fig. 1 Dbecomes

equivalent to that in a rectangular waveguide with a probe at the center,

X =

o

. As a result, the following transformations take place.

Kxn = h + 2nw/a = (2n+*1)n/a (26a)

2

Ko = (Ko ¢ (mn/0)2] <[ {20+1) 072} 2+ (mnr0) 2] (26b)

tnm

]x/z . (26¢)

r - [{(2n+1)w/a}2+(mn/a)2~K§e

inm i

It can readily be seen from (24a) to (24c) and (26a) to (26c) that
the argument of the summation with respect to n associated with the input
impedance Zin becomes then a function of (2n+1)2. If it is assumed that G

is a function of (2n+1)2, then {t can be shown easily that

5 c[(an+1)?] =2 ¥ cl(zn+)?] . (27)
nN=—o n=0

Using this information, the desired input impedance of a centrally

located rectangular probe in a rectangular waveguide is given by
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2 2
JZ KK © o (2-5 ) sK_F_S
Z, = —22= tanz(Ked/Z) ;] =—== ( n °n2 ) it

in ap n=0 m=0 2nm K K2 nm
tnm em

11
2nm Tnm *

2.2 2
jez x.° tan®(K_d/2) g (mn/b)FemSn
ab Koe >

K K2

2 n=0 m=1
tnm em

(28)

Ih (28) the relations (26a) to (26c) are to be used.

The relation (28) can further be specialized for the situation when
there is no dielectric slabs inside the rectangular waveguide, i.e., when
51-52-33- eu-1. Following the procedure described in Section V-4, we

have the desired expression obtained from (28).

3 2
jZ K o o (2-6 ) 7K F_ S
Z, = -—ggg- tanz(Kod/Z) ) o xnemn [1-exp(-2r L]
n=0 m=o nm K. _ K2
tnm em
2
Jj2Z X - - (m=x/b)F__S
- =22 tan®{k a/2) ] ——=82 ) ¢ [1-exp(-2r, L)]
n=0 m=1 Ktnmxém *
(29)
The Eq. (29) can be simplified to the following form.
2
-jZ K » o (2.6 )J/F_ S
zin - -—E%-g tanZ(Kod/Z) D) o culle [1-exp(~2rnmL)]
n=0 m=o0 nm Kem (30)

It may be noted that situations represented by Eqs. (28) and (29) or

(30) correspond to a particular scan angle for a given frequency.
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C. SOME SIMULATOR MODELS

Since it is very expensive and time consuming to build a periodic
array with a 1large number of elements for experimental testing and
measurements, use of simulator models, which are simple in structure and
contain only a few elements, has been proposed and proved to be successful
{11,12]. The principle involved in this simulation is also discussed ir
these references [11,12] and, therefore, will not be repeated here. One
of the restrictions in simulator application is that each simulator
represents only one sample of scan conditions in the actual array.
Consequently, several simulators are generally built for a study of a
given array. For example, the special case discussed in section V-3
consisting of a rectangular waveguide with a probe at the center,
represents a particular scan condition defined by h-Kosine-u/a for the
array problem depicted in Fig. 1. The H-plane scan condition for this
infinite linear array can be simulated approximately by the siwple TEy,
mode in a rectangular waveguide. The number of elements N, to he placed
in the rectangu.dr waveguide and the broad dimension a of this gu:.de
depend again on the scan angle 8, satisfying the conditicn

h = Kosine = n/a
(31a)
or sing = A/2a
If d, is the interelement spacing, then the number of 2lements required

for a given scan angle is approximately given by

A

N = a/dx = Ea;—;;aa . (31b)
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For a given scan angle, say 6=35°, the required broad dimension of the
rectangular waveguide is a=0.8717x. 1If dy is chosen as dx-0.575A, then
Nsa/dx-1.516. Thus, the approrimate number of elements is 1.5, i.e., one
element is bisected by one wall of the guide (in the x-direction) and the
other element is placed at a distance dx-2a/3 from that bisecting wall.
Since the bisected element is short circuited by the wall, it is observed
that its existence (or non-existence) has no effect. This observation
then implies that a rectangular waveguide with a probe at a distance 2a/3
from one wall, a=0.877A Dbeing the broad dimension of the guide, when
excited by the TE;, mode, simulates the scan condition (6=35°) of ar
infinite array of probes in a parallel plate waveguide. For making this
observation more instructive, the input impedance of an off-centered probe
in a rectangular waveguide is computed (see Appendix) separately and the
corresponding numerical results are compared with the appropriate situa-
tions for an infinite array probe, for which Eq. (25) has been used. The
equivalence between any other simulator and the infinite linear array in a
parallel plate waveguide for a given scan condition can be explained
similarly (9,10].
VI. DISCUSSIONS OF NUMERICAL AND EXPEKIMENTAL RESULTS

