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Backscatter Cross Sections for Randomly Oriented Metallic Flakes at

Optical Frequencies,

The purpose of this investigation is to determine the average normalized
backscatter cross sections for randomly oriented metallic flakes. The
irregular shaped flake is characterized by its surface height spectral
density function and its lateral dimension is assumed to be larger than
ooth the wavelength of the incident electromagnetic field and the
correlation distance of the rough surface.

The full wave approach which accounts for both specular point

. scattering and Bragg scattering in a self-consistent manner is used to

express the total cross section of the flake as a weighted sum of two

cross sections. The first is associated with the large scale spectral

. components of the surface of the flakes and the second is associated with
its small scale spectral components. It is shown that the average back-
scatter cross section per unit volume for the arbitrarily oriented metallic
flakes considered is larger than that for metallic spheres. Thus, the
irregularly shaped flakes could be significantly better obscurants than
metallic spheres, for a given volume of particles. The cross sections

for the metallic flakes are also compared with the cross sections for
similar flakes characterized by either a small scale roughness or by a

large scale roughness.

Backscatter Cross Sections for Metallic Spherés with Rough Surfaces.

Since the small scale roughness of the surface contributes significantly
to the scattering cross sections, the full wave spproach described in
item f1 is currently being applied to the problem of scattering by

-spheres with small scale rough surfaces.
Modulation of Scattering Cross Sections by Arbitrarily Oriented Composite
Rough Surfaces. .

In this work the full wave approach is used to determine the modu-

lations 6f the like and cross polarized cross sections for composite
models of rough surfaces illuminated by Synthetic Aperture Radars.

Multiple Scattering.
We have decided to analyze multiple scattering using the equation

of radiative transfer with the general Stokes' parameters. Our ultimate
goal is to develop codes which will allow us to compute multiple scattering
for a variety of particle shapes and orientations.
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BRIEF OQUTLINE OF RESEARCH FINDINGS

Scattering and Depolarization by Large Conducting Spheres with Very Rough
Surfaces.

The purpose of this investigation is to determine the like and cross
polarized scattering cross sections for electrically large finitely conducting
spheres with very rough surfaces. Perturbation theory has been used to
determine electromagnetic scatteriBg bg spheres with random rough surfaces
provided that the parameier B = 4k_ <h’> is much smaller than unity (where ko
is the wavenumber and <hs> is the mean square height of the rough surface of
the sphere. However, for large conducting spheres with B << 1, the total
scattering cross sections are not significantly different from the physical
optics cross section for smooth (unperturbed) conducting spheres.

In this work the full wave approach is used to determine the scattering
cross sections for large spheres with roughness scales that significantly
modify the total cross sections. The full wave approach accounts for specular
point scattering and Bragg scattering in a self consistent manner and the
total scattering cross sections are expressed as weighted sums of two cross
sections, The results are compared with earlier solutions based on the
perturbation approach and a recent reformulated current method.

Scattering Cross Sections of Arbitrarily Oriented Composite Rough Surfaces,

This investigation is an extension of the earlier work on scattering by
randomly oriented metallic flakes at optical frequencies. Full wave solutions
are derived for a relatively small area or resolution cell of the rough surface
that is effectively illuminated by a Synthetic Apature Radar. The relative
modulations of the like polarized cross sections are optimum for incident
angles between 10° and 15° depending on the lateral dimensions of the resolution
cell and the polarization.

Multiple Scattering.

The preliminary results obtained for multiple scattering are for (electrically)
.large finitely conducting spheres. The standard equation of transfer for

the diffuse intensity is used in these calculation. The effects of the rough
surface of the sphere has not yet been included in this analysis. This will

be done upon completion of the numerical work associated with the investigation
reported in item #1 above.

Visited U. S. Army Chemical Systems Laboratory (see Item 7.2).
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1. Scatterihg and Depolarization by Large Conducting Spheres With Very Rough
Surfaces

The albedo and the like and cross polarized scattering cross sections have
been determined at optical frequencies for electrically large finitely conducting
spheres with very rough surfaces. (The radius vector to the surface of the rough
sphere is assumed to be r = T, + hs where I, is the mean radius and h_ is a random
variable.) The total scattering cioss sections for slightly rough conductirg
spheres (B<<1) are not significantly different from the physical optics cross
sections for smooth (B = 0) conducting spheres and perturbation theory is appli-
cable. The roughness scale is 8 = 4k £<h'2>, where k is the wavenumber and ¢<h_°»
is the mean square height of the rougﬁ suiface that i superimposed on the smooth
sphere of radius r . However for roughness scales B = k 2<h 253 1, the albedo
and the like and cross polarized scattering cross sectiond differ significantly
from their respective values for smooth spheres (B = 0). In this case the perturba-
tion method fails and the full wave approach is used. Comparisons between the full
wave solution and the perturbation solution are given for 8 = 0.1, 0.5 and 1.0. The
mean radius of the sphere is = 10X where X = 0.555x10 * cm is the electromagnetic
wavelength. The relative dielectric coefficient (¢ ) for aluminum is assumed in this
work. The albedo and scattering cross sections are currently being evaluated for
other particle sizes at different frequencies. This work is being coordinated with

“the Aerosol/Obscuration group of the Army Chemical Systems Laboratory, Aberdeen,
Maryland.

Scatrering and Depolarization by Large Diameter Infinitely Long Conducting

2.
Cylinders with Very Rough Surfaces.

The albedo and the like and cross polarized scattering cross sections for long
finitely conducting rough cylinders are evaluated at optical frequencies using the

The radius vector to the surface of the rough cylinder is

full wave approach.
is the rough surface height,

r =r + h where r is the mean readius (r > A) and h
a random viriable wﬁich depends on the azimuth angle.” Both normal and oblique
incidence are considered. The full wave solution which accounts for specular and
diffuse scattering in a self consistant manner is compared with the perturbation

solution for different roughness scales §.

3. Multiple Scattering.

Multiple scattering from slabs consisting of large conducting spherical
scatterers (see item f1) is analyzed using the equation of radiative transfer with
the generalized Stokes parameters. The transmitted and reflected diffuse intensities
are evaluated for polarized plan waves incident upon slabs of different optical
thicknesses. The effects of the rough surface of the sphere will also be included in
this analysis. For smooth spherical scatteres only two elements of the Mueller
matrix need to be evaluated (related to the like polarized cross sections reported
in item #1). However for the spheres with rough surfaces all sixteen elements of the

Mueller matrix have to be evaluated.

Page 2
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BRIEF OUTLINE OF RESEARCH FINDINGS 2k
1. Scattering and Depolarization by Large Conducting Spheres With Very Rough Surfaces

The initial series of computations of the like and cross polarized differential
cross sections for electrically large finitely conducting smooth and rough spheres has
been completed. In this work the assumed electromagnetic wavelength was A = 0.555 um and
the mean radius of the spheres r, = 10 A For the wavelength considered the relative
complex dielectric coefficient (aluminum) is € = ~40-112. For the perfect spheres (with

i smooth surfaces) the Mie solution was used and for the spheres with random rough surfaces

the full wave solutions (that account for specular and diffuse scattering) were used.

The roughness scale of the surface was characterized by the parameter B = 4k <h2> where
ko= 21/A and <hz> is the mean square height of the rough surface (measured normal to the
mean surface of the sphere). Values of B considered range from 0.1 to 1.0.

The full wave solutions were compared with earlier solutions to the problem. The albedo
for the rough spheres were shown to be about 10%Z to 15Z smaller than the albedo for the
smooth spheres. These values differ significantly from those obtained from perturbation
solutions when B > 0.1. Following discussions with members of the Army Chemical Research
Development Center (CRDC, Aberdeen, Maryland), a new series of computations were also
carried out for the differential scattering cross sections. The electromagnetic wavelength
assumed was A = 10 ym. The values of ro (the mean radius of the sphere) considered range
from 2) to 7X. The value for the complex dielectric coefficient (for A = 10um) is
€, = -60000(1+1). For the surface roughness parameter B = 1.0 several surfaces with
different surface height spectral density functions W(k) were considered. (The surface
height spectral density function W(k) is the Fourier transform of surface height auto-
correlation function). For the smaller values of ry/A the diffuse differential scattering
cross sections were found to be critically dependent upon the form of surface height
spectral density function and the mean radius of the spheres.

These preliminary calculations indicate possible techniques for solving the more com-
plicated problem of inverse scattering. Thus for instance, with an appropriate choice of
the wavelength A, the measured cross polarized differential scattering cross section oVH(e’
could reveal the values of the mean radius of the spheres, the roughness parameter B as
well as the surface roughness spectral density function. Only a set of measurements of
the cross polarized cross section for angles 6 in the near forward direction would be
needed for the purpose of these proposed experiments.

2. Scattering and Depolarization by Large Diameter Infinitely Long Conducting Cylinders
with Very Rough Surfaces

The like and cross polarized scattering cross sections were also computed for long
finitely conducting cylinders. Both electromagnetic wavelengths A = 0.555um and A = 10um
were assumed and the mean diameter of the cylinders considered ranged from d = 5A to
d = 20). The effect of surface roughness was also examined as in the case of the
spherical particles. This work was presented at the 1984 CSL Scientific Conference on
Obscuration and Aerosol Research (CRDC Aberdeen, Maryland) June 25-29. (See Item #7.2.3)

3. Multiple Scattering

Using the equation of radiative transfer for scattering by electrically large
conducting spherical particles the generalized Stokes parameters have been evaluated
for different thicknesses of the scattering medium. Conducting obscurants with both
smooth and rough surfaces were considered. The specific diffuse intensities for vertically
and horizontally polarized waves were determined for both circularly and linearly polarizec
incident waves. For optical thicknesses 7<0.l, effects of multiple scattering begin to
become significant. The effects of particle surface roughn:ss increase as the optical
thickness T increases and multiple scattering is not negligible. The particle surface
roughness also has the effect of decreasing the degree of polarization of the scattered
vaves. The diffyse intensities and:the degree of polarization become significantly less

' dependent on scatter angle when the particle surface roughness is taken into considerationm,

Page 2




.

Ry 14

-t

18120-EL 25

PROGRESS KEFORY

IWENTY COPIES REQUIKRED

1. AKO PROPOSAL NUMBER: 18120-EL
2 PERIOD COVEKED BY REPORI: 1 July 1984 - 31 December 1984

3. TITLE OF PROPOSAL: Depolarization % Scatterina of
Electro-Hagnetic Waves

4. CONTRACT OR GRANT NUMBEK: DAAG29-82-K-0123

5 NAME OF INSTITUTION: University of Nebraskas

6. AUTHORS O¥ KEFDRT: __Ezekiel Bahar_(Pripcipal_Investigator)_ _._._______.

LlsT OF MANUSCRIPIS SUBMITIED OR PUBLISHED UNDER ARO SPONSOKSHIF
DURING THIS REPORTING FPERIOD, INCLUDNNG JOUKNAL REFERENCES:

N See attached list.

8. SCIENTIFIC PERSONNEL SUPPORYTD BY THIS PROJECT AND DEGREES AWARDED
DURING THIS REFORTING PERIOD:

In addition to Principal Investigator
Dr. Mary Ann Fitzwater (Post Doctoral Associate)
S. Chakrabarti (Graduate Assistant)

Ezekiel EBahar . .
Department of Electrical Engineering
University of Nebrasks

Lincoln, NB 68588-051)




i i gptrgunnliie,

26

7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP
DURING TRIS PERIOD, INCLUDING JOURNAL REFERENCES:

(7.1)

(7.2)

(7.3)

Papers Presented at Technical Meetings

International Union of Radio Science Symposium on Radio Technigues in
PlanetaryExploration in Conjunction with the XXI General Assembly of
URSI, Florence, Italy, August 28 - September 5, 1984. Scattering

and Depolarization of Radio Waves by Rough Planetary Surfaces.

Papers Submitted for Publication

"Scattering and Depolarization by Conducting Cylinders With Very
Rough Surfaces"”. ’

Papers Accepted for Publication

“Scattering by Anisotropic Models of Composite Rough Surfaces -
Full Wave Solutions" - to be published in IEEE Transactions on

Antennas and Propagation".




~

27

soabE OULLIRE UF Kezfaacin oo 1338

Scattering and Depolarization by (Electrically) Large Conducting Particles With
Random Rough Surfaces

In our investigations,the irregular-shaped obscurants are assumed to have the
following physical and electrical characteristics.

!
(i) The deterministic (idealized) shape of the average particle is spherical or
circular cylindrical.

(ii) The actual surface of the particle is assumed to deviate from the idealized
surface. The particle random rough surface is characterized by its surfa.
height spectral density function W or the fourier transform of W, the surfac:
height autocorrelation function <hh'>.

The particles are characterized electrically by their relative comnlex
dielectric coefficients €.

—~
..
ss
-t

~

The electromagnetic wavelength A is assumed to be in the 10 ym to 0.5 um range, and the
diameter d of the (idealized) particle considered is between 5 and 15 wavelengths.

. Using the full wave approach it was necessary to express the characteristic function and
the joint characteristic function x, of the random rough surface in terms of the roughnes;
parameter B = 4k2 <h?> (where k_ = 2u/) and <h?> is the mean square height of the rough
surface) and a p8wer series of The surface height autocorrelation function <hh'>. For
B < 0.1 only the first term of the power series expansion is significant and the diffusc

scattering due to the rough surface is identified with Bragg scattering. However as the
roughness parameter B increases several additional terms of the power series expansion
need to be considered. (For example when 8 is between one and two, four terms become
significant). This imposed an undesired upper bound on the value of the roughness par. -
meter B used in our computations for the scattering cross sections of the rough particle

This limitation has now been eliminated through the use of more efficient representati:;

of our full wave analytical results which yield algorithms that do not require power

J series expansions of the characteristic functions. The updated computer programs for 1.

like and cross polarized scattering cross-sections have been tested for a family of

surface height spectral density functions W with roughness parameters g = 10.

In order to compute the albedo for the irregular-shaped particles it is also necessary t:
evaluate the total cross sections (scattered plus absorption cross sections). For
particles with relatively small roughness scales (8 < 1), the surface irregularities dc

not significantly effect the forward scattered fields. Thus the totai cross sections,

for particles with small roughness scales, are essentially the same as those for the
idealized (unperturbed) particles. However when g > 1, this approximation is not valid.
A new approach has been developed to evaluate the albedos when £ is not small. This
approach exploits the fact that for large particles (kd > > 1} the forward scattered
field (which is related to the total cross section) is the same for 21l conducting

particles that have the same shadow line.

During the reporting period, a copy of the manuscript on scattering and depolarization b
Tong conducting cylinders with rough surfaces was submitted to the organizers of the 198
CLS Scientific Conference on Obscuration and Aerosal Research (CRDC Aberdeen,Maryland)
(See Item #7b). The computer programs for the muitiple scattering problem were updated
to reflect the advances made in the computations of the scattering cross sections and
the albedo of irregular particles with very large roughness scales 8. Numerical results
were also obtained for particles with a broad range of complex dielectric coefficients
corresponding to those of artificial dielectrics such as dissipative plastic and foam

materials.
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Multiple Scattering by Irregular Shaped Particles of Finiie Conductivity
at Infrared and Optical Frequenciles

The equation of transfer for a layer of randomly distributed particles
has been solved for a variety of particle sizes, shapes and complex dielectric
coefficlents at infrared and optical frequencies. The unperturbed particle
shape is assumed to be spherical and the actual random surface of the particle
is characterized by its surface height spectral density function or its
Pourier transform, the surface’ height sutocorrelation function. The mean

-b.square height of the rough surface <h?> is assumed to be large (B= 4k2<h2> >» 1
where k, is the free space wavenumberg The full wave approach is used to express

the scattering matrix for the irregular shaped particles as a weighted sum of
two cross sections. The first is a modified contribution from the unperturbed

spherical particle and the second. is the diffuse contribution due to the

surface roughness.
The modified Stokes parameters. (incoherent specific diffuse intensities)

. are determined for a variety of excitatlons.

(1) Circularly polarized wavesnormally incident upon the layer of particles.
The solutions in this case are azimuthally independent.
(i1) Linearly polarized waves normally incident upon the layer of particles.
(111) Vertically and horizontally polarized waves obliquely incident upon the
layer of particles.

The matrix characteristic value approach was used to solve the problem.
Both single scatter and multiple scatter solutions were presented and the
effects of the surface roughness are demonstrated by comparing the results
for irregular shaped particles with the corresponding results for smooth
{spherical) particles.

Written reports on this work are currently in preparation. The principal
investigator also presented a paper on "Multiple Scattering in Media Consisting
of Non-Spherical, Finitely Conducting Particles" at the Chemical Research and
Development Center (CRDC), Aberdeen Proving Ground Maryland, on June 21
in conjunction with the 1985 CRDC Scientific Conference on Obscuration and
Aerosol Research. During this visit discussions were also held with CRDC
Laboratory personnel on current and future aspects of our research program.

A list of conferences papers and journal puhlinations duting this reﬁorting
.perlod is given In Ttem #7. :

Enclosures: Reprints of articles: Item Nos. (7.4)(1) and (41).
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7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP DURING
THIS REPORTING PERIOD, INCLUDING JOURNAL REFERENCES:

(7.1} Papers Presented at Technical Meetings
(i) symposium/Workshop on Multiple Scattering of Waves in Random Media and by
Random Rough Surfaces," Pennsylvania State University, University Park,

Pennsylvania, July 29-August 1, 1985, "Scattering and Depolarization by
Random Rough Surfaces—Unified Full Vave Approach.”

(ii) Schlumberger Workshop on Waves in Inhomogeneous Media, August 8-9, 1985,
Ridgefield, Connecticut, "Unified Full Vave Solutions for Electromegnetic
Scattering by Rough Surfaces--Comparison with Physicel Optics, Geometric
Optics and Perturbation Solutions Using Two-Scale Models of Rough Surfaces."

{1ii) 1985 Joint Meeting of the IEEE Geoscience and Remote Sensing Society and
USNC/URSI Commission, October 7-9, 1985, University of Massachusetts,
Amherst, Massachusetts, "Like and Cross Polarized Cross Sections for Random

Rough Surfaces--Full Wave Theory and Experiment."”
{iv) International Union of Radio Science (URSI) Meeting at the University of

Colorado, Boulder, Colorado, Janusry 13-16, 1986, "Scattering and
Depolarization by Conducting Cylinders with Rough Surfaces."

(7.2) Papers Submitted for Review by Journal Editors

{i) "Scattering and Depolarization by Random Rough Surfaces, Unified Full Wave
Approach - An Overview," Wave Material Interaction.

(ii) "Pull Wave Solutions for Electromagnetic Scattering and Depolarization
in Irregular Stratified Media," Special Issue of Radio Science on Waves

in Inhomogeneous Media.
{iii) "Multiple Scattering by Irregular Shaped Particles of Finite Conductivity
at Infrared and Optical Freguencies.”
(iv) "Backscatter Cross Sections for Normal Incidence Using & Two-Scale
Full Vave Analysis of Rough Surfaces.”

(7.3) Papers Accepted for Publication

(i) "Multiple Scattering in Media Consisting of Nonspherical Finitely
Conducting Particles," Proceedings of the 1985 CRDC Scientific Conference

on Obscuration and Aerosol Research, in press.

{ii) "Scattering and Depolarization by Conducting Cylinders with Rough Surfaces,"
Avplied Optics, in press.

{7.4) Papers Published in the Technical Literature apd Submitted with This Report

(i) "Scattering and Depolarization by Conducting Cylinders with Rough Surfaces,"
Proceedings of the 1984 CRDC Scientific Conference on Obscuration and
Aerosol Research, DRSMC~CLJ-IR, pp. 386-371, January 1985.

{i1) "Like and Cross Polarized Scattering Cross Sections for Random Rough Surfaces--—
Theory and Experiment," Journal of the Optical Scoiety of America Specisal
Issue on "Wave Propegation and Scattering in Random Medis," Vol. 2, No. 12,
pp. 2295-2303, December 1985.
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Multiple Scattering by Irregular Shaped Particles of Finite Conductivity
&t Infrared and Opticel Freguencies

The modified Stokes parameters (the incoherent specific diffuse intensities)
- for a layered media consisting of a random distribution of finitely conducting
particles with very rough surfaces were computed for normally and obliguely
incident electromagnetic waves. Both vertically and horizontally polarized
§- excitations at infrared and optical frequencies were considered. For large angles
of incidence (6% = 30°), it is necessary to use more than twenty-four terms of
the Fourier series expansions of the Mueller matrix. The analytical solutions are
based on the matrix characteristic value techniques. For these cases the principal
investigator used his access to the Cyber 205 supercomputer at Colorado State
University through a grant awarded by the National Science Foundation. Use of
the supercomputer has enabled us to tighten the accuracy of our computations.
Additional work has been done to determine the albedos and the extinction cross
sections for the irregular shaped particles considered in our investigations.

It is shown that the perticle surface roughness results in effectively
blocking transmission windows that eppear when electromagnetic waves propagate
through thin layers comsisting of smooth (spherical) particles. Particle
surface roughness is also shown to result in a small but significant backscatter
enhancement.

During this reporting period the principal investigstor presented papers at
four international/national conferences/workshops (see Item (7.1)). In addition,
he attended the 1985 Advanced Planning Briefing for Industry (APBI) at the
U. S. Army Chemical Research and Development Center, Aberdeen Proving Ground
Maryland in (October 1685). He also visited with Army laboratory personnel at
Aberdeen and provided an overview of his research program.

The principal investigator submitted two additional manuscripts for
publication in scientific jJournals (see Item (7.2)). Two papers were accepted
for publication (see Item {7.3)) and two papers were published in the Technicel
Literature (see Item (7.4)) during this reporting period.

The final report for this contract will be submitted by the next reporting
period. This report will also contain documented computer codes on tape.
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Scattering cross section modulation for arbitrarily oriented composite rough surfaces:

Full wave approach

Ezekiel Bahar

Electrical Engineering Depariment, University of Nebraska

Clifford L. Rufenach and Donald E. Barrick

NOAA/ERL Wave Propagation Laboratory

Mary Ann Fitzwater

Electrical Engineering Department, Usiversity of Nebraska

As a synthetic aperture radar scans different portions of a rough surface, the direction of the unit
vector normal to the mean surface of the effective illumi d area (resolution cell) f In this
paper the modulation of the like and cross polarized scattering cross sections of the resolution cell are
determined as the normal to it tilts in planes that are in and perpendicular 1o the fixed reference plane
of incidence. By using the full wave approach, the scatiering cross sections are expres ~d as a weighted
sum of two cross sections. The first cross section is associaled with scales of roughness within the
effective illuminated area that are large compared to the radar wavelength, and the second cross section
is iated with fl-scale spectral within the resolution cell. Thus both specular point
scattering and Bragg scattering are d for in a self. i manner. The results are compared
with earlier solutions based on first-order Bragg scattering theory.

1. INTRODUCTION

Microwave remote sensing of rough surfaces (both
land and ocean), using moving platforms (aircraft
and satellite) as well as ground-based measurements,
has illustrated the need for a better understanding of
the interaction of the radar signals with these sur-
f-ces. This interaction is particularly important for
the ocean surface where the radar modulation can
yield information about the long ocean wave fiela.
Radar modulation measurements from fixed plat-
forms have been made in wavetanks and the open
oceans. The surfaces have been described in terms of
two-scale models (e.g, Wright, 1968]. The radar
modulation is considered to be principally due to (1)
geometrical tilt due to the slope of the long ocean
waves and (2) the straining of the short waves (by
hydrodynamic interaction) {e.g., Keller and Wright,
1975; Alpers and Hasselmann, 1978). For application
to moving platforms, synthetic aperture radar (SAR)
and side looking airborne radar (SLAR), this modu-
lation needs to be described in terms of a general

This paper is not subject to U.S. copyright. Published in 1983
by the American Geophysical Union.

Paper number 351006

geometry for both like polarization and cross polar-
ization, since the long ocean waves, in general, travel
in arbitrary directions. In the present work, the finite
resolution of the radar is considered for tilt modula-
tion with hydrodynamic effects neglected.

The full wave approach is used to determine the
modulation of the like and cross polarized scattering
cross sections for composite models of rough sufaces
illuminated by SAR. The full wave approach ac-
counts for both specular point scattering and Bragg
scattering in a self-consistent manner. Thus the total
scattering cross section is expressed as a weighted
sum of two cross sections [Bahar et al., 1983]. The
first is the scattering cross section associated with the
filtered surface consisting of the large-scale specular
components of the illuminated rough surface area.
The second is the cross section associated with the
surface consisting of the small-scale spectral compo-
nents that ride on the filtered surface. The principal
elements of the fi'll wave solutions are summarized in
section 2.

In section 3, full wave solutions are derived for the
scattering cross sections of a relatively small area or
resolution cell of the rough surface that is effectively
illuminated by SAR. The normal to an arbitrarily

678
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Plane of incidence, scattering plane, and reference (x, 2)

plane.

Fig. 1.

oriented mean plane associated with the illuminated
cell is characterized by tilt angles Q and t in and
perpendicular to a fixed reference plane of incidence.
It is assumed that the lateral dimension of the resolu-
tion cell L, is much larger than both the electro-
magnetic wavelength and the small-scale surface
height correlation distance for the cell. As the SAR
scans different portions of the rough surface §, the
direction of the unit vector normal to the cell F fluc-
tuates. In this paper the “modulations™ of scattering
cross sections are determined as the tilt angles Q and
7 fluctuate. In a recent study of “tilt modulation” by

Fig. 2

Alpers et al. [1981), first-order Bragg scatter due to
capillary waves on a tilted plane is considered. It can
be shown that if the large-scale spectral components
of the surface within the cell are ignored, the full
wave solutions derived here for tilt modulation
reduce to the results obtained by Alpers et al. (The
reader is also referred to the article by Alpers er al.
[1981] for a comprehensive review of the literature
on this subject.}

For the illustrated examples presented in section 4,
the scattering cross sections and their derivatives
with respect to the tilt angles are evaluated for all
angles of incidence. The modulation of the like cross
sections near normal incidence is due primarily to
fluctuations in specular point scattering, while the
modulation of the like cross section for near grazing
angles is due primarily to fluctuations in Bragg scat-
tering. Thus for large angles of incidence the cross
sections for the horizontally polarized waves are
shown to be more strongly modulated than the cross
sections for vertically polarized waves [Wright,
1968].

2. FORMULATION OF THE PROBLEM

The recently derived full wave solutions for the
normalized cross sections per unif area are summa-
rized here for composite rough surfaces (see Figure 1)
that can be expressed as follows:

Kx, 2) = hix, 2} + hfx, 2) (1)

/ Local Coordinotes
(n| R ﬁz ,r\}b

F|2 * A
Jormal to rough surfoce

ﬁ|,7|3 e on
locot langeat pione

Local plane of incidence and scatter and local coordinate system with unit vectors i, fiy. Ay.
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The surface h{x, z) consists of the large-scale spectral
components while h(x, z) consists of the small-scale
spectral components. For a homogeneous, isotropic
surface height the spectral density function is the
Fourier transform of the surface height auto-
correlation function (h(x, z), A'(x’, 2)) [Rice, 1951;
Barrick, 1970; Ishimaru, 1978]

Wi, )= = J' <h'y
L Y
- exp (v, x, + iv,2,) dx, dz, (2a)
where (k') is a function of {7,] = (x + 2z3)*/? and
x—-x=x, 1~7=1, (2b)

The surface h{x, z) consists of the spectral compo-
nents k = (¢? + v2)'? <k, and the remainder term
h,(x, z) consists of the spectral components k > k.
Since the full wave approach accounts for both
specular point scattering and Bragg scattering in a
self-consistent manner, the total scattering cross sec-
tion can be expressed as a weightea sum of the cross
section (a"9), for the filtered surface h, and the cross
section (a2, for the surface h, that rides on the
large-scale surface h, [ Bahar et al., 1983}

(o) = (o™, + ("), 3

Tie angle brackets denote statistical average. The
first superscript P corresponds to the polarization of
the scattered wave while the second superscript Q
corresponds to the polari-ation of the incident wave.
To derive (3) by using the full wave approach, it is
implicitly assumed that the large-scale surface meets
the radii of curvature criteria (associated with the
Kirchhoff approximations for the surface fields) as
well as the condition for deep phase modulation.
Thus the first term in (3) is shown to be

(@™ =125 I (60 “)

in which y* is the characteristic function for the
small-scale surface

{6~ A) = r{v) = exp ivh,) (5)

and
=k~ K=k - ) o=|5) (6)
The unit vectors #’ and A' are in the directions of the

scattered and incident wave normals, respectively;
thus for backscatter i/ = —i'. The free space radio

\_ Oy

wf — ] REFERENCE
PLANE OF
INCIDENCE

//7

=8
a,e-bnﬁﬁ\
\
v
-r
A
< -
. a
1,? x
3,
e
2
<,
P
0, g,
% G« 2
L7

Fig. 3. The tifted ocfl.

wave number is ko. An exp (iwr) time dependence is
assumed. The vector A, is the value of the unit vector
A normal to the surface k(x, 2) at the specular points.
Thus

i = Vfj|Vf]|

=(—h,d +a,— ha)(h? + h? + 1)'? (7a)
where
f=y—hx2) h,=dhdx h,=>dhjiz (76)
and

A, = Bfv (7¢)

The expression for the physical optics (specular
point) cross section for the large-scale surface h; is

4k}
<ol® =—;—’[ D':

oy -4,

2
Py, n*lrnp(rn] @®

2,

in which D depends on #, A7, #, the media of prop-
agation above and below the rough surface hix, 2)
and the polarization of the incident and scattered
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Fig 4. (o) (0", (B) —(d(a*">/dQ), and (c} —(d{a""/d)/(c*") for N =0 and 1 =0 as a funciion of 6.
Triangle, L, = 300 cm: octagon, L, = 1000 cm; square, L, = 2500 cm.
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Fig. 4. (continued)

waves [Bahar, 19814, b]. The shadow function P, is
the probability that a point on the rough surface is
both illuminated and visible, given the slopes n(h,,
h,), at the point [Smith, 1967; Sancer, 1969]. The
probabili(y density function for the slopes h, and h,
is p(7): The factor x'(v) that multiplies (a2 accounts
for the degradation of the contributions from the
specular points due to the superimposed small-scale
rough surface h,.

Assuming a Gaussian probability density function
for h,, (a"?), is given by the sum

@, = T (6™, o)
)
where
0", = 4nk} J’ 1D PG, ') A)
A-d,

W,
-cxp(—u,(};l)( ) -(v"nl)p(h..h,)dh &, (10)

in which ¢h?) is the mean square of the surface
height A, and v,, vy, and v, are the components of v
(equation (6) in the local coordinate system (at each
point on the large-scale surface) associated with the

" unit vectors i, f1,, and 7, (see Figure 2). Thus ¢ can

also be expressed as
T=nyhy + Uiy + U, (I

where

Ay = Gxd)|ixd,|  Ay=h  fy= xR (12)
The surface hcight h, is measured perpendicular to
h;, ic, along A. The function W (vg, v;)/2°" is the
two- dlmcnsmnal Fourier transform of ({h, kD)™

-'(Tv;_'L') prm oy J(ﬁ,ﬁ,) exp (iv, %, + ivy 3,) d%, dz,

‘ ’ . .
- = I W, 4oy, oW (ey — o5, 0, — o)) dr duy

= 5:—.’ Wao (v, v) ® Wi(vy, v)) (13)
In (13), | £, R, - Z,/,]| is the distance measured along
the large-scale surface h,, and the symbol ® denotes
the two-dimensional convolution of W, _, with W,.
The two-dimensional Fourier transform of the sur-
face height autocorrelation function ¢k, k> is equal
to the spectral density function W, (v, v,)/4.
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~{d<aYVYr{dn) /<Yy

8
“.m 10.00 0.9 30,00 .00
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Fig. 4. (continued)

waves [Bahar, 1981a, h). The shadow function P, is
the probability that a point on the rough surface is
both illuminated and visible, given the slopes a(h,,
h,), at the point [Smith, 1967; Sancer, 1969]. The
probability density function for the slopes h, and A,
is p(n). The factor yY(v) that multiplies (672 accounts
for the degradation of the contributions from the
specular points due to the superimposed small-scale
rough surface h,.

Assuming a Gaussian probability density function
for h,, <a"®), is given by the sum

@, = ¥ (™ 9)
;=]
where
(et [ L2510
A-a,

2\ Im
“exp (-v:<ﬁ.’>l("2—') % Pk, h) dh, dh, (10)
in which ¢h?) is the mean square of the surface
height h, and v,, v,, and v, are the components of v
(equation (6) in the local coordinate system (at each
point on the large-scale surface) associated with the

unit vectors #A,, A, and i, (see Figure 2). Thus ¢ can
also be expressed as

D= vghy + 050 + 0, Ay (11)
where .
Ay = (ixd,)/|Axd,] Ay=h Ay =A,xi (12)

The surface height A, is measured perpendicular to
by, ie., along fi. The function W,(v;, v;)/22" is the
two-dimensional Fourier transform of (¢h, A,))™.

Wolo, ;)
22-

1

= ey I(E,ﬁ;)" exp (iv, X, + iv, £,) d%, di,
1

=5 J. Wao1(vz, vWy(vs — v3, vy — vy) dv dvy

- 5:: W s(vg, 0) ® W[y, v) (13)
In(13), | X, 5, 4 Z,A,] is the distance measured along
the farge-scale surface A, and the symbol ® denotes
the two-dimensional convolution of W, _, with W,.
The two-dimensional Fourier transform of the sur-
face height autocorrelation function ¢k, k) is equal
to the spectral density function W;(v, vy)/4.

[}
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Fig 5. (a) {c™™), (b) —(d(c™*)/dN), and (c) —(d(c™")/dW/(c™™) for N = 0 and t = 0 as a function of .
Triangle, L, = 300 cm; octagon, L, = 1000 cm; square, L, = 2500 cm.
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Fig. 5. (continued)

The first term in (9), {(6"2),,, reduces to the first-
order Bragg scattering cross section for =
4k} (h}y « 1, and ii— d, [Rice, 1941; Barrick, 1970).
In this case p(h,, h.} is given by the Dirac delta func-
tions 8(h,}(h,) and (10) reduces to [Bahar, 1981a, b]

o',y = nk31D™C L, 0} W, v) (14)

For g « 1 and arbitrary p(h,, h,), the first term in (9),
{a"?),,, is also in agreement with Valenzuela's solu-
tions that are “mostly based on physical consider-
ations™ [Valenzuela, 1968; Valenzuela et al., 1971].
For small slopes A ~ d, and § « 1, the first term in
(3) reduces to Brown's [1978] solution based on a
combination of physical optics and perturbation
theory. Since it is assumed (on deriving (3) from the
full wave solutions for the scattered fields) that the
surface h, satisfies the radii of curvature criteria as
well as the condition for deep phase modulation, it is
necessary to choose f =4k3¢h?)> 21 in order to
assure that the weighted sum of cross sections (equa-
tion (3)) remains insensitive to variations in k,, the
wave number where spectral splitting is assumed to
occur [Bahar et al., 1983].

In order to apply the full wave approach to SAR it
is necessary to modify the results presented in this
section (1) to account for the filtering of the very

large scale spectral component of the rough surface
by the SAR that effectively illuminates a relatively
small area of cell F of the rough surface S and (2) to
account for the normal to a reference plane associ-
ated with the illuminated cell which is characterized
by arbitrary tilt angles 2 and 7 in and perpendicular
to the reference plane of incidence (see Figure 3). It is
assumed here that the lateral dimension of the cell
illuminated by the SAR is much larger than the
small-scale surface height correlation distance for the
cell and that as the SAR scans different portions of
the rough surface S, the direction of the unit vector
normal to the cell F fluctuates. Qur purpose is to
determine the “modulation™ of the backscatter cross
sections (a72) (equation (3)) as the tilt angles (of the
normal to the cell) in and perpendicular to the refer-
ence plane of incidence fluctuate.

3. SCATTERING CROSS SECTIONS
FOR ARBITRARILY ORIENTED RESOLUTION CELLS
OF THE ROUGH SURFACE

Let x, y, 2 be the reference coordinate system as-
sociated with the surface of the cell F that is illumi-
nated by the SAR such that the mean surface of the
cell is the y = 0 plane (see Figure 3). Furthermore, let
X, ¥, 2 be the fixed coordinate system associated
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Fig. 6. (a) <o"™), (b) —(d(c"™>/d0Y), and () —(d(c"*)/d)/(c"™) for M= 0 and t =0 as a function of &;.
Triangle, L, = 300 cm; octagon, L, = 1000 cm; square, L, = 2500 cm.
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Fig. 6.

with the large surface S such that the unit vector G, is
normal to the mean rough surface height h(x', 7’). The
unit vector i = ~#i” is expressed in terms of the
unit vectors of the fixed coordinate system (x', y, z'):

i'= —if = sin 0pd, ~ cos 0,4, (15)
The unit vector &, normal to the reference surface
associated with the cell is expressed in terms of the
tilt angles Q and t in and perpendicular to the fixed
plane of incidence, the x', y’ plane. Thus

d, =sinfdcos rd, + cos N cos 1d, +sinrd; (16)
For convenience, d, and 4,, the unit vectors associ-
ated with the cell, can be chosen such that the plane
of incidence in the x, y, z coordinate system is normal
to the vector 4,. Thus

a, =(i'xd)|i'x | @& =d,xa, an
and the expression for # in the x, y, z coordinate

system is

i = (74,0, + (7' )4, = sin 6,d, — cos 0,4, (18)

™.00 wo g,

(continued)

where

cos Oy = cos (8, + ) cos 1 (19)

The angle y§ between the plane of incidence in the
fixed coordinate system (x’, ', ) and the plane of
incidence in the coordinate system (x, y, z) associated
with the cell is given by

(i'x &) (i'xa) 4, a
o
Ji'x @i |A'x &,

cos ¥y = ———2
Ji'x g, 1A'x a)

cos {2 cos 1 —cos 6, cos 8, cos t sin (), + )
= - - = - (20)
sin 8 sin 6, sin 0,
and
sin v = (i'x &)x(i'x ) A* - {r'a;, d,)
P A gyl |A'x &, |A'x &) 1A' d)
sin t
- 21
sin 8, @n

For backscatter i/ = —f'. Thus the angle ¢f be-
tween the plane of scatter in the fixed coordinate
system (x', ¥/, 2') and the plane of scatter in the coor-
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Fig. 7. (a) ~{d(c"")dr). and (B) —(d<0"")/d1}/{c”" > for £ = 0 and 1 = O as a function of &. Triangle, L, =300
em; octagon, L, = 1000 cm square, L, = 2500 cm.

dinate system associated with the cell is
¥i=—~¥; 22)
The matrix that transforms the incident vertically
and horizontally polarized waves in the fixed coordi-
nate system to vertically and horizontally polarized
waves in the cell coordinate system is therefore
[Bahar, 19814, b)
cos ¢y  sin ¥
= 3
Tr [—sin vy cos ¥ 29
Similarly, the matrix that transforms the scattered
vertically and horizontally polarized waves in the cell

coordinate system back into the vertically and hori-
zontally polarized waves in the fixed coordinate

system is
cos ¥f  —sin ¥f
= [n‘n W e #] e

Thus in view of (22), T = T%. The coefficients D"?
in (8) are elements of 2 2 x 2 matrix D given by

D=CyT/FT 2%}

in which CJ is the cosine of the angle between the
incident wave normal A' and the unit vector 5
normal to the rough surface of the cell h{x, z). Thus

Co = —i'-fi = cos 6} 26)

where i’ is given by (18) and 7 is given by (27a) with
JHx, y) =y — helx, y). The elements of the scattering
matrix F in (25) are functions of the unit vectors A’
A’ and # as well as the media of propagation above
and below the rough surface S {Bahar, 1981a]. The
matrix T transforms the vertically and horizontally
polarized waves in the cell coordinate system (g,
4,) to vertically and horizontally polarized waves in
the local coordinate system that conforms with the
rough surface, fi,, Ai,, A, (12). Similarly, the matrix
T/ transforms the vertically and horizontally polar-
ized waves in the local coordinate system back into
vertically and ho.izontally polarized waves in the cell
coordinate system [Bahar, 1981a].

To account for the arbitrary orientation of the cell,
the matrix D in (25) must be postmultiplied by T%
and premultiplied by T{. Thus the elements of the
matrix D in (8) must be replaced by the elements of

1 Gy,
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the matrix D, where
Dy = TiDT: @n

Furthermore, in view of the effective filtering by the
SAR of the very large scale spectral components of
the rough surface f(x', z') = 0, the spectral density
function for the rough surface f{(x, y) = 0 associated
with the resolution cell F is given by

Wilvg, ) = Wiy, v))  k2k,
(28)
Wlv,,0)=0 k<k,

where W(v,, v,) is the spectral density function for
the surface S, f(x’, 2') = 0. The wave number k, is

k, =2x/L, < k; 29)

where L, is the width of the area of the cell illumi-
nated by the SAR. Other models for the effective
filtering of the spectral components of the rough sur-
face by the SAR could be considered in this analysis;
however, it would not change these results signifi-
cantly. The very large scale surface consisting of the
spectral components 0 < k < k, are responsible for
tilting the resolution cell with respect to the mean sea
surface.

{continued)

Thus on replacing the spectral density function
W(2a) for the surface S by the spectral density func-
tion W for the cell F (28) and on replacing the ele-
ments D" of the matrix D by the elements D2 of the
matrix D, (27) the expression (3) can be used to de-
termine the normalized backscatter cross section for
an arbitrarily oriented cell F. In view of (23) and (24),
the expressions for these backscatter cross sections
are explicit functions of the tilt angles Q and 1. For
the special case t =0 (tilt is in the plane of inci-
dence), the matrices Ty and Tf reduce to identity
matrices and

cos 6, = cos (0 + ) 30
Thus for: =0
% =% 31
n 03 = connt 60;) Q2 = const
and

(8™ /0y o couas = (B [000)0mcone  (32)

Therefore to obtain 3(e"™@)/oQ for Q=0 and 1 =0
it is sufficient to evaluate (a™?) as a function of 0
with both 0 and 1 set equal to zero. The value for
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the matrix Dy where
D, =T{DT}

Furthermore, in view of the effective filtering by the
SAR of the very large scale spectral components of
the rough surface f(x', z') = 0, the spectral density
function for the rough surface f{x, y) = 0 associated
with the resolution cell F is given by

Wilvy, vy) = W(v,, 1) k 2k,
Wlo,,0)=0 k<k,

where W(v,, v,) is the spectral density function for
the surface §, f(x’, z') = 0. The wave number &, is

& =2z/L <k,

where L, is the width of the area of the cell illumi-
nated by the SAR. Other models for the effective
filtering of the spectral components of the rough sur-
face by the SAR could be considerec' in this analysis;
however, it would not change these results signifi-
cantly. The very large scale surface consisting of the
spectral components 0 < k < k, are responsible for
tilting the resolution cell with respect to the mean sea
surface.

@n

(28)

(29)

Thus on replacing the spectru! density function
W(2a) for the surface S by the spectral density func-
tion W; for the cell F (28) and on replacing the ele-
ments D™ of the matrix D by the elements DE2 of the
matrix D, (27) the expression (3} can be used to de-
termine the normalized backscatter cross section for
an arbitrarily oriented cell F. In view of (23) and (24),
the expressions for these backscatter cross sections
are explicit functions of the tilt angles Q and t. For
the special case t =0 (tilt is .a the plane of inci-
dence), the matrices Th and T reduce to identity
matrices and

cos 6, = cos (§, + Q) (30)
Thusfort =0
and
(540" 0)/2y; - cons = (8CO7 /00N o (3D)

Therefore to obtain 3(e™?)/dfor Q=0and t =0
it is sufficient to evaluate {¢"?) as a function of &,
with both £ and t set equal to zero. The value for
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~dtor My dy
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Fig. 8. (a) ~(d(c"™)/d1). and (b} —(d{a™")/d1)/(a""), for Q=0 and t =0 as a function of 6,. Triangle,
L, = 300 cm; octagon, L, = 1000 cm; square, L, = 2500 cm.

&{a"®)/é1 can cither be evaluated analytically, since
D} (equation (27)) is an analytic function of t, or the
derivative could be evaluated numerically.

4. ILLUSTRATIVE EXAMPLES

For the illustrative examples presented in this sec-
tion, the following specific form of the surface height
spectral density function is selected [ Brown, 1978}

W(og, vy) = -2- S(vg, vg) = (1) Bk*/(x? + k%)* k <k,

td x

2 (33)
Wivy, v,) = Sty o)=0 k>k
where W is the notation used by Rice [1951] and § is

the notation used by Brown [1978]. For the assumed
isotropic model of the sea surface

B = 0.0046
k? = vl + 0l (em)™? k= [2(cm)"?
K=(352 VY 3 (em)™! ¥ =43 (mfs)

in which &k, is the spectral cutoff wave number

{Brown, 1978] and V is the surface wind speed. The
wavelength for the electromagnetic wave is

1o =30 cm (ko = 21/3 = (cm)" ") (3%)

The relative complex dielectric coefficient for the sea
is

€, =48 — i35 (36)

and the permeability for the sea is the same as for

free space (i, = 1).
The mean square height for the small scale surface
h, is given by

2 N Wik B[1 1
(5‘:)2‘[ ‘[‘—:—)kdkd¢=;[;5-ﬁ] 37

The mean square slope for the large-scale surface h,
within the resolution cell is

20
a,z,..a.;)gl f%’"wu.»

1, B4 3 0 1 1
'B[zl'k:“‘*i"(k:u"k:u')
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3 .( 1 1

i (k3 + x?)? TS

o (N a8
6 \(k3 +x%)® (k3 +x%)? )

in which &, is given by (29). The mean square height
for the large-scale surface h, is
In oy w k
) -J; —? k dk dp
B 1 1 H 1
- + x7 -

[k" +x! kI +x? ((Jr,2 + 6 (kI + K’)’)

X

i H

3 ((k3 P+ x’)’)]
For B = 4k3(h?) = 1.0, k, = 0.201. Thus for L, =
300, 1000, and 2500 cm {equation (29)), o2 = 0.0102,
00143, and 0.0152, respectively, and k3(h?) =219,
173, and 357, respectively. The slope probability den-
sity function within a resolution cell is assumed to be
Gaussian; thus

T2
4

(39)

1 h+ b
plh b)) = i exp [ - T] (40)

and the physical optics (specular point) backscatter
cross section is (equation (8)) [ Bahar, 1981a]

sec* 0 tan’ 0,
<d;0>.___5m._ﬂz_2"p(_ ) °>|Rr|1 “n
is is

in which 8,4 is the Kronecker delta and R(P =V,
H) is the Fresnel reflection coefficient for the verti-
cally or horizontally polarized waves [Bahar, 1981a,
b).

In Figures 4a, 4b, and 4c, (a*"), ~(d<a"">/d0),
and —(d(o"")/d0)/(c"") are plotted for Q =0 and
1 = 0 as functions of 6, the angle of incidence with
respect to the fixed reference system (x, y’, 2’). In
these figures L, = 300, 1000, and 2500 cm.

In Figures Sa, 5b, and Sc and Figures 6a, 6b, and
6c, these results are repeated for (c¢"¥) and
{a*"y = (o"¥y. It is interesting to note that the ef-
fective filtering of the very large scale spectral com-
ponents of the rough surface (0 < k < k,) by the SAR
does not significantly change the value of 6”2 unless
L, < 300 cm (see Figures 4a, 5a, and 6a). As one may
expect, the modulation of the scattering cross sec-
tions in the plane of incidence |d(d"")/dQ]| is
strongest for the SAR corresponding to the nar-
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Fig 9. (a) —(d(o"¥)/dx), and (b) —(d(s"")/d1)/(a"™®) for f1 = O and t = 0 as a function of &, . Triangle, L, = 300
cm; octagon, L, = 1000 cm; square, L, = 2500 cm.

rowest effective beam width L, = 300 cm (see Figures
4b, 5b, and 6b). Except for near-normal incidence the
relative modulation |d(a"?)/dQ| /¢c"®) is larger for
the horizontally polarized waves than for the verti-
cally polarized waves (see Figures 4c and 5¢). This is
because for large angles of incidence 8, the domi-
nant term in the expression for the total cross section
is (equation (3)) (6™®),,, corresponding to first-order
Bragg scatter. Since |0, D*#|? is proportional to (#'-

A)* and v, D¥Y |? is proportional to |2 — (- 7)? |2 for
highly conducting surfaces, for large angles of inci-
dence |v, D¥¥|? is more strongly dependent than
10 AD*"|* on the slopes (ii(h,, h,)). The largest modu-
lation of the I'ke polarized cross sections occurs in
the transition region where the contribution to the
cross section due to Bragg scatter becomes larger
than the contribution due to specular point scatter,
namely at about 5° (see Figures 4b and 5b). The de-

_-— el
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polarized cross section {(a"®) (P # Q) does not have
a contribution due 1o specular point scatter [ Bahar,
1981a, b]. There are two peaks in the value of
1d{a"¥/dQ|, one at about 4° and the larger one at
about 13°; however, both peaks are much smaller
than the peak value of |d(a"")/dQ| for P=V, H
since the like polarized cross sections are much larger
than the depolarized cross sections.

In Figures 7a and 7b, (—d{e"")/d1) and
—{d{a"">/d1)/{c"") are plotted for X = 0 and 1 = 0
as functions of the angle of incidence 6. These re-
sults are repeated in Figures 8¢ and 8b and Figures
9a and 9b for ¢o"") and (6"") = {o"">. In Figures
7-9, the width of the SAR is also L, = 300, 1000, and
2500 cm. Unlike |d{c"">/dQ) (P = V, H) the peak in
the derivatives |d(¢”*)/dt| occurs at normal inci-
dence (6, = 0). For near-normal incidence the depen-
dence of |d(c""}/d1|/¢o"") on the angle of inci-
dence 6, is very similar to that of |d{¢"")/dr|
/Ke*V). However, the modulations of the vertically
and horizontally polarized waves differ significantly
for near-grazing incidence. As noted above, since
{o"¥> is more sensitive than <o"") to slope vari-
ations, the relative modulation of the horizontally
polarized backscatter cross sections (¢"") is signifi-
cantly larger than the relative modulation of (o*").
The physical optics contribution to the depolarized
backscatter cross section is zero, and the derivative
1d(e¥")jdt]| peaks at about 10° rather than at
normal incidence as in the case of the like-polarized
backscatter cross sections. The relative modulation of
the depolarized cross section |d{a"*>/d1|/{c"¥) in-
creases rapidly near normal incidence and remains
practically constant for large angle of incidence 6.

5. CONCLUDING REMARKS

The full wave approach is used to determine the
scattering cross sections for arbitrarily oriented reso-
lution cells on random rough surfaces illuminated by
synthetic aperture radars. The purpose of this analy-
sis is to determine the modulation of the like and
cross polarized scattering cross sections as the
normal to the cells tilt in and perpendicular to the
plane of incidence. The full wave approach accounts
for shadowing and both specular point scattering as
well as Bragg scattering in a self-consistent manner.
Thus the scattering cross sections are expressed as
weighted sums of two cross sections. The first cross
section is associated with the filtered surface consis-
ting of the large-scale spectral components of the
rough surface. The second cross section is associated

with the surface consisting of the small-scale spectral
components. It can be shown that if the large-scale
spectral components of the surface of the cell are
neglected, the second cross section accounts for first-
order Bragg scattering and the results are in agree-
ment with earlier published results [Alpers et al.,
1981]. However, for typical terrain or sea surfaces,
the large-scale spectral components are not negligi-
ble.

By using the {ull wave analysis, the modulation of
the like-polarized and cross-polarized cross sections
can be determined for all angles of incidence and tilt
angles. On the other hand, first-order Bragg scatter
theory does not account for backscattering near
normal to the surface of the cell [Alpers et al., 1981].
The results based on the two-scale model indicate
that the relative modulation of the like-polarized
backscatter cross section is maximum for angles of
incidence between 10° and [5° (depending on polar-
ization and effective width of the resolution cell L)).
The analyses based on first-order Bragg scatter do
not provide these results. It is also shown that as the
angle of incidence approaches zero, the modulation
of the scattering cross sections in and perpendicular
to the plane of incidence becomes comparable.

When the normal to the cell is tilted in the direc-
tion normal to the plane of incidence (r # 0), the full
wave analysis not only accounts for the change in the
local angle of incidence 6} (equation (19)), but also
takes into account the fact that the local plancs of
incidence (or scatter) are not parallel to the reference
planes of incidence (or scatter). namely, ¢i =
— ¢f # 0 (equations (20)-(22)). Since Alpers et al.

