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INPUT IMPEDANCE OF AN INFINITE LINEAR SCkNNED ARRAY OF FLAT RECTANGULAR
STRIPS INSIDE A DIELECTRIC LOADED PARALLEL PLATE WAVEGUIDE

I. INTRODUCTION

In most phased array studies the main objective has been to achieve

a wide angle impedance match, preferably with a wide bandwidth. Different

configurations and techniques have been proposed for this purpose. For

instance, Magill and Wheeler [1], and also Munk with his co-workers [2]

proposed different dielectric loading for achieving wide-angle impedance

match. The geometry of the problem can play an important role in satisfy-

ing some requirements. For example, a parallel plate waveguide can be

used advantageously to study the H-plane and E-plane scans independ-

ently. With these general objectives of wide-angle and wideband H-plane

performance, this paper is aimed at Ceriving an analytical expression for

the input impedance of an infinite linear array of flat rectangular probes

(monopoles) inside a dielectric loaded parallel plate waveguide using some

simplifying assumptions, so that theoretical results can predict the cor-

responding experimental data reasonably. The parallel plate waveguide is

short circuited at a distance z- -L from the array of probes [Fig. 1].

The monopoles arv flat rectangular strips fed from coaxial lines. The

most difficult point of this kind of analysis is in the determination of

the current distribution along the probes. This can le done, in prin-

ciple, by solving an integral equation, which involves a tedious task of

numerical computations. In order to alleviate this difficulty, it has

become common to assume a sinusoidal current distribution along a current

element [2]-[7]. This, one of the simplifying assumptions used here, is
Manuacipt approved May 27, 1986.
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an approximation and, therefore, any theoretical analysis based on this

can only approximately ..redict the corresponding experimental results.

Another simplifying assumption consists of neglecting the effect of the

gap at the junction between the probe and its coaxial feed line [4,5J.

One of the results of this study is, therefore, to find how much agreement

between these approximate theoretical results ana th• corresponding

experimental data is achieved. This will be shown mvJnly tnrough

graphical display.

With the above objectives and assumptions in mind, a matbematical

formulation of the problem which includes several dielectric sheets, is

presented in section II. In section III, a sinusoidal current distribu-

tion ic, introduced and then the unknown complex amPlitudes of the field

components are determined. A method to improve the accuracy of this our-

rent distribution by using the stationary property of tne input impedance

is also discussed. A theoretical expression for te input impedance of

the infinite linear array of the probes is deriv!d in section IV. In

section V, various special cases, including the veryzspond4nce between the

infinite linear array and its equivalent simulators, are discussed.

Various theoretical and experimental results obtained from different

sources are compared in section VI. This section also includes the com-

parison between theoretical and experimertal results of the input impe-

dance of an infinite linear array of flat rentangular probes inside a

)arallel plate waveguide loaded with and without dielectric sheets.

Experiments were performed using several waveguide simulators. However,

results involving only one simulator are presented for economy of space.

It was found that the theory based on the simplifying assumptions

mentioned earlier can predict the general or qualitative behavior of input
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impedance or VSWR. It has also been showm that a dielectric aheet with a

relatively low dielectric constant can improve the bandwidth and match of

the array. Munk and his coworkers [21 had also shown that a sheet of low

dielectric constant can improve scannin:g characteristics. The relative

position between the dielectric slab and the array chosen in ref. [21 is,

however, different from that conside.'ed here. The frequency range ueed

for this investigation was about 3.0 GHz to 4.0 GHz, over which the

experimental data show a good impedance match. This frequency range

inc cates a bandwidth of 28% with respect to the center frequency 3.5 GHz

having VSWR <2. The corresponding theoretical result shows somewhat lower

bandwlatoh.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

The geometry of the problem is shown in Fig;. 1. It consists of a

parallel plate waveguide of width b and short circuited at a distance z-

-L from an infinite linear array of y-directed flat rectangular probes (or

monopole) located in the plane z-O. In the positive z direction, the

waveguide extends to infinity. The probes are separated a distance a in

the x-direction. All elements (i.e., probes) of the array are excited

with equal amplitude. The phase shift per unit length is a constant h,

which is a function of frequency and scan angle. In this fo, mulation, it

is assumed that the array is inside a dielectric 51ab with relative

dielectric constant e2. wh•ch again is sandwiched between two other slabs

having relative dielectric constants el and e3, respectively. These

dI-ectric slabs are incluued for better matching. The primary reason for

,"oosing flat rectangular probe, instead of circular, is for achieving

better bandwidth. Since the width of the probe is very small compared to

the wavelength in the medium in which the probe is embedded, the current
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in the probe oan be assumed to he confined to the y-dlrection (along the

lenjth of the probe) only. The electromagnetic field satisfies the

following time harmonic Maxwell's equations.

V x E 0 J~o I

XH.. W 0 SoiE +y (2)

where YO is the unit vector in the y-direction. The relative dielectric

constant ei is a piecewise constant having different values, in general,

in different regions of the z-dimension. The assumed harmonic time

dependence exp(jwt) is suppressed for convenience. The effect of the gap

at the juncticn between a probe and its coaxial feed is neglected.

The x-dependent part of the current on the probe array can be

represented by an infinite number of delta functions in the following way.

-ejhua (x-x'-na) (2a)

where the factor exp(-jhna) represents the uniform phase shift in the x-

direction. Since the expression (2a) is a periodic function, it can also

be represented by a Fourier-series of the following form.

jhna 1 (h21)(x'x')
e- h (x-x'-na) e" a (2b)

The right-hand side of (2a) implies that the x-dependence of the fields

will also have a sirtlar infinite series representation containing a

factor exp[-J(h*2nw/a)x]. It may be noted that this expression is also

4
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equivalent to a Floquet mode [7] or an unnormalized mode function

associated with a one dimensional grating [8].

Since the electric current is in the y-direction, in absence of any

dielectric slab the electromagnetic field could have been expressed ia

terms of a single component A. of a vector potential A [4]. However,

this approach is not valid in the present situation where cielectric slabs

are present. Therefore, a more general method, namely- modal analysis [8]

appropriate for a linear infinite array will be adopted here. In this

method, let us introduce two transverse scalar mode functions, 0 (X,y)nm

and *m (x,y). The word tr3nsverse means x,y-dimensions (which is perpen-

dicular to the propagation direction z). These functions are defined by

S(x, ; -&e Kxn sin (3a)nm ab • Ktnm b

'Ynmo - 1/ 1- xn CS i

(XY) = 1 -JKxn cos (E) (3b)

where

6 1 wnen m-O (3c)6om ={0 when mý0

K - h + 2nv/a (3d)

Ktnm = [K xn2 + (mi/b) 2 ]'2 (3e)

Note that the functions given by (3a) and (3b) have the same x-dependence

shown in (2b). Furthermore, Onm(XY) and lp nm (X~y) vanish at y = o and

y - b. Define two vector functicns by
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0nm(x,y) - - Vtonm(X,y) (4a)

xnm(X,y) - -Vtnm (X,y) (4b)

where Vt o 3x- + Yo xa and y are unit vectors in the respective

coordinate directions. Note that nm(x,y) and nm(x,y) have the follow-

ing properties.

