

000000

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

AD-/	17	12	69
------	-----------	----	----

AD

TECHNICAL REPORT 8604

LIQUID CHROMATOGRAPHIC DETERMINATION OF EXPLOSIVES AND POLYNUCLEAR AROMATIC HYDROCARBONS (PAHs) IN DEACTIVATION FURNACE ASH

ERNST E. BRUEGGEMANN

U S ARMY MEDICAL BIOENGINEERING RESEARCH & DEVELOPMENT LABORATORY

Fort Detrick

Frederick, Maryland 21701

AUGUST 1986

UTIC FILE COPY

Approved for public release; distribution unlimited.

 \mathcal{R}

U.S. ARMY MEDICAL RESEARCH and DEVELOPMENT COMMAND FORT DETRICK

FREDERICK, MARYLAND 21701

NOTICE

Disclaimer

10 m

Same State

3.5.5 S.S.S.S.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

TECHNICAL REPORT 8604	NTATION PAGE	READ INSTRUCTIONS
TECHNICAL REPORT 8604	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	ADA 171269	
LIQUID CHROMATOGRAPHIC DE AND POLYNUCLEAR AROMATIC DEACTIVATION FURNACE ASH	TERMINATION OF EXPLOSIVES HYDROCARBONS (PAHs) IN	 5. TYPE OF REPORT & PERIOD COVERED Technical Report Jan 1985-May 1985 5. PERFORMING ORG. REPORT NUMBER
AUTHOR()		8. CONTRACT OR GRANT NUMBER(*)
Ernst E. Brueggemann		
 PERFORMING ORGANIZATION NAME A US Army Medical Bioengine Development Laboratory, A Fort Detrick, Frederick, 1 CONTROLLING OFFICE NAME AND A US Army Medical Research a ATTN: SGRD-RMS 	ND ADDRESS ering Research and TTN: SGRD-UBG MD 21701-5010 DDRESS and Development Command	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62720A 3E162720A835/AA/601 12. REPORT DATE August 1986
Fort Detrick. Frederick.	MD 21701-5012	13. NUMBER OF PAGES
4. MONITORING AGENCY NAME & ADDR	ESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
		SCHEDULE
. DISTRIBUTION STATEMENT (of the at	anacı wilarad in Block 20, 11 dill eren t Mo	a Nepunj
IS. SUPPLEMENTARY NOTES		
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side) Explosives Deactivation furnace ash High performance liquid ch Polynuclear aromatic hydro 	if necessary and identify by block number, nromatography (HPLC) ocarbons (PAHs))

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. Abstract (continued)

Two different sets of chromatographic conditions were used to achieve separation of all the PAHs from background interferences. Separation of the explosives was achieved by using a Cl8 column and a water/methanol mobile phase employing a linear gradient elution. A programmable UV spectrophotometric detector was used to monitor the LC effluent for explosives and PAHs.

The recovery of explosives ranged from 67.87 percent for 1acetylhexahydro-3,5-dinitro-1,3,5-triazine (TAX) to 97.86 percent for 2,4dinitrotoluene (2,4-DNT). The recovery of PAHs ranged from 95.38 percent for indeno(1,2,3-cd)pyrene to 116.04 percent for benzo(k)fluoranthene. Detection limits for all explosive and PAH compounds are included in the report.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

R

INTRODUCTION
EQUIPMENT AND MATERIALS4
Equipment
METHODS
Sample Names
RESULTS AND DISCUSSION
CONCLUSION16
REFERENCES
DISTRIBUTION LIST

FIGURES

l.	HPLC Chromatogram of (a) Explosive Standards and (b) Deactivation Ash Sample (85-129)10
2.	Peak Apex Spectra of (a) Tetryl Standard (RT = 34.12 min) and (b) Sample Peak (RT = 34.67 min)11
3.	Peak Apex Spectra of (a) TNT Standard (RT = 36.00 min) and (b) Sample Peak (RT = 36.25 min)12
4.	HPLC Chromatogram of (a) PAH Standards and (b) Deactivation Ash Sample Using the Chromatographic Parameters (System 1 Operating Conditions)13
5.	HPLC Chromatogram of (a) PAH Standards and (b) Deactivation Ash Sample Using the Chromatographic Parameters (System 2 Operating Conditions)14

TABLES

1.	Detection	Limits	(µg/g)	of	Explo	sives	Used.	• • • • •	• • • •	•••	• • • •	• • • •	•••	• • •	• • • •	•••7	1
2.	Detection	Limits	(µg/g)	of	PAHs	Used	• • • • •			• • •		• • • •	• • •	•••	• • • •	••••	,

3.	Accuracy of Explosive Determinations8
4.	Accuracy of PAH Determinations8
5.	Explosives Found in Ash Samples $(\mu g/g)$ 15
6.	PAHs Found in Ash Samples ($\mu g/g$)15

Ŋ.