_[1981] do not account for the eflects of the large-

scale spectral components of the surface within the
resolution cell the results presented here for the mod-
ulation of the like-polarized scattering cross sections
near normal incidence are significantly different from
those given by Alpers et al. The cross-polarized back-
scattering cross sections based on the first-order
Bragg scattering theory used by Alpers er al. [1981]
are not published.
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Backscatter cross sections for randomly oriented metallic
flakes at optical frequencies: full wave approach

Ezekiel Bahar and Mary Ann Fitzwater

The backscatter cross sections for randomly oriented metallic flakes are derived using the full wave ap-
proach. The metallic flakes are characterized by their surface height spectral density function. Both spec-
ular point and Bragg scattering at optical frequencies are accounted for in a self-consistent manner. It is
shown that the sverage normalized backscatter cross sections (per unit volume) for the randomly oriented
metallic flakes are larger than that of metallic spheres.

L. Introduction

The purpose of this investigation is to determine the
average normalized backscatter cross sections for ran-
domly oriented metallic flakes. The irregular-shaped
flake is characterized by its surface height spectral
density function, and its lateral dimension is assumed
to be larger than both the wavelength of the incident
electromagnetic field and the correlation distance of the
random rough surface. Thus, scattering by the edges
of the metallic flakes is ignored.!

The full wave approach which accounts for both
specular point scattering and Bragg scattering in a
self-consistent manner is used to express the total cross
section of the flake as a weighted sum of two cross sec-
tions (see Sec. 1I). The first is associated with the
large-scale spectral components of the surface of the
flakes, and the second is associated with its small-scale
spectral components. The unit vector normal to the
mean surface of the flake is characterized by the polar
angle 0r and azimuth angle ¢ (see Sec. III). Through
a suitable choice of the coordinate system, the average
with respect to the azimuth angle ¢ is evaluated ana-
lytically, while the average over the polar angle 0 is
evaluated numerically (see illustrative examples Sec.
1V). It is shown that the average backscatter cross
section/unit volume for the arbitrarily oriented metallic
flakes considered is larger than that for metallic spheres.
In Sec. IV the cross section of the metallic flake is also
compared with the cross sections of similar flakes
characterized by either small-scale or large-scale
roughness.

The authors are with University of Nebraska-Lincoln, Department
of Electrical Engineeting, Lincoln, Nebraska 68588-0511.
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0003-6935/83/233813-07$01.00/0.

© 1983 Optical Society of America.

. Formulation of the Problem

To determine the scattering cross section for arbi-
trarily oriented metallic flakes at optical frequencies,
it is convenient to use a-two-scale model of the rough
surface of the flakes. Thus, F,, the position vector to
a point on the surface of the flake, is expressed as follows
(see Fig. 1)

f. = Filx . 2) + Bh,. 8y

In Eq. (1), y = hy(x,2) is the equation of the surface
consisting of the large-scale spectral components, and
h, is the height of the small-scale surface measured in
the direction of the normal (@) to the large-scale surface.
It is assumed that the lateral dimensions of the flake Ly
are much larger than both the wavelength of the elec-
tromagnetic waves and the correlation distance of the
random rough surface i, [Eq. (1)]. For a homogeneous
isotropic surface height, the spectral density function®
is the Fourier transform of the surface height autocor-
relation function (h(x,z)h'(x’,2'))

1
Wiew) = = f (hh°) explivezy + ivezaldzadzg,  (2)
where the symbol (-) implies statistical average, and
(hh’} is a function of |Fy]:
Fa= (x = x)d, + (2 = 2')8, = 148, + 248, (3)
The surface h; is assumed to consist of the spectral
components
kp <k = (24012 < ky, )
where kp = 2x/Lp is the smallest wave number char-
acterizing the surface of the flake, and k4 is the wave
number where spectral splitting (between the large- and
small-scale surface) is assumed to occur. The surface
h, consists of the small-scale spectral components

kg <k=(I+02<k,, (5)
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Fig. 1. Plane of incidence, scattering plane, and reference (x.2)
plane.

where k., the spectral cutoff wave numberS is the largest

wave number characterizing the flake.

The full wave approach, which accounts for both
specular point scattering as well as Bragg scattering in
a self-consistent manner, is used in this work to deter-
mine the scattering cross section of the composite model
of an arbitrarily oriented flake.® Thus, the total nor-
malized scattering cross section/unit area (o PQ) is ex-
pressed as a weighted sum of two cross sections

(0FQ) = (aPQ), 4+ (aPQ),, (6)

in which (oP&), is the cross section associated with the
large-scale filtered surface hy, and the cross section
(oFQ), is associated with the small-scale surface k, that
rides on the large-scale surface h;. The first superseript
P corresponds to the polarization of the scattered wave,
while the second superscript @ corresponds to the po-
larization of the incident wave.

On deriving the full wave solution it is implicitly as-
sumed that the wave number where spectral splitting
occurs, kg, is chosen so that the large-scale surface h;
satisfies the radii of curvature criteria (associated with
the Kirchhoff approximations of the surface fields) and
the condition for deep-phase modulation. The scat-
tering cross section (g F9), is given by’

(aPQ), = |x* (V- & Ul 4

in which x* is the characteristic function for the
small-scale surface

X*(¥-B,) = x*(2) = (expivh,), ®
Fek/—ki = k(8 - ) v=|¥ ©)

The unit vectors fi‘ and fi/ are in the directions of the
incident and scattered waves, and kg = w(goeg) 2 is the
free-space wave number for the electromagnetic waves
(1o and co are the free-space permittivity and perme-
ability). An exp(iwt) time dependence is assumed in
this work. The vector i, is the value of the unit vector
i normal to the surface h(x,z) at the specular points.
Thus,
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8= Cf/|Cf] = (—h,&, + & — h, @, )/ (h]+ 1+ h2p2

= siny cosdd, + cosyd, + siny sinda;, (10)

where
{=y—h(xz), h, =03h/3x,h, = Oh/dz, an
@, = v/uv. (12

The expression for the physical optics cross sectior
(o79) for the surface h, is

4 DPQ |2
(e59) -=—:k3“_—_—] Py @' | W)p®)| . 13,
vy n. a, B,

in which DPQ depends on the polarization of the inci-
dent and scattered waves, the unit vectors ¢, i/, and
0 and the relative complex permittivities and permea-
bilities of the flake. The shadow function P is the
probability that a point on the rough surface is both il-
luminated by the source and visible to the observer
given the slopes @i(h, h,) at the point.910 The function
p(m) is the probability density of the slopes h, and A,.
The coefficient [x*|2 that multiples (¢£9) is a
weighting function that accounts for the degradation
of the specular point scattering cross section due to the
superimposed small-scale rough surface h,.8 Thus, as
h,—0,|x5[?—~ L

The scattering cross section {0 7@), for the Gaussian
surface h, that rides the large-scale surface h; is given
by the sum®

(6PQ), = 5 (a")m, (14a)
m=]

where
(oPQ),. = 47k} lePQlZPT(ﬁI'E‘l )
[y [ -

n- &,
o) [ Walese
X exp (—v;’(h,’)) H Fnlents) iy, )dgdh,.
2 m!
(14b)

In Eq. (14) (h?) is the mean square of the surface height
h,, and vz, vy, and v; are the components of ¥ [Eq. (9))
in the local coordinate system associated with the unit
vectors i, fig, and i3 (at each point on the large-scale
surface hy, see Fig. 2). Thus, ¥ is also expressed as

Locel Coordnotes
(DAY I)

Fig. 2. Local plane of incidence and scatter and local coordinate
system with unit vectors B, 62,83




¥ = vz t oy + M, (15)
where
o = (@X&)/|0XE] 6, =08 =0 XA (16)
The function W, (vz,0:)/22™ is the 2-D Fourier trans-
form of (hsh,)™:

W (034 1 . s
-—2(2—‘:0—’! =.(—2;? f (h.h,) ™ explivgTy + iyZq)dTadz,

L [ Wt Walox - v3.n = 0o

= 2—:; 'm—-1{U5,01) @ Wilvz,07). an

In Eq. (17) the symbol @ denotes the 2-D convolution
of W, with W;. The surface height h, is measured
normal to the surface y = hy, and |41, + Z413] is the
distance measured along the large-scale surface h;. The
2-D Fourier transforms of the surface height autocor-
relation function (h,h,) is equal to the spectral density
function W,(vz,05)/4. When the parameter 4k3 (h?)
= « 1 and @l = &,, the first term in (14) accounts for
first-order Bragg scattering, and the higher-order terms
m = 2 may be neglected. In this case, the full wave
solution Eq. (14) is in agreement with Brown’s solution®
based on a combination of physical optics and pertur-
bation theory. However, since it is assumed using the
full wave approach that the condition for deep-phase
modulation is satisfied, it is necessary to choose 8 =
4k3(h?) = 1. Since fewer terms in Eq. (14) need to be
evaluated for smaller values of 8, in this work the value
assumed for §is 1.0.

While the perturbed-physical optics solutions511.12
for the cross sections critically depend on the choice of
kg4 (the wave number where spectra splitting is assumed
to occur), the full wave approach is insensitive to vari-
ations in ky for § = 1.6

Since the metallic flakes are randomly oriented with
respect to the fixed observer, in Sec. III the analytical
results presented are modified to account for arbitrary
orientation of the normal to the mean surface of the
flake.

1. Scattering Cross Sections for Arbitrarily Oriented
Metallic Flakes

Let x’,y’,2’ be a fixed reference coordinate system,
and let x,y,z be a rotated coordinated system so ..1at the
unit vector &, is normal to the mean surface of the flake
(y = 0) (see Fv'ig. 3). For backscatter it is convenient to
choose the unit vectors n/ = =@’ so that

A== ;;_ (18)

The unit vector &, normal to the mean surface of the

flake can be expressed as follows in terms of the fixed
reference coordinate system

&, = sinf¢ cosorR, + cosdrE, + sinfy sindrd,. (19)

For convenience the two orthogonal unit vectors &, and
@, in the mean plane of the flake are chosen so that the
plane of incidence in the flake coordinate system is the
¢,y plane (normal to &,). Thus,

5k

i =@ X&)|8 X8| andd, =&, X &, (20)
The expression for &’ in the flake coordinate system is,
therefore,
B = (@ - )a + (@ 8,)3, = sinfid; — cosfim,, (21
where
coslfly = —&' - @, = cosfr. (22)
The angle \V;: between the reference plane of incidence
(normal to &, in the fixed coordinate system), and the
plane of incidence in the flake coordinate system (nor-
mal to 0¥ X &) is

i-@Ex§) -@55) §.-i

Ve xal mxEl Iwxa] e
thus
 EX@XE) T
sing = e X @ X B (24)

I8 x &

Since 0/ = @' for backscatter, the angle ¥/} between
the plane of scatter in the fixed (x’,y’,2) coordinate
system and the plane of scatter in the flake coordinate

system (x,y,2) is

V=~ (25)
Thus, the matrix that transforms the vertically and
horizontally polarized incident waves of the fixed
coordinate system to the vertically and horizontally
polarized incident waves of the flake coordinate system
is?®

(26)

Ti= cosyy sin“‘].

—siny'y  cos]

~.

Fig. 3. Randomly oriented flake.
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Similarly, the matrix that transforms the vertically and
horizontally polarized scattered waves in the flake
coordinate system back into vertically and horizontally
polarized scattered waves of the fixed coordinate system
is

cosyf  ~sing}
singh convl | @n
Thus, in view of Eq. (25) for backscatter,
T =T% (28)

The coefficients DP® in Eq. (14) are elements of the 2
X 2 matrix D given by™#

D = C{TIFT, (29)

in which C{* is the cosine of the angle between the in-
cident wave normal ‘ [Eq. (21)] and the unit vector &

normal to the rough surface of the flake [Eq. (10)]."

Thus,
CJ = ~@‘- T = cosy cosfp ~ siny sinfr cosd. (30)

The elements FPQ of the scattering matrix F in Eq. (29)
are functions of the unit vectors n’,a/, 1 and the relative
permittivity and permeability of the flakes.” The
matrix Ti transforms the vertically and horizontally
polarized incident waves of the x,y,z coordinate system
to vertically and horizontally polarized waves of the
local coordinate system (i}, 1z, 03) associated with the
rough surface of the flake {Eq. (16)]. Similarly, the
matrix T/ transforms the vertically and horizontally
polarized scattered waves of the local coordinate system
back into vertically and horizontally polarized waves of
the x,y,z coordinate system.?®

To account for the arbitrary orientation of the flake
with respect to the fixed (x’,y’,2’) coordinate system
[Eq. (29)] must be postmultiplied by T% and premul-
tiplied by T. Therefore, in the expressions for the
scattering cross sections |Eg. (6)], the elements of matrix
ll:? must be replaced by the elements of matrix Dr given

y

Dr = T§DT; = CPTET/FTiTS

= CiPTEFTY, (31)
where
‘ . P4 in(y’
T Tie (S sl o
(32)
In Eq. (32)
cosy’ = [cosy sinfr + siny cosfF cosd)/SY, (33)
siny! = giny sind/SY, (34)
where
Sip = [1 - (CiM2, (35)
For backscatter T4 = T'r arA FVH = FHV = 0, thus,
Dpacp| CHY/=SIM  CoSrtPvy s pruy

~CrSe(FYY + FHN) CRFHH - SYFVY

Neglecting multiple scatter and assuming that the phase
of the scattered signals from the individual flakes are
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uniformly distributed in the interval {0,27] the back-
scatter cross section for an ensemble of randomly lo-
cated flakes is given by the sum of the individual
backscatter cross sections.! Thus, accounting for the
random orientation of each individual flake, the average
backscatter cross section of a single scatterer in the
ensemble of flakes is

— /2 2
(7% = fo j; (™) p(Br.6,)d esdbs

/2
= _j: (aP9) op(85)d6, @7

in which it is assumed that the unit vector normal to the
mean surface of the flake is uniformly directed in the
half-space 0 < 6p < 7/2,0 < ¢5 < 27 and
2r 2x :
Since {57Q) is dependent on ¢ only through the sines
and cosines of the angles (' + ¢r) [Eq. (36)), it is con-
venient to evaluate the average of (¢F?) with respect
to the angle ¢ analytically by first evaluating the av-
erage of |[D£Y|2 with respect to ¢r. Thus, for P

’
TR (CF)? o

R(2g — Py 2, =21 vv
DRiz= - {7 1080r = =15 [ chstF

+ FHE|dgp

POr.6F) = (38)

iny2
- f%_). |FVV + FHH[2, (39)

and for P= V.H
J— 1 2r (COR 2
Pl2e — Pl 2 = vviz
IDFIz= o= {7 1Dg1der =S5 [ ehiFvy)
+ SHFHH|2_ 9038} Re(FVVFHH)|d g
= WCEII|FVY|2 + 3| H|2 - 2 Re(FVVFHH")]
= W(CT)4|FYV|2 + 4|FHH|2 — |FVV 4 FHH([2), (40

in which the symbol * denotes the complex conju-
gate.

it |

ne .l}

[

(N

U we e e - ne ne n.®

Fig. 4.

LT

(eHH)y = (0VV), for the composite surface h as a function
of br.




The expressions for FVV and F¥H are complicated
functions of fr. Thus, the integrals with respect to 0
are not evaluated analytically. Instead, (¢79¢), [Eq.
(37)], is evaluated numerically using Eq. (14) with
| 12(P,Q = V.H) replaced by | DF¥|? [Eqgs. (39) and
(49)). To obtain the ensemble average for the scattering
cross sections (aP9) |Eq. (37)], the result from the
previous integration (oF€), is multiplied by p(ff) =
sinfr and integrated with respect to 6r. Thus,

. summing up, the integral (37) is performed analytically

with respect to ¢r and numericaily with respect to 8.
The integrations with respect to h;h, [Eq. (14)] are also
performed numerically.

IV. Nustrative Examples
The specific form of the surface height spectral den-
sity function [Eq. (2)] selected for the illustrative ex-
amples presented in this section is
3'B/k‘. kg <k <k
L g
W =10, k> k andk <hp, “n
in which
B =0016
k? = pd + v} (em)-?
kg = 2x/Lf and Ly = 0.002 cm ' (42)
ke = 0.45 X 108 em™?

[For naturally generated surfaces, W can be approxi-
mated by k=", where n is between 3 and 4.4] The
wavelength of the electromagnetic wave is

Ao = 0.555 X 10~4 cm (ko = % =1132X105cm™| - (43)

The relative complex dielectric coefficient for the alu-
minum flakes at the assumed optical frequency is'3

& =—40~i12, (44)

and the permeability of the flake is assumed to be that

of free space (g, = 1).
The mean square height for the small-scale surface

R, (kg <k < k) is given by
2~k Wik)
2 ALLYWTY
(H.)'&J; J:J 4 hdrdy
Bi1 1 1
ol LI o L
=2L3 k,’) 0.195 X 10719 ¢! Wi (45)

since in this work 8 = 4k3(h2) = 1.0. The wave number
where spectral splitting (between the small and large

. roughness scales) is assumed to occur is

kg = [2BR2k/(k? 4 2Bk})]/2 = 0.202 X 105 (cm)~!.  (46)
For Gaussian surface heights,
[x*(vy)[2 = exp(=vf(E?), and x*(v} = exp(-£}. )

The mean square height for the large-scale surface h;
is

- Yy
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2 ;s Wk) Bf1 1

hf) = — hdkd¢ = = [— - —

*h j; f., 3 rdkde =3 3 k})
=0.791 X 10-¢ cm?. (48)

Thus, k3 (h}) > 1 and the physical optics treatment of
scattering by the large scale structure is justified. The
total mean square slope of the large-scale surface h;

is
- - 2s ke Wik) N
ol = i j; J:r 4 kidkde

k
=BIn [;!) =0,298 X 107", (49)
¥

The slope probability density is assumed to be Gauss-
ian, thus,

piB) = L ex 'ﬁh_fl (50)

P A

In Figs. 4 through 8, the backscatter cross section
(o PQ), averaged over the range of the azimuth angle ¢r
is plotted as a function of the polar angle 8 (see Fig. 3).
This is formally given by

1 o
PQy, = — PQ
(e7), 2:.].: (aP)dor. 1)

However, in Sec. IV it is shown that Eq. (51) can be
evaluated directly on replacing |DPQ|2 in Eq. (14) by
its average value | DF?| 2 [Egs. (39) and (40)].

InFig. 4, (aPP), (P = V,H) is plotted as a function
of 6r for the composite surface characterized by the
spectral density function [Eq. (41)]. This cross section
includes the effects of both the small and large rough-
ness scales of the surface of the flake. Thus, it takes
into account both specular point scattering and Bragg
scattering. In view of Eq. (40}, the average cross section
is the same for vertically and horizontally polarized
waves. The average cross section of a single scatterer
in the ensemble of randomly oriented flakes is (aPP)
= 0.77 [Eq. (37)). For a conducting sphere of radius ar,
the normalized cross section is 0.92 provided that keap
> 1and ¢, is given by Eq. (44).

In Fig. 5, (6PP), (P = V,H) is plotted as a function

- L
worge ey
... .. .00 »o ne 0.

(]

[}
h ) we e aw - e aa n~e ne

Fig. 5. (a'H), = {g¥V), for the large-scale {iltered surface h; as
a function of fr.
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of 8 for the large-scale filtered surface ()nly (Rp Sk <
kq). Thus, only specular point scattering is considered
here. In thiscase (aP”) = 0.47. In Fig. 6, (aPP), (P

= V.H) is plotted as a function of g for the small-scale
surface only (kg <k <k.). Since o}, — 0 for this case,
to evaluate (0 F9), using Eq. (14), p(h,,h,) is set equal
to the product of the Dirac delta functions &(h, )é(h, ).
Thus,

[preg?
8-

X exp(— U€<E7))( )zm__u (h‘»’)] » o (52)

B,

(aPQ),,

— axk}

and the leading term in the sum (afQ), (i.e., m = 1)
reduces to the first-order Bragg scattering cross section.
For this case, {07P), = 0.5. The corresponding co-
herent scattering term for a smooth flat flake? is (¢ PP)
=0.32. A flake with a two-scale roughness has, on the
average, a larger backscatter cross section than a cor-
responding flake with no small-scale ghness. Since,
for the randomly oriented flakes, ( = (.77, their
backscatter cross sections are on the average smaller
than Lhe Cross sectlons for spheres with a cross-sectional
area xa} = L} ((oPF) = 0.92). However, considering
the fact that a volume of nine flakes each of thickness
d =~ Lg/12 is approximately equal to the volume of a
sphere of radius ar, for a given volume of particles the
backscatter cross section for the flakes is 7.5 times larger
than the cross section for the spheres. In Fig. 7 the
cross-polarized backscatter cross section (averaged over
ar) (aV”)LVéa”V), is plotted as a function of 0. The
value of (o VH) (0.522 X 10~?) is significantly smaller
than the average backscatter cross sections for the like
polarized case (¢PP). In Fig. 8, (6P9)4 (P # Q) is
plotted as a function of 8¢ for the small-scale surface
only (kg <k <k.) [Eq.(52)}. Atnear-normal incidence
the cross section (o VH), is very small since [DVH|Z is
very small for backscatter when 8¢ << 1. Furthermote,
since W, = 0 for k < kg, therefore, (a1 ),; — 0for Of
— 0. For grazing angles, higher-order Bragg terms
become very small and (¢ VH), ~ (dVH),,in _%HM)
For the flake with the small-scale roughness, (o

0.52 X 10~2

V. Concluding Remarks

The average normalized backscatter cross sections
for arbitrarily oriented metallic flakes are derived using
the full wave approach. Thus, the total t  kscatter
cross section is expressed as a weighted sum of two cross
sections. The first is associated with the filtered surface
consisting of the large-scale spectral components of the
composite rough surface, while the second is associated
with the surface consisting of its small-scale spectral
components that ride on the large-scale surface.14-16
These backscatter cross sections are compared with
those of similar flakes having either a large- or a small-
scale surface roughness.

It is shown that the average normalized backscatter
cross section (per unit volume) for the flake with the
composite surface is larger than the backscatter cross
sections for metallic spheres.
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SCATTERING CROSS SECTIONS FOR PARTICLES OF IRREGULAR SHAPE

Electrical Engineering Department
University of Nebraska-Lincoln, Lincoln, Nebraska 683588-0511
l

A.BSTRACT

‘ Ezekial Bahar
!
i
I The full wave approach recently applied to the problen of electromagnetic scattering by a two sc:

nodel of random rough surfaces has been shown to nc:ount for both Bragg scattering and Specular Pcint

I
'scattering in a self-consistent manner. Thus scattering cross sections can be expressed as weigh:ed Buw;

of two cross sections. The first is assocfated with a mofh. filtered surface consisting of the large

iscale spectral components of the rough surface and the second is associfated with its small scale

!.apecttal components.

l .

l In a sinilar manner the scattering cross sections for a particle of irregular shape can be charac-
I

terized by weighted sums of two cross sections. The first is related to the cross section for a “smooth”

i H
.particle of arbitrary shape and the second accounts for the small scale surface roughness of the parti.l
‘To apply_ such an approach to the scattering problem, it 1s necesssry to assume that the principal dimen-

'ilions of the particle are larger than both the uavd.ength of the scattered fields and the small scale
mtflce height correlauon distance. }

Both :be depolarized and like polarized components of the scattered fields are accounted for in

the full wave analysis. These solutions are cansistent with reciprocity and realizability relationships

1n electromagnetic theory and they are invariant to coordinate transformations.

‘ * N
1. 1Introduction

The purpose of this investigation is to ae:mi;:e the average normalized backscatter cross sectio.;

g!or randomly oriented metallic flakes. The 1rregu1'u. shaped flake 1s characterized by its surface heigh:
cpec:ral density function and its lateral dinension {5 assumed to be larger than both the wavelength o’

tbe incident electromagnetic field and the correlntlon distance of the rough surface.

The full vave approach vhich accounts for both cpecu.lu- point scat:eting and Bragg scattering in a

-~

lelf-consis:ant manner is used to express the total crou section ol‘ the flake as a weighted sum of two
!crou sections (see Section 2). The first is tssociated with the large scale spectral components of th.:

uaurface of the flakes and the second is associated with its small scale spectral components. The unit

‘vector noml to the surface of the flake is :h.u:acterued by the polar angle 9 and azimuth angle 0}.

i(see Section 3). Through s suitable choice of the coordimte system, the lvcnge with respect to the
i

imuth angle is evaluated analytically while the average over the polar angle OF can be evaluated

Az

‘hu-eruully. . '
i . .
! | -

1




]

2. Formulation of the Problem

To deternine the scattering cross section for arbitrarily oriented metallic flakes at optical fre-

!que.ncies, it is convenient to use a tvo-scale model of the rough surface of the flakes. Thus, the

;conposite surface of the flake is expressed as follows (see Fig. 1)

h(x,z) = h‘(x.z) +h (x,2) .1

1In equation (2.1), h" congists of the large scale spectral components of h vhile h‘ consists of :lt-s_
‘small scale spectral components. It 1s assumed that the lateral dimensions of the flake Ly are much
.larger than both the wavelength of the electromagnetic waves and the correlation distance of the rougi

.surface h, (2.1). For a homogeneous isotropic surface height, the spectral density function (Rice 1951,

:Barrick 1970, Ishimaru 1978), is the Fourier transform of the surface height autocorrelation

<h(x,z)h'(x',z')> .
; (v, .v) - :%-I <hhUexp(v x, + tv z,)dx dz, (2.2)
;vbere the symbol <*> implies statistical average ‘nd <hh'> is a function of l;dl'

;d - (x-x'):x + (:-"):z - ’d:x + zd:z (2.3)
.':I'hus, ‘the surface hl consists of the spectral components
‘ %)k (2.4)

2
5<k-(vx+v) <kd

H

_vhere kF - 21I/Lr is the largest wavenumber characterizing the surface of the flake and kd 16 the vave-

:nunber vhere spectral splitting (between the large and small scale surface) is assumed to occur. The

“surfage h. cousists of the small scale spectral compouents
i i 2, 2% \
\ k‘ <k (vx + v:)' < k‘ (2.5)

;vhere kc. the spectral cutoff vave;:ulber (Brovn 1978) is the smallest vavenumber characterizing the

*
'

. flake, ’ . ) ]
The full vave approach which accounts for both specular point scattering as vell as Bragg

-scattering in a self-consistent manner is used in this work to determine the scattering cross section

fof the composite model of an arbitrarily oriented flake (Bahar, et al. 1982). Thus, the total normalize

] .
3.catxez£ng cross section per unit area <aPQ> as a veighted sum of two cross sections

oS - <0P°>': + <o’Q>. (2.6)

in which <am>‘ is the cross section associated with the large scale filtered surface hz and the

cross vection <am>. 18 associsted vith the small scale surface N that rides on the large scale

!
surface h". The first superscript, P, corresponds to the polarization of the scattered vave vhile the

second superscript corresponds to the polarization of the incident wave.

(o st e et o - —




.pli:u.'n; occurs, kd
:riterh associated vith the Kirchhoff app:oximuons of the surface fields

l deep phne wmodulation. The scattering cross sec:ion <o Q> is given by (Bahar 1981a,d)
'
. i
: : <qm> - |x* (v n)lz <am>

in vhich X 1s the charscteristic function for the mll scale surface

x(v-n)-x(v)-<exp ivh >

and i
-  of = —f - - -
'o-k__ki.ko(n-n) , ve v

i The unit vectors o~ and 2

_—————

- 61

On deriving the full wvave solution it is impll::uly assumed that the vavenumber where spectral
, 18 chosen such that the lntge. scale surface h’. satisfies the radii of curvature

and the condition for

2.7

(2.8)

(2.9)
ko- u(uoco)l’

is the free space vavenumber for the electrougnetf: waves (u° and c° are the free space permittivity

and permeability). An exp(iwt) time dependence is assumed in this work. The vector ;‘

the unit vector o normal to the surface h(x,z) at ti:e specular points. Thus

R e Ve/|VE| = (ba 43 - nd /G +1 4+ 2y

vhere :
1 = y-h(x,2), hx = 3h/9x, hz = Jh/dz
; and !
;‘ -; viv

i The expression for the physical optics cross section <0 Q> for the surface h'_ is

!
]
|
!
'l £ siny cosd st cosy_ a’ + sioy sind 'x
i
i
|
Q 2
b 12
ar

2
A/ : ;
7o 4 | .

r,@‘.a‘l;)p(a)

and 1 and the relative complex permittivities and permeabilities of the flake.

the observer given the slopes, ;(hx’hz)' a

the probability denu.ty of the slopes h and h .

|

!

! al af are in the directions of the incident and scattered wvaves and
i R

!

wveighting function that accounts for the degndnlon of the specular point tc.tteri.ng cross section dvo

to the superimposed small scale rough lurhce h (hlur 1981b). Thus, as h -+ 0 ]x l + 1.

The scattering cross section <0 Q>._for the Gaussian surface h, thst rides the large scale surface

1s the value of

(2.10)

_(2.11)

(2.12)

(2.13)

in vhich 1)PQ depends on the polarization of the incident and scattered waves, the unit vectors n »

' The shadow function P
is the probability that a point on the rough nrfa:; 1s both {1luminsted by the source snd visible by
t the poii:t (Swith 1967, Sancer 1969). The function p(n) is

i . .2 PQ. -
The coefficient |x | that multiplies <o_"> is a

by 1s given by the sum, (Bahar et al. 1982)
-»
<am>. -] ;<oPQ> (2.14a)
el -
—l
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Ghere
"% », G54 ) -
<™ - ank J
-m ;': .
. -y
I 3.2 v.jlma W ( f) ’
. .,,[.viq. >>] .% —-_,_- p(d ,b )dn dh (2.14

In (2.14) <h > 4is the mesn square of the surface bei;ht h and v-,vy and ve are the components of v

i (2.9) in the local coordinate system associated vith the unit vectors nl,nz and ;3 (at each point' o:n

the large scale surface hl' see Fig. 2). Thus v 1::1130 expressed as

veven + v; ) + v; 5, (2.15;
vhere .
i ul-(nxaz)llnxatlz,nz-n.nj-rixn (2.16)
i The function H'(v!.vi)zz‘ is the two dimensional Fourier transfora of <h.h;>
! i
, " (V f 1 : 5. ; _ . ,
. DL S S <hh>¢:piv-x+vzdx
;. 22- (2’)2 s. s . £d d d
| ‘ '
5' ’ N -l- ' "‘ ] . . '
i . e = J LA Yy ?Vl(vi-vi Vv ' Yvo ldv,
| Ly
i = Vo) @ V) (vgvy) (2.17)
fIn (2.17) the symdol @ deno:es. the two di.nansion.'l.l convolution of "-—1 with "1 and fx n + :d 3[

1 .
iil the distance measured along the large scale surface h!.' The tvo dimensional Fourler transforms of the

.surface height autocorrelation function <h‘h;> is equal to the spectral density functioen Ul(vi,vi)lﬁ.

;'Uhen the parameter lok°<h:> H

Zf<<landg-= :y the first term in ( 2.14) accounts for first order Bragy
{ ! o
scattering and the higher order terms m > 2 may be neglected. In this case, the full wave solution (2.0

;il in agreement with lrcvn'c solution (1978) based on a combination of physical optics and perturbatio

|
ltheory. Howvever, since it 1s assumed using the full \uve approach thlt the condition for deep phase
nodulation is satisfied, iz is necessary to choose B - 6k2<h2> > 1 in order to assure that the wveighte

l
. cun (2.14) remains insensitive to variations ia k (the vavenumber vhere spectral splitting is nssumed

,to occur, (Bahar et al. 1982). Since fewer terms in (2.14) need to be evaluated for smaller values of B,
i

it is appropriate to assume 8 «1,0.

! .
Since the metallic flakes are randomly orfented with respect to the fixed observer, in Section 3,

!the snalytical results presented in this section are modified to s=count for arbitrary orientation of

;the normal to the mean surface of the flake.
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3. Scattering Cross Sections for Arbituruy Oriented Hetallic Flakes

1
I
l l.et x',y',2' be a fixed reference coordinate systa and let x,y,z be & rotated coordinated system
:wch that the uait vector 5’ i{s normal to the mean surface of the flake (y=0) (see Fig. 3). For back-
] -

f. —ni such th.lt

scatter it is convenient to choose the unit vectors n
'

i . fagtan : G0
I 7

_!Tbe unit vector a normal to the mean surface of the flake can be expressed as follows in terms of the
! |

flxed reference coordhute system i

;I n’ - .me cosor a'+ cosa ly + ;ine sln@l_. (3.2)
iFor convenlence the two orthogonal unit vectors ax and 2. in the mean plane of the flake are chosen such

Ethat the plane of incidence in the flake coordinate system is the x,y plane (normal to ;z)' Thus

- -1 - -4 - - - -
; a - (n'x ay)/ln x a,I and a -a’ xa (3.3)
iThe expression for ;l'in the flake coordinate system is therefore
1
H . -t -y - - s S 1< _ 4 -
i a (n -x)ax + (o l))a’ meo [ coseo a’ (3.4)
wvhere i

(3.5)

cosei - -51-: = cosb
[} y F
‘The angle V; between the reference plane of incidence (normal to :z' in the fixed coordinate system) and

' . * - -
‘the plane of incidence in the flake coordinate systenm (normal to 2l x ay) is

{ De@txiy Haaa) aa
; cosy I Y . o X - cosé (3.6)
- i - 1 - F

| |n xayl In xll n xa

‘thus

‘ , ox @xapat

} siny -——-—Y——-smo (3.7)
F 3

!: Jat x s

.Since ;f - -n for backscatter, the angle w}‘ between the plme of scatter in the fixed (x',y',z')

coordimte systen and the plane of scatter in the flake coordinate systea (x,z ,z) is
*F .0}_ - (3.8

‘Thus the matrix that transforms the vertically and horizonnlly polarized incident waves of the fixed

coordinate system to the vertically and horizontally polarized incident waves of the flake coordinate
! |-

jsysten is (Bahar 198la,b) {

[ - i 1
] cfnq.vr cinwr
f L=EN
i -sio¥y  costy

3.9

o B

Shﬂutly. the matrix that tunsfom the verticaslly and horizontally polarized scattered vaves in the

!hh coordi.nte q:t- back into vertically and hori:ontllly polarized scattered vaves of the fixed

coord!n“e systea is : i . : _J
1
i




P ] f | —
coniblf, -lin":. .

[
!
| -
|

I
' - £ . . .
.Ln‘w co:\br (3.10)
,Thus, in view of (3.8) for bdackscatter l
1 ITI .11
! P [ 4 (22
N 1
:'rhe coefficients DPQ in (2.14) are elements of the z x 2 matrix D given by (hhn 1981a,b)
: b~ C:'n ! (3.12
1 .

.in which C:n is thle cosine of the angle between the incident wvave normal ;i(S.d) and the unit vector o

:normal to the rough surface of the flake (2.10). Thuk,

} ¢:‘n - -E"-; = cosy cosd  -siny sinf_ cosd - (3.13)
; [ F F
f'l"he elements F

:rdative pernittivity and permeability of the flakes (Bahar 1981a). The matrix Ti transforms the

P of the scattering matrix F in (3.12) are functions of the unit vectors Ei,r-:f,l-: and the

,vertically and horizontally polarized incident waves of the x,y,z coordinste system to vertically and
iborizonully polarized vaves of the local coordinate system (;1,;2,53) associasted with the rough
'=lutt'ace ‘of the flake (3.16). Similsrly, the matrix Tf transforms the vertically and horizontally

-polarized scattered wvaves of the local coordinate systen back into vertically and horirzontally polarized

|
‘waves of the x,y,z coordinate system (Bahar 1981-,5)

To account for the arbitrary orientation of the flake with respect to the fixed (x',y",z')
;coordina:e system (3.12) must be post-multiplied by T:. and pre-sultiplied by 1‘;.

Therefore, in the

expressions for the ua:fetinx cross sections (2.6), the elements of the matrix D must be replaced by
the elements of the matrix D, givea by !
i
: £ 1n
'Dr - T’. ? Tf DT T
2 r,i D1} (.14
vhere s ’l ]
coswle o) winble 6] e s
1 .
= '} - { =
E 1 ) \
sin(b™+ 6p)  cos(y+ @) | |5, Co G.15}
In (3.15)
i J in
cosp” = [cosy sinB + siny cosb cos&]lso (3.16
s1oy? = stny snd/st® (3.16'
vhere . | ° .
~ s .- (c‘")’] : (.16

Yor backacatter 'r§ - 'ri oot P8 e P L g s, | . .
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HH

W Vv _BH
F : CoSp(F4F )

! 2
G F 5

) 4 (-}
2 }.xx w
(F ﬂ"m) :l‘ —sir (3.18)

1
’ D= C""
.Neglecting multiple scatter and assuming that the phau of the scattered rignals from the indfvidual

flakes are uniformly distributed io the interval [0,2%] the backscstter cross section for an ensemble
2

‘of randomly located flakes s given by the sum of the individual backscatter cross sections (Beckmann

;and Spizzichino 1964). Thus, sccounting for the :nndcm orientation of each individual flake, the' A\trera;

cross backscatter cross sec:ion of the ensemble of fllkes is

3
l /2 2x I w/2
,| ) ' <% o J <%y (B56)db,dB, ] J <c"°>ep(er)ae}_ (3.19a)
; [ : °
.1n which H
! - -
'S, - 2—: <™ ¢ (3.19%)

i ’ ]

| . .

. °

.and 1t is assumed that the unit vector normal to the mean surface of the flake is uniformly directed in
l

.thc half space 0 < 9). <7/2, 0< 0!‘ < 2n. Thus,

.me _°F (BF)

P(BL.¢.) = —-—— = (3.20)

i
?
;Since <OPQ> is dependent on 0}_ only through the sines and cosines of the angles (wiw}.) (3.18), 1t is

_'convenient to evaluate the average of <OPQ> vith respect to the angle OF analytically by first

jevaluating the average of IDiQIZ wvith respect to ‘F' Thus for P¢Q

m ;cm)z :
2 . 2.2, VW _HH,2
ID:Q‘ = %J ID:QIZ by = —3 Jcrsrlr ey

i
1
!
H
.
!
'
H

[}

in .2
! («, )
i - LA L - (.21
f;nd for P = VB 2 l
, - in 2 .
! PP . 1 { . Pp;2 Ly W2 &) BH2 22 WV _HH
; Iop | =5 I Iog ) a4, ol | Sas | 205y Re(F F o )dé,
" °
i . !
) =L ™) 4 a)r ] re BT PR
! i
! ) R X Gor R LA RN | L LD _ - (3.22;

i
H

1.n vhich the symbol * denotes the complex conjugntc.‘
The expression for Fw and }'!v are complicated fum:tion. of 0 . Tius, the integrals with respect

to 6 are not evaluated snalytically. Instead <0PQ> (3.19), sust be evaluated numerically using (2.14)

~
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L ach IDPQ,Z (P.@V, ) replaced by lDPle (3.2) and (3 22). To obtain the ensemble average for the
FQ, >0 18 sultiplied

7

scattering cross sections <dP°> (3.19) the result fron the previous integration, <c

i
by p(er) - .me}. and integrated with respect to 8!.. Thus summing up, the integral (3.19) 1s performed

'analytically with respect to OF' however it must be performed numerically with respect to er. The

+integrations with respect to hxhz (2.14) must alse bg performed pumerically.

4. Conclud 1;13 Remarks

Expressions for the average normalized backscatter cross sections for arbitrarily orieated

imetallic flakes are derived using the full wave approach. Thus, the total backscatter cross section

éil expressed as a veighted sum of two cross sections.

iconsisting of the large scale spectral components of the composite rough surface while the second is

[l i
'-ssociated vith the surface consisting of its small scale spectral components that ride on the large
!

;-cale surface. }
! To obtain numerical values for the average norm‘alued backscatter cross sections, using the full
i

:wvave approach presented in this paper, l: is necessary to know the surface height spectral density

H(v ,v ) (2.2) and the complex dielectric constant of the metallic flake. Several models of metallic

1
‘flakes are currently under investigation. :
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The randomly oriented flake.

Pigure 3.
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ABSTRACT

As a synthetic aperture radar scans different por-
tions of a rough surface, the direction of the unit
vector normal to the mcan surface of the effective
11luminated area (resolution cell) fluctuates. In this
paper the modulations of the scattering cross sections
of the resolution cell are determined as the normal to
it tilts in planes that are in and perpendicular to the
fixed reference plane of incidence. Using the full wave
approach, the scattering cross sections are expressed
as 8 weighted sum of tvo cross sections. The first cross
section {s associated with scales of roughness vithin
the resolution cell that are large compared to the radar
wavelength, and the second cross section is associated
with small-scale spectral components within the resolu-
tion cell. Thus, both specular point scattering and
Bragg scattering are accounted for in a self-consistent
wmanner. The results are compared with earlier solutions
based on first order Bragg scattering theory.

Formulation of the Problem

The recently derived full wave solutions for the
wormalized croes sections per unit ares are summarized
here for composite rough surfaces. let the position
wector to & point on the rough surface be expressed as
follows: _ - - '

- !l(x,hl,z) +ahy (1),
in vhich y = h",x.:) is the filtered surface consisting
of the large scale spectral components and h_ the small
scale surface height is measured in the direction of
the normal (n) to the large scale surface y = hy. For
a homogeneous, isotropic surface height the spectral
density function is the Fourier transform of the sur=-
face height autocorrelation functiom <h{x,z),h'(x’,z')>

- LA, .

H(v’.v‘) 2 I_ <bh >exp(!v‘ud4£v.td)dxddzd (22)
where <hbh'> is a function of kdl - (x:ﬂ:)“ and

- ' - - ' . ’

x-x L7 and T - 2 24 {2b)

The surface hy(x,z) consists of the spectral components

ke (‘I‘VZ)H < kd and the remainder term h. consists of
the .pec:r-l components k > k.. Since the full wvave
approach accounts for both specular point scattering
ond Bragg scattering in & self-consiscent mannerythe
total scattering cross section can be expressed as a

weighted sum of the cross section <c >, for the

filtered surface h, and the cross section <o Q). for
Ih: surface h, that rides on the large-scale surface
h

' R, L PO

<o ke,

Pptee L. (&)
The sysbol <« > denotes statistical aversge. The first
superscript P corresponds to the polarization of the
ecattered wave while the second superscript Q corres-
ponds to the polarization of the incident wave. To de-
tive (3) using the full wvave approach it is fmplicitly
assumed that the large scale surface meets the radii

i
i

of curvature criteria (associated with the Kirchhoff
approximations for the surface fields) as well as the
condition for deep phase modulation. Thus the first
term in (3) is shovn to be .
P 6.- = y|2 P :
<g Q’: - |Ix (v.n.)| <o S> @)
in which X- s the characteristic function for the '

small scale surface H
x'(;';)- x¥(v) = <exp 1vh.> (5)"
vhere

e R Gl dh, v - 9] '

The unit vectors E‘ and 51 are in the directions of
the scattered snd incident wave normals respectively;
thus for backscatter m = -n . The free space radio
vavenumber 1s k.. An exp(Lut) tiwe dependence is
,assumed. The vector n is the value of the unit vector
n normal to the .urf:c: h(x,z) at the specular points.
Thu:

n - vE/|ve], f(x,y,2) = y-hx,2) (7a)
[ ] .
CRR7 o’

'
The expression for the physical optics (specular

(
0

point) cress section for the large-scale surface b, ie
2 :
of =)= -
Pz(n .nlln)p(n) . (8)
n I
»

in which l)'Q depends on Ei, ;t. 7, the media of propa~
gation above and below the rough surface h(x,z) and
the pol-rization of the incident and scattered
vaves.2vd The shadow function P, s the probability
that a point on the rough surface is both f{lluminated
and visible, given the slopes n(h_,h ), at the point.
The probability density runction or the slopes h and
h, is p(n). The factor x ®(v) that multiplies <uPQ
sccounts for the degradation of the contributions from
the specular points due to the superimposed small
scale rough surface h,.

Assuming & Gauesian probabilicy density function for

h., <nP°>. is given by the sum

<aPQ>' - .El<upq>.. (9);
vhere
v IRk R )
«g > = 4vk’ S
| o -
ﬂ a,
¥ (ve,v

-exp(-v <h >) J '—!—‘— p(h b )en dh (10)

in which <h:> {s the .esn square of the surface height
h' and v;, v- and v; are the components of ¥ (6) in

the Jocal coordinate system (at each point on the
large scale surface) associated with the unit vectors




"‘l' ;2 and ;3. The function H“(vx.vz)lzﬂn 1l. the two-
dimensional Fourler transform of (<h'h;>)". ;
The first term ia (9) <w"2>‘l reduces to the first
order Bragg scattering cross section for e-Ak:J:i ><c ],
and n =~ ;y' |
In order to apply the full wave approach to SAR it
1s necessary to modify the results presented in this
section (a) to account for the f{ltering of the very
large scale spectral component of the rough surface by

the SAR that effectiveir 1lluminates a relatively
small arca of cell F of the rough surface S and (b) to
account for the normal to a reference plane associated
wvith the i{l1luminated cell which is characterized by
arbitrary tilt angles 0 and 1 in and perpendicular to
the reference plane of incidence (see Fig. 1). It is
assumed here that the lateral dimension of the cell
4lluminated by the SAR i{s much larger than the small
scale surface height correlation distance for the cell
and that as the SAR scans different portions of the
rough surface S the direction of the unit vector normal
to the cell F fluctuates.

Scattering Cross Sections for Arbitrarily
Oriented Resolution Cells of che Rough Surface
Let X,y,z be the reference coordinate system asso-
clated with the surface of the cell F that is {llumin-
ated by the SAR such that che wean surface of the cell
{s the y=0 plane (see Fig. 1). Furthermore, let x',y',z'
be the fixed coordinate system associated with. the
large surface § such that the unit vector a’ 1s normal
to the mean ro\(;h surface height h(x',z'). ° The unit
vecror il = -Al i3 exprecsed in terms of the unit vec-
tors of the fixed coordinate system (x',y',z'): .
]
f a1y
(

ale 5fa a1ne’ 3! - coss’ 3’ .

o x oy
The unit vector a_ normal to the reference surface
asgociated with the cell is expressed in terms of the
tilt angles © and t in and perpendicular to the fixed

plane of incidence, the x',y' plane. Thus :
3 = sinfl cost a'+ cosll cost a'+ gint &', 12)
y x Yy z '
Yor convenience :x and ;‘. the unit vectors associated
with the cell, can be chosen such that the plane of
incidence in the x,y,z coordinate system is normal to
the vector i'. Thus {
ay,
i

TN R SV AN S A

and the expression for o> in the x,y,z coordinate sys~

ten is
L

where

!
sine_ a_ - cost 5 (14a)

cons = col(ﬂ", 4 O)cos 1, (lﬁb)I

The angle t:. between the plane of incidence in the
fixed coordinate system (x',y',t") and the plane of
incidence in the coordinate system (x,y,z) associsted
with the cell i3 given by '

g Sost sinls] 4+ A1)
it R TTT -
For backscatter Af= -i!. Thus the angle 0:, between the
plane of scatter in the fixed coordinate system
(x*,y',2’) and the plane of scatter in the coordinate
syaten associated with the cell is

asy’

'
]
DL ae),
The matrix that transforms the incident verticslly and
horizontally polarized vaves in the fixed coordinate

system to vertically and horizontally polarized waves
An the cell coordinate systes is therefore?.3

cou‘ -m‘
2 F ¥
- ' o - an
B --intr cnst,.

| )
Similarly, the matrix that trancforms the scattered

vertically and horfzontally polarized waves in the cell
coordinate system hack into the vertically and horizon-
tally polarized waves in the f{ixed coordinate system ig

u:l'f -8 hw‘

f F F
T~ ¢ Nk (18)

'1“*,- Cosvy

Thus 1n view of (16), Tf = Tf. The coeffictents D' 4n
{8) are elementy of a 2x2 matrix D given by

pectf ! a9
in vhich C:" is the cosine of the angle betveen the
dncident wave normal n- and the unit vector n normal to
the rough surface of the cell hs(x.z). Thus

. cin in
o °

@0,

- -1.11-; = ¢osd
vhere fil {s given by (14) and N is given by (7} with
fpln,2) = y-h,.(x.z). The elements of the scattering
matrix F in (19) are functions of the unit vectors

r-nl, n' and n as well a8 the media of propagation above
and below the trough surface 5.7 The matrix T{ trans-
forms the vertically and horfzontally polarized vaves
in the cell coordinste system ( .l-‘) to vertically
and horizontally polarized wvaves iny(hz local coordin-
ate systez that conforms with the rough surfasce,

;l"—'Z‘;:' Similarly, the matrix 'l" transforms the

vertically and horizontally polarized waves in the

local coordinate system back into vertically and hori-

lvnullg polarized waves {n the cell coordinate

system,

' To account for the arbitrary orientation of the cell,

the matrix D {a (19) wust be post-multiplied by Tp

and pre-multiplied by T;. Thus the elements of the

matrix D in (8) wust be replaced by the elements of the

matrix D

[ ¥ '
£ i

1

! IIr - 1’, ] T’ . 1)

Furthermore, in viev of the effective filtering by the

SAR of the very large scale spectral components of the

rough surface £(x',z') = 0, the spectral density func-

tion for the rough surface f_(x,2) = O associated with

the resolutlon cell F ia given by

) U(vi,vi) s k2 k' - 2-/1.'
Yo(vo,v.) =
P O L kek =2/, (22)
vhere W(ve,ve) fs the spectral density function for the
surface S, f(x',2') « 0, and L 1s the width of the
resolution cell,

Illu tive Examples
For the f{llustrative examples presented in this sec-
tion, the folloving specific form of the surface height
spectral density function 1s selected’
| Auyatad ok
! U(v’.v!) - -

o k> k. (23)




For the assumed Ssotropic model of the ses surface
B = 0.0046

L v: > v: 2, b .12 (et
N (24)

c = 3352 V)N (e, v 43 le)

1n vhich k. 1s the spectral cutoff vavenumber® and V is
the surface wind speed. The vavelength for the electro-
magnetic wave is

3, =20 cm G 20/3 = (emh) . as)

The relative cowmplex dielectric coefficient for the
ses 1s

L 48 - 135 (26)l

and the permeability for the sea is the same as for
free space (ur = 1). The slope probability density
funceion within a resolution cell {s assumed to be
Gaussian, w w

In Figs. 2a and 2b, <o >, and -(d<qw>/dn)/<u >
are plotted for 8. 0 and 1 = O as functions of B;. the
angle of incidence vith respect to the fixed reference
system (x',y%,2'). In these figures L = 300, 1000 and
2500 cm. .

In Figs. 3a and 3b these results are repeated for
<om>. It is interesting to note that the effective
fileering of the very large scale spectral components
of the tough surface (0 < k < k) by the SAR"does not
significently change the value of oPF unless
L, < 300 cm. As onc may expect, the modulation of the
scattering cross sections in the plane of incidence

|d<uvv>ldn| is strongest for the SAR corresponding to
the nsrrovest effective beanm vidth Ly = 300 cm.
In Fig, & -(d(cw>ldt)l<vw> is plotted for R = 0

,and 1 = 0 as a function of the angle of tncidence 8;.
These results are repeated tn Fig. 5 for <o >. In
Figs. & and 3 the width of thePSAR 1s also Lg = 300,
1000 and 2500 cm. Unlike [d<a’ >/dn| (P=V,H) the peak
1n the derivatives ld<o’T>/dr| occurs at pormal
incidence (D"’ - 0). ’
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Scattering Cross Sections for Composite Rough Surfaces
Using the Unified Full Wave Approach

EZEKIEL BAHAR, SENIOR MEMBER, 1IEEE, AND MARY ANN FITZWATER

ADbstract—The full wave approach is used to derive a unified formula-
tioa for the like and cross polarized scattering cross sections of composite
rough surfaces for all angles of incid Earlier sol for el g
netic g by posi dom rough sarfaces are based on two-
scale models of the rough surface. Thus, oa applying a hybdrid approsch
physical optics theory is wsed to account for specular scattering nssociated
with 8 filtered surface (consisting of the large scale spectrsl components of
the surface) while perturbstion theory is msed to account for Bragg
scatiering associated with the surface consisting of the small scale spectral
components. Since the full wave spproach for both specular point
scatteriag and Bragg scattering in a sell-consistent manner, the two-scale
wmodel of the rough surface is net adopted in this work. These unified full
wave solutions are compared with the earlier solations and the simplifying

that sre te all the earlier solutions are exsmined. I is
shown that while the full wave solutions for the like polarized scattering
cross sections based o the two-scale model are in reasomably good
sgreement with the unified full wave solutions, (he {wo solutions for the
cress polarized cress sections differ very significanddy.
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1. INTRODUCTION

Traditionally physical optics and perturbation theories have
been used to drive the like and cross polarized scattering cross
sections for composite random rough surfaces Beckmana (6],
Rice [13]. To this end two-scale models have been adopted
and the rough surfaces are regarded as small scale surface per-
turbations that are superimposed on large scale, filtered surfaces
(Wright [7], Valenzuela [17). Barrick and Peake [5]). Thus the
scattering cross sections are expressed as sums of two cross
sections. The first accounts for specular point scattering. It is
given by the physical optics cross section for the filtered surface
consisting of the large scale spectral components. The second
accounts for Bragg scattering. It is given by the perturbation
cross section for the surface consisting of the small scale spectral
components that ride on the filtered surface.