Over the pasv several decades to the present, numerous theoretical
and experimental investigations of phased arrays composed of electric
dipoles or monopoles have been made. 1In theoretical analysis a knowledge
of the current distribution along these dipoles or monopoles 1s
essential. However, it 1is not known a priori. It can be determined in
principle by solving an integral equation for the current. Once the
current distribution is determined, other parameters of interest (such as

input impedance, VSWR, radiation pattern, etc.) can be computed frcm the
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knowledge of the current. The solution of the integral squation involving
curirent is generally accomplished numerically. Since this procedure is
tedious and time consuming, one generaily assumes a sinusoidal current
distribution in thecretical analyses for simplicity. Although such an
assumption simplifies the analysis considerably, differences are expectsd
to exist between the theoretical and the corresporsing experimental
results. Nevertheless, this simplified assumption may be considered
satisfactory, provided the thecretical results can predict at least the
qualitative behavior of the input impedance and other observables of
practical interest, so that the experimental results can be better
understood. This is one of the objectives of this theoretical study. It
may bde noted that for some problems [5,6] assumption of kaown sinuscidal
current distribution produced thecretical results which were in good
agreement with those of the corresponding experimenta.

Before we proceed to make a comparison between various theoretical
and experimental results, let us digress for a moment in order to present
the interesting result to be discussed in the next section.

VI. A. CONNECTION BETWEEN CIRCULAR AND FLAT RECTANGULAR PROBE IMPEDANCE
OR VSHWR

One may choose either a circular probe or a flat rectangular
probe for a phased array composed of monopoles. A question then ariaes
whether there is a simple connection between two corresponding observables
of the same kind (such as input impedance of the probe, VSWR, etc.). This
information is particularly important when some results (theoretical or
experimental) using one kind of probe are known, then how the theoretical
or experimental, as the case may be, parameters f{or the other kind of the

probe may be chosen so that the two corresponding results should be the
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3ame. It appears that h.A. Wheeler* was also interested in this matter
and derived a relation using conformal mapping of fields in an unpublished
report. Wheeler's relation is W=iP where W is the width of an infinitely
thin flat rectangular probe and p is the radius of the circular pracbe,
other parameters of the two configurations (one with the flat rectangular
probe and the other with the circular probe) remaining the same. The
implication of this relation may be interpreted by using the following
example. Suppose there are two identical rectangular waveguides, one with
a circular probe of radius p and the other with a flat rectangular probe
of width W=4P., These probes are of the same length, excited in the same
manner and situated in an identical manner in their respective wave-
guides. Then the input impedance, VSWR, etc., of the two situations are
expected to be the same. Since Wheeler's relation is based on conformal
mapping, valid for electrostatic fields, it may not be satisfactory in the
microwave region. This observation turns out to be true. Although
Wheeler's relation is very simple, in a frequency dependent situation no
such closed form relation can be established. Therefore, one shall have
to resort to numerical computations. 1In order to obtain such a relation
let us consider a known result [4] of a circular probe, as shown in Fig.
3, at the center of the broadface of a rectangular waveguide. The wave-
guide is short circuited at a distance z= <L from the axis of the
probe. Wnhen only the fundzi:zntal TE,O mode is propagating, the input
impedance of the probe is given by [4] the following expression. It may
be recalled that in this case also the current distribution on the probe

is assumed to be known and is the same as in eq. (21).