2.V t 7, t n (x,y) --K tm0 nm(x,y) (5a)

V t *X x -0 0 (5b)

2+VtVt • nm (Xy) -Ktnm 7nm (x,y) (6a)

V t • [nm(x,y) x z - 0 (6b)

where z is the unit vector in the z-direction.

ffo (Xy) • Pn, ,(x,y) dxdy - 6 n6 . (Ta)
nm n m nn' mm

fnm (X,y) • •n ,(x,y) dxdy = 6 n6f (7b)

ffnm(Xy n * n'

HO.xy) z* x *n,(x,y)dxdy - 0 (7T)

The asterisk signs in (7a) to (7c) indicate respective complex con-

jugates. The symbols 6 , and 6 , represent Kronecker delta functionsnn mm

with the usual meaning. The region of integration in (7a) to (7c) is the
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unit cell, i.e., - S x S a and o S y S b. With these orthonormal vector

mode functions Inm(x,y,) and 4n(X,y,), the complete electromagnetic

field can be represented in the following manner [8]:

+ TM TEEt(r) = V vM(z) (x,y) + X T(z)Yn(Xy)xz (8a)n-a imn rnm nm ( L inm nm 0nam oon= - 0 ~

0 00 06
t(T) = 1TM ) x~y) + T ( X,y) (8b)

rin -r m=o nm o nm n -ri mnm

TM 2
jWCCiE r() I T I(Z)Ktnm2 (X,y) (8c)

0 1 o M0 i n nm (c

JPH (;) - i ' V E K (x,y) (dJ 0o z no) - 0 nm tnm nm (id)

The subscripts t and z denote transverse (i.e., xy) and z components of

the respective field vectors. The functions Vn TM(z) and ITM (z) are the

modal voltage and current amplitudes for TM waves. Similarly, V .TE•(z)
nad T

and (z) belong to the TE-type waves. Adopting the procedures similar
nm

to that in ref. [8], it can be shown that these modal voltage and current

amplitudes obey the following transmission line differential equations.

d-'V TM(z) - r MI TM(Z) (a
z n im mnm ism rm

dTZ m (z) - r imY im Vnm (Z) + ffy YO 0 (x~y)J y(r)dxdy (9b)
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-d VTE (Z - jW I TE(Z) - r z TE I TE (Z) (10a)
dz nm o orm inminmrim

d TE 'r E TE +*

dz nm inmYinm inm onm y

where

Sr - rK 2  K2  11/2 (11a)inm [trim- o0i

Ko = w 0 Poeo (11b)

i - 1,2,3 and 4 (11c)

S 1 TEinm Jo/rnm (11d)

- modal impedance for TE-waves

ZTM I/yTM . r /Jw

inm inm Inm o i (11e)
- modal impedance for TM-waves

Oy(jt) - - 6(z) - Jy(y)6(z)
W 6 y (12)

for Ixi S W and o Sy Sd2

W = width of che flat rectangular probe in the x direction

d - effective length of the probe.
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Note that the probe is infinitely thin in the z dimension. The integra-

tions in (9b) and 10b) are over the surface of the probe as defined in

(12). The propagation constant r nm given by (1a) is different in

different regions and when it is real, the corresponding waves are

evanescent. For propagating modes (such as main beam and grating lobes)

rlnm Is purely imaginary. For convenience, let us introduce UTE and UTM
mm nm nm

defined respectively by

UTEnm *JwuofXo °* (x'y) dxdy (13a)
s

and

r2
UTM 2nm Uy0 n( ) dxdy (13b)

Smo 2 W

In order to solve for V (z), Inm(z), vTE(z), and ITE(z), it is con-nm m m rim

venient to obtain a second order differential equation for each V (z) and
nm

Vn(Z). This can be dine by eliminating I(z) and I (z) from (9a),nm rom rim

(9b) and (10a), (lOb). The results are (using (12), (13a) and (13b)

(d--2 -r 2) vTM(z)- -UTM(z) (14a)

dz2  nim rm .1m

and

d2 -r 2) VTE(z) -- U6(z) (14b)
2 inm nm

dz9



These two equations rust be solved subject to the following boundary

condi ions.

A; the source (I.e. at z-o)

(z-o ) -) V (z- (z-o-) (15a)

dz nmdz nm nm

VTE(zUo+) . V (z-o-) (16a)

(z-o+) -- =zVI(z-o , -U(1b=z dz m nm

Since there is rno otiie- sources, vTM(z), IT rz), VTE(z) and ITE(z are

nm rim nm rim
contirnuous at z - 2' X 6 and 4. + 6 I TM(z) and I (z) can be deter-

213' nm I'M.TE.
mined from 11 .(z) and VE (z), respectively, via Eqs. (9a) and (10a). In

addition tVn(z) and VTM(z) must vanish at z -L. For z>+6,6 2 , Vn•(Z)nnims rimTM.
and V V(z) behave like outgoing waves.rim

The solutions of (14a) and (14b) subject to the boundary conditions

discussed above can now be expressed in the following manner.

10



ATY, sinhf~r (z+,)} Lz- (17a)

BT'[exp(r R 1 e .n)ep,[-r (a +z)l}]-i :io (17b)

11(z)ex(- Z) zR t(rr~m)'-exp (25's 2(17c) 5szg6ri nmex('rnm 3, n

D TMexp (- rnZ) *z 6 X17e)

F ATMsinh r (Ll lzt (1a

BIE(x~ ); (fl,mD) expl-r (21 +Z)j]

(18b)

V TE(z) B BTE (expC-r mz)-s I (n,m)eexpI-r n(26 -Z)ij, Llnm 2nm n f m a

c Eep(ri 3)R (nm-xpl-r (26 +26 -Z)Ij, 6 zw6 +6.