On applying the perturbed-physical optics approaches it is
necessary to specify the wavenumber kg where spectral splitting
is assumed to occur between the large and small scale spectral
components of the rough surface. Thus Brown [7] who applied
a combination of Burrows’ perturbation theory [8] and physical
optics (Beckmann [6]). to obtain the scattering cross sections
for perfectly conducting random rough surfaces, specified kg
on the basis of the characteristics of the small scale surface
(B= 4k3th2) = 0.1, where kg is the electromagnetic wavenumber
and (h_f) in the mean square height of the small scale surface).
However, using the approaches of Hagfors {9] and Tyler [16],
the specification of kg4 is assumed to be based on the character-
istics of the large scale surface. In general the restrictions on both
the large and small scale surfaces cannot be satisfied simultane-
ously and, using the perturbed-physical optics approaches. the
evaluation of the scattering cross sections critically depend on
the specifications of kg4 (Brown [7]).

More recently the full wave approach has been used to deter-
mine the scattering cross sections for composite random rough
surfaces of finite conductivity (Bahar [2], Bahar and Barrick
[3])- Since the full wave solutions account for Bragg scattering
and specular point scattering in a self-consistent manner, it is
not necessary to decompose the surface into two surfaces with
small and large roughness scales. However, when such a decompo-
sition is feasible, the full wave solutions for the scattering cross
sections can be expressed in terms of a weighted sum of two cross
sections (Bahar [2), Bahar and Barrick [3}). Thus on adopting
a two-scale model, the full wave solution resolves the discre-
pancies betwcen Valenzuela’s [17] solution (mostly based on
physical considerations) and Brown’s solution {7]. Furthermore,
in an attempt to draw more definite conclusions regarding the
choice of kg4, it was varied over a wide range of values (Bahar
et al. [4]). It was shown that while, as expected, the cross sec-
tion associated with the individual large and small scale surfaces
critically depend upon the choice of kg, the weighted sum of the
like polarized cross sections remain practically insensitive to
variations in k4 for § > 1.0. Thus, provided that the large scale
surface satisfies the radii of curvature criteria (associated with the
Kirchhoff approximations for the surface fields) and the condi-
tion for deep phase modulation, the full wave solutions for the
like polurized scattering cross sections based on the two-scale
model is practically independent of the specified value of kgq.
However. on applying the full wave approach to evaluate the
like and cross polarized scattering cross polarized scattering
cross sections for two-scale models of composite rough surfaces,
several assumptions were made 1o facilitate the computations.

The first assumption was that the large and small scale surfaces
were statistically independent (Brown [7]). It would seem
reasonable to make such an assumption if the two surfaces are
results of independent processes. For the general case, however,
one cannot assume statistical independence of the large and small
scale surfaces.

The second simplifying assumption that was made was that the
mezn square slope oi. for the total surface was approximately
equal 10 the mean square slope 0% for the filtered large scale
surface.

The third assumption was that the mean square height of the
total rough surface was large compared to 2 wavelength, and the
surface height characteristic function for the total surface was
negligibly small compared to unity.

Finally, the physical optics approximation for the cross
polarized backscatter cross section 1s zero (Brown [7]). As a
result, the cross polarized backscatter cross section for the fil-
tered surface is set equal to zero when the two-scale model is
used. However, for backscatter, only the specular points on the
rough surface do not depolarize the incident wave.

in this communication the full wave approach is used to derive
a unified formulation for the like and cross polarized cross sec-
tions for all angles of incidence. These solutions are compared
with earlier solutions based on a two-scale model of the random
rough surface (Bahar er al. {4]). Thus, the simphfying assump-
tions, that are common to all the earlier solutions based on two-
scale models of the rough surface, are carefully examined. It is
shown that while the full wave solutions for the like polarized
scattering cross sections based on the two-scale model are in
reasonably good agreement with the unified full wave solutions,
the two solutions for the cross polarized cross sections differ
very significantly.

1. APPLICATION OF THE FULL WAVE SOLUTION
WITHOUT SURFACE DECOMPQOSITION

The starting point for this analysis is the full wave expres-
sion for the like and cross polarized scattering cross sections of
the rough surface y = k(x, z) (Bahar et al. [4])

2 -
(%= k ] (ST2 exp [ivy(h - A
N iw

D OR(w. 717 "')> x(u)| 2]

n-a,
s exp liexy + iv24) dxgdzy (e8]
in which
fg=(x-x)ay+ (2 -12)a; =xq8x + 240, )

is the radius vector between two points on the reference plane
(x,2). The vector U is

b=ko(# - ') = ua, + v,a, + 44, 6}

where k, is the free space wavenumber for the electromagnetic
wave and @' and @ are unit vectors in the directions of the
incident and scattered wave normals, respectively. As exp (fwr)
time dependence is assumed in this work. Thie symbol ¢+) denotes
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the statistical average and

2
ko (sre exp livy(h - )
T

5
n

“ Xa(vy, —0y) =170, W2y, -0 ©

in which i/, h;) is the unit vector normal to the rough surface

2
Po(# 7 \R)plhy, h;) dhy dh,

DO(i)

nca,

f(x, ., 2)=y - h(x,2y=0. )
Thus,

Vf=nlVf1=V(y - Kx,2)) = (-hsa, +a, - h,a;) ©®
in which the components of the gradient of A(x,z)

hy =3hjdx, h,=0hfdz ™

are the random variobles and p(h,, h,) is the probability density
function for the slopes h, and h,. The expression for the scatter-
ing cross sections (0©2), (1) accounts for shadowing: thus
P,(r'if. 7 fi77) is the probability that 2 point on the rough surface
is both illuminated and visible given the value of the slopes at
the point (Sancer [14]). The characteristic and joint character-
istic functions for the surface height k are x(v,) and x, (v, -v, ).
It is assumed in this work that the probability density function
for the surface height is jointly Gaussian. Thus

1x(0,)1? = exp (~vAehh),

x2(vy. —v,) = exp(-2G7)+ ui%h')) )
where (#%) is the mean square height and (ah') is the surface
height autocorrelation function. The coefficients D*@ depend
explicitly upon the polarization of the incident wave (second
superscript @ = V—vertical, Q = H-horizontal) and the polariza-
tion of the scattered wave (first superscript P = ¥V, H) the direc-
tion of the incident and scatiered wave normals 7 and 7/,
respectively, the unit vector # normal to the rough surface and
the complex permeability and permittivity of the medium of
propagation, respectively (Bahar [1]). On deriving (4), it is
assumed that the rough surface is Gaussian and stationary, thus
the surface height h and slopes (h,, h,) are statistically inde-
pendent (Brown [7]. Longuet-Higgins [11]). It is also assumed
that for distances |74 | less than the surface height correlation
distance, Io. ii(hy, hy) = (A}, h,). It has been shown that if
the principal contributions to the scattered fields come from
specular points on the rough surface (n = n,), (1) reduces to
the physical optics solution for the scattering cross section.
If. however. the roughness scale of the surface is small com.
pared to the wavelength (k3¢h?) € 1) and the surface slopes
hy and I, are very small, (I) reduces to the perturbation solu-
tion for the scattering cross sections (Rice {13]). Thus, in this
case Bragg scattering is accounted for and the backscatter cross
sections for grazing angles are strongly dependent on polariza-
tion. Recently a two-scale model was adopted to determine
the corresponding full wave solution for the scattering cross
sections (Bahar and Barrick [3]). To facilitate the application of
the two-scale model it is assumed that the small scale surface h,
and the large scale filtered surface b are statistically independent
(Valenzuela [17]: Wright [18]; Brown [7]). In the general case
however, if the two-scale model is used to analyze the problem
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it would be necessary 10 know the large and small scale surface
height joint probability density function for 1wo adjacent points
on the rough surface to determine x5, (8) alone.

Since the full wave solutions account for both Bragg scatte:
and specular point scatter in a unified, self-consistent manner
in this communication solutions for (1) are developed withou
adopting a two-scale modet of the rough surface.

It has been noted in the introduction that the physical optic
approximation for the cross polarized backscatter cross sectior
is ze10 ((0©@)r = O for P # Q) (Brown [7]). However, even the
large scale filtered surface will depolarize the backscattered field
at nonspecular points on the surface. Therefore the present
analysis should shed more light on the evaluation of the like and
cross polarized backscatter cross sections and the suitability of
the two-scale mode! even if it can be assumed that the large and
small scale surfaces are statistically independent.

Assuming that k3¢h?)> 1 and |x[* <€ 1, the scattering cross
section (1) can be expressed as follows:

"9 = 19w/, na”, #, R)
in which /£ is defined by (4) and

(92)

g= f (x2 - 1x1?) exp liv,xg + it2g]) dxg dza,  (9b)

is the two-dimensional Fourier transform of (x; — Ix %) (8). It
therefore depends on the surface height correlation coefficient

R
(19

The surface height speciral density function W(v,. v;) is related
to the two-dimensional Fourier transform of the surface height
autocorrefation function.

R = i Yih?).

W, v,)= iz /(hh’) exp [iv xg + iv:24] dxy d2g. an
n

Thus assuming that the rough surface is Gaussian and stationary,
to compute the scattering cross sections (9) it is necessary to
prescribe the two-dimensional slope probability density function
plhy. k), (4) and the surface height autocorrelation function or
its Fourier transform (the surface height spectral density func-
tion). Since it is assumed in this work that the surface is isotropic,
(hh') depends only on the distance ry = |74 | between the two
points (x, b, z) and (x’. k', z') on the rough surface. Thus

thh') = 21:/-“%'—) Jo(Ug27a) 0y ; AUy, a2
in which J, is the Besse] function of order zero and
=i o} a3
(h’)=2ul~w(L‘") Uz Uy, (14)
and the tota! i:can square slope is
1)

L4()
o} = 21r/ (‘") 0, dv,..

{1 ILLUSTRATIVE EXAMPLES

For the following illustrative examples the special form of
the surface height spectral density function is chosen (Brown
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[
2
W(v,.v,)=<->s(vx.v,)
n

n

2
( >Bk‘/("1+x‘)‘, k <k,

0, k>k. (16)
where W is the spectral density function (16) and S is the corre-
sponding quantity used by Brown [7]. For the above isotropic
model of the ocean surface

K =02+ 0} (em)™?, ke=12(cm)”', B=00046

k=(335.2V%)"1 (em)™!, V=43 (m/s), an
in (17) V is the sutface wind speed. The wavelength for the elec-
tromagnetic wave is
A =2(cm), (ko =3.1416 (cm)™!). (18)
Equation (14) for the mean square height of the rough surface
yields
Bk® B
(h’):——2 s ¥ =879 cm?,
6x‘(x® + ki) 6k
The surface height autocorrelation function (k') (12) can be
expressed in closed form for k. = oo. Thus the surface height
correlation coeffiient R(rg) (10) is given by (Miller eral. [12])

(19)

1
R(rg) = [1 + : ("’d)i] (xrg)Ky (kr4) — (krg Y Ko(xrg)
(20}

in which Ky and K, are the modified Besse! functions of the
second kind and of order zero and one, respectively. Since k, >
« and k. > ko the above closed form expression is used for R
in this illustrative example. The total mean square slope of the
rough surface is obtained on substituting (16) into (15).

1 B4k K36k + 1563k + 11k4
a§=3[— In-< A < <)

«? 12(% + k23

=0.034. 21
For typical sea surfaces the relative complex dielectric coefficient
at 15 GHz is given by (Stogryn {15})

€, =42 -39, (22)

The slope probability density function p(hy, h,) is assumed 10
be Gaussian. In Fig. 1, the like polarized backscatter cross sec-
tion (a¥¥) is plotted as a function of the angle of incidence
0{, using the expression derived in Section II. These results are
compated with the two-scale full wave results (Bahar er af. {4})
based on the choice of ks (the wavenumber where spectral
splitting occurs) corresponding to B = 1. Both results yield the
same general dependence of (0*¥) on the angle of incidence.
The small difference in level is primarily due to the fact that in
(3) the mean square slope og of the total (unfiltered) surface is
used, while for the solution based on the two-scale model the
mean square slope a}-s for the filtered sutface k- is used (Bahar
et al. [4]). It should be noted that in deriving the expressions for
the scattering cross sections based on the two-scale model, it
was assumed that oF¢ = o3, Thus the results based on (3) are
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Fig. 2. Backscatter cross sections <o¥¥> for rough surfaces characterized
by Wv,. »,) given by (16). () Two-scale model and (A ) unified ful!l wave
solution (4). Relative complex permittivity is ¢, = 42 — 39.

more accurate. Furthermore, on deriving the solution based on
the two-scale model, the quantity x(v,) (8) is assumed to be
negligible compared to x, (v, —v, ) (8) forry <I,.Since 4k} ¢1?) =
3468 for this illustrative example, the resulting approximation
is very good except very near grazing angles. In Fig. 2, the cor-
responding results are given for the horiz« ntally polarized back-
scatter cross sections (08f). It is interesung 10 note that the
full wave solution (3) yields the proper polarization dependence
of the scattering cross sections for all angles of incidence without
use of a two-scale model since it accounts for specular point and
Bragg scattering in a unified, self consistent manner. In Fig. 3
the cross polarized backscatter cross sections (0V¥) = ")
are plotted as functions of the angle of incidence. Here too,
both the solutions based on the two-scale model as well as the
solution derived in this section are presented. Unlike the solutions
for the like polarized backscatter cross sections kil XP=V.H)
the solutions for the cross polarized backscatter cross sections
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differ significantly, especially near normal incidence where
the difference in level is about 15 dB. This very significant
difference is due to the fact that the physical optics approxima-
tions for the cross polarized backscatter cross section is zero
(Brown [7], Bahar et al. [4]). For backscatter the surface at the
specular points is normal to the incident wave. At these stationary
phase points no depolarization occurs. However, since depolariza-
tion occurs at the nonspecular points of the filtered surface. the
physical optics approximations for the cross polarized backscatter
cross section is not valid. It is interesting 1o note that for the two-
scale model at normal incidence (0”" ¥(0c"2) = 47 dB (P # Q).
However, using the full wave solution (3), (¢f* Yo" @) = 31 dB
(P # Q). The latter results are significantly more in line with
published experimental results’ (Long {10]).

IV. CONCLUDING REMARKS

1t is shown in this section that two-scale models of rough sur.
faces can be adopted to obtain solutions for the like polarized back-
scatter cross sections that are in reasonably good agreement with
the full wave solutions derived in this section. However, the two-
scale model cannot be used to evaluate the cross polarized back-
scatter cross sectons. The significant differences between the
solutions derived in this paper and those based on the two-scale
models are primarily due to the fact that the physical optics
approximation for the cross polarized backscatter cross sec-
tion (associated with the large scale filtered surface) is zero.
For backscatter, the specular points lie on portions of the rough
surfaces that are perpendicular to the incident wave normal
n'(fi, = ¥ = —'). At these specular points, the backscattered
waves are not depolarized. However, at nonspecular points of
the rough surface, the backscattered waves are depolarized
(Bahar [2]). Thus, it is important to note that even il a surface
satisfies the radii of curvature criteria (associated with the

' Sec also NRL report on “‘Airborne radar backscaticr study at four
frequencies,” NRL Prob ROZ-37, SER: 8560, Aug. 1966, by ). C. Daley.
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Kirchhoff approximations for the surface fields), the physical
optics approximations for the scattered fields may not be valid
unless for the given incident and scatier angles specular points
exist on the surface and sigaificant contributions 1o the scattered
fields come from these stationary phase (specular-points) of the
surface. This explains why the physical optics approximations for
the like polarized backscattered cross sections are not suitable for
grazing angles even if the surface meets the radii of curvature
criteria associated with the Kirchhoff approximations.

There are additional important reasons for preferring 1o use
the analysis developed in this section over those that are based on
two-scale models of rough surfaces. Firstly, if the two-scale
model is used, it is necessary to assume that the large and small
scale surfaces are statistically independent (Brown [7] ). Secondly,
even if the assumption of statistical independence is acceptable,
when the two scale model is used, it is still necessary tojudiciously
specify kg (where spectral splitting is assumed to occur). These
problems do not arise when the unified full wave formulation is
used to evaluate the scattering cross sections.
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ABSTRACT

Microwave remote sensing of rough surfaces (both land and ocean), using moving
platforms (aircraft and satellite), -as well as ground based measurements has illus-
trated the need for a better understanding of the interaction of the radar signals
with these surfaces. This interaction is particularly important for the ocean surface
where the radar modulation can yield information about the long ocean wave field.
Radar modulation measurements from fixed platforms have been made in wavetanks and
the open oceans. The surfaces have been described in terms of two-scale models. The
radar modulation Is considered to be principally due to: (1) geometrical tilt due to
the slope of the long ocean waves and (2) the straining of the short waves (by
hydrodynamic interaction). For application to moving platforms, Synthetic Aperture
Radar (SAR) and Side Looking Airborne Radar (SLAR), this modulation needs to be
described in terms of a general geometry for both like- and cross-polarization since
the long ocean waves, in general, travel in arbitrary directions. In the present
work, the finite resolution of the radar is considered for tilt modulation with

hydrodynamic effects neglected.

1. INTRODUCTION

The full wave approach is used to determine the modulation of the like- and
cross-polarized scattering cross sections for comnosite models of rough surfaces
illuminated by SAR. The full wave approach accounts for both specular point scatter-
ing and Bragg scattering in a self-consistent manner. Thus, the total scattering
cross section is expressed as a weighted sum of two cross sections (Bahar et al.,
1983). The first is the scattering cross section associated with the filtered surface
consisting of the large-scale specular components of the illuminated rough surface
area. The second is the cross section associated with the surface consisting of the
small-scale spectral components that ride on the filtered surface.

Full wave solutions are derived for the scattering cross sections of a relatively
small area or resclution cell of the rough surface that is effectively illuminated by
- SAR. The normal to an arbitrarily oriented mean plane associated with the illuminated
cell is characterized by tilt angles Q2 and T in and perpendicular to a fixed reference
plane of incidence. It is assumed that the lateral dimension of the resolution cell
Ly is much larger than both the electromagnetic wavel.ngth and the surface height
correlation distance for the cell. -As the SAR scans different portions of the rough
surface S, the direction of the unit vector normal to the cell F fluctuates. In this
paper the "modulations" of scattering cross sections are determined as the tilt
angles  and T fluctuate. In a recent study of "tilt modulation" by Alpers et al.
(1981), first-order Bragg scatter due to capillary waves on a tilted plane is consid-
ered. It can be shown that if the large scale spectral components of the surface
within the cell are ignored, the full wave solutions derived here for tilt modulation

reduce to the results obtained by Alpers et al.
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n = V/|vf| = (-ha+ a - h,a,)/(h + b +1) (7a)
vwhere f=y-h(x,2) , b =3h/ax , h = 3h/az 7b)
and _x _
n = viv . (7¢)
The expression for the physical optics (specular point) cross section for the
large-scale surface h:. is
PQ “‘:. ) (T
<0 > =—3| |53 Pz(n ,n° |n)p(n)}_ (8,
V2| a3, J“s

y
in which DPQ depends on Ei, ﬁf, n, the media of propagation above and below the

rough surface h(x,z) and the polarization of the incident and scattered waves
(Bahar, 198la,b). The shadow function P, is the probability that a point on the
rough surface is both illuminited and visible, given the slopes E(hx,hz), at the
point (Smith, 1967; Sancer, 1969). The probability density function fof the slopes

hy and h, is p(n). The factor xs(v) that multiplies <o£Q> accounts for the degrada-
tion of the contributions from the specular points due to the superimposed small

scale rough surface hg.
Assuming a Gaussian probability density function for hs' <UPQ>‘ is given by
the sum
PQ b PQ '
) <g >s mgl < >sm 9)
where e
PQ IDPQIZ Pz(nf,niln)
<g > = 4yk” S —
sm ° n-a
2 2 vg m Wm(v’_(,vz)
. . exp(-vy<hs>) 3 —_—r P(hx’hz)dhxdhz ) (10)

in which <h2> is the mean square of the surfacé height hs and v-,v- and vz are the
components of v (6) in the local coordinate system (at each point’on the large
scale surface) associated with the unit vectors nl,u2 and n3. Thus v can also be
expressed as

- - _ - _ - + _ - -

v vx nl + vy n2 vz n3 11)

where _ - - - _ _ - - _
nl-(nxaz)/lnxazl » By =1 » By =m XD . (12)
The function wm(vi,vz)ﬂzm is the two-dimensional Fourier transform of (<hsh;>)m.

For B << 1 and arbitrary p(hx,hz) the first term in (9), <¢1PQ>81 is also in

agreement with Valenzuela's solutions that are "mostly based on physical considera-
tions" (Valenzuela, 1968, Valenzuels et al., 1971). For small slopes i = & and

B << 1 the first term in (3) reduces to Brown's solution (1978) based on a"combina-
tion of physical optics and perturbation theory. Since it is assumed (on deriving
(3) from the full wave solutions for the scattered fields) that the surface h
satisfies the radii of curvature criteria 85 well as the condition for deep pﬁase
modulation, it is necessary to choose B-4k°<h >1 in order to assure that the
weighted sum of cross sections (3) remains insensitive to variations in k,, the
wavenumber where spectral splitting is assumed to occur (Bahar et al., 1983).

In order to apply the full wave approach to SAR it is neéessary to modify the
results presented in this section (a) to account for the filtering of the very
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For the illustrated examples presented, the scattering cross sections and their
derivatives with respect to the tilt angles are evaluated for all angles of inci-
dence. The modulation of the like cross sections near normal incidence is due pri-
marily to fluctuations in specular point scattering while the modulation of the like
cross section for near grazing angles is due primarily to fluctuations in Bragg
scattering. Thus, for large angles of incidence the cross sections for the hori-
zontally polarized waves are shown to be more strongly modulated than the cross
sections for vertically polarized waves. The relative modulations of the like polar-
ized backscatter cross sections are optimum for incident angles between 10° and 15°
depending upon the lateral dimension of the resolution cell and the polarization.

2. FORMULATION OF THE PROBLEM

The full wave solutions for the normalized cross sections per unit area are
summarized here for composite rough surfaces. The position vector to a point on
the rough surface is expressed as follows:

r, - rl(x,hl,z) + nhs (1)

in which y=hg(x,z) is the filtered surface consisting of the large scale spectral
components of the rough surface and hg, the small scale surface height is measured
in the direction of the normeal (n) to the large scale surface y=h;. For a homogenous,
isotropic surface height the spectral demsity function is the Fourier transform of
the surface height autocorrelation function <h(x,z),h’(x',z')>.

. 1 ® .
V(vx,vz) 2 £Q<hh >exp(1vxxd+ ivzzd)dxddzd (2a)
T
where <hh'> is a function of distance I;d] = (xg + 2(21);5 and
(2b)

x-x'= Xy and z -~ z' = 4
The surface hg(x,z) consists of the spectral components k= (v§+ vf g < kd and the
remainder term hg(x,z) consists of the spectral components k > kd. The full wave
approach accounts for both specular point scattering and Bragg scattering in a self-
consistent manner the total scattering cross section can be expressed as a weighted
sug of the cross section <0PQ>L for the filtered surface hy and the cross section
<g oy for the surface hs that rides on the large-scale surface hl (Bahar et al.,

1983) o = «ofO 4 PO )

The symbol < > denotes statistical average. The first superscript P corresponds to
the polarization of the scattered wave while the second superscript Q corresponds to
the polarization of the incident wave. To derive (3) using the full wave approach it
is implicitly assumed that the large scale surface meets the radii of curvature
criteria (associated with the Kirchhoff approximations for the surface fields) as
well as the condition for deep phase modulation. Thus the first term in (3} is

P ~ = b3
oS, kG - 7 )]? < @
in which x® is the characteristic function for the small scale surface
x5 - ;s) = yS(v) = <exp ivh >

and
Ve e @, v 5]

(5)
(6)

The unit vectors Ef and Ei are in the directions of the scattered and incident wave

normals respectively; thus for backscatter n = -n . The free space radio wavenumber
is ko‘ An exp(iwt) time dependence is assumed. The vector ng is the value of the unit

vector n normal to the surface h(x,z) at the specular points. Thus
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~o

large scale spectral component of the rough surface by the SAR that effectively 1llu-
minates a relatively small area of cell F of the rough surface S and (b) to acecount
for the normal to a reference plane associated with the illuminated cell which is
characterized by arbitrary tilt angles R and 1 in and perpendicular to the reference
plane of incidence, It is assumed here that the lateral dimension of the cell 11lu-
minated by the SAR is much larger than the surface height correlation distance for
the cell and that as the SAR scans different portions of the rough surface S the
direction of the unit vector normal to the cell F fluctuates. Our purpose is to

PQ, (3) as the tilt
angles (of the normal to the cell) in and perpendicular to the reference plane of
incidence fluctuate. . )
3. SCATTERING CROSS SECTIONS FOR ARBITRARILY ORIENTED RESOLUTION CELLS OF THE

ROUGH SURFACE

Let x,y,z be the reference coordinate system associated with the surface of the
cell F that is illuminated by the SAR such that the mean surface of the cell is the
y=0 plane. Furthermore, let x',y’',x' be the fixed coordinate system associated with
the large surface S such that the unit vector I! is normal to the mean rough surface
height h(x',z'). The unit vector fil= -kt is exp¥essed in terms of the unit vectors
of the fixed coordinate system (x',y',z'):

2l = -2t o sine' 3 - cose’ 3' . (13)
o 'x o'y
The unit vector a_ normal to the reference surface associated with the cell is ex-
pressed in terms Yof the tilt angles @ and T in and perpendicular to the fixed
plane of incidence, the x',y' plane. Thus

a_ = sinf cost Z,'( + cos cosT E)" + sint E; . (14)

For convenience Sx and sz, the unit vectors associated with the cell, can be chosen
such that the plane of incidence in the x,y,z coordinate system is normal to the

vector az . Thus

s @xa)/a'a ), 5, - axa, as)
and the expression for Ei in the x,y,z coordinate system is
5. 313, + (51-;y>;y
S sin®_ a - cosf_ a (16a)
where o x ey
(16b)

cos8 = cos(®' + Q)cost .
o 0

The angle i’%- between the plane of incidence in the fixed coordinate system (x',y',z')
and the plane of incidence in the coordinate system (x,y,z) associated with the cell

is given by 4 cost sin(6; +0)
o L e ———
cosvp sine_ are)
and
i sint
sinvp - sineo . (17b)

For backscatter Ef = -al. Thus the angle wé between the plane of scatter in the fixed
coordinate system (x',y',z') and the plane of scatter in the coordinate system asso-
ciated with the cell is

f 1 -

L 8

Vg = Vg - (18)
The matrix that transforms the inc{dent vertically and horizontally polarized waves
in the fixed coordinate system to vertically and horizontally polarized waves in the
cell coordinate system is therefore (Bahar, 198la,b)
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-— .

[

i
COS"; 51nvr

-sinw;' cosﬁiﬁ

i
TF (19)

Similarly, the matrix that transforms the scattered vertically and horizontally
polarized waves in the cell coordinate system back into the vertically and hori-

zontally polarized waves in the fixed coordinate system is
cos-&; —a:int:f
£ F
(20)

T -
F 3 £
siny F coswF

Thus in view of (18), T; = Tg;.. The coefficients DPQ in (8) are elements of a 2 x 2

matrix D given by
p = ci®f prt . (21)

in which C:n_is the cosine of the angle between.the incident wave normal ;i and the
unit vector n normal to the rough surface of the cell hF(x,z). Thus

in in
% o (22)
where r-xi is given by (16) and n is given by (7a) with fF(x,y) - y—hF(x,y). I;:e_fle-
ments of the scattering matrix F in (21) are functions of the unit vectors n*,n" and
n as well as the media of propagation above and below the rough surface S (Bahar,

= -ale3 = cose

“1981a). The matrix Tl transforms the vertically and horizontally polarized waves in

the cell coordinate system (ax,'a' ,Sz) to vertically and horizontally golarized waves
in the local coordinate system that conforms with the rough surface, “1';'2';' (12).

Similarly, the matrix Tf transforms the vertically and horizontally polarized waves

in the local coordinate system back into vertically and horizontally polarized waves
in the cell coordinate system (Bahar, 198la).

To account for the arbitrary orientation of the cell, the matrix D in (21) must
be post-multiplied by T}. and pre~multiplied by Tg. Thus the elements of the matrix
D in (8) must be replaced by the elemelfmts of the matrix DF where
DF - TP D TF . (23)
Furthermore, in view of the effective filtering by the SAR of the very large scale
spectral components of the rough surface f(x',z') = 0, the spectral density function
for the rough surface fF(x,y) = 0 associated with the resolution cell F is given by

Wv,vo) o k2 kg

W_(vo,v.) = N (24)
F''x’'2 0 , k<k
] s
where w(v-,vi) 15 the spectral density function for the surface S, f(x',z') = 0.
The wavenumber ks is R
ks = 2‘!/1.s < kd (25)

where Lg is the width of the area of the cell {lluminated by the SAR. The very large
scale surface consisting of the spectral components 0 < k < kg are responsible for
tilting the resolution cell with respect to the mean sea surface.

Thus on replacing the spectral demsity function W (2a) for the surface S by the
spectral density function Wg for the cell F (24) and on replacing the elements D
of the matrix D by the elements DEQ of the matrix Dp (23) the expression (3) can be
used to determine the normalized backscatter cross section for ar arbitrarily
oriented cell F. In view of (19) and (20) the expressions for these backscatter
cross sections are explicit functions of the tilt angles N and 1. For the special
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b f
case 1 = 0 (tilt is in the plane of incidence) the matrices TF and I}. reduce to

identity matrices and
cos8 = cos(6' + Q) . 26)
Thas for T = 0 ° e .
) 26 a8
0 w2
1 ’9'-const se_'_lﬂ-const Coo@n
and ° °
(a<°m>/m).e'-const B (a<°m>/aec'>)n-const : (28)
Therefore to obtain 3<0PQ>/39 fof 0 = 0 and t = 0 it is sufficient to evaluate <0PQ>
P >/31 can

as a_function of 8' with both 0 and T set equal to zero. The value for 3<g
either be evaluated analytically since DFQ (23) is an apalytic function of 1, or the

derivative could be evaluated numerically.

4. TILLUSTRATIVE EXAMPLES

For the illustrative examples preseated in this section, the following specific
form of the surface height spectral density function is selected (Brown, 1978)

2 G 16+ 1D k< x
Wlve,v) = 5 S(vp,v;) = ¥ ¢
0 K>k (29)

where W is the notation used by Rice (1951) and S is the notation used by Brown (1978).
For the assumed isotropic model of the sea surface
B = 0.0046
2 2 2 -2 ~1
k A + vz (cw) . kc 12 (cm)
c = 3352V @t V=43 s (30)

in which k. is the spectral cutoff wavenumber (Brown 1978) and V is the surface wind
speed. The wavelength for the electromagnetic wave is

A, = 30ca(k =20/3 (w7 . (€39}
The relative complex dielectric coefficient for the sea is
£ 48 - 135 (32)
and the permeability for the sea {s the same as for free space (ur =1).
The mean square height for theksmall scale surface hs is given by
<Ef> . Zu [ !’%l kdkdp = 3 [;% - k; . (33)
d d c
The mean square slope for the large scale surface hl within the resolution cell, is
k
. a:‘ - <hig> - i' {d "f'“ Kdkdy ‘ (34)

]
in which k; 1s given by (25). The mean square height for the large scale surface
h, is .

2

’
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2 21“dwk
<h> = [/ —{-)-kdkAQ (35)
o k

2 = 0.201. For L_ = 300, 1000 and 2500 em (25)

) - _

For f = 4k° <hs> =1.0, kd
2

%s = 0.0102, 0.0143 and 0.0152 respectively

and -
k:<hi> = 21.9, 173 and 357 respectively. The slope probability

density function within a resoluticn cell is assumed to be Gaussian; thus
2

2
+h
1 by
plh b)) = —5— exp '- 3 ’l, (36)
s ) °l.s
and the physical optics (specular point) backscatter cross section is (8) (Bahar,
1981a)

PQ " seca [} tanz e°]

0. %p " %pq T 2 2 exp|- — JIRPIZ 37)

s 15
in which GP is the Kronecker delta and RP(P-V,B) 16 the Fresnel reflection coefficient
for the vertically or horizontally polarized waves (Bahar, 198la,b).

. In Fig. la, and b <avv>, and -(d<avv>/dn)/<avv> are plotted for 1 = 0 and v = 0 as
-functions of 63 the angle of incidence with respect to the fixed reference system
" (x',y",2"). In these figures Lg = 300, 1000 and 2500 cm.

10.99

Figure la. <avv>, for 2 = 0 and

T =0 as a function of 9;.
(a) L. = 300 em, (Q) Ls = 1000 cm,
(0) L‘ = 2500 cm.

Hn  aw

tevy)
0.0

+39.80

~u0. 80
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Figure 1b. -(d<ow>/dﬂ)/<ow> for
Q=0and t ~ 0 as a function of
B",o (8) L - 300 cum,

©) I.s = 1000 cm,

(g) L_ = 2500 ca.

Sl ». .. 25.00

~ldca ¥ 1iea) 0™ %)

0 ne e n.a e e L) £ LY

In Fig. 2a, and b these results are repeated for <a!m>. It is interesting to note
that the effective filtering of the very large scale spectral components of the rough
surface (0 < k < ks) by the SAR does not. significantly change the value of o Q unless
Lg < 300 cm. As one may expect, the modulation of the scattering cross sections in
the plane of incidence |d<ow>/d9| is strongest for the SAR corresponding to the

‘parrowest effective beam width Lg = 300 cm. Except for near-mormal incidence the

relative modulation |d<c?Q>/dq|/<oPQ 15 larger for the horizontally polarized waves
than for the vertically polarized waves., The largest relative wodulation of the like
polarized cross sections occurs in the transition region where the contribution to
the cross section due to Bragg scatter becomes larger than the contribution due to
specular point scatter namely at about 100-15° (see Figs. 1b and 2b).

e HH

€ Figure 2a. <g >, for 2 = 0 and
" T = 0 as a function of e;.
o (4) 1, = 300 cm, (O) L_ = 1000 cm,
2

: () L, = 2500 ca.

L

s

L

f

s

:

L]
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s
i Figure 2b. —(<0HH>/dQ)/<oHH> for
s Q«=0and vt = 0 as a function of
3
6'. (a) L_ = 300 cm,
e o s
i £ ({®)] L = 1000 cm,
g 1 Q» L, = 2500 cm.
"
b3
b -
B
@ »m n.© n.0 . oo L e ww g

5. CONCLUDING REMARKS

The full wave approach is used to determine the scattering cross sections for
arbitrarily oriented resolution cells on random rough surfaces illuminated by
synthetic aperture radars. The purpose of this analysis is to determine the modu-
lation of the like polarized scattering cross sections as the normal to the cells
tilt in and perpenditular to the plane of incidence. The full wave approach accounts
for shadowing and both specular point scattering as well as Bragg scattering in a
self-consistent manner. Thus, the scattering cross sections are expressed as
weighted sums of two cross sections. The first cross section is associated with the
filtered surface consisting of the large-scale spectral components of the rough
surface. The second cross section is associated with the surface consisting of the
small-scale spectral components. It can be shown that if the large-scale spectral
components of the surface of the cell are neglected, the second cross section
accounts for first order Bragg scattering and the results are in agreement with
earlier published results (Alpers et al., 1981). Bowever, for typical terrain or
sea surfaces, the large-scale spectral components are not negligible.

By using the full wave analysis, the modulation of the like and cross polarized
cross sections can be determined for all angles of incidence and tilt angles. On
the other hand, first order Bragg scatter theory does not account for backscattering
near normal to the surface of the cell (Alpers et al., 1981). The results based on
the two~scale model indicate that the relative modulation of the like polarized
backscatter cross section is maximum for angles of incidence between 10° and 15°
(depending on polarization and effective width of the resolution cell, L.). The
analyses based on first order Bragg scatter do not provide these results It is
also shown that as the angle of incidence approaches zero, the modulation of the
scattering cross sections in and perpendicular to the plane of incidence becomes
comparable.

When the normal to the cell is tilted in the direction normal to the plane cf
incidence (v # 0), the full wave analysis not only accounts for the change in the
local angle of incidence 91 but also takes into account the fact that the local
planes of incidence (or scatter) are not parallel to the ceference planes of

incidence for scatter), namely *F - -wr ¢ 0.

Since Alpers et al. (1981) do not account for the effects of the large scale
spectral components of the surface within the resolution cell the results presented
here for the modulation of the like polarized scattering cross sections near
normal incidence are significantly different from those given by Alpers et al.
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SCATTERING CROSS SECTIONS FOR LARGE FINITELY CONDUCTING SPHERES
WITH ROUGH SURFACES-FULL WAVE SOLUTIONS

Ezekiel Bahar
and
Swapan Chakrabarti
Electrical Engineering Department
University of Nebraska-Lincoln
Lincoln, NE 68588-0511
ABSTRACT
The scattering cross sections for large finitely conducting spheres with very rough surfaces ar
determined for optical frequencies using the full wave approach. For the roughness scales considered.
the scattering cross sections differ significantly from those of smooth conducting spheres. Several
11lustrative examples are presented and the resulrs are compared with earlier solutions to the problem.
1. latroduction
The purpose of this investigation is to determine the like and cross polarized scattering cross
sections for-dectrically large finitely conducting spheres with very rough surfaces. Perturbation
theory has been used to determine electromagnetic scattering by spheres with random rough surfaces
provided that the parameter B = ﬁk‘z’<hi> is much smaller than unity (vhere ko is the wavenumber and
<h:> 15 the mean square height of the rough surface of the sphere, Barrick 1970). However, for large
conducting spheres with § << 1, the total scatrering cross sections are not significantly different

from the physical optics cross section for smooth (unperturbed) conducting spheres.

In this paper the full wave spproach is used to determine the scattering cross sections for largs

spheres with roughness scales that significantly modify the total cross sections. The full wave

approach accounts for specular point scattering and Bragg scattering in a self consistent manner and
the total scattering cross sections are expressed as weighted sums of two cross sections (Bahar and
Barrick 1983). In Section 2 the problem is formulated and the principal elements of the full wave

solution sre presented., Illustrative examples at optical frequencies are presented {o Section 3 and

the results are compared vith earlier solutions based on the perturbation approach (Barrick 1970) and a

recent reformulated current method (Abdelazeez 1983).
2. Formulation of the Problem
The purpose of this investigation is to determine the like n_:d cross polarized scattering cross
sections at optical frequencies for large conducting spheres with very rough surfaces. The position
vector ;. to a point on the rough surface of the gphere is (sel Fig. 1)
i. -h ;‘ +h :r (2.1)
in which ;r is the radius vector in the spherical coordinate system, ho' the radius of the unperturbed

sphere ,1s large compared to the wvavelength x° of the electromagnetic wave,and h. is the random surface
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height measured along the redfus vector l-r. For a homogeneous isotropic rough eurface height h . the
spectral density function (Rice 1951, Barrick 1970, Ishimaru 1978) is the Fourier transform of the

“surface height autocorrelation function <h(x,z),h'(x',z')>
-1 ' .
H(vx,v‘) '2 J <h‘h.> ex;)(j.v‘x‘l + l.vzzd)dxddzd 2.2
in which the symbol <+> denotes statistical average and <h'h:> is & function of distance measured alo:
the surface of the sphere. It 1is assumed that the correlation distance "c for the rough surface
height h_ is very small compared to the circumference of the sphere. The unit vectors n and @ are i:

the directions of the incident and scattered waves and the vector v is given by

;- uo(a‘— a4 (2.3)

where k° is the electromagnetic wvavenumber (ko - 21/.\0).

2l <, (2.4)

-f ¢ - f -
o~ ain 6 A‘P+ cos 6 lyo (2.5;

in which :x N :yo and :zo are unit vectors in the reference coordinate system (see Fig. 1). Associated

with a point on the surface of the unperturbed sphere is a local coordinate system x,y,z whose unit

vectors are

;1 - (ox ;m)l[E x n_m[ . a = :r' o, « il. xn (2.6
Thus ;;2 is {n the direction normal to the surface of the sphere and ;1 and 52 are tangent to the

surface of the sphere. Whan the distance 4 measured along the surface of the sphere 1s commensurate

with the correlation distance lc

T, C(x-x’)2 + (‘_‘,)21‘: - (x: + z:)k 2.7;

Thus for points on the surface of the sphere at a distance g lc' the surface height autocorrelation

function 1is <h'h:> - <h3>/l (vhere <hf> 1s the mean square height and e i3 the Neperian number). The

surface h. conslsts of the spectral components

g ckm 2evhen (2.8
where kd = 2x/d 1s the smallest wavenumber characterizing the rough surface of the sphere (d = 2ho) an
kc 13 the spectral cutoff wavenumber (Brown 19‘78). Perturbation theory has been u-ed. to determine
electromagnetic scattering by rough surfaces (Rice 1951, Burrows 1967, Valenzuels 1968, Barrick 1970
Brown 1978). To apply perturbation theory, it is necessary to assume that § = bk§<hf> << 1, Por larg
conducting spheres, the scattered fields are primarily due to specular point scattering. Thus,’'if the

mean square height <h:> of the rough surface is restricted by the perturbation condition B << I, the
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total scattering cross sections for spheres with rough surfaces is not significantly different from

those of unperturbed conducting spheres.
Since tbe full wave approsch (Bshar 1981, 1982, Bahar and Barrick 1983) accounts for specular

point scattering and Bragg scattering in a self consistent manner,the perturbation restriction need not
be imposed on the mean square height <h:> of the rough'surflce. In this vork we consider spheres with
large roughness scales vhose scattering cross sections differ significantly from the cross sections of

unperturbed spheres. Thus using the full wave approach the total pormalized scattering cross sections

per unit area <0PQ> is expressed as a weighted sum of two cross sections

<cPQ> - <0PQ>,’ + <0PQ>S (2.9)

in which <am>’. is the cross section associated with the large scale unperturbed surface and <<:PQ>B is

the cro:.;s section associsted with the small acale surface h‘ that 1s superimposed on the large scale

surface. The first superscript P corresponds to the polarization of the scattered wave while the

second superscript Q corresponds to the polarization of the incident wave. The scattering cross section

<¢,”°>,~ 1s given by (Bshar 1981)
'S - w2 <« (2.10)
in which x' 1s the characteristic function for the surface hs

x5(v) = <exp iv h,> (2.11)

and v 15 the magnitude of the vector v (2.3). Thus the weighting function lstZ is less than unity.

It approaches unity for <hi> + 0. For Gaussian rough surfaces hs

—4kz<hi>:osz(8:/2) ~v<h

2
(2.12)
K 2ee © - 7

’
2>
8

Since in this work the unperturbed surface is assumed to be the surface of a large conducting sphere

d > Ao), the cross section <v£°> is given by the physical optics expression (Barrick 1970)
P 2
% . spoI% ! (2.13)

in which R? is the Fresnel reflectlon coefficient for vertically (P=V) or horizontally (P=H) polarized

waves and 61’0 is the Kronecker delta. For Gaussian rough surfaces h', the term <0PQ>' can be expressed

as
PQ) - ; <°PQ>
8 =l sm

<o (2.14)

where

2

PQi2  ,=f -1 -
D P, (n", )]

T o an? [P RGEETR
= [-) -

ne .]

2 2> v hH-(v!,vz)
-ap(-«’<h_)(—§> S plh b )dh db . (2.15)
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In (2.15) VeV and v, are the components of Vv (2,3) in the local coordinate system (2.6)

vev, 8+ vy Byt v, n, (2.16)
The shadow function Pz(;t.siﬁ) 1s the probability that & poiat on the rough surface 1s both illuminated
by the source and visible to the observer given the slopes ;(h!.hz) at the point (Smith 1967, Sanar
1969). The function p(n) = p(hx'hz) is the two-dimensional probability density of the slopes hx and hz.
The expression pfe depends on the polarization of the incident and scattered wvaves, the unit vectors
Ei.;f and n,and the relative complex permittivity L of the conducting sphere. The function

H‘(\vx,vz)/ZZ!II 1s the two-dimensional Fourier transform of <h’h;>-. It can be expressed as follows

v (vx,vz) 1 1)
-’—-——-22m - (—Z'T-J <hshs> exp(ivxxd + ivzzd)dxddzd
Aol w v v, )dv_d
- pim me1 XtV R Y Yx o Vg TV Y

= —}2'; wm—l(vx’vz) @ wl(v:;'vz) (2.11)

2
In (2.17) the symbol ® denotes the two-dimensional coavolution of "m—l with Hl.

It should be noted that for 8 + O the scattering cross section (2.9) reduces to the scattering
cross sections for large conducting spheres; for B << 1, it reduces to the perturbation solution
(Burrows 1967) since in this case Ix'l = 1 and (2.14) reduces to the leading term m = 1 (Bragg scatter).
In a recent analysis of wave scattering from a large sphere with rough surface (using a reformulated
current method) ,Ahf!elazee: (1983) obtains a solution which corresponds to the first term in (2.9).
Barrick (1970), who considered bac\ucatter by spheres with small scale roughness, presents a solution

that accounts for (qPQ,‘ and the first term in (2.14). The weighting function Ixal2 that multiplies

<cf°> accounts for the degradation of the specular point scattering cross section due to the super-—
imposed rough surface h.. The second term in (2.9), <aPQ>.. accounts for diffuse scatter due to the
rough surface h'. The leading term in <aPQ>‘ (m=1) corresponds to Bragg scatter (Rice 1951,

Valenzuela 1968, Barrick 1970, Brown 1978). 1In the next section illustrative examples of spheres with

very rough surfaces are considered, The significance of the different terms of the solution (2.9) are
considered in derail and the results are compared to earlier solutions. Om replacing <c£Q> (2.15) by
the expression for large scatterers of arbitrary shape (such as ellipsoids),one can obtain the effects
of surface roughness on large scatterers of any desired shape.

3. Illustrative Examples

Asguming a homogeneous isotropic random rough surface h.. the surface height spectral density

function (2.2) (Rice 1951) considered for the 111uo:§at1ve examples is
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2 &
-;B/k 3

d<k<kc

W(v,v.) = W(K) -

0 k>k and k < k
c [}

in which
2

2 2 -2
'3 --vx-t-vz (cm) S .
The smallest wavenumber characterizing the rough surface h. is
2y
kg ~ g

where
d =202
o

18 the diameter of the sphere and Ao ia the wavelength of the electromagnetic wave

3, = 0.555 x 107 ea () = 20w 1132 2 20° ea’).

The spectral cutoff number is (Brown 1978)

k= 4.5 x 10° @t

The mean square height of the rough surface h. is

2% kc .
Wik 1 1
“hg> ] [ e AT A S ey
kd kc
o kd
Thus the value of B (3,1) in terms of the parameter § = kk:<hf> is
8 K% K2
35t ~
2k°(kc-kd)

For § = 1.0
the corresponding value of the mean square height is

<hi> - 0.195 x 10710 ca?

thus .
B = 0.125 x 1072 .

At optical frequencies the relative dielectric coefficient of aluainua is (Ehrenreich 1965)
€ = ~40 - 112 .
r

3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

The permeability of the sphere is assumed to be that of free space v - 1, For the usperturbed sphere,

the probability density function of the slopes (2.15) is given by

84n ydyd$

p(h b )dh db = p(y,8)drdé = =

wvhere y and § are the latitude and azimuth angles in the spherical coordinste system.
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In Fig, 2 the vertically polarized scattering cross section <aw> (2.9) 1s plotted as & function of
the scatter angle 85 (see Fig. 1). The parameter § = lok:<h:> = 1.0. In addition to the plot of

<uw> (2.9) (the total cross section),plots are also given for the individual terms in (2.9);

v
<qw>'. - ]va'lz . <uw>d and <aw>.2. The terms <g %ea for m > 3 are negligible. The value of
<g!v> - ]vaz (corregponding to the physical optics cross sectioa for the unperturbed sphere) is also

Note that the total scattering cross section <cw> for the rough

given for the purpose of comparison.
sphere is significantly smaller than that of the unperturbed sphere <a!v>. Furthermore, for § = 1.0

the contribution of the term <°W>' (2.9) 13 not negligible and <cw> cannot be approximated by the

w>1 - [va'lz The corresponding results (B = 1.0) for the horizontally polarized

scattering cross sections <um> are presented in Fig. 3.

first term <o
These results are similar to the results for

the vertically polarized waves except near the quasi-Brewster angle.
The cross-polarized section <°nv> FPALN is presented in Fig. 4 for 8 = 1.0. In view of (2.13)

there is no physical optics contribution to the cross-polarized cross section. Note also that for

backscatter, Bf =0, <ow> becomes vanishingly small, For B < 0.1, the terms <> o form > 2 are
negligible. Furthermore since X for 8 = 0.1, the perturbation solution (Barrick 1970)
is approximately equal > the full wave solution. For very small values of B the full wave solutions
equal those of the reforpulated current method (Abdelazeez 1983) since the second term in (2.9),

<aPQ> becomes very small compared to <0PQ>1. However, when the scale of the roughness is very small
(8 < 0.1), the scattering cross sections of rough spheres are mot significantly different from that of
unperturbed spheres. As B (the roughness of the surface) increases,the weighting function Ixslz

decreases and the contributfion of the term <°PQ,' increases. Furthermore, an increasing number of
terms <0PQ>M (z=1,2,3....) peed to be evaluated as 8 increases.
4. Concluding Remarks
The full wave approach has been used to determine the scattering cross sections for electrically
large conducting spheres (d >> lo) vith very rough surfacea.‘ The total scattering cross sections are

significantly modified by the rough surface vhen the parameter § = 4k§<h:> > 1. In these cases the

perturbation solutions are not valid. For g << 1 the full vave solutions reduce to the perturbation
solution (Barrick 1970); however for B << 1, the modification of t).n total scattering cross section is
not very significant. The full wave solutions are compared with the perturbation. solutions (Barrick
1970) and & recent solution based on the reformulated current method (Abdelazeez 1983). The full wave

solutions presented here can also be used to determine the effects of surface roughness on the

scattering cross sections for large conductors of different shapes such as ellipsoida.
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Scattering by Anisotropic Models of Composite Rough
Surfaces—Full Wave Solution

EZEKIEL BAHAR, FELLOW, IEEE

Abstrect—Expressions for the sestlering cross sections of aaisotropic
models of composite random rough surfaces are derived using the full wave
approach that accounts for specular poinl scattering and Bragg scattering
In a self i maaner. Bach cross ions are eval d for
vertically and horizowtally polarized waves as a fusction of angle of
Incidence for cross wind, up wind, and dowa wind directions. The cross
sections sre most sensitive to wind direction for angles of incidence around
4°.

1. INTRODUCTION

Various combinations of physical optics theory and perturba-
tion theory have been used to determine the scattering cross
sections for composite models of rough surfaces [13), [12].
These so.aticns are based on a two-scale model of the rough
surface. Physical optics [7] accounts for specular point scat-
tering from the large scale surface while perturbation theory
{11] accounts for Bragg scattering from the small scale surface.
However, the results based on the perturbed-physical optics
approach [8] critically depend upon the manner in which the
composite surface is decomposed into a large and a small scale
surface.

Since the full wave approach accounts for specular point
scattering and Bragg scattering in a unified self-consistent manner,
the solutions for the scatiering cross sections can be derived from
a single integral. However, the two-scale model can also be adopted
when the full wave approach is used and the results are shown
10 be independent of the wavenumber k4 where spectral splitting
is assumed 1o occur, provided that the large scale surface satisfies
the criteria for deep phase modulation [5]

In this work, the full wave approach is applied to a rough
surface characterized by an anisoiropic slope probability density
function. In Section II the full wave solutions based on the uni-
fied and two-scale model are presented, and in Section III illustra-
tive examples are presented. Backscatter cross sections for both
vertically and horizontally polarized waves are evaluated for all
angles of incidence, and it is shown that the results are most
sensitive 10 wind direction for angles of incidence around 40°. On
examining the individua) terms for the total cross sections based
on the two-scale model, it is shown that the cross sections become
insensitive to wind direction for near grazing incidence.