* Tnis information was communicated to the author by Dr. W. K. Kahn.
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2zotan2(x a2y 32_tan’(K a/2) 0.0518¢ 2’

/23
Z, 0 sin“(gL) + —2 [1n 3~) + 5
absK 27K b G w
° o
+ 2L . ain(egL)~2(1 - £2)-2¢° § F (x Y0 S (32)
) em o om
8a a m=1
where K_=K_ and B-[K 2 »(w/a)zju2 F ﬁ and Z_ are defined by (23a)
T e ° * “em’ "em o ’

(23¢) and (2u4d), respectively. Ko(kemp) is the modified Bessed function
of the second kind, of order zero. In the absence of the short c¢ircuit
(i.e., L+=) the corresponding expression for the input impedance of the

probe can be shown to have the following form.

Zotana(Kodla) jZotana(Kod/z) 0a, 0-0518K 2,2
z, = . [1n(2) + ——2— (33)
abBKo ZwKob Tp T
—2(1 - B)op 2.y 2
2(1 - ) 2K m§1 on xo(xemp)/x ]

The result corresponding %o eq.(32) rfor a flat reccangular probe is given
by (30). 1In the absence of any short cirzuit the input impedance can be
obtained from (30) by letting exp(‘zrnmL) = 0. Numerical values of these
impedance expressions are obtained using the parameters, a = 6.0 cm, b =
3.4036 em, L = 2.21234 cm and », d = 1.651 cm, 1.75 em and 1.90 cm. The

radius p of the circular probe is kept fixed at 0.127 c¢cm. However, the
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widih W of the flat rectangular probe is varied from lp to Sp. The results
are shown in Fig. 3a thru lec in the form of VSWR as a function of frequen-

cy. The voltage standing wave ratic {VSWR) is computed from the relation

r 1
Z, /50 -1 Z, /80 -1
VSWR =} 1 + g.ﬁﬁL______' AR ~’ in | ! {34)
1
|z, /50+1 | 1z, /50 +1,J

It is found from these numerical results that the input impedance and VSWR
of a circular probte remaln practically unchanged when it is replaced by a
flat rectangular one, provided that W « U.882p, other parameters beiug
the szame. This relation should not be considered exact. It may c¢hange
with frequency, iength of the probe, distance L of the short circuit,
ete. These observaticns are based on the numericzl resuits shown in Fig.
3a thru U4c. However, the relation W = 4.882p appears to be adequate for
the frequency range anG other parameters considered here. Fcr the purpose
of coumparison, the VSWR corresponding tc Wheele  's relation W = Up is
alsn presented. Although Wheeler's relation is obtained by using con-
formal mapping, valid for electroatatic fields. results {(such as impe-
dance, VSWR, etc.) obtained by using his relation apprcach c¢loser to those
obtained by using the relation w = %.882p, when the frecuency is higner
and the prote length is longer.

The relationship W = 4,882p impiies that the expressions for the
input impedances of flat rectangular probes developed in this paper for
various situations can also be used f{or the corresponding cases where the
former probe is replace¢ by a circular one of radius W/4.582. It is, of

course, assumed that other parameters remain unchanged.

27




VI. B. A CIRCULAR PROBE IN AN INFINITELY LONG RECTANGULAR WAVEGUIDE
WITHOUT SHORT CIRCUIT

Before presenting our experimental and theoretical results for the
iinear array of flat rectangular monopoles in a parallel plate waveguide
or its equivalent simulator, let us first make a comparison between some
experinental and theoretical results related to Collin's [4] and Al-
Hakkak's [5] model, since their various assumptions are similar to ours.
This moael consists of a circular probe, fed from a coaxial waveguide in
an infinitely long rectangular waveguide without short circuit. The main
reasons for choosing this model here are the following:

1. The theoretical results can easily be derived from Collin's work

[4] with a minor modification. This was done by Al-Hakkak [51],
whe also performed experiments and compared with the theory.

2. The theoretical results for this model can also be obtained

approximately from our theory for a simulator using the relation
W= U882 1in eq. A~10 in view of the finding in the previous
section.

Although Chang and Kahn [6] studied a similar problem using a flat
rectangular stub inside an infinitely long rectangular waveguide without
using any coaxial feed line, their experimental and theoretical results
cannot be used here directly for comparison. This model does not have any
problem of gap at the coax junction.

