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DIELECTIC ANALYSIS OF THE CURE OF THERMOSETrNG

EPOXY/AMINE SYSTEMS

Norman F. Sheppard, Jr. and Stephen D. Senturia

Department of Electrical Engineering
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

INTRODUCTION

The use of dielectric measurements to monitor the cure of thermosetting polymers

dates back to the pioneering work of Kienle and Race in 1934 [1]; a review of the literature

may be found in (2]. In 1966, Olyphant [3] recognized that the changes in the dielectric

properties during cure are related to the change in the glass transition temperature t.

accompanies the curing reaction. A better understanding of this relationship would be of

considerable value in the application of dielectric measurements to the processing of epoxies.

In this work the conductivity of seven epoxy resins of varying molecular weights

were studied (without hardener) as a function of temperature. In addition, a low molecular

weight resin was cured isothermally with an aromatic amine hardener, and the conductivity

was measured as a function of cure time. The conductivities of the resins without hardener

obey a Williams-Landel-Ferry (WLF) relation [4], and by incorporating a cure-dependent

glass transition temperature into this WLF equation, the observed behavior of the resin-plus-

hardener system can be modelled.

EXPERPhA1EqTAL

The epoxy resins used were seven commercial samples of diglycidyl ether of

bisphenol-A (DOEBA) resins (see Table 1) [5]. The structural formula of DGEBA is

presented below, but does not illustrate that the higher molecular weight samples may be

branched. Prior to use, the resin samples were heated under vacuum to remove water and

other volatiles. The samples for the curing study were prepared by dissolving a stoichiometric

. , ,.. . , .,..,.,a nm ~ mmnmu mn • • Hi NNINNI • 1



amount of diamino diphenyl sulfone in EPON 825 heated to 120*C, then rapidly cooling the

mixture.

0 CH3 CH CH3  0

H2 C-CH-CH 2 -0 C -O-CH 2 -CH-CH 2  - ( -O-CH 2 -HCCH2

a-I 3  n CH3

Diglycidyl ether of bisphenol-A (DGEBA)

The dielectric measurements were performed using microdielectrometry [71, which.

utilizes a silicon integrated circuit sensor having a comb electrode pattern, amplifying

circuitry, and a semiconductor diode for temperature measurement The electrode area of the

microdielectrometry sensor is 2 x 3.5 mm, requiring resin samples of less than 10 mg. For

resins without hardener, the temperature was increased from approximately Tg-3 0 *C to

Tg+70*C in discrete steps of 4*C. At each temperature, the dielectric permittivity and loss

factor were measured at 26 frequencies in the range of 0.1 to 10,000 Hz. For cure

experiments, the sample was rapidly heated to the cure temperature, and measurements were

periodically taken at 0.1, 1, 10, 100, 1000 and 10000 Hz. The conductivity, c, was

determined from loss factor, e", using the relation

where co is the angular frequency and e0 is the permittivity of free space, evaluated at

frequencies where a log-log plot of loss factor versus frequency has slope of-1.
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RESULTS

ConductivitY of resins without hardener

Figure I is an Arrhenius plot of the conductivities of the seven DGEBA resin samples,

without hardener. The apparent activation energy for conduction, the slope of log (Y versus

l/T, increases as the temperature decreases toward Tg. This temperature dependence has been

observed in the conductivities of liquids [9] and polymers [10-13], and can be described by

the Williams-Landel-Ferry (WLF) equation [4],

U(T) C I (T - T )
log-- = (2)

cr(T ) 2 + T -T

This equation has been widely used to model relaxation processes in glass-forming materials

near Tg.

To determine the empirical constants CI and C2 , the standard WLF test plot procedure

(41 was use. The results are presented in Table 1, and were used to draw the solid curves on

Figure 1. The C1 constant is independent of the BEW of the resin, with an average value of

10.5. The C2 constant ranges from 30 to 90, increasing with increasing molecular weight.

The extrapolated conductivity at the glass transition temperature, (C'g), is on the order of

1015 (ohm-cm)- I and appears to increase slightly with increasing MW of the resin.

Conductivity versus cure time and temperature

Figure 2 presents the log of the conductivity versus cure time at isothermal cure temperatures

ranging from 137*C to 177*C. The conductivity at the start of cure increases with increasing

temperature, as was observed for the neat resins. During cure, the conductivity decreases

slowly at first, then more rapidly. As the cure proceeds, an inflection point is observed, F -

which marks the slowing of the cure reaction. The shapes of the curves at different

temperatures are similar, but accelerated in time at higher cure temperatures.