II. FORMULATION OF THE PROBLEM

In this section full wave analytical solutions are derived for
the like and cross polarized cross sections for composite models
of rough surfaces characterized by non-Gaussian surface slope
probability density functions. As an illustrative exampie, the
analysis is applied to rough surfaces with slope probability densi-
ties that can be adequately represented by the Gram Charlier
expression {9], [10]. For these surfaces the surface height
and slope probability densities are close to Gaussian. The devia-
tion of the slope probability density from the Gaussian probabil-

Manuscript received May 2, 1984; revised August 15, 1984. This work was
cd in part by the U.S. Army Research Office under Contract DAAG-29-
$2-K-0123 and the Wave Propsgation Laboratory. NOAA.
The suthor is with the Electrical Engineering Department, University of
Nebraska, Lincoln, NE 68588,
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ity density is characterized by a set of skewness and peakedness
coefficients [9], [10].

Assuming that k3(h?) > 1 where kg is the free space wave-
number and (h2) is the mean square height of the rough surface
(see Fig. 1), the full wave solution for the normalized scattering
cross sections per unit area is given by (4], [3].

Q |2
— I P(#,7"17)

n-a,

kl
(0P0)=—°</
T

sexp [iD* F - 7)) dxgdzg). 1)
in (1) DPQ depends explicitly upon the polarization of incident
wave (second superscript Q = V—vertical, or H—horizontal) and
the polarization of the scattered wave (first superscript P = V, H)
the direction of the incident and scattered wave normals 7'
and 7/, respectively, the complex permittivity € and permeability
u of the medium of propagation, and the unit vector #(h,, h,)
normal to the rough surface [1], [2]. For 2 random rough sur-
face

fx.y.2)=y-h(x,2)=0 (22)
the unit vector i1 is

n=VNfIVfi (2b)
where

Vf =(-ha, +3, - h.4,) (3a)

h, = 0h/dx h, = 3hfaz (3b)

and @,, @, 7, are unit vectors in the reference coordinate system
(see Figs. 1 and 2). The plane y = 0 is chosen to be the reference
plane. The function Py(n’, /i'|#) is the probability that a point
on the rough surface is both illuminated and visible given the
value of the slopes n(hy, k;) at the point. The vector # is given by

F=¥% -~ ¥ =ko(# - )= ud, + ud, + vu,a;
= kg [(sin &), cos ¢/ — sin 8% cos #ha, + (cos 6]

+ cos 84)a, + (sin 7 sin ¢/ — sin 8} sin ¢, ] @
and

F-F=(-xYa, +(h-N)a, +(2 -2z,
)
is the vector joining two points (x, &, z) and (x', 4", z') on the
rough surface. The symbol (+) denotes the statistical average over
the slopes and height of the rough surface. For convenience the

position vectors (from the origin to points on the rough surface)
are expressed as follows (see Fig. 3):

= xday + (h - h')ay + 145,

F=ip+ig ©
in which

U

is the position vector to a point on the large scale (filtered)
surface [4]. Associated with the large scale surface is a local
coordinate system (X, ¥, 7) (see Figs. 2 and 3) with unit vector
ny,ny and iy such that

Ay =(AXa)AXE]

73 =xa, + hpiy + 23,

®)

fiy =Ry =iy XA

100

107

Fig. 1. Planes of incidence and scatter and the reference plane (x, 2).

Fig. 2. Local planes of incidence and scatter and the local coordinate system.

Thus in (6)
Pr =hgh, Vy-he) IV —he) = VIV i=n ()

whete hg(X, I) is the displacement of the small scale surface from
the large scale (filtered) surface. The distance vector F — 7" can
also be expressed as

PP =(x=xYa, +(z-2)3, + (hg — hp)a, + (hg — hR)A
=(x —xYa, + (2 - )5, + hE(x - x) + K (2 - 2,
+ (kg ~ Kp)i =iy + (he - hp)i (10)

where
WE = ahpfax=h, and ki =ahpfoz=h,. an

Thus 74 is the distance vector measured in the plane tangent to
the large scale surface

y=he{x,2) =0. (12)
Ta=(x-x0a, +(z-2)a, + [h(x - XV + F(z - )3,
=57, + 5,7 a3)

in which X4 and 4 are distances measured along the unit vectors
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LOCAL TANGENT PLANE

FILTERED, LARGE SCALE
SURFACE y=hg(x,2)

7-7's (x-x')8, + (h-K)G,+2-2")5;
(X108, + (2-T )Ry 4 (R Ry IRy
= 7 + (Ra-h) By ___—REFERENCE PLANE, y =0

7a= DISTANCE MEASURED ALONG LARGE SCALE SURFACE

Fig. 3. Dx position of the composite rough surface.

71y and A3 in the plane tangent to the large scale surface. Thus
T G- F)= (0 + vhD)xa + (@ + vh)zg + vy(h - B)
= (U Fa + vsEg) ¥ vk - )
=U-ig+vzh - ) (14)

in which vz and v and v; are components of the vector U(4) in
the local coordinate system.

Vi =0 8, U;=07 and ;=0 ‘0. (15)
The scattering cross sections (o79), (1) for composite rough
surfaces can therefore be expressed as follows:

K Do
(0?2) =—9<”_—7 Py (i, i 1h)exp i - Fy)
n n ‘ﬂy

QR P R - 1xR ) dxg dig. (]3]
In (16) the term
1%R = I{exp (ivyhp P 1? 17

has been added and subtracted for convenience. The expecta-
tion of exp (ivzhg) is the small scale surface characteristic func-
tion and

XX = (exp [iv5(hg - Kg)) 8

is the joint characteristic function for the small scale surface.
It is assumed in (16) that the small scale surface height is inde-
pendent of the surface slopes 7i(h,, h,). Thus the scattering cross
section for composite surfaces can be expressed as a weighted
sum of two cross sections [4]

672y = (6703 + (a7 (19)

in which
(| ore
("0 =-3/[:—:‘
T n-ay,

- exp [i(v, + "yhx)xd +i(y, + Uyhz )24]

2
P77, R 1RY IXR Pplhy, )

vdxgdzy dh, dh, (20)
k2 ly?,! -
@0 =2 [ P RS - 1 1ot )
y

* exp [ivzXq + v;2,) diy d2g dh, dh, @n

and p(h,, h,) is the two-dimensional probability density of the
slopes. Note that in (20) the integration is with respect to xg4
and z,4 (distances in the reference plane) while in (21) the inte-
gration is with respect to X4 and Z, (distances along the large
scale surface). Thus in (21) use has been made of the relationship

drydzy

—— =dig g (22)
A-3,

To evaluate (20) use is made of the integral representation of
the Dirac delta functions

/ exp [i(v; + Uyh)xg + i(V; + vy he)z2q) dxg dzy
=4n28(u, + 5, )8, + U h;). @3

Thus on integrating with respect to the slopes h, and h, (20)
reduces to

(a’q)p
b] 0 |2 _
=4—'f3 :?:_—,Pz(i’.i'li)p(i)lx’(v;hk)l’]
v, Un-a e,
-“7:0)‘{" 249

—_—
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in which 7, is the value of the unit vector normal to the surface
n at the specular points.

iy =Dfu= (7 - Al - i 29

In (24) (0£9) is the physical optics scattering cross section
for the filtered surface y = hg{x, z). It is multiplied by the
coefficient |x® |*. This weighting function which is less than
unity accounts for the degradation of the physical optics cross
section due to the effects of the small scale surface that rides
on the filtered surface.

To evaluate the cross section associated with the small scale
surface, it is assumed that the surface ER is Gaussian. Thus
<6"@)g can be expressed as follows [4] :

(6% = ) (0P, (26)
m=}

where

1DPQ 2P, (7!, 5 |n
(6" = 4mk? / —52(5—_) exp (—v3(h%))
Y

- \2m )
(3!> MolV50) i Yy dhy  (27)
2 m!

and W,,(vz, v;)/22™ is the dimensional Fourier transform of
((hghx )™ [4). Thus W, is the surface height spectral density
function and

W (U3, U3)
22m

1 - = - o\ g= a=
= (—2——)2 j«hk";z W™ exp (iviXg + iviZg) dXg dig
m

1 , oy . Nt gt
. ;1_’" jw,,,_,(v;, V)W (v - Vs, vz — v3)dug du;

= Wi 105, 5) © (05,0 28)

In (28) the symbol e denotes the two-dimensional convolution
of W,,_, with W,.
111. ILLUSTRATIVE EXAMPLES

For the illustrative examples considered in this section, the two
di jonal slope probability density function is given by {9]

P = plhg, he) = —— exp —1(5’“”)]

7 2a0c0, 2

dim e, @ - o= L ey - 3m
2 21\ 6 03

1 2 ! 2 _ 1yt — 1
+24C40(E'—6E +3) 4Cn(5 N(n )

1 * 60T +3 29
+2‘Co.(n 6n° +3) (29)

where for a wind speed V = 14 m/s, the skewness coefficients are

Cpy =-0.1404, Cpy~—0.542 (30)
and the peakedness coefficients are

Cao =040, C;32=0.12, Coq=0.23. 31
The cross wind and up/down wind mean square slopes are

0 =002988 and ol =0.04824. 32)
In (29) the dimensionless quantities £ and 7 are

t=hyJo, and n=h,/a,. (33)

"The surface of the sea is assumed to be perfectly conducting for

simplicity. The frequency of the radar is
f=15GHz (Ao =2 cm). (34)

The spectral density function W, for the small scale surface
is given by

2
Wy =—Bk* k;<k<k. (35)
x
in which
B=0012 k.=12(cm)"* (36)

and the wavenumber k; where spectral splitting (between the
large and small scale surfaces) is assumed to occur is chosen such
that [5]

11
B=dak2ni)=10=2k38| 5 -5 | (37
kd kc
Thus
ks =0.485 (cm) ™. (38)

In Fig. 4 (6¥V) the backscatter cross section for vertically
polarized waves is plotted as a function of the angle of incidence
9:,, for the cross wind, up wind, and down wind directions. The
corresponding result for the horizontally polarized backscatter
cross section (o”#) is given in Fig. S. For normal incidence
(85 = 0) there is no difference between the backscatter cross
sections for cross wind, up wind, and down wind. This is because
for normal incidence, specular point scattering (which is polariza-
tion independent) dominates. To notice significant differences in
the backscatter cross sections at normal incidence, it is necessary
to consider surfaces with considerably larger skewness and mean
square slopes. Furthermore, all three cases merge for grazing
angles. This is because, the principal contribution to backscatter
for near grazing angles is due to Bragg scatter which is given by
the term {0725, (27). in this term the effects of the anisotropic
slope distribution are averaged out and the dependence on wind
direction becomes small for grazing angles. The anisotropic ef-
fects of the slope distribution are most pronounced around
8%, = 40°. This is .hown in Fig. 6 in which (0" ¥') and (¥ ¥} are
plotted as functions of the azimuth angle 90° < ¢ < 270° with
the angle of incidence 8, = 40°. The up wind and down wind
directions correspond to ¢ = 90° and ¢ = 270°, respectively, and
cross wind cotresponds to 0° and 180°.

For the illustrative examples considered here, the terms
(a"o),;"l can be neglected for m > 4. Individual terms for the
total cross section (o ¥ V') are shown in Fig. 7 for the cross wind
case.
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Fig. 4. Backscatter cross section for vertically polarized waves_ (X} Cross wind, (O) up wind, () down wind.
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Fig. 5. Backscatter cross section for horizontally polarized ‘nvu.. (X) Cross wind, (O) up wind, () down wind.
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1V. CONCLUDING REMARKS

The full wave approach has been used to determine the scatter-
ing cross sections for composite rough surfaces characterized by
anisotropic slope distribution functions. A two-scale model of
the rough surface was adopted and the large scale surface is
assumed to satisfy the radii of curvature criteria and the condi-
tion for deep phase modulation. For the illustrative examples
the large scale slope probability density function is given by the
Gram Charlier expression [9). The small scale surface hg is
characterized by its surface height spectral density function. The
random rough surface height hig is assumed to be stationary and
Gaussian. Thus it is assumed that the slopes p(7) and the small
scale surface heights hg are statistically independent. The like
polarized backscatter cross sections based on the two-scale model
were shown to be independent of the choice of k4 (spectral

splitting wavenumber) provided that 8 > 1.0. On the other hand
the perturbed-physical optics solution for the backscatter cross
sections [8) is very sensitive to the choice of k.

The examples in Section 1] illustrate the polarization depend-
ence of the backscatter cross sections for all angles of incidence.
The results are giver: for the cross wind, up wind and down wind
directions. It is shown that the backscatter cross sections are
insensitive to wind direction for near grazing and near normal
angles of incidence. They are most sensitive to wind direction
for angles of incidence around 40° (see Fig. 6).

The full wavs approach can be applied to a wide class of
anisotropic tough surfaces for which the perturbed-physical
optics approach is not suitable. Furthermore, since the full
wave approach accounts for specular point scatter and Bragg
scatter in 2 unified self-consistent manner (1), it is not necessary
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to adopt a two-scale model of the surface and spectral splitting
can be avoided.
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Scattering and depolarization by large conducting spheres

with rough surfaces

Ezekiel Bahar and Swapan Chakrabarti

The scattering cross sections for large finitely conducting spheres with rough surfaces are determined for
optical frequencies using the full wave approach. For the roughness scales considered the scattering cross
sections differ significantly from those of smooth conducting spheres. Several illustrative examples are pre-
sented, and the results are compared to earlier solutions to the problem.

L Introduction

The purpose of this investigation is to determine the
like- and cross-polarized scattering cross sections for
eivcirically large finitely conducting spheres with rough
surfaces. Perturbation theory has been used to deter-
mine electromagnetic scattering by spheres with ran-
dom rough surfaces provided that the parameter 8 =
4k3(h?) is much smaller than unity (where kg is the
wave number, and (A2} is the mean square height of the
rough surface of the sphere!). However, for large con-
ducting spheres with 8 « 1, the-total scattering cross
sections are not significantly different from the physical
optics cross section for smooth (unperturbed) con-
ducting spheres.

In this paper the full wave approach is used to de-
termine the scattering cross sections for large spheres
with roughness scales that significantly modify the total
cross sections. The full wave approach accounts for
specular point scattering and Bragg scattering in a
self-consistent manner, and the total scattering cross
sections are expressed as weighted sums of two cross
sections.2 In Sec. II the problem is formulated, and the
principal elements of the full wave solution are pre-
sented. Several illustrative examples at optical
frequencies are presented in Sec. II], and the results are
compared to earlier solutions based on the perturbation
approach! and a recent reformulated current
method.?
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. Formulation of the Problem

The purpose of this investigation is to determine the
like- and cross-polarized scattering cross sections at
optical frequencies for large conducting spheres with
very rough surfaces. The position vector r; to a point
on the rough surface of the sphere is (see Fig. 1)

1, = hod, + h,6,, 1)

in which & is the radius vector in the spherical coordi-
nate system, hg, the radius of the unperturbed sphere,
is large compared with the wavelength Ag of the elec-
tromagnetic wave, and h, is the random surface height
measured along the radius vector 4,. For a homoge-
neous isotropic rough surface height h, the spectral
density function*® is the Fourier transform of the
surface height autocorrelation function (h(x,2)h’-

(z’,2)):
1 p~ .. . .
Wivsp,) = — f (heh,) explivesa + iv,zg)dzgdzq,  (2)
x?2 -

in which the symbol (-) denotes statistical average, and
(h,h;) is a function of distance measured along the
surface of the sphere. It is assumed that the correlation
distance I, for the rough surface height k; is very small
compared with the circumference of the sphere. The
unit vectors /A* and i/ are in the directions of the inci-
dent and scattered waves, and the vector v is given by

v = kolt/ - 4Y), )
where kg is the electromagnetic wave number (kg =
2x/0):

Al w —gq “)
Al = 5inB{d. 0 + cosOfd,, (5)

in which d,q, 8,0, and 4,0 are unit vectors in the refer-
ence coordinate system (see Fig. 1). Associated with
a point on the surface of the unperturbed sphere is a
local coordinate system x,y,z whose unit vectors are




Fig. 1. Scattering of electromagnetic waves from a rough conducting

sphere.

7 = (3 X 8,0)/|A X byo, iz = /i = &, ig = Ay X A. 6)

Thus A = 7 is in the direction normal to the surface of
the sphere, and 71, and i3 are tangent to the surface of
the sphere. When the distance rg measured along the
surface of the sphere is commensurate with the corre-
lation distance [,

rg = [(x —x)2+ (=202 = 23+ )2« xhe (D)

For points on the surface of the sphere at a distance rg
= 1., the surface height autocorrelation function is
(h.h,) = (h2)/e (where (h?) is the mean square height,
and e is the Neperian number). The surface h, consists
of the spectral components

ky <k =(@+u))12<k,, (8)

where kg = 27/d is the smallest wave number charac-
terizing the rough surface of the sphere (d = 2hy), and
k. is the spectral cutoff wave number.® Perturbation
theory has been used to determine electromagnetic
scattering by rough surfaces.148-8 To apply pertur-
bation theory, it is necessary to assume that 3 = 4k3(h?)
« 1. For large conducting spheres, the scattered fields
are primarily due to specular poin. scattering. Thus,
if the mean square height (h?) of the rough surface is
restricted by the perturbation condition 8 « 1, the total
scattering cross sections for spheres with rough surfaces
is not significantlydifferent from those of unperturbed
conducting spheres.

Since the full wave approach?19 accounts for spec-
ular point scattering and Bragg scattering in a self-
consistent manner, the perturbation restriction need
not be imposed on the mean square height (h?) of the
rough surface. In this work we consider spheres with
large roughness scales whose scattering cross sections
differ significantly from the cross sections of unper-
turbed spheres. Thus using the full wave approach the
total normalized scattering cross sections per unit
projected area (0 FQ) is expressed as a weighted sum of
two cross sections:

(aPQ@) = (aP) + (aPQ),, )

107

in which (aF9), is the cross section associated with the
large scale unperturbed surface, and (0PQ), is the cross
section associated with the small scale surface h, that
is superimposed on the large scale surface. The first
superscript P corresponds to the polarization of the
scattered wave, while the second superscript @ corre-
sponds to the polarization of the incident wave. The
scattering cross section {aP@); is given by®

(aPQ) = [x* ()| (29, (10)
in which x* is the characteristic function for the surface
h,:

x*(v) = (explivh,)), (11)
and v is the magnitude of the vector v [Eq. (3)]. Thus
the weighting function |x*| 2 is less than unity. It ap-
proaches unity for (h?) — 0. For Gaussian rough sur-
faces h,,

Ix*]? = expl-4k3(h1) cos*(6L/2)] = exp(—v¥(hd)).  (12)
Since in this work the unperturbed surface is assumed
to be the surface of a large conducting sphere (d > Ag),
the cross section (¢£Q) is given by the physical vptics
expression! .

(029) = 8pq[Rp|% 13)
in which Rp is the Fresnel reflection coefficient for

vertically (P = V) or horizontally (P = H) polarized
waves, and 0pg is the Kronecker delta. For Gaussian

%»30 36.00 0. 00 90.020 120.00 5L 0L [ 3
o} =

h /"

-)4.00 00

-21.00

<' W) o
-28.00
/

-3%.00
e

42.00
-
T

o 43,00
e —

Fig.2 Vertically polarized scattering cross section: = 1.0, 9, total
cross section {aVV); O, (oY) = |Ry|% X, (¥}, = |Rvx*|% +,
(a¥V),1: 8, (6¥V)a2

15 June 1985 / Vol. 24, No. 12 / APPLIED OPTICS 1821




aD-a171 218 nfggﬁggi NE carrziugmggzzcimgqsc L

UNCLASSIFIED F/G 20/14 NL




S ZE A

IS £

L = t};'“m
i i e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAL OF STANDARDS 136¢ 4




N

S

rough surfaces h, the term {¢”9), can be expressed
as

(oPQ), = T (aP®),m, a9
m=I
where
DPQ|2P(A! AilA)
PQ),,. = 4xk} 1DPR1PotAl4i1A)
(ePQ) x °f A-d,

-expl-odeni) (2] Holetid i, s,
(15)

In Eq. (15) vy, and v, are the components v [Eq. (3)]
in the local coordinate system [Eq. (6))

v =y + oy + oy (16)

The shadow function Po(ri/ i?|4) is the probability that
a point on the rough surface is both illuminated by the
source and visible to the observer given the slopes
A(hs,h;) at the point.!122 The function p(A) =
plhy,h,) is the 2-D probability density of the slopes h,
and h,. The expression DPQ depends on the polar-
ization of the incident and scattered waves, the unit
vectors /i',A/, and /i and the relative complex permit-
tivity €, of the conducting sphere. The function
Wi (vs,0;),22™ is the 2.D Fourier transform of (h,h,)™.
It can be expressed as follows:

W lvs.t:) 1 . . .
Tam @ap f(h.h.) ™ exp(ivsxg + iv,24)dzadzy

1 ..
= f Wono1 (X 0) W0, = 0z, = v )dug-dy

1
= Zom Wn-1lon ) © Wiloe ). a7

“ In Eq. (17} @ denotes the 2-D convolution of Wy,_;

with W].

It should be noted that for § — 0 the scattering cross
section [Eq. (9)] reduces to the scattering cross sections
for large conducting spheres, for § << 1, it reduces to the
perturbation solution,” since in this case |x*] 2« 1, and
Eq. (14) reduces to the leading term m = 1 (Bragg
scatter). In a recent analysis of wave scattering from
a large sphere with rough surface (using a reformulated
current method) Abdelazeez® obtained a solution which
corresponds to the first term in Eq. (9). Barrick,! who
considered backscatter by spheres with small scale
roughness, presents a solution that accounts for (g7},
and the first term in Eq. (14). The weighting function
|x*] 2 that multiplies (2?) accounts for the degrada-
tion of the specular point scattering cross section due
to the superim| rough surface h,. The second term
in Eq. (9), (679),, accounts for diffuse scattering due
to the rough surface h,. The leading term in (¢7Q), (m
= 1) corresponds to Bragg scatter.!64% In the next
section illustrative examples of spheres with very rough
surfaces are considered. The significance of the dif-
ferent terms of the solution (9) are considered in detail,
and the results are compared to earlier solutions. On
replacing (0£?) [Eq. (15)] by the expression for large
scatterers of arbitrary shape (such as ellipsoids) one can
obtain the effects of surface roughness on large scat-
terers of any desired shape.
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i, Mustrative Examples

Assuming a homogeneous isotropic random rough
surface h,, the surface height spectral density function
(2) (Ref. 4) considered for the illustrative examples is

3‘B/Ic‘
Wi, o) = Whk)={ x ke <k <k, (18)
0 k> k. andk <hky,
in which
k2= o2 + 0} (em)~2 (19)

The smallest wave number characterizing the rough
surface h, is

ke = (2x}/d, (20)
where d = 201, is the diameter of the sphere, and Ay is
the wavelength of the electromagnetic wave:

Ao = 0.555 X 104 em [ho = % = 1.132 x 105 cm"). 1)

The spectral cutoff number is®
ke = 4.5 X 10°cm™. (22)
The mean square height of the rough surface A, is
2o (7 CHWER B 1y
wy= 7 f T kdkde = @3

Thus the value of B [Eq. (18)] in terms of the parameter
B = 4k§(h3) is
BRIRS
Wk - kD) @

" ForB=20(case a),8 = 1.0 (case b), 8 = 0.5 (case c), and

B = 0.1 (case d) the corresponding values of the mean
square height are _

0.390 X 10~ cm?, § = 2.0,

0.195 X 10~1% cm?, § = 1.0,
HE p (25)
0.975 X 10~ cm?, 8 = 0.5,

0.195 X 10~} cm?, 8 = 0.1.

0.250 X 1072, 8 = 2.0,

1125 X 1072, = 1.0,
p=] M1BxW0LE=1 26)

0.625 %1073, 8= 0.5,
0.125%10°%, 8=0.1. -

For Ag = 0.555 X 10~4 cm the relative dielectric coeffi-
cient of aluminum is!3

6 = —40-i12. @7

The permeability of the sphere is assumed to be that of
free space ug = 1. For all the cases considered here, the
mean square elope of the rough surface h, (with respect
to the surface of the unperturbed sphere) is <0.02. The
projection (in the 8,0,4,0 plane) of an elemen area
of the sphere oriented in the direction f is hZ cosy
sinydydd, where v and J are the latitudinal and azi-
muthal angles in the spherical coordinate system.
Therefore in Eq. (15)
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i dydé
Phs s dhedh, —= plyd)dyds = LY,

o<6<§.o<5<2:. (28)

In Fig. 2 the vertically polarized scattering cross
section (oVV) [Eq. (9)) is plotted as a function of the
scatter angle 8f (see Fig. 1). The parameter 8 = 4k3(h2)
= 1.0. In addition to the plot of (¢ V") (Eq. (9)] (the
total cross-section) plots are also given for the individual
terms in Eq. (9): (aVV); = |Ryx?|2, (dVV),,, and
(eVV}),2. Forf=1,theterms (aVV),,form > 3 are
negligible. The value of (¢%V) = |Ry|2 (corresponding
to the physical optics cross section for the unpertur|
sphere) is also given for the purpose of comparison.
Note that the total scattering cross section (gVV) for
the rough sphere is significantly smaller than that of the
unperturbed sphere (¢XV). Furthermore, for § = 1.0
the contribution of the term (¢VV¥), [Eq. (9)] is not
negligible, and (¢YV) cannot be approximated by the
first term (0VV); = |Ryx*|2, which corresponds to the
solution based on Abdelazeez's reformulated current
method.? The corresponding results (8 = 1.0) for the
horizontally polarized scattering cross sections (g4H)
are presented in Fig. 3. These results are similar to the
results for the vertically polarized waves except near the
quasi-Brewster angle.

The cross-polarized cross section {d V) = (¢HV) is
presented in Fig. 4 for 8 = 1.0. In view of Eq. (13) there
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) Fig. 4. Croes-polarized cross section, 8 = 1.0, +, total cross section

(aVH) = (eMV); 0, (¢Y¥)0y; &, (6VH),2.

is no physical optics contribution to the cross-polarized
cross section. Note also that for backscatter, 8§ = 0,
{ocVH) becomes vanishingly small. The like- and
cross-polarized cross sections for 8 = 2.0 (case a), f =
1.0 (case b), § = 0.5 (case c), and 8 = 0.1 (case d) are
presented in Figs. 5 and 6. Thus one finds that for § <
0.1, the terms {o),m for m 2 2 are negligible. Fur-
thermore, since e~# = 0.9 for § = 0.1, the perturbation
solution! is approximately equal to the full wave solu-
tion. For small values of 8 the full wave solutions are
also approximately equal to the solutions obtained using
the reformulated current method3 since the second term
in Eq. (9) (¢VV), becomes very small compared with

bed © (¢VV),. However, Abdelazeez’s solution for (¢ VH) =

(oV¥), iszero. When the scale of the roughness is very
small (8 < 0.1), the scattering cross sections of rough
spheres are not significantly different from that of un-
perturbed spheres. As f (the roughness of the surface)
increases, the weighting function | x*| 2 decreases, and

. the contribution of the term (o F®), increases. Fur-

thermore, an increasing number of terms (¢7Q),, (m
=1,2.3...) needs to be evaluated as 8 increases. (For
B=20,m=123isused). In Figs. 5(a)-(d) the dif-
ferences between the full wave solution, Barrick's so-
lution, and Abdelazeez's solution for (¢ V") are shown
to increase progressively as f§ increases from 0.1 to 2.0.
In Figs. 6(a)-(d), the full wave solution and Barrick’s
solution for (¢ VH) are compared for  between 0.1 and
2.0.
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For the purpose of analysis, the surface roughness is

The full wave approach has been used to determine
the scattering cross sections for electrically large con-
ducting spheres (d > Ao) with rough surfaces. The
total scattering cross sections are significantly modified
by the rough surface when the parameter 8 = 4kj(h?)
> 1. In these cases the perturbation solutions are not
valid. For 8 <« 1 the full wave solutions reduce to the
perturbation solution!; however, for f « 1, the modi-
fication of the total scattering cross section is not very
significant. The full wave solutions are compared with
the perturbation solutions! and a recent solution based
on the reformulated current method.? The full wave
solutions presented here can also be used to determine
the effects of surface roughness on the scattering cross
sections for large conductors of different shapes (such
as ellipsoids or cylinders).
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characterized by its spectral density function W or by
its autocorrelation function (hh’). A detailed study
of the like- and cross-polarized scattering cross sections
at different frequencies could shed light on the surface
roughness of the conducting particles (the inverse
scattering problem).

This investigation was sponsored by the U.S. Army
Research Office contract DAAG-29-82-K-0123. The
manuscript was typed by E. Everett.




ey .

———— e —— -

.00 35.93 4C.05 35.25 128,92 8C.92 80.90
h — —_—

6.

-t3.099

«
o

-20.

<¢W’> (+.]

~3%.50

=43.96

0.90 -50.00
E

-90 _30.90 60.90 90.99 120.00 150.90 380,00

=13.00

NP
-36.90  -20.90

ﬂ:lﬂ

-40.90

(]

111

£

o a. -
0.90 30.00 60.00 99.00 120.00 150.00 180,00
©

(©

?.0.50 30.90 60.90 90.90 120.00 |‘5fl‘00 +80.90
3

f: od

b «

Fig.6. Cross-polarized cross section for (a}) § = 2.0, (b} 8 = 1.0, (¢}
B =05, (d) 8 = 0.1; 8, (aV¥), = (¢¥Y), total cross-section, O,
{aVH#),y = (o¥V},; (Barrick's solution).

References

L D.E. Barrick, Rough Surfaces, in Radar Cross Section Handbook
(Plenum, New York, 1970), Chap. 9.

2 E. Bahar, and D. E. Barrick, “Scattering Cross Sections for
Composite Surfaces that Cannot be Treated as Perturbed
Physical Optics Problems,” Radio Sci., 18, 129 (1983).

3. M. K. Abdelazeez, “Wave Scattering from a Large Spbere with
Rough Surface,” IEEE Trans. Antennas Propag. AP-31, 375
(1983).

4. 8. 0. Rice, “Reflection of Electromagnetic Waves from a Slightly
Rough Surface,” Commun. Pure Applied Math. 4, 351 (1951).

5. A. Ishimaru, Wave Propagation and S« ing in Rand,
Media in Multiple S ing, Turbulence, Rough Surfaces and
R Sensing,. Vol. 2 (Academic, New York, 1978).

6. G. S. Brown, “Backscattering from Gaussian-Distributed Per-
fectly Conducting Rough Surfaces,” IEEE Trans. Antennas
Propag. AP-26, 472 (1978).

1

M. L. Burrows, “On the Composite Model for Rough Surface
Scattering,” IEEE Trans. Antennas Propag. AP-21, (1967).

8. G.R. Valenzuela, “Scattering of Electromagnetic Waves from a

10,

1L

Tilted Stightly Rough Surface,” Radio Sci., 8, 1051 (1968),

E. Bahar, “Scattering Cross Sections for Composite Random
Surfaces—Fu'l Wave Analysis,” Radio Sci. 16, 1327 (1981).

E. Bahar, “Scattering Cross Sections for Composite Surfaces with
Large Mean Square Slopes—Full Wave Solution,” Int. J. Remote
Sensing 3, 327 (1962).

M. K. Sancer, “Shadow-Corrected Electromagnetic Scattering
from ¢ Randomly Rough Surface,” IEEE Trans. Antennas Pro-
pag. AP-17, 577 (1969).

12. B. G. Smith, “G ical Shadowing of a Randomly Rough

Surface,” IEEE Trans. Antennas Propag. AP-15, 668 (1967).

13. H. Ehrenreich, “The Optical Properties of Metals,” IEEE

Spectrum 2, 162 (1965).

15 Juns 1985 / Vol. 24, No. 12 / APPLIED OPTICS 1825




CEv A P

L

SESEARCH AND DEVELOPMENT
'CENTER'’S 1984 SCIENTIFIC CONFERENCE
“ON OBSCURATION AND AEROSOL
- RESEARCH

Deborah Stroud

e T RONALD H. KOHL&ASSOCIATES
' S .. Tullahoma, Tennessee 37388

Edited by Ronald H. Kohl




: SCATTERING AMD DEPOLARIZATION BY CONDUCTING CYLINDERS 113
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: ABSTRACT
I, Like- and cross-polarized scattering cross sections are determined at optical frequencies for

s
" conducting cylinders with very rough surfaces. Both normal and oblique incidence with respect to the

cylinder axis are considered. The full-wave approach is used to account for both the specular point

scattering and the diffuse scattering. For the roughness scales considered, the scattering cross

sections differ significantly from those derived for smooth conducting cylinders. Several illustrative

examples are présented.
1. Introduction

The problem of electromagnetic scattering by finitely conducting circular cylinders or epheres

has been dealt with extensively in the technical literature. Perturbation theory has been used to

’ extend these results to scattering by slightly rough circular cylinders or spheres (Barrick 1970).

However, perturbation theory is limited to surfaces for wvhich the roughness parameter f§ = 6k§<h5> <0.1

b and <h:> 1s the mean square height of the rough surface, Brown

(ko is the electromagnetic va
1978)., For B < 0.1 the scattering cross sections are not significantly different from those for
smooth conducting circular cylinders.

In this work the full-wave approach is used to determine the' like- and cross-polarized scattering
cross sections at optical frequency for finitely conducting cylinders with roughness scales that
significantly modify the scattering cross sectfons. The radii of curvature of the unperturbed cylindes
considered are large compared to wavelength A, (However, the cross section of the unperturbed
cylinder need not be circular). Both specular point scattering and diffuse scattering are sccounted

for in the analysis in a self consistent manner and the-cross sections are expressed as a veighted sum
of two cross sections.
In Section 2 the special forme of full-wave solut{ons are presented for long cylinders with
BDean olrcular crose sections and both the specular point and diffuse contributions are identified.
In Section 3 several illustrative examples are considered for cylinders with roughness parameter
B = 1. The rough surface is charscterized by ice surface-height opectral-density function. The

results are compared with solutions based on tha perturbatiom app:sach.

k1
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2. VYoramulation of the Problem

The scattered radiation fislds for two dimensionally rough surfaces can be expressed ia matrix
form as follows (Bahar 1981)
v DW DVH cvz
- ¢, up[iv-?.]ds (2.1)
¢ PR Sl

ve and Gu are the vertically and horizontslly polarized (electric or magnetic) fields

in which G
scattered at a distance r in the direction of the unit vector Ef. Similarly c“ and Gu are the
vertically and horizontally polarized fields incident (at the origin) in the direction of the unit
vector 51. The scattering matrix D is given by

p=c®fprt 2.2)
in vhich the transformstion matrices Tf and Ti relate the gcattered and incident waves in the local

planes of scatter and incidence to reference planes of scatter and incidence while F 1s the scattering

matrix defined in the local planes of incidence and scatter. The coefficient Go is

Go - -ikoexp(-ikor)/hr (2.3)
the vector V is . £ -1
v ko(n -n") = vx=x+ vy:y+ vli: (2.4)
and -
.t 3 .5

vhere n {8 the unit vector normal to the rough surface S. The position vector to a point on the rough
surface is 1-. and for a reference cross sectional area in the x,z plane

ds = dx dz /(E-iy) < Q.6
The expression (2.1) is invariant to coordinate transformations. For very ({nfinitely) long cylindere

the surface integral (2.1) can be reduced to & line integral by notiag that

J up(iv'z)d: - 2n6(vz) . (2.7,

-

On evalusting the expressiocns for the radistion (far) fields from the expresaions for their

transforms (using the steepest descent method, Bahar and Rajan (1979) it can be shown that
6t « ¢} [ b6t expltv-(x 7.+ y 5.)1ax/(G3) (2.8)
(] x 7 y y *
in vhich
’ i ko % 1 i
G° S Rt o.xp(mlt)up[-ik (p cos® +z sinh )] (2.9
2np eolO° ° ° °

and for oblique incidence (with respect to the z axis) tha direction of the incident plane wave is

-1 1~ T
B -cooeo l, + .M° s, . (2.10)
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The direction of the scattered wave is (Bshar 1981) 115
o -f £ f - f - £ £ -
o= -1n9° cosd nx+ coueo n’+ uineo sing- s, 2.11)
(where the polar angle is measured vith respect to the y axis, see Figs. 1 and 2). In view of (2.7)
-me: le - d.nO: . 2.12)

Thus (2.11) can also be expressed as

-f 1 y- Y- { -
- a = co.ﬂo(lm at cosé n’) + uueo s, (2.13)
.. where the szimuth 'ngle 0' is measured in the xy plane vith 0' = 0 on the y axis (see Pigs. 1 and 2).

The explicit expression for the scattering coefficients D (2.2) have been presented earlier when the

- reference incident plane is pormal to ;tx :y and the reference scatter plane is normal to ;"'x :y'

Land & (the
t

normal to the cylinder at the specular point) (Barrick 1970), in these expressions for Tf and T! the

However, if the plane of incidence (and scatter) is taken to be the plane normal to n

unit vector 3_must be replaced by the unit vector

y
3, =Vv- .u(o'/z):‘-f :00(0'12):’ -

" atndf coo‘f: + (cooef + costd)a
° = L. ey . (2.14)

i i (3L
[2 cooeo(coneo + coseo)]

The mormalized stattering cross sections (or scattering width) are for P,Q = V,H
<0PQ> - <|C"‘|2> 2%
lchlz xa
PO g -7
x expiv_(x=x')+ tv_(y-y") -
=< > [ B R dx dx'> (2.15)
zucoae J (o-a)(a'-s)
° R 4 y

where the radius vector to tbe surface of the cylinder is
) (x ;:4‘ ya)
T a - —x Y .
L (d-h‘)at (ﬂh.) 2 ‘ (2.16)
and & = (xz+ ’2)‘: is the radius of the unperturbed cylinder. The characteristic function X and the

joint characteristic function ) for the random rough-surfsce height h_ are
. 2 i s

X = <exp(iv h.)> (2.17)
wvhere
vek cos($'/2) (2.18)
and .
X, = <expltv(h -b)]> . (2.19)
Por Gaussian distributions .
Ix|? = expl-8 con’(4'/20) . (2.20)
and
X, = Ii? ereianls) ' (2.21)
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where . 2.2 -
B= lok°<h'> .
and the surface-height autocorrelation function <hh'> is the Fourler transform of the surface height
P .
spectral density function W -
W(k) - 1 ' (2.2%)
- " I<h'h5> exp(ikt)dT .
-

In (2.23) <h h'> 1s assumed to be a function of the distance measured along the cylinder's circumference.
8 8

The normalized scattering cross section (2.15) is expressed as a weighted sum of two cross sections

(Bahar 1981, Bahar and Barrick 1982)
< FUsaly)2e > 4+ <> | (2.24)

2
The first term in (2.24) is the physical optics contribution < o:Q > modified by the coefficient |x) .

It can be shown (using the steepest descent method) that for s conducting ciftular c{linder

PQ ko 1 5 2 cos(o'/Z) DPQ
<G, 2= 1 b exp(iv_ x + 1v_y) dx ¢:05261 n.a . (2.25)
Tacos® - x y o Yy
[ -a (n.a2)) j=_=
Yy L
When the plane of incidence is takea to the normal to ;1 x ;s .
(2.26)

<a@PQ > - cos(¢'/2)]RP|26PQ

in which RP 1s the Fresnel reflection coefficient and 6PQ is the Kronicker delta.

Due to the surface roughness the contribution due to specular scattering is decreased by the
factor fxfz (2.20). The surface roughness also gives rise to the diffuse scattering term

©
PQ - PQ
<™ >p 2 <’ ¥ >

m=1 Ra

2 (2.271)
© 2k /2 L] :
o PQ —f -4y~ w22 onfv. \2= v,
- L ——ei_- I D P, (o ,n ]n) . exp(=vy <h_> 711_ :‘ T) ay
m cos o -ﬂ/Z
where
¥ v “
D . L "o 2.28
e T I-:h h'> exp(ixt)dt ( )

in which v, and vy are the components of V (2.7) normal and tangential to the surface of the unperturbec
circular cylinder and P, (Ef. E"IE) is the shadow function (Bahar snd Barrick 1982).
3. Illustrative Examples
Asguming that the random rough (_honogeneous and isotropic) surface height autocorrelation function
<hh'> 4 & function of distance messured around the circumference of the unperturbed cylinder, we’

consider in the folloving examples the surface-height spectral d:nsity function W(k) (2.23) given by

(Rice"1951)
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W) = ~—————5 !‘d<k<kc 3.1)

nf (k-k d)2+.< ]

wvhere
) ky=2/a  k =4k (3.2)

F ‘ d c

n';d.H(k) peaks for k-xd K= O.Skd. The electromagnetic vavelength is

Xo =10 m (3.3)
and the corresponding relative (complex) dielectric coefficient for aluminum is

€ - -6000(1 + 1) (3.4)

The radius of the unperturbed cylinder is

a=2.5 ko (3.5)

The shadow function is & product of the unit step functions u

1

1

i

{

i

i

g-:

t (where an exp(iwt) time dependence for the fields is assumed).
t

}

i

14 (3.6)

r, LY - u@hD) uEte .

The constant B in (3.1) is determined by the surface roughness parameter

2,2

- .l
B = 4k < h >

In j'ip.:08 3, 4 and 5 <cw> <a“> and <0Hv> - <ava> are plotted for 6: « 30° as functions of ¢'

for cylinders with smooth (unperturbed) surfaces,(+) and random rough surfaces, (LJ). The incident and
scatter planes are normal to -Ei.:y and ;f.;y respectively. Note that for finitely conducting smooth
cylinders <0V and <cm> are very small for ¢' = n/2,and for ¢' = 0these normalized cross sections are

near unity, For the corresponding rough cylinder, the cross sections do not display the sharp minima an:

near normal incidence they are significantly less than unity. The cfbss-polatized cross sections
PEAL <> are significantiy different near normal incidence. For the smooth cylinder PEALN vanishes
for ¢' = 0, while it 1s about -5db for the rough cylinder. Thus as the surface roughness increases all

three plots of the cross sections tend to flatten out (as functions of ¢') except near grazing
-

angles ¢' + 7 where the cross sections for the smooth and rough surfaces merge.
In conclusion, therefore, even a surface roughness corresponding to 8e Ioko <h:> = 1 caanot be

ignored since it has the effect of making the scattered fields more isotropic and unpolarized. Using a

perturbation approach to solve the problem one is restricted to values of B< 0.1 (Brown 1978). 1In this

case the perturbation diffuse scattering term can be shown to correspond to the first term <0PQ> in the

P
expression for <o 'Q>l.1n this case, hovever, the effects of surface roughness sxepractically insignificant
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The unified full-wave solutions for the vertically and horizontally polarized scattered radiation fields and the like-
and cross-polarized scatteting cross sections for random reugh surfaces are presented in this paper. They are
compared with the corresponding physical-optics, geometric-optics, and perturbation solutions that are obtained on
adopting a two-scale model of the composite rough surface. Computations based on the unified full-wave solution
(which accounts for both specular point scattering and diffuse scattering in a self-consistent manner) as well as those
based on the two-scale representation of the rough surface are provided for several illustrative examples. It is
shown that the two solutions for the cross-polarized backscatter cross sections differ significantly for near-normal

incidence. The solution based on the unified approach is

1. INTRODUCTION

Solutions for the like- and cross-polarized scattered radia-
tion fields are presented for rough surfaces using the full-
wave approach.!-3 The full-wave solutions account for spec-
ular point scattering and diffuse scattering in & self-consis-
tent manner. Unified full-wave expressions for the like-
and cross-polarized cross sections are alsa presented for ran-
dom rough surfaces. In addition, on adopting a two-scale
model of the rough surface, the cross sections are expressed
as a weighted sum of two cross sections. The first accounts
for specular point scattering from the large-scale filtered
surface h;, and the second accounts for diffuse scattering
from the small-scale surface h, that rides on the large-scale
surface h;. The solutions based on the two-scale mode! are
shown to be consistent with the corresponding perturbation,
physical-optics, and geometric-optics solutions.

In Section 4 several illustrative examples are presented
that use both the unified full-wave expressions and those
based on the two-ccale model. The discrepancies between
the two solutions for the like- and cross-polarized backscat-
ter cross sections are examined in detail. In particular, near
normal incidence (g = 15°) there is a difference of about 15
dB between the two computed values of the ratio of the like-
to cross-polarized cross sections {e"¥)}/(a¥H) (V and H cor-
respond to vertical and horizontal, respectively). The uni-
fied full-wave solution for the ratio is consistent with experi-
mental data.

2. FORMULATION OF THE PROBLEM

The full-wave solution for the radiation fields scattered by
two-dimensionally roxgh surfaces f(x,2) = y — h(x,2) = 0 is
expressed as follows in matrix notation (see Fig. 1):

G =, [ D(#, Aexpliv- r}dAG = SG',  (2.1)

in which /' and A/ are unit vectors in the directions of the
incident and scattered fields, and the vector v is

740-3232 /85/122295.09802.00

with experi al data.

v= (i = Akg=v,a, +ua, +ud, =k — ke, (2.2)

where kg = w(upte)'? is the free-space wave number of the
electromagnetic wave. The integration is over A, the illu-
minated and visible portions of the rough surface, and

L, oL,
fdA=J j dzdefi -8, = A, J-dA=J -da,
-L J-L . A

L, £l

(2.3)
where 7 is the unit vector normal to the surface f(x, z) = 0,

~h,d, +d, -k,

a=vf/|vfl= —————ov——;
] (1 +h2+hH7
h =2 n =2, (2.4)

LT P8z

and r is the position vector to a point on the rough surface.
The elements of the 2 X 1 column matrix G' are the incident
vertically and horizontally polarized complex-wave ampli-
tudes GV and G¥: at the origin with A/ X &, defined as the
vector normal to the plane of incidence. Similarly, G/isa 2
X 1 column matrix whose elements are the vertically and
horizontally polarized complex-wave amplitudes G¥/ and
GH! (with Af X 8, defined as the vector normal to the scatter
plane) at the point given by the position vector

v=xla, +ya +2a, = A (2.5)
Thus
: GVi EV:' H\’i
G= (GH‘_) - (5"") - (H"") (26a)
and
GV EM HY!
f = = =
o (G- e

where ng = (up/¢0)!/2 is the free-space wave impedance. The
coefficient G is given by

Gy = ko2 exp|—iker!]/2xikyH, @9

© 1985 Optical Society of America
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Fig- 1. Planes of incidence and scatter with respect to the refer-
ence-coordinate system. (Mean reference plane for rough surface is
y=0).

/s Lotol Coordenates
[N AN

XL

Fig. 2. Local planes of incidence and scatter and local-coordinate
system (A, Az, Aj).

and a supressed exp(iwt) time dependence is assumed in this
work.
The like- and cross-polarized local scattering matrix

' DYV pvH i i
D, 4l) = (D"V D"”) =(-A"-ATFT'  (28)

is derived by (1) using the 2 X 2 matrix T¥(A™, #) to trans-
form the incident vertically and horizontally polarized wave
from its representation in the fixed reference coordinate
system (&,, &,, 4,) to its representation with respect to the
local coordinate system (#;, Az = A, A3) [the unit vector A" is
the representation of the vector Ai in the local coordinate
system (see Fig. 2)], (2) using the 2 X 2 local scattering
matrix (=4 - A) F(A/", A”")dA to account for like- and cross-
polarized scattering by an element dA of the rough surface
(A’ is the representation of the vector #/ in the local coordi-
nate system), and finally, (3) using the 2 X 2 matrix TY(#/,
A/*) to transform the scattered vertically and horizontally
polarized wave from its representation in the local coordi-
nate system to its representation in the reference coordinate
system. The full-wave solutions [Eq. (2.1)] are invariant to
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coordinate transformations, and they satisfy the duality and
reciprocity relationships in electromagnetic theory. In Eq.
(2.1) multiple scattering and the contributions from shadow
regions of the rough surface are neglected. Explicit expres
sions for the local scattering matrix D(#/, i’} [Eq. (2.8)) are
found in the published literature.!

The full-wave solution for the scattered field can be ap-
plied to random rough surfaces.?2 Thus the scattering cross
sections per unit projected area A, for an incident wave with
polarization @ = V or H and a scattered wave with polariza-
tion P = V or H are given by

_ hoz D™
() = <T J175

Y

X explliv-(r = r)) gf%ziz_> C (29
N

2
P,(#, Ain)

in which the symbol (-) denotes the statistical average over
the heights h, h’ and the slopes 7, 4. The probability-den-
sity functions for the random slopes #, 4’ and random
heights h, b’ are assumed to be independent. In addition, it
is assumed that the slopes are more strongly correlated than
the heights [p(A, #') — p(7)8(#’ — #)]. In this paper the
rough surface is assumed to be isotropic (independent of
direction), and its characteristics are independent of posi-
tion (r). Thus the rough-surface height characteristic func-
tion

x{w,h) = (expliv,h)) = f expliv,)p(h)dh  (2.10)
is independent of position, whereas the rough-surface-
height joint characteristic function

xo{v,h = v ') = (expliv,(h = 1))
= | expliv,(h — h)|pth, h)dhdh’  (2.11)
is only a function of distance 7 measured in the (x, z) refer-
ence plane
ry=(x-xa, +(@— 2')a,,
Ird =7 =[x — x4 (2 - 2072 (2.12)

In Egs. (2.9) P,(#/, i} #) is the probability that a point on the
rough surface is both illuminated (A) and visible (#/), given
the value of the slope (#t) at that point.*

Since the full-wave solution [Eq. (2.9)] accounts for both
specular point (physical optics) scattering as well as diffuse
scattering in a self-consistent manner, there is no need to
adopt an artificial two-scale model. To use the two-scale
model, it is assumed that the surface hi(x, z) consisting of the
large-scale components of the surface-height spectral-densi-
ty function W(u,, v,) is independent of the surface h,(x, 2)
consisting of the small-scale components of the surface-
height spectral-density function. The surface-height spec-
tral-density function is the two-dimensional Fourier trans-
form of the rough-surface-height autocorrelation function
(hk’). Thus

Wi, v) 1
—— R

. 4—2‘ Jm (hh")expliv - ry)dx dz,
x -

-1 L’ (hh*)dotkr)rdr, (2.138)
2r

where J is the Bessel function of order zero and the spatial
wave number k is
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k=u, =@+, (2.13b)

in which use has been made of the fact that (hh’) is only a
function of r. Similarly,
- Wy, v,)

4 exp(—iv - ry)dv,dv,

(hhy = [

=2 L' %‘&Jo(kr)kdk = R((AY, (214)
in which [R(+)] < 1 is the normalized correlation coefficient
and (h?) is the mean-square height

(h?) = (hh?Y,og = 2 L' —VY‘:";’ kdk. (215

Thus, using the two-scale model, it is assumed that the large-
scale surface h; is associated with the surface-height spec-
tral-density function W(k)U(ky — k) and the small-scale
surface h, is associated with the surface-height spectral-
density function W(k)U(k ~ kg) in which U() is the unit
step function and k4 is some arbitrary value of k where
spectral splitting is assumed to occur.® Brown chooses kg
such that the parameter

B=4k2(RYH =01 (2.16)

satisfies the perturbation condition for the small.scale sur-
face. However, he shows that the computed value of the
scattering cross sections critically depends on the choice of 8
and therefore on the specified value of k4. Bahar and Bar-
rick® considered the two-scale model using the full-wave
approach. It is shown that if &, is chosen such that deep
phase modulation occurs, it is necessary to choose § > 1.
For a range of values of k4 corresponding to 8 between 1 and
2 it is shown? that the values of the scattering cross sections
do not depend on ky. For problems of scattering by random
surfaces the dimensions of the projected area A, = 4L,L, are
suchthat L, » r.and L, » 7. [where R(r.) = exp(—1) and r,
is the correlation length]. For distances r » 7, xo = x|%,
since (hh’) — (h?). Thus, assuming statistical indepen-
dence between the surfaces h;and &, [p(h;, h,)] = p(h)p(h,)],
the characteristic and the joint characteristic functions of
the total surface are expressed as

x=xx" xXEX-A), X=X,

X' Ex v A),  x'=x,(,), (2.17a)
X2 = xa%2" = (' ~ xAxA? + (x" = 1x1Dxe' +1x'x 1%
(2.17b)

in which the superscripts [ and s denote quantities associat-
ed with the large- and small-scale surfaces, respectively.
Using the two-scale model, it is also assumed that the slopes
for the small-scale (perturbation) surface are small such that
the slope probability-density function for the total surface is
equal to the slope probability function for the large-scale
surface p(A) = p(A)(A; = 9f /(v and f;=y — h)). Thusthe
unified and two-scale expressions for the scattering cross
sections [Eq. (2.9)] are, respectively,

(") = f AP, A, ﬂ)p(ﬂ)d"l[Q(ﬁ’. )

+ Alw,_x [ expliv,x + iu,z)dxd4=] (2.184)
Y

122

Vol. 2, No. 12/December 1985/J. Opt. Soc. Am. A 2297

where
Qi &Y =} J (x; — x| Dexpliv - r)dxdzy, (2.18b)
AP R ) = % ‘::D_P:) 2P2, (2.18¢,
pla)da = p(h,, h,)dh,dh,, (2.18d;
and

(P = XAARG, &, ) (Qa, )
+ Al’|u,x'exp(iu,x + .'u,z)dxdzlz]
+ ] ARG B, A -8, QA 7, R)pth)dA
=114 + (659, (2.19a)
where
Qi i =v? f (xa'  Ix}2expliv - r)dr dzy,  (2.19b)

Q. i, A =v? [ (g = [xTDexpliv - rigdx dzg (2.19¢)

In Eqs. (2.18b), (2.19b), and (2.19c¢) the integration limits are
(—~w, @) since L,, L, > 7. and AP(#/, it, A} is defined in Eq.
(2.18¢c).