The theoretical expression for the input impedance is given in eq.
(33), which is a slight modification of the result given by Collin [4].
In view of the relation discussed in szction VI-A, the numerical values of
eq. (33) for a given probe radius p can alsoc be obtained approximately

from eq. (A-10) with W = 4.882p, and the omission of the exponential
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factor in (A-10), other parameters remaining the same. For the use of eq.
(33), it should be remembered that only the fundamental TE;, mode is
propagating. In addition, the theory does not take into account the gap
(or aperture) at the junction of the probe and the coaxial connector and
assumes a known sinusoidal current distribution along the probe. A
further limitation of the thecry is the assumption that the diameter of
the probe is very small compared to the wavelength. In ref. [5], Al-
Hakkak finds also that the 1length of the probe d should be such that
d<0.6b and d<i/4, where b is the shorter dimension of the broadface of the
waveguide. Chang and Khan (6] also discussed these limitations of the
theory. It may be noted again that the sinusoidal current distribution
assumed here and in refs. [4,5] is also used by Stark [3] among others for
similar theoretical study of phased array antennas having monopole or
dipoles as elements.

Figures (5a), (5b) and (5¢) show some theoretical and experimental
values of normalized (with respect to 50Q) input impedance of circular
probes having three different diameters, but of the same length in an
infinitely long rectangular waveguide without short circuit. Although the
parameter c, the outer diameter of the coaxial line, does not enter into
the theory due to the approximation made, it does affect experimental
results. The probes are located at the center of the broadface of the
waveguide. The results show a general agreement betwcen the theory and
the experiment. The main reasons for thz existence cf difference between
the theoretical and experimental results may be attributed to the gap (or
aperture effect) arnd the assumption of a sinusoidal current distribution
along the probe. In order to observ; the effect of the gap alone, the

probe was removed from the coaxial connector in an sxperiment. It was
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then noticed that there was hardly any transmission of energy through the
gap into the waveguide (showing extremely high VSWR). This phenomenon
might have been known also to others and, perhaps, motivated them to
neglect the effect of the gap in similar theoretical works as a good

reve

approximation. Thisz may not be Jjustified since, when the gap and the
probe are present simultaneously, the field distribution at the Jjunction
is altered due to the coupling between the gap and the probe. In
addition, the combined effect of the gap and the probe diameters appears
to play a role. For example, an increase in probe diameter causes an
increase in the input impedance and thereby improves VSWR. An increase in
the probe diameter is also associated with a decrease i the resonance
frequency (at which the input impedance is real) of the system. This was
also observed by Al-Hakkak [5]. It is also observed (not presented here)
both theoretically and experimentally that an increase in probe lengih d
improves the VSWR within a limited frequency band. It may be noted also
that at frequencies above 4.22 GHz, the chosen probe length d = 1.778 cm
does not satisfy the condition d<i/4.

In spite of all these restrictions made in the theory, Al-Hakkak's
experimental results are surprisingly in good agreement with the theory.
Figure 6d shows thecretical results corresponding to the parameters used
by Al-Hakkak [5]. These are essentially Al-Hakkak's results (recomputed).
The agreement is so close that the experimental and theoretical results
are not shown separately in Fig. 5d. It may be mentioned here tnat Chang
and ¥han [6] also obtained good agreement between their theory and
experiments in which there is no gap effect. Their theory is also similar
to that of Collin's where use of known sinusoidal current distribution is

made. Note that Chang and Khan [6] apparently determined the actual
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current distribution by solving an integral equation nunierically. They
found that the actual current distribution, so determined, does not differ
much from a sinusoidal current distribution provided d<i/i.

The results of this section may be considered as precurscrs of what
can be expected of the results for the linear array of monopoles in a
parallel plate weaveguide and hence may be used for guidance. The
experimentnl results, Figs. 5a to 5S¢, were generated in our laboratory.