(18Bd)

D TE x(r Z(1e

nm 411



109a)

R 1 (nm)-R 1 (,m)+R 11 (t.,m)-exp(-2r 6 )]/[14R 11 (n,m).R 1 3 ~ )Rff 2,3n-[~ 3,3(n 323 ,

-exp (-2-C, S 3 (190)3nm'3

R 11 (n~rn) - (s r/c 3 r Me rr (19d)3 ~ ~ ~ 2 nnm 2m

(c43 r~ 4n 3nmi )/ 4nm i3nm) (19e)

u T
TIM m .+s 1 e

Bi It *lR .(n~m)exp(-2r 6)]/r1+R (n,m).p-ZR 6n~)] 1g2nm 2r m ett' 2nm 3 er fnins

2 (1 9f)

TM Tmep6~~ij~)~lR r141
snrmB1-m lR f nm-x(2 nmerr2 (o) ]/[l+'.R3f(n,m)-exp(-2r 2 3 6 5] g

('19h)
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D (I +R 1 (n,mn) I expj I ) ~-r 3 )]J~c (19j)

R~(n ml - fL ,m) +~ exp i-1' (1.9JflIR (n, M)

'-p {-2rl1 m(L-Z2 )1] (20a)

_(n,ini) - (ri )/(r 'r (20b)

(nm- 'R, J.).P-(a-6~f2 -)1/rl.Ri eR' (n,m)-

.expfl-zr 601~j (20c)

RI (ri, m) -(r ~r )/(I- r 3 (20d'
2,3 2n-31m 2nm +3nm

R~~( -i (r 1/ V(r, + r (20e)
3tnum T'4 nr 3r u J 4nmj

2r 2nm

vexp!-2r 2m(Z2+6 41H (20f')

Si; Inm* ef 2nrnm2 ef 2 nm s

(20g)
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TE B TE r .exp(-r 2  2 )[4R + ,m) ]/[r nmcosh{r (L I]
A B * 2nm (ne ) rlnmL2)nim meff

(20h)

CTE. TE er16( - )-lR1 nm]LlR nm-x(2

Cnm 2nm* sxP ,4n)nm eep3[4 3nm 3

(20i)

DTE_ [l+R,4(n,m)].expl(6s+6 )(rn-rn)1.cTE
34Enm nm (20j)

III. PROBE CURRENT DISTRIBUTION

The amplitude factors UTE and U given by (13a) and (13b) which
nm nm

cepend on the current distribution on the probe still remain unknown. In

reality, it is difficult to calculate the exact current distribution in an

environment shown in Fig. 1. Therefore, various approximate methods are

sought. For example, one may assume a known current distribution [3,4,

5,6] which has been found to be valid in some situations. For a probe

this current distribution is taken to be sin[K(d-y)], where d is the

length of the probe, y is the coordinate along which the current varies

and K is the free space wave number of the surrounding mediura. If b is

the height of the waveguide in the y-direction, it has also been shown

experimentally [5,6] that theoretical results based on the assumption of

this sinusoidal current are in good agreement with those of experimental

for d;-6b and dA/I4, wiere X2wI/K. On the other hand, if the probe is at

the interface between two media with propagation constants K, and K2, then

the effective current distribution may be taken [9] ae sin[Ke(d-y)], where

Ke K2 + K2  assuming that the permeability is the same for both media.

All these results are, of course, derived for an antenna in an otherwise

free space.
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Another approach to derive an approximate form of current distribu-

tion follows from the stationary property of the input inpedance of the

probe with respect to the current distribution. It is shown [4,10] that

the input impedance of a probe can be cast into a variational form with

respect to the variation of current distribution in the probe. Then the

current distribution may be expressed in terms of two or more arbitrary

parameters which are computed by requiring that the partial derivative of

the input impedance with respect to each of these unknown parameters

vanishes. When the expression for the input impedance is too complex,

this procedure becomes tedious.

Most of the theoretical models deal with idealized situations. For

example, for a probe, one may assume a current distribution either as a

known function or a trial function having a few arbitrary parameters.

Even an integral equation for the current may be set up using an idealized

probe geometry. However, in actual practice, the probe geometry compris-

ing the coaxial feed system differs from the idealized theoretical config-

uration. As a result, the actual current may depart substantially from

the theoretically computed one. Therefore, in order to minimize the com-

plexity in theoretical computation, the following approach will be chosen

here.

The current distribution on the probe will be assumed to be known

and has the following form (see Eq. 12).

I(y) - Iosin[K (d-y)]0 1 (121)

o y d, IxlI-W/2

15



where Ke is the effective propagation constant. If the medium in which

the probe is embedded has a relative dielectric constant c2' then Ke =

w / p, - Ko^ £c- On the other hand, if the probe lies at the
0o 0 10 2

interface between two media with relative dielectric constants ci and ci,

then K K V (e +r: 1 )/2 .

Using now (21), the amplitude factors UTE and UTM can be calculated
nm nm

from Eqs. (13a) and (13b). The results are:

K 2-6 K SFTE 2,ed)(___ah1I2f x n~em
U -21w4 K sin _2-L-/2K -) (22a)

nm 0- 0 e 2sab K nm
em

uTM 21o K e _ 2 2 Ked 2 1/2 mir/b S n em
ur -sin (22b)- ( J

nm jeo£2 c 2nm ab Ktn. )22b)
o 2 tnm) K2

em

F 1em 1 -sin2 (md/2b)/sin2(Ked/2) (23a)

Sn = sin (KxnW/2)/(KxnW/2) (23b)

K m= (mr/b2 -K e (23c)em e

IV. INPUT IMPEDANCE CF THE INFINITE LINEAR ARRAY OF PROBES

The input impedance Zin is defined [3,4] by the ratio of the complex

power radiated by the probe and the mean square input currant, i.e.,

16



Zinf = - t(x~yýz-o)ov. ,;*(Ylds/[11 (o)12] .(24)

5

The integration is over the probe surface inside the unit cell

containing the origin. J y(Y) is given by (A2) and (21). The electric

field Et'x,y,z-o) can be calculated from (8a) usi'z (170). '18c). (19g),

(20g), (22a), and (22b). Carrying out the indicatec cperations in (24),

the input impedance Zin can be expressed as

n=- m~ 2nm em,

JZ K K 2 '2- /emK 2F S
tar2 (Kd/2) r XU -m- TI (24a)

2abK e n..~ rn-a Knm 2n \K2 /nm

fU= m,,o Ktnm \KeZ/n nm
em

where

ri IR LfjI (n'm)'exp(-2r 2 (6s)][l "[,-tf (nm)exp(-2r z
Cnf 2n f 2nin 2)

e= (24c)nm [1+R1  (n m) ; (nm)xl[ -2r' (1 -&6 )1
efi' eff n 2s

"11 R 1
nm 11 ef n,m) R- e11 n,m) .exp {-2r n (1 2+6s )11

2° 0 /C 0ol (24d)
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Phasedi arrays are generally designed in such a way that only the

lowest order mode or the main beam (for which n-o=m in (24a)) pro-

pagates. However, due to dielectric loading the first few higher order

modes (i.e., grating lobes, such as when n-t1, re=o; n-o, rm-1, etc.) may

become propagating waves inside a dielectric layer. Even in this case,

r nm is real for large values of n and m (which represent evanescent

modes). Therefore, for large values of n and m, both Ti and T tend tonm nm

approach unity.

From Eqs. (3d), !3e), (1a), and 23a) to (23c), one finds that Kxn,

Ktnm ard rinm behave like n as n tends to infinity :or a fixed w.. On ýhe

other hand, for a finite value of W, Sn ts on the order of 1/n as n--.