To derive the first term in Eq. (2.19a), the slope-depen-
dent function A™(A/, i', /) is replaced by its value at the
specular point where

A—nd,=vl, v=|v=v.A,_. (2.20)

For surface-height probability-density functions that are
Gaussian

1x}? = exp(-v, /(A « 1, (2.21)

x2' = exp(=v (A + v, Xk h)) = explo, Ak )XY
(2.22;

Thus for kg?(h?) » 1 it can be shown that the two-dimen-
sional Fourier transform [Eq. (2.19b)] is given by

QLA i) = 4x7p(n,), (2.23

in which p(a,) is the slope probability-density function at
the stationary phase points®

P(h,) = plh, h) = b’
A) = Jh)= exp| —
o) = P 21.1,.2 20,.20).2

1 (b7 + 47
= 2P = ———5—(
2ra, 20, 4, (2.24)

in which the value of the slope at the specular point is

(hxz + h:’)h, = wn"Y: = vni/v’2'
A,-8,=cos v, (2.25a)

and the mean-square slope 0,2 is

ol=2 L' W(k)k dk. (2.25b)

Thus the first term in Eq. (2.19a) is given by
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Ix12(o), = | X12APUA, &, 4,)[4xp(R,)
+ Ao, x}?sinc’(v,L,)sinc?(v,L,)], (2.26)

in which sincla) = sin{a)/a, and A, = 4L,L, is the projected
area of the rough surface on the 1, z plane. In Eq. (2.26)
(oPQ), is precisely the physical-optics solution for scattering
by the large scale (filtered surface). Thus the coefficient
|x1? < 1 accounts for the degradation of the physical-optics
(specular point) contribution that is due to the small-scale
surface.

Toderive the second term in Eqgs. (2.19), it is assumed that

.over a correlation length of the small-scale surface, the large-

scale surface is approximately flat and that the small-scale
(perturbed) surface height is measured normal to the large-
scale surface. Thus

v-(r—g=v-(r,- 1)+ vih ~ k)a,
=sv-ry+v-ath—h), (2.27)

in which the distance ryy is measured along the large-scale

surface in the local coordinate system (7, Ay = A, fig):

Py =X+ 200, (rd =1 = (1,0 42,02 (2.28)
Thus, in the expression for (¢™?),, the integration is, with
respect to distances, measured along the large-scale surface
and not the reference surface. This is in agreement with the
expressions obtained intuitively by Wright and Valen-
zuela®® “mostly based on physical considerations.” Thus
(6"?), can be regarded as an average of the scattered power
from patches of slightly rough surfaces that ride the large-
scale surface. Brown's® solutions, which are based on a
combination of Burrows's perturbation theory!® and physi-
cal optics,'! are in agreement with the full-wave expressions
for (aP9), only in the limit of small-scale slopes, since in his
work h, is measured normal to the reference plane. Howev-
er, in Burrows’s perturbation theory the small-scale surface
height h, is measured normal to the large-scale surface h;.

The two-dimensional Fourier transform [Eq. (2.18b)} can
be expressed as

QUA’, ) = 2x0,2 L (xee) = Ix(w N Ddolv,, r)rdr, (2.29)

since the surface-height correlation function (hh’) is only a
function of r = ry = [ry. The corresponding expression for
the Fourier transform [Eq. (2.19¢)] is dependent on the
slope. Thus

Q7 &, ) = 2x0? L' (x,/(v-7)

= X"V AW gv gty dr,  (2.30)

in which
Vory = velx iy + 240 = vxg + U2 (2318)

veRz = ol 4o (231b)

and vy, vy, and vy are the components of v in the local
coordinate system (A, i; = A, Ai3). Thus the scattering cross

sections can be expressed as follows for the unified and two-
scale models:
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(o7, = J APRS R, ) pla)dal QA i)

+ Alu x*sinc(v,L,)sinc“(v, L)} (2.32)
and
(™7 = 1x1, 247, i, 4 )QUA, )

+ AV‘[L"‘.XII !sincz(u,L,)sincz(L',L,)]
+ f AP, e fya -6,Q (A A, rp(adda.  (2.33)

To facilitate the computations in Eq. (2.33), in which Q, is a
function of /i for a given v and R(7), a set of values of Q. /v 2is
first computed and stored as a function of

v = (~ok, o, —oh M1 +HAE+HRIHYE (239

The integration with respect to dit = dh,dh, is performed
using values of @, interpolated from the stored set. For
Gaussian surface-height probability-density functions,

QAL 7' A) = 2:—1:521- exp(~t,(h,%))
i

X fexple, (b )R(r)] - 1
X dylt,,m)rdr,

— =0 Ax V- AW, (2.35)

dec!
Thus for it — a, and 8 « 1 the last term in Eq. (2.33), {¢/9),,
reduces to the perturbation solution?

("), = (P p = 7k 3 X"(v (=4 - AIF, A2 Wie,,).
(2.36)

Note that Eq. (2.33) reduces to Eq. (2.32) if we set (h%) —
0 and that Eq. (2.32) reduces to Eq. (2.33) if we set (h,2) — 0
and replace APQ(/, A, /) by APQA, &', A,). The term
containing the product of the sinc functions is the coherent
scattered field. This term vanishes as|x(v,)|]2 — 0.

For cases in which the physical-optics solutions are valid,
the corresponding geometrical-optics expressions for (o),
are obtained by replacing /i by A, in Eq. (2.1) and integrating
over the area A, (using the stationary phase method) before
the expectations (-) are evaluated. Thus in the neighbor-
hood of a stationary phase point r = r,,, where v, + v,h, =0
and v, + vk, = 0212t can be shown that

fexp(iv- r] :x?: = ]expliv |

X exp{ﬂi [Rootn? + b2 2)}d,\' dz
2 1xo¥p 2za?p pB%p

- expliv - r,,) (2xi)
Ve ﬁl(hx.p’lup)l”. .

in which the integral has been expressed in terms of the local
coordinates at the stationary plane point (xp. ¥p. 2p) associat-
ed with the unit vectors (4, i, = A, A3), A;, and A3, the
vectors in the tangent plane, are chosen such that the princi-
pal radii of curvature r,, = {1/h,,J) and r,, = |1/h,,} are
measured along the A, and A, directions. As seen by an
observer in the region y > h(x, 2), the curvatures h,,, and
h,,, are positive when the surface is concave. They are
negative when the surface is convex. When h,,, or h,,, is
negative, the curvatures are expressed as (h,;)!/2 = i/(r,,)'7

ven, = %y(~RR,), (2.37)
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and (h,;p)12 = i/(r,,}'”2. Thus the geometric-optics contri-
bution to the normalized cross section from N randomly
located specular points per unit surface area is

(), = =rr MITFT), PA%Py(#/, 414, (2.38)

in which

. 8 0
p(,]l' ﬁ')n. = [Rv(oop ) R, ..)] ’ (2.39)
op

and Ry{0,,) are the Fresnel reflection coefficients at the

specular points where the local angles of incidence and scat-

ter are —A'- A, = Af + i, = cos f,,'. Note however, that the

surface will depolarize the incident wave if the triple prod-

ucts (7 -ni+&,) and (#n'- &,) do not vanish. {When (34’ - a,)

and (AA/ - &,) vanish, T" and 7Y become identity matrices.]
The expectation of (r,,r,,N) in Eq. (2.38)13!4 is

(repripN) = pa /R, - 8,),, #,-8,=0v/(v-5,), (2.40)

xp’ 2p
thus
(P9, = —Z  p(a [T'FT), PAP#, 4l4,), (2.41)
(@, ay)‘ 3

in agreement with (¢F);. Thus for backscatter the geomet-
ric-optics theory predicts no depolarization:

L4

(a,-8) P(A)Py(—it, |4,)R (6, = 0).
s Gy,

(PP = i)y, =

(2.42)

In the following illustrative examples the unified full-
wave solution is compared with the solution based on the
two-scale model. In addition, the computed ratios of the
like- to cross-polarized cross sections (o/7)/(a"¥) are com-
pared with the experimental data.!516

3. ILLUSTRATIVE EXAMPLES

The illustrative examples considered are at X band 8.91
GHz; thus the wavelength Ag and wave number kg are

XN=336Tcm, ky=187cm™L (3.1)

The wind velocity assumed is V = 24 m/sec, the relative
complex-dielectric coefficient for the sea is ¢, = 55 — (37,17
and the relative permeability 4, = 1. The surface-height
spectral-density function is assumed to be®

Wik) = W(o,,v) = %S(o,, v)

2 Bo, Mo, 24 kK
x

K>k (3.2)

0
in which § is the corresponding quantity defined by Brown.®
In Eq. (3.2)

ko=12cm™,  «=(3352 V92 =0948+ 107 em™L.
(3.3)
The surface-height autocorrelation coefficient R(r) corre-

sponding to W(k) [Eq. (3.2)] is given in closed form for x « k,
—= ® (Ref. 18):

R(r) = [x + % (")’](n)l(,(n) ~ («r)Kpler), (3.4
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in which K, and K| a.e the modified Besse! functions of the
second kind and of order zero and one, respectively.!® The
mean-square height of the rough surface is

(h?) = BI6SX(1 + ¥k 2] = % . 35)
13

and the mean-square slope is
24,2 2,4 2 2
oin B[% o R kG 415K 4 Ilkc‘):l

«? 122 + k‘2)3
=~ B(ln k. /x = 11/12), (3.65)

and the slope probability-density function is assumed to te
Gaussian. Two values of B are assumed in this work. The
corresponding values for (h?) and ¢,2 and for kg, with 8 =1
for the two-scale model, are given below:

case (a) case (b)
B = 0.0046 B =0.0092
(h?) = 0.853 X 10° cm? (h?) = 0.171 X 106 cm?

0,2 = 0.0498 0,2 =0.0997
kg =0179cm™! kg =0.253cm™! 3.7)

In Fig. 3 the normalized spectral-density function
W(k/x)/ W, is plotted as a function of v,,/x = k/x (W =
W mos at Uy, = «). The corresponding surface-height correla.
tion coefficient R(a7) is plotted in Fig. 4 as a function of th:
dimensionless quantity k7. The above parameters approxi-
mate the range of conditions prevailing during the measure-
ments conducted by Daley et al.!$ [wind speed 24 m/sec (v,
= (.05); average wave height 650 cm ((h2) = 1.05 X 10%cn)|.
In Figs. 5-7, the like- and cross-polarized backscatter cro:s
sections (A/ = = ((a"Y), (s!M), and (o*¥) = (o"") uea
plotted as functions of the angle of incidence f using tis
unified and two-scale approaches [Eqs. (2.32) and (2.33)] for
case (a). The corresponding quantities are plotted in Fivu-.
8-10 for case (b). The most significant differences betwe..n
the results based on the unified and two-scale approachcs
occur near normal incidence for the cross-polarized back-

0.82

WiK) /7 wix)

K
x

Fig. 3. The normalized surface-height spectral-density func
Wik) /W),

o
<
%00 V.00 2.00 300 v.eo s 00 6.cc .
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Fig. 4. The surface-height correlation coefficient R(xr).
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Fig. 5. The backscatter sc. *~-ing cross section (aVV) for case (a).
4, Unified full-wave solution, .., two-scale model.

scatter cross sections, In Figs. 11 and 12 the like- to cross-
polarized backscatter cross-section ratio (ofH)/(gVH) is
plotted for cases (a) and (b), respectively, using both analyti-
cal approaches. In these figures the symbol x corresponds

@)
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Fig.6. The backscatter scattering cross section (/) for case (a).
4, Unified full-wave solution; O, two-scale model.
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Fig. 7. The backscatter scattering cross section (o¥V) = (¢V¥) for
case (a). &, Unified full-wave solution; O, two-scale model.




“!

E. Bahar and M. A. Fitzwater

30.00

IS.(Oo;)vv>

€0.00  75.00  90.00

P00
8

&

8

8

b2

8

os
-15.00

-30.00
i

"‘5~00

-60.00

-7%.00

H

]

-90.00

Fig. 8. The backscatter scattering cross section {¢¥V) for case (b).
4, Unified full-wave solution; O, two-scale model.
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Fig. 10. The backscatter scattering cross section (oY) = (aVH) fo:
case (b). 4, Unified full-wave solution; Q, two-scale model.

to the measurement taken by Daley et al. (For large winc
speeds few data are given for the like- and cross-polarized
cross sections near normal incidence at X band.) To under
stand the significant difference between the solutions based
on the unified and two-scale approaches for the cross-polar-
ized backscatter cross section, it is necessary to note that for
backscatter at the specular points, 77 = T" are identity ma-
trices, and for |x}? « 1 the contribution to (o™)r [Eq.
(2.33)) from the large-scale surface h; reduces to?

(P, = —— |XTR,3p. P.Q= V.H, (38)

(' -a,)

in which dyy = éyv = 0, 8y = évy = L and Ry and Ry are the
Fresnel reflection coefficients at normal incidence for verti-
cally and horizontally polarized waves. Thus, as is expect-
ed, physical-optics theory predicts no cross polarization for
backscatter by the large-scale surface h;. However, the local
scattering matrix D9 becomes diagonal only at the specular
point, and the contributions to (¢*¥) come from the neigh-
borhood of the specular points. Physical-optics techniques
fail to predict backscatter cross-polarized cross sections
since the integrand APQ(A/, A', A) [Egs. (2.18)] (P » Q)
vanishes at the stationary phase points where A = A,. For
the like-polarized case, or for bistatic scattering in general
when APQ(#/, &, A,) # 0, the physical-optics solutions are
suitable for the large-scale filtered surface. Furthermore,
for scattering at grazing angles (-=#‘- A ~ 0 and A/ . A — 0)
except forward scattering in the specular direction, the coef-
ficient AP(A/, A, #) has & pole near the stationary phase
points, and the physical-optics solution (¢?); [Eq. (2.33)] is
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not suitable. In this case the full-wave (complete spectral)
approach can be used to account for the pole in the vicinity
of the stationary phase points (A — A,).®

There are other reasons for the discrepancies between the
solutions based on the unified and the two-scale model. To
facilitate spectral splitting of the surface, it is assumed that
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plh,, h) = pthph). However, in general, statistical inde-
pendence cannot be assumed between the large- and small.
scale surfaces. Using the two-scale model, it is also assumed
that # = A, and that p(#) = p(A,). Thus the slopes of the
small-scale surface are totally ignored when the two-scale
model is used. In order to derive the expression to; ~catter-
ing by the large-scale surface, it is assumed that the majo:
contributions to the scattered fields come from the vicinity
of specular points and that APQ(A/, A, ) — APQ(A/, i, 4,)
However, for backscatter near grazing angles, specular
points are practically nonexistent unless the surface is very
rough. Thus, for the like- and cross-polarized backscatte:
cross section, the discrepancies between the two solutions
increase as the angle of incidence 6y approaches 90°.

Finally, with reference to Figs. 11 and 12, it is seen from
the published experimental results marked x that for 8, =
15°, (e!H)/(a"#) =~ 20 dB. Using the unified approach,
this ratio is 21.5 dB for case (a) and 18 dB for case (b).
However, using the two-scale model, (o¥)/(sVH) = 36 dB
for case (a) and 34 dB for case (b). Recently designed dual-
polarized receivers with significantly improved performance
make it more feasible to use both like- and cross-polurized
data for the purposes of remote sensing. To this end, addi-
tional measurements are needed to make more extensive
comparisons between theory and experiment.

4. CONCLUDING REMARKS

In this paper the solutions for the backscatter like- and
cross-polarized cross sections based on the unified full-wave
solutions have been compared with the solution based on the
two-scale model. For the two-scale model the wave number
kg where spectral splitting is assumed to occur is chosen such
that 3 = 4k>(h,%) = 1.7 It is also assumed that the two
surfaces h; and h, are statistically independent and that the
slope of the small-scale surface was neglected (71 ~ 7). Itis
shown that for the like-polarized case, the difference be-
tween the two solutions increases as 8, — =x/2. However,
except for near-grazing angles, the two solutions for the like-
polarized cross sections are separated by about 3 dB. For
the cross-polarized case, the difference between the two so-
lutions is most significant near normal incidence 6, < 40°.
For normal incidence (6, = 0), the two-scale solution for the
cross-polarized cross section is about 15 dB below the uni-
fied solution. As the angle of incidence increases, the differ-
ence decreases and the two solutions cross over at i, ~ 65°.
As in the case of the like-polarized cross sections, the differ-
ence between the two solutions increases as , — x/2. The
large discrepancy near normal incidence occurs because ele-
ments of the rough surface that are oriented specularly do
not depolarize the backscattered wave. The depolarization
comes from the neighborhood of these specular points, and
even the filtere | large-scale surface depolarizes the incident
waves.?! However, the physical-optics contribution to cross
polarization is zero. The discrepancy near grazing angles
occurs because as 8y — x/2, for backscatter there are practi-
cally no specular points on the surface and again the physi-
cal-optics approximations are invalid. The solutions based
on the unified approach are in agreement with experimental
data for near-normal incidence. Finally, it should be re-
called that the assumption p(f, /') = p(R)é(A, A’) is valid
only if most of the scattering comes from the neighborhood
of the stationary phase points # = #,. For near-grazing
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angles this assumption is not valid, since there are practical-
Iy no stationary phase points as 6o — x/2. Thus, for near-
grazing angles, the solution can be improved provided that it
is pussible to determine the slope joint probability-density
function p(#, i) = p()p(”]A) and the joint probability that
two points on the rough surface are both illuminated and
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SCATTERING AND DEPOLARIZATION BY RANDOM ROUGH SURFACES

UNIFIED FULL WAVE APPROACH--AN OVERVIEW
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Abstract

In this paper the principal elements of the full wave approach to problems
of scattering and depolarization by nonuniform stratified media are summarized.
Scattering by random rough surfaces is considered in detail and the full wave
solutions are compared with earlier solutions based on physical optics and
perturbation theories. It is shown that since the full wave approach accounts
for both specular point scattering as well as Bragg scattering in a self-
consistent manner, it resolves the discrepancies between the physical optics
and perturbation solutions and bridges the wide gap between them. Thus, on
applying the full wave approach to scattering by composite random rough

surfaces it is not necessary to adapt a two-scale model of the rough surface.

The full wave solutions satisfy duality, reciprocity and realizability
relations in electromagnetic theory and the results are imvariant to
coordinate transformations. The full wave approach also accounts for coupling
between the radiation fields, the lateral waves and the surface waves that
constitute the complete expansions of the fields and it can be applied

directly to problems of scattering at near grazing angles.
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1. Introduction and Overview

Rigorous closed form solutions for the reflection and transmission of
electromagnetic waves have been derived for multilayered dielectric
structures of uniform thickness (Wait 1962). (See Fig. 1). However, in a
large variety of pertinent radio wave propagation problems the thicknesses
of the layers are nonunifor? and the height of the interface between two
adjacent dielectric layers is a random function. (See Fig. 2). 1In these
cases the incident waves are depolarized and scattered into both propagating
and evanescent waves. Furthermore, an incident plane wave may be coupled
into guided surface waves and lateral waves of the structure.

Often the problem that is actually solved is a highly idealized version
of the original problem and concepts such as "effective dielectric coef-
ficient” and "effective surface impedance” are introduced in order to make
the solution of the original problem more tractable. However, the validity
of such approximations is very limited and often questionable and they do
not necessarily satisfy reciprocity (Schlak and Wait 1967, 1968).

Using a full wave approach it is possible to analyze more realistic
models of the original physical structure without introducing simplifying
approximations that cannot be justified a priori (Bahar 1973c,d).

The principal properties of the full wave solution and its relationships
to earlier solutions of scattering problems are also summarized here (Bahar
1981a). This summary is also presented schematically in Figs. 3 and 4.

The reader of this manuscript who is not familiar with the full wave approach
will find this summary useful even though the details of the full wave method

bave been reported earlier (Bahar. 1973c,d, 1974, 1981a).

— e i
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A. Principal Elements of the Full Wave Approach (See Fig. 3)
(a) The electromagnetic fields are expressed in terms of complete
expansions of vertically and horizontally polarized waves. These include

the radiation fields, the lateral waves and the surface waves (Bahar 1973c,d,

1974,

{b) Exact boundary conditions are imposed at the irregular surface.

{c) Using the orthogonal properties of the basis functions appearing
in the complete expansions of the fields, Maxwell's equations are integrated
over the transverse plane (y,z) (Bahar 1973c¢,d, 1974). Green's theorems
are used to avold term-by-term differentiation of the field expansious.

(d) Maxwell's equations for the electromagnetic fields are converted
into coupled first order ordinary differential equations for the forward
and backward traveling wave amplitudes which are only functions of the
variable x (Bahar 1973c¢,d, 1974). (In view of the integration in the trans-
verse plane (y,z) the telegraphists' equations are only functions of x).

The coupled equations for the wave amplitudes are referred to the generalized
telegraphists’ equations (Bahar 198la).

(e) A variable coordinate system that conforms with the local features
of the irregular boundary is introduced and the resulting solutions for the
scattered fields are showm to be invariant to coordinate transformations.

(f) Closed form second order- iterative solutions for the radiation
fields are obtained from the telegraphists' equations on neglecting multiple
scattering from the rough surface. These second order iterative solutions
account for wave scattering in arbitrary directions.

(g8) The full wave solutions are compared with earlier geometric optics
physical optics and perturbation solutions. The suitability of the two-scale

model is investigated.




B. Principal Properties of the Full Wave Approach (See Fig. 4)

(a) The full wave solutions are shown to satisfy the reciprocity realizability
and duality relationships in electromagnetic theory.

(b) The full wave approach not only accounts for scattering and
depolarization of the radiation fields but also accounts for coupling between
the surface waves, the lateral waves and the radiation fields.

{c) The versatility of the full wave approach is demonstrated by determining
its relationship to earlier solutions. Thus, on using a stationary phase
approach to evaluate the integrals for the scattered fields, the full wave
approach is shown to reduce to the geometric optics solutions (Bahar, 1981a).

(d) 1If the vector n normal to the rough surface is replaced by its value
at the specular points Es’ the full wave expressions for the scattered fields
are shown to reduce to the Physical Optics solutions. Thus the Physical
Optics approach is valid only if the contributions to the scattered fields
come primarily from the neighborhood of specular points on the rough
surface.

(e) 1In a survey of the technical literature one finds several different
forms of Physical Optics solutions. The discrepancies between the different
Physical Optics solutions and the appearance of the so-called "edge effect'
have been shown to be the result of premature truncation of the closed surface
integrals.

(f) 1If one assumes that the scale and the slopes of the rough surface
are small, it is shown that the full wave solutions reduce to the perturbation
solutions.

(g) The Physical Optics solutions for the backscattered fields become
singular for near grazing angles. Thus in this case, even if the rough

surface satisfles the radii of curvature criteria (assoclated with the
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Kirchhoff approximations of the surface fields), the Physical Optics solutions
cannot be used and the far fields cannot be represented by plane waves at
grazing angles. This is because at near grazing angles, the principal
contributions to the backscattered fields do not come fromw specular points of
the rough surface. (In this case specular points, if they existed, would be
on vertical portions of the rough surface). It is shown that the full wave
solutions for the backscattered fields remain valid as one approaches grazing
angles (Bahar 1982).

(h) The full wave solutions have been compared with the hybrid perturbed-

physical optics solutions (Bahar and Barrick 1983, Bahar et al 1983) based

on a two-scale model of the rough surface. It is shown that while the solutions

based on the perturbed-physical optics approach critically depend upon the
wavenumber kd where spectral splitting is assumed to occur, the solutions
based on the full wave approach are relatively imsensitive to the choice of kd
the like polarized case (Brown 1978). However, for the cross polarized case,
the results based on the two-scale model are incorrect (particularly for back-
scatter for near normal incidence). This is because the physical optics

contribution to backscatter from the large scale surface is assumed to be zero.

2. Formulation of the Problem
For the convenience of the reader the principal s;eps in the derivation
of the full wave approach are summarized in this section. It is assumed that
both electric and magnetic sources (J,p and ﬁ,pm) are present in any of the
m+l layers of the structure.A suppressed exp{iwt) time dependence is assumed
in this work. The it! layer of the structure is characterized by the complex
electromagnetic parameters €y and uy and the interface between medium i and

1+1 is given by the surface (See Fig. 2).

for
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= (1)
y=hin

Maxwell's eguations for the transverse components of the electric and

magnetic fields, il‘ and }_IT respectively are (Bahar 1973c,d).

)4 -
- < Aoy x a) - ime V¥ Gy x 2,)
+}-er;x+zu1—€VTJx )
and air _ _
--_3;_.: m(axxr"l‘) iwu Tl‘ “(a, XE\I)
+a xJ VTMX (3)

in which the operator VT is given by

V. =3 2+3 =2 ' ()

and the transverse vectors are
"I - ayAy + azAz, A=EHJorM (5)
The following field transform pairs provide the basis for the complete

expansion of the transverse electric and magnetic fields into vertically (V)

and horizontally (H) polarized waves:

ET(x.y,z) - X [E (x,v w)e + En(x v,v)e Jdw, (6)
where

£ (x,v,w) = [o EL(,y,2)+ (B x 3 )dydz, P=V or H, 12D

B (x,y,2) = ] L [Hv(x.V.w)iY. + HB(:.V.V)@dv. (8)
where

B (x,v,w) = [H(x,y,2) (B x ep)dydz, P=V or B, 9

The basis functions for the vertically polarized waves are

M)o(v 2) (10)

:;-zm;(vy)-

u+w
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and
v _ -V
by = a ¥ (v,y)¢(vw,2) (11)
and the complementary basis functions for the vertically polarized waves
are -
a iw
- vVV,- v W (v,
-G ) + S ‘“”’Mvz) a2)
y v+
and
=T - VvV
By = 8NV (v,3)4(w,2). (13)

For the horizontally polarized waves, the basis functions and the complementary

basis functions are respectively,

& - e a4
a_iw H
R - sty + 25 B 0w, as)
J u +w y
and
o = Ve . (16)
a_iw
By = YN (A ¥v,y) - 5— L—*l’)«»c(v.z) : an
u + W

in which NP are normalization coefficlents, ZP and YP are the wave ilmpedance and

_admittance and
$(w,z) = exp(-iwz) and ¢ (w,z) = (1/21)exp(iwz) (18)

The scalar basis functions are
Dh
[ exp(ivoy) + RPO exp(-ivoy).

for medium O,

rTD

exp| i
"gng(v.y) - 4q=1 I’DH ( q'l “pla q’l'q)

x [exp(ivry) + Rf,’: exp (-1v ry)],

| for medium r = 1,2,3,...,nm, a9
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et Tgmlzg ner )
I exp {4021V g 1 -qPa-q,mtiq
q=1 1‘
Pu—q

 Epa¥h(v.3) = 1

x [exp(-ivry) + RPU: exp(ivry) ,. for medium r=0,1,2,...,m~1
{ exp(-—ivmy) + % exp(ivmy), for medium m, (20)
( cxp[-iv"(y-h l)]; for medium O,

n Dh n
TDH exp (- 1v O.l)[e'.xp(:lvly)’rRPl exp(-iv;y)],
for medium 1,

Pn,.. Pn r TD
by (7)< Vb, 1)) L 2 exp(-4v} by ;) nz—r%ﬁl
n
x exp(iq_z g-1,9 q-l q)[exP(ivry) + RP ‘ (—ivry)], |
for medium r=2,3;...,m, - {21)
where
b, )1 = Mz v 5| @2)
0 |vev

The scalar functions for vertically and horizontally polarized waves
ﬂlv(v,y) and llln(v,y), are given by (19), (20), and (21), on replacing the
letter P in all the expressions by V and H respectively. The reflection
coefficient at the 1,1 + 1 interface for waves incident from above is
‘_"21 and Rgi is the reflection coefficient at the 1 - 1, 1 interface for:'

waves incident from below (See Fig. 1). Thus, for P = V or H,

P
®.. .+
x‘;m-o,'xgi- BLL R““ , 1=0,1,...,m -1,
Q+ R1+1.1"p1+1)
and
P vn
(R, ,  +R;, )
A iy, (23)

P UR
A+ Re) Fpyy)
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v H .
where Ri, 141 and Ri, el are the two medium Fresnel reflection coefficients

for vertically and horizontally polarized waves respectively, and

DH _ D _ Dh _ D

Rpy = Rpy exp(-12viH,), Ry, = Ry, exp(2vhy 4 40),

R U Uh .U

Rps = Rpy &@(-i2viH)), Ry = Rpy exp(=i2vih, ) ). (24)
The transmission coefficients are

D v U
Tgi'1+xri’ Tpg =1+ Rpy s

H H Un
T§1-1+RP1’ Tpy =

UH
1+ RP " (25)
and Nr are normalization coefficients. The symbol Zv denotes summation
over the entire wavenumber spectrum v. The generalized Fourier transform

consists of two infinite integfals (continuous parts of the wavenumber

spectrum) which are associated with the radiation and the lateral wave terms
1 ~ and a finite set of surface wave terms (discrete part of the wavenumber
spectrum). The infinite integrals in the v plane are associated with

branch cut integrals Im(vo) = 0 and Im(vm) «0 in the complex v plane, while
J the surface wave terms are associated with the re;:ldues of the poles at

1/Rgo = O(or llkgm = 0). The modal equation which determines the surface

ﬂ wave parameters v (In(v) £ 0} is given by
h Rgi Rgi gxp(-LZviHi)- 0, vy E(ki- u2_ wz).l_‘, vi-l.i-vi-l—vi (26)
for P equals Vor Hand 1 = 1,2,3,...,0orm - i.
The irregular interfaces y = h are assumed here to be continuous

1,141
functions of x only. Thus the exact boundary conditions at y = hi 41 " h(x)
’

can be expressed exclusively in terms of the transverse field components
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et +
1 = - dh h
Tuc ' Gpxa) - - E gl o [Ez] -=0 27
i B
o - Th b
vaf(axxnr)--uyg—:_.[uz}_-o. (28)
Jn” b

The complete field expansions are substituted into Maxwell's equations
for the transverse field components and use is made of the orthogonality
relationship, Green's theorem, and the exact boundary conditions, to obtain
the differential equations for the field transforms I'IP and HP. These may be
expressed 1n terms of ‘the forward and backward wave amplitudes aP and bP,
respectively, as follows:

V, |upper sign
Eeaf+tPand B s 307, 0=
H, |lower sign (29)

Thus Maxwell's equations are converted into the following generalized
telegraphists' equations for P=V or H (Bahar, 1973c,d)

P

dat . P _ BA Q, BB Q. , P
-5 iua g £,I(SPQa +SPQb)dw' A, (30)
and
P
L P AL Q Qv 4 oP
AR LI NGl +S';3b)dw +8F . (31)

" Explicit closed form expressions for the reflection and the transmission
scattering coefficients have been derived (Babar 1973d).
Excitations of vertically and horizontally polarized waves (with
respect to the reference (x,z) plane) are considered. The terms AP and

B" sppearing in (30) end (31) account for the electric and magnetic sources

J,p and i,p..
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The first-order iterative solutions for the wave amplitudes aP and
bP are obtained by neglecting the transmission and reflection scattering
coefficients in (30) and (31). These first-order solutions are substituted
on the right side of (30) and (31), and the resulting equations are solved
to obtain the second-order iterative solution for the wave amplitudes.
These second-order iterative solutions are used in the complete expansions
for the electromagnetic fields to obtain the desired iterative solutions
for the scattered radiation fields through the use of the steepest descent
method. Thus the first-order solutioms to (3O)Iand (31) are the unperturbed
vertically and horizontally polarized fields excited by the vertical electric
and magnetic dipoles respectively. The secénd-order {terative solutions
which account for depolarization and scattering in arbitrary directions are
suitable when multiple scattering can be ignored. Since the full wave
expressions for the fields (6), (8) are valid for all points in space, they
can also be used to determine the surface fields. The above iterative
procedure can be extended to account for multiple scattering. In Section 3
we consider the specific case of scattering and depolarization by a random

rough interface between two semi-infinite media.

- - 3. Scattering by Rough Surfaces—
Unified and Two-Scale Forrmulation

The full wave solution for the radiation fields scattered by two
dimensionally rough surfaces f(x,z) = y - h(x,z) = 0 (see Fig.5) is

expressed as follows in matrix notation

cf- GOJ p@f,al)exp[17-77aa ¢! = s6l (32)

Aiv
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in which Ei and Ef are unit vectors in the directions of the incident

and scattered fields and the vector v is

~  ~f - - - -
ve={(n-n )ko vxax+ vyay+ v.a, (33)
where ko- mJuoeo is the free space wavenumber of the electromagnetic wave.

The integration is over Aiv the illuminated and visible portions of the rough

surface and
L

I‘z x _
I dA = ] I dxdz/n'ay = Ay’ J'dA = J-dA (34)
.Lz “x Aiv
where n is the unit vector normal to the surface £f(x,2) = 0
-ha+a-ha
z

- dh 3h
n = Vf/]ve] --———Y—T" 22 5 h = h = (35)
(1+hi + hi) x 9x’ 'z 9z

and T is the position vector to a point on the rough surface. The
elements of the 2 x 1 ;olumn matrix Gi are the incident vertically and
horizontally polarized complex wave amplitudes GVi and GHi at the origin
with ;ix ;ydefined as the vector normal to the plane of incidence.
Similarly Gf is a 2 x 1 column matrix whose elements are the vertically
and horizontally polarized complex wave amplitudes GVf and GHf (with

;fx ;y defined as the vector normal to the scatter plane) at the point

given by the position vector (see Fig. 5)

i ey e R (36)
Thus
. cVi EVi HVi
¢ - GHi] - {Eﬂi =n S (37a)
and ch Vi Vi
¢f-|. ] - [ =7
bﬂf Eﬂf ° Hﬂf (37b)




where no = vﬁo co is the free space wave lmpedance. The coefficient Go

is given by
2 f f
G° - ko exp[vikot ]/ZHikor (38)
and a suppressed exp{iwt) time dependence is assumed in this work. The

like and cross polarized local scattering matrix D(Ef,ﬁl)

pV p'H

piV piH

@il - - (-atemrf F ot (39)

is derived by (a) using the 2 x 2 matrix ri(E‘“,Ei) to transform the

incident vertically and horizontally polarized wave from its representation
in the fixed reference coordinate system (Ex,sy,sz) to its representation
with respect to the local coordinate system (El,ﬁz = 5,53) (the unit

vector ;1n is the representation of the vector ;i in the local coordinate
system (see Fig. 6)), (b) using the 2x2 local scattering matrix (—Ei-ﬁ)-
F(Efn,ain)dA to account for like and cross polarized scattering by an
element dA of the rough surface (Efn is the representation of the vector
;f in the local coordinate system) and finally (c) using the 2 x 2 matrix
Tf(ﬁf,ﬁf“) to transform the scattered vertically and horizontally polarized
wave from its representation in the local coordinate system to its
representation in the reference coordinate system. The full wave solutions
(32) are invariant to coordinate transformations and they satisfy the
duality and reciprocity relationships in electromagnetic theory. In (32)
multiple scattering by the rough surface 1s neglected. Explicit expressions

for the local scattering matrix D(Ef,ai) (39) are found in the published

literature (Bahar 198la).
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The full wave solution for the scattered field can be applied to
random rough surfaces (Bahar 1981b). Thus the scattering cross sections per
unit projected area A for an incident wave with polarization Q=V or H and

scattered wave with polarization P=V or H are given by

2
k
<0PQ> = <—$

pPQ (2

rz(af,alla)exp(i;.(;_;'))9"‘1"—;@£> (40)
Yy

n-a
in which the symbol <+> denotes the statistical average over the heights
h,h' and the slopes E,E'. The probability density functions for the random
slopes n,n' and random heights h,h' are assumed to be independent. In
addition it is assumed that the slopes are more strongly correlated than
the heights (p(n,n') + p(n)8(n'-n)). 1In this work the rough surface is
assumed to be isotropic (independent of direction) and its characteristics

are independent of position (;). Thus the rough surface height characteristic
function

X(vyh) = <exp(ivyh)> = fexp(ivyh)p(h)dh (41)
is independent of position while the rough surface height joint characteristic
function

v_h-v_h') = <exp|iv (h-h')]>
Xp (vyh-vgh™) pLivy (h-h")]
= Jexp[:ivy(h—h')]p(h,h')dhdh' (42)

is only a function of distance T measured in the (x,z) reference plane

Tym exDE 4 (m2DE, [Tl =1 [eexD 4 2T )
In (40) Pz(ﬁﬁﬂilﬁ) is the probability that a point on the rough surface is
both illuminated (Ei) and visible (Ef) given the value of the slope (n)

at that point (Sancer, 1968).

Since the full wave solution (40) accounts for both specular point

(physical optics) scattering as well as diffuse scattering in a self-consistent

»
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manner there is no need to adopt an artificial two-scale model. To use the
two-scale model, it is assumed that the surface hz(x,z) consisting of the
large scale components of the surface height spectral density function
w(vx,vz) is independent of the surface hs(x,z) consisting of the small
scale components of the surface height spectral density function. The
surface height spectral density function is the two dimensional Fourier

transform of the rough surface height autocorrelation function <hh'>, Thus

w(vx’vz) 1 3 - =
A— T —— * -
73 4n2 [ <hh'">exp (iv rd)dxd dzd
=1 '
7r J <hh >J°(kr)rd1 (44a)
Q

where J° is the Bessel function of order zero and the spatial wavenumber

k is
2, 2

k=v = Jv+v (44b)
xz X 'z

in which use has been made of the fact that <hh'> is only a function of T.

Similarly, o
W(vx,vz) -
M = ———— - .
<hh'> Z exp(-iv rd)dvx dvz
m—m
- 2n I—l’%‘l 3 Gerdkdic = R(r)<h’> (45)
o

in which IR(T)I < 1 is the normalized correlation coefficient and <h2> is

the mean square height o

2 . (k)
<h®> = <hh'> ZnI 7 kdk (46)

0
Thus using the two-scale model, it is assumed that the large scale surface

hz is associated with the surface height spectral density function
W(k)U(kd-k) and the small scale surface hs is associated with the surface

height spectral density function H(k)U(k—kd) in which U(+) is the unit

b e
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step function and kd is some arbitrary value of k where spectral splitting is

assumed to occur (Brown 1978). Brown chooses kd such that the parameter

B = hki<h§> = 0.1 (17)
satisfies the perturbation condition for the small scale surface. However,
he shows that the computed value of the scattering cross sections critically
depends on the choice of 8 and therefore the specified value of kd. Behar
and Barrick (1983) considered the two-scale model using the full wave approach.

It is shown that if k. is chosen such that deep phase modulation occurs it

d
is necessary to choose B = 1. For a range of values of kd corresponding to B
between 1 and 2 it is shown (Bahar et al. 1983) that the values of the
scattering cross sections do not depend on kd

For problems of scattering by random rough surfaces the dimensions of
the projected area A_ = 4L L are such that L_ >> T_and L_ >> 1_ (where

y x "z x c z c

R(Tc) = exp(-1) and 7, is the correlation length). For distances T >> T ;
x2 g Ix]z since <hh'> + <h2>. Thus assuming statistical independence between

the surface hy and h (p(hl,hs) = p(hl)p(hs)) the characteristic and the

Joint characteristic functions of the total surface are expressed as
x = X" xS 12 0 ER), o ), o = 0EE) X = xly,) (48a)
X, = Xo X5 = (x -IXIDICIZ0E -1 1 + Ix* °12 (L8v)

in which the superscripts £ and s denote quantities associated with the

Jarge and small scale surfaces, respectively. Using the two-scale model, it

is mlso assumed that the slopes for the small scale (perturbation) surface

are small such that slope probability density function for the total surface

is equal to the slope probability function for the large scale surface

p(n) = P('-’;.)(;‘z =V, /(Vf) end £, =y - h;). Thus the unified (U) and two-

scale (T) expressions for the scattering cross sections (40) are respectively,
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Fo, = jAPQ(af,ai,a)p(a)aa[§<af,ai)+ ;llvyxjexp(iv*x+ivzz>dx dzlz]<h9a)
y

where
o -iy 2 2 .
Q(n ,n7) _'VYI(X2_IXI Jexp(iv rd)dxd dz, (L9v)
PQ 2
< kD
A E R =L | b, (49¢)
v n's
Yy Yy
p(n)dn = p(hx,hz)dhx dn, (k9a)
and ~
- i - - -i £ 2
<GPQ>T = Ixs|2 APQ(nf,nl,n )[éi(nf,n1)+ xllv X expl{iv_x+iv_z)dx dz' ]
< y Y X 2 .
. JAPQ<5f,ai,a)a-gy ¢ (77,5, 5)p(5)as
= Ixs[2<ch>1 + <0PQ>s (50a)
vhere
o (F.7h) - v;jj(xf-y,‘:‘,ex;t;;-;d)axd ez, (s0%)
Q (et ;) = v oL exp (5o, Ddx, . dz (50¢)
g Dol of AT e e 2a’ e ‘g
In (Lob), (50t) and (SGc) the integration limits are (-=,=) since

PQ,-F -1 -
L,L > 1 and A Q(n{,nl,n) is defined in (h9c).
x’"z c
To derive the first term in (50a), the slope dependent function
PQ,-f -i -y . . ) :
A"Yn ,n ,n) is replaced by its velue &t the specular point where

o = V/vin = |¥] = ven, (51)

n-+n
For surface height probability density functions that are Gaussian
| 2Y) 2. 2
Ix I = exp(-vy(h >) << 1 (52)

2 2,2
<h£h£>)=exp(vy<p£hi>)|x < (53)

L 2.2 2
= - >
X, exp( vy<h2 + vy

Thus for v:<h2> >> 1 it can be shown that the two dimensional Fourier
transform (50b) is given
Q,(&7,a1) = kn® p(a) (54)
5
in vhich p(is) is the slope probability density function at the stationary

phase points {Bahar 1981c)




e ]
p(5) = pln,n ) = —L5 exp -~
2no 20" v J
(% + n°
X 2
= exp |- 2
2ﬂ0n 20n B (55)

S

ip which the value of the slope at the specular point is

(hi + hi)ﬁ = tan " vxz/v§ , ES'Ey = cosy, (56a)
s

and the mean square slope oi is

o

o =7 J Wik ak (56v)

(o}

Thus the first term in (50a) is given by

IX5|2 <UPQ>£- |xs|2APQ(Ef,Ei,Es)[hnzp(ﬁs) + Aylvyxllgsincz(vxLx)sincz(szzi]
(57)
in which sinca = sin{a)/a and Ay= thLZ is the projected area of the rough
surfece on the x,z plane. In (57) <OPQ>2 is precisely the physicel optics
solution for scattering by the large scale (filtered surface). Thus the
coefficient Ixsl < 1 accounts for the degradation of the physical optics
(specular point) contribution due to the small scale surface.

To derive the second term in (50), it is assumed that over & correlation
length of the small scale surface, the large scale surface is approximately
flat snd that the small scale (perturbed) surface height is measured normal
to the large scale surface. Thus,

+ ven(h-h') (58)

v (r-r') = v'(rz—ri) + v'(h—h')ay= VeTg

in which the distance ;ld is measured along the large scale surface in the

local coordinate system (n.,n_= n,n3)

- - e T B S ¥
rld = xldnl + zldn3’ Irzdl = Tf. o (x’-d + zld) (59)
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Thus in the expression for <0PQ>S, the integretion is with respect to distances
measured along the large scale surface and not the éeference surface. This is
in agreement with the expressions obtained intuitively by Wright and
Valenzuels "mostly based on physical considerations” (Wright, 1968;
Valenzuela, 1968). Thus <0PQ>S can be regarded as an average of the
scattered power from patches of slightly rough surfaces that ride the

large scale surface. Brown's (1978) solutions which are based on & combin-
ation of Burrows' perturbation theory {(Burrows 1967) and physical optics
(Beckmann 1963) are in agreement with the full wave expressions for <0PQ>S
only in the 1imit of small scale slopes since in his work hs is measured
normal to the reference plane. However, in Burrows' perturbation theory

the small scale surface height hs is measured normal to the large scale
surface hy.

The two-dimensional Fourier transform (L9b)can be expressed as

Q7 = 22 [ Gyl =[x 1203, e (60)

o
since the surface height correlation function <hh'> is only a function of

T=T4 = ];d]. The corresponding expression for the Fourier trensform

{50c) is dependent on the slope. Thus
(-]

-f -1 - 2 -.- —.=y|2
Qs(n JAt,h) = 21wy J (XZ(V’“)‘IXS(V'“” )Jo(vszTR)‘tldTE (61)
(*]
in which
vergs © v'(xldnl+ zldn3) = Vg Xpa * Ve 2ga (62a)
=.c = _r.2 2 %
Vo = vyl v Vezt T [vxl * vzlj (62v)

and Vet Vi and vyl are the components of v in the local coordinate system
(51,52 = 5,53). Thus the scattering cross sections can be expressed as

follows for the unified and two-scale models
P —f =i =y yoy.mrarf =i 2.2 2
<q Q>U=IAPQ(n 0,5 )p(R)4RLQE, R )44, v x| "sine™(v, L )sine®(v,L )] (63)
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and
<°PQ> = IX |2 PQ(-f’-l’- )[Qz(n »0 )*A IV X l sinc (v L )slnc (v L, )]

Is
o[WPRERRIE, o (5 Dp(E)e (64)
To facilitate the computations in (64) in which Qs is a function of n,
for a given v and R(1), & set of values of Qs/v§ are first computed
and stored as a function of
- - 2 2%
‘a= (-vh+v- + hS 4+
von= (-voh v, v,h )/(1 4+ h_ + h) (65)
The integration with respect to dm = dh dh is'performed using
values of Qs interpolated from the stored set. For Gaussian surface

height probability density functions (52) and (53)
-f i~ 2 2 .2 2 .2
Qs(n , ,n)—2’nvy Jexp(-vy2<hs>)[}xp[vyl<hs>R(ﬁgl-%]Jo(vlerk)rldrz
_ .2
= o(af,qt v n)8<<ln vy v ]X (ve n»2W(V (66)

Thus for E*Ey and B << 1 the last term in (64) <o Q>s reduces to the
perturbation solution (Bahar 1981c)

2
W(vxz) (67)

<cPQ>S -+ <oPQ> = Tk v2]x (v Y- a)r(at,5t)

Note that (64) reduces to (63) if wve set <h§> + 0 and (63)
reduces to (64) if we set <h§> + 0 and replace APQ(Bf,Ei,E) by
APQ(Er,Ei,Es). The term containing the product of the sinc functions
is the coherent scattered field. This term vanishes as lx(vy)|2 -+ 0.
For cases in which the physical optics solutions are valid the
corresponding geometrical optics expressions for <0PQ>£ afe obtained
by replacing n by Es in (32) and integrating over the area Aiv (using
the stationary phase method) before the expectations <*> are evaluated.
Thus in the neighborhood of & stationary phase point r = ;op’ where

+ =
vy vihx and v.* vyhz 0 (Barrick 1970, Bahar 1981b) it can be shown
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that
: - - dxdz - - iv-n 2 2
Jexp[1v°r] - - =Jexp[1v°rop]exp{ > [hxxo o + zzo p]}dx dzp
Y
expliver ] (emi) o
op ., Vi = 2 (-a -5 (68)

v.n vh_ b

s XXp 22p

in which the integral has been expressed in terms of the local coordinates

at the stationary plane point (xp,yp,zp) associated with the unit vectors

(n ,0,= n n ) and n and n,, the vectors in the tangent plane, are chosen

2 3’
such that the principal radii of curvature rxp= ll/hxxsl and rzp= |l/hzzs|
are measured along the il and 53 directions. As seen by an observer in

s S ces
the region y > h (x,z), the curvatures hxxp and hzzp are positive when
the surface is concave. They are negative when the surface is convex.
When hxxp or hzzp are negative, they are expressed “hxxp = 1/v’rxp and
Vszzp = i//rzp. Thus the geometric optics contribution to the normalized

cross section from N randomly located specular pcints per unit surface

area is
2
PQ, PQIE -f —i-
(™) op=Tr, T N P,(n",n"[n,) (69)
in which
R(6l) o
P(a5ah = | Y P (70)
S
i
0 RH(eop_‘)

and R (6" ) and R (6i ) are the Fresnel reflection coefficients at the
V “op H "op

specular points where the local angles of incidence and scatter are

-gi- ﬁs= al ﬁs- cos6l op" Note however, that the surface will depolarize

AY

the incident wave if the triple products (a &> Ey, and (b A Ey) do not
venish. (When(d n Ey) and (3 &7 Ey) vanish T end T' become identity
matrices).

The expectation of (rxprsz) in (64) (Barri¢k 1972, Barrick and
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Behar 1981) is
<rxprsz> = p(ﬁs)/(ﬁs-ay) R ;s.;y = Vy/(;'ﬁs) (71)
thus
w - f i FQ =f =i~
<0‘pQ>m = (_‘j p(ns) ['P FT ]_ er(n N Ins) (72)
n +8 n
s ¥y

in egreement with <0PQ>£. Thus for backscatter geometric optics theory

predicts no depolarization and for the like polarized case

PPt i ) e 2
<0 TEe B, = ey B, )R (R[5 R, (6,%0)| (73)

L. Concluding Remarks
The solutions for the backscatter like and cross polarized cross
sections based on the unified full wave solutions has been compared
with the solution based on the two-scale model. For the two-scale model

the wavenumber k. where spectral splitting is assumed to occur is chosen

d

such that B = hk§<h§> = 1, (Bahar et al. 1983). It is also assumed that

the two surfaces hz and hs are statistically independent, and the slope

of the small scale surface was neglected (n = 52). Except for near grazing
angles the two solutions for the like polarized cross sections are in

good agreement. For the cross polarized case, the difference between

the two solutions is most significant near normal incidence. The large
discrepancy near normal incidence is due to the fact that elements of

the rough surface that are oriented specularly do not depolarize the
backscattered wave. The depolarization comes from the neighborhood of
these specular points and even the filtered large scale surface depolarizes
the incident waves (Bahar and Fitzwater 1984). EHowever, the physical

optics contribution to cross polarization is zero.
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The discrepancy near grazing angles is due to the fact that for ..
e: + 7/2, there are practically no specular points on the surface and

again the physical optics approximations are imvalid.
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6. Figure Captions
Electric and magnetic sources distributed in the layers of a uniform
multilayered structure. ’

Electric and magnetic sources distributed in the layers of a nonuniform

multilayered structure.

Principal elements of the full wave approach.

Principal properties of full wave approach.

Planes of incidence and scatter with respect to the reference coordinate
system. Mean (reference plane for rough surface is y = o).

Local plenes of incidence and scatter and locel coordinaste system

al,5.,5.)
!2’3'
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ABSTRACT

The incoherent specific intensities for the waves scattered by a random distridbution of particles
vith rough surfaces are derived. Since large roughness sceles are considered, tbe diffuse scattering
contributions to the 1ike and cross polarized scattering cross sections are given by the full wave
solutions. The scattering matrix in the expression for the equation of transfer is given by & veighted
sum of the scattering matrix for the scooth particle and the diffuse contribution due to the rough
 surface of the particle. Illustrative examples are presented for the propagation of & circularly
polarized vave normally incid_.t upon a parallel layer of particles. Particles vith differest surface
height spectral density functions, roughness scales, complex permittivities and sizes a-e considered.
Both first order (single scatter) and @mltiple scatter solutions are provided and the results for
particles vith smooth and rough surfaces are coopared.
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1. IRTRODUCTIOR
Scatter&ng. of electromagnetic waves in medis consisting of rendom distributions of particles has
been investigated extensively using the equation of transfer {Chandrasekhar 1950, Ishimaru 1978). The
maln difficulty in setting up the equation of transfer lies in thr determination of the elements of the

LxL scattering matrix for the individual particles. Thus most of the vork bas been done for particles

of jdealized shapes such as spheres,

In this vork & method is presented for tbe modifjcation of the results derived for particles wvith
fdenlized shepes to account for the rendom surfsce roughness of the particles. To this end the full wveve
approach vas used to determine the rough surface contridbuticns to tr;e like end cross polarized
scettering cross sections _and tbe elements of the scattering matrix are given in terms of a veighted sum
of the Mie solutions and the diffuse scattering terms due to the particle surfece roughness (See Section
‘2). For convenience in this work a circularly polarized wave is assuwed to be normally incident upen a
parallel layer consisting of a random distridution of irregular shaped particles.