VI. C. INPUT IMPEDANCE OF AN INFINITE LINEAR ARRAY OF FLAT RECTANGULAR
MONOPOLES INSIDE A PARALLEL PLATE WAVEGUIDE

In this case, egs. (2%a) and A~8) are used for theoretical
computations. Equation (24a} is valid for both the presence and absence
of a dielectric slab and for all scan angles. On the other hand, eq. {(A-
8) is used for the case without any dielectric and for those scan angles
and frequencies shown in Fig. 6a. In the presence of a dielectric slab
only, the eq. (24a) is used with e1-1=ez-eu’ e3n1.3, a-2.8u-(2.5”)cm-3d1,
where 2.84°(2.54)cm is the 1longer dimension of the broadface of the
simulator waveguide, d; is the offset distance of the center of the probe
from one end of the simulator waveguide [Fig. A~1], b=1.34°(2.54)cm,
W=0.2°(2.54)em, d=0.702°*(2.54)cm, L=0,.863"(2.54)cm, 58-0.98u~(2.53)cm,
63-1.0-(2.5u)cm. All the measurements were taken using a simulator (Fig.
A~1) with 3d1=its longer dimension of the broadface. Note that a of Fig.
1 is not the same as a of Fig. A-1. In the absence of any dielectric,
eqs. (24a) and (A-8) provide identical results, subject to the condition
d1-2.84'(2.54) cm/3=distance between the consecutive probes of the array
in the parallel plate waveguide. This is, of course, expected.

Figure 6b shows the theoretical and experimental results in the
absence of any dielectric slab. Here also, the theoretical and experi-

mental results are in qualitative agreement. Similar results with a
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dielectric siab (53-1.3) are shown in Fig. 6c. The experimental results

show a tuning effz2ct in the presence of the dielectric slab. Although
this effect is nol pronounced in the theoratical result; it irdicates such
an effect qualitatively. It may be noteda that the experimental results
show better bandwidthh and mateh than the corresponding theoretical
results. Some theoretical computations (not presented here) also show
that the bandwidth zad ::iceh con be improved to some extent by decreasing
the inter-element s .w¢ing a. The easons for the :iffer~—-~c between the
theoretical and -xperimental resilts are the same as t+ .e discussed in
the prev_.ous 4. - VI.B. It sacu!l! now be apparent that discussions and
present~tion of theoretical and cxperimental results in section VI.B
provade be'ter understanding of the results of this section.
VII. CONCLUSIONS

For theor=tical analysis of probiens consisting of electric dipole
or monopole elements, it iz common practice o assume a sinusoidal current
distribution aloag sucn. current elements. 7This is doae mainly to simplify
the complexity of the problem. Althcugh such ar sssumption is inaccurate,
it can predict qualitatively expected behaviora ol various experimental
results (input impedance, VSWR, etc.). These exrectations were illus-
trated by comparing theoretical and experimental rea.;ts obtained here and
from previously published literature. It was e 2¢ the aims of the
present study to make such comparisons. The primary causes of the
difference between the theoretical and experimental results are explained.

In addition, certain experimental results show a better bandwidth
(about 28%) and match than the corresponding simplificd theoretical
results., It is also shown both theoretically and experimentally, that a

slab of low dielectric constant (such as 1.3, 1.4) prawerly placed in
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frcnt of the array, can improve the bandwidth and VSWR at wide scan
angles. Munk and his coworkers [2] had also shown that a sheet of low
dielectric constant can improve scanning characteristies. The relative
pcsition between the dielectric slab and the array chosen in ref. [2] is,
however, different from that considered here. The frequency range used
for this study is about 3.0 GHz to 4.0 GHz.

Ahother interesting result is the relation between the width W of a
flat rectangular probe and the radius p of a circular probe situated
similarly inside ¢two identical rectangular waveguides. The probe
impedances and VSWR's for these two situations are found to be the same
for all practical purpnses when W is properly related to p. The proper
relation found here is W=4.882p for a given set of waveguide parameters
and frequencies. This factor was obtained numerically representing a
correction to the electrostatic result W=lp found by Wheeler.