When n remains fixed and m. becomes very large Ft. and r tend to m.

Fern and Ke approach unity and m2, respectively, as m assu~iies a large

value. From this observation, it follows that the first term (double

series) or (24a) converges like 1/n3 and 1/m7 as n and m tena to infinity.

respectively. The second term of (24a), however, converges like 1/n 3 and

1/m3 as n and m approach infinity, respectively. On the otherhand, if

(KxnW) is very small, the impedance series converges slowly with respect

to n.

V. SPECIAL CASES

A. IN ABSENCE OF ANY DIELECTRIC SLAB

In this case eI a C2 C 3 = C4 = I

rinm ' rnm K ' 2_ K 2 , i - 1,2,3,4Ktnm c

R (n,m) - Re (n,m) - oeff eff

is



^ tln,m) - Reffn,m) - exp{-2r nm(L-12)

Ti.n = Tl 1 I -exp (-2rnmL)

JZoKoKe2 2 (2-60m) K11 2 F S 2
z ta2 (K)d/2) (( -' ) [1-exp(-2r L)]

inn -b e oin 2ab e n=-0 muo rnm Ktnm K 2  n
em

-JZo K 0a2 2 F m/bemnn 2tan (t/-) -- ) r [1-exp(-2rnL)] . (25)t a n~ ~~ ( K d / ) I R -)
nm-- muo tnm + K2

em

In this case, Ke may be taken as K° M w / V _ . In the absence of any
0 0 0

short eircuit at z -L, one may take e- 2 rnmL . o. This is justified by

taking the limit L -=, with the assumption that Rer nm> for all n and

m. For propagating modes, this assumption implies inclusion of slight

loss in the medium.

B. PROBE AT THE CENTER OF THE BROAD FACE OF A RECTANGULAR WAVEGUIDE

In Fig. 1, a is taken to be the distance between the consecutive

probes of a linear array in the x-dimension. This is also shown in Fig.

2a for convenience. The width of the parallel plate wa,\guide is b in the

y-dimension. In this special case, the rectangular waveguide has dimen-

sions a and b in the x and y directions, respectively.

The center of the probe is at x-a/2. This probe at the center of a

rectangular waveguide is equivalent to a linear array of probes whose

adjacent elements are 1800 out of phase in a parallel plate waveguide as

shown in Fig. 2b. This observation follows from image theory. Therefore,

when the uniform phase shift h associated with the probes in Fig. 1 or
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Fig. 2a, is given the value iT/a, the problem of Fig. I becomes

equivalent to that in a rectangular waveguide with a probe at the center,

x = . As a result, the following transformations take place.

K xn h + 2nw/a - (2n÷1)w/a (26a)

Ktnm [K+ (mw/b) 2 ] 1/2_[{2n+1)ir/a} 2 +(mit/b) 2 ] 1/ (26b)
tm xn

rinm [I(2n+1ll/aI 2 +(mi/a)2-K2ci] '/2 .(26c)

It can readily be seen from (24a) to (24c) and (26a) to (26c) that

the argument of the summation with respect to n associated with the input

impedance Zin becomes then a function of (2n+1) 2 . If it is assumed that G

is a function of (2n+1) 2 , then it can be shown easily that

X G[(2n+l) 2 ] - 2 j G[(2n+l) 2 ] • (27)
nw-- n-o

Using this information, the desired input impedance of a centrally

located rectangular probe in a rectangular waveguide is given by
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ino-oab tan 2(Ked/2) xn em n T
Zin ab e no mao r2nm Kt 2 em

K= em

j2ZoKe2 tan 2(Ked/ 2 ) * I (mi/b)FS n 2
be e SO emn

ab K 2 AK 2  r 2nm inm
o m=1 tnm em (28)

In (28) the relations (26a) to (26c) are to be used.

The relation (28) can further be specialized for the situation when

there is no dielectric slabs inside the rectangular waveguide, i.e., when

€0 €2-C3a C4-1. Following the procedure described in Section V-A, we

have the desired expression obtained from (28).

00 2 * (2.6o) (1

JZ3  2c xn em n x-r
Z oi ° tan (Kod/2) r Kxe [1-exp(2rnmg]

nwo mao nm K K2 m
trim em

j2Z 0K 0 2f[-/b-r S 2

ab 0 1. m/) mn- ta n t 2 K d/2) ( K rw rn[I-exp(-2rnmQ]no M=1 K. K2
tnm em (29)

The Eq. (29) can be simplified to the following form.

"iJZ 0 aK0  
2 (Kod2) F (em) F n 2

in ab r "m [1-exp(-2rnmL)]
noo Mao nm K em (30)

It may be noted that situations represented by Eqs. (28) and (29) or

(30) correspond to a particular scan angle for a given frequency.
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C. SOME SIMULATOR MODELS

Since tt is very expensive and time consuming to build a periodic

array with a large number of elements for experimental testing and

measurements, use of simulator models, which are simple in structure and

contain only a few elements, has been proposed and proved to be successful

[11,12). The principle involved in this simulation is also discussed ir

these references [1,12] and, therefore, will not be repeated here. One

of the restrictions in simulator application is that each simulator

represents only one sample of scan conditions in the actual array.

Consequently, several simulators are generally built for a study of a

given array. For example, the special case discussed in section V-S

consisting of a rectangular waveguide with a probe at the center,

represents a particular scan condition defined by h-K0 sine-o/a for the

array problem depicted in Fig. 1. The H-plane scan condition for this

infinite linear array can be simulated approximately by the si"Ple TE10

mode in a rectangular waveguide. The number of elements N, to he placed

in the rectangul.ar waveguide and the broad dimension a of this gu~.de

depend again on the scan angle 0, satisfying the condition

h - K sine - r/a0 (31a)

on sine - X/2a

if d. is the interelemeznt spacing, then the number of elements required

for a given scan angle is approximately given by

N - a/d- sine " (31b)
W22
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For a given scan angle, say e=350, the required broad dimension of the

rectangular waveguide is a-0.8717X. If dx is chosen as dx=O.575A, then

N=a/dxV1.516. Thus, the approximate number of elements is 1.5, i.e., one

element is bisected by ine wall of the guide (in the x-direction) and the

other element is placed at a distance d,=2a/3 from that bisecting wall.

Since the bisected element is short circuited by the wall, it is observed

that its existence (or non-existence) has no effect. This observation

then implies that a rectangular waveguide with a probe at a distance 2a/3

from one wall, a=0.877A being the broad dimension of the guide, when

excited by the TE10 mode, simulates the scan condition (0=350) of an

infinite array of probes in a parallel plate waveguide. For making this

observation more instructive, the input impedance of an off-centered probe

in a rectangular waveguide is computed (see Appendix) separately and the

corresponding numerical results are compared with the appropriate situa-

tions for an infinite array probe, for which Eq. (25) has been used. The

equivalence between any other simulator and the infinite linear array in a

parallel plate waveguide for a given scan condition can be explained

similarly [9,10].