For the illustrstive examples presented ip Section 3 both first order (single scatter) and multiple
_scatter results are presented for swooth particles and for particles vitb rough surfaces. The matrix
charecteristic velue tecm;ique is used to account for multiple scettering (Ishimaru and Cheurg 1980).

2. FORMULATION OF THE PROBLEM

In this section the principal elements of the full wvave solutions for the like and cross polarized
differentiel scattering cross sections of nonspherical particles are sumzarized. The contributions of
these cross sections to the familiar eguation of transfer (Ishimaru 1978), in s medium consistiog of a
‘random distribution of nonspherical particles are also indicated expuc:tly..

The radius vector from the center to the irregular surface of the particle is given by (see Fig. 1)
4 e a (2.1)

T *=h e +h &
s o T 5 T

in which ;r is the unit vector in the direction of the radivs vector, ho is the redius of the

unverturbed sphere and bs is the random rough surfece height measured in the direction normal to the
surface of the unperturbed sphere. In this vork it is assumed that the mean square of the rough surface
height, <hf>. can be sufficiently large such tbhat standerd perturbation techniques are ot applicable

(Barrick 1970). Thus the rough surface paremeter, 8 = Jthi(hf), considered in this vork is in the range

'0 < B <20.

The full vave solutions for the normalized scattering cross sections <o“> per unit cross sectional

i
‘area (A’ - ’"’3’ are expressed as s veighted sum {Babar and Chakrabarii 1985)

<wolds = <q"’>l + <o“>. (2.2)

:'
i




the symbol <*> denotes the statistical average. In the sbove expression the first and second super-

scripts indicate the polarizations of the scattered and incident

vaves respectively. Thus {,) = 1

denotes Vertical polarization and 1,) = 2 denotes Horizontal polarization. The cross section <c“>‘ is

the modified cross secticn associated vith the unperturbed sphere.

', - ]2 oty

In (2.3) <oy,

(2.3)

. is the Mie solution {Ishimaru 1978), for the like and cross polarized cross sections

of the unperturbed sphere. For large spheres, koho > 20, (ko 1s the free space vavenumber), the most

significant parts of the solution are the specularly reflected veve and the shadov forming wave (Morse

and Feshback 1954). The coefficient of <0“>)ﬁe is the rough surface height characteristic function

X (v) = <exp 1vs >

in vbich v is tbe magnitude of the vector

- «f =4
v= ko(n -n")

(2.4)

(2.5)

'vhere Ef and Ei are unit vectors in the direction of the scattered and incident vave normels. The

coefficient ]xslz sccounts for the degradation of the reflected vave due to surface roughness. The

coefficient is minimuc for backscatter and approaches unity for forvard scettering.

The second term in (2.2) <di">' is the contribution to ~he total scattering cross section due to

the surfece roughness. It is expressed as (Bahar and Chakraberti 1985)
wils, « [ G5 510507 )9, 6T BpliNes (2.6)
4n which b 4s s unit vector normal to the surface of tbe scatterer,
X DiJ 2
$3=f <4 = 2 o . £ 1,
A7(n" ,n",0) « 3 II"",-)(','ﬂ P2(n .0 jn) (2.7)

o, = (73 )? r(x;ﬁ-;r)-lx‘w-:,)

end p(n) is the prodability density function for the slope of th

Di‘, is the scattering coefficient which depends on the polarizat

12)expl¥-7, ax 82, (2.8)

e surface of the scatterer. In (2.7),

ions and the directions of the vave

pormals for the incident and scattered vaves as vell as the complex electromagnetic parameters (¢,u) of

the scatterers. The term P,‘,(Sr,ﬁilﬁ) is the probability thet a point on the rough surface is both

&lluminated by the source and visidle to the observer given the
scatterer {Smith 1967, Sancer 1969). Since n = ;r' P2 e u(-ﬁ‘-;)

function.

i In {2.8) x;(v7°ir) is the rough surface height Joint chersct
$r=.= ; ]
xz(v .l') = <gxp[.ivr(h.-h..)]>

in vhieh A AL :

slopes (D) of the surface of the

u(if-;) vhere u(*) is the unit step

eristic function
(2.9)
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With the above expressions for tbe scattering cross sections (2.2), the gepera) expression for the

equation of trensfer (Ishimaru 1978) can be written as follovs for & plane parallel slab consisting of

‘rough spherical particles (see Fig. 2)

val. . I ()1 Jeutae* o [1,] (2.20)

In (2.10) T 4s tbe optical distance in the z diredtion {pormal to the plane parellel slabd)

, e p[ot]z s I o na(D)dD 2 , D= 2ng (2.11)
vhere n{D) 1s the particle size di{stribution and 61. is the extinction coefficient. Since <o”>‘

vanishes in the forward direction, the extinction matrix (Isbimaru and Cheung 1980) for the rough

sphere, can be represented by a scaler quantity. The matrices [1] and [1*] are the (4x1) $Bcoherent

specific diffuse intensity matrices for vaves scattered from the particles in the direction 8=« cos-lu

.and ¢ and for vaves incident in the direction 6' = cos-lu' and ¢', respectively. The elements of [1]
are the modified Stokes' parameters. The {Uxk) scattering matrix [S] in the reference coordinate system

can be expressed in terms of the scattering matrix [S'] in the scattering plane as follovs:

[s) = [L(-z + a)I[5' AT (")) (2.12)
in vhich
[5') = xI*(- 21705, + (s, (2.23)
In (2.13) [sHie] is given by
olr, 120 ellr 2 erelry r))) -olalr, 11 )
o 3o ollryg 150 ol l®)  orelr, 13 -ola(f,, 73]
e PO loomelr) 13 o2Relf) 1)) Relfy f er tg)] -plalfy £ -1,60)
(3 { ] . . *
o2lalt) 3] p2Imlf) 1) plulf) Sopefy,15)]  pRelf))T0m1),5)) (2.14)

‘vbere f“ are elements of the 2x2 scattering amplitude matrix [£] and pl+] denotes integration over the
‘particle size distridution n(D) (2.12)
'
By h T (B exp(-ikor)

'
Er !'21 f22 Er r

(2.15)

In (2.15) E, and E’ are the vertically snd horizontslly polarized field components in the

scattering plane and r is the distance from the center of the sphere to the field point. An exp{iut)

‘time dependence 1s assumed in this wvork.

; .
For a smooth sphere the elements !u are given hy tbe Mie solution for s emooth sphere {Barrick

]
‘1970, Ishimaru 1978). The transformation matrices [L] in (2.12) account for the angles of rotation

‘Detveen the reference planes of incidence and scatter and the scattering p ane costeining o and 3 .
In (2.13) the coefficient ]x'('v'-;x_)l2 accounts for the fact that the speculsr point contribdutions
'12 <1and

.

i ;
;to the scattering tross sections are decressed becsuse of the rough surface (]x

A
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]x'lz < ) as B+ 0). The diffuse scattering matrix [Ss] due to the random rough surface b, is given by

LR CARE

[s3) [si)) o

osde | T

. 0 [} 0 ‘
0 4] . 0 (2.16)

vhere
. A 49
E_L' <g"¥> .
p[s“] - [0, ] -p[q :] (2am)

and pl+] denoctes integration with respect to the particle distridution n{D). For tbe contridbutions due
to the random rough surfsce b, the only noavanishing terms are of the form p[]!'“[2](see equation (2.1L),
the expectations of the phasor Quantities vanish).

Ip order to simplify the solution of the transfer equation (2.10), it is assumed in this vork thet
the normally incident veve is circularly polarized. Thus the incident Stokes metrix st z = 0 iz given by

1
1
{1, = . 8lur-1)808) = 1 8(u'-1)8(s") (2.18)

32

vhere the - and + signs correspond to the right and left circularly polarized waves and p' = cosf'.

The reduced incldent intensity is therefore,

- [Imc] exp(-t) (2.19)
‘In (2.10) the (Ux1) excitation matrix [Ii] is given by
[I‘] - I [s][xHJau'w - [s][xoj sexp(-1) (2.20)
. u'=l
$'=0

vhere Io' the incident Stokes' matrix is defined by (2.18).

Sipce the pormally incident circularly pohrhe.d vave is ipdependent of the azimuth angle ¢, the
Stokes' matrices for the incoberent specific intensities are also independent of ¢. And there is no
.‘caupling betveen 11.12 and U,V 4n (2.10) and the equation of transfer for the normally incident,
circularly polarized wave decouples into the folloving two matrix equations

! 1 1 S s, f1! 1
;, u-ﬁ L 1’] n ) ., T
. I, I, Sy, 55|13 1, (2.21a)
and
i v v t s 5.,][v* U
‘ pd - ,J 33 T e e |8
ar s

sSulfv v (2.21v)
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in vhick ;) and I, are the first tvo elements of the excitation matrix [I’] (2.20) while U, anda Vv,
are the third and fou.rtl: elements of the excitation matrix.

3. TLLUSTRATIVE EXAMPLES
For the illustrative examples considered in this section, the random rough surface height h'
(measured normal to the surface of the unperturbed spherical particle of dismeter D = Zho) is assumed

‘to be homogeneous and isotropic. The surface height spectral demsity function V(Vx .V;) (vhich is the

tvo dimensional Fourier Trensform or. the surface height autocorrelstiocn function <h‘h;>) is

2

_1_ t
wlv,) = ”("x"’;) = . J <h_bl>expliv x, + "z‘a"”a‘é
=4

2 (3.1)

e '

-3 r<hshs> I rgr Irgdr,

! -]

vhere Jolv,rrd) 1z the Bessel function of the first kind and v and v, are components of V in the

53 tangent to the surface of the unperturbed sphere. Thus

V= (vi + \ri)‘i . (¥ - vi)lx (3.2)

direction of the unit vectors ;1,
Similarly the surface height autocorrelstion function <hsh;> is given By the inverse formuls

* V(vx,vz)
v = - -
<bsh‘> J -1 eXp( iv‘xd i':,zd)d'xdvz

o
-«
7
.1 j Wirg)3 (vgr  Jrgdvy (3.3)
[
The specific expressican for the surface beiéht spectral density function is
{v_-v ) n .
C T 4
V(VT) -5 P )2‘ z V<Y,
T4 n
= 0 elsevhere (3.4)
In (3.4) tbe smallest spatial vavenumber is
: AR (3.5a)
and the cutoff wavemumber is
v." vho (3.50)

vhere kb is the wavemumber for the electramagnetic wave. The constant € i3 chosen such that the scale

of the randan rough surface is

2 2
B = Lk <ni> =1 (3.6)

‘In (3.6) <hf> is the mean square height

<hf> -3 I Mlvylvgte, (3.7)
0

i
'
!
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The corresponding value for the mean square slope

cf -3 I u(v, )vT«vT (3.8)

[
is uf = 0.013. The paraveter v vhere H('T) is maximm is A 1.2/D. The exponent in {3.4) 45 n « i and
the materia) of the particle is slumipum. For vavelength X = 10 ym the relative (complex) dielectric

coefficient 15 € = =-6000(1+1) (Enrenrefich 1965). The dimmeter of the unperturbed spherical particle

45 D= 5 and 1ts total (extinction) ecross section is O = 2.059.

For surfeces vith small scale roughnesses B < 1, the contribution (2.6) to the totel scattering

cross sections due to surface roughness h cen also be expressed as a geries

‘J 2 |Di.112 P, (7.5t 2 v (v,)
<0, - [in? (.r.‘;) r B xiv,»
H 2% x/2 " (v )x(v )
) lki[ Ib‘-’lzpz(i ."ln)r ] 2 I stnydyas (3.9)
» o ©

in which U‘(VT)/.?Z’. 15 the tvo gimensiona) Fourjer transform of <hshs'>m and the Integration is over

the poler apgle Y and azimutbel engle §. For B << 1 only the first term in (3.9) is non-negligible.

This term corresponds to first order Bragg scattering from rough surfaces {Bahar 1981). For B = 1,

it 1s necessary to evaluate only tvo terms of the series fu (3.9). For large values of roughness

scales (B > 1) it is more convenient to evaluate <o”>s using (2.6},
For the illustrative examples, it is assumed tbat & right circularly polarized vave is normally

dncident at 1 = 0 (2 = o) upon a parallel layer of optical thickness 1'° (see Fig. 2). The equation of

trensfer for the azumutbally independent modified Stokes® parameters (2.21) are solved using the matrix
cha.ru:terist-jc {eigen) value technique (Ishimaru and Cheung 1980) subject to the boundary conditions
for the incoherent specific diffuse iptensities
[1J«0 for 0<u<l st1=0
(forvard scattered incoberent diffuse {ntensities are zerc at T = D) and
- (X=0 for o>w2-1 atvr=t,
i(bu:kvl.rd scattered incoherent diffuse intensities are zero at T = ‘ro).

Io Figs. 3 and b I, (vertical polarization) and I, (horizontal polarization) are plotted
Tespectively, as functions of the scatter angle 8 (0,90°) (forvard scattering) for t_ = 0. The solid
‘curves correspund to first crder scattering solutions only (Ishimaru 1978) for the smooth (unperturbved
'-pber.iul) particles end particles with rough lurfu:ju. The surface roughness of the particles tends

to smooth cut the incoberent diffuse intensities as ‘.nmcuom of 8. Note that the vertically polarized °

1
iintensity is mare oscillatory then the horizontally polarized intensity.
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The corresponding solutions that account for multiple scatter are als. given for the smooth (+)
and rough (8) particles. We note that since the albedos for the rough particles are slightly lover
than the albedos for the smooth particles (see Table I), the incoberent diffuse iptensities are
somevhat lover for the rough particles. For optically very thick layers of particles, the diffuse
iptensities Il and 12 are prectically equal and rather flat functions of 8. Multiple scattering
cannot be neglected in these cases.

L. CONCLUDING REMARKS

In this vork scattering of electromagnetic vaves by particles vith moderate to very large roughness

scales (that cannot be eccounted for using .e standard perturbetion metbods) bas been considered. The

‘incoherent diffuse scattering intensitles for the rough particles have been compared with the cor-

responding results for smooth particles. Both first order {single scstter) snd multiple scatter results

bave been presented for the case listed io Teble I.

1. Baber, E. {1981), "Scattering Cross Sections for Com:

As the scele of roughness § = hk§<bi> ipcreases, the scattering coefficients as well as the
incoherent diffuse scattering intensities become practically independent of the scattering angle.
In eaddition, for large T the incoherent scattering intensities decrease as the roughness scale
incresses. As the optical thickness of the layer incresses, the incoherent diffuse scattering
intensities become less dependent on scatter angle.
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ABSTRACT

The incoherent specific intensities for the waves scsttered by e random distridution of particles
wvith rough surfaces are derived. Since large roughness scales are considered, the diffuse scattering
contributions to the like and cross polarized scattering cross sections are given by the full wave
solutions. The scattering metrix in the expression for the equation of transfer is given by a veighted
sum of the scattering matrix for the swooth particle and the diffuse contribution due to the rough
surfece of the particle. Illustrative examples are presented for the propagetion of & circularly
polarized wave normally incident upon a parallel layer of particles. Particles vith different surface
height spectral density functions, roughness scales, complex permittivities and sizes ere considered.
Both first order (single scatter) snd multiple scatter soluticns are provided apd the results for
particles vith smooth and rough surfaces are compared.
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1. INTRODUCTION

Scutterins' of electrumagnetic vaves in media consisting of rendom distributions cf particles has
been investigated extensively using the eguation of transfer {Chendrasekhar 1950, Ishimaru 1978). The
main difficulty in setting up the equation of transfer lies in the determination of the elements of the
Lxl scattering matrix for the individusl perticles. Thus most of the wvark has been done for perticles
of ideslized shapes such as spheres,

In this vork a method is presented for the modifjcation of the results derived for particles with
idealized shapes to account for the random surface roughness of the particles. To this end the full wveve
aprroach vas used to determine the rough surface contributions to the like and cross polarized
scattering ¢ross sections and the elements of the scattering metrix are given in terms of & veighted sum
of the Mie solutions and the diffuse scattering terms due to the particle surface roughness {See Secticn
2). For convenience in this work s circularly polarized wave is sssumed to be normally incident upcn e
perallel layer consisting of a random distribution of irregular shaped particles.

For the illustrative examples presented in Section 3 both first order (single scatter) and multiple
scatter resulis are presented for smooth particles and for particles with rough surfaces. The metrix
cherecteristic value techriique is used to account for multiple scattering (Ishimaru and Cheung 19€0).

2. FORMULATION OF THEE PROBLEM

In this section the principal elemernts of the full wave solutions for the like &nd cross pclerizec
differential scattering cross sections of nonsphericel particles are sumcarized. The contributions cf
these cross sections to the familiar eouatiorn of transfer (Ishimaru 1978), in e medium consisting of e
randon distridution of noospherical particles ere slso indicated explicitly.

The redius vector from the center to the irregular surfece of the particle is given by {see Fig. 1)

T =b & +h a (2.1)
1 1 [+ o 5 I

in vhich ;r is the unit vector in the direction of the radius vector, ho i{s the redius of the
urperturbed sphere and hs is the rendom rough surface height measured in the direction normal to the
surface of the unperturbed sphere. In this vork it is assumed that the mean square of the rough surface
height, <bf>, can be sufficiently large such thet standard perturbstion techniques are not applicable
(Barrick 1970). Thus the rough surface parameter, B = hh:<hi>, considered in this work is in the range
0 < 8 <210

The full wave sclutions for the normalized scattering cross sections <o”> per unit cross sect aal
fuea (Ay = ﬂhi) sre expressed as & veighted sum (Bahar and Chakreberti 198:)
; <«wlds = <u“>l . <o“>. (2.2)

¢
i
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the symbol <*> denotes the stetistical averege. In the sbove expression the first and second super-
scripts indicate the polarizations of the scattered and $ncident vaves respectively. Thus 1,3 =1
denotes Vertical polarization end 1,) = 2 denotes Horizontel polerizstion. The cross section <U“>£ is
the modified cross section associsted with the unperturbed sphere.
<°13>1 = ])(5(\,)]2 <01J>Mie (2.3)
In (2.3) (ou>)4.ie is the Mie solution (Ishimaru 1978), for the like and cross polerired cross sections
of the unperturbed sphere. For large spheres, koho > 20, (ko is the free space vevepumber}, the most
significant parts of the solution are the speculerly reflected vave and the shadov forming vave {Morse
and Feshback 1954). The coefficient of <0“>Mie is the rough surface height characteristic function
o (v) = <exp ivh > . (2.k)
in which v is the magnitude of the vector
_ vex (575 (2.5)
where ;f and Ei are unit vectors in the direction of the scettered and incident wave mormals. The
coefficient l)(s]2 asccounts for the degradation of the reflected wave due to surface roughness. The
coefficient is minirum for backscatter and approaches unity for forvard scattering.
The second terz in (2.2) <di">s is the contribution to the total scettering cross section due to
the surface roughness. It is expressed &s (Bahar and Chakrebarti 1985)
', = [ 4G 55603 )0, G st (2.€)

4n vhich n is & unit vector nmcrmal to the surface of the scetterer,

X Dij 2
WE R R -2 Tﬁ,“)’(TﬁT p (57,51 [5) (2.1)
o (.15 = (3:5))° r(xg(v-;ruxﬁ(;-;r)lz)up(s;-;d)axdazd (2.8)

and p(h) is the probabdility density function for the slope of the surface of the scatterer. In (2.7),

DiJ is the scattering coefficient vhich deperds on the polarizations and the directions of the wave
normals for the incident and scattered waves as well as the complex electromagnetic parameters (e,u) of
the scetterers. The term P2(Er,5i|5) is the probability that a point on the rough surface is both
$1umineted by the source and visible to the observer given the slopes (n) uf the surface of the
scatterer (Smith 1967, Sancer 1969). Since n = ;r’ P2 = u(»ai'ﬁ)u(ﬁri) vhere u(+) is the unit step
mnctlion.

In (2.8) x;(\'l':r) 15 the rough surface beight Joint charscteristic function
(2.9}

: K5 « <expliv, (b -b))D

i - -
iin wvhich AL A .
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With the above expressions for the scattering cross sections {2.2), the general expression for the

equation of transfer (Ishimaru 1978) ean be written as follovs for e plane parallel slsb consisting of

rough sphericel particles {see Fig. 2}

e R eI Eh (2.30)
In (2.20) T is the optical distance in the z diredticn (pormal to the plane parallel slab)

1e p[ot]z = I o, a(D)aD 2z , D= 2n (2.11)
where n{D) 15 the particle size distribution and 6 is the extinction coefficient. Since <c“>s

varishes in the forwverd direction, the extinction matrix (Ishimeru and Cheung 1980) for the rough

sphere, can be represented by a scslar guantity. The mstrices [1] and [1'] are the {kx1) incoherent
specific diffuse intensity matrices for vaves scettered from the particles in the direction & = cos'lu

and ¢ and for vaves incident in the direction 6' = cos—lv‘ and ¢', respectively. The elements of [I)

are the modified Stokes' parameters. The (ixk) scsttering matrix [S] in the referenmce coordinate system

can be expressed in terms of the scettering matrix [S'] in the scattering plane as follows:
[5) = [X (-1 + a))(5'IT (a")] (2.12) L
in wvhich
s/=. - 2
[8'] = x|®(5-8) "5y, ) ¢ [8] (2.13)
In (2.13) [sMie] is given by
oLt 18 olir. 120 prelr, £2.] —pluls. . 17.) 1
[ 11 12 11°12 e
. 2 2
[s.. 7= =k lolryy 1) ollrgy I emelry 13, -pInl1, 15,
sMie = DIO ) U] . ) « U]
t7 |p2Relr), 17,1 paRelr) ,17,] pRelf) 17.41,,17.] -pln(fy T -1, 10, ]
" . - . » .
p2imlf),15,] p2lmley )] pInlfyyTpp40)oT5) ]  eRelf) Tppar o o)) (2.14) "

vhere r“ are elements of the 2x2 scattering amplitude matrix [f] and p[+] denctes integration over tke
particle size distribution n(D) (2.12)

) 1 12| |Fx exp(-ikor)
(2.15)

In (2.15) El eand Er are the verticelly and horizontally polarized field components in the
scattering plane and r is the distance from the center of the sphere to the field poipt. An exp(iwt)
tize dependence 1s assumed in this work.

: For e smooth sphere the elements f“ ere given py the Mie solution for m smooth sphere (Barrick
1970, Ishimaru 1978). The transformation matrices {X] in (2.12) account for the angles of rotation
betveen the reference planes of incidence and scatter and the scattering plrne containing ot ana 5T,

In (2.13) the coefficient Ixs(\'r-;,_)l2 accounts Yor the fact that the specular point contribdutions

;‘to the scettering cross sections are decreased because of the rough surface (Ix']z <1 and
.
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Ixslz + 1 as B« 0). The diffuse scattering matrix [SS] due to the rendom rough surface hs is given by

o

ols5)  [s],) o
ols21 [si)) o o
o5 ]« 21 22
s 0 0 0o o©
(4] [+} [ (2.16)

where

A
p[S:J] = Ln_p[lc;j p[<u“>s] (2.17)
end p[-] denotes integretion with respect to the particle distribution n(D). For the contributions due
to the random rough surface b, the only nonvanishing terms sre of the form p[]fulal(see equation (2.1k),
the expectstions of the phasor quantities vanish).
In order to simplify the solution of the transfer equation (2.10), it 1s assumed in this vork that
the normelly incident vave s circularly polerized. Thus the incident Stokes matrix &t z = 0 is given by

1
1

)= S{pr-1)8(¢') = 1 &{u'-1)8(¢") (2.18)

4 [ [+]

¥2
vhere the — and + signe correspond to the right and left circularly polarized vaves &nd y' = cosf'.

The reduced incident intensity is therefore,

[IrSJ = [Iinc] exp{-1) (2.19)
In (2.10) the (Lxl) excitation matrix [Ii] is given by
1,0 = J [s)[1  Jaw'ag' = [KSJ[IOJ} sexp(-1) {2.20)
TREDY
$'=0

vhere I, the incident Stokes® matrix is defined by (2.18).

Since the pormally incident circularly polarized vave is independent of the azimuth sngle ¢, the
Stokes' matrices for the incoherent specific intensities are also independent of ¢. And there is nc
coupling betveen 11,'.[2 and U,V ip (2.10) and the eguation of transfer for the normally incident,

circularly polarized vave decouples into the following two matrix equations

1 1 S s, ] [3r 1
' . £ b1 I i1 Y J 0 () e, [0
1, 1, Spy Sppf |13 1,, (2.21a)
and
i v [ 5., ] [ur U
» _5% .- R J 33 U3l a1 .
v v B3  Suy A v, (2.21v)

— s ——
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in vhich I,, end I, are the first tvo elements of the excitation metrix [11] (2.20} while U and v,

are the third and fourtb' elements of the excitetion matrix.
3. JLLUSTRATIVE EXAMPLES
For the illustrative examples considered in this section, the randomw rough surface height bs
[pessured normal to the surface of the unperturbed sphericel particle of dismeter D = 2h°) is assumed
to be homogeneous and isotropic,. The surface height spectrsl deneity function H(vx,\'z) {wvhich is the

tvo dimensional Fourier Trensform or. the surface height autocorrelation function <hsh;>) is

2

. A f
H(VT) \(vx,vz) - ; J <h$b$>ex1:(ivxx“1 + ”,zd)d"ddé
o

2 '
= £ > .
2 r(hshs Jo(v,rrd)rddrd (3.1)
[
vhere Jo(v,rrd) is the Bessel function of the first kind and v and v  are components of v in the
tengent to the surface of the unperturbed sphere. Thus

2)“1 (3.2)

direction of the upnit vectors 5.1 ,33
= (vi + vf)lﬁ e (v2 - 'vr

Sirflerly the surface height esutocorrelastion function <hsh;> is given by the inverse formuls

= wlv_,v.)

e X - -
<b_h! J —_— expl vaxd ivz"d)dvxdvz
‘e
-
=2 wv )3 tvor v av, (3.3)
2 e Ve a1y :
°
The specific expression for the surface beig}xt spectral density function is
(v,-v.) z -
2C T 4
Mg e S o e 2 Ya < Yp < Ve
T d .}
= 0 elsevhere (3.%)
In {3.1) the smallest spatial vavenumber is
" /o (3.58)
and the cutoff wavenumber is
v = Jako (3.5t)

vhere lzo is the wavenumber for the electromsgnetic wave. The constant C is cbosen such thet the scale

of the random rough surface is

B« &x:<hf> =1 (3.6)

1o {(3.6) <h§> is the mean square height

2
<h‘> - %J \i(vT)devT 3.7)
(]
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The corresponding value for the mean square slope
2 1
- w .
o, = 2J {vp w2 &y (3.8)

°
1s 0° = 0.013. The peremeter v vhere H(vT) is maximum i v = 1.2/D. The exponent in (3.4) 45 n = L and
the meterial of the particle is aluminum. For wavelength A = 10 um the relstive {complex) dielectric

coefficient is €_ = -6000(1+1) (Ehrenreich 1965). The diszeter of the unperturbed spherical particle

is D = 5) and its totel (extinction) cross section is Oy = 2.059.

For surfaces with small scale roughnesses § < 1, the contridbution (2.6) to the total scattering

cross sections due to surface roughness hs cen 8lso be expressed as & series

P2 p G125 v 2 W (v,)
1 2 2 n T
<g - I lmko ‘Er""Q [—%] =7 X(vr)>
ax /2 28y (v, )xlv,)
=2ux§} jp*5|2y2( f 2a )[v] A e S (3.9)
m
0o ©

in vhich W {¥, )/22“ is the tvo dimensional Fourjer transform of <hsh;>m and the integration is over
the poler engle y and azimutbal angle 6. For B << 1 only the first term in (3.9) is non-negligible.
Tzls term corresponds to first order Bragg scattering from rough surfaces {Behar 1951). For 8 = 1,
it is pecessary to evaluate only two terms of the series in (3.9}, For large values of roughness
scales (B > 1) it is more convenient to evaluate <(‘Ji">s using (2.6).

For the illustrative exaxples, it is assumed thet e right circularly polarized wvave is normally
incidest at T = 0 (2 = o) upon & parallel layer of optical thickness L (see Fig. 2). The equation of
transfer for the azumuthally independent modified Stokes® parameters (2.21) are solved using the matrix
chuac:eristic (eigen) value technique (Ishimaru end Cheung 1980) subject to the boundary canditions
fcr the inccherent specific diffuse intensities

[13=0 for O0O<u<1 at1=o
(forward scattered incoberent diffuse intensities are zero at T = 0) and

[1)=0 for 0>u>-1 st TeT
(backvard scattered incoherent diffuse intensities are 2ero at T = 10).

In Figs. 3 and 4 1, {vertical polarizstion) and 1, (borizontel polerizetion) are plotted
respectively, as functions of the scatter angle 8 (0.900) {forvard scattering) for " 10. The solid

curves correspond to Tirst order scattering solutions only (Ishimaru 1978) for the smooth (unperturbed

spherical) particles and particles vith rough surfaces. The surface roughpess of the particles teads

to smooth out the incoberent diffuse intensities as ;functions of 8. Note that the vertically polarized i

'iotensity 1s more oscillatory than the borizontally polarized intensity.
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The corresponding solutions that eccount for sultiple scstter ere also given for the smooth (+)
and rough {2) perticles. We note that since the albedos for the rough particles are slightly lower
than the albedos for the smooth particles (see Table 1), the incoherent diffuse intensities ere

samevhat lover for the rough particles. For optically very thick layers of particles, the diffuse

intensities 11 and 12 are practically eque)l and rether flat functions of 6. Multiple scattering

cannot be peglected in these cases,
k. CONCLUDING REMARKS
In this vork scsttering of electromsgunetic vaves by particles with moderate to very large roughness
scales (that cannot be accounted for using the standard perturbetion methods) bas been considered. The
incoherent diffuse scettering intensities for the rough particles have been campered with the cor-

responding results for smooth particles. Both first order (single scatter) and multiple scetter results

bave been presented for the case listed in Table I.

As the scaele of roughness B = hhiﬂ:i) increeses, the scattering coefficients as well as the
incoherent diffuse scattering intensities became practically independent of tbe scattering angle.
In sddition, for large 10 the incoherent scattering intensities decrease as the roughness scale

increases. As the opticel thickness of the leyer increases, the incoherent diffuse scattering

intensities become less dependent on scetter angle.
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Full Wave Solutions for Electromagnetic Scattering

+
end Depolarization in Irregular Stratified Media

E. Bahar

Flectrical Engineering Department
University of Nebraska-Lincoln 68588-0511

Abstract

Using the complete expansions of the fields and on imposing
the exact boundary conditions at the interfaces of an irregular stratified
medium, Maxwell's equations are transformed into & rigorous set of
coupled first order differential equations for the wave amplitudes.
This full wave approach is applied to a large class of propegation
problems. Since these solutions account for specular point as well as
diffuse scattering in a unified self-consistent manner, it is not necessary
to epply a hybrid physical optics-perturbation approach to problems of
rough surface scattering. The full wave solutions satisfy realizability,
duality and reciprocity relationships in electromagnetic theory. They

are invariant to coordinate transformations.

+Presented at the Workshop on Waves in Inhomogeneous Media, Schlumberger-
Doll Research, Ridgefield, Connecticut, August 8-9, 1985.
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l. Introduction

In this paper the principal elements of the full wave approach to
problems of radio wave propagation in irregular multilayered media are
summarized. The relationships between the full wave solutions and earlier
solutions to scattering problems are also presented. To demonstrate
the versatility of the full wave approach, three broad classes of
propagation problems are considered in some detail. In Section 3, the
full wave approach is applied to problems of scattering and depolarization
by a random rough interface that separates two media with different
(ccmplex) electromagnetic parameters. In Section L, radio wave propagation
in a three layer structure is considered. The thickness of the intermediate
layer is assumed to vary in thickness. Finally, in Section 5, the boundaries
of the irregular structure are assumed to be highly reflecting, thus the
exact continuity conditions for the electric and magnetic fieids are
replaced by the approximate impedance boundary conditions. In this case,
the fields in the layered structure are expressed in terms of trapped
waveguide modes.

The Principal Elements of the Full Wave Approach are (Bahar 1973z,b):

(a) The electromagnetic fields are expressed in terms of complete
expansions of vertically and horizontally polarized waves. These include
the radiation fields, the lateral waves and tpe surface waves.

{b) Exact boundary conditions are imposed at the irregular surfaces.

(c) Using the orthogonal properties of the basis functions appearing
in the complete expansions of the fields, Maxwell's eguations are integrated
over the transverse plane. Green's theorems are used to avoid term-by-

term differentiation of the field expansions.
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(a) Maxwell's equations for the electromagnetic fields are converted
into coupled first order ordinary differential equations for the forwerd
and backward traveling wave smplitudes. The coupled equations for the

wave amplitudes are referred to as the generalized telegraphists' eguations.

(Section 2), (Bahar 1974).
2. The GeneralizedA Telegraphists' Equations
For horizontally stratified media (see Fig. 1) the following field transform
pairs provide the basis for the complete expansion of the transverse (ys2)
components of the electric and the magnetic fields ET and ET respectively in terms
of the vertically (V) and horizontally (H) polarized field transforms (Bahar

1973s,b):

Byleyia) = 1 [/ vy + £ (x,v,v)ehlav, iy

where
EP(x,v,v) = {E‘ET(x,y,z)'(Hg x Ex)dydz, P=V or H, (2)
Bp(x,y,2) = g {m [vax,v,v)ﬁ; + HH(x,v,w)Eg]dw, (3)

vhere
H’P(x,v,v) = LD }TIT(x,y,z) (Ex x Eg)dydz, P=V or H, (4)

In the above expressions EP and H'P (P=V,H) are the electric and magnetic

field transforms and E? and 5; are the electric and magnetic field basis function

while Eg and ﬁg are the reciprocal basis functions for horizontally stratified

edia. The symbol,
‘ﬁ denotes summation over the entire wavenumber spectrum v. The generalized
v

b}
Fourier transform consists of two infinite integrals (continuous part of
the wavenumber spectru.m) wvhich are associated with the radiation and the

Jateral wave terms and a finite set of surface vave terms (discrete part

of the wavenumber spectrum).
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The basis functions for the vertically polarized waves are

8 1w A
3
T A w {v,y) - —2——2— —%"ﬁ—)ﬂv,z) (5)
u o+ W -
and
ﬁ;’. = Ezwv(v,y)tb(V,Z) (6)
and the complementary basis functions for the vertically polarized waves are
N R e (1)
' 8, 124 2 2 oy ’
u o+ v
and
Ry = 30 (v,y)6% (w,2). (8)

For the horizontally polarized waves, the basis functions and the complementary

basis functions are respectively,

o = i vyetn,a) (9)

_H B . E iw 3 H(V )
- By = YH(T-ay‘J) () + —3— By, (10)
o = EZNEWH(V,yMc(v =), (12)

By = Y2 ¥(v,) - —L(Yﬂ-)q»%w,z) : (12)

in which NP are normalization coefficients, Z and YP are the wave
impedance and admittance and
¢(w,z) = exp(-iwz) and ¢%(w,2) = (1/2n)exp(ivz) . (13)
The scalar basis functions for the radiation fields and the lateral waves are
( exp(ivoy) + Rgg exp(—ivoy).
for medium O,
r T :

Dh P _ Po-1
RPoVo(V’Y) - Hl TDH exp(i qzlvp-l,qhqfl,q)

x [exp(lvry) + Rg? exp(-ivry)],

for medium r = 1,2,3,...,m, . Q)




v (v.y) =w§n(v,ho,l)
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r U
n-r m-r
]_11 ot exP( qgl m-g,m+l- qhm~q m+l- q)
q= Pr-q

Y2 «

x[exp(—ivry) + Rgz exp(ivry)], for medium r=0,1,2,...,m-1

Uh .
exp(-iv y) + expliv_y) for medium m (15)
| EXP= 2y Rpm o’ ?
For the surface wave
rexp{—ivn(y-h 1)], for medium O,

,

.. n Dh )

TDH expl- lv h )[exp(lvly)+RPl exp(—lvly)],

TD for medium 1,

. ) Dh .. .0
x exp(iq_2 -1 q a1 q)[exp(lvry) *+ Ry exp(-1vry)],
| for medium r=2,3,...,m, (16)
where
Pn 2_[,.P. a1
[y, (v’ho,l)] = W/iz v, 3o 5 (17)
PO v=v

The scalar functions for vertically and horizontally polarized waves
wv(v,y) and wH(v,y), are given by (14, (15), and (16), on replacing the
letter P in all the expressions by V and H respectively. The reflection
coefficient at the i,i+l interface for waves incident from above is Rgi and
Rgi is the reflection coefficient at the i-1,i interface for waves incident

from below.

The transmission coefficients are

P =1+R£i, ™ o-1+8,,

Pi Pi pi
H _ DH UH _ UH
Tgi-l+RPi‘TPi—1+RPi' (18)

The modal equation which determines the surface wave parameters v (Im(v) < 0),

is given by
U _D _ 2 2 2% _
1-Rp; Rpsexp(-12v,H,)=0, v, =(k -u"-w")%, v, ) (=v, v,

vhere P equals V or H and i=1,2,3,...,0r m-1 and ki=w(uiei)% (19)




The basis functions satisfy the biorthogonal relationships for P and Q equal

to Vor X
[0 e
- = GP’QA(V—V‘)A(V-V‘) (20)
[ e o

in which, for the primed quantities the veriables are u', v', and w' and

Av-v') = §
q,Tr

S{v-v'), v‘#vs
v,V _, v'=v_ . (219
s s

The complete field expansions are substituted into Maxwell's equations
for the transverse field components and use is made of the orthogonality
relationship, Green's theorem, and the exact boundary conditions for irregular
stratified media (for example see Fig. 1)to obtain the differential equations
for the field transforms EP and HP. These may be expressed in terms of the

forward and backward wave amplitudes aP and bP, respectively, as follows:
V,| upper sign
B = af + v and EP = ap F b , P = (e2)
H,{ lower sign
Thus Maxwell's eguations are converted inte the following generalized

telegraphists' equations for P=V or ¥ (Bahar 1973a,b):

P
a . P BA BB P
- ~§; - iua = % §| J (SPQ a4 Sp vHav' - aF (23)
and
P
db L aP AA Q. AB Q. v, _P
- gyt dub = g §| / (sPQ &%+ Spo b Jav' + B . (2k)

Explicit closed form expressions for the reflection and the transmission

. BB BA :
scattering coefficients S:A, SPQ’ SPQ and S;g have been derived (Bahar 1973b).
Thus, for instance, s3g(v,w,v',w‘) accounts for coupling of the incident
horizontally polarized forward wave amplitude aH(v',v‘) into the reflected

vertically polarized wave amplitude bv(v,w). Similarly, Sgé(v,w,v',v')

accounts for coupling of the incident vertically polarized forward wave
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amplitude av(v',v') into the forward scattered horizontally polarized
wave amplitude aH(v,w). In (23) and (24), the terms AP and Bp account
for the electromagnetic source excitation in any of the layers of the
structure ané (u',v',w'), (u,v,w) are the orthogonal components of the
vector wavenumbers k' and k in the directions of the incident and
scattered waves. The incident and scattered wave vectors k' and X are in
general associated with either the radiation fields, the lateral waves or

the guided waves of the structure. Thus, the scattering coefficients account

for coupling between components of the entire wavenumber spectrum. The
derivations of the generalized telegraphists' equations (23), (24) is
rigorous. They can be solved rigorously using numerical techniques (for

example the eigenvalue-eigenvector technique (Ishimaru et al. 1982).

In the foiiowing specific applications some simplifying assumptions are
made to facilatate the solution of these coupled first order differential
equations. Thus for instance, if multiple scattering between different
portions of the rough surface 1is neglected, the far fields can be
expressed in closed form as integrals that can be readily evaluated

numerically.

3. Scattering and Depolarization by Random Rough Surfaces

In order to account for specular point scattering as well as diffuse scattering

by random rough surfaces, a two-scale model of the rough surface was adopted
(Wright 1968, Valenzuela 1968, Brown 1978). Thus, on applying the physical optics
approach (Beckmann and Spizzichino 1963) the surface hl consisting of the large
scale components (k < kd) of the surface height spectral density function W(k),
accounts for specular point scattering. Similarly on applying the perturbation
approach (Rice 1951) the surface h_ consisting of the small scale components

{x > kd) of the surface height spectral density function W(k) accounts for diffuse
scattering. On adopting the two-scale approach it is assumed that the large

scale surface hl and the small scale surface hs are statistically independent.
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Several questions arise as a result of the use of the two-szale, hybrid,
physical optics-perturbation approach to problems of scattering by random
rough surfaces. In particular there are conflicting constraints on the choice
of thé wavenumber kd where spectral splitting of the rough surface spectral
density function is assumed to occur (Brown 1978, Bahar and Barrick 1983,
Bahar et al 1983). Moreover, since the physical opties solution for the cross
polarized backscatter cross section is zero, the solution based on the two-
scale perturbed-physical optics model does not correctly predict the cross

polarized backscatter cross section particularly for near normal incidence

(Bahar and Fitzwater 1984).
Since the full wave solution 1is valia in both the high frequency (physical

optics) limit as well as the low frequency perturbation limit B=hk§<h§> << 1,

it accounts for specular point and diffuse scattering in a unified self-
consistent manner. Thus it is not necessary to artificially decompose the randon
surface into two presumably uncorrelated surfaces when the full wave approach
{Sec. 2) is used. The solutions for the like and cross polarized scattering
cross sections per unit area, that follow from the full wave approach,upcon
neglecting multiple scattering between different patches of the rough surface)

can be expressed as follows (Bahar and Fitzwater 1985)

x pFe 2
o]

< UP0‘>

2] (25

=y

o - —f -j
P_p(n)dn (Q(F",n%) + L xfexp(iv x+iv 2z )dxdz
2 A ; X z

n*a y
in which a_is the unit vector normal to the unperturbed reference plane
(x,2), n is the unit vector normal to the rough surface and Ay is the area
of its projection in the reference (x,z) plane. In {25) the superscripts
PQ correspond to the polarizations of the scattered and incident waves

respectively (P,Q=V (vertical), K (horizontal)). The unit vectors n and

=
n” are in the direction of the incident and scattered wave normals , ko is the

free space electromagnetic wavenumber and the vector v is
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- -f -i - - -
= - = + + .
v ko(n n VAt Ve V.8, (6)
The coupling coefficients DPQ depend on the polarizations and the directions
of propagation of the incident and scattered waves as well as the camplex

electromagnetic parameters of the medium of propagation. The slope probability

. = 0y
density function for the rough surface is p(ﬁ){\p(ﬁ’ﬁy + 0) dn = sinydyd$ is
the differential (solid) angle and P2 is the shadow function derived by Sancer

(1968). The coefficient Q(Ef,ﬂi) is given by

’,8Y) = [lxy-lx]Pexp(i7-F Dax az, (27)
in which X5 and X are the Joint characteristic function and the char-
acteristic function for the rough surface and

;d = xd%;+ zdgz (28)

is the distance measured in the unperturbed reference plane. The first
term in (25) accounts for beth spgcular point as well as diffuse scattering
vhile ihe second term is the ccherent scattering term. This second term becomes
very small as the mean square rough surface height <h2> becomes very large
since for a Gaussian surface lx]2 = exp(-hv§<h2>). The unified full wave
solutions for the ratio of the like to cross polarized scattering cross sections
are shown to be in good agreement with experimental results (Bahar and Fitz-

water 1985), however additional measurements are needed to make more

extensive comparisons between theory and experiment.

o
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4. Propagation in Nonuniform Stratified Structures

Propagation of radio waves in nonuniform stratified structures is of
interest in & large variety of technical problems. For instance, Schlak and Wait
(1967, 1968) treated the problem of propagation over a nonparallel stratified
earth using a geometrical optical approach to derive an equivalent surface
impedance at the air-earth interface (see Fig. 1). The resulting mixed path
propagation problem was solved through a Judicious use of the compensation
theorem. The realization of the salient features of the solution to this prcblem
led Schlak and Wait to submit their solution to & eritical reciprocity test
which pointed out several restrictions on the geometrical coptical approach.

Wave coupling in a variety of nonuniform layered structures is alsoc of
special interest for the design of a variety of devices in opticel waveguide
systems (R. G. Hunsperger 1982). The full wave solutions ({23),(2L)explicitly
account for coupling between the different spectral components of the complete
expansions. Thus, these solutions can be used to design nonuniform layered
structures that effectively couple electromagnetic signals into and out of
optical wavegufﬁes.

The full wave solutions are shown to satisfy the duality, realizability
and reciprocity relationships in electromagnetic theory. Thus for the vertically
polarized case (see Fig. 1) for example, the radiation (magnetic) field scattered
by the nonuniform stratified structure shown in Fig. 1 is expressed as

follows (Bahar and Fitzwater 1978e,b)

N ) ) £ i3 q
Hf(x,y)=(2n/k p)fexp(-lk plexp(in/4)P(v ,vl)h1 (29)
z [ o m
in which H; is the magnitude of the incident magnetic field at the origin,
p is the radial distance from the z axis and P(vf,vl) is the radiation pattern:
o
P : .
P(viv') = p (v o) 11 v orh) 30)
o Pyq P,q

where
£ iy f.i 2 f i r i (31)
Po(v',v')=(1-855,~2_)T,, (v )T (W17 o (v IT, o (v )/hme
In (31) Er is the relative complex dielectric coefficient for the overburden

and Zg is the normalized surface impedance of the substratum. The complex angles

T
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for the incident and scattered waves in free space (subscript o) and the over-
burden (subscript 1) are related by Snell's law and Si=sin8§,$§=sin6§. The
transmission coefficients from the overburden to the substratum are T21(vi)
and TZl(Vf) for the incident and scatter angles 6; and 8; respectively, while
the corresponding tansmission coefficients from the air to the overburden

are TlO(V ) and Tlo(Vf)- The terms in the double infinite sum are

IRy (7 IRy PRy, (v, (41

1 (v - -
P, (2p-1)c, + (2q—l)C;
L i X
-f ko exp[i(uf-ul)x-i{(2p-l)V§ + (2q-1)v;}h(x)]dx (32)
L

in which R21 and Ro1 are the overburden to substrate and overburden to air
i

Fresnel reflection coefficients respectively, while Cl cosei=ui/k1 and
C§=cosei=uf/k1. The arbitrarily varying height of the overburden substratum
interface is h{x). It is interesting to note that while the solution

based on the geometrical-optics approach involves a single summation (that
depends on the direction of propagation of the incident wave), the full wave
solution involves double infinite sums that satisfy the reciprocity relations
in electromagnetic theory. For the special cese when k°=kl (no overburden)

and h=0, the full wave solution {29) reduces to the physical optics expression
for diffuse scattering in the specular direction

H:(X,y)=(i/2ﬂk°p)%exp(—iklp)2kOLCiR21Hi (33)
5. Waveguides with Irregular Boundaries
When the boundary conditions for the electromagnetic fields at the uppermost
interface and the lovermost interface of the irregular stratified structure can
be approximated by a surface impedance condition, namely
) E-zEa (34)
in which Z is an impedance diadic (Gallawa 196L), (as in the case of highly
reflecting boundaries such as good conductors), the electromagnetic fields
may be expanded completely in terms of waveguide modes. The wave spectrum in

this case is discrete (the radiation fields and lateral wave contributions

amethin,
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venish). The resulting telegraphists' equation {23),(24) for the coupled forward

and backward propageting waveguide modes of the irregular structure cen be
readily solved numerically using the Runge-Kuita method (Abramowitz and

Stegun 196k4).

The full wave approach can also be applied to problems of propagation
in irregular stratified cylindrical and spheroidal structures (Bahar 1975,
1980; Bahar and Fitzwater 1983). For these structures, the contribution
from the continuous portion of the wave spectrum vanishes if the electro-

magnetic fields at the innermost interface of the structure can be characterized

by a surface impedance condition (34).
6. Concluding Remerks
An interesting feature of the full wave solution is that by avoiding
the imposition of simplifying essumptions (such as Kirchhoff or perturbation
approximations) at the outset of the analysis, it is possible to demonstrate
succinctly the limitations of the earlier solutions and the relationships
between them. Thus for instance, by simply replacing n in (25) by its value

et the specular points n = v/v (vZ = 3-7) one .obtains the physical optics

solutions. Furthermore by replacing n by Ey and assuming that f = hki<h2>

<< 1, the expression for @ (27)becomes Q = ]ﬂvy X(vy)]gw(k) and

(25) reduces to the perturbation solution (Rice 1951).
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SCATTERING AND DEPOLARIZATION BY CONDUCTING CYLINDERS
WITH RQUGH SURFACES

Fzekiel Bahar
and
Mary Ann Fitzwater
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ABSTRACT

Like and cross polarized scattering cross sections
are determined at optical frequencies for conducting cylinders
with rough surfaces. Both normal and oblique incidence with
respect to the cylinder axis are considered. The full wave
approach is used to account for both the specular point
scattering and the diffuse scattering. TFor the roughness
scales considered, the scattering cross sections differ
significantly from those derived for smooth or slightly
rough conducting cylinders. Several illustrative examples
are presented and the albedos for smooth and rough cylinders

are compared.
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1. Introduction

The problem of electramagnetic scattering by finitely conducting
cylinders or spheres has been dealt with extensively in the technical
literature. Perturbation theory has been used to extend these results
to scattering by circular cylinders or sphéres with slightly rough
surfaces (Barrick 1970). However, perturbation theory is limited to
surfaces for which the roughness parameter B = hk§<h§> <0.1 (ko is
the electromagnetic wavenumber and <h§> is the mean square height
of the rough surface, Brown 1978). For the low frequency limit, (8 << 1),
the scattering cross sections are not significantly different from
those for smooth conducting circular cylinders. On the other hand,
in the bhigh frequency limit when the scales of the surface roughness
are large such that the radii of curvature of the surface are large
compared to a wavelength Ao and the major contributions to the
scattered fields come from the neighborhood of the stationary phase
{specular) points on the surface of the scatterer, the Kirchhoff
approximations for the surface fields may be used to yield the
physical opties solutions (Beckmann and Spizzichino. 1963; Barrick
1970). For the general case however, when the high or low frequency
approximations‘are not applicable, the physicel optics or perturbation
methods cannot be used.

In this work the full wave approach is used to determine the
like and cross polarized scattering cross sections at optical
frequencies for finitely conducting cylinders with roughness scales
that significantly modify the scattering cross sections (B=1).
While the radii of curvature of the unperturbed cylinders considered are large

compared to the wavelength XO, the radii of curvature of the rough
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surfaces are not. The cross section of the unperturbed cylinder need
not be circular. 3Both specular point scattering and diffuse
scattering are accounted for in the analysis i; ; self-consistent
manner and the cross sections are expressed as a weighted sum of two
cross sections. Multiplé scattering from the surface of the cylinder
however, is néglected.

In Section 2 the special forms of full wave solutions are presented
for long cylinders with mean circular cross sections and@ both the
specular point and diffuse contributions are identified. The solutions
are given in matrix form to include both the like and cross polarized
contributions. The solutions are presented as closed form integrals
(not integral equations) involving the scattering surface. Thus, al-
though they remainvalid for large and small roughness scales, they are
no more difficult for a user to employ, than the corresponding
physical optic- or perturbation expressions. In Section 3 several
illustrative examples are considered for cylinders with roughness
parameter B=1. The random rough surface (assumed here to have Gauss-
jan statistics) is characterized by its surface height (isotropic)
spectral density function and & corresponding non-Gaussian auto-
correlation function. The like and cross polarized cross sections
as well as the albedos for smooth and rough cylinders are compared.

To facilitate the analysis, it is assumed here that the radius of the cylin-

der is not only large compared to the wavelength but also large compared to

the rough surface height corgelation length.
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2. TFormulation of the Problem 106
The scattered radiation fields for two-dimensionally rough surfaces
can be expressed in matrix form as follows (Bahar 1981a)

GVf DVV DVH GV1 L
= G exp[iv-ré]ds (2.1)

o s
cﬂf DHV DHH GHl

in which GVf and GHf are the vertically and horizontally polarized (electric

or magnetic) fields scattered at a distance r in the direction of the unit

vector ;f Similarly, GVi and GHi are the vertically and horizontally

polarized fields incident (at the origin) in the direction of the unit
vector Ei. The scattering matrix D is a function of the direction of the

=i -f . =
incident and scattered waves n~ and n~, the unit vector n normal to the

rough surface and the complex permittivity € and permeability U of the:

medium. It is expressed as (Bahar 198la, 1982)

i

p = cingf
o]

F rrueat-muaion (2.2)
in which the transformation matrices Tf and Ti relate the scattered and
incident waves in the local planes of scatter and incidence to reference
planes of scatter and incidence while F is the scattering matrix defined

in the local planes of incidence and scatter. The coefficient G0 is

| Go = —1koexp(—ikor)/2ﬂr (2.3)
An exp(iwt) time dependence is assumed in this work and U(a) is the unit

step function. The vector v is

ek @-al)y=va +v3 +va3 (2.4)
° x"x yy z 2z
and in

cin gig (2.5)
where n is the unit vector normal to the rough surface S. The position

vector to a point on the rough surface is ;s' In view of the unit step
functions appearing in (2.2), the dntegration in {2.1) is over the surface
that is illuminated and visible. Thus {2.2) does not include the shadow
forming vave {(Morse and Fesbbach 1953). The differential cross sectional

area is

ds = ax dz/(i-Ey) (2.6)
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In order to derive the full wave expression (2.1) complete spectral
expansions of the electric and magnetic fields are used, exact boundary
conditions are imposed and Maxwéll's equations ;ré converted into rigorous
sets of telegraphists' equations (Bahar 1973a,b). The far field approximatioms
(2.1) are obtained from these telegraphists' equations on neglecting
multiple scattering from one element of the rough surface to another and
on employing suitable coordinate transformations (Bahar 198la). The expression
{2.1) is invariant to coordinate transformations and it satisfies duality
and reciprocity relationships in electromagnetic theory. For very (infinitely)
long one-dimensirnally rough surfaces,te integral (2.1) can be reduced to

s line integral by noting the integral expression for the Dirac delta function

-]

J exp(ivzz)dz = 2n6(vz) (2.7)

-00
On evaluating the expressions for the radiation (far) fields from the
expressions for their transforms (using the steepest descent method, Bahar

and Rajan (1979)), it can be shown that

£ o6t i iv-(x a a n-a
G Go JDG expliv- (x a +y ay)]dx/(n ay) (2.8)
in which
K %
i [ . . i e
G = ~ [—————| exp(in/4)exp|-ik (pcos® + z sin6’) (2.9)
2up coseo © ° °

and for oblique incidence (with respect to the z axis) the direction of the

incident plane wave is

+ sind’ 3 (2.10)
oz

-1 i -
n = -cosf a
oy

The direction of the scattered wave is (Bahar 1981 &)

-f f f - f -~ f £ -

n sine° cosd at+ cose° ay+ sineo sing a, (2.11)
(where the polar angle is measured with respect to the y axis, see Figs. 1

and 2). In view of (2.7)
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sing sing® = stnel (2.12)
Thus (2.11) can also be expressed as
~f i, ., - = S
n = coseo(s1n¢ at cosd ay) + sme0 a, (2.13)
where the azimuth angle ¢' is measured in the x-y plane with ¢' = 0 along

the y axis (see Figs. 1 and 2). The explicit expressionsfor the scattering
coefficients D (2.2) have been presented earlier when the reference incident

plane is normal to Eﬁ(Ey and the reference scatter plane is normal to

£ However, if the planes of incidence and scatter are taken to be

nxa_ .
y

the plane normal to Elx:ﬁs (ﬁs is the normal .to the cylinder at the specular

point) (Barrick 1970) in the expressions for Tf and Tl,the unit vector Sy

must be replaced by the unit vector .

Es =v/v = sin(¢'/2)5x+ cos(¢'/2)5y = ;r

sinef cos¢f5 + (cosef + cosei)E
9 X 2 oy (2.14)

[2 cosez(cose; + cosefz.)];2

To facilitate the derivation of the scattering cross sections for cylinders
with rough surfaces from (2.8), it is assumed that the radius of the cylinder
is large compared to the wavelength and the rough surface height correlation
length. In view of the conductivity of the cylinders, transmission through

its cross section is negligible. Thus the normalized scattering cross sections

(or scattering widths) for cylinders with rough surfaces are for P,Q=V,H

Pf2
<0PQ> - <|G | > 2mp

|GQiI2 Ta
k [DPQDPQ* exp[iv_(x-x")+ iv_(y-y')]
= ) - - _f - b X, dx dx' (2.15)
Ta coseo J (n'ay)(n ‘3y)

where the radius vector to the surface of the rovgh cylinder is

_ (xa+ya)
T, = (a+h)a_ = (ath) —+—L (2.16)

and a = (x2+ y2)¥ is the radius of the unperturbed cylinder. The charac-
teristic function X and the joint characteristic function Xy for the random

rough surface height hs are the expectations
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= < h )>
X exp(an s) (2.17)
where
. i [ - .=
v = 2k cos6_ cos(¢ /Z)ns » V=V (2.18)
and )
= < i ~h'
Xy exp[lvn(hs hs)]> (2.19)

For Gaussian rough surface height probability density functions p(h ) and
3

h ,h'
P( s s) |X|2 . [_v2<h2>] .
‘ PL-v <R (2.20)

and 2
= 2 t
Xp =[x exptvencni>) _ (2.21)
At the specular point ;+ns and
2 2 2 .2 i
Ix]™> Ixlo = expl-v <h>] = exp[—Bcos2(¢'/2)c0529;] (2.22)
The surface height autocorrelation function <hh'> {which is not Gaussian) is the

Fourier transform of the surface height spectral demsity function W (Rice 1951)

Wk) _ 1 ' .
= j<hshs> exp(ikT)dT (2.23)

In (2.23) <hsh;> is assumed to be a function of the distance T measured along
the cylinder's circumference. The normalized scattering cross section (2.15)

is expressed as a weighted sum of two cross sections (Bahar 1981b, Bahar and

Barrick 1983)
<« - ]Xi <o:Q> + <0PQ>S (2.24)

The first term in (2.24) is the physical optics contribution <0PQ> modified

by the coefficient ]xlz. It can be shown (using the steepest descent method)

that for « conducting circular cylinder

a 2 2
k 2 pQ I ' PQ
<0PQ> = ° | exp(iv. x + iv_y)dxi| = cos(¢ /2) \D__
w 1 || az x ¥y 2 = =~
Ta coseo (n'ay) I cos 60 n-ay
ca - -
n=n
s
(2.25)

-~




When the planes of incidence and scatter are taken to be normal to Rix Bt
(2.25) reduces to
P 2
<omQ> = cos(¢'/2)|RP| 6PQ (2.26)

in which RP %s the Fresnel reflection coefficient for the specular angle Y given

P 3 LN
by cosYy = -n = cosB: cos{¢'/2) and GPQ is the Kronecker delta.

Due to the surface roughness, the physical optics contribution
. . 2
{specular scattering Jis decreased by the factor |x]° (2.20). The surface

roughness also gives rise to the diffuse scattering term

-]
k 2 2 dx
<°PQ>5 -0 ]DPQI exp(ivTT)(Xz’]XI )T —— (2.27)
Ta cosS1 n-ay
[
A -00

i
in which Ai is the illuminated and visible portion of the surface. In (2.27),

it is assumed that the rough surface correlation distance T=lc (where <hsh;>

is equal to <h:>/e) is very small compared to the circumference of the cylinder.

The quantity X2"1X12 vanishes for T >> lc (Justifying the limits (-=,*) in (2.27)).

On expressing it as an infinite series and on noting that for the unperturbed

cylinder ﬁ=§r, 5'§y= cosY and dx/(ﬁ'ay)= ady, {2.27) reduces to

[ 2k
<0PQ>s ) <« -0 JIDPQI2 Qv ,vq)dy (2.28)

sm i
m=1 cose°

are the components of v (2.7) normal and tangential to

in which v_ and v,
n T

the surface of the unperturbed circular cylinder and

Q(vn,vT) = 3% J(xz—lxlz)exp(ivTT)dr

2 Vn m wm(vT)
- kopP 1[5 = (2.29)
m
in which W, = Wand for m 22
22m g m ‘
- — M 3
WE 77 J <hshs> exp(lvTT)dT
o .
LA OLE J W, v (k) dk (2.30)
Thus for B = 4k§<h§> << 1,(2.28) reduces to the perturbation solution
P ) P2
<o By = —2— J]n Q2 VHu(v, ydy (2.31).
n T
2 cos8°

-~ o




The full wave solution (2.24) is valid in both the high frejuency physical
optics limit as well as the low frequency perturbation limit and it bridges the

wide gap between them.
3. Illustrative Examples

In this section two different sets of physical and electrical
parameters are considered for the illustrative examples. For case (1)
(visual band) A = 0.555 x 10-4 cm, the radius of the cylinder is
a = 10A and the complex dielectric coefficient is € = ~40 -il12 (aluminum;
Ehrenreich, 1965). For case (2) (infrared band) X = 10 x 10—4 cm,
a=2.5) and € = -6000(1+1i).

The random rough (homogeneous) surface height autocorrelation
function <hh'> is assumed to be a function of distance T measured around

the circumference of the unperturbed cylinder. The corresponding surface

height spectral density function W(vT) (2.23) is assumed to be given by

W) = =7 . kg < k] <k

0 , elsevhere
1

k., = 7m/a and k = 4.5 x 10° cu_
d c

for case (1) and

W(k) = 23(k_kd)4 K, < [x] <k
ﬂ[(k—kd)2+ KZJQ *7d c

0 , elsewhere
kd = 2/a | k, = 4ko and K = O'.3kd

for case (2).

The constants B in the above expressions for W(k) are determined such

that the roughness parameter f = 4k§<h:> =1, where the mean square

height is given by ©
2
<h2) =J w dk bl B/Qko
[ 4

-00

P
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Thus B = 33.3 cm—l for case (1) and B = 2.80 cm-l for case (2).
For case (1), the surface height spectral density function W(k) decreases

4
monotonically as 1/k and is maximum at k=k For case (2), W(k) vanishes

4
at k=kd and it is maximum at k=kd+ k. For k > kc’ (the spectral density
cut off wavelength), the roughness scales are too small to affect the
scattering cross sections (Brown 1978). Case (2) represents a surface
with characteristic scales of roughness,relative to k ,that are smaller

than those for case (1). The mean square slopes 02 are (1) 0.00015 and (2) 0.01.

The corresponding correlation length to c1rcumference ratios ¢ /2ﬂa-(<h >/2)'2 Ta O
are (1) 0.015 and (2) 0.07.

1)
In figures 3 and 4 <ovv> and <OBH> are plotted as functions of ¢
for 82 = 0 and case (1). The corresponding plots for case (2) are
shown in figures 5 and 6. The normals to the incident and scatter planes

. -i = ~f
are given by -n"x ay and n

X gy respectively. Note that for case (1)
(a/A = 10), there is very little difference between the two polarizations

A'AY HH . .
<g' "> and <0 > however; for case (2) (a/A=2.5), the diffuse scattering
contributions to the cross sections are polarization dependent. In
figures 3 through 6, the contributions due to specular point scattering
<OZP> -|x]2 and the diffuse scattering terms <0PP>sl and <6PP>52 are also
shown separately. For o' = 0 there is no cross polarization (<0PQ> =0 P#Q).

o
In figures 7, 8 and 9, the like and cross polarized total normalized

cross sections <ovv>, <0HH> and <OVH> = <0Hv> are plotted as functions of ¢'
for 62 = 30° and case (2). Cross sections for both smooth and rough
cylinders are shown and the incident and scatter planes are normal to

_i - - -
-0’ x ay and nfx ay, respectively. Note that for the smooth cylinders

vV BH> - '
<0 "> and <0 approach unity for the specular direciion ¢ = 0 and

become vanishingly small for ¢' = /2. However for the rough cylinder

the like cross sections do not display the sharp nulls near ¢' = 7/2 and
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for the specular direction, ¢' = 0, the normalized cross sections are
significantly smaller than unity. On the other hand, for the smooth
cylinder, the cross polarized cross sections are vanishingly small near
the specular direction and peak around ¢' = /2. For tﬁe rough cylinder
however, no sharp null occurs near the specular direction. Thus, we
observe that the scattering cross sections become more isotropic as one

introduces surface roughness.

In figures 10, 11 and 12 the like 2~1 cross polarized total cross
sections <0vv>, <UHH> and <Fv> = <0VH> are plotted as functions of ¢'
for Bi = 30° and case (2). In these plots however, the incident and
scatter planes are defined as normal to the vector ;ix ;f (Barrick 1970).
Cross sections for both smooth and rough cylinders are shown in figures 10
and 11. For the smooth cylinder there is no depolarization in the
specular scatter plane normal to Eix ;f (2.26) (Barrick 1970). It should
be noted that for figures 10, 11 and 12 the definition of the incident
plane depends on the scatter direction while it is fixed (normal to
—Eix Sy) in the context of figures 3 through 9.

The normalized extinction cross sections cext’ the albedo for smooth
(B=0) and rough cylinders (B=1) are shown in Table I for case (1) and
case (2) when the incident wave is either vertically (V) or horizontally
polarized (H) and 62 = 0. Also shown in this table is the computed value
of the albedo for B=1 when one Jdoes not account for the contribution due

PQ>

to diffuse scattering <g s Clearly even for B=1, the contributions
due to diffuse scattering are not negligible. As B increases additional
terms in the expansion (2.28) need to be considered and the solution based

on perturbation analyses becomes inadequate (Barrick 1970).
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In Table II, the corresponding values for the normalized extinction
cross sections and the albedos are given for the case of oblique
incidence 92 - 30°,

It should be pointed out that in order to compute the albedo (the total
scattered power in all directions divided by the extinction cross section
for a given incident polarization), the plane of incidence is assumed to be

normal to -Eix 3_. The total scattered power is obtained by averaging over

the azimuthal angle, ¢' the expression <0PP>H|x|2 + <oPP

P PP P
+ <0Q >s in which <o >H and <OQ >H are the like and cross polarized normalized

P, 2
> + <%, |x]

Mie solutions (Barrick 1976), for the smooth cylinders and P#Q. The
albedos for case (2) are larger mainly because ]sl is larger for
A = 0.555 x 10™° cm than for A = 10 x 10~ cm.
4. Concluding Remarks

From the computed values of the like and cross polarized cross sections
and albedos, it 1is obvious that even for roughness scales correspending
to B=1 the effects of surface roughness cannot be ignored and the diffuse
scattering contribution is very significant. Using a perturbation approach
to the problem, one is restrictgd to values of B < 0.1 (Brown 1978). In this case
the perturbation diffuse scattering terms reduce to the first term in (2.28)
<OPQ>51. This term for B < 0.1 is negligibly small compared to the contribu-
tion due to specular scattering (<0PQ>]x|2). Thus the perturbation solutions
for the albedo are not adequate when the effects of the surface roughness
are significant.

Using the full wave approach, the surfrce roughness of the

cylinder is characterized by its surface height autocorrelation function

<hh'> or its Fourier transform W(vT). In this work diffuse

scattering due to different forms of V‘VT) (pamely roughness
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scales)is investigated. In the scattering plane normal to Eix Sf, the cross

polarized cross section is only due to diff§sé scattering, thus <OVH>, as
defined in Fig. 12, is most sénsitive to the characteristics of the surface
roughness. The dominant efféct of surfacé roughness is to flatten out the
peaks and dips in the scattéring patterns and to make the scatterers more
isotropic.

The albedos of the cylinders are computed for vertically and horizontally
polarized waves at normal and oblique incidence. The results for both smooth
and rough cylinders are given. It is shown in Tebles I and II that the contribu-
tion due to diffuse scattering is significant, however, perturbation theory
cannot adequately account for diffuse scattering when B=1.
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TABLE 1 eo =0
V case 1 Hcasel}| V case 2| H case 2
% ext 1.310 1.359 1.373 1.189
albedo B = 0 .945 .915 .952 .926
albedo B = 1 .89h .866 .924 .898
albedo B =1
o <UPQ>8 .T59 <734 .T76 .Th6
i
TABLE I} o = 300
V case 1 Hcase 1| V case 2 |H case 2
Oext 1.281 1.348 1.381 1.179
albedo B = 0 .958 .911 .960 .956
albedo B = ? .923 .878 .9k2 .936
albedo B = 1
no <P . 797 759 .816 789
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Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

Fig. 12.

208

Figure Captions

Incident and scattered waves in the x-y plane.
Plane wave incident in the y-z plane.

<cvv>, (2.24), case 1, 91 = 0D

total(-), [x|? <ol'>(),<0">_ (D), <a"'>_, ().

<, (2.24), case 1, ei = 0°,

toral ), IxI? <of>),0™s_ (o), <™, ().

<0"'>, (2.24), case 2, e: - 0°,

total(=), Ix|% <al'> (X),<va>si (0),'<0vv>.82 .

<o™>, (2.24), case 2, 05 = 0°,
toral(), [x|? <> (X),<0™> (D). <>, ).

<«6"Vs, (2.24), case 2, ei = 30°,

smooth cylinder (+), rough cylinder ([J).
<o™>, (2.26), case 2, 0} = 30°,

smooth cylinder (+), rough cylinder ([J).

<> = <g"B>, (2.24), case 2, e ~ 30°,

smooth cylinder (+), rough cylindex ([J).
<cvv>, (2.24), case 2, 82 = 30°, scatter plane,
smooth cylinder (+), rpugh cylinder ((O).
<0HH>, (2.24), case 2, e: = 30°, scatter plane,
smooth cylinder (+), rough cylinder (£).

<0Hv> = <OVH>, (2.24), case 2, ez = 30°, scatter plane,

’

smooth cylinder (+), rough cylinder (O).
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MULTIPLE SCATTERING BY FINITELY CONDUCTING PARTICLES

WITH, RANDOM ROUGH SURFACES AT INFRARED AND OPTICAL FREQUENCIES

Ezekiel Bahar
and
Mary Ann Fitzwater
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Lincoln, Nebraska 68588-0511

Abstract

The incoherent specific intensities for the waves scattered by a random
distribution of particles with rough surfaces are derived. Since large
roughness scales are considered, the diffuse scattering contributions to
the like and cross polarized scattering cross sections are given by the
full wave solutions. The scattering matrix in the expression for the
equation of transfer is given by a weighted sum of the scattering matrix
for the smooth particle and the diffuse contribution due to the rough surface of
the ﬁartiéle. Illustrative examples are presented for the propagation of
a circularly polarized wave normally incident upon a parallel layer of
particles. Particles with different surface height spectral density functions,
roughness scales, complex permittivities and sizes are considered. Both
first order (single scatter) and multiple scatter solutions are provided

and the results for particles with smooth and rough surfaces are compared.
\
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1. Introduction

Scattering of electromagnetic waves in media consisting of random
distributions of patiicles has been investigated extensively using the equation
of transfer (Chandrasekhar 1950, Ishimaru 1978). The main difficulty in
setting up the equation of transfer lies in the determination of the elements
of the 4x4 scattering matrix for the individual particles. Thus most of the
work has been done for particles of idealized shapes such as spheres.

In this work a method i{s presented for the modification of the results
derived for particles with idealized shapes to account for the random surface
roughness of the particles. To this end the full wave approach was used to
determine the rough surface contributions to the like and cross polarized
scattering cross sections and the elements of the scattering matrix are given
in terms of a weighted sum of the Mie solutions and the diffuse scattering
terms due to the particle surface roughness (See Section 2). For convenience
in this work a circularly polarized wave is assumed to be normally incident
upon a parallel layer consisting of a random distribution of irregular shaped
particles. Different particle sizes with different complex dielectric
coefficients are considered. The rough surface height is characterized by
different surface height spectral density functions (the Fourier transform
of the surface height autocorrelation function), and different roughness scales.

For the illustrative examples presented in Section 3 both first order
(single scatter) and multiple scatter results are presented for smooth
particles and for particles with rough surfaces. Layers with different optical
thicknesses are cousidered and the results are presented for both the forward
and backward scattered incoherent diffuse scattering intensities. The matrix

characteristic value technique is used to account for multiple scattering

(Ishimaru and Cheung 1980).
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2. Formulation of the Problem

In this section the principal elements of the full wave solutions for
the like and cross polarized differential scattering cross sections of non-
spherical particles are summarized. The contributions of these cross sections
to the familiar equation of transfer (Ishimaru 1978), in a medium
consisting of a random distribution of nonmspherical particles are also
indicated explicitly.

The radius vector from the center to the irregular surface of the particle

1s given by (see Fig. 1)

r_=h a +h a (2.1)
in which ;r is the unit vector in the direction of the radius vector, ho is
the radius of the unperturbed sphere and hs is the random rough surface height
measured in the direction normal to the surface of the unperturbed sphere.
In this work it is assumed that the mean square of the rough surface height,
<h:>, can be sufficiently large such that standard perturbation techniques are
not applicable (Barrick 1970). Thus the rough surface parameter,pB = 4k°<h§>,

considered in this work is in the range 0 < B < 10. (Smooth particle B=0, moderately

rough particle B=1, very rough particle B=10). To apply the standard perturbation
technique it is necessary to restrict the mean square height such that
B < 0.1 (Brown 1978).

The full wave solutions for the normalized scattering cross sections
<aij> per unit cross sectional area (Ay - ﬂhz)are expressed as a weighted sum
(Bahar and Chakrabarti 1985)

<oid> - <oij>2-|-<oij>s (2.2)
the symbol <+> denotes the statistical average. In the above expression
the first and second superscripts indicate the polarizations of the scattered
and incident waves respectively. Thus 1,] = 1 denotes Vertical polarization
and 1,J = 2 denotes Horizontal polarization. The cross section <oij>z is the

modified cross section associated with the unperturbed sphere...
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<°ﬁ>2 = Ix"(v)l2 <oij>u;g (2.3)

In (2.3) <cij>Mie is the Mie solution (Ishimaru 1978), for the like and cross
polarized cross sections of the unperturbed sphere. For large spheres,

koho > 20, (k° is the free space wavenumber), the most significant parts of
the solution are the specularly reflected wave and the shadow forming wave
(Morse and Feshback 1954). The coefficient of <aij>H1e is the rough surface

height characteristic function

x5 (v) = <exp ivh > (2.4)
in which v is the magnitude of the vector
¥ =k @ah) (2.5)

vhere Er andvﬁl= —Ey (see Fig. 1) are unit vectors in the direction of the
scattered and incident wave normals. For a rough surface hs with a Gaussian
probability density S i

x| - exp[-4k§<h:>cosz(6§/2)] - e'xp(.v2<h§>) <1 (2.6)
in which 6£/2 is equal to the angle of incidence at the specular point. The
coefficient lxslz accounts for the degradation of the reflected wave due to

surface roughness. The coefficlent is minimum for backscatter and approaches

unity for forward scattering.

The second term in (2.2)<Oij>s is the contribution to the total scattering

cross section due to the surface roughness.It is expressed as (Bahar and Chakrabarti

1985) ,
<¢,1J>s - I At Rt <a-zy>os(5f.51,5)p(5>a5 (2.7)

in which b 45 a unit vector normal to the surface of the scatterer,
i
k D3] 2
.5)

1,F 1= _1
A Gy,

EEORE pz(af,ﬁil;) (2.8)

o F,atm = Gea)? ] GEEa)-NCET) DT Daxgdz, . (2.9)

and p(;) 1s the probability density function for the slope of the surface of

the scatterer. Thus for a sphere .-




- vy

P(n)dn*w . 0<Y<1[/2, 0< 8 <21 ? (2.10)

n
where Y and § are the polar and azimuth angles. In (2.10) it is assumed that

the rough.surface (hs) mean square slope is small compared to unity (n= Er).
In (2.8), Dj':I is the scattering coefficient which depends on the polarizations
and the directions of the wave normals for the incident and scattered waves

as well as n, the normal to the particle surface and the complex electromagnetic
parameters {€,H) of the particle {Bahar 198la). Since pd is not very sensitive to
small fluctuations in n, in the expression for Dij, n is approximated by Er. This

does not mean that the effects of rough surface slope is neglected, since it is also
contained in the expression for x which depends on the surface height autocorrelatior
function. (See Table I). The term P, (af ,n-|n) is the probability that a point on

the rough surface is both 111um1nated by the source and visible to the observer

given the slopes (ni) of the surface of the scatterer (Smith 1967, Sancer 1969).

Since n = a_, and P2 is also not very sensitive to small fluctuations in the slope,

thus P2 = u(-a>*n)ulfi*n) where u(+) is the unit step function.
In (2.9) xs(;'gg and x;(;';r) are the rough surface height characteristic

function and joint characteristic function respectively

X (v~ ) = <exp(iv h )> (2.11)
and
§,~. = . '
Xy (v a)= <exp[1vr(hs—hs)J> (2.12)
in which v = ;.;r' For Gaussian surfaces

,Xs(;';r)lz = exp(—vf<h§>) (2.13a)

and

Scc.T Y o 2.2 2 oy o 2 ' s, - = 12
Xg(v:a ) = exp(-v_<h > + v <h h_>) exp(vr<hshs>)|x (v ar)l (2.13b)

The distance between two neighboring points r and T  on the surface of the

unperturbed sphere is given by the vector

;d =T ~1' = Xy ;1 z 3 , ]rdl = (x + 12)% (2.1k)
in which El and 53 are any pair of orthogonal unit vectors tangent to the surface
of the unperturbed sphere. It is assumed in this work that the rough surface h
1s homogeneous and’ isotropic, thus the surface height autocorrelation functlon
<h h > is only a function of the distance Ta betveen r and r' and independent
of direction. Bence Q (2 9) can dbe: reduced to a one dimensional integral

Q (a%,5%,5)= v 2 f(xa(v )-1x® (v, )| N, [(vawz)%’_ Jrgar, (2.15)
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in which Jo is the Bessel function of the first kind. It is also assumed that the
rough surface correlation distance T3e (where the correlation coefficient
R(rd)= <hsh;>/<h§>;;;;:-exp(-l)) is small compared to the circumference of the sphere.
The general expression for the equation of transfer (Ishimaru 1978) can be
written as follows for a plane parallel slab consisting of rough spherical
particles (see Fig. 2)
w48 - s [ rsatrdawrag) (2.26)
In (2.16) T is the optical distance in the z direction (normal to the plane
parallel slab)}

T = p[ct]z = J o n(D)abz , D= 2, (2.17)
vhere n(D) is the particle size distribution and o, is the extinction coefficient.
Bince <0U>s vanishes in the forward direction, the extinction matrix (Ishimaru
and Cheung 1980) for the rough sphere, can be represented by a scalar guantity
as in the case for the smooth sphere. However, if the unperturbed particle is non-
spherical, the first term on the right hand side of equation (2.16) is multiplied

J

by the extinction matrix. In general <" >s vanishes in the forward direction due

to the term P, in (2.8). The matrices [1] and [I'] sre the (4xl) incoherent specific
diffuse intensity matrices for waves scattered from the particles in the direction
1

8 = cos-lu and ¢ and for waves incident in the direction 8'= cos ~u' and ',

respectively. The elements of [I] are the modified Stokes' parameters

71 T ]
n| (<& =
1 <E, E*>
[my=1{%={ 2 (2.18)
U 2Re<E, EY>
»s
v [em<E, By

where the symbol * denotes the complex conjugate and E1 and E,_ are the vertically

2
and horizontally polarized components of the electric field. The (ixk) scattering
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matrix [S] in the reference coordinate system can be expressed in terms of the

scattering matrix [S'] in the scattering plane as follows:

[S) = [X(-n + I[S"I[X (a")] (2.19)
in which
[5'] = [x°@+3) [*Isyg ) + [5,] (2.20)
In (2.20) [Syye] 1s given by
|:’“fn‘z] olley,1"1 orelfy f],) -plalf, £ 12]
2 2
[syee] = ol£,, 177 ell£ypl"T  pRelfyyf 22J -pInlf, £ 22]
i
< Pled "ZRe[fnf;l] pZRe[£y,f5)] pRe[£ 22‘“12‘21] "’I“’[fu 22 f12 21]
p2Inlt), £ 21] p2Im(f,, £3,] pIn(f, 22 f12 ZlJ "Re[fu 227%12 21]

(2.21)
vhere f1; are elements of the 2x2 scattering amplitude matrix [£) and p[+] denotes
integration over the particle size distribution n(D) (2.17)

E £ f E!

¢ o 12 2 exp(—ikor)
| — e (2.22)
Bl far faof |B] T

In (2.22) E; and E_are the vertically and horizontally polarized field
components in the scattering plane and r is the distance from the center of the

sphere to the field point. An exp(iwt) time dependence is assumed in this work.

For a smooth sphere the elements f , are given by the Mi€ solution

ij
(Barrick 1970, Ishimaru 1978) and [f ] {s a diagonal matrix. The transformation

matrix [ L] 1n (2.19) is

cosza sinza % sinla 0

sinza cosza -k sin2a 0

[L(a)] =
-sinZa sina cos2a 0

0 0 0 1 (2.23)
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where a' is the angle between the reference plane of incidence and the scattering
plane {containing the wave normals ﬁr and El) and a is the angle between the
reference plane of scatter and the scattering plane (see Fig. 2).
In (2.20) the coefficient ]Xs(;-ar)le accounts for the fact that the specular
point contributions to the scattering cross sections is decreased because of the
512 512 - . R
rough surface (]x I <1 end ]x ] + 1 as B+ 0). The di fuse scattering matrix

[Ss] due to the random rough surface h_ is given by

S S
{s];] [s],] 0 0
s 3
[s 1= [821] .[522] OA 0
s 0 0 : [s§3] [sghj (2.2k)
0 o [sj) - Isp)
vhere
A
[SEJ] = mg:j. p[<°iJ>SJ ,for 1, = 1,2 (2.258)

and <oiJ>s is given by the full wave solution {2.7)
Furthermore for i = 3 and 4
s 11 12
+
[s;; Fo[Rel<o,p>  <o,7> 7] A /4mplo, ] (2.25v)
{upper and lower signs for i = 3 and 4 respectively) and for i # J
.5 11 12
[SiJJ <plnlt <0pp%, * <°21>s]] Ay/hnp[ot] (2.25¢)
(upper &and lower signs for i,J=4,3 and i,J = 3,4 respectively)

In the above expressions
*
k2 pid pk*

ijo- 1 [ SyaT
<gi>=E = [ e
0= 7/ ———— P, oplh)an (2.254)
(v-ar) (n-ay)

The remaining eight terms of the matrix [Ss] venish since D' and DlJ(i#J) are
symmetric and antisymmetric respectively with respect to the azimuth angle 6.

In order to simplify the solution of the transfer equation (2.16), it is
assumed in this work that the normally incident wave is circularly polarized. Thus

the incident Stokes matrix at z = 0 is given by 1

L1y, 0 = Fstut-a)atet =T slur 1280
. X

(2.26)

inc

2

P .
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where the — and + signs correspond to the right and left circularly polarized

waves and U' = cosd'. The reduced incident intensity is therefore,
[r,1=1[1,Jep-0 (2.27)

In (2.16) the (4x1) excitation matrix [Ii] is given by

p'=1
¢'=0

(1]~ I [sIl1 ,Jdu'd¢" = [FSJ[I°]J‘ *exp(-1) (2.28)
where Io,the incident Stokes' matrix is defined by (2.26).

Since the normally incident circularly polarized wave is independent of the
azimuth angle ¢, the Stokes' matrices for the incoherent specific intensities
are also independent of ¢. The elements of the scattering matrix [S] (2.16)
are functions of ¢—¢' only. Upon integration with respect to ¢' over a range

of 2m the scattering matrix [S] reduces to the following form (Ishimaru and

Cheung 1980).

55, S, O 0
0 0
- [ %2
0 R
(2.29)
0 0 843 Sy

Since f,, and f,, are even functions of ¢-¢' while f,, and f,, are odd
functions of ¢—¢'. As a result there is no coupling between 11,12 and U,V in
{2.16) and the equation of transfer for the normally incident, circularly polarized

vave decouples into the following two matrix equations

1]
" Eg'il L ;1 R J :11 :12 if s :11 2.300)
2 2 21 Sa2|{%2 12
20 alv v 33 Su{lv'f L, %
gl | Tt J ) R M ES N (2.30b)
43 Sug 1

in which I,; and I, are the first two elements of the excitation matrix [I1,;](2.28)

wvhile Ui and Vi are the third and fourth elements of the excitation matrix.

L .

— e
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3. Illustrative Examples
For the illustrative examples considered in this section, the random
rough surface height hy (measured normal to the surface of the unperturbed
spherical particle of diameter D = 2h°) is assumed to be homogeneous and
isotropic. Different forms-of the surface height spectral density function
W(vx,vz) (vhich is the two dimensional Fourier Transform of the surface height

autocorrelation function <hsh;>) are considered.

o
- - '
W(vT) w(vx,vz) 2 I <hshs>exp(ivxxd + ivzzd)dxddzd
L 4
- 2 <h h'> J (v_r )r. dr ’ (3.1)
L ss o Td 'd d
0o
where v and v, are components of v in the directions of the unit vectors El,ﬁ

tangent to the surface of the unperturbed sphere. Thus

vT = (vi + v:)li = (v2 - vi%

(3.2)

Similarly the surface height autocorrelation function <hsh;> is given by the

inverse formula

= W(vx,vz)
Al -= P r———— - -
<hshs> J % exp ( :lvxxd ivzzd)dvxdvz

5

s
= E—J W(VT)JO(vTrd)v,rdvT (3.3)
()

For case (a) (see Table I), the specific expression for the surface height

spectral density function is

(vp-v )
2C T 'd
W(VT) - -

v, <v_<vy
2 2 d T c
(Vv.-v. )+ v

T d m

= 0 elsewhere (3.4)

3
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In (3.4) the smallest spatial wavenumber is
Yy = 4/D (3.5a)
and the cutoff wavenumber is
v =4k (3.5b)

c [+]

where k is the wavenumber for the electromagnetic wave, The constant C is
chosen such that the scale of the random rough surface is

g = 4k§<h§> el (3.6)

In (3.6) <h§> is the mean square height

2. .7

<hs> E—j H(vT)devT (3.7)
o]

The corresponding value for the mean square slope

Oi = E»I W(v )devT (3.8)

o]
is 02 = 0.013. The parameter Vo where W(VT) is maximum is Vo © 1.2/D.
The exponent in (3.4) is n = 4 and the material of the particle is aluminum,.

For wavelengths A = 10 um the relative (complex) dielectric coefficient is

€= ~6000(1+1) {Ehrenreich 1965). The diameter of the unperturbed spherical

particle is D = 5 X (See Table I case (a)).
For surfaces with small scale roughnesses B < 1, the contribution (2.7)
to the total scattering cross sections due to surface roughness hs can also

be expressed as a series

ij,2 -f ~1,- 2m
D P, (n", ) W (v.)
<oij>-2:1mk2<l | 2nn|n (fr mT xtv )>
s m [ - - [ 2
(ar'a)
2mrn/2
H (v )x(v )
-z aki J J ]Dijl P, (n ,0 ]n){ ] —-——-r———-— sinydyd$ (3.9

o 0
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in which Wm(vT)IZZ“l is the two dimensional Fourier transform of <hsh:;>m and
the integration is over the polar angle Y and azimuthal angle §. The Fourier
transform Wm can also be expressed as

Wm(vx,vz) 1

- 1y
22m (2“)2 J (hshs) exp(ivxxd-l- ivzzd)dxddzd

- _L_ [ ! ! [P
' 22m J "m-l(vx’vz)wl (vx Vx*Vz vz)dvxdvz

1 _
- 22m wm—l(vx’vz) ® wl(vx,vz) (3.10)
In (3.10) the symbol (X) demotes the two dimensional conmvolution of wm—l with

Wl = W. For B << 1 only the first term in (3.9) is non-negligible. This term

" corresponds to first order Bragg scattering from rough surfaces (Bahar 1981 e,b).

For case (a) {(B=1), it is necessary to evaluate only two terms of the series
in (3.9). For large values of roughness scales (B”1) it is more convenient

to evaluate <v:!i")>‘5 using (2.7).

For cases (b) (c) and (d) the specific form of the surface height spectral

density function considered is

2¢ vp 1"
H(vT) -5 [——-——-2 2] » Vg >0 (3.11)
v.. + v
T m

where the exponent is assumed to be n = 8. For case (b) the roughness parameter

1s B = 1 and for cases (¢) and (d) it is B = 10. The corresponding values for

Voo oi, A, erand D are shown in Table I cases(b) (c¢) and (d). For these cases,

the surface height autocorrelation coefficient R(Z) = <hsh:;>/<h§> can be

expressed in closed form
2 4 6
k14 3 4
r@ - - + B e Sl

2 4
R [%‘%'%]CZKO(C) 13.12)




l

[ 231
In (3.12) K and K, are modified Bessel functions of the second kind of order
zero and one respectively (Abramowitz and Stegun 1964) and the dimensionless

parsmeter § is
L= voTa (3.13)

For all the illustrative examples, it is assumed that a right circularly
polarized vave is normally incident at T = 0 (z = o) upon a parallel layer of
optical thickness To (see Fig. 2). The equation of transfer for the azumuthally
independent modified Stokes' parameters (2.30) are solved using the matrix char-
acteristic (eigen5 value technique (Ishimaru and Cheung 1980). For case (b)
(D/A\=10) the scattering cross sections are more sharply peaked in the forward
direction, thus it is necessary to use a Gaussian quadrature formula of order
32 (Abramowitz and Stegun 1964). The boundary conditions for the incoherent

specific diffuse intensities are

[11]=0 for 0<p<1 at1=o0 (3.14)

transmitted incoherent diffuse intensities are zero at T = 0) and
(1J=0 for 0>u>1 etT=1 (3.15)
reflected incoherent diffuse intensities are zero at T = To).

For case (a) (see Table I) I, (vertical polarization) and I, (horizontal
polarization) are plotted in Figs. 3 and 4, respectively, as functions of the
scatter angle 8 {0.90°) (transmitted T > To) for T, = 10. The solid curves
correspond to first order scattering solutions only (Ishimeru 1978) for the smooth
(unperturbed spherical) perticles and particles with rough surfaces. The surface
roughness of the particles tends to smooth out‘the incoherent diffuse intensities
as function of 6. Note that the vertically polarized intensity is more
oscillatory than the horizontally polarized intensity.

The corresponding solutions that account for multiple\scatter are also given
for the smooth (+) end rough (A) particles. We note that since the albedos for

the rough particles are slightly lower than the albedos for the smooth particles
(see Table I), the incoherent diffuse intensities are somewhat lower for the




rough particles. For optically very thick layers of particles, the diffuse
intensities Il and I2 are practically equal and rather flat functions of 6.

Multiple scattering cannot be neglected in these cases.

For case (b) {see Table I), the incoherent diffuse intensities I1 and I2
are plotted in Figs. 5 and 6 as functions of B (00,900) (transmitted T > To)
for TO = 1. The first order solutions are closer to the multiple scattering
solutions for T, = 1 than for T, = 10, however multiple scattering does tend to
maeke the incoherent intensities more monotonic functions of the scatter angle 8.
For optical thickness To = 1, the surface roughness has a smaller effect on the
incoherent intensities and Il and I2 are not equal in the intermediate range.
of angles between 10° ana L0°,

In Figs. 7 and 8 the incoherent diffuse intensities Il and 12 are plotted
as functions of © (900,180° reflected T < 0){case b with optical thickness

To = 10). Note sgain the oscillatory nature of the first order sclutions for

I, {vertical polarization).
For case (c) (see Table I), the incoherent diffuse intensities I1 and I2 are
plotted in Figs. 9 and 10 as functions of 8 {0°,90°)(trensmitted 1 > To) for

To = 10. For smaller particle sizes {D=51), the first order intensities are less

oscillatory than for large particle sizes (D=10A). Note also that for dissipative
plastic materials, there is a more significant difference between the intensities

for the smooth and rough particles.

For the final cese considered (@) (see Table I), the incoherent intensities Il
and I, ere plotted in Figs. 11 and 12 as functions of (0°,90°) (transnitted 1> T_)
for T = 10. The only difference between case (¢) and case {d) is the relative complex
permittivity € of the particles. Since the particles for cases (a) and (d) are
highly conducting there is a smaller difference in the specific incoherent intensities
for the smooth and rough particles. This is because the corresponding albedos are
not significently different for highly conducting particles (see Table I). Neverthe-
less, it should be pointed out that for optically thin layers (To < 1) the principal
effect of particle surface roughness is to swooth out the undulations in the diifuse
specific (incoherent) intensities as functions of the scatter angle. The effect of
particle surface roughness is more pronounced for highly dissipative particles with
small albedos,case (c).

The effect of surface roughness on forward scatter (6=0) {s less pronounced
8ince <°id>s (2.7) vanishes and Ixslz + 1 for forwerd scattering.
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4. Concluding Remarks

In this work scattering of electromagnetic waves by particles with
moderate (B=1) to very large (B=10) roughness scales (that cannot be accounted
for using the standard perturbation methods) has been considered. The
incoherent diffuse scattering intensities for the rough particles have
been compared with the corresponding results for smooth particles. Both
‘* first order (single scatter) and multiple scatter results have been presented

for a set of four different cases listed in Table I. Particles of different
sizes, complex dielectric coefficients, and surface height spectral demsity
functions are considered.

As the scale of roughness B = 4k§<h§> increases, the scattering coefficients
as well as the incoherent diffuse scattering intensities become practically
independent of the scattering angle. In addition, for large To, the incoherent
scattering intensities decrease as the roughness scale increases. This effect is
more pronounced for particles made of very dissipative materials. As the
optical thickness of the layer increases, the incoherent diffuse scattering

intensities become less dependent on scatter angle.
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case a
n 4
B 1
Vo 1.2/D
o2 .0131
8
A 10y
€r -6000-16000
Material aluminum
2h =D 5A
o
ot, smooth 2.059
ot, rough 2.059
albedo, smooth .9885
albedo, rough .9732
2
lae_ 2 [ <hs>] 089
7D 7D 2 *
Js

TABLE 1
case b

8
1
15.9/p
.10
.555u
~40-112
aluminum
10A
2,259
2.313
.9356
.8999

.016

case c

8
10
4/p
.10
10u
1.5-18

dissipative
plastic

5)
2,370
2.333

.6434
.6043

.102
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case d

8
10
4/D
.10
10u
~6000-16000
aluminum
S5A
2.059
2,198
.9885
9724

102

Table I. Values of parameters for the surface height spectral density

function W, wavelength A, dielectric coefficient €, and diameter D

for the scattering particles.
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/ b

Fig. 2. Scattering geometry indicating incident and scettering wave normals

7l ana nf and corresponding field components E; parallel (vertical) and E,
perpendicular (horizontal) polarizations.
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SCATTERING AND DEPOLARIZATION OF LINEARLY POLARIZED

WAVES BY FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE

l Ezekiel Bahar
; » and

Mary Ann Fitzwater

i Electrical Engineering Department
3 : University of Nebraska--Lincoln
Lincoln, Nebraska 68588-0511

Abstract

In this work a layer consisting of a large variety of
randomly distributed finitely conducting particles with
1 irregular shapes is assumed to be excited at infrared and
optical frequencies by a linearly polarized wave. The
resulting incoherent specific intensities as well as the co-
polarized and cross polarized intensities are evaluated.
J Both single scatter and multiple scatter results are presented
for particles with smooth and rough surfaces and the effects
of particle surface roughness on the degree of polarization

are considered in detail.
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1. Introduction

In this work the scattering and depolarization of linearly
polarized waves by a random distribution of finitely conducting
particlas of irregular shape are presented. Infrared and optical
excitations of a large variety of particles with different sizes,
shapes and complex dielectric coefficients (see Table I) are
considered in detail. The random rough surface of the particle is
characterized by its surface height spectral demsity function (or
its Fourier transform the surface heigﬂt autocorrelation function).

The full wave approach is used to account for both specular
point scattering as well as diffuse scattering by the particle in a
self-consistent mannerl, and the equation
of transfer2’3 for the modified
Stokes parameters is solved using the matrix characteristic value
methodh . Both single scatter and multiple
scatter results are given for particles with smooth and rough surfaces
and the effects of particle surface roughness are considered in
detail.

Both the co-polarized and cross polarized incoherent diffuse
intensities are plotted as functions of the azimuth angle and the
optical thickness of the layer of particles. The degree of polarization

of the scattered waves is also evaluated as a function of the azimuth

angle.
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2. Formulation of the Problem

In this section we present the analytical solutions for the modified
Stokes incoherent specific diffuse intensity matrix [(1]. A linearly
polarized wave is assumed to be normally incident upon a parallel layer
of randomly distributed non-spherical particles. Thus the like and cross
polarized incoherent intensities are azimuthally dependent. Special
consideration is given to the effects of the surface roughness of the
particles of finite conductivity. Since the roughness parameter 8 = hki<h§>
(where ko is the free space wavenumber of the electromagnetic wave and <h§>
is the mean square height of the particle rough surface) is assumed to be
large (0 < B < 10), the full wave solutions
are used to determine the elements of the scattering matrix for the equation

of transfer2’3.

M %Ei—J = - [1]+ J (SIC1'Jaura¢’ +[1,] (2.1)
In (2.1) T is the optical distance in the z direction (normal to the plane
of the slab, (see Figs. 1 and 2)

T = p[ct]z = J o, n(D)aD z (2.2)

where D is the diameter of the unperturbed spherical particle, n(D) is the
particle size distribution and ot is the extinction coefficient. The symbol
p[-] denotes integration over the size distribution. Since the effects of
the particle surface roughness are vanishingly small in the forward direction,
the extinction matrix’*"

for the rough sphere can be represented by a scalar quantity. The (4x1)

matrices [I] and [I'] are the incoherent diffuse intensity matrices for waves

scattered by the particles in the direction 6 = cos-lu and ¢ and for waves
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incident in the direction 0' = cos_lu’ and ¢' respectively. The elements
of [I] are the modified Stokes parametersS.
< *>
= BB
1 <E_, E¥>
2 2 2
[I] = = .
>
U 2Re<E1 E2
*>
v 2In<E, E} (2.3)

where the symbol * denotes the complex conjugate (an expliwt ) time dependent
excitation is assumed)and El and E2 are the vertically and horizontally
polarized camponents of the electric field. The (4x4) scattering matrix [S]
in the reference coordinate system is expressed in terms of the scattering
matrix [S'] in the scattering plane through the following transformation

[s] = [&L(-n + a)][s')[L(a")] (2.4)

in which [S'] is the weighted sum of two matrices
= S~ = |2
[s'] = Ix°(+ ar/I (5561 + [8.] (2.5)

In (2.5) [sMieJ is given by

2 2 * *
!—p[lfnl 1 el pRe[ £, 17.] ~pIn[ £} ,],]
2 2 * *
5. ] o AL R LW pRe[£5) 157 Il Ly To0)
Mie® = plo, ] * . * 4 _ x *
7 |p2Relfy 1,1 p2Relf, 1,01 pRel£) 17,41, 17, —pImlfy, £, £10751]

* * * * : * *
|p2In[£))£5) p2In[1) o 15,] pInlf)) T5,41, 15,1 pR‘3[1"11f22'f12f21]_|
(2.6)
vhere fid are the elements of the 2x2 scattering matrix [f] for the unperturbed

(spherical) particle.

1 N . N
El [T f12| (B exp(-1k;r)

E _ r21 f22' E;- r (2.7)
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In {2.7) E; and E_-ere the verticelly end horizontally polarized field
components (in the scattering plane which contains the unit vectors ﬁi
and ﬁf in the directions of the incident and scattered waves), and r is
the distance from the center of the spherical particles. For a smooth

sphere fiJ are given by the Mie solutioné’3 . -

and [f] is a diagonel watrix. The transformation matrix [ in (2.4) is

c052a sin2u 3 sin2a 0

nzu cos2u ~% sin2a 0

si
[L{a)] = (2.8)
-sin20 sin20 cos2a 0
0 0 0 1

where o' is the angle between the reference plane of incidence and the
scattering plene and u is the angle between the reference plane of scatter
and the scattering plane (see Fig. 2). 1In (2.5) xs(;'ﬁr) is the particle

random rough surface characteristic function

Sy~ - - -
. = < Ive .
x (v ar) exp(iv a hs)> (2.9a)
in which
- £ -1
v = ko(n—n (2.9b)
and Er and nt are unit vectors in the directions of the scattered and
incident wave normals. The random rough surface hs is measured normal
to the unperturbed (spherical) particle. Thus, the radius vector to the
surface of the irregular particle is (see Fig. 1),
r.=h a + hs a (2.9¢)
The radius of the unperturbed sphere is hy - The coefficient lxs[2 in

{2.5) accounts for the degradation of the specular point contributions
to the scattered fields by the rough surface (lxs[2 < 1 and [xs|2 +1as B+ 0).

The diffuse scattering contribution to the matrix [S'] due to surface roughness

is given by




r s s
[s,) [s],] ° 0
[sS.] [sS.] 0 0
| o= 22
(s ]= »
S S
0 0 [5333 [S3u] (2.10)
0 0 [s§3j {sﬁ'hjj
vhere_
s A i
[s3,) = Wp—fjot]— ol<o ">s], for i,j = 1,2 (2.11a)
2

in which Ay = nho is the cross sectional area of the unperturbed particle and
<01">s are the full wave solutions for the like &nd cross polarized normalized
scattering cross sections.l The first and second

superscripts i,J denote the polarizations (V vertical, H horizontal) of the

scattered and incident fields respectively.

an T :
<gi~’>S =f ]kouljl2 P, Q_ siny ayas/n° (2.111)
o o
where
® 2
= s vea - s vea iver
Q = { (x5(vea,) - Ix (vo&a )|")exnliver,)ax dz, (2.11¢)
The joint characteristic function Xa for the rough surface hs is only a function
2

of distance rs T (x§+zd)k measured along the surface of the unperturbed sphere.

Furthermore for i = 3 and &4 T

[s3,3 p[Re[<022>s + <021>SJ]Ay/hnp[ot] (2.114)
{upper and lover signs for i = 3 and 4 respectively) and for i # J
5 4 11 12
ISijJ—p[Im[t <Opp% * <0py> 4 Jumolo,] (2.11e)
{upper and lower signs for i,3=4,3 and i,3=3,4 respectively). In the above expressions
on 7w
13, 215 k¥ ) °
<03> -£ £ kD D P, Q siny ayad/n (2.111)

In (2.11) P2 is the shadow function and the scattering coefficients Dl‘j are
functions of ﬁl,ﬁf and 1 the normal to the unperturbed surface of the particle

es well as its electromagnetic parameters gu. The remeining eight terms of the
matrix [SSJ vanish since Dii and DiJ(i#J) are symmetric and antisymmetric
respectively with respect to §,the azimuth engle of the sphere.

In this work it is assumed that a linearly polarized wave is normally incident
upon & parallel layer (of optical thickness To) containing a random distribution of
irregular particles. Thus the incident Stokes matrix at z=0 (Fig. 2) is
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1
_ 10 " = “_ '
[1,,00= {0]s-180e") =i Jptur-18em) (2.12)
in which 8(+) is the Dirac delta function. .
Thus the reduced incident intensity is
[1,,]= [}in;]exp(-r) (2.13)
and the (4x1) excitation matrix in (2.1) is
(1,1 = f [s](1 ,Jau'a¢’ = [Flexp(-1) (2.1%)
in which the (4x1) metrix F is
[F] = [s)(1)
u'=l
¢'=0 (2.15)

and the matrix [Io] is defined by (2.12). The matrix [F] contains terms that
are azimuthally independent as well as terms that are proportional to cos2¢ and

sin2¢. Thus [F) is expressed as followsb

[F] = [F], + [F], cos2¢ + [F], sin2¢ (2.16)
in which, for a rough sphere,
F01 Fal V]
F ¥
1{° 02 1l 2
F = = = = a, =
(7], = 3 %, 1), = 3 e, e,
0 0 —533
0 ) -5 (2.17)

and Fai= Sil + 512 (upper and lower signs for @=0 and a=g respectively.)
The solution of the equation of transfer (2.1) for the incoherent specific

intensity matrix can be expressed in terms of the Fourier series
- 18 § P
[1] mgo[l“m cos m$ + mgl[ljm sin mo (2.18)

Since the elements of the scattering matrix [S] are functions of ¢'~¢ it is

expressed as follows

7T m=l

[s)=5(s)2+1 ¥ [[sJ; cos m(¢'-4)+ [SID rin m(¢'-¢)] (2.19)

Furtherm i i
ermore, since in (2.7) f,, and f,, are even functions while f), and £,

are odd functions of ¢'-¢, for m=0,1,2 ....

