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ABSTRACT 

An estimator in the extended class of Stein estimators has two undesirable 

properties. For a small value of prior guess, it ignores the data. Moreover, for some 

cases its risk is not uniformly smaller than that of Stein estimator. We show that 

there exists a lower bound on T(S) to guarantee a smaller risk, and the resulting 

estimator does not ignore the data. 



1. Introduction and Motivation. 

Consider a problem of estimating the mean vector 9 of a p > 3 dimensional 

multivariate normal distribution on the basis of sample X ~ NP(9,I). Under the 

squared error loss, the maximum likelihood estimator S0(X) = X has risk R(9,S) = p 

for every vector point of 9. James and Stein (1960) showed that the estimator 

(1.1) SJS{X)=={1.P^1)X, s=\\x\\* = J2x? 

has risk R(9, SJS) < p for every 9. Even though it is uniformly better than the MLE we 

cannot use this estimator for the case of S < p-2. Our main purpose in this article is 

to show that there exists a class of estimators, containing a prior knowledge, whose 

members have a smaller risk than that of the Stein estimator. And also they give 

better protection against misspecification of the prior knowledge. 

Sclove (1968) made an improvement using only the positive part of the Stein 

estimator. It is 

Sfs(X) = (1 - min{l, ^})X,   S>0, 

which satisfies the Baranchick (1970) conditions for minimax estimators. Efron and 

Morris (1973) interpreted the original estimation problem of the normal location 

parameter vector as an estimation problem for the hyper-parameter of a normal 

prior (distribution), 9 ~ i\rp(0,-B-1(l - B)I) with B e (0,1), under a "Relative Savings 

Loss" (RSL) 

d o\ pcrro c\ _ R{B,S)-R{B,S*) 
(L2) RSL{B>S)-R(B,6o)-R(B,6*) 

where R(B,S) is the expected risk of an estimator S and 6*{x) = (1 - B)X. They 

minimized EgRSL{B, S) over the Baranchick class of minimax estimators and then 

they derived the extended class of Stein estimators, 

(1.3) 6Z+{X) = (l-mm{b,&^-Q})X,   1 < c < 2,   0 < b < 1, 

where Eg(-) indicates expectation with respect to a hyper prior (distribution) g(B) 

for the hyper-parameter B of the normal prior. We note that Sfs is a member of 

the extended class of Stein estimators. The estimators 6£+ are not comparable with 

Stein estimators unless b = 1 = c. That is, for b ^ 1 and c^l, there exists #i and 

$2 [9x ^ 92) such that R{9ltSjS) < R(9i,S^) while R(92,6jS} > R{92,6£+). Only the 

positive part Stein estimator is uniformly better (in terms of risk) than 5JS. 

A natural question arises at this point. Suppose we have a prior knowledge 

(with a strong belief) which can be expressed by JVp(0,6_1(1 - b)I) with known 6, 
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and we want that the estimator we shall use has smaller risk than that of Stein 

estimator. Do we need to ignore the prior guess b and use 6fs even though we 

believe that the linear estimator (1 - b)X is correct? This motivates us to seek for 

an improved estimator which allows the use of a prior knowledge. 

Hence we have two criteria. The first one is that an improved estimator, con- 

taining a prior information, should have smaller risk than that of Stein estimator. 

Stein (1973) proposed a class of estimators which may have members dominating the 

positive part estimator. Efron and Morris (1976) gave a general class (a larger class 

than Alam's (1973)) of minimax estimators which allows r(S) in 5 = (1- %?-T(S))X to 

decrease. Conditions for estimators with r(5) strictly decreasing at some point with 

smaller risk than SjS has not yet been found. However, we restrict our attention 

to the Baranchik class of minimax estimators with lim T(S) = 1, and we show that 
S—*oo 

there exists a lower bound for T(S) which leads to the better estimator. This is done 

in theorem 2 in section 2. 

As the second criterion, an improved estimator must have good protection 

against a prior misspecification because (almost) always we have some useful in- 

formation about the problem other than the sample. A Bayesian may hope for a 

posterior robustness over the all prior distributions while, based on sampling theory, 

the risk robustness (thus minimaxity) is desired. A plausible compromise between 

these two extremes may be a Bayes risk robustness over the all prior distributions. 

It is very difficult, at least for us, to work with a class of all prior distributions; thus 

we restrict the class of prior distributions to the class of normal distributions with 

zero mean vector and B~1(1-B)I covariance, indexed by the hyper-parameter B. We, 

therefore, adapt the relative savings loss (defined in (1.2) with Np(0, S_1(l - B)I)) 

which is a normalized version of a Bayes risk and is a function of B alone as a 

measure of protection against a wrong prior guess. Thus the estimator must have 

smaller RSL than SJS over the region of B € (0,1]. 

In summary, an improved estimator in the form of S^(X) = (1 - ^fr^(6, S))X must 

satisfy the following conditions. 

Condition 1. rff(6,5) is nondecreasing in 5 > 0. 

Condition 2. 0 < rH(&, S) < min{l, (p - 2)6/5}, S > 0 1 > 6 > 0. 

Condition 3. R{6,8%) < R{B,SJS) for all 9. 

We note here that if Condition 3 is satisfied then RSL{B,6b
H) < RSL(B,SJS) for all 

B/b > 0 where 6 is a prior guess for B. To choose the best one among estimators in 

D = {estimators which satisfy above 3 conditions}, 

2 



we minimize RSL(b, S) over the class D. We find that estimators with, for In = p - 2, 

f bSI{0,2n/b){S) + 2n/(2n/6i00)(5), n/(n + 1) < 6 < 1, 
(1.4) 2nrH(b,S)={ 

{ ln{S)Ii0,Sb)(5) + bSI{Sb,2n/b){S) + 2n/(3n/6>oo)(5),    0 < 6 < n/(n + 1) 

satisfy the above three conditions and minimize RSL(b, S) over the estimators in D. 

This is done in Section 3. We note here that Sb is the solution of 7„(a) = bs for 

b e (0, n/{n +1)] and that *tn(s) is defined by 

(1.5) ln{s) = s [ tnexp(-t3/2)dt/ [ tn_1 exp{-ts/2)dt. 
Jo Jo 

Its properties are given in the appendix. 

2. Main Result. 

Estimators that contain a prior knowledge and have smaller risk than that of 

Stein estimator are desired. For this purpose we start with an estimator with 

absolutely continuous r(s) in order to get a lower bound on r. 

Theorem 1. (Efron and Morris (1976)). Suppose r is absolutely continuous with 

derivative r\ If the risk R(9,S) is finite and if the expectation of each term in (2.1) 

exists, then a unique unbiased estimator of R(d, S) based on the sample, S, exists 

and is given by 

(2.1) R{9,6)=P-{P-2)[^T(S)(2-T(S))+4T'{S)}. 

This theorem implies that nondecreasing condition of r is not necessary for 

an estimator to be minimax, but no convenient substitution for this condition has 

been found. We, therefore, keep the nondecreasing condition in Baranchick's (1970) 

theorem. The Baranchick class of minimax estimators is too large since it contains 

some estimators that are not better than the Stein estimator. One way to guarantee 

that the estimator we will use is better than the Stein estimator is to make it satisfy 

the conditions in the following theorem. 

Theorem 2. If the absolutely continuous function r(a) with derivative r'(s) satisfies 

the conditions for any S > 0 and p = 2(n + 1) > 3, 

i) r() is non-decreasing, 

ii)  7„(5)/2n < r(5) < min{2n/S, 1}, 

then R{d,S) < R{6,6JS) for all 9. The equality holds when |0|2 = 0 and T{S) = ln{S)/2n. 
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Proof. From Theorem 1, 

R{8,S)=p- 2nf?9{yr(5)(2 - r(5)) + 4r'(S)} 

(2-2) = {p - 2»ü?9^} + 2nEe{^{l - T(S))* - 4r'(5)} 

= R{$, SjS) + 2nEe{Y(1 - r(S))2 - 4r'(S)}. 

Thus it is enough to show that 

(2.3) E0AI-T{S))
2
-AT'{S)}<O   for all   8. 

Since 5 is distributed as chi-square with p degrees of freedom and noncentrality 

parameter A = ||0||2/2, (2.3) can be expressed as 

(2-4) E TT^lj (1 - r(S))* - 4r'(S)] = £ ^(,), 
*=o       ' *" fc=o 

where £?p+2fc() indicates the expectation with respect to the central chi-square dis- 

tribution with p + 2k degrees of freedom. For the chi-square distribution, it can be 

shown by integration by parts that 

(2.5) Em(S - mp)h{S) = 2fiEmSti{S) 

for 5 ~ n Xm an<i MO such that all expectations in (2.5) exist. Using this equality, 

Rk(r) in (2.4) can be rewritten as 

Mr) = ^E2{n+k){l - r(S)}2 - _L_£2(n+fe){[<? - 2(n + k)]r[S)} 

since 
AEm+2{r'(S)) = 4Em{-T'(S)) 

m 

= ^Em{[S-m]r{S)} 
m 

with m = 2{n + k). Further, by integration by parts, 

ÄfcW = ^-rrTT^2n + 4A:^2(»+fc)r(5) +2nE2{n+k){T{S)f - 4{n +k)Ep+2kr(S)} 
(2.6) 2ln + *' 

oc n{c - l)2 + y {2(n + A:)J^+2fc(3) - (2A; + 2nr{3))F2{n+k){S)}dT, 

where c = lim r(a) = 1 from condition i) and ii), thus the first term vanishes. The 
8—+CO 

integrand in the second term can be rewritten as 

(2.7) F2{n+k)(s) • [2(n + *)^^ " 2* - 2»r(.)], 



where 7„+fc(a)/2(n + k) = F2{n+k+i){3)/F2[n+k){s) with 7„() defined in (1.5).   (See the 

appendix for the several properties of 7„(-) function.) We also know that 2-7„+i(s) + 

7» (a) > 0 for every n > 0 and a > 0. Thus the expression in braces in (2.6) can be 

rewritten as 
7n+fc(s) - Ik - 7„(s) + 7„(s) - 2nr(a) 

fc 
= 7„(a) - 2nr(a) - ]T(2 + 7ll+y_1 (a) - 7»+y(*)) 

y=i 
<7„(a)-2nr(a) 

< 0   from condition (ii). 

Combining this and condition (i) of nondecreasing T(S), the expression for Rk{r) in 

(2.6) gives Rk(T) < 0 for every integer k > 0; thus the theorem is proved.  We note 

that, when ||0||2 = 0 (i.e.  A = o), if we choose r(s) = 7„(s)/2n then the quantity in 

brackets in (2.7) becomes 

7„(a) - 2nr(a) = 7„(a) - 7„(a) = 0 

and the Poisson random variable has nonzero weight only when k = 0. This proves 

the assertion of the equality. Q.E.D. 

3. Construction. 

If T(S) is not absolutely continuous then the expression (2.1) does not exist. 

However, the lower bound 7„(a)/2n for r(a) is very useful searching for a better 

estimator. Define 

f Efei ri{s)I{Si_ltSi)(a),    if Si exists for i = 1,2, 
(2.8) r(a) = I 

{n(s), otherwise, 

where Ti(Si) = n+1(Si) for i = 1,2,S0 = 0,Sa = 00 and ^(s) are absolutely continuous 

in (£,•_!,5i]. Then, with some conditions on n(a), such T(S) gives a smaller risk than 

that of the Stein estimator. 

Theorem 3. An estimator S(X) = (1-2TIT(S}/S)X with r(s) defined in (2.8) has smaller 

risk than that of the Stein estimator if, for any value of s, 7„(a)/2n < T(S) < min{l, s/2n}, 

where p = 2(n+ 1) and T(S) is nondecreasing. 

Proof. If S{ does not exist for i = 1,2 then, since 7„(a)/2n < TI(S) = T{a) < min{l, S/2n} 

for any S > 0 and if ri(a) is absolutely continuous, this theorem is proved from 

Theorem 1. The risk difference can be expressed as 

R(0, S) - R(6, SJS) = f; A'eXP(   X]R3ir) 
y=o 
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where 

2n  ' M2 _ A.I-, _ •t„^  , o.-i _ „ _u .„2, i2y(r) = £p+2y[5(l - Tr(a))2 - 4,(1 - -r(*)) + 2j\ - p + 4n2/2(n + j) 

oc n(l - 2EP+2JT{S) + #2(„+J)[r(s)]2) - 2j[Ep+2ir{S) - E2(n+3)r{s)). 

We know that if F0, Fi are two cumulative distribution functions on the real line such 

that Fi{x) < F0{x) for all x, then E0h(X) < Exh{X) for any nondecreasing function h(-). 

Thus, EP+2JT{S) — EP+2J-2T{S) > 0 since our r(a) is nondecreasing and Fp+2]- < FP+2j-2- 

It is, therefore, enough to show that the first term in (2.9) is nonpositive. For k = 3, 

R3l = 1 - 2Ep+2ir{s) + EP+2]-2{T{S))
2 

(2"10) = 1 - E<2 r «WtfH«W " I"' («(stfdF^Ms)}- 
,-=1        J S%-1 JSi-i 

We note here that, for all S € {S2, oo), r3(s) = 1. In each interval (5<_x,5t], (2.10) can 

be rewritten by integration by parts, as 

R,i = 1 -2J{/a(%(fli) - ft(5i-i)n(*-i) - /   '   *a(«)<M«)} 
•=i •'s»-i 

+ E0MS)M$)]2 - Jitfll-iJ^tai-i)]3 - 2 /"5' n{»)Fl[s)dn{,)} 

«ET* (ftW-Ji(»)»sW)^W 
•>       »a — 

-£JL 
5"*MlS#-*(•)]*»(•). l2(n + fc) 

where fi(s) = Fp+2y_2(s) and ^(s) = fp+2y(a). From the property (viii) of the 7„() 

function (see the appendix), in+k(S)/2{n + k) < in(S)/2n < n{s) for all 5 e (Si-i,Si],i = 

1,2,3. This proves the result for k = 3. For Jfc = 2, it can be shown easily by putting 

S2 = oo and T2{S) = 1 for all s > Si. Q.E.D. 

Any estimator defined in Theorem 3 has uniformly smaller risk than that of the 

Stein estimator. Thus, from the definition, so does the RSL. To choose the best 

among them, we minimize RSL{b, S) under the restrictions that ^n(S)/2n < r(S) < 

min{l,S/2n} and nondecreasing r(s). Let Sb be a solution of 7„(s)/s = 6. 

Theorem 4. The estimator in the class of estimators defined in Theorem 3 which 

minimizes RSL{b,S) is given by Sb
H{X) = (1- *f rH(b,S))X, where 

f 7„(S)/2nI(0,<?,) {S) + bS/2nI(Sbt2n/b) {S) + J(to/*»)(s).    if Sb exists, 
TH(b,S)={ 

{ bS/2nI(0,2n/b) {S) + J(a»/*,eo) {S), otherwise. 



Proof.  We note here that the condition that Sb exists can be replaced by that of 

0 < b < (p - 2)/p since for any a > 0,in(s)/s < (p - 2)/p. It can be shown that 

RSL(b,6) = Ep+2{(^r(S)-lf\b} 

= Ep+2{{^{r{S) - g)}2|6} « Ep{(r(S) - g)2|6} 

is minimized at T(S)= bS/2n. Imposing the restriction that 7„(S) < 2nr(5) < min{5', l/2n}, 

that we get RSL(b,S^) = minRSL{b, S), where the minimization is over the etimators 

defined in this theorem. 

4. Evaluation and Comments. 

1. The lower bound 7„(5)/5 of shrinkage has an interesting property when S 

approaches to zero. In the Bayesian framework with normal prior JVp(0,S-1(l-5)7), 

the marginal distribution of X is JVP(0,5_1/). When we have X = 0 (thus 5 = o), then 

the (empirical) Bayesian estimator of B will be 

E{X=o}B = IoB-B^exp(-BS/2)g(B)dB 

£ B*+1 exp{-BS/2A)g{B)dB s=o 

= f  Bn+2g{B)dB/ f  Bn+1g{B)dB < 1, 
Jo Jo 

where the equality holds if and only if the hyper prior g(B) is concentrated at B = l. 

It depends only on the prior information. When we do not have any information 

about B and we use g(B) <x B~2 (a limiting case of Strawderman (1971)), then 

Eix=°)B = ^ = lim 22^. We note again P-2 = 2n. 

2. Another interesting property is that it makes it easy to put some prior 

information about B, say b e (0,1], into the estimation procedure. One example 

using the lower bound is an estimator with rH(b,S) in (1.5). It has a good property 

which an estimator in the extended class of Stein estimators defined in (1.4) with 

c = 1 does not possess. Berger (1982) gave it an intuitive justification as being the 

Bayes estimator (based on 6 ~ iyp(0,6_1(l - 6)/)) when the prior guess b is supported 

by the data (small s), and being a Stein estimator otherwise. The null hypothesis of 

B = b is rejected if the data turn out to be small (near zero), and we can infer that B 

is bigger than 6, but 6^(S) remains in b. This undesirable property of 6^{S) becomes 

severe when b approaches zero. That is Km B^(S) = 0 no matter what the data are. 

When we have almost zero prior knowledge (almost uniform distribution on d) then 

the extended class of Stein estimators becomes MLE; thus the risk remains p for any 

value of 0. But BH{b,S) = {p-2)rH{b,S)/S with rH{b,S) in (1.4) gives tn(S)/S when b 



approaches zero and we know that its risk R{9,6H) is smaller (uniformly) than that 

of the Stein estimator; thus the effect of the lower bound 7„(5)/5 is great. 

3. Another merit of Bjt{b,S) is that it gives a very stable protection against 

misspeducation of prior information. This can be explained in terms of relative 

savings loss. Berger (1982) expressed the RSL of estimators in the extended class 

of Stein estimators as a function of B/b. 

Theorem 5. (Berger (1982)). Define 2n = p-2 and A = B/b, where B and 6 are true 

and prior value of hyper parameter of normal distribution JV(0,J3-1(1 — B)I). Then 

RSL{B, 6+) = (1 - A"1)2 + Ax (A) • [1 - Fp+2(2nX)} 

+ A2(X) • ß • /P+2(A|2n), 

where 

A1(A) = 2/p-(l-A-1)2, 

A2(A) = l/p-l/(p-2)A, 

/p+2(A|2n)=2nx2.+2, 

Fp+2{-) is the cdf of the chi-square distribution with p + 2 degrees of freedom. 

The values of RSL when p = 4 for various A are in Table 1. It shows that if B > 36 

then RSL{B,Sf) > 0.5 = RSL(B, SJS) while, for any value of B/b,RSL(B,S^) < 0.5. 

TABLE 1. RSL{B,6+),p = 4 

A RSL A RSL 
0 0.5 1.5 0.42 

.1 0.469 3 0.505 

.3 0.423 4 0.584 

.5 0.393 5 0.648 

.7 0.376 10 0.810 

0.9 0.370 100 0.980 

1.0 0.368 oo 1.0 

4. An analogue of the generalized prior distribution on 6, which Berger (1980) 

suggested using is 

M«) = ^(i-i)-"3-p[-|7Ä}B-^B. 



It is a heavy tail prior, the tail chosen to yield robustness (on the prior). This leads 

to the Bayes estimator (1 - 7»Wc) )jf. The constant c can be interpreted as 

c = B{1 + prior guess for common variance in Np(0, TI)}. 

But it can be less than B; thus the variance term c/B - 1 can be negative. To avoid 

this difficulty, the range of integration is modified by B e (0, c) not (0,1). Then 

« JjB-1 - I)'*/2 ^-*J!l-}B-*dB 

and this leads to the Bayes estimator (l-*in(s)/s)X. We note here that the shrinkage 

estimator due to the robust prior distribution is the lower bound of T(S). 

5. S% has an empirical Bayes property. The fact that lim 2n/S=B with proba- 

bility one is known. Thus with the expression in{S)/2n = WESoC3/2»)* r(K+"')>~1> 

it can be shown that  lim 7„(5)/2n = 1 with probability one and these imply that 
n—*oo 

both bounds in(S)/S and 2n/S approach to the true value of B with probability one 

for the case of large p (thus large n). So does BH(b,S). This implies that, for large 

p,6$j(X) is very close to the optimal linear estimator (1 - B)X. 



APPENDIX 

1. Properties of 7„(a). 

For any n > 0 and a > 0, 

i)  0<7„(a) < 2n. 

ii) 7„(s) is increasing in a. 

iii) 7„(a) is increasing in a. 

iii)   Km 7„(a)/a = n/{n + 1). 

iv) in(s)/s is decreasing in a. 

v)    lim 7„(a) = a. 
n-»oo 

vi)  0<7n+1(a)-7n(a)<2. 

vii) 7n(s)/2n = F2(n+i){s)/F2n{s) where F2n{s) is the cdf of the chi-square distribution 

with 2n degrees of freedom, 

viii) 7n+i(s)/7n(s) is decreasing in n. 

ix) 7»+i(s) -in{s) is increasing in a. 

Proof. From (i) to (vi), the proof is in Berger (1980). For the part (vii), 

7nOQ_   s    /0Vexp(-ta/2)tft 

2n        2n JjJ t»-i exp(-ia/2)<ft 

=     T(n)2"      f'aPexp{-a:/2)dx   = .gä<n+i)(«) 
r(n+l)2»/0'a:»*-1exp(-a;/2)da: F2n(s)    ' 

For part (viii), suppose there exist some a, say £0, such that 

7«+2(Sb) - 7»+i(50) > 7»+i(5o) - ln{So) 

and this is true for any n > 0. We know that 7n+i(Sb) - 7»(So) > 0 for any n > 0 from 

part (vi). But part (v) gives lim (7n+2(<So) -7n+i(<Sb)) = 0. Therefore, there exists no 

such So, and thus the assertion follows. With this and the fact 

2 1 
j^{ln+i{a) -7»M) = ^{7n+i(s)An+i(a) -7n(3)^„(a)} 

a [{7n+i(s) -7n(a)}{2 + 7„(3)}-7„+1(a){7n+2(s) -7n+1(s)}] 

> (7n+i(s) - 7»(a)) - (7n+2(s) - 7n+i(s)) 

> 0    from part (viii), 

part (ix) is clear. We note here that An(s) = 2 -7„+1(a) + 7„(a). 
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