3/ r"
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DISCUSSION

The thermal expansion of free-volume has been proposed to account for the behavior

described by the WLF equation [4]. In models for ionic conduction, the C1 constant is

proportional to a critical freevolume for ion transport [12,13]. The results presented above

are consistent with this model, as the charge carriers in all of the epoxy resins are sodium and

chloride ions remaining from the synthesis of the resin [14]. Note in Table 1 that while C2

varies considerably, Tg-C2 is a relatively weak function of the molecular weight of the resin,

with an average value of 236 K. The difference Tg-C2 is the temperature at which the

conductivity appears to go to zero, and is often referred to as the Vogel temperatur. [15].

The extrapolated conductivity at Tg is also a weak function of MW, with an average value of 8

x 10- 16 (ohm-cm)-1. The fact that the three parameters, C 1, Tg-C2, and M(Tg) describing the

conductivity of the epoxy resins without hardener are relatively independent of molecular

weight suggests that the conductivity of the curing system can be described by a WIF

equation in which Tg is the only cure dependent parameter. The following section presents a

model to support this idea.

Modelling of Cure Data

Figure 3 illustrates schematically a model for the conductivity of the curing epoxy.

First, the kinetics of the epoxy/amine reaction are used to predict the extent of epoxy

conversion, a, as a function of cure time and temperature. Next, a structure-property relation

is used to determine Tg for a given conversion. The resulting Tg is substituted into the WLF

equation (Eqn. 2), using the average of the parameters C1 , Tg-C2, and a(Tg) determined for

the EPON resins.
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eactio The reaction of an epoxide with a primary amine curing agent is

autocatalytic in nature, and described by the following rate equation [16],

K . X M) ( t - C )? (3)
.t 1 2

where a is the extent of conversion and K1 and K2 are experimentally determined rate

constants. In a previous study of the cure kinetics of the resin system used in this work, the

rate constants were found to be [ 17],

K1 = 1.28 x 105 exp (-72,500/RT)
and,

K2 = 2.25 x 104 exp (-60,000/RT)

where the activation energies are expressed in J/mole.

isCration Adabbo [18] and Enns [19] have described a model to relate Tg of epoxy

systems to conversion. This model takes the form,

Tg go (Ex/E. - FX/F* )OL
T9o 1 - (I Fzadv (4)

where Tgo is the glass transition of the unreacted material and a is the extent of conversion.

The parameters Ex/Em and Fx/Fm are, respectively, the ratio in the crosslinked state to that in

the unreacted state of the segmental mobility and the lattice energy. The values of Ex/Em and

Fx/Fm were estimated from the curing data to be 0.3 and 0.18, respectively. Work is

underway in our laboratory to determine these parameters experimentally. The Tg obtained

from Eqn. 4 is used in the WLF equation, as described earlier.

Cure modelling results Figure 4 illustrates the behavior of the conductivity during isothermal

cures predicted by Eqs. 2-4. Comparison to Figure 3 indicates that the model does an

excellent job at representing the changes in the conductivity with time and cure temperature,

including the increase in slope and subsequent inflection point. The agreement is not

5



quantitative, however, and there are a number of possible reasons. The parameters used in

the WLF equation are estimates determined from the resins without hardener and at

temperatures within 700 of Tg, while at the start of cure the temperature may be as much as

1700 above Tg. The segmental mobility and lattice energy parameters are also estimates, and

the kinetic model (Eqn. 2) breaks down late in cure. While further study is required to refine

each of the component models of Figure 3, the success of the model as a whole demonstrates

the promise of dielectric measurements for process monitoring and control.

This work was supported in part by the Office of Naval Research.
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Table 1 - Epoxy Resin Properties and WLF Parameters

Roin A £j cCLL L X Ic
EPON X22 172 0 254 10.2 34 -15.7 220
EPON 825 175 0 254
EPON 828 185. 0.2 256 10.3 30 -16.1 226
EPON 834 380 0.6 269 10.1 49 -15.4 220
EPON 1001 490 2.3 315 11.5 92 -14.1 223
EPON 1002 660 3.4 324 10.1 71 -14.7 243
EPON 1004 900 5.1 334 11.3 82 -15.3 252
EPON 1007 1880 12.1 352 1 83 4141 269
Average 10.5 -15.1 236

a From [6] for n< l, [7] for n>I
b Measured using DSC at 10 K/min.
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Figure 1 - Arrhenius plot of the conductivity of EPON epoxy resins. Data points represent

experimentally measuired valucs; solid curves are WLF equation calculated using
parameters presented in Table 1.
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Figure 2 - Experimentally measured conductivity versus time for EPON 825 resin cured

isothermally with diamino diphenyl sulfone.
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Figure 3 - Schematic illustration of model used to calculate conductivity during epoxy cure.
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Figure 4 - Calculated conductivity versus time using the model of Figure 3, for EPON 825
resin cured isothermally with diamino diphenyl sulfone.
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