——
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a b
[lem 0 . 0 [52]m
[s]] = o| ana [8]] = b
0 N [83]1!1 0 (2.20)
in which [SiJ; and [Si]z are 2x2 matrices
2n
[si]: = J [SiJcos m(¢'-¢)a(¢'-¢) i=1,4 (2.21a)
0
and
2%
Isilz = J [SiJsin n{¢'-¢)a(¢'-¢) i=2,3 (2.21b)
o]

and [Si] are the (2x2) submatrices
[s,] [s,]
[s]=

[s3] [shJ

In viev of the excitation, (2.14) through (2.17), the only non-vanishing

Fourier terms are m=0 and m=2h

transfer for the m=0 Stokes matrix is

1

(2.22)

The eguation of

b e L) = - 10} + [ [8IS T + [F) expl-x)

-1

Since the third and fourth elements of [F]o (2.17) are zero, and in view

of the special form of [SJ:, the third and fourth terms of [I]Z vanish.

The equation of transfer for the m=2 term is

1
y £ [132 = - [1]2 + J [8]2[1']2du' + [F]2 exp(-1)
-1
in which
b
[s,2; [s,],

and [F]2= [FJ; (Fl,

(2.23)

(2.24)

(2.25)
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The boundary conditions for the Stokes matrix are

[1),=[1),=0 for0O<u<latr=0 (2.262)

= > - =
[13,=[1),=0 for0>u>-1at1=nr. (2.26v)

Equations (2.23) and (2.24) together with the associated boundary conditions
(2.26) are solved for the specific incoherent diffuse scattering intensities
using the Gaussian quadrature method {to discretize the angles 6 = cos-lu)
and the mstrix characteristic value technique.3
The diffuse scattering intensities Il and 12 correspond to the
vertically polarized (Ee) and horizontally polarized(E¢) waves. However
in practice, the polarization of the receiver is either parallel (Ex) cr
perpendicular (Ey) to the polarization of the incident wave. The corresponc-
ing specific intensities Ix and Iy are celled the co-polarized and cross
polarized incoherent intensities respectively.

They are related to the intensities I, and I_ through the linear trans-

1 2
formation
1 <E_ E¥*>
x x °x
I <E E%>
Y= ¥V =[Rr)[1) (2.27)
U 2<Re(E_ E*)>
xy Xy
v 2<Im(E E¥)>
xy x Yy
where
c0528cose¢ sin2¢ -% sin2¢ cosB 0
coseesin2¢ cose¢ % sin2¢ cosH [0}
R] =
[J cos2ﬁsin2¢ ~sin2¢ cos2¢ cosb 0
0 0 0 cosB (2-28)

The degree of polarization of scattered waves is given by3

e
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1
(1. - 1.)% + U2 + V3%
e
Lt+tih

All the specific intensities as well as the parameter m are symmetric about

(2.29)

n

the ¢ = O,n plane and the ¢ = m/2, 31/2 plane.

3. TIllustrative Examples
The random rough surface height hS (2.9) {measured normal to the surface
of the unperturbed spherical particle of radius ho, see Pig. 2), is assumed to
be homogeneous and isotropic for the illustrative examples considered in this
section. The rough surface is characterized by its surface height spectral
density function W(vx,vz) = W(VT), the Fourier transform of the surface height

autocorrelation function <hsh;>.

o
_ _ 1 ' . . L
W(VT) = W(vx,vz) = 2 j <hshs>exp(nvxxd + Jvzzd)dmdczd

-
©

2
= = < i .00
- J hshs>Jo(vTrd)rddrd (2.2

(4]

in which Jo(vTrd) is the zero order Bessel function of the first kind and vy
and v, &re components of the vector v (2.9b) in the directions cf the unit

vectors n., and n tangent to the surface of the unperturbeéd sphere. Thuc

1 3
_ .2 2%, 2 2\%
Vo = (vx + vz) = (v° - Vr) (3.22)
and s .
viEvey o, v o= vea (3.2t)
The surface height autocorrelation function <h$h;> is only & function of the

distance r_ measured along the unperturbed surface

d
el W(vx,vz)
< "= —_— -3 -1
hshs J i, exp( iv o x, 1vzzd)dvxdvz
. -]
oo
T
— ki
=3 I w(vT)Jo(vTrd)devT (3.2 )

]

et .
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Different forms of the surface height spectral density function W and
different roughness parameters B = hk§<h§> ere considered for particles
of different sizes D = 2ho and relative camplex permittivities €. excited
at infrared and optical frequencies (see Table I). Thus for case (&)

(Tedvle I), the specific form of the surface height spectrel density functicn

is
(vo-vy) 1°
2C T d
&b |—2 ¢ <
W(vT) P )2+ Z Ve < Vg <V, (3.4a)
T 4
= 0 elsewhere
In (3.ka)the smallest spatial waverumber is
vy = L/p (3.Lp)
and the cut-off wavenumber is
v, = hko (3.k¢)

in which ko is the wavenumber for the electromagnetic wave. The constant

C is determined by the choice of the roughness parameter (Table I).

2.2
B = bk <n> (3.5)

In (3.5) <h§> is the mean square height

2, _ 1
=1 J Wy vgav, (3.6)

o

The corresponding value for the mean square slope is {Table I)

J w(vT)v;dvT (3.7)

<02> =
s

[SE

o

For case .(a) the parameter v, = 1.2/D (W(VT*' Vot vd) is the maximum value
of W), the exponent n (3.4a) is n = L and the diameter of the particle
is D = S\ (Table I). For wavelength A = 10 the relative (complex)

dielectric coefficient of alumimm is € = —6000(l+i).8
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For cases (b) through (d), (Teble I), the specific form of the surface

height spectral density function is

v, n
2C T -
w(vT) == > s Vg >0 (3.8)
v, t Vv
T m

in which the exponent is assumed to be n = B. For case (b) the roughness
parameter is B = 1 and for cases (c) through [e) B = 10. The corresponding

values for v. W(v ) =( ) 02, A, € end D = 2h_ are shown in
m m s r )

W .
maximum

Table I. The analytical expression for the surface height sutocorrelation

function for cases (b) through {e) is

2 ] 6
= 3 3
o o B e
2
+ [—;— - 1 - Sgle K () (3.9)

In (3.9) Ko and Kl are modified Bessel functions of the second kind of

order zerc and one respectively9 and the

dimensionless argument is

LEvr, (3.20)

For all the illustrative examples it is assumed that the normally incident
wave is linearly polarized with the electric field in the direction of the x
axis (in the ¢=0 plane, see Fig. 2). The equation of transfer for the Stokes
parameters (2.23) and (2.24) together with the associated boundary conditions
(2.26) are solved using the matrix characteristic value technique-3

For case (b) (D/A=10), the scattering cross sections are very sharply

peaked in the forward direction, thus it is necessary to use a Gaussian
quadrature fornmlagof order 32.

In Figs. 3 and L, the incoherent diffuse transmitted intensities Il
(vertical polarizapion) and I, (horizontal polarization) for case (a) are plotted
as functions of 6(0,90°) with ¢=0 end T_=10. The solid curves correspond to first

order scattering solutions only3 : * ' for the smooth (unperturbed
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spherical) particles and particles with rough surfaces (12 + 0, for single
scatter smooth particle). The corresponding solutions that account for
multiple scattering are also plotted in these figures. The albedo for
highly conducting particles with roughness parameter B = 1 is 0.9732 and
the albedo for smooth particles is 0.9885 (see Table I). Thus for

case (a) there is only a 2 db difference between the diffuse intensities
for the rough and smooth particles. Note also that for To = 10 except for

scattering in the forward direction I1 = 12 (degree of polarization m = 0.)

In Figs. 5 and 6 the transmitted incoherent intensities I,
end I, for case (b) are plotted as functions of 6(0,90°) with ¢ = 0 and
T, = 10. At X = 0.555u the dielectric coefficient is £ = - 4o -i12 for

gluminum. In this case there is a more significant difference between the
albedoes for the rough and smooth particles (see Table I). Consequently
there is & larger difference between the results for the smooth and rough
particles for this case than for case {a) vhere A = 10p. Note again that
I1 = 12 except for the near forward direction.
In Figs. T and 8 the - transmitted specific intensities I, and 1,
for case (c) are plotted as functions of 6(0,90%) with ¢ = 0 and T, = 1. The
particle surface roughness tends to smooth out the first order sclution
(s0lid line). In this case A = 10y and €. = -6000 {1+i), the slbedoes for both
the smooth and rough particles are near unity however surface roughness does
have a very significant effect on the specific intensity 12. For To =1 Il > 12
particularly in the forward direction. The corresponding results (case (c))
for the co-polarized and cross polarized incoherent specific intensities Ix
and Iy respectively are plotted as functions of ¢ in Figs. 9 and 10 with 6 = 15.4°,
In Figs. 11 and 12 the reflected co-polarized and cross polarized
specific intensities I, and I, are plotted for case (@) as functions of the

azimuth angle ${0,180°) with 8 = 164.6° and T, = 1. It is interesting to note
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that the co-polarized intensity Ix is smaller for the rough particle than for

the smooth particle since the albedo for the rough particle is smaller. However
the cross polarized intensity Iy is smaller for the smooth particle than for

the rough particle in this case. This is because the rovgh particles tend to
depolarize the incident wave more strongly. As 10 becomes very large (To > 10) Iy
for the rough particle becomes smaller than Iy for the smooth particle.

In Figs. 13 and 14 the transmitted specific intemsities Il and 12 are plotted
for case (e} as a function of 6 with ¢ = 0 and To= 1. In this case particles of
varying sizes ranging from D = 5X to D = 8) are considered. As a result the plots
for Il do not exhidit the sharp undulations present in the corresponding plots of
Il for particles of uniform size. Furthermore in the near forward direction (6 < 100)
multiple scattering and the rough surface effects on Il are small. From these plots
it follows that the degree of polarization is largest in the near forward direction
and it becames very smgll for near grazing angles.

In Fig. 15 the transmitted co-pclarized and cross polarized specific incoherent
intensities Ix and Iy are plotted as functions of the optical thickness T for
case {c) with 6 = 6.70 and ¢ = 0. For T<2 the results for the smooth and rough
particles are practically the same, however for T > 15 Ix x Iy (degree of
polarization m becames very small), and the effects of surface roughness become
very significant.

In Fig. 16 the transmitted co-polarized and cross polarized specific incoherent
intensities I, end Iy are plotted as functions of T, for case (@) with 6 = 6.7°
and ¢ = 0. In this case the particles are more dissipative than for case (c).

The effect of surface roughness is more pronounced on Iy than on Ix' Both Ix
and Iy peak around To = 2.

In Figs. 17 end 18 the degree of polarization (2.29) is piotted for case (a)
as a function of azimuth angle ¢ with 6 = 6.7°, 6 = 15.4°, ¢ = 2’4..2o end 6 = 33°.
For near forward scattering 6 = 6.70, the degree of polarization m for the smooth

and rough particles is close to unity for &1l angles ¢. For B = 15.140 the degree
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of polarization m undulatesstrongly as a function of ¢. It is smaller for the
rough particles. As the angle 8 incresses (sec Fig. 18) the degree of polarizaticn

decreases and becomes more dependent on particle surface roughness.

The extinction cross sections UT and the albedoes for the different smooth and

rough particles considered are given in Table I.
4. Concluding Remarks

The specific incoherent diffuse intensities Il and 12 as well as the co-polarized
and cross polarized intensities are evaluated for a layer of randomly distributed
finitely conducting particles of irregular shape. A variety of particle sizes with
different complex dielectric coefficients are considered. The rough surfaces of
the particles are characterized by different surface height spectral density func-
tions and roughness parameters B. The layer of particles is assumed to be excited
by normally incident linearly polarized waves at wavelengths A = 10u and A = 0.5554.

The rough particles will generally depolarize the incident weve:c mcre than the
smooth particles and the specific intensities tend to be less oscillatery functions
of & for the rough particles. Since the albedoes for the rough particlec are smaller
than those for the smooth particles (the difference increases for more dissipative
particles), hence for very thick layers tle specific intensities are smeller for
the rough particles. Both single scatter and multiple scatter solutions are given.

For small optical thickness T <1 I, is smaller for the rough particles than for

1
the smooth particles (since the aldedo for the rough particle is smaller). However
12 is larger for the rough particles since the rough particles more strongly
depolarize the incident waves (see Figs. 11 and 12). The reflected specific
intensities I.1 and I2 are generally less dependent on angle 8 than the transmitted
specific intensities. The particle surface roughness has a very significant

effect on the degree of polarization m especially as the particle roughness

parameter B increases.
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Figure Captions
FIG. 1. Scattering geometry for & rough conducting sphere.
FIG. 2. Scattering geometry indicating incident &nd scattered wave
normals Ei and ﬁf and corresponding field components El parallel (vertical)

and E2 perpendicular {horizontal) polarizations.

FIG. 3. Specific incoherent intensity Il’ B=1, v, = 1.2/D, X = 10y,
€ = -6000-16000{AL), D = 5X, case (a), transmitted, T, =10, ¢ = 0.
First order (—), smooth and rough particles. Multiple scatter:

(+) smooth, {4) rough.

FIG. k. Specific incoherent intensity 12, B=1, Vo = 1.2/D, A = 10y,

cx_=—6000-i6000(AL), D = 5A, case (a), transmitted, T, =10, ¢ = 0.

First order (—), rough particles. Multiple scatter: (+) smooth,

(4) rough.

FIG. 5. Specific inccherent intensity Il,'B =1, Yo 15.9/D, A = .55%5u,

€ = -40-i12{AL), D = 10X, case (Vv), transmitted, T, =10, ¢ = 0. First
order {(——), smooth and rough particles. Multiple scatter: (+) smooth,
(8) rough.

FIG. 6. Specific incoherent intensity 12, g =1, Vo S 15.9/D, A = .555y,
€ = -40-i12(AL), D = 10A, case (b),transmitted, T, =10, ¢ = 0. First
order (——), rough particles. Multiple scatter: (+) smooth, (A) rough.
FIG. 7. Specific inccherent intensity Il’ g = 10, Vo = 4/D, A = 104,

€. = ~6000-16000(AL), D = 10, case {c), transmitted, 1,=1, ¢ = 0.
First order (——), smooth and rough particles. Multiple scatter:

(+) smootn, {A) rough.

FIG. 8. Specific incoherent intensity 1,, 8=10, Vo = 4/D, A = 10y,

n

€ = -6000-16000{AL), D = 10}, case {c), transmitted, T, =1, ¢ = 0.
First order (—), rough perticles. Multiple scatter: (+) smooth,

{4) rough.
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FIG. 9. Specific incoherent intensity Ix’ B =10, v, = 4/D, A = 1oy,

e, = -6000-16000(AL), D = 5X, case (c),transmitted, T, = 1, 8 = 15.4°,

First order (—), smooth and rough particles. Multiple scetter: (X)

smooth, (X) rough.
4/D, ) = 104,

n

FIG. 10. Specific incoherent intensity Iy’ g = 10, v

1, 6 = 15.4°

"

€, = -6000-16000{AL), D = 5X, case (c),transmitted, T,
First order (—), smooth and rough particles. Multiple scatter; (X)

smooth, (X) rough.

FIG. 11. Specific incoherent intensity Ix’ g = 10, v = L/D, X = 10y,

€ = 1.5-8(PLASTIC), D = 5), case (), reflected, T =1, 0 = 164.6°.
First order (—-), smooth and rough particles. Multiple scatter: (X)

{(X) rough.

FIG. 12. Specific inccherent intensity Iy’ g = 10, Vo = 4/D, X = 101,

£, = 1.5-18(PLASTIC), D = 5), case (d), reflected, T =1, 8 = 164.6°.
First order (—), smooth and rough particles. Multiple scatter: (X)
(X) rough.

FIG. 13. Specific incoherent intensity Il’ g = 10, vm = 4/D, X = 10y,

1.5-18(PLASTIC), D = average of sizes, case (e), transmitted,

€
T

T 1, ¢ = 0. First order (—=), smooth and rough particles. Multiple

o
scatter: (+) smooth, (A) rough.

FIG. 1. Specific incoherent intensity I, g = 10, v = k/p, X = 10u,

€ 1.5-i8(PLASTIC), D = average of sizes, case (e), transmitted,

r

To =1, ¢ = 0. First order (—), rough particles. Multiple scatter:

(+) smooth, (A) rough.
FIG. 15. Specific incoherent intensity Ix and Iy, g =10, v, = L/p.
D = 5%, A = 104, £_=-6000 (1+4i)(AL), case (c), 8 = 6.7° and ¢ = 0°.

{0) I, smooth, (8) Iy smooth, {+) I, rough, (x) Iy rough.
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FIG. 16. Specific incoherent intensity I, and Iy, B =10, v = /D,
D = 5%, X =104, e = 1.5-iB(PLASTIC), case (4), 6 = 6.7° and ¢ = O.

{0) I smooth, (a) Iy smooth, (+) I rough, (X) Iy rough.

n

FIG. 17. Degree of polarizationm, B = 1, Vo = 1.2/D, D = 5\, X = 10y,
£, = -6000(1+41), case (a),t =1,6-= 6.7° {+) smooth, (X) rough;

8 = 15.4° (o) smooth, {A) rough.

™
f

FIG. 18. Degree of polarization m, 1, v, = 1.2/D, D = 5%, X = 104,
£, = -6000(1+1), case (a),1 =1, 8 = 24.2°% (+) smooth, (X) rough;

® = 33.0° (0) smooth, (4) rough.
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INTERPRETATION OF BACKSCATTER CROSS SECTIONS FOR NORMAL INCIDENCE

USING UNIFIED AND TWO-SCALE FULL WAVE ANALYSES OF ROUGH SURFACES

E. Bahar
Electrical Engineering Department
University of Nebraska-Lincolr 68588-0511

D. E. Barrick
Ocean Surface Research, Boulder, Colorado 80303

M. A. Fitzwater
Electrical Engineering Department

University of Nebraska-Lincoln 68588-0511

ABSTRACT

The like and cross polarized backscattered scattering cross sections
are evaluated for random rough surfaces using the full wave analysis.
The resulting cross sections are also expressed in terms of a weighted
sum of two cross sections in keeping with previous two~scale interpre-
tations of scatter. The first is associated with the cross section
for the large scale filtered surface and the second is the diffuse

scattering term associated with the small scal: surface component.

~ Special attention is given to waves at normal incidence. Both perfectly

. and finitely conducting boundaries are considered. The random rough

interface is characterized by its surface height spectral density function
end detailed consideration is given to the choice of the wavenumber where
spectral splitting (between the small and large scale surfaces) is

assuwcd to occur.
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Brown's and Tyler's criteria for decomposing the rough surface cannot be
satisfied simultaneously. Neither reconciles the observed discrepancy &t normal
incidence for sea return and the resulting values of the slopes of the large
scale surface {producing the specular echo) are considerably different.

The full-wave solution for rough-surface scattering reduces to an
integral similar in form to the physical optics or perturbation solutions
(Bahar 1981). 1In its derivation from the exact telegraphists' equations,
multiple scattering is neglected. The full wave solution has been shown to
reduce to the specular-point result in the high frequency limit, and to the
per rbational result {with the correct polarization dependence)in the low
fre yaency limit. Since it is valid across the spectrum for all roughness
scales, it is not necessary to adopt the two-scale model to analyze rough
surface scattering problems. In recent work however, (Bahar and Barrick 1983),
the full wave solution has been artificially decomposed into two components
to elucidate the mechanisms at play in the two-scale models discussed above.
For the like polarized case the sum of the two terms of the full wave solution
is approximately constant as the break point between the large and small
roughness scales varies as B ranges from 1 to 2. For normal incidence the
values of like polarized cross sections based on the unified and two-scale
solutions are the same for B = 0.25. For this case the specular point
contribution from the large scale surface is the only significant contribution.
Thus through & judicious choice of the break point (between the large and
small scale surfaces) corresponding to B = 0.25 & single-term large-scale

specular-point model can be used at normel incidence for microwave like polarized

backscatter cross sections of the sea.
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1. Introduction

A spécific and important application of rough-surface scattering at normal
incidence concerns short-pulse satellite microwave altimeter return from the sea
surface. In addition to its use to measure ocean wavehe.ght at nadir as on Seasat
(Barrick and Lipa 1985), the altimeter has also been employed to infer wind speed
from the backscattered signal intensity, since the roughness statistics depend
strongly on surface wind. Up to now, attempts to establish a quantitative connection
betveen altimeter nadir backscattered cross section (per projected erea) and wind
speed have employed a physical-optics derived specular-point model that (i) relates
the backscatter cross section to rms surface slopes, and subsequently (ii) relates
surface slopes to wind speed in some manner (Barrick 1974). Unfortunately, the
returns predicted thereby are several dB greater than the measured (Brown 1979),
leading to use of empiriczl rather than theory-based models to establish the
connection (Chelton and McCabe 1985). This discrenancy can only be due to the
inadequacy of the simple, specular-point model, as it has been used, to describve
the backscattered return even from a gently sloping sea at normal incidence.

Composite rough-surface models (Barrick and Peake, 1968; Wright, 1968; Brown,
1978) break the surface roughness into two scales: large and small. Brown
formulated the first detailed analysis of this model, describing the small-scale
surface component as riding on the large-scale surface, while allowing the
large-scale slope statistics to modulate the smaller component's return. He
proposed one method for spectrally dividing the surface into large-scale end

small-scale regions, based on the criterion that the mean square height <h§> of

§<h§><0.1 where ko is the free svace

vavenumber) to guarantee the satisfaction of the perturbation approximation. Tyler

the small-scale camponen: be small enough (B=lk

{1976) suggested that the rough surface height spectral components (that contri-
bute to the large scale slopes) should be determined by the requirement that the
mean of the large scale surface radius of curvature be larger than a wavelength.
This is also & physically reasonable proposition since it is inherent in the
tangegt—plane approximation of physical optics. However, in general
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The illustrative examples of the individual terms contributing to the
solution are given as a funcgaon of the parameter B for like and cross-polarized
returns. It should &lso be noted that the previously mentioned approximate
methods produce a zero cross-polarized backscatter component at normal incidence,
although measurements clearly indicate a non-vanishing contribution which is
close to the value predicted by full-wave theory (Bahar and Fitzwater, 198L).

2. TFormulation of the Problem

On adopting the two-scale model of the rough surface, the full wave
solutions for the normalized like and cross polarized scattering cross sections
(per unit projected area) reduce to a weighted sum of two cross sections
(Bahar and Barrick 1983).

<o'% = <oPQ>£ + <<7PQ>s P,=VorH (2.1)
in which the first and second superscripts P and Q denote the polarizations

of the scattered and incident waves (V vertical, B horizontal). The first

term in (2.1) is the modified cross section associated with the large scale

filtered surface hl

2 -
<czQ> (2.2)

<0PQ>2 =

in which <OZQ> is the physical optics expression for the scattering cross

X (¥a)

section of the large scale surface and Xs(;°£s) is the small scale surface

characteristic function. For rough surfaces with Gaussien height distributions

Ix®(7+8) | %= |<exp(17-5 _n_)>|%= exp(-(¥+5_)%n2>) (2.3)
in which <h§> is the mean square of the small scale surface height hs,

vex (5754, v = |7 (2.4)

where ko is the free space wavenumber, Er and b° are unit vectors in the

>

directions of the scattered and incident wave normals. The unit vector normal

to the actual rough surface is n and Es is its value at the specular points
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o+ =V/v (2.5)
The coefficient ]xs]2 in (2.2) accounts for the degradation of the physical
optics scattering cross section due to the small scale surface hs that rides
on the large scale surface. The second term in (2.1) is the diffuse scattering
cross section due to the small scale surface hs' It can be expressed as an

infinite sum as follows

<0PQ> = ; <0PQ> (2.6)
. s m=l sm
wvhere
PQ,2 =f -i,-
]D l P (n ,n ln) .
. <« = hm® < 2 ‘xs]2
sm (<] ;I’E
Y
v_yom W (v_,v.)
{.1] _m X'E (2.7)
2 m!

The symbol <*> denotes the statistical average over the slopes E(hx,hz) of the
large scale rough surface (hx = 8h,/3x, h, 8h£/Bz). In (2.7) ViVy and vy
are components of the vector v (2.4) in the local coordinate system

v=oven 4 vin2 + Vghs (2.8)

in which 52 = n is the unit vector normal to the large scale rough surface,

51 and 53 are unit vectors tangent to the large scale rough surface. The unit
vector &_ is normal to the mean surface (the reference plane). Note that

<hs> is assumed to be zero and that hs is measured normal to the large scale
surface. The scattering coefficients DPQ depend upon the incident and
acattered wave polarizetions and wave normals ﬁi and Ef as well as the
electromagnetic parameters of the medium (Bahar 1981). The two dimensionsl
function W; is the Fourier transform of the mth power of the small scale

surface height autocorrelation function <hsh;>
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W (vo,v.)
m X'z 1 J m : <
= <h h'>" expliv_x; + iv.z=)dx; dz-
22m (2n)2 s's xd zd d d
=_1._ ' gt ! ) ' 0
S2n j Won (Vg3 ¥ (Vgovgvgmvpavy av
=W (o) @ W (vo,ve) (2.9)
2 w1Vez @ Mets :
with

In {2.9) the symbol (¥ denotes the two dimensional convolution of L
Wi and (xg + zg);5 = r3 is the distance between two points r-r' measured along
the large scale surface. In this work the rough surface is assumed to dbe
homogeneous and isotropic, thus the surface height spectral density function
(the Fourier transform of the rough surface height autocorrelation function
hsh;) is only a function of

Vg = (vg + vg)1§ = (112-wr§);5 (2.10)

and the autocorrelation function depends only upon the distance Ty measured
along the large scale surface. It is also assumed that the width of the
illuminated patch of the rough surface is much large than the rough surface
correlation length. The shadow function Pz(ﬁf,ﬁilﬁ) is the probability
that & point on the rough surface is both illumineted and visidble given the
slopes at the point (Smith 1967, Sancer 1969).

To facilitate the adoption of the two-scale model of the composite
rough surface it is assumed that the filtered large scale surface hE is
associated with that part of the surface height spectral density function
for which Vip < Va and the small scale surface hs is associated with the
remaining part‘of the surface height spectral density function (VT > vd)
(Brown 1978).

In a recent investigation of scattering by composite perfectly conducting

rough surfaces based upon a perturbed-physiCal optics approach, Brown obtains

the following solution
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<cP % - <oPQ> + <% (2.11)
had P
in which <0:Q> is the physical optics scattering cross section for the
filtered large scale surface and
PQ 2
PQ, _ 4 2 D__Il (-f —i]")w( 3> @.12)
<0p > = nko < | P2 no,n o)W v, v, .1
may
In {2.12) vx,v& and v, are components of the vector v(2.4) in the fixed
reference coordinate system
Vv=va + 2 v a (2.13)

v_a v a_ + a
X X Yy z z

in which Ex and Ez are unit vectors tangent to the mean plane. The results
obtajned by Brown {1978) on using {2.11) to compute the scattering cross
sections is shown to depend very strongly upon the choice of the wavenumber

v. where spectral splitting is assumed to occur. Since Brown uses Burrows' (1967)

a
perturbation approach in his work he concludes that the appropriate value of V4

must be based on the choice of the roughness parameter for the small scale surface

8 = k% = 0.1 (2.1L)
os

Hovever, in the work by Tyler (1976) the specification of AP is assumed to be

based on the characteristics of the large scale surface (radii of curvature)

and for backscatter near normal incidence Tyler neglects the second term in

(2.11). In general however, the conditions specified by Brown and Tyler for the

choice Va cannot be satisfied simultaneously. In an effort to resolve these

discrepancies, computations of the scattering cross sections based on thre two-

scale full wave approach {2.1) were performed (Bahar et al. 1983). Note that

for surface with small slopes (i = &) end with B << 1, [x5(3-7)[% + 1, the full

vave solution (2.1) reduced to Brown's perturbed physical optics solution (2.11).

In this work we evaluate the backscattered like and cross polarized
cross sections for normal incidence as the psremeter V4 is varied. Both

perfectly conducting and finitely conducting media are considered.
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The contributions of the individual terms of the full wave solution (2.1)
and the perturbed-physical optics solution {2.11), are examined in detail.

Since the full wave approach accounts for specular point and diffuse
scattering in & unified self-consistent manner, it is not necessary to adopt
the two-scale model of the rough surface. It is done here in order to elucidate
the interprefation of rough-surface scattering in terms of the two-scale
(or composite) models that have been in use for nearly two decades and in order
to see whether through & jgdicious choice of the break point Vi (between the
large and small scale surfaces) a single-term large-scale specular point model
could be used to determine the like polarized backscatter cross sections for
the sea at normal incidence. In addition to the numericel solutions based on
the two-scale model, the results corresponding to the unified full wave solutions
are aiso presented (Bahar and Fitzwvater 1984). The unified full wave solution

for the incoherent scattering cross sections can be expressed as:

. PQ)2
~f ~i kD
P =f =i =y oy o=

<g Q>u - a6 ;p ) J1=— l Pz(nfaﬂl n)p(n)an (2.15a)

n*s

y

in which

"5 =[x, - IxIP)explaver dax gz, (2.15b)

where x2 and X are the Joint characteristic function and the characteristic
function respectively for the total rough surface h ang rd = (xg + zg);i is the
distance measured along the reference surface y = 0. The two dimensional slope

distribution of the total rough surface is p(n).
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3. Illustrative Examples
For the illustrative examples considered in this section, the specific
form of the surface height spectral demnsity function is a polynomial
approximation of the Pierson-Moskowitz spectrlmi for the steady-state response

of the ocean surface to a surface wind of speed V (m/s) {Brown 1978).

2 Y, 2 2.4
» ;B VT/(VT+K) VT-<-VC
W(v;,vz) = (;)S(v’-‘,vz) =

> .
0 Vo > Vs {3.1)
in which W is the notation originally used by Rice {1951) and S is the

notation used by Brown {1978). For the above isotropic model of the ocean surface,

we select as an example a typical, moderate wind speed sea, and radar frequency
corresponding to space borne altimeters such as Seasat's:

B = 0.00L6 V=43 (n/s) (3.2)

k= (335.2 v*)%(cm)? v.= 12 (em) (3.3)

The wavelength of the electromagnetic wave is

xo = 2.22 {(cm) (ko = 2.83 (cm)‘l) (3.4)

The mean square height of the small scale surface hs is

21rvc
Wiv_)
<h:>= J hT vy 4, d¢=§-[—é—-%j = B/hkg (3.5)
Vd v
(o] vd

and the total mean square slope for the large scale filtered surface is

an v
dW(v)

2 2 7 3
gs = Py = T Vg dvp 44

Q
n

o0

it

2

v, + K
21 ln[ d ] (3.6)
K

In (3.5) and (3.6) it is assumed that Vg >> K. The wavenumber where spectral

splitting is assumed to occur, Vo is determined by the choice of the roughness
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2,2
parameter B = hko<hs>. Thus,

+—L8 , ova<g<20 (3.7)

QFN|H
oo v
™
'

t

The slope distribution is assumed to be Gaussian

- 1 hx * hi
p(n) = P(hx’hz) =5 EXp|- T o (3.8)
o o
s Ls

For backscatter with normal incidence, the wave normals are
=at-3 (3.9)
and
v=2kn =2a , B_= (3.10)
The relative permeebility is assumed to be ur = 1 and the ocean is characterized

by (i) a perfect conductor Ierl + o and (ii) a relative complex (dissipative)

dielectric coefficient representative of ocean vater {Stogryn 1971)

e, = 42 - 139 (3.11)

The functions Wm(WT)are evaluated numerically for m=2 and 3 since for the
range of values of B considered only three terms of the'series expansion
(2.6) are non-negligible.

For the range of values of B considered (0.1 < B < 2) the corresponding values
for the wavenumber v, (3.7) (where spectral splitting is assumed to occur),
the mean square height for the small scale surface <h§> (3.5) and the mean
square slope for the large scale surface ois (3.6) are listed in Table I.

In Figures 1 through 4, the backscatter cross sections <UPQ> and the
individual contributions <0PQ>£ , <0PQ>sl » <0PQ>S2 and <0PQ>S3 ere plotted
as functions of the roughness parameter B. When the characteristic function
xs {2.3) is set equal to unity in {2.2) and (2.7) the corresponding results

PQ>o <UPQ>0

are dencted by the superscript o. The results for <0PQ>°, <0 > s &l
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<0PQ>:2 and <0PQ>:3 are also plotted in Figures 1 through 4. It should be

pointed out that
<UPQ>2 = <oZQ> (3.12)

corresponds to the physical optics contribution to the cross section (from the

large scale surface) in Brown's formulation (2.11), and

<UPQ>° = (UPQ> . (3-13)
sl p

corresponds to the.perturbation {small scale) contribution to the cross
section in Brown's formulation. The dashed horizontal linegin all of these

figures correspond to the unified full wave solutions (2.15)that are not
artificially split into two components.
In Figures 1 and 2, the like polarized backscetter cross sections

<0PP> =<0vv>= <UHH> for normal incidence are plotted as functions of B with

¢ + @ (perfect conductor) and er = U2 - i39 respectively. In Figures 3 and L

the cross polarized backscatter cross sections <0PQ> = <0VH> = <0HV> for

normal incidence are plotted as functions of B with € + « {perfect conductor)
and Er = 42 - i39 respectively. Note that <0PQ>2 = 0 for the cross polarized
case.

In 211 the plots we find that for the range of values 1 < B < 2 the full

PQ

vave solutions for the (total) backscatter cross sections <0 > is relatively

independent of B even though the individual contributions to <0PQ> are very
sensitive to variations in B. Significant variations in the cross sections
occur only for B < 0.25. On the other hand, Brown's solutions for the back-
scatter cross sections are very sensitive to the choice of B(vd). He notes
that on the basis of the two-scale perturbed physical optics approach he

used, should be chosen such that 8 = 0.1. For B = 0.1 and small surface

Y&
slopes the full wave solutions reduce to Brown's solution (with only one

significant term needed in (2.6)) For normal incidence the unified full wave
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solutions <0PP>U (2.15) intersect the full wave solutions based on the two-
scale model <GPE> (2.1) at points corresponding to B = 0.25. For the cross
polarized case however, <0PQ>U is about 15 4B above the corresponding

values based on the two-scale approach. This is because for backscatter

<O£Q> + 0 (P#Q) even though the large scale surface h, does depolarize the

L
backscattered wave.
It is &lso interesting to point out that for normal incidence, the

backscattered like polarized cross sections

<0PP> = <0PP>Z (3.14)
and that for 1 < B < 2 these results are relatively insensitive to variations
in B. As noted above, for normal incidence the unified full wave solution
for <0PP>U intersects the results based on the two-scale model <0PP> at
B = 0.25. However, the point of intersection of the two results will in
general depend upon the angle of incidence 8. For the like polarized case, the
main drawback in the analysis based on the two-scale model is due to the
assumption that the large and small scale surfaces (which are spectrally
separated at the wavenumber vd) are statistically independent. Note that
the value of Y is selected in order to conform with the mathematical two-
scale model and not wihany physical feature of the rough surface. For the cross
polarized case this drawback is compounded by the fact that <o:Q> + 0 while

the large scale surface is also responsible for depolarization.

For the isotropic surface height spectral density function assumed here (3.1),the

: 2 . .
mean souare radius of curvature <p > is given by

W(VT) 2 ) )
=q v dv = B v /2 (3.15
<p2> 2 't T d

Thus on imposing the condition (for the decomposition ~f the rough surface)

suggested by Tyler (1976), B v§/2k§ = 1. However, in view of (3.5) B=hk§<h§>
2 -

=2Bk§/vd. Thus B=Bz=2.ll6x10 5. The corresponding value for <UPP> is about

2 dBdelov <of >y

e em s
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There are two ways in vhich the full-wave two-scale solution for like-polarized
backscatter at normal incidence differs from the previous composite models (Brown
1978). First, the large-scale term for the full-wave solution is multiplied by
]Xs]2 (2.2) accounting for the fact that the specular-point regions are roughened
by the small-scale surface component. Hence, the Fresnel reflection for specular
return is reduced exactly in the amount predicted by Rice (21951) from perturbation

theory, due to the energy scattered away from the specular direction by this small-

scale roughness. Second, the full-wave contribution due to the small-scale roughness

(which also contains the term |XS]2) is actually an infinite series in which more
terms become significant as B increases, while for the perturbed-physical optics
two-scale model B is kept low enough so that the perturbation criteria is satisfied
by the small scale surface. Therefore, interpretation of the full-wave two-scale
mathematical solution elucidates the physical mechanisms one would expect to occur
when the surface is broken artificially into two scales of roughness. It is
interesting thet for backscatter at normal incidence and for the gently sloping
sea-surface examined here, the choice by Brown of B = 0.1 as the bresk between the
roughness scales produces results for the like polarized cross sections that are
only about 1 dB below the full-wave solutions indicating the soundness of that
approach. Such agreement however, does not hold for the cross polarized cross
sections off normel or for surfaces with larger slopes. Tyler's criterion (1976)
for using the radius of curvature condition to locate the break point is somewhat
less suitable for the sea surface considered here, although it may be more suit-
able for more irregular planetary surfaces.

As mentioned earlier, there is no need to split the full-wave solution into
two components; the integral (2.15) represents the entire solution. It can and has
been evalusted as one term (dashed lines in illustrations). Since the splitting
is artificial, the validity of the full-wave two-scale srproach can be tested by
checking (i) whether the weighted sum (2.1) varies significantly with the
splitting parameter, B; (ii) whether the two-scale full-wave solutions agree with

the unified full-wave solutions. The curves for the like polarized cases (Figs. 1
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and 2) show that the sum of al} terms of the two-scale full-wave solution is
nearly constent over large variations in the break point, i.e., for 1 < 8 < 2.
For normal incidence it agrees exactly with the unified, full-wave solution at
B = 0.25 and differs from it at most by about 2 dB at B = 2. On the other hand,
the results based on the perturbed physical optics model begin to vary
significantly from the full-wave solutions for B > 0.25. The ieason for the
smal) disagreement between the unified and two-scale full-wave results stems
primarily from the fact that on artificially splitting the surface it is assumed
that the small scale rough surface is statistically independent of the large
scale rough surface. This assumption becomes decreasingly valid as B increases.
The unified full-wave solution is self-consistent; no such assumption is made and in
fect it is the only velid solution for the cross polarized return, where the
asymptotically evaluated "specular" contribution from the large scale surface is
meaningless.

A final conclusion is that, for backscatter from the sea at normal incidence.
the simple Gaussian-slope specular-point solution <UPP>E = ]R(O)la/(Esxsz).
(Eq. {9) of Barrick and Lipa {1985))can be used with reasonable accuracy,
{R(0) is the normal incidence Fresnel reflection coefficient of sea water and
s_, s_are the rms slopes of the sea surface along the man? and minor roughness
axes). Although this specular-point result <0PP>2 (which neglects the small-
scale characteristic-function factor) is observed in Figs. 1 and 2 to be almost
independent of the split point for 1 < B < 2, the correct value for B is shown
to be 0.25 at the intersection with the unified full-wave solution. The value B
enters the sbove equation implicitly (through vd) in the expression for the rms
slopes of the large scale surface. They are logarithmic functions of vy the wave-

number where spectral splitting is assumed to occur (3.6) for the idealized sea-

surface vaveheight spectrunassumed here (3.1).
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Figure Captions

Fig. 1. Like polarized backscattered cross sections for normal incidence
as a function of the roughness parameter B or Vg s Er + « (perfectly

conducting boundary). P=V or H (vertical or horizontal polarization).

Fig. 2. Like polarized backscatter cross sections for normal incidence as
a function of the roughness parameter B or vy €. = b2-i39 (finitely

conducting boundary). P=V or H (vertical or horizontal polarization).

Fig. 3. Cross polarized (P#Q) backscattered cross sections for normal incidence
as a function of the roughness parameter B or V4 B Er + o (perfectly
conducting boundary). P,Q=V or H scattered and incident polarizations
respectively.

Fig. 4. Cross polarized (P#Q) backscattered cross sections for normal incidence
as a function of the roughness parameter B or vy 3 er = k2-i39 (finitely
conducting boundary). P,Q=V or H scattered and incident polarizations

respectively.
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‘l TABLE I
| ' 8 v, (™) a2 (ca?) o2,
i .d .856 .00312 .0219
1 .25 .5k2 .00780 .0178
.50 .384 .0156 .0182
.15 .313 L0234 .0172
‘! 1.00 2n .0312 .0166
1.25 .243 .0390 .0161
1.50 222 .0ké8 .0156
1.75 .205 L0546 .0153
2.00 .192 .062) .0150
1 Table I. List of the values of Vo <h§> and <0§> for different
values of the roughness perameter f.
List of Symbols and Notatiorein
" Illustrations 1 Through 4.
Symbol  Notstion | Cross Section Symbol | Notation | Modified Cross Section (Xs -+ 1)
- <UPP> total two-scale A <0PP>° total two-scale
'@‘ <0PP>L large scale - <0PP>: large scale (Brown)
J < <GP§>51 sm:.}i. scale 8- <OPP>:1 small scale m=1 (Brown)
—_— <0FP >s2 small scale -t <0PP>:2 small scale m=2
o N m=2
i ‘<UPP >83 snmJ_:li scale —5— <*¥ >:3 small scale m=3 T
ne .

Unified Full Wave Solutions
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ABSTRACT

The incoherent diffuse scattering intensities (Stokes parameters) are eveluated for infrared and
optical excitstions of & layer consisting of random distridbutions of finitely conducting irregular
shaped particles. The full vave approsch is used to determine the elements of the phese mstrix and

the extinction ¢ross sections appearing in the equstion of transfer.

The rough surface height of ihe

particles is characterized by different surface height spectral density functions.

1. INTRODUCTION

Scattering of electromagnetic waves in media
consisting of random distributians of particles
has been investigated extensively using the equa-
tion of transfer.lv2 The msin difficulty in
setting up the equation of transfer lies in the
determination of the elements of the ixh scatter-
ing matrix for the individual particles. Thus,
most of the vork has been done for particles of
ideelized shapes such as spheres.

In this vork a wethod is presented for the
modification of the results derived for particles
wvith idealized shapes to account for the random
surface roughness of tge particles., To this end,
the full wvave approach”’ vas used to determine
the rough surface contributions to the like and
cross polarized scattering cross sections. Dif-
ferent particle sizes wvith different complex di-
electric coefficients are considered. The rough
surface beight is characterized by different
surface height spectral density functions (the
Fourier transforms of the surface height auto-
correlation functions).

2. FORMULATION OF THE PROBLEM

The full vave salutions for the normalized
scattering cross sections <0-v> per unit cross
sectional area (Ayrlhg) are expressed as a
weighted sun3 13 13 1)
<g v>=<g >l«° >s (1)
the symbol <> denotes the statistical aversge.

In the sabove expression the first and second super-
scripts indicate the polarizations of the scat-
tered and incident wvaves respectively. Thus {,J=1
denotes Vertical polarizaetion and i,)=2 dcnotes
Horizontal polarization. The cross section <v“>l
is the modified cross section sssociated vith the
unperturbed sphere.

<"”’z'lx (v)l"""“’me (2
In (2) <°”>me 13 the Mie solution,? for the like
and cross polarized cross sections of the unper-

turbed sphere. The coefficient of <old>y: = is the
rough surface beight characteristic function

x*(v)s <exp ivh > (3)
in vhich v is the magnitude of the vector
= Ga) ()

vhere nf snd b are unit vectors in the direction
of the scattered and incident vave normals, The
coefficient |x*|? accounts for the degradation of
the reflected vave due to surface roughness.

The seccod term in (1) <11“>. is the contri-
dution to the total scattering cross section due
to the surface roughness. It is expressed ash

<o’ </ANGF R o (RTA L R)pan (5)
4n vhich n is & unit vector normel to the surface
of the scatterer,

2

x p*d o
P(nt.m [R)  (6)

£ -
Au(n.n’,n)= 3—[ 2

(v az)(ay n)
Q‘(nr,n’.n)=(;';r)2l (X;(v-ar)-lx(v'ar)‘z)

* expliver )dx,dz, 1)
and pln) is the probability density function for
the slope of the surface of the scatterer. In
(6), DiJ is the scattering coefficient which
depends on the polarizations and the directions
of the vave normals for the incident snd scat-
tered vaves as well as the complex electromag-
netic parameters (c,u) of the scatterers. The
terr ?z(ﬁr.ﬁ‘]ﬁ) is the probebility that & point
on the rough surface is both illumineted by the
source and visible to the observer given the
slopes (n) of the surface of the scatterer.

In (7} xs(V-Er) and x;(;-ir) are the rough
surface height characteristic function and joint
characteristic function respectively,
and sxi(f".;r)“exp(ivrhsb (8)
x2(v'alj=<exp[1vr(hs~h;)]> (9)
in vhich v_=v+q_.

r T

With the above expressions for the scrtter-
ing cross sections (1), the Seneral expression
for the equation of transfer< can be written as
follovws for & plane parullel sleb consisting of
rough spherical particles

v LD L is)adenrae el (0)

In (10), T is the optical distance in the 2 di-
rection {normsl to the plane parsllel slab). Since
<0‘J>‘ vanishes in the forwvard direction, the ex-
tinction matrix” for t.e rough sphere can be
esented by a scalar quantity. The matrices
[1) and [1']) are the (4x1) incoherent specific
diffuse intensity matrices for vaves scattered
from the particles in the direction 6=cos~ 1y and
¢ and for vaves incident in the directior
6 -cos~1y' and ¢', respectively. The (lxk)
scattering matrix [S] in the reference coordinate
system can be ¢ xpressed in terms of the scatter-
ing matrix [S') in the scattering plane as
follovs:

[5)LL(-2+a) )05 N Mat)) (21)
in which [X) 18 a trensformation matrix and
(5 )e Ix 5+ ) 105 DL, (a2)




In (12) [s)ue) is the sccttersing matrix for the

urperturbed sphere. The coefficient Ixs(\-r';,,)l2
accounts for the fact that the specular point
contributions to the scattering cross sections is
decreaced becsuse of the rough surface. The dif-
fuse scattering matrix [Ss] due to the random
rough surface height hs of the particle 15 given

by

(s5) [s3,) o 0
[s7~ ;55 Is3,) o o
. 1o o [s5) Is5))
33 34
0 [ [5:3] [s;,] (13)
vhere
(1%)

A
5 4 y iJ,
I83,) = mptery # o',
in vhich (o"’>s is given Ly the full vave solution
(5), 0y is the tota) cross tection and ol+]
denotes average over particle size.

Furthermore for i=3 and &

s 11 12
[s,,J=plRel<0;> t <021>sJ]Ay/’m°[°t] (15)
{upper snd lover signs for 1=3 apd 4 respec-
tively) and for i#})

I8} Jeolials <cpp> +<cy> 1Dh femgla,] - 26)

{upper end lover signs for 1,J=k,3 and
4,3 = 3,b respectively.
In the atove expressions
. §3 kE®
12D
<olds =1 1]

kL - - 27s

Qan
B - = (2= -
(v-nr) (n-ny)

The remalning eight terms of the matrix [S,)
vanish since D31 and DIJ(15)) are symmetric and
antisymmetric respectively with respect to the
azizuth angle §.

In order to simplify the solution of the
trancfer equation (10), it {s assumed in this
work that the normally incident vave is circularly
polarized. Thus the incident Stokes matrix at
2 =0 is given by

1
1
anc] =1, 6(\1’-1)6(0')EIOB(U'-I)G(O') (18)
32
vhere the - and + signs correspond to the right

and left circularly polarized waves and u'= cosb'.
The reduced incident iptensity is therefore,

{1,,] = {1, Jexp(-1) {19)
In {10) the {ixl) excitation matrix (11]13 given
by
[IIJ-I[S][Ir‘Jduvu-.[[S][Iol]v.q-ex‘p(-'l) (20)
¢1=0

\(ih;r)'e Io. the incident Stokea matrix §¢ defined by
18).
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For the illustrative examples considered in
tbis section, the random rough surface height h
(peasured normal to the surface of the unper- s
turbed spherical particle of diemeter D=2hy) is
assumed to be homogeneous and isotropic. Differ-
ent forms of the surfece height spectral density
function ¥(vy,v,) (which is the tvo dimensionsl
Fourier Transform of the surface height suto-~
correla-jon function <hshs'>)are considered.

For cases (8) and (b) the specific form of
the surface height spectral density function
considered is

v,
2C T
H(vT)u Sz %2 0

2 2 T
Vot

(21)

vhere the exponent is sssumed to be n=8. For case
(8) the roughness paremeter is B=hk2<h§>=1 &nd for
case {L) 1t is B=10. This sets the Yalue of the
constant C in (21) since

-
2. .7

(hs> z £ H(v,‘!‘)v,rdv,’r (22)

The corresponding velues for v g.k.c end D are

in Figs. 1-k. For these caseS, the surfece

height eutocorrelstion coefficient R(()E<hshs'>/<h?

can be expressed in closed form

2 4 6
3 3
woep - 5+ X v skl

2 &
1 2
0[2 Y£-k ]c k (¢)
In (23) X, and X) are modified Bessel functicns

of the second kind of order zero end one respec-
tively and the dimensionless paremeter { is

L=, (28)

For all the illustrative examples, it is
assumed that & right circularly polarized weve is
normally incident at 1=0 {2=0) upon a parallel
layer of opticel thickness 1,. The equaticn cf
transfer for the sazimuthally independent modified
Stokes parameters are solved using the petrix
characterist{c (eigen) value technique.® For case
(u) (D/A=10) the scattering cross sections are
mcre sharply pesked in the forvera direction,
thus it is necessary to use a Gaussian quadrature
formule of order 32.7 The boundery conditions for
the incoherent specific diffuse intensities are

[1J~0 for O<p<1 (25)

(transmitted incoherent diffuse intensities are
zero at 1=0) and

(1J=0 for (26)

{reflected incoherent diffuse intensities ere zero
st T=7,).

For case {#), the incoherent diffusc inten-
sitics 11 and 1, ere plotted in Figs. 1 and 2 as
functions of e(g°.90°)(trlnu.n.ted T2 T,) for
T,*1. The solid curves correspond to first order
scattering solu.ions only for the smcoth (unper~
turbed spherical) particles and particles with
rough surfaces. The first order solutions are
close to the multiple scattering solutions for
T,=1, bhovever multiple scattering does tend to
make the incoherent jntensities more monctonic
functions of the scatter.angle 8. For optical
thickness 1,1, the surface roughness has a

(23}

at 1=0

0>p>1 et 1=1c



[

smaller effect on the incoherent intensities and
I and Ip are not equal in the intermediste range
of angles betveen 10° and LO°.

For case (b}, the incoherent intensities I;
and 1, are plotted in Figs. 3 and b ac functions
of 6(S°.90°)(trmsm1tted T2 1) for T *10.

Since the particles are highly conduct?n; there
is a smallcr difference in the specific incoherent
intensities for the smooth and rough particles.
This is because the corresponding albedos are
not significently different for highly conductirg
particles. Nevertheles:, it should be pointed out
that for optically thin layers (1, < 1) the
principal effect of particle surface roughness

is to smooth out the undulations in the diffuse
specific {incoherent) intensities es functions
of the scatter angle. The effect of particle
surface roughness is more pronounced for highly
dissipative particles vith szell albedos. The
effect of surface roughness on foi'vud scatter
(e=0) is less progounced since <a'd> (s)
vanishes and Jx*|° = 1 for forvard scattering.

0
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EXTINCTION CROSS SECTIONS AND ALBEDOS FOR

PARTICLES WITH VERY ROUGH SURFACES
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Abstract

Using the full wave approach, the scattering cross sections
for finitely conducting particles with very rough surfaces are
expressed as weighted sums of speculasr point (physical optics)
end diffuse scattering cross sections. Through a judicious use
of the forward scattering theorem and the observation that for large
particles the forward scattered,"shadow forming wave is the same
for all surfaces which have the same shadow line," the albedos and
the extinction cross sections for particles with rough surfaces are
evaluated. These computations are essential to solve the equation
of radiative transfer for the specific intensities (Stokes parameters)
in media consisting of random distributions of particles with rough
surfaces. The particle surface roughness has & significent effect on

the diffuse specific intensities.
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I. INTRODUCTION

The problem of electromesgnetic wave scattering by random distribu-
tions of particles has been studied extensively by researchers in a
broad range of disciplines such as atmospheric aerosols, