
AD-A-?1 219 PARALLEL TREE CONTRACTION AND ITS APPLICATION(U) 1/
HARVARD UNIY CAMBRIDGE NA AIKEN COMPUTATION LAB

MILLER ET AL. DEC 85 TR-8-05 N6914-B-C-S6477
UNCLASSIFIED F/ 9/2 NL

som|ommommooll
sommommo||olllEEEEEEEEEEEEEE
EEEEEEEE

111 1.0 m:42t

S1.5

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

LECTE

ORW [ILE CORY!
I'UIUTTON SF/'r77Y17

A~pivfjdfot public ritinael
Dist~bution Unimnited

PARALLEL TREE CONTRACTION AND ITS APPLICATION

Gary L. Miller
John H. Reif

TR-18-85

December 1985

DTIC

AUG2 6 0

)D

t a l;
jApprovod 101 pubhc 01e es

Distribudwo Unlimited

PARALLEL TREE CONTRACTION AND ITS APFIJICATION

Gary L. Miller1

Department Of Computer Science
University of Southern California

Los Angeles, CA 90089-0782

John H. RelfP
Aiken Computation Lab.

Harvard University
Cambridge, MA 02138

ITbis work was supported is part by National Science Foundation grant NSFCS4O07M76 and Air

Force Office of Scientific Research AFOSR42-03%.

2Tbis work was supported by Office of Naval Researcb Contract N0001440.C4647 and National
Science Foundation grant DCR-.8503251

SECURITY CLASSIFICATION OF THIS PAGE (Whmo Data kterod)
REPORT DOCUME4TjLTION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERFO

PARALLEL TREE CONTRACTION AND ITS APPLICATION Technical Report
6. PERFORMING ORG. REPORT NUMBER

TR-18-85
7. AUTHOR() a. CONTRACT OR GRANT NUMBER(,J

Gary L. Miller N0014-80-C-0647
John H. Reif

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AR A & wORK UNIT NUMBERS

Harvard University
Cambridge, MA 02138

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of the Naval Research December 1985
800 North Qunicy Street I. NUMBER OF PAGES

Arlington, VA 22217 55
14. MONITORING AGENCY NAME & ADORESS(Il dilffemre from Controllng Office) IS. SECURITY CLASS. (of this report)

SA AS ABOVE ISa. DECLASSIFICATION/DOWNGRAOINGSCHEFDULEF

IS. DISTRIBUTION STATEMENT (of this Repct)

unlimited [DIY.WfION -STA.TEM A

tDz...a&im UnUMh~itd

17. DISTRIBUTION STATEMENT (of the abstract emered tit Slock 20, it different from Report)

unlimited

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Cuntiue an reverse side if necessary and Identti' by blek number)

parallel tree contraction, parallel algorithm, expression evaluation,
canonical forms, randomized algorithm, planarity, isomorphism

20. ABSTRACT (Co tlnue o n ev rse aid i n ecoaa my dn Identify b y beek tne w) f

See pewwTve--ei .
IiI

DD .o. 1473 EDITION OF I NOV 611 IS OBSOLETE
S/N 0102"014" 6601

SECURITY CLASSIFiCATION OF THIS PAGE (When Data Ente*rd)

1. Introduction

) Trees play a fundamental role in many computations, both for sequential as well as

parallel problems. The classic paradigm applied to generate parallel algorithms in the

presence of trees has been ,,.vide-conquer, finding a 1/3 - 2/3 separator and

recursively solving the two subproblems. A now classic example is Brent's work on

parallel evaluation of arithmetic expressions [51 This top-down

complications, one of which is finding the separators. We define dvxnaiceression

evaluation as the task of evaluating the expression with no free preprocessing. If we

apply Brent's method, finding the separators seems to add a factor of log n to the

running time.

We give a abottom-up gorithm to handle trees. That is, all modifications to the

tree are done locally. This 7ottom-up " approach which we call ONTRACT has two

major advantages over the dtop-downW approach: (1) the control structure is straight

forward and easier to implement facilitating new algorithms using fewer processors and

less time. (2) problems for which it was too difficult or too complicated to rind polylog

parallel algorithms are now easy. We believe our lasting contribution will be

-es

-. 4o

.4d t

2

CONTRACT. It has already been applied to finding small separators for planar graphs

in parallel [151.

We shall use the P-R.A-\ model of a parallel processing device see [21). A P-RAM

consists of a collection processors. Each processor is a random access machine where it

can read and write in a common random access memory. In unit time they are allowed

concurrent reads and concurrent writes (CRCW), as well as arithmetic operations on

integers of magnitude no (I). There are two natural implementations of concurrent

reads. (I) if two or more processors attempt to write in a given location of common

memory then one of the processor will succeed. The preformance of the algorithm should

not depend on which processor succeeds. (2) In the second model concurrent reads in a

given location cause detectable noise to be stored in that location. Unless otherwise

stated we shall assume the first model for concurrent reads. But, most of our algorithms

work with the same performance in the second model.

Many of our algorithms use randomization. That is, each processor has access to an

independent random number of magnitude < n per step. A (l-sided) randomized

algorithm A is said to accept a language L in 71n) time using P(n) processors if the

,'" '." ." • • ".' *" ,*o. -. w , e -

3

following conditions hold: (1) on all inputs w of length n A uses at most 71n) time and

R~n) processors independent of the random bits; (2) if A accepts w then to E L else A is

correct with probability of error > 1-1/n. Note that we have chosen 1/n for our error

bound instead of the common value 1/2. It seems to increase the running time by a

factor of log n to achieve the error bound l/n from an algorithm with error bound 1/2.

On the other hand, to achieve the tighter error bound 1/n' only increases the running

time by a factor of a. We say an algorithm is 0-sided randomized if it is alway correct

when it terminates and the probability of termination is > 1-1/n. We often denote 0-

sided and -sided by subscripts of 0 and I respectively, see 1171.

All our P-RAM algorithms will only use a polynomial number of processors. We shall

take considerable effort to minimize the number of processors used. Most of these results

can also be expressed in terms of circuits with simultaneous depth 0 (logn)0 (1) and

nO (1) size. We leave the discussion of circuit size to the final paper.

The Main Results of This Paper

1. We exhibit a deterministic P-RAM algorithm for dynamic expression evaluation
using 0 (log n) time and 0 (n) processors and a 0-sided randomized version of this
algorithm using only 0 (n/log n) processors.

2. We extend the algorithms in 1. to evaluate all subexpressions using the same time

and number of processors.

3. We exhibit a 0-sided randomized algorithm for testing isomorphism of trees,

4

subtrees, and subexpressions using 0 (log n) time and 0 (n/log n) processors. We
also exhibit a deterministic 0 (log n) time algorithm using 0 (n2log n) processors for
canonical forms of trees.

4. We show that the tree of 3-connected components (as defined by Hopcroft & Tarjan
[11) is constructible in 0 (log n) time on a P-RAM.

5. We construct an 0 (tog2 n) time P-RAM algorithm that computes explicit planar
embedding of planar graphs even if the graphs are not 3-connected.

6. We construct an 0 (log3n) time P-RAM algorithm that computes a canonical form
for planar graphs.

Previous Work

We compare each of these new results with previous work.

1. Brent [5j showed that expressions of size n could be rewritten in straight-line code of
depth 0 (log n). Natural dynamic implementations of this work in parallel seem to
require 0 (lorn) time.

2. Our result is a natural generalization of parallel prefix evaluation 17, 241. Up to
constant factors we use no more time or processors.

3. Ruzzo [201 shows that isomorphism of trees of degree at most log n could be done in
0 (log n) time. No polylog parallel algorithm was known for tree isomorphism of
unbounded degree.