It may be observed from this study insofar as the simplified theory
i{s concerned, that it provides results relatively easily, and does
correctly indicate the trend of the experimental resultis.
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APPENDIX

RADIATION FROM AN OFF-CENTERED PROBE INSIDZ
A RECTANGULAR WAVEGUIDE SHORT CIRCUITED AT A DISTANCE L FROM THE PROBE

The geometry of the situation is shown in Fig. A~1. It consists of
a rectangular waveguide of dimension a and b (a2b) and short circuited at
a dis;ance z= ~L from an off-centered flat rectangular probe of length d
and width w. The axis of the y~directed probe lies at x=d; and z=o. In
the positive =z-direction, the waveguide extends ¢to infinity. For
simplicity, it is assumed that there are no dielectric slabs inside the
waveguide. The current distribution i3 the same as given by (21).
Although one can use a method similar to that presented in section 2, the
absence of any dielectric permits one tc use only a single componert of
the vector potential K. Since the current is directed along y, one {inds

K-yoAy. Then it can be shown that

E = ~juh + VVtK/(Jweouo) (A-1a)
A = VxK/uo (A-1D)
Therefore,
2. 32
E = (1/quos°)[xo + ;—5] A, (A=~2a)
y
2.2 - (A=
(v S ]Ay uody {A-2D)
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Let us construct a Greenfs function G(;,;') which satisfies the following

differential equation and boundary conditions [4].

(v +K02]G(F,;’) = §(x~x")8(y,~y")é(z)

r =(x,y,z) and r’ = (x*,y°,0) (A-3)

G = 0 at x=0,a and z=~L

(A-4)
9G/3y = o at y=o,b
G also satisfies radiation cendition at z=e,
Then
j]c For)d (y)ds (A=5)

The integration is over the surface of the probe at z=0, and Js(y) *
I(y)/W, where I(y) is giver by (21). The Green's function G(F,F') can

be expressed [U4] in the fol.uwing form

~cos(-sx]cos(-gl—)[exp{-rnmlz{}-exp{-rnm(2L+z)}]

1 /2
where Fom® [(nw/a)2+(mw/b)2~K02] o (A-6)
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In this case (see Eq. (24)) the input impedance Zin is given by

x 2
Z = ~1/2 if E, (x,¥,0) 3 (ynrass[1/2]4 ()| ] (A=T)

The field Ey can be calculated using (A-2a), (A-5) and (A-6). Then
carrying out the operation indicated in (4~7), the expression for the
input impedance of an off~cenvered flat rectangular probe in a rectangular

waveguide can ne written in the foliowing form.

Kod] 1 2
e @ Do
IZ K5 tan? ( 2’ E ) (2 Som) 1mo1n (nnd )
in =~ ab r ~ sin a
n-1 m=0 “nm km
.[1-exp{~2rnmL}] (A-8)
where
mnd Kod 12

Fom = -[sin (Esw]/sin (-5—)1 (a-9a)

S,q = Sin (ggg),(ggg) (A=9b)

- = (mﬁ/b)z ~K02 (A-9c)
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Ahen the probe is at the center of the broad dimension of the waveguide,

i.e., when dy=a/z, the expression for Zin becomes

2(0 .,
JZ K tan (Kod/Z) » o (2-5 )

Zin = - = nzo mgo — [1~exp[-2YnmL}]°
°[F1m§1n/§m]2 (A-=10)
where
Ym " {f(2n+1]w/a}2 * §m211/2 (A-11a)
§}n = sin{(2n=1}n/a}/{{2n+1)5/a} (a~11b)

dNote that the expression (A-10) is identical to the reilation (30) which
was obtained as a special case of an infinite linear array of probes
inside a parallel plate waveguide. Furthermore, when d1~af3 or d1~2 a’3,
then (A-8) bvecomes identical to (25) for some specific scan angle and
frequency as mentioned in Section V-C. is will be demonstrated via
numerical results. It may be reminded that neglect of the gap-effect and
the zssumption of known current distribution are che usual spproximations

made here.
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Fig. 1 — Linear array of flat rectangular probes in a parallel plate waveguide for H-plane scanning.
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Fig. 2a — Schematic arrangement of probes as in Fig. 1.
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Fig. 2b — Probes having adjacent phases 180° apart.
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VSWR
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THIS CURVE IS FOR A CIRCULAR
PROBE OF RADIUS p=0.127 cm
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~._ CIRCULAR
PROBE AT
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RECTANGULAR PROBE WITH

" W=4.882 x p=0.62 cm

[FROM COLLIN'S MODEL]
j
} 1.50 |—
ol L 10004t p b h
26 27 28 29 30 31 32 33 34 35 36 37 38 38 40

FREQUENCY IN GHz

Fig. 3a — Connection between circular and flat rectangular probes in a
rectangular waveguide.

a = 2362 - (2.54) cm, b = 1.34 - (2.54) cm,
L = 0.871 - (2.54) cm, p = 0.05 - (2.54) cm,
and ¢ = 0.65 - (2.54) cm.
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Fig. 3b — Connection between circular and flat rectangular probes in a

rectangular waveguide.

a = 2362 (2.54) cm, b = 1.34 - {(2.54) cm,
L = 0.871 - (2.54) cm, p = 0.05 - (2.54) cm,
and d = 0.689 - (2.54) cm.

42




VSWR

350~
3.00
2.50 b~
A\
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‘\/
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CURVE IS
FOR A CIRCULAR -
PROBE OF RADIUS
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1.00 1 L | | |

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
FREQUENCY IN GHz

Fig. 3c — Connection between circular and flat rectangular probes in
a rectangular waveguide.

a = 2362 -(2.54) cm, b = 1.34 - (2.54) cm,
L = 0.871 - (2.54) cm, p = 0.05 - (2.54) cm,
and d = 0.748 - (2.54) cm.
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Fig. 4a — Connection between circular and flat rectangular probes in a
rectangular waveguide.

a = 2.362-(2.54) cm, b = 1.34 - (2.54) cm,
L = oo, p =005 (2.54) cm,
and 4 = 0.65 - (2.54) cm.
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Fig. 4b — Connection between circular and flat rectangular probes in a
rectangular waveguide.

a = 2362 (2.54) cmn, b = 1.34 - (2.54) cm,
L = o0, p = 005-(2.54) cm,
and d = 0.689 - (2.54) cm.
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Fig. 4c — Connection between circular and flat rectanigular probes in a
rectangular waveguide.

2 = 2362 (2.54) cm, b = 1.34 - (2.54) cm,
L = o, p =005 (2.54) cm,
and 4 = 0.748 - (2.54) cm.
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Fig. Sa — Impedance of a circular probe in an infinitely long rectangular
waveguide.

a = 2.84 - (2.54) cm, b = 1.34 - (2.54) cm,
d = 0.70 - (2.54) cm, 2p = 0.049 - (2.54) cm,
and ¢ = 0.163 - (2.54) cm.
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a

Fig. b — Impedance of a circular probe in an infinitely long rectangular
waveguide.

a = 2.84 - (2.54) cm, b = 1.34 - (2.54) cm,
d = 0.70 - (2.54) cm, 2p = 0.125 - (2.54) cm,
and ¢ = 0.360 - (2.54) cm.
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Fig. 5S¢ — Impedance of a circular probe in an infinitely long rectangular
waveguide.

a = 284 -(2.54) cm, b = 1.34 - (2.54) cm,
d = 0.70 - (2.54) cm, 2p = 0.20 - (2.54) cm,
and ¢ = 0.456 - (2.54) cm.
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Fig. 5d —~ Impedance of a circular probe in an infinitely long rectangular
waveguide.

a=476cm, b =222 cm,
d=115cm, 2p = 0.23 cm,
and ¢ = 1.10 cm.
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2.8 30 32 34 3.6 33 40 42
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Fig. 6a -~ Scan angls vs Frequ:ncy [for a simulator].

a = 2.84 - (2.54) cm,
b = 1.34 - (2.54) cm,
dl = af3,
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Fig. 6b — Array impedance in S-band simulator—Offset flat probes
without dielectric sheet.
Gy =gy =g =1, a0 =284 (2.54) cm = 341,
by = 1.34-(254) cm, w = 0.2 - (2.54) cm,
! d = 0.702 - (2.54) cm, and L = 0.863 - (2.54) cm.
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Fig. 6c — Array impedance in S-band simulator—Offset fiat probe with
dielectric sheot.
g meme, =] g3 =13 g = 284-(2.54) cm =~ 34y,
by = 1.34- (2534 cm, w = 0.2 - {2,54) c¢m, 4 = 8.702 - (2.54) cm,
L = 0.863 - (2.34) cm, 5, = 0.984 - {2.54) em, 8; = 1.0 - (2.54) em
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Fig. A-1 - Offset flat rectangular proke in a rectanguiar waveguide.
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