
AO-AI71 246 EFFICIENT EXECUTION OF FUNCTIONAL LANGUAGE PROGRAMS: 1/1
ALGORITHM DESIGN AND.. (U) NORTH CAROLINA UN15 RT CHAPEL
HILL DEPT OF COMPUTER SCIENCE D F STANAT ET AL. JUL 86

UCASIFIED ARO-26705. 6-EL DAAG29-83-K-196 /G9/ MEhhhES ENOOEl 92M

HAg

1111.25 'jj"j4 1 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

Ir~ Pmlll i

S UNCLA SSI FI ED

SCCU1ITY CLASSIFICATION OF T141S PAGE Mhm, Does Eettered)REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

. REPORT NUMBER a GOVT ACCESSION NO- 3. RE:CIPIENT'S CATALOG NUMBER

4. TITLE fred SM6b0#ee) S TYPE OF REPORT & PERIOD COVERED

"Efficient Execution of Functional Language Final Report

Programs: Algorithm Design and Program 6 Jun 83 - 19 Mar 86
Optimization." 6 PfEIFr)I4NGONG REPORT NUMBER

7. AUTNOR(ej S. CONTRACT OR GRANT NUMBER(o)

Donald F. Stanat DAAG29-83-K-0090
Gyula A. Mago'

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMEERS

Department of Computer Science

University of North Carolina at Chapel Hill
New West Hall, Chapel Hill, North Carolina 27514

IS. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Arr Research Office July, 1986 %
Post Office Box 12211 13. NUMBEROFPAGES

Research Triangle Park, NC 27709 8 pages %

"" -NITORING AGENCY NAME 6 ADORESS(I dilfermt fom Cmontrllng OfIce) IS. SECURITY CLASS. (.o l0a. rtpi o)CD
Unciassi ied

bISa. OECL ASSI FIC ATION/ DOWNGRAOING
SCHEDULE

TIUTION STATEMENT (of e Report) D T IC
V-i pproved for public release; distribution unlimited. ELECTE

iTRlBUTtON STATE[MENT (0of fho oJ~btotre din St;;., ockt 20. Il differe..t ,,ro- R*"tt) . %

,.. B
~NA

....PPLEMENTARY NOTES

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

IO. KEY WORDS (Celnwoe n reee side ff nece.i a l Ifeonrity oepvioca nummoer)

L Algorithm Design Machine Design
Program Optimization
Functional Language Architecture

X&8 AgWWAC 1 tcoemm ai,W es e it nowwwom modmv~ b*tt block InuI.I)

The most significant results of the work in efficient execution of functional
languages and program optimization are in the areas of improving the design
of the FFP machine and facilitating the use of a variety of problem-solving
paradigms. Investigations also led to the preliminary design of a special-
purpose architecture for tracking objects in 2 or 3-space.

I
DD , jm, 143 EDIo,, or ,wvVssisoL Te UNCLASSIFIED I

8ECUIhTV CL ASSIFItATtWIf nFl TH9% PAIF f h oue. tRne E)

Efficient Execution of Furnctional Language Programs:
Algorithm Design and Program Optimization

Final Report

Donald F. Stanat
Gyula A. Mag6 4

July, 1L986

U. S. Army Research Office

DAAG2O-83-K-0090

Department of Computer Science
University of North Carolina at Chapel Hill

Approved for Public Release;
Distribution Unlimited.

86 8 2 6 19 2
S*~~~* %I*.%

id

b

r .

The view, opinions, and/or findings contained in this report are those of the authors(s)
and should not be construed as an official Department of the Army position, policy, or
decision, unless so designated by other documentation.

..-. . . -.. " ,. s.'. .- _ ,',. ...

I. Goal of Project

--- The goal of this project was to investigate algorithm design and program optimization for the
functional language architecture. Because the architecture has not yet been realized in hardware,
these studies were necessarily either analytical or based on simulations.

The problem was attacked from a variety of directions. Most fundamental was that of machine
design; since the beginning of the grant period, we have come to understand the implications of the
design better, and as a consequence, describe it better and propose better implementations. Addi-
tionally, we have refined and extended the design, providing answers to a number of questions that
had not been previously addressed. Additionally, we worked on the question of making the machine
an appropriate one for solving a broader class of problems than had previously been considered.
Th Le investigations were all done in conjunction with our considerations of particular applica-
tions that were chosen on the basis of their widespread use and their exhibiting characteristics of
fundamental importance. (
II. Research Results

The most significant results of our work in efficient execution of functional languages and
program optimization are in the areas of improving the design of the FFP machine and facilitating
the use of a variety of problem-solving paradigms. Our investigations also lead to the preliminary
design of a special-purpose architecture for tracking objects in 2 or 3-space. Bracketed integers in
the following refer to the publications list that accompanies this report.

A. Efficient Execution

The efforts to improve the design of the FFP machine were directed toward the crucial issues of
increasing parallelism and speeding up communication. Our accomplishments fall in the following
areas:

1. Virtual memory. The original FFP machine design included only a main memory. We in-
vestigated of a number of possible schemes for providing a virtual memory. These schemes
range from a complex one in which the FFP machine can be made to look like a data flow
machine, to a very simple scheme in which the machine is considered to operate only on a local
part of an unbounded memory; i.e., the machine evaluates expressions that are located in a
'sliding window' on the (unbounded) virtual memory. The last scheme has been chosen for
implementation in the first prototype.

These investigations were reported in a conference paper by Frank, Siddall and Stanat [I].

2. Program representation. The original FFP machine design stored at most one atomic or syn-
tactic symbol in each cell of the fine-grained multiprocessor. We investigated the improvement
of processor utilization through the use of other representations. It was found that storing
more than one atomic symbol in a single processor is unwise because the increased processing
required in some cases results in too great a disparity among the processing required by the
different cells of the machine. However, it was also found that storing one or more syntactic
symbols in a cell, whether or not an atom is present, could be handled in a relatively straight-
forward way without any substantial effect on the speed of the cell. Thus it appears most
attractive to store at most one atom in each cell, together with adjacent associated syntactic
symbols.

Preliminary results of this work were reported in a paper by Middleton [5) as well as a paper
by Mag6 and Middleton [3]; the complete report will be contained in Middleton's doctoral
dissertation, to be completed in the next few months.

3. Routing algorithms. Because the FFP machine is a small-grain multiprocessor, communication
plays an important role in program execution. An investigation of routing algorithms within
the machine has been conducted. Although these results were obtained specifically for the FFP
machine, they may have an impact on other tree multiprocessing architectures as well.

('1

This investigation is essentially complete and in the process of being written up. Results will
be reported in the doctoral dissertation of Anne Presnell, which we expect to be completed in
the next six months.

B. Developing New Problem-Solving Paradigms

Part of our effort was directed toward providing a broader basis for solving problems on the
FFP machine by providing alternative problem-solving paradigms.

1. Language Extensions

i. The FFP machine is a language-based architecture, designed to execute directly the FFP
languages proposed by Backus. Because these languages as defined by Backus admit only
finite data structures, they are not suitable for an important class of programs such as
operating systems. We have laid a theoretical basis for extending the domain of application
for these languages by extending FFP to include infinite data structures.

A preliminary report of these results was contained in a conference presentation by Teresa
Thomas and Donald F. Stanat [10]; additional results will be described in Thomas's doc-
toral dissertation, expected to be completed in the next three months.

ii. Other language extensions developed specifically for the FFP machine were also considered;
the goal was to investigate the what could be accomplished if the programmer had machine-
specific instructions that would affect how programs would be executed.
A variety of mechanisms were investigated and reported in a paper by David Middleton
and Bruce Smith [6].

2. An important question concerning the FFP machine is the following: how specific is the ar-
chitecture to these languages? (We are only interested in this question for non-von Neumann
languages, which are properly viewed as architecture-based languages.) In particular, will it
be more effective to translate programs in other languages to FFP, or can the FFP machine
be modified so that it can directly execute other high-level languages? Presumably the second
approach would be more attractive if it is feasible, since program translation may obscure some
problem characteristics such as opportunities for parallelism. Hence our initial efforts have not
addressed translation issues, but instead have concentrated on what kinds of modifications of
the FFP machine would allow the direct execution of other languages.
We have conducted preliminary investigations into the execution of logic languages and Scheme,
a modern version of LISP. Results of the investigation are encouraging but incomplete. Early
results for logic languages were described in a conference presentation by Bruce Smith [71; ad-
ditional results will be described in his doctoral dissertation, which is expected to be completed
within the next year. Results for Scheme will be described in the doctoral dissertation of Kent
Dybvig, which should be complete within the next six months.

C. Applications

Evaluation of any machine must ultimately be based on its performance in particular applica-
tions. Investigation of how the FFP machine could be used to solve applications sometimes provides
insight into possible machine improvements as well as alternative approaches to the application.
The application of simultaneously tracking a collection of objects in two or three space was con-
sidered as a possible use of a large multiprocessor such as the FFP machine. Our investigation
of this problem led to a description of a special purpose architecture for that problem. At this
stage it is not clear whether the problem would be handled significantly better by a special purpose
architecture (as compared to the FFP machine); additional work may answer this question.

The tracking machine architecture will be described in a technical report by Frank and Stanat
[2]; this should be completed in the next few months and will be submitted for publication.

2

Publications, Conference Presentations and Technical Reports

[1] Frank Geoffrey A., William E. Siddall and Donald F. Stanat: "Virtual Memory Schemes for an
FFP Machine" Proceedings of the International Workshop on High-Level Computer Archi-
tecture '84 (Los Angeles, California, May 23-25, 1984).

[2] Frank, Geoffrey A., and Donald F. Stanat: "A Tracking Machine" Technical Report Number
TR86-012, Department of Computer Science, University of North Carolina at Chapel Hill.

[3] Mag6, G.A.: and D. Middleton: The FFP Machine-A Progress Report. International Work-
shop on High-Level Computer Architecture 84 (Los Angeles, California, May 23-25, 1984).

[4] Mag6, Gyula A., and Donald F. Stanat: "The FFP Machine" A chapter in Advanced Micro-
processors and High-Level Language Computer Architecture, edited by V. Milutinovic, to be
published by Computer Science Press.

[5] Middleton, David: "Alternate program representation for the FFP Machine" Proceedings of the
Eleventh EUROMICRO Symposium on Microprocessing and Microprogramming, Brussels,
September 3-6, 1985. pp 85-93.

[6] Middleton, David and Bruce T. Smith: "FFP Machine Support for Language Extensions"
Proceedings of the Nineteenth Hawaii International Conference on System Sciences, Honolulu
Jan 1986. Architecture volume, pp 59-65.

[7] Smith, Bruce T. "Logic Programming on An FFP Machine" Proceedings of the International
Symposium on Logic Programming (Febr. 6-9, 1984, Atlantic City, New Jersey).

[81 Smith, Bruce T., and Kent Dybvig: "A Semantic Editor" ACM Sigplan '85 Symposium on
Programming Languages and Programming Enviroments, Seattle, Washington, June 25-28,
1985.

[9] Thomas, T.A., A semantic domain with infinite objects. Technical Report 83-009, Dept. of
Computer Science, University of North Carolina, 1983.

[10] Thomas, Teresa A., and Donald F. Stanat: "An FP Domain with Infinite Objects" Conference
on Mathematical Foundations of Programming Semantics at Kansas State University, Man-
hattan, Kansas, April 11-12, 1985. To be published in Lecture Notes in Computer Science
by Springer-Verlag.

Accesslon For

NTIS A&
DTIC T .-

OT IC Bypy Distribution/

Availabiit~y Codas.... Avail zino/orl

.ist

3.Vl.tk -,., . St

Participating Scientific Personnel
and Advanced Degrees Earned (or nearly completed).

Principle Investigators (UNC-Chapel Hill)

Gyula A. Mag6
Donald F. Stanat

Research Associates (UNC-Chapel Hill)

Leigh Pittman

Research Triangle Institute (Subcontract)

Dr. Geoffrey A. Frank

Graduate Students (UNC-Chapel Hill)

Lakshmi Dasari
Kent Dybvig (Ph. D. Expected 1986)
William Gibson
David Middleton (Ph. D. Expected 1986)
Amos Omondi
William Partain
Anne Presnell (Ph. D. Expected 1986)
Bruce T. Smith (Ph. D. Expected 1986)
Teresa A Thomas (Ph. D. Expected 1986)
William A. Warren (Master of Science Degree)

4a

a - - -. , .a.-. .. a

0 0