4. J&'Ja' and Simon [11] give an 0 (log n) P-R.M algorithm for finding maximal
subsets of vertices which are pairwise 3-connected, but they do not address the
problem of finding the tree of 3-connected components. In particular, they do not
construct embeddings of general planar graphs.

5. Ja'Ja' and Simon [11] give an 0 (torn) P-RAM algorithm for constructing
embeddings of 3-connected graphs but only test, in principal, if a general graph is
planar.

5. No previous polylog parallel algorithm for testing isomorphism of planar graphs
existed.

The body of the paper consists of 6 sections. This section states the main results of

-...

-,: . - ,, - . .- . . .- . -., • .- - . , - - ., -.. - . , - . . - .- - .,;*, .-,, " ' 4,, ..•.

this paper and compares these new results with previous work. In section 2 we define

two abstract operations on trees, RAKE and COMPRESS. We show that only 0 (log n)

simultaneous applications variance of these operations are needed to reduce a tree to a

point. In section 3 we show how to implement these operatims on a randomized P-RAM

in unit time using an optimal number of processors. We call this implementation

Dynamic Tree Contraction. In sections 4, 5 and 6 we apply Dynamic Tree Contraction

to expression evaluation, and tree isomorphism, and canonuira forms for trees and planar

graphs.

2. The RAKE and COMPRESS Operations

Let T=(--(E) be a rooted tree with n nodes and root r. We describe two simple parallel

operations on T such that at most 0 (log n) applications are needed to reduce T to a

single node.

Let RAKE be the operation of removing all leaves from T. It is easy to see that RAKE

may need to be applied a linear number of times to a highly unbalanced tree to reduce T

to a single node. We can circumvent this problem by adding one more operation.

We say a sequence of nodes t'l,...,vk is a chain if v, 1 is the only child of v, for

I < i < k, and vk has exactly one child and that child is not a leaf. In one parallel step,

we compress a chain by identifying vi with vi+ I for i odd and 1 < i < k. Note that if

we represent T as an expression, then it is easy to find each maximal chain and its

vertices in 0 (log n) time using 0 (n) processors. Let COMPRESS be the operation on T

which contracts all maximal chains of T in one step. Note that maximal chains of length

one are not effected by COMPRESS.

Let CONTRACT be the simultaneous application of RAKE and COMPRESS to the

entire tree. We next show that the CONTRACT operation need only be executed

O (log n) times to reduce T to its root.

Theorem 1: After rlog5 / 4nl executions of CONTRACT to a tree on n vertices it is

reduced to its root.

Proof. We partition the vertices of T into two sets Ra and Corn such that IRal will

decrease by a factor of 4/5 after an execution of RAKE and Corn will decrease by a

factor of 1/2 after COMPRESS.

Let V be the leaves of T, V be the vertices with only one child and let V2 be those

i

7

vertices with 2 or more children. We further partition the set V into C0, C1, and C2

according to whether the child is in Vo, Vi, and V2 respectively. Similarly partition the

vertices C1 into GC0 , CC 1 , and GC 2 according to whether the grandchild is in V, V,

and I2 respectively. Let Ra=' 0 UVUC0 UC 2UGC 0 and Com=V-Ra.

To see that Ra decreases by a 1/5 after each RAKE we show that IRal < 511I1. The

* inequality follows by noting that 1121 < IVoI, IC01 < 1V01, GC _ IVo, and IC21 5 JV21.

Note that every vertex in V except those of CO belong to a chain. Thus every vertex of

Corn belongs to some maximal chain. If 1',...,V' are the vertices of a maximal chain

*. then either V E C2 or Vk E GC O. In either case V1,...,Vk_ 1 are the only elements in the

chain belonging to Corn. Thus, the number of elements in a maximal chain of Corn

decreases by at least a factor of 1/2 after COMPRESS. 0

The type of argument used in the proof of theorem I will be used in the analysis of

several other algorithms which are based on CONTRACT. Given a tree T=(VE) let

Rake(V)=Ra and Compress()=Com as defined in the above proof.

There are many useful applications of parallel tree contraction and expansion. For each

S

8

given application, we associate a certain procedure with each RAKE and COMDPRESS

operation which we assume can be computed in parallel quickly. (Typically the vertices

of the tree T will contain labels storing information relevant to the given application.

The RAKE and COMPRESS operations will modify these labels, as well as the tree

itself.)

* As a simple example in the case when T is an expression tree over {-,+} the RAKE

corresponds to the operation of 1) evaluating a node if all of its c hildren have been

evaluated or 2) partially evaluating a node if some of its children have been evaluated.

The cost of applying RAKE to an expression tree is the cost of evaluating a node. If a

node has been partially evaluated except for one child then the value of the node is a

linear function of the child, say, a.Y+b where X is a variable. Thus a chain is a sequence

of nodes each of which is a linear function of its child. In this application, COMPRESS

is simply pairwise composition of linear functions.

This gives a simple proof that (after preprocessing) expressions can be evaluated in

time 0 (log n) and 0 (n) processors on a P-RAM. On the other hand, the naive dynamic

implementation of COMPRESS requires 0 (log n) time since we first will determine the

9

parity of each node on a chain by pointer jumping, i.e., (doubling-up), then combine

consecutively the odd and even nodes pairwise in constant time. In the next section we

implement randomized variant of COMPRESS which can be performed in constant time.

3. Dynamic Tree Contraction (Deterministic and Randomized)

3.1. Deterministic Tree Contraction

In this section we describe in more detail two implementations of COMPRESS. The

* first is deterministic while the second is a randomized algorithm Which is given in

subsection 3.2. The deterministic algorithm seems to need 0(n) processors to achieve

* 0(log n) time. We will show in section 4 how to improve the randomized algorithm to

only use 0(n/log n) processors and 0(Iog n) time. In this section we assume that the trees

are of bounded degree. The analysis of trees of unbounded degree is in section 6.

Let T be a rooted tree with node set V of size n=111 and root r E V We view each

node, which is not a leaf, as a function to be computed where the children supply the

arguments. For each node v with children vi ... Vk we will set aside k locations ,.. kin

common memory. Initially each 1i is empty or unmarked. When the value of $ is known

we will assigp it to 1,: this will be simply denoted by mar 1,, Lot AM denote the

10

number of unmarked Ii. Thus, initially Arg(v)=k the number of children of v. We need

one further notation; let node(Rt,)} be the node associated with storage location Frv).

Figure 3-1 contains a Dynamic Contraction Phase.

Procedure Dynamic Tree Contraction

In Parallel for all v E V-(r)do

1) 1f Arg(t)=O then mark FJv) and delete v

2) If Arg(t,)=Arg(node(Fl v))= 1 then

Ply) - Plnode(f~v))).

od
Figure 3-1: A Dynamic Contraction Phase

The procedure implements the RAKE in the straight forward way; while the operation

COMPRESS is implemented by pointer jumping. In line 2) of the procedure each node

in a chain adjusts its pointer P which was initially pointing at its parent, to point at its

grandparent.

More intuition for the procedure Dynamic Contraction can be gained by seeing it

applied to expression evaluation over { X ,+). If Arg(v)=O is applied then v "knows" its

................................. .- b*1,

II

value and passes it on to its parent. We can test if Arg(v)=O or Arg(v)=l in constant

time using concurrent reads and writes. If v and P(v) are functions of one remaining

argument we will view them as linear functions of their argument. We store these

functions in common memory indexed by the corresponding vertex. Thus v reads the

linear function of FJv), composes it with its own function, and adjusts its pointer to

PFnode(PtJ)). It follows that this correctly computes the value of the expression. We

next analyze the number of applications of Dynamic Contraction used.

Theorem 2: The number of applications of Dynamic Tree Contraction needed to

reduce a tree of n nodes to its root is identical to the number for CONTRACT.

Proof: Observe that every maximal chain, after dynamic tree contraction,

decomposes into two chains, one essential chain corresponding to COMPRESS and an

unnecessary chain that is out of phase. This second chain has a leaf that is unevaluated.

For purpose of analysis we can discard the second chain for the analysis since it will

never be evaluated. Thus a single phase of dynamic tree contraction is just

CONTRACT, after discarding the unevaluatable chains. 0

Note that many nodes are not evaluated, that is, for many v Arg(v) is never set to 0

12

during ..,q% -: ., D nic Tree Contraction. We will define a new procedure Dynamic

Tree [q.,in-.rj %%Ii;h %%ill alluw the evaluation of all nodes, i.e., each node will

eventu.s!'i. h i ail its ar imrnts after completion of the procedure. We modify Dynamic

Tree C,,:..,,;.,n so thit each node keeps a push-down store Store, which is initially

empty of :! t: prt i,%,oi values of niv). Here we add line 0) at the start of the block

4 inside t!,,. J.-, . ,of Dvnamic Tree Contraction:

0) Pu'-h u.,ij .. ore. value PfT).

We nv,, ,I I)y,wmic Tree C,nlraction until the root r has all its arguments. Next

we apr. - .. !ure D n ,4nic Trm. Expansion given in Figure 3-2 until all nodes have all

*" their arguments.

P r DN rimir rree Expansion

N Par:illpl for all v c -{r)do

1) [11) .- Pop(Store.)

2) if' .1r)--O then mark Ijv).

od
Fi&ure 3-2: A Dynamic Expansion Phase

13

We must show that after successive applications of Dynamic Tree Expansion all nodes

have their arguments. As in the proof of Theorem 2 we can discard those chains that

have a leaf which will not be evaluated. The proof is by induction on the trees with only

essential chains, as defined in the proof of the previous theorem, starting from the

singleton r and finishing with the original tree T, say, {r)=TI,...,Tk=T. Now every

node in T,+, is either a leaf in which case we know its value or it is missing one

argument which is the value of a node in T. In the later case this value will be supplied

in one application of Dynamic Tree Expansion. This gives the following theorem.

Theorem 3: In at most [log 5 / 4 nl applications of dynamic tree contraction and

[log5 / 4 n] applications of dynamic tree expansion are needed to mark all nodes.

32. Randomized Tree Contraction and Expansion

We next describe a randomized version of CONTRACT. This algorithm has the

disadvantage that it needs access to many random numbers but it has the advantages

that 1) in many cases, it will only use about half as many function evaluations and 2) it

can be modified into an algorithm which up to constant factors uses an optimal number

O(n/log n) of processors and still runs in time O(log n).

o- - -. -. -- ',-- .- .. , , ' -,. ., .. .'-..,,'-,, .' ,:.,. ,. "... :. -. . ,..*, ,' ,- .. ;-,, ' ',.,., ,,,;, ;:;: . :.' ," ','... ..

14

Procedure RANIDOMIZED CONTRACT

n Parallel for all v E V-{r) which have not been deleted do

1) If Arg(v)=O then mark FPv) and delete vr,

2) LfArg(v)=I then

randomly assign M or F to Sex(v).

3) Lf Arg(v)=F and Arq(node(Fv)))=M#then do

a) Push on Slorev value IHv);

b) Fv) - Fjnode(P(v)));

c) delete node(Rv)).

od

od

Figure 3-3: A RANDOMIZED CONTRACT Phase

The analysis will follow arguments similar to those used in the proof of Theorem 1.

Here we partition the vertex set V into Rake(I} and Compress(V) as defined in that

proof. Aga. by similar arguments step 1) of RANDOMIZED CONTRACT will delete at

least a 1/5 of the nodes in Rake(v). Steps 2) and 3) of randomized CONTRACT we call

r......- ...w-.....-............. " ' , - .

15

Randomized Pointer Juminr. The expected number of nodes of Compress(V) which are

deleted in step 3c) is m/4 where m=ICompres(VI. We cannot directly conclude that

the median is also m/4. We can lower bound the median using the expected number

and the variance of the number of nodes deleted. Since the number of deleted nodes in

each maximal chain is mutually independent, the number of deleted nodes is the sum of

independent random variables, one for each maximal chain. Let Cl,...,Ck be a list of

maximal chains in T where C. is a chain of length m,+1 Thus, m i of the nodes of C.

belongs to Compress(V). Let the number of deleted nodes after one application of

RANDOMIZED CONTRACT be the random variable MATEm.* If m=Compres(1)I

then the random variable which is the number of deleted nodes in one phase will be

X=MATEm +-..+MATEmk where k is the number of maximal chains. Thus, the

expected value of X is E(X)=m/4. By Lemma 30 the variance for one chain is

k(mi+2)/16. Thus, the variance for X is E,., (m8+2)/16=(m+2k)/16. The variance is

maximized when each m *=1. In this case the variance is VBr(X)=r3m/16. The

Chebichev inequality gives the following estimate for the median of X, P(X), see (114]

page 244).

Lemma 4: I(X)-E(X)I < /2t r(A)

1S

Thus v(.Y) t EJ.%)-V2Aiar(E).

In our case this gives g(X) m/4- V .

Therefore for sufficiently large m u(A) _ m/5.

Theorem 5: For any e>0 and sufficiently large n RANDOMIZED CONTRACT

deletes at least (1-e)n/5 vertices with probability at least 1/2.

Proof: I et T be the tree input to Randomized Contraction and m=Compress(V).

Thus, n-m=IRaket). We know that at least (n-m)/5 vertices in Rake(v) are deleted

in eA ery phase. We know by the last lemma for m sufficiently large, say 1, m/5 of the

vertices in Compress(V) are also deleted. In the case when m<1 we argue as follows. For

n > I/e we have (n-m)/5 > (n-l)/5> (n-en)/5 > (l-c)n/5. We have shown that for

n large and m small the vertices deleted by RAKE will suffice to prove the theorem. 0"

We next show that RANDOIZED CONTRACT will delete at least (l-e)n/8 nodes

with only exponentially small probability of failure for any e>0. Let S. be the number

of successes in n independent trials with probability p of success on each trial. We shall

need one major fact about the binomial random variable Sn. The probability of being

17

more.than any fixed constant from the expected value is exponentially small. This fact

was observed by Uspensky [231, see 112]. These bounds are commonly known as

Chernoff bounds 16J. We shall use the following simply stated bounds [3.

Theorem 6: For any I >>0

Prob[S, < [(1-e}npJJ < e 2 "nP/2 and,

2p/
Prob[Sn 2! [(+e)npl] _5 e- 'np/3

We use these bounds to show:

Theorem 7: One phase of RANDOMIZED CONTRACT for any (>O will delete at

least (1-()n/8 nodes with the probability of failure less than e- (en where c is a positive

constant only depending on c.