INTRODUCTION

The U.S. Army uses a specially designed rotary kiln deactivation furnace to safely destroy a large variety of obsolete explosives. The residues, collected as baghouse and cyclone dusts, could possibly contain undestroyed explosive compounds as well as other hazardous materials.

Preliminary screening of untreated ash samples for organic compounds by gas chromatography/mass spectroscopy (GC/MS) indicates the presence of polynuclear aromatic hydrocarbon-type compounds (PAHs).^{1,2} A number of these compounds are potential human carcinogens.³ In addition, environmental concern for military explosives has increased recently due to mounting evidence that many aromatic nitro derivatives possess biological properties detrimental to animals and humans.⁴⁻⁷

Several procedures have been developed for the separation and measurement of PAHs in environmental samples.⁸⁻¹¹ However, these methods require extensive sample purification procedures to isolate the PAHs as a purified fraction before determination by gas chromatography or high performance liquid chromatography (HPLC).

Gas chromatography (GC), because of its speed and sensitivity, has received much attention as a method for the analysis of explosives. This technique is limited, however, because many explosive compounds are thermally unstable. $^{12-14}$

HPLC appears to be a viable method for the analysis of explosives because it can be conducted at ambient temperatures without loss in efficiency of separation or speed of analysis. Also, improvements in reversed-phase column technologies have made it possible to achieve near baseline separation of many PAHs in HPLC.

The work herein describes rapid, reliable, and sensitive HPLC methods for determining representative PAHs and explosives in deactivation ash samples. In most cases, UV spectra were acquired with the use of a photodiode array spectrophotometer to aid in confirming the identity of the respective explosive and PAH-type compounds.¹⁵ The PAHs include phenanthrene (Phen), fluoranthene (F), pyrene (Py), benz(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP), benzo(ghi)perylene (BghiP), and Indeno(1,2,3-cd)pyrene (IP). The explosives include 1acetyloctahyro-3,5,7-trinitro-1,3,5,7 tetrazocine (SEX), 1,3,5,7-tetranitro-1,3,5,7-tetraocine (HMX), 1-acetylhexahydro-3,5-dinitro-1,3,5-triazine (TAX), 1,3,5-trinitro-1,3,5-triazine (RDX), N,2,4,6-tetranitro-N-methylaniline (TETRYL), 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), and 2,4dinitrotoluene (2,4-DNT).

EQUIPMENT AND MATERIALS

EQUIPMENT*

A Waters liquid chromatographic system (Waters Chromatography Division, Milford, MA) was used throughout the study. The system consisted of the following components: two model 6000A solvent delivery systems, a model 721 programmable system controller, a model 730 data module, and a model 710B WISP autosampler. The UV detector was a Spectroflow 783 programmable absorbance detector (Kratos Analytical Instruments, Ramsey, NJ). The photodiode array spectrophotometer was an HP 1040A HPLC Detection System (Hewlett Packard Company, Avondale, PA).

A soxhlet extraction apparatus (Kontes Glass Co., Vineland, NJ) and heating mantle (Lab Line Instruments, Inc., Melrose Park, IL) were used in the extraction of the PAHs. A rotor evaporator was utilized to evaporate the soxhlet extract (Brinkman Instruments, Westbury, NY). Silica gel solid phase extraction columns (J.T. Baker Chemical Co., Phillipsburg, NJ) were employed in the sample cleanup of the PAHs. HPLC grade methanol, acetonitrile, methylene chloride and pentane were obtained (Burdick and Jackson Laboratories, Inc., Muskegon, MI) and used without further purification. Reagent grade water was obtained with a Milli-Q R water purification system (Millipore Corp., Bedford, MA).

MATERIALS

Phenanthrene, fluoranthene, pyrene, benz(a)anthracene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and benzo(ghi)perylene were obtained from Supelco Inc. (Bellefonte, PA). Benzo(b)fluoranthene and benzo(k)fluoranthene were obtained from CHEM Service, Inc., (West Chester, PA). All PAH standards were used without further purification.

2,6-Dinitrotoluene (2,6-DNT) and 2,4-dinitrotoluene (2,4-DNT) were obtained (Aldrich Chemical Co., Milwaukee, WI) and recrystallized twice with methanol prior to use.

SEX and TAX were obtained (SRI International, Menlo Park, CA) and their purity were found to be 98⁺ percent and 99.9 percent, respectively.^{16,17} HMX and RDX were acquired (Holston Army Ammunition Plant, Kingsport, TN) and purified in our laboratory to greater than 98 percent (as determined by HPLC) by recrystallization from acetone.

2,4,6-Trinitrotoluene was obtained (Volunteer Army Ammunition Plant, Tyner, TN), recrystallized twice with methanol and assayed by GC to be 99⁺ percent pure. 2,6-Dinitrotoluene and 2,4-dinitrotoluene were acquired (Aldrich Chemical Co., Milwaukee, WI), recrystallized twice with methanol and assayed for purity by GC. The purity of 2,4-DNT and 2,4-DNT were both 99⁺ percent.

^{*} Use of trademarked name does not imply endorsement by the US Army, but is used only to assist in identification of a specific product.

The purity of tetryl (source unknown) was determined by injecting a 100 ppm tetryl solution (in acetonitrile) on the HPLC under the conditions stated in the methods sections. Only one peak was observed in the HPLC chromatogram.

METHODS

SAMPLE NAMES

(85-129) - Baghouse Ash (Tooele Army Depot, UT) Deactivation Furnace, 20 mm high-explosive incendiary (HEI), cartridges (M56A3) Project #42-21-0443-84 (25 Sept. 84); (85-130) - Baghouse Ash (Tooele Army Depot, UT), Deactivation Furnace, 7.62 mm, ball/tracer cartridges (4-M80, 1-M62) Project #42-21-0443-84 (25 Sept. 84); (85-133) - Baghouse Ash (Tooele Army Depot, UT), 0.30 CAL armor piercing incendiary (AFI), cartridges (M14) Project #42-21-0443-84 (27 Sept. 84).

SAMPLE PREPARATION AND HANDLING

Explosives

Three 5-gram portions of each ash sample were weighed into 50-mL Erlenmeyer flasks on an analytical balance. Next, 10 mL of acetonitrile was added to each sample portion. The containers were then shaken for 30 minutes on a wrist arm shaker, clarified by centrifugation (2,000 RPM for 10 min) and filtered (0.45 micron filter) prior to analysis by HPLC. Each sample extract that contained an explosive with a concentration in excess of 10 mg/L was diluted with acetonitrile to obtain a sample concentration within the upper and lower limits of the appropriate standard curve. Because some of the explosives are light-sensitive, amber-colored glassware was used throughout the procedure.

PAH

Three 10-gram portions of each ash sample were extracted with 100 mL of methylene chloride for 4 hours in a soxhlet extraction apparatus. Each extract was collected in a 125-mL round bottom flask and evaporated to dryness by rotary evaporation. The residue remaining after evaporation was reconstituted with 4 mL of pentane and ultrasonicated for 5 minutes in a sonic bath.

Three 4-mL aliquots of each standard solution were evaporated to dryness, reconstituted with 4 mL of pentane and ultrasonicated for 5 minutes in a sonic bath.

Each 4-mL standard and sample pentane extract was eluted through a silica gel solid phase extraction column (6 mL, high capacity) and collected in a glass scintillation vial. Following this, 2 mL of pentane was passed through each extraction column to elute any PAHs trapped on the column. This brought the extraction volume to a total of 6 mL. The pentane extracts (containing the PAHs) were evaporated to dryness under streams of dry nitrogen, and each reconstituted with 4 mL of acetonitrile and ultrasonicated for 5 minutes prior to HPLC analysis. Each sample extract that contained a PAH with a concentration in excess of 10 mg/L was diluted with acetonitrile to obtain a sample concentration within the upper and lower limits of the appropriate standard curve.