VI. DISCUSSIONS OF NUMERICAL AND EXPERIMENTAL RESULTS

Over the pas) several decades to the present, numerous theoretical

and experimental investigations of phased arrays composed of electric

dipoles or monopoles have been made. In theoretical analysis a knowledge

of the current distribution along these dipoles or monopoles is

essential. However, it is not known a priori. It can be determined in

principle by solving an integral equation for the current. Once the

current distribution is determined, other parameters of interest (such as

input impedance, VSWR, radiation pattern, etc.) can be computed from the

23



knowledge of the current. The solution of the integral equation involving

current is generally accomplished numerically. Since this procedure is

tedious and time consuming, one generally assumes a sinusoidal current

distribution in theoretical analyses for simplicity. Although such an

assumption simplifies the analysis considerably, differences are expected

to exist between the theoretical and the correspor*ding experimental

results. Nevertheless, this simplified assumption may be considered

satisfactory, provided the theoretical results can predict at least the

qualitative behavior of the input impedance and other observables of

practical interest, so that the experimental results can be better

understood. This is one of the objectives of this theoretical study. It

may be noted that for some problems [5,6) assumption of known sinusoidal

current distribution produced theoretical results which were in good

agreement with those of the corresponding experiment3.

Before we proceed to make a comparison between various theoretical

and experimental results, let us digress for a moment in order to present

the interesting result to be discussed in the next section.

VI. A. CONNECTION BETWEEN CIRCULAR AND FLAT RECTANGULAR PROBE IMPEDANCE
OR VSWR

One may choose either a circular probe or a flat rectangular

probe for a phased array composed of m'rnopoles. A question then arises

whether there is a simple connection between two corresponding observables

of the same kind (such as input impedance of the probe, VSWR, etc.). This

information is particularly important when some results (theoretical or

experimental) using one kind of probe are known, then how the theoretical

or experimental, as the case may be, parameters for the other kind of the

probe may be chosen so that the two corresponding results should be the
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same. It appears that h.A. Wheeler* was also interested in this matter

and derived a relation using conformal mapping of fields in an unpublished

report. Wheeler's relation is W-4P where W is the width of an infinitely

thin flat rectangular probe and p is the radius of the circular probe,

other parameters of the two configurations (one with the flat rectangular

probe and the other with the circular probe) remaining the same. The

implication of this relation may be interpreted by using the following

example. Suppose there are two identical rectangular waveguides, one with

a circular probe of radius p and the other with a flat rectangular probe

of width W-4P. These probes are of the same length, excited in the same

manner and situated in an identical manner in their respective wave-

guides. Then the input impedance, VSWR, etc., of the two situations are

expected to be the same. Since Wheeler's relation is based on conformal

mapping, valid for electrostatic fields, it may not be satisfactory in the

microwave region. This observation turns out to be true. Although

Wheeler's relation is very simple, in a frequency dependent situation no

such closed form relation can be established. Therefore, one shall have

to resort to numerical computations. In order to obtain such a relation

let us consider a known result [4] of a circular probe, as shown in Fig.

3, at the center of the broadface of a rectangular waveguide. The wave-

guide is short circuited at a distance z- -L from the axis of the

probe. When only the funda::;:c-y.tal TEIO mode is propagating, the input

impedance of the probe is given by [4] the following expression. It may

be recalled that in this case also the current distribution on the probe

is assumed to be known and is the same as in eq. (21).

* This information was communicated to the author by Dr. W. K. Kahn.
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2Zotan 2 (Kd/2) JZ tan2 (Kd/2) n2 0.0518Ko 2 a 2

Z in , sin(ML) + - [ln ) + 2 ,

ab8K 2iKb
0 0

+ 2 sin(28L)-2(1 - 2)-2K; e K (K em ])2j , (32)
$a a m=1 emP) m

where K22V/2.eKo and K 0 (w/a) . Fem, Kem and Z. are defined by (23a),

(23c) and (24d), respectively. K (k emP) is the modified Bessed function

of the second kind, of order zero. in the absence of the short oircuit

(i.e., L+w) the corresponding expression for the input impedance of the

probe can be shown to have the following form.

Z tan2(K d/2) jZ tan 2(Kod/2) 0(2a 00518K2 a2

Zin" + 0 0 [ln -)+ 22 (33)
abBK0  27rKb Tp

-2(l - 2P)-2K2 F em2 Ko (K emP)/Kem
a M-i

The result corresponding to eq.(32) for a flat reccangular probe is given

by (30). In the absence of any short circuit the input impedance can be

obtained from (30) by letting exp(-2nm L) - o. Numerical values of these

impedance expressions are obtained using the parameters, a - 6.0 cm, b -

3.4036 cm, L - 2.21234 cm and -, d - 1.651 cm, 1.75 cm and 1.90 cm. The

radius p of the circular probe is kept fixed at 0.127 cm. However, the
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width W of the flat rectangular probe is varied from 4p to 5p. The results

are shown in Fig. 3a thru 4c in the form of VswiT as a function of frequen-

cy. The voltage standing wave ratio (VSWR) is computed from the relation

VSW`R I + / 1 -11 (34)
JZn/50+1 ! 1Zn/50 + I J

It is found from these numerical results that the input impedance and VSWR

of a circular probe remain practically unchanged when it is replaced by a

flat rectangular one, provided that W - 4,882p, other parameters being

the same. This relation should not be considered exact. It may Change

with frequency, length of the probe, distance L of the short circuit,

etc. These observations are based on the numerical results shown in Fig.

3a thru 4c. However, the relation W - 4 .882p appears to be adequate for

the frequency range and other parameters considered here. For the purpose

of comparison, the VSWR corresponding to Wheeh: 's relation W - 4p is

also presented. Although Wheeler's relation is obtained by using con-

formal mapping, valid for electrostatic fields, results (such as impe-

dance, VSWR, etc.) obtained by using his relation approach closer to those

obtained by using the relation W - 4.882 p, when the frequency is higher

and the probe length is longer.

The relationship W - 4.882p implies that the expressions for the

input impedances of flat rectangular probes developed in this paper for

various situations can also be used for the corresponding cases where the

former probe is replaced by a circular one of radius W/4.882. It is, of

course, assumed that other parameters remain unchanged.
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VI. B. A CIRCULAR PROBE IN AN INFINITELY LONG RECTANGULAR WAVEGUIDE
WITHOUT SHORT CIRCUIT

Before presenting our experimental and theoretical results for the

linear array of flat rectangular monopoles in a parallel plate waveguide

or its equivalent simulator, let us first make a comparison between some

experimental and theoretical results related to Collin's [4] and Al-

Hakkak's [5] model, since their various assumptions are similar to ours.