Proof: Let n be the number of nodes in a tree T and m the number of nodes in

Compress(T). If m < 3n/8 then n-m > 5n/8 nodes are in Rake(T) and therefore at

least 1/5(Sn/8)=n/8 of them are deleted by RAKE. In this case n/8 of the nodes are

deleted by RAKE alone without considering nodes deleted by COMPRESS. Thus, we

may assume that m>3n/8. It will suffice to show that (1-c)m/S of the nodes in

Compress(7) are deleted by RANDOMIZED CONTRACT with small probability of

"e *-"'

18

failure. Let IC Compress(V) be a maximum subset of nodes such that no node in I is a

parent of another node in I, i.e. I is an independent set. Now each node in I is deleted

independently with probability 1/4. Since the induced graph on Compress(T) is a forest,

the number of nodes in IA frm/21. Thus the number of nodes deleted is bounded below

by the binomial random variable Srm/21. The probability that less than (1-)m/8 nodes

of Compress(T) are deleted then using Chernoff bounds is:

Using the hypothesis that m > 3n/8 we get that the above probability:

< e- 23n/2=--en' where c= 23/2 7, r

4. An Optimal Randomized Tree Evaluation Algorithm

4.1. Improving the processor count by load balancing

In this section we show how to implement RANDOMIZED CONTRACT on a tree T so

that T is reduced to its root in O(Iog n) time using O(n/log n) processors. The important

difference here is that we will be operating on an array of n nodes using only o(n)

processors as opposed to one processor for each pointer value. We consider pointers to

• !9

M'.- 11- -' -- '7. a .- - - C- K -Y - -.TV TwTR1171 71-

1g

be either dead or alive. If all pointers of the array are alive and we have p processors

then we simply assign intervals of pointer values of size rn/pi to a single processor.

If the live pointers are interspersed with dead pointers then the time required for a

processor to finish its tasks may be much longer than the expected or average time. We

give a method of balancing the work load using randomization. We consider the

processors to be numbered consecutively. In general if A is an algorithm originally

specified using p processors but only p' are available we will assume that A is

implemented by assigning each distinct interval of p/Pr virtual processors to one actual

processor.

Note that after each phase of randomized contract with very high probability at least

1/8th of the processors are assign to dead pointers, Theorem g. Thus after 0(11 n) phases,

where It n=log(log n) we will have only n/log n active processors. One can assign active

tasks to an initial sequence of processors by computing all prefix sums as follows.

"Let ... n be a sequence of zeros and ones where #,=I if processor i is active an 0

k
otherwise, and ak-=-IFh,, si.We now assign the task of processor i to processor ai. It is

I.. +,-

20

well known, see [24J:

Lemma 8: All prefix sums of a string of length n can be computed in 0(log n) time

using 0(n/log n) processors.

This motivates a simple randomized tree evaluation algorithm using 0(nll n/log n)

processors and O(Iog n) time.

To see that it works in O(log n) time we use Theorem 9. Note that for some constant c

and large enough n that step 1) will reduce T to a tree on rn/log ni nodes with

probability of failure 5 1/n. Now each execution of (*) will take O(Iog n/li n) time.

Thus step 1) requires O(Iog n) time. By lemma 8 step 2) only takes O(log n) time. By the

first remark and large enough c we have 171 : n/log n. Thus step 3) will only take

(log n) time with probability of failure < I/n.

Thus the simple form of randomized tree evaluation reduces the processor count to

0(nll n/log n), by only 'load balancinge once. To remove the last It n factor we will load

balance bet'een each application of (*). The goal will be to partially balance the load as

apposed to performing the balancing exactly. We do the partial balancing by first

21

Procedure Randomized Tree Evaluation (Simple form)

1). Set p -- rnll n/log nl, k - 1;

2). While k < c(II n) do

T-- Randomized Contraction(T) (*)

(using p processors)

od

3). Using all prefix sums calculation assign the active

tasks to an initial sequence of processors.

4). WVhile 171>I do

T- RANDOMIZED CONTRACT(T)

od

Figure 4-1: A Randomized Tree Evaluation (simple form)

randomly permuting the tasks and next partially balancing the almost random string of

tasks.

, OPP

22

4.2. Generating a Random Permutation

In this section we give a processor efficient algorithm to generate random

permutations. An other algorithm appears in this proceedings [1g]. In particular we

show:

Theorem 9: There exist a randomized P-RAM algorithm which generates random

permutations of na cells using 0 (log n) time, O(n/log n) processors, and probability of

failure is at most 1/n.

The idea behind the algorithm is extremely simple. WVe shall randomly assign the na

cells to 2n cells, which we call accommodations. Next we remove the unused cells using

prefix calculations as described in the previous section. To get the original assignment of

the ni cells in 2na cells each of the n/log n processor will be responsible for finding

accommodations for log n cells. Each processor starts at the beginning of its list of cells

and chooses a random accommodation. The processor will find an accommodation for

the cell with probability at least 1/2. Thus the expected completion time for each

processor is at most 2Iog n. We allow each processor 12rlog nl trials. If after this many

trails, it has not found accommodations for all its cells the process as a whole aborts

23

using the concurrent write ability.

Lemma 10: The probability that the above procedure aborts is at most I/n

Proof- Let 1P be a random variable equal to the number of accommodations found

after t=12(iog nl) trials. Since each trial finds an accommodation with probability at

least 1/2 the random variable Yis bounded above by a binomial random variable X with

p=1/2 on t trials.

Here we use the Chernoff bound:

Prob(X < [(l-c)pj) < e' t p/ 2

Setting c=5/6, p=1/ 2 , and t=12rlog nl we get:

Prob(X 5 [log n) < e-(2/12)r/og n1 < e -21op < i/n-

Thus, the probability of failure for any given processor is at most l/n 2 . Therefore,

failure as a whole is at most 1/n. D

I-A

24

4.3. Removing a Constant Proportion ot Zeros From a Random String

Let o-al...a, be a random binary string where each s, is an independent random

variable which takes the value one with probability p and zero with probability q=1I-p.

We view a as a sequence of live and dead cells where the i th cell is alive if -.=I and

dead if 8,=O. One can remove all dead cells by computing all partial sums.

Thus, all dead cells can be removed in 0(Iog n) time using O(n/log n) processors. We

need a faster algorithm that uses only 0(11 n) time and O(n/11 n) processors. But we only

require that the algorithm remove a constant proportion of the dead cells in a random

string.

We shall say that an algorithm on a input string a discards k zeros if it reorders all but

at least k zero elements of a into a contiguous string.

Theorem II: There exist a P-RAM algorithm DISCARD ZEROS using 0(11 n) time

and 0(n/11 n) processors which, for at least 1-1/n of the random strings a of length n,

discards at least qn/2 zeros, p fixed.

Proof: Set tsq/2p and c=24p/q 2. We partition n into intervals of size m=rc(In n)

#'. ,":*,,". ,' ' ";:''; '-;- -.. ;. . - ; '"... . .* - -. ...* _. .,- . .. -, . .*-. .- ,._:, _ -.-,"...; .-, , -. , ,- - ., . , - ,'

25

plus one last interval of size <i m. Each interval will be given

k'[(p+q/2)m1=[(i+t)mpi consecutive storage locations in which to store its live cells.

We assign O(m/11 m) processors to each interval. Using 0(log n) time these processors

place the live cells in its interval. If any interval has more live cells than storage

locations then the process as a whole is aborted using concurrent 'write. The algorithm

has thus failed on this input.

Before we show that the algorithm only fails on a vanishingly small fraction of the

strings we analyze the number of processors and the time used. Since there are [n/mi

intervals each using O(m/11 m) processors the total number of processors used is

0 (n/l n). Since each interval can be packed in parallel the total time (besides

computing the parameters m and k) will just be the cost of all prerix sums for a string of

length m, which is 0(log m)=O(ll n).

To analyze the probability of failure we use Chernoff bounds Lemma S. Let X be a

bLaomial random variable with parameters m,p. We have the following inequality:

Pob(X > f(l+()mpl) < e-(2 p/3

-- 7

26

This is an estimate that we failed on some fixed interval. Using our values of e and m

we get:

>_ob(X k)< I/n'

Now the probability of failure on any interval is upper bounded by (n/m)1/n 2 =1/mn.

Since m > 2 we get that failure occurs less than 1/n of the time. 0

Theorem 12: There exist a P-RAM algorithm using 0(11 n) time and 0(n/11 n)

processors which for at least 1-1/n of the strings with b zeros discards at least b/2 zeros.

Proof. To prove the theorem we use the algorithm from the proof of the previous

theorem with p=(n-b)/n. The analysis of failure for the previous theorem reduces to

Cbernoff bounds for tails of a binomial random variable with parameters m,p. In this

case the random variable is hypergeometric with parameters n,m,n-b. Hoeffding 18 has

shown that the tails of a hypergeometric are always bound by a binomial with the same

expected value. Thus Chernoff bounds can be applied directly in this case giving an error

bound of l/n. "

27

4.4. Randomised Tree Evaluation using O(n/log n) Processors

We are now ready to describe our optimal randomized tree evaluation algorithm. The

procedure is presented in Figure 4-2. Routine (a) generates for each i an upper bound zi

on the size of the work space at the ith stage of routine (c). The routine (b) generates in

parallel all the permutations that will be needed in routine (c). We generate all the

permutations at once to insure O(log n) time. Routine (c) step 1) for each k contracts Tk

to Tk+l generating at least Zk/1 dead pointers. After randomly permuting the pointers,

step 2), step 3) discards at least 1/32 of the dead pointers. When routine (d) is

implemented, Twill be stored in an array of pointers of size at most 0(n/log n). Since no

step will be implemented more than O(log n) times we need only make sure that the

probability of aborting at each step is < l/cnlog n for some constant c. These bounds

follow from the preceding theorems and the fact that the error can be decreased to l/n 2

by simply running an algorithm twice.

Using the expansion ideas in theorem 3 we get:

Theorem 13: There exists 0-sided randomized algorithm which marks all nodes of a

tree in 0 (log n) time using 0 (n/log n) processors.

I : :

28

Procedure Randomized Tree Evaluation

le X .- n, o*- 31/32, k.- i, i.- i, T- T;

While z i n/log n do (a)

1) z;+l - Fazil

2) i - i+1

In .Parallel Generate random permutations 0, (b)

thru a, of size z, thru z.

While k<i do (c)

1) Tk+l - RandomizedContraction(T),

using p processors.

2) Permute the pointers of Tk+l using *k+1.

3) Apply DISCARD ZEROS to the list of pointers

Tk+j returning at most Zk+ 1 pointers.

4) k .- k+1.

od

While 171>1 do (d)

Tus- RandomizedContraction(/

using a distinct processor at each node.(j ,

29

5. Applications of Dynamic Tree Contraction: Expression Evaluation

Let T be a tree with node set V and root r. We assume each leaf is initially assigned a

value C(v), and each internal node v, with children ul,...,Uk, has a label L4v)[ul,...,ukJ

which is assumed to be of the form O(u ,...,Uk) where E {+,-,X,-). A bottom-up

approach for expression evaluation is to substitute L(u,) into L(v)[uj,...,ukJ for each child

U, which is a leaf, and then delete u,. This method however requires time ((n) in the

worse case. The results of Brent imply we can do expression evaluation in 0 (log n) time

if we can preprocess the expression [5]; however .r(log n)2 time seems to be required if the

expression is to be evaluated dynamically (i.e., on line).

Theorem 14: Dynamic expression evaluation can be done in 0 (log n) time using

O (n) processors deterministically and only 0 (n/log n) processors using a 0-sided

randomized procedure.

Proof: We shall assume that the number of arguments at a node is at most 2. If not

we assume that in 0 (log n) time we can convert it into such a tree. As in Brent we shall

only perform one division at the end.

The values stored or manipulated will be sums, products, and differences of the initial

30

values Cjv). The value returned will be a ratio of these elements. The operations

{+,--,×x,-- will have their usual interpretations e.g., a/b+c/d=(ad+bc)/bd. The main

other item we need is a way to represent elements from a class of many functions which

are closed under composition. Here we will use ratios of linear functions of the form,

(az+b)/(cz+d). We must verify that they are closed under composition:

a'(au+b)/(cu+d)+b' a'u+b"

c'(au+b)/(cu+d)+d' cou+d"

By running procedure Randomized Tree Evaluation Figure 4-2 we get:

Theorem IS: All subexpressions can be computed in the time and processor bounds in

Theorem 14.

6. Isomorphism and Canonical Labels For Trees

Let T,T be two rooted trees with roots r and r'. We say T is isomorphic to T' if there

exists a surjective map from 1IT) to IT') which preserves the parent relation. On the

other hand Canonical Label is a map L from trees to strings such that T is isomorphic to

T' iff L(7)=L4T1). Canonical Labels For All Subtrees of a tree T is a map L from V17)

to finite strings such that for all z,z'E T the subtree rooted at z isomorphic to the

subtree rooted at z' iff L4z)=L-- ').

7 q

31

Canonical labels for all subtrees can be used for code optimization. Here, one merges all

nodes with common labels producing an &cyclic digraph. This process is called common

subexpression elimination. We first present a randomized algorithm for tree isomorphism.

The height h(v) of a node v in a tree T is the maximum distance from v to any of its

leaves. That is, h(v)=O if v is a leaf and if v has children vI,...,vk then

h(v)=1+maz(h(v)J1 < i < k). It is a straight forward exercise to see that the height of

all nodes in a tree can be computed in time 0(logn) using 0(n) processors

deterministically and 0(n/log n) processors by the RANDOMIZED CONTRACT

techniques from the first part of the paper.

We canonically associate a multivariate polynomial .{v) with each vertex v of the tree

T. Let ZJ,?2,.. be distinct independent variables. For each leaf v set L(v)=z . For each
2

internal node v of height h with children Vi,...,Vk set L4v)=l .I (zh-L4vi)) using

induction on the height h. Thus Lr) of the root r is a polynomial QIjz1,...,zh) of degree

_ n. We may view QT as a polynomial over a field F. Using the fact that polynomial

factorization is unique over F. We get:

Lemma 1: The subtrees rooted at v,v I are isomorphic iff L4v)=L4v 1) over F.

" " - °''""% 'e" %
°

" "# % ==% % % " % ",t " .,%'. '" %-" " " " """ " , " " • -. 5

32

To test if a polynomial Q(zl,...,zh) of degree < n is identically zero we use an old idea

which goes back to at least Edmonds. We simply evaluates the polynomial at a point

and check to see if the value is nonzero. We need the following technical lemma.

Lemma 17: If A is a finite set such that JAI > nab, where a > 1, and a is a random

element of Ah, and Q is not identically zero over F, then Prob[Q(3)=0)] _ I/n*

Proof: By induction it is not hard to show [101 that Prob[Q(a # 0)] > (IAI-n)h/IA[h.

Substituting JAI _> nah we get Prob[Q(3) 3 0] _! (l-l/nah)h. Thus, Prob

_Q3=j< 1/na

We describe the tree isomorphism algorithm in procedure form, see Figure 6-0

The most natural way to analyze the procedure Randomized, Tree Isomorphism is to

assume that step 1) is performed once each time the input size doubles. In which case we

may assume that the fields are given. On the other hand, is easy to see how to find finite

fields of order no (1) in (log n)0 (1) time. We shall ignore the cost here.

Theorem 18: Randomized1 Tree Isomorphism tests tree nonisomorpbism in 0(log n)

time using 0(n/log n) processors with probability of being incorrect < l/n*, for any

33

Procedure Randomized i Tree Isomorphism (1-sided).

1. Generate a finite field F of order > hn*.

2. For each node v of Tor T' assign the

polynomial Lv) to v as above.

3. Assign each _i a random value in F.

4. Evaluate QT and Qr, using one of the dynamic

expression evaluation algorithms and return w and w1.

5. If w .then output anot isomorphic

else output Oprobably isomorphic°.

Figure 6-1: A 1-sided Randomized Tree Isomorphism Test

fixed o > 1.

We modify the algorithm into a O-sided randomized algorithm: one that never makes

an error. This algorithm will also find canonical labels for all the subtrees of the input

trees Tand T'. Here we will use the fact that Tis isomorphic to T' iff there exists a map

L:VAJV - Labels such that: 1. L(r)=L4j)

2. If v,0 are leaves then L4v)=L4d)

• - - a *. .*• •.. .~.. . ".. ... ~ - '..- ' .. .*** °. ,". * . " - "t

34

3. If v has children vl,...,vk and v has children 01,...,Vk

and (L4vu),...,L 4vk))={L('l),...,L(vd)}

then L(v)=L4v ').

We use procedure Randomized i Tree Isomorphism to get a map possibly satisfying

conditions 1), 2), and 3). Condition 1) is easy to check while condition 2) is always

satisfied. To check condition 3) we first sort the pairs <L4v),L4w)> and the pairs

<L4V),L,4&)> where w(uw) is a child of t!t), respectively, in VUV I. We now simply

check that the list are identical. Thus, the problem can be reduced to the cost of one

sort. Both randomized and deterministic algorithms using O(Iog n) time and 0(n)

processors are known for sorting 11, 13, 161. In this proceedings the second author gives

a randomized sorting algorithm using only 0 (log n) time with 0 (n/log n) processors for

numbers of size 0 (n') [11]. Using this result we get:

Theorem 19: Tree isomorphism and common subexpression elimination can be done

with a 0-sided randomized algorithm in O(Iog n) time and 0(n/log n) processors.

Note that this randomized procedure does not produce canonical forms for trees. We

next show that canonical forms can be obtained by using sorting. The idea is to assign

:.,,.,.,. ,,,. ..-.,.,:,, ...,\.,.,,..'." . , .. ,: :..,,,..... ,''. ,'.'.'./ " ..."," '/,, ,. '" ","",'.:. ', '., , .,,.,I

35

canonical labels to the nodes inductively by height. The leaves are labeled with zero.

Suppose inductively that the children v,...V k of v have labels L(vj),...,Lvk) then the label

of v will be the concatenation of the sorted list of labels L(v1),. ,LAvk) in braces. This

definition of the label for T seems hard to implement in parallel since a label which takes

a long time to compute may have a small lexigraphic value. We solve this problem by

first sorting on the time that it takes to compute the label and then sort on the label

itself. It will suffice to begin sorting when all but one child has its label and this final

child's label will be placed at the end of the list. A node, which at an intermediate point

of the algorithm, has one child may have a label with one free variable. The intended

value of the variable is the label of the child. Thus, if the child also has only one child

and its label has been computed up to a free variable we may compose the labels.

Since the labels may be as large as O(n) long, it is unreasonable that two labels can be

compared by one processor in unit time. We will use the following easily proved fact.

Lemma 20: Two strings of length n can be compared in 0(1) time using 0(nlog n)

processors.

Using the lemma we get:

36

Theorem 21: Canonical labelings for trees can be computed in O(log n) time using

O(n2 log n) processors.

To prove the theorem we must see that dynamic tree contraction only takes O(log n)

time even when the tree has unbounded indegree and the cost of RAKE for a node with

k children is O(log k). Here we may assume that the time to RAKE a node is independent

of the size of its label and only dependent on the number of children.

Theorem 22: If the cost to RAKE a node with k children is bounded by clog k for

some constant c then Dynamic Tree Contraction requires only O(log n) time.

7. Computing the 3-Connected Components

The 2-connected components of a graph are defined by an equivalence relation on the

edges; two edges are equivalence if there exists a simple cycle containing both edges. The

induced graphs formed from the equivalence classes of this relation are called the 2-

connected components. Recently, Tarjan and Vishkin have shown how to construct the

2-connected components of a graph in 0 (logn) time and linear number of processors on

a P-RAM [22). These components form a tree where a pair of components are adjacent

if they share a vertex. The definition of the 3-connected components are more difficult to

,-

37

define and seem to require a more sophisticated algorithm.

Hopcroft and Tarjan give a precise algorithmic definition of the 3-connected

components and show how any graph can be decomposed uniquely into a tree of 3-

connected components [9). They also give a linear time algorithm for finding the tree of

3-connected components [9]. Unfortunately, it is a highly sequential algorithm. A

related question is finding the maximal subsets of vertices of size > 2 which are pairwise

3-connected. W%'e shall call these subsets the 3-sets of G. Ja'Ja' and Simon give an

algorithm using 0 (log n) time and no (1) processors for finding these 3-sets [II]. There

is a unique 3-connected graph associated with each 3-set. The proof and construction

can be obtained by the following simple lemma.

First we define the notion of a bridge. Let CCV. Two edges e and e' of G are

C-equivalent if there exists a path from e to el avoiding C. The induced graphs on the

equivalence classes of the C-equivalent edges are called the bridge# of C. A bridge is

trivial if it consists of a single edge. A pair of vertices is a separating vair if they have 3

or more bridges or 2 or more nontrivial bridges.

Lemma 23: If C V is a 3-set of G then each bridge of C contains at most 2 vertices

38

in C. If G is 2-connected then the bridge contains exactly 2 vertices of C.

Proof: Suppose that some bridge B of C contains three vertices zlZ 2,z3 in C. Let p

be a simple path from z I to X3 in B. Let P2 be a simple path from z2 to a single vertex,

say y of p such that P2-V is disjoint from p. Let pl,p3 be the disjoint simple subpaths of

p from y to Z1,Z3, respectively. Then p1,P2 ,P3 are disjoint paths from y to distinct

vertices zz2,x3 of C. It follows that y is 3-connected to all the elements of C. This

contradicts the assumption that C is a (maximal) 3-set. 0

The algorithm will consists of two phases, in the first phase we shall remove all 3-sets

of size > 3 (proper 3-sets). This will decompose the C into a collection of disconnected

subgraphs. Each subgraph will correspond to a maximal subtree of the tree of 3-

connected components that contains no proper 3-sets. The second phase decomposes a

2-connected graph, which does not contain any proper 3-sets, into a tree of simple cycles

and m-bonds. (An m-bond is a graph o' two vertices with m edges between the two

vertices.) We start with a discussion of the first phase.

Let C be a proper 3-set in G. We define two graphs V and H from C and G. Let

e e ~ Irv0

39

!=(C,) where the edge set E consist of 1) all edges in G whose end points are in C but

these end points do not form a separating pair for C plus 2) a new virtual edge for each

separating pair contained in C. While the graph H=(V',E'), where VI consists of all

vertices of C minus those vertices of C that do not belong to some separating pair. The

edges E I of H will consist of all the edges of G not in Z plus a new virtual edge for each

separating pair contained in C. The graphs V and H are constructible in 0 (log n) time

when C and the separating pairs are given. It is not hard to see that if C1,...,Ck are the

3-sets we can simultaneously construct 1',.., and the graph H. If some connected

component of H consists of an edge with exactly two virtual edges e and e' we shall

delete the edge from H and associate e in some Ci with e' in some C$ We state a lemma

about Z and H.

Lemma 24: The proper 3-sets of H are precisely the proper 3-sets of G minus C. The

resulting graph H, after removing all the proper 3-sets from G, will have no proper 3-sets

and each connected component will be 2-connected.

We next show how to decompose a graph H into its tree of 3-connected components

when H is 2-connected and has no proper 3-sets. Here, we shall use the ideas from the

* . * JI~-* * ***p ~ ~ * . .* ~ * 'q* $

40

parallel tree contra.?tion. Namely, -1) find all the leaves, remove them and 2) find and

contract maximal chains.

Let (z,y} be a 3-set. Then the bridges of (z,y) are of three types 1) a simple edge, 2) a

path of length two or more and 3) a bridge containing a vertex from some other 3-set.

We claim that the leaves of a tree of the 3-connected components are of 2 types: 1) a

bridge of a 3-set {z,y) consisting of a path p of length > 2 plus a virtual edge from z to

y. 2) A 3-set (z,y) which contains at most one bridge that is not an edge, plus edges

consisting of (a) the simple edge bridge between z and g and (b) a virtual edge for the

nonedge bridge.

These leaves are. constructible in parallel and each requires at most 0 (log n) time to

construct using a P-RAM. We next characterize those 3-connected components which

are simple cycles of the graph but which are vertices of the tree of 3-connected

components and have valence 2. Find all pairs of paths, p, and P21 and pairs of 3-sets,

(z,y) and (w,z), satisfying the following condition: p1 is a simple path from z to w

visiting no other 3-sets and P2 is a simple path from z to V visiting no other 3-sets. By

adding a virtual edge from w to z and a virtual edge from V to z we get a simple cycle

-S

41

that is a valence 2 vertex in the tree of 3-connected components. It follows that we can

remove all such simple cycles from H in parallel.

Thus in 0 (log n) time we can decompose A into a tree of m-bonds and simple cycles.

We state this as a theorem.

Theorem 25: The tree of 3-connected components is constructible in 0 (log n) time

using no (I) processors.

Note that we have only described the decomposition in the case when the graph is 2-

connected. It is not hard to extend this to the case of all connected graphs. In this case,

the virtual objects will be both edges and vertices.

Ja'Ja' and Simon only test whether in principle a graph is planar but they do not

actually construct the cyclic ordering of the darts except if the graph is 3-connected [11].

Since we now can construct the tree of 3-connected components it is not hard to see

how to actual construct the embedding in general by viewing this as a tree contraction

problem.

Theorem 26: Planar embedding for planar graphs are constructible in 0 (to "n) time

"-- ! ',.., -'. ., t ,,,< +' *' ;' ' ' ' -L '-e -' e ; JP

42

using n0 (1) processors.

7.1. Canonical Forms of Oriented Graphs

Let G=(VE be an undirected graph. We associate with each edge e=(z,y) two darts

(z,y} and (v,z). The vertex z is the tail and y is the head of the dart (z,y). The graph G

is oriented by fixing a permutation 0 of the darts which sends tails to tails and cyclically

permutates darts with the same tail. Let R be the permutation of the darts sending (z,y)

to its reflection (y,z). A planar embedding of C can be specified by an orientation of G.

Witney showed that every 3-connected planar graph has exactly two planar

embeddings, an embedding # and its reflection *-! [251. Ja'Ja' and Simon have shown

that a planar embedding can be constructed using 0 (log2 n) time on a P-RAM for 3-

connected planar graphs III. Any isomorphism of a planar 3-connected graph must

preserve its planar orientation up to reflection. More formally, two oriented graphs

(G,o) and (G',#) are isomorphic if there exists a bijective map f from the darts of G to

the darts of G' which preserves both adjacency and orientation, RJ'=R and OJmfo.

Using Witney's theorem two 3-connected planar graphs G' and G are isomorphic if and

only if (G6,#) is isomorphic to (G,#) or (G,*-').

43

Note that an isomorphism of one embedded graph onto another is determined by the

image of a single dart. Given a sequence of numbers u=(u1,...,Uk) and a dart e we get a

unique path e=eo,...,ek where ei-- 'R(e,1) for I < i < k. Given a path of darts we

can construct a unique sequence of integers by choosing the minimum ui _> 0 such that

eo 'R(e,-1). We next show how to compute canonical sequences. These sequences will

be used for canonical forms for embedded graphs.

Theorem 27: Canonical numbering for oriented graphs is computable in 0 (Iogn) time

using no (1) processors.

We will construct a canonical form M(e) for each dart e in (G,#). We then simply pick

the lexically least such form. For each dart e 7 e we find the lexigraphically least

number sequence over shortest paths from e to e'. Suppose the graph G has d darts.

Consider a dxd matrix where each entry is a number sequence or blank. Here the basic

scalar operations will be lexigraphical minimum and concatenation as opposed to + and

x. Initially start with the matrix with all paths of length two by storing a sequence of

numbers of length one. If we only restrict the number of processors to a polynomial in n

then a matrix product over minimum and concatenation can be computed in 0 (1) time.

xw* uk- u * .. *-..-*- ~

44

By computing 0 (log n) iterated powers of this matrix we get the lexigraphically minimal

of all shortest paths between all pairs of vertices. Thus we get a canonical matrix Me)

for each dart e in (G,o). The minimum canonical matrix MAe) (under lexigraphical

order) will be a canonical form for the embedded graph (G,#).

Note that there is an isomorphism if and only if the matrices Me), as described above,

are equal. By also constructing the adjacency matrices for the reflection (G,0- 1) and

computing the minimum over the larger set of matrices we have constructed canonical

forms for embedded graphs up to reflections. Using the additidnal fact that one can

compute a planar embedding for a 3-connected graph in 0 (log2n) time on no (1) P-RAM

processors we get from above the following theorem:

Theorem 28: Canonical numbering of 3-connected planar graphs can be done in

0 (log2n) time using no (1) P-RAM processors.

Remark: This result can be improved. By the use of the random walk techniques of

Aleliunas, Karp, Lipton, Lovasz, Rackoff, and Reif [2, 18] we can decrease the number of

processors by a factor of n.

45

7.2. Reducing the Problem of Finding Canonical Forms of Planar Graphs to

the 3-Connected Case

In this section we give an 0 (log n) time reduction from fiinding canonical forms for

general graphs to that of canonical forms for 3-connected g-apas. Since we have given

0 (log2' n) time.algorithms for finding canonical forms for 3-connected planar graphs this

reduction implies an 0 (log3 n) algorithm for canonical forms for all planar graphs. We

state this as a Theorem.

Theorem 29: Computing canonical forms for general graphs is 0 (log n) time

reducible to computing canonical forms for its 3-connected components.

By computing canonical forms we mean an oracle that accepts as input a 3-connected

graph with labels on its darts and vertices and returns an incidence matrix unique up to

isomorphism. We shall also assume that we have a list of new labels that we can add to

the darts or vertices.

By the methods of the last section we can find up to isomorphism a unique

decomposition of a graph into a tree of 3-connected components, where a 3-connected

component is either a 3-connected graph, a simple cycle, a multibond, or a vertex. Two

48

components are related by either identifying a virtual edge with orientation, a dart, in

one with a virtual edge with orientation in the other or by identifying a virtual vertex in

one with a vertual vertex in the other. We shall formally only handle the case when the

identifications are edges, i.e., the graph is 2-connected. The general case is a

straightforward generalization.

In 0 (log ni) time we can find either a 3-connected component or an identified edge

which is of maximum height in tbe tree. If the center is an edge we simply introduce a

2-bond as a new component which will be the center of the tree. Thus, we may assume

that the tree is rooted.

To achieve the reduction for the theorem we need only implement the two basic tree

contraction operations, RAKE and COMPRESS described in Section 2. We first discuss

the operation COMPRESS.

Let C lie a component with one child, where diand d2 are the darts associated with

the parent and e, and e2 are the darts associated with the child. We ask the oracle for 4

canonical matrices by assigning a new label X to either dior d2 and a new label Y to

47

either e1 and e2. We write each matrix as a string and denote it by MC(d,e) for

1 < i,j < 2. Let CI be the child of C and suppose the child also has only one child.

Further, suppose the virtual darts are e1,e2,f, and f2. As we did for C, we labeled e, or

e2 with X and f or f 2 with Y and ask the oracle for the canonical labels for C', denoted

Mc"ei'fj). Finally, canonical labels for the pair CC' will be:

Mt(di,fj)=lexigraphical minimum of

{AlCdi,ek),1CAek,f)} for k={1,2}. (*

Thus the operation COMPRESS is achieved by finding the four labels for each

component with an only child and combining labels using (*). If C' had no children then

we return with only two labels for the pair C,C', one for di and one for d2.

The RAKE operation is much simpler, in the case when the leaf C is not an only child.

If d, and d2 are its virtual darts we ask for canonical forms for C, where either di and d2

is assigned the label X. These labels are then assigned to the appropriate dart of the

parent of C. Using the analysis of CONTRACT given by Theorem I we get an 0 (log v)

time reduction.

, -~ ~~~. .. .o o. .o .- . .o - ., . - .° .

48

S. The Random Variable Mate

Let Z be the space of all zero one strings of length n+l for n > 1. Let MATE, be a

random variable defined on r where MATE. equals the number of 01 patterns in a

string from r.

Lemma 30: The random variable MATE has expected value n/4 and variance

(n+2)/16.

Proof: Let so...,. be a random strings of zeros and ones. Since the expected value of

MATE 2 substring ois,+, is 1/4 and there are n such substrings the expectation for

8O...n must be n/4. Here we used the fact that expectations sum.

To compute the variance we consider a slightly different random variable with the

same probability distribution. Let S. be the binomial random variable on binary strings

of length n with p=1/2. We define a random variable X with p=1/2 over the space of

all zero-one strings of length n+1 as follows:

ji1X(to...t)=ffi r nq(t, ... Q/21 if to0 O"

[n~ltl... tn)/2j if t0=1

To see that X is simply a change of variables of MATE consider the map from 80...aBto

* AA A. k

4g

1o.. .t defined by 1 4- 8o and inductively =0 iff 8i+1- i . One can see that this map is

surjective and Xso.. .an)=MATEto... 3). Thus the expected value of X is n/4 and we

meed only compute the 2nd moment of X, E(X 2).

EX2)=--1-A2 {[k/212Prob(Sn=k)+k2J2'Prob($S=k))

k-0

=1/2 E (k 2+1)/2Prob(Sn=k)+1/2 E k2 /2Prob(S =k)
k odd k even

-=1/4(E k 2Prob(s "=k)+ E Prob(Sf=k))
k-o k odd

The first term in the sum is just 1/4 of the 2nd moment of S, which is (n2 +n)/4. By a

straight forward examination of Pascal's Triangle the second term equals 1/2. Thus,

E(X2'-(n2 +n+2)/16. Therefore the var(X)=E(X 2)-E 2(X)=(n+2)/16. 0

Next consider the random variable MATE, over all zero-one strings of length n+1

which begin with a zero. By similar argument as above we get:

Lemma 31: The random variable MATE over the space 0{0,1)" has expected value

(n+l)/4 and variance (n+l)/16.

By similar arguments we get the following bound on MATE .

Lemma 52: VzProb([S/21 < r:)

<. Prob(4ATE, < z):5 Prob(ISn/2 j < r).

X

50

References

1. M. Ajtai, J. Komlos, and E. Szemeredi. An 0(nlog n) Sorting Network. Proc. 15th
Annual Symposium on the Theory of Computing,, 1983, pp. 1-9.

2. R. Aleliunas, R. H. Karp, R.H. Lipton, L. Lovasz, and C. Rackoff. Random Walks,
Universal Traversal Sequences, and Complexity of Maze Problems. Proc. 20Th Annual
Symposium on Foundations of Computer Science, IEEE, 1979, pp. 218-223.

3. D. Angluin, and L. G. Valiant. "Fast Probabilistic Algorithms for Hamiltonian Paths
and Matchingse. J. Comp. Syst. Sci. , 18 (1979), 155-193.

4. I. Bar-On, and U. Vishkin. "Optimal Parallel Generation of a Computation Tree
Forma. ACM Transactions on Programming Languages and Systems 7, 2 (April 1985),
348-357.

5. R.P. Brent. "The Parallel Evaluation of General Arithmetic Expressionse. JACM
21, 2 (April 1974), 201-208.

6. H. Chernoff. 8A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based.
on the Sum of Observations'. Annals of Math. Statistics 23 (1952).

7. E. F. Fich. New Bounds For Parallel Prefix Circuits. Proc. of The Fifteenth Annual
ACM on Theory of Computing, ACM,, 1983, pp. 100-109.

8. W. Hoeffding. *On the Distribution of the Number of Successes in Independent
Trials'. Ann. of Math Stat. , 27 (1956), 713-721.

9. J. E. Hopcroft, and R. E. Tarjan. *Dividing a Graph into Triconnected
Components'. SIAM Journal on Computing 2, 3 (September 1973), 135-158.

10. 0. H. Ibarra, and S. Moran. 'Probabilistic Algorithms for Deciding Equivalence of
Straight-Line Programs'. J. of the ACM 80, 1 (January 1983), 217-228.

11. J. Ja'Ja', and J. Simon. 'Parallel Algorithms in Graph Theory: Planarity Testing'.
SIAM Journal Computer 11, 2 (May 1982), 314-328.

12. N. J. Johnson, and S. Katz. Discrete Distributions. Houghton Mifflin Comp.,
Boston, MA, 1969.

13. T. Leighton. Tight Bounds on the Complexity of Parallel Sorting. Proc. 16th
Symp. Annual ACM on Theory of Computing, ACM, Washington, D. C., April, 1984,
pp. 71-80.

14. M. Loeve. Probability Theory. Springer, Berlin, 1977.

16. G.L. Miller. 'Finding Small Simple Cycle Separators For 2-Connected Planar
Graphs'. JCSS (to appear).

51

16. J. H. Reif, and L. G. Valiant. A Logarithmic Time Sort for Linear Size Networks.
Proc. 15th Annual ACM Symp. on the Theory of Computing, ACM, 1983, pp. 10-16.

17. J. Reif. 60n the Power of Probabilistic Choice in Synchronous Parallel
Computationse. SIAM J. Computing 18, 1 (1984), 46-56.

18. J. H. Reif. *Symmetric Complementatione. JACM 31, 2 (April 1984), 401-421.

19. W. L. Ruzzo. 00n Uniform Circuit ComplexityO. Journal of Computer and
System Sciences 22, 3 (June 1981),.

20. Y. Shiloach, and U. Viskin. "An 0(logn) Parallel Connectivity Algorithmm. J. of
Algorithms 3 (1982), 57-67.

21. R.E. Tarjan, and U. Vishkin. Finding Biconnected Components and Computing
Tree Functions in Logarithmic Parallel Time. 25th Annual Symp. on Foundations of
Computer Science, IEEE, 1984, pp. 12-22.

22. J. Uspensky. Introduction to Mathematical Probability. McGraw-Hill, New York,
1937.

23. U. Vishkin. Randomized Speed-Ups in Parallel Computation. Proc. of the 16th
Annual ACM Symp. on Theory of Computing, ACM, Washington, D.C., April, 1984, pp.
230-239.

24. H. Witney. 8A Set of Topological Invariant For Graphse. American Journal
Math 55, (1937), 321-335.

.

t