PREPARATION OF STOCK AND STANDARDS

A stock solution containing the eight explosive compounds of interest was prepared by dissolving 20 mg of each compound in 100 mL of acetonitrile to yield a concentration of approximately 200 mg/L. Stock solution aliquots of 1, 2, 5, and 10 mL were diluted to 100 mL with acetonitrile to prepare standards with concentrations of 2, 4, 10, and 20 mg/L, respectively.

A stock solution containing the four PAH compounds of interest was prepared by dissolving 5 mg of each compound in 100 mL of methylene chloride to yield a concentration of 50 mg/L. Stock solution aliquots of 2, 5, 10, and 20 mL were diluted to 100 mL with methylene chloride to yield PAH standards with concentrations of 1, 2.5, 5, and 10 mg/L.

HPLC CONDITIONS

<u>Explosives</u> - Separation of the explosives was achieved with a Zorbax ODS column (25 cm x 4.6 mm I.D., DuPont Instruments Co., Wilmington, DE). A linear gradient was employed in which the eluent was changed from 100 percent pump A (20 percent methanol/water) to 50 percent pump B (80 percent methanol/water) in 30 min at a flow rate of 1.2 mL/min.

The column effluent was monitored at 254 nm, 0.04 absorbance units full scale (AUFS). The injection volume was 25 microliters.

<u>PAHs</u> - Unfortunately, not all the PAHs could be chromatographed under one set of operating parameters. Therefore each standard and sample extract was chromatographed under two different sets of conditions, as listed below:

(System 1 conditions) <u>Column</u> - Zorbax ODS; <u>Mobile Phase</u> - pump A (water), pump B (50 percent methanol/acetonitrile); <u>Linear Gradient</u> - 80-100 percent B in 20 minutes; <u>Flow Rate</u> - 1 mL/minute; <u>UV</u> - 254 nm (0.1 AUFS) for 12.2 minutes, then 289 nm (0.04 AUFS) for the remainder of the chromatographic run; <u>Injection Volume</u> - 20 microliters.

(System 2 conditions) <u>Column</u> - Supelcosil-LC-PAH (Supelco Inc., Bellefonte, PA); <u>Mobile Phase</u> - pump A (35 percent acetonitrile/water), pump B (90 percent acetonitrile/water); <u>Linear Gradient</u> - hold at 0 percent B for 2 minutes, then 0-100 percent B in 25 minutes; <u>Flow Rate</u> - 1.5 mL/minute; <u>UV</u> -254 nm (0.1 AUFS) for 22 minutes, then 289 nm (0.04 AUFS) for the remainder of the chromatographic run; <u>Injection Volume</u> - 20 microliters.

The initial UV absorbance of the eluent from each chromatographic system was monitored at 254 nm because of phenanthrene's strong absorbance at this wavelength. The remainder of the chromatographic run was monitored at 289 nm because the PAHs provide a strong signal relative to background interferences.

CALCULATIONS

Peak areas for all working standards are plotted against their concentrations to obtain a standard curve. The peak area of the sample unknown is compared to the appropriate standard curve to obtain a concentration in mg/L. Next, the sample's concentration (mg/L) obtained from the standard curve is converted to μ g/10 mL (explosive) or μ g/4 mL (PAH) and divided by the sample's weight (in grams) to obtain a concentration in μ g (explosive or PAH)/g (ash).

The detection limit for each explosive and PAH compound was determined on the basis of the chromatographic conditions used. The detection limit was defined here as the lowest concentration that could be reproduced three times with relative standard deviation of not more than 10 percent. Tables 1 and 2 show these detection limits.

The accuracy of the explosive and PAH extraction methods was tested by conducting recovery studies on ash samples spiked with the appropriate explosive or PAH standards (Tables 3 & 4).

Compound	Detection Limit			
SEX	1.00			
HMX	1.00			
TAX	1.00			
RDX	1.00			
Tetryl	1.00			
TNT	1.00			
2,6-DNT	1.00			
2,4-DNT	0.50			

TABLE 1. DETECTION LIMITS (µg/g) FOR EXPLOSIVES IN ASH MATRIX

TABLE 2. DETECTION LIMITS $(\mu g/g)$ FOR PAHs IN ASH MATRIX

Compound	Detection Limit
Phenanthrene	0.25
Fluoranthene	0.20
Pyrene	0.50
Benz(a)anthracene	0.10
Benzo(b)fluoranthene	0.30
Benzo(k)fluoranthene	0.20
Benzo(a)pyrene	0.10
Benzo(ghi)perylene	0.30
Indeno(1,2,3-cd)pyrene	0.30

Compound	Amount Added (µg/g)	Amount ^a Recovered (µg/g)	S.D.	RSD (%)	Recovery (%)
SEX	20.81	17.97	1.89	10.52	86.35
HMX	24.98	22.94	1.66	7.24	91.83
TAX	20.79	14.11	1.68	11.91	67.87
RDX	23.21	20.97	1.11	5.29	90.35
TETRYL	20 .99	19.99	3.52	17.61	95.24
TNT	20.86	19.73	0.32	1.62	94.58
2.6-DNT	21.78	19.84	1.48	7.46	91.09
2,4-DNT	21.98	21.51	1.60	7.44	97.86
a. Mean o	f three de	terminations.			

TABLE 3. ACCURACY OF EXPLOSIVE DETERMINATIONS, ASH MATRIX

TABLE 4. ACCURACY OF PAH DETERMINATIONS, ASH MATRIX

Compound	Amount Added (µg/g)	Amount ^a Recovered (µg/g)	S.D.	RSD (%)	Recovery (%)
Phenanthrene	1.20	1.22	0.05	4.10	101.67
Fluoranthene	1.34	1.36	0.05	3.68	101.49
Pyrene	1.43	1.47	0.08	5.44	102.80
Benz(a)anthracene	1.00	1.07	0.05	4.67	107.00
Benzo(b)fluoranthene	1.19	1.26	0.07	5.56	105.88
Benzo(k)fluoranthene	1.06	1.23	0.07	5.69	116.04
Benzo(a)pyrene	1.04	1.10	0.10	9.09	105.77
Benzo(ghi)perylene	1.23	1.23	0.13	10.57	100.00
Indeno(1,2,3-cd)pyrene	1.30	1.24	0.08	6.45	95.38

a. Mean of three determinations.

RESULTS AND DISCUSSION

Figure la shows a typical chromatogram of the eight explosive standards investigated. All eight compounds were completely resolved from one another in addition to showing good peak symmetry.

Figure 1b shows a chromatogram of a deactivation ash sample. Preliminary investigations in our laboratory had shown that all eight explosive standards could be separated using isocratic (water/methanol) mobile phase conditions. However, isocratic mobile phase conditions were insufficient in providing optimal resolution from interferences in the sample matrix. A water/methanol gradient was employed to achieve adequate resolution from background interferences.

Also shown in Figure 1b, peaks 5 and 6 appear to be tetryl and 2,4,6-TNT because their retention times are within \pm 0.5 minutes of their respective standards. Although their retention times are not identical to their corresponding standards, complex sample matrices can cause shifts of the magnitude seen here in retention times. Spectral analysis (Figures 2 and 3) shows a complete mismatch in spectra between standard and sample peaks. This suggests that peaks 5 and 6 are not tetryl and 2,4,6-TNT, respectively.

Figures 4a and 4b show a chromatogram of PAH standards and a deactivation ash sample, respectively, under system 1 conditions. All the PAHs were adequately separated from background interferences in the sample and standard extracts. However, benzo(b)fluoranthene and benzo(k)fluoranthene are partially resolved from one another, making their quantitative analysis by electronic integration difficult.

Complete resolution of all PAH standards is accomplished with the HPLC conditions listed in system 2 (Fig. 5a). However, pyrene cannot be separated from interfering substances from the deactivation ash (Fig. 5b). Pyrene is resolved from sample interferences under the conditions of chromatographic system 1 (Fig. 4b).

The explosives and PAHs separated by HPLC were tentatively identified by comparing the retention times of peaks in the sample chromatograms with those in the standard chromatograms. Additional confirmation of peak identity was obtained by comparing the UV spectra (230-330 nm for explosives, 254-318 nm for PAHs) of peaks with similar retention times in standard and sample chromatographic runs.

The amount recovered, standard deviation, relative standard deviation, and percent recovery for ash samples spiked with the appropriate explosive or PAH standards are given in Tables 3 and 4. The recovery of explosives ranged from 67.87 percent for TAX to 97.86 percent for 2,4-DNT. The recovery of PAHs ranged from 95.38 percent for indeno(1,2,3-cd)pyrene to 116.04 percent for benzo(k)fluoranthene. Calibration curves constructed for the explosive and PAH type compounds showed a linear relationship over the concentration range of 2 mg/L to 20 mg/L and 1 mg/L to 10 mg/L, respectively.

Tables 5 and 6 summarize the data obtained from the analysis of deactivation ash samples for their explosive and PAH contents, respectively. The

Figure 1. HPLC Chromatogram of (a) Explosive Standards and (b) Deactivation Ash Sample (85-129).

Figure 3. Peak Apex Spectra of (a) TNT Standard (RT = 36.00 min), and (b) Sample Peak (RT = 36.25 min).

NATIN

12

CALACTERT COLORIS CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRA

3. PYRENE

and the second

HPLC Chromatogram of (a) PAH Standards, Figure 4. and (b) Deactivation Ash Sample (System 1 Operating Conditions).

Figure 5. HPLC Chromatogram of (a) PAH Standards, and (b) Deactivation Ash Sample (System 2 Operating Conditions).

.

KONDOO

	Sample							
Compound 	85-129	85-130	85-133					
	<1.00	<1.00	<1.00					
HMX	5.78 (0.20)	3.44 (0.19)	1.39 (0.06)					
TAX	<1.00	<1.00	<1.00					
RDX	50.93 (2.18)	28.25 (0.53)	12.08 (0.05)					
TETRYL	<1.00	<1.00	<1.00					
TNT	<1.00	<1.00	<1.00					
2,6-DNT	<1.00	<1.00	<1.00					
2,4-DNT	<0.05	1.08 (0.09)	11.62 (0.09)					

TABLE 5. EXPLOSIVES FOUND IN ASH SAMPLES $(\mu g/g)^a$

Sales in

a. Mean of three determinations (standard deviations).

Compound	Sample		
	85-129	85-130	85-133
Phenanthrene	4.10 (0.36)	1.63 (0.20)	0.93 (0.09)
Fluoranthene	5.45 (0.35)	2.81 (0.19)	1.06 (0.19)
Pyrene	4.11 (0.26)	2.38 (0.17)	0.86 (0.14)
Benz(a)anthracene	1.06 (0.08)	0.69 (0.09)	0.26 (0.05)
Benzo(b)fluoranthene	1.35 (0.17)	1.13 (0.07)	0.63 (0.15)
Benzo(k)fluoranthene	0.50 (0.06)	0.42 (0.04)	0.20 (0.05)
Benzo(a)pyrene	0.71 (0.09)	0.37 (0.05)	0.11 (0.02)
Benzo(ghi)perylene	0.76 (0.13)	0.55 (0.06)	0.32 (0.06)
Indeno(1,2,3-cd)pyrene	0.76 (0.12)	0.64 (0.07)	0.33 (0.08)

TABLE 6. PAHs FOUND IN ASH SAMPLES $(\mu g/g)^a$

a. Mean of three determination (standard deviations).

values shown are averages of triplicate analysis. It is apparent from these data that trace levels of various explosives and PAHs were present in all the deactivation ash samples analyzed.

CONCLUSION

Relatively rapid and reliable HPLC methods have been developed for the determination of explosives and PAHs in deactivation furnace ash.

In order to obtain desirable accuracy in PAH determinations, it was necessary to chromatograph each standard and sample extract under two different sets of chromatographic conditions. The HPLC conditions listed in system 1 could adequately separate all the PAHs from background interferences in the sample and standard extracts. However, accurate quantitative measurements were difficult to obtain for benzo(b)fluoranthene and benzo(k)fluoranthene because of their incomplete separation from one another. Although the chromatographic conditions listed in system 2 were unable to separate pyrene from background interferences, it allowed for the complete separation of benzo(b)fluoranthene from benzo(k)fluoranthene. Therefore, system 1 was employed to separate and analyze pyrene and system 2 was used to separate and analyze benzo(b)fluoranthene and benzo(k)fluoranthene.

The detection limit of the explosives (with the exception of 2,4-DNT) was $1.00 \ \mu g/g$. The detection limit for 2,4-DNT was $0.50 \ \mu g/g$. The detection limit of the PAH compounds ranged from $0.10 \ \mu g/g$ for benzo(a)pyrene and benz(a)anthracene to $0.50 \ \mu g/g$ for pyrene.

The use of a photodiode array spectrophotometer aided in confirming the identity of the explosives and PAHs found.

REFERENCES

- Hazardous Waste Study No. 37-26-0319-84. 1983. Stablization of Ashes from APE-1236 Deactivation Furnaces at Army Depots. U.S. Army Environmental Health Agency, Aberdeen Proving Ground, MD.
- Burrows, E.P. 1985. Characterization of Trace Organics from Deactivation Furnace Ash by Gas Chromatography/Mass Spectrometry (GC/MS). Technical Report 8503, AD B097558L. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD.
- Committee on Biological Effects of Atmospheric Pollutants. 1972. Particulate Polycyclic Organic Matter. National Academy of Sciences, Washington, DC.

- Howard, P.H., J. Santodonato, J. Saxena, J. Malling, and D. Greninger. 1976. Investigation of Selected Potential Environmental Contaminants: Nitroaromatics. NTIS Report #PB-275-078.
- 5. Won, W.D., L.H. Disalvo, and J. Ng. 1976. Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. <u>Appl. Environ.</u> Microbiol. 31:576.
- Griswold, D.P., A.E. Casey, E.K. Weisburger, and J.H. Weisburger. 1968. The carcinogenicity of multiple intragastric doses of aromatic and heterocyclic nitro or amino derivatives in young female Sprague-Dawley rats. <u>Cancer Research</u> 28:924.
- 7. Goodall, C.M. and T.H. Kennedy. 1976. Carcinogenicity of diethylnitramine in NZR rats and NZR mice. Cancer Letter 1:295.
- 8. Fox, M.A. and S.W. Staley. 1976. Determination of polycyclic aromatic hydrocarbons in atmospheric particulate matter by high performance liquid chromatography coupled with fluorescence techniques. <u>Anal. Chem.</u> 48:992-998.
- Lawrence, J.F. and D.F. Weber. 1984. Determination of polycyclic aromatic hydrocarbons in Canadian samples of processed vegetable and dairy products by liquid chromatography with fluorescence detection. J. Agric. Food Chem. 32:794-797.
- Dunn, B.P. and R.J. Armour. 1980. Sample extraction and purification for determination of polycyclic aromatic hydrocarbons by reversed-phase chromatography. <u>Anal. Chem.</u> 52:2027-2031.
- 11. Vassilaros, D.L, P.W. Stoker, G.M. Booth, and M.L. Lee. 1982. Capillary gas chromatographic determination of polycyclic aromatic compounds in vertebrate fish tissue. <u>Anal. Chem.</u> 54:106-112.
- 12. Camera, E. and D. Pavisani. 1964. Separation and analysis of alkylpolynitrates by gas chromatography. <u>Anal. Chem.</u> 36:2108.

- Trowell, J.M. and M.C. Philpot. 1969. Gas chromatographic determination of plasticizers and stabilizers in composite modified double-base propellants. <u>Anal. Chem.</u> 41:166.
- 14. Norwitz, J.M. and J.B. Apatoff. 1971. Determination of dimethyl, diethyl and dibutyl phthalates in small arms double-base propellants by gas chromatography. J. Chromatogr. Sci. 9:682.
- Miller, J.C., S.A. George, and B.G. Willis. 1982. Multichannel detection in high performance liquid chromatography. <u>Science</u> 218:241-246.
- Bedford, C.D. 1983. Preparation and Purification of Multigram Quantities of SEX and TAX. Final Report, Phase IV, AD A146377. SRI International, Menlo Park, CA. Contract DAMD17-82-C-2092.
- Bedford, C.D., S.J. Staats, M.A. Geigel, D.L. Ross. 1980. Preparation and Purification of HMX and RDX Intermediates (TAX and SEX). Interim Final Report, AD A055824. SRI International, Menlo Park, CA. Contract DAMD17-80-C-0013.

DISTRIBUTION LIST

No. of Copies	
5	Commander US Army Medical Research and Development Command ATTN: SGRD-RMS Fort Detrick, Frederick, MD 21701-5012
12	Defense Technical Information Center (DTIC) ATTN: DTIC-DDA Cameron Station Alexandria, VA 22314
1	Commandant Academy of Health Sciences, US Army ATTN: HSHA-CDB Fort Sam Houston, TX 78234-6000
1	Commander US Army Medical Bioengineering Research and Development Laboratory ATTN: SGRD-UBZ-IL Fort Detrick, Frederick, MD 21701-5010

 ~ 10