This model consists of a cireular probe, fed from a coaxial waveguide in

an infinitely long rectangular waveguide without short circuit. The main

reasons for choosing this model here are the following:

1. The theoreticaW results can easily be derived from Collin's work

[4] with a minor' modification. This was done by Al-Hakkak [5],

who also performed experiments and compared with the theory.

2. The theoretical results for this model can also be obtained

approximately from our theory for a simulator using the relation

w = 4.882p in eq. A-tO in view of the finding in the previous

section.

Although Chang and Kahn [6] studied a similar problem using a flat

rectangular stub inside an infinitely long rectangular waveguide without

using any coaxial feed line, their experimental and theoretical results

cannot be used here directly for comparison. This model does not have any

problem of gap at the coax junction.

The theoretical expression for the input impedance is given in eq.

(33), which is a slight modification of the result given by Collin [4].

In view of the relation discussed in section VI-A, the numerical values of

eq. (33) for a given probe radius p can also be obtained approximately

from eq. (A-10) with W - 4. 8 8 2p, and the omission of the exponential
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factor in (A-10), other parameters remaining the same. For the use of eq.

"(33), it should be remembered that only the fundamental TE1 o mode is

propagating. In addition, the theory does not take into account the gap

(or aperture) at the junction of the probe and the coaxial connector and

assumes a known sinusoidal current distribution along the probe. A

further limitation of the theory is the assumption that the diameter of

the probe is very small compared to the wavelength. In ref. [51, Al-

Hakkak finds also that the length of the probe d should be such that

d<O.6b and d<x/4, where b is the shorter dimension of the broadface of the

waveguide. Chang and Khan [6] also discussed these limitations of the

theory. It may be noted again that the sinusoidal current distribution

assumed here and in refs. [4,5] is also used by Stark [3] among others for

similar theoretical study of phased array antennas having monopole or

dipoles as elements.

Figures (5a), (5b) and (5c) show some theoretical and experimental

values of normalized (with respect to 500) input impedance of circular

probes having three different diameters, but of the same length in an

infinitely long rectangular waveguide without short circuit. Although the

parameter c, the outer diameter of the coaxial line, does not enter into

the theory due to the approximation made, it does affect experimental

results. The probes are located at the center of the broadface of the

waveguide. The results show a general agreement between the theory and

the experiment. The main reasons for th? existence of difference between

the theoretical and experimental results may be attributed to the gap (or

aperture effect) and the assumption of a sinusoidal current distribution

along the probe. In order to observe the effect of the gap alone, the

probe was removed from the coaxial connector in an experiment. It was
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then noticed that there was hardly any transmission of energy through the

gap into the waveguide (showing extremely high VSWR). This phenomenon

might have been known also to others and, perhaps, motivated them to

neglect the effect of the gap in similar theoretical works as a good

approximation. Tis may not be justified since, when the gap and the

probe are present simultaneously, the field distribution at the junction

is altered due to the coupling between the gap and the probe. In

addition, the combined effect of the gap and the probe diameters appears

to play a role. For example, an increase in probe diameter causes an

increase in the input impedance and thereby improves VSWR. An increase in

the probe diameter is also associated with a decrease in the resonance

frequency (at which the input impedance is real) of the system. This was

also observed by Al-Hakkak [5]. It is also observed (not presented here)

both theoretically and experimentally that an increase in probe length d

improves the VSWR within a limited frequency band. It may be noted also

that at frequencies above 4.22 GHz, the chosen probe length d - 1.778 cm

does not satisfy the condition d<A/4.

In spite of all these restrictions made in the theory, Al-Hakkak's

experimental results are surprisingly in good agreement with the theory.

Figure 6d shows theoretical results corresponding to the parameters used

by Al-Hakkak [5]. These are essentially Al-Hakkak's results (recomputed).

The agreement is so close that the experimental and theoretical results

are not shown separately in Fig. 5d. It may be mentioned here that Chang

and Khan [6] also obtained good agreement between their theory and

experiments in which there is no gap effect. Their theory is also similar

to that of Collin's where use of known sinusoidal current distribution is

made. Note that Chang and Khan [6] apparently determined the actual
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current distribution by solving an Integral equation numerically, They

found that the actual current distribution, so determined, does not differ

much from a sinusoidal current distribution provided d<A/4.

The results of this section may be considered as precursors of what

can be expected of the results for the linear array of monopoles in a

parallel plate waveguide and hence may be used for guidance. The

experiment'l results, Figs. 5a to 5c, were generated in our laboratory.

VI. C. INPUT IMPEDANCE OF AN INFINITE LINEAR ARRAY OF FLAT RECTANGULAR
MONOPOLES INSIDE A PARALLEL PLATE WAVEGUIDE

In this case, eqs. (24a) and A-8) are used for theoretical

computations. Equation (24a) is valid for both the presence and absence

of a dielectric slab and for all scan angles. On the other hand, eq. (A-

8) is used for the case without any dielectric and for those scan angles

and frequencies shown in Fig. 6a. In the presence of a dielectric slab

only, the eq. (24a) is used with e1.1-m2.c4, T 31.3, a-2.84-(2.54)cm-3dI,

where 2.84"(2.54)cm Is the longer dimension of thr broadface of the

simulator waveguide, dI is the offset distance of the center of the probe

from one end of the simulator waveguide [Fig. A-I], b-1.34"(2.54)cm,

W-O.2"(2.54)cm, d-O.702"(2.54)cm, L-O.863"(2.54)cm, 6 ,0.984.(2.54)cm,5

6 3-1.0(2.54)cm. All the measurements were taken using a simulator (Fig.

A-I) witb 3d 1=its longer dimension of the broadface. Note that a of Fig.

1 is not the same as a of Fig. A-i. In the absence of any dielectric,

eqs. (24a) and (A-8) provide identical results, subject to the condition

di-2.84"(2.54) cm/3-distance between the consecutive probes of the array

in the parallel plate waveguide. This is, of course, expected.

Figure 6b shows the theoretical and experimental results in the

absence of any dielectric slab. Here also, the theoretical and experi-

mental results are in qualitative agreement. Similar results with a
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dielectric slab (e3M1.3) are shown in Fig. 6c. The experimental results

show a tuning effect in the presence of the dielectric slab. Although

this effect is not pronounced in the theoretical result; it indicates such

an effect qualitatively. It may be notec that the, experimental res.Alts

show better bandwidth and match than the corresponding theoretical

results. Some theoretical computations (not presented here) also show

that the bandwidth d .n tch can be improved to some extent by decreasing

the inter-element s ao.ng a. The ;,easons for the ,iffer-.. between the

theoretical and .;xperimental resuil dre the same as t1 .e discussed in

the pre'Kous i,; VI.B. It shou I now be apparent that discussions and

presentation of theoretical and experimental results in section VI.B

provide better understanding of the results of this section.

VII. CONCLUSIONS

For theoretical analysis of problze-. consisting of electric dipole

or monopole elements, it is common practice '-o assume a sinusoidal current

distribution along such current elements. 710 is doae mainly to simplify

the complexity of the problem. Although such an Aosumption is inaccurate,

it can predict qualitatively expected behaviors of various experimental

results (input impedance, VSWR, etc.). These expectations were illus-

trated by comparing theoretical and experimental re•.;ts obtained here and

from previously published literature. It was ,tie &, the aims of the

Spresent study to make such comparisons. The primary causes of the

difference between the theoretical and experimental results are explained.

In addition, certain experimental results show a better bandwidth

(about 28%) and match than the corresponding simplified theoretical

results. It is also shown both theoretically and experimentally, that a

slab of low dielectric constant (such as 1.3, 1.4) prap,-ly placed in
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front of the array, can improve the bandwidth and VSWR at wide scan

angles. Munk and his coworkers [2] had also shown that a sheet of low

dielectric constant can improve scanning characteristics. The relative

position between the dielectric slab and the array chosen in ref. [2] is,

however, different from that considered here. The frequency range used

for this study is about 3.0 GHz to 4.0 GHz.

Another interesting result is the relation between the width W of a

flat rectangular probe and the radius p of a circular probe situated

similarly inside two identical rectangular waveguides. The probe

impedances and VSWR's for these two situations are found to be the same

for all practical purposes when W is properly related to p. The proper

relation found here is W-4.882p for a given set of waveguide parameters

and frequencies. This factor was obtained numerically representing a

correction to the electrostatic result W-4p found by Wheeler.

It may be observed from this study insofar as the simplified theory

is concerned, that it provides results relatively easily, and does

correctly indicate the trend of the experimental results.
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APPENDIX

RADIATION FROM AN OFF-CENTERED PROBE INSIDE
A RECTANGULAR WAVEGUIDE SHORT CIRCUITED AT A DISTANCE L FROM THE PROBE

The geometry of the situation is shown in Fig. A-I. It consists of

a rectangular waveguide of dimension a and b (a~b) and short circuited at

a distance z= -L from an off-centered flat rectangular probe of length d

and width w. The axis of the y-directed probe lies at x-di and z-o. In

the positive z-direction, the waveguide extends to infinity. For

simplicity, it is assumed that there are no dielectric slabs inside the

waveguide. The current distribution is the same as given by (21).

Although one can use a method similar to that presented in 3ection 2, the

absence of any dielectric permits one to use only a single componert of

the vector potential A. Since the current is directed along y, one rinds

Ay A y. Then it can be shown that

- -JA + V J0V 0) (A-ia)

H VxA/uo (A-Ib)

Therefore,

E (y =(/Jw 0oo)[K 2 + a-] Ay (A-2a)

oy00+ooy

(V 2 +K )Ay 0 -Jy (A-2b)
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Let us construct a Green's function G(r,r') which satisfies the following

differential equation and boundary conditions [4].

(V +K JG(r,(r) - 5(x-x')6(y,-y')6(z)

r -(xy,z) and r' - (x ,y',o) (A-3)

G - o at x-o,a and z--L
(A-4)

3G/9y - o at y-o,b

G also satisfies radiation condition at z--.

Then

Ay -" fiG(r,')Js(y')ds (A-5)

The integration is over the surface of the probe at z=o, and Js(y)

I(y)/W, where I(y) is given by (21). The Green's function G(r,r") can

be expressed [4] in the fol.vwing form

1 (2-6om) nQsx,in
(4,')--ab r sin (-a) sin a -

n 1 m o nm

*Cos 0-Y)cos (" ) [exprn Iz-exp- (2L+z)}]

where r nm [(ni/a) 2 ÷(mv/b) 2 -K 211/2 *(A-6)
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In this case (see Eq. (24)) the input impedance Zin is given by

Z -1/2 - f E (x,y,o) j*(y')ds/[1/21J (o)l 2] (A-7)
S

The field Ey can be calculated using (A-2a), (A-5) and (A-6). Then

carrying out the operation indicated in (A-7), the expression for the

input impedance of an off-ceniered flat rectangular probe in a rectangular

waveguide can ie written in the following form.

Kd
JZoK b 2 % (•6 d°) F S (n i
o otan 2'o IM ( [ 1S 1  siZin =b r a_

n-1 m-o nm k

.[1-exp{-2r nmL] (A-8)

where

F', I -[sin (mnd), 1  Kd (A-9a)

S sirn (•--,--Žj (A-9b)
in n2a 2a

. o (mn/b) 2 (A-90)
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When the probe is at the center of the broad dimension of the waveguide,

i.e., when di-a/2, the expression for Zin becomes

JZoKotan2 od2 - (2-6om)

Zn00 tab 2 ( 0 [1-exp[-2Yn L]"
n-o m-o nm

• [FlmS In /K m] (A-10)

where

-m " [{(2n+l)/a12  K 2]i/2 (A-11a)nm L m

SIn a sin{(2n-1 )/a /{(2n+1)w/at CA-11b)

Note that the expression (A-10) is identical to the relation (30) which

was obtained as a special case of an infinite linear array of probes

inside a parallel plate waveguide. Furthermore, when di-a13 or di-2 a/3,

then (A-8) becomes identical to (25) for some specific scan angle and

frequency as mentioned in Section V-C. This will be demonstrated via

numerical results. It may be reminded that neglect of the gap-effect and

the assumption of known current distribution are che usual approximations

made here.
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L - - --

Lz

81 --- "t.f•2..r.-os_ 6 .3-1

SHORT CIRCUIT

COAX UNE

PARALLEL PLATE WAVEGUIDE [SIDE VIEW]
YII

-&1 I

I I

FLAT
b R-CTANGULAR

I /Idi A'PROB!E

I II

I i I! x

Hc COAX I

LINE
Fig. I - Linear array of flat rectangular probes in a parallel plate waveguide for H-plane scanning.
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!

+ ++ +

-3a -2a 08 a 2a 3a 5

Fig. 2a - Schematic arrangement of probes as in Fig. 1.

I

++ +

-3a -a a 3a t

-2a 0 2a 4a

Fig. 2b - Probes having adjacent phases 180. apart.
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4.50

4.0 - 2P

- b
CIRCULAR

d1 PROBE AT

t THE CENTER

3.50

3.0

2.50 THIS DOTTED CURVE IS FOR A

RECTANGULAR PROBE WITH

W=4.882 x p=0.62 cm
THIS CURVE IS FOR A CIRCULAR
PROBE OF RADIUS p =0.127 cm

2.00 - [FROM COLLN'S MODEL]

1.50

1.0 I I I I I I I I I I I ,
2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

FREQUENCY IN GHz
Fig. 3a - Connection between circular and flat rectangular probes ip a

rectangular waveguide.

a - 2.362 • (2.54) cm, b - 1.34 - (2.54) cm,
L - 0.871 - (2.54) cm, p - 0.05 - (2.54) cm,

and d -, 0.65 • (2.54) cm.
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4.00 r
ITHIS SOUD CURVE IS FOR A RECTANGULPI PROBE

"OF W!DTH W=4 x p=0.508 cm [ELECTRO-STATIC APPROX]
3.50 -

2p t
T b

3.00 CIRCULAR

SI

2.50

2.00 THIS DOTTED CURVE IS FOR A

RECT. PROBE WITH
W=4.882 x p=0.62 cm

THIS CURVE IS
FOR A CIRCULAR PROBE

1.50 - OF RADIUS P=0.127 cm

[,'ROM COLLIN'S MODEL)

1 .0 I 1 1 I I 1 1 I I --I
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1

,'REQUENCY IN GHz
Fig. 3b - Connection between circular and flat rectangular probes in a

rectangular waveguide.

- 2.362 - (2.54) cm, b - 1.34 - (2.54) cm,
L - 0.871 • (2.54) cm, p - 0,05 - (2.54) cm,

and d - 0.689 • (2.54) cm.
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3.50

3.00

2.50

>
RECTANGULAR PROBE OF WIDTH w=4 x p=.508 cm

2.00-

RECTANGULAR PROBE OF WIDTH w=4.882 x p=.62 cm
(DOTTED CURVE)

1.50- THIS*
CURVE IS

FOR A CIRCULAR
PROBE OF RADIUS "I

p=.127 cm
1.00.

2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

FREQUENCY IN GHz

Fig. 3c - Connection between circular and flat rectangular probes in
a rectangular waveguide.

a - 2.362 • (2.54) cm, b - 1.34 • (2.54) cm,
L - 0.871 - (2.54) cm, p - 0.05 - (2.54) cm,

and d - 0.748 • (2.54) cm.
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5.00--

4.50-

THIS DOTTED CURVE FOR A RECTANGULAR PROBE

IS FOR A RECTANGULAR OF WIDTH w=4 x p=O.50 8 cm

4.00- PROBE OF WIDTH
w=4.882 x pf=0.62 cm

3.50-

cTHIS CURVE
IS FOR A CIRCULAR

> PROBE OF RADIUS
p=O.127 cm

3.00-

2.50-

2.00 -

1.501 I I I I I I I I I I I I 1 1
2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

FREQUENCY IN GHz
Fig. 4a - Connection between circular and flat rectangular probes in a

rectangular waveguide.

a - 2.362 • (2.54) cm, b - 1.34 - (2.54) cm,
L - -c, p - 0.05 • (2.54) cm,

and d - 0.65 - (2.54) cm.
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4.50

FOR A RECTANGULAR PROBE
4.00 OF WIDTH w=4 x P=0.508 cm

3.50-

THIS DOTTED CURVE
IS FOR A RECTANGULAR

PROBE OF WIDTH
3.00- THIS CURVE w=4.882 x P-0.62 cm

IS FOR A CIRCULAR m
It PROBE OF RADIUS

p=0.127 cm

2.50 -

2.00

1.50-

I I I I I I I I I I
2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

FREQUENCY IN GHz
Fig. 4b - Connection between circular and flat rectangular probes in a

rectangular waveguide.

a - 2.362 • (2.54) cm, b - 1.34 - (2.54) cm,
L - co, p - 0.05 • (2.54) cm,

and d - 0.689 - (2.54) cm.
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4.00

3.50

3.00 - FOR A RECTANGULAR PROBE

OF WIDTH w=4 x p=0.508 cm

2.50 -

THIS DOTTED CURVE
2.00 - IS FOR A RECTANGULAR

PROBE OF WIDTH
w=4.882 x p

THIS CURVE
1.50 - IS FOR A CIRCULAR

PROBE OF RADIUS
p=0.127 cm

1.00 i I ! I I I I I I I I I I
2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

FRE(iUENCY IN GHZ
Fig. 4c - Connection between circular and flat rectangular probes in a

rectangular waveguide.

a - 2.362 - (2.54) cm, b - 1.34 (2.54) cm,
L - oo, p - 0.05 (2.54) cm,

and d - 0.748 • (2.54) cm.
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La/2~ ROBE j
I g

Fig. 5a - Impedance of a circular probe in an infinitely long rectangular
waveguide.

a -2.84 -(2.54) cm, b - 1.34 -(2.54) cm,
d -0.70 -(2.54) cm, 2p - 0.049 -(2.54) cm,

and c -0.163 - (2.54) cm.
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d I~~[rjjPROBE

Ini

Fig. 5b - Impedance of a circular probe in an infinitely long rectangular
waveguide.

a - 2.84 -(2.54) cm, b -1.34 -(2.54) cm,
d -0.70 -(2.54) cm, 2p - 0.125 -(2.54) cm,

and c - 0.360 -(2.54) cm.
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T- b

d C~IRCUJLAR

a -.84 (2.54) cm, ' .1.4 (.4.m

an(c20.56 (.5) m
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-a/2- -.. 2P -
b

COLLN'S (e.OGHz)

Fig. 5d - Impedance of a circular probe in an infinitely long rectangular
waveguide.

a - 4.76 cm, b -2.22 cm,
d - 1.15 cm, 2p 0.23 cm,

and c - 1.10 cm.
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50 SCAN ANGLE VS FREQUENCY y

[FOR SIMULATOP!

4- b-, 1'34"
45 N .. _--,i

• 44d

Uj40 fill

Lu 35

z

30

a - -. 84 - (2.54) cm,
b -, 1.34 - (2.54) cm,

•1 d, - a/3.
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, CIRCUIT -fb

d

EOR

Fig. 6b - Array impedance in S-band simulator-Offset flat probes
without dielectric sheet.

fi -' 42 - C3 - 44 - 1. a - 2.84 -(2.54) cm - 3d1,
b,- 1.34 -(2.54) cm, w - 0.2 -(2.54) cm,

d - 0.702 -(2.54) cm, ind L - 0.863 -(2.54) cm.
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•3--

b

Ts /

Fig. 6c - Array impedance in S-band simulator-Offset flat probe wita2
dielectric sheet

el - G2 -*4 - 1,4 3 - 1.3. a - 2.84 - (2.54) cm - 3dj,
b, 1.34 - (2.54) cm, w - 0.2 . (2.54) cm, d - 0.702 • (2.54) cm,
L 0.863 - (2.54) cm, 8, - 0.984- (2.54) cm, 83 1.0- (2.54) cm
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I I I

MCAX UNE

C-

L
AI

0

SHORT CIRCUIT ,

COAX UNE

Fig. A-1 - Offset flat rectangular probe in a rectangular waveguide.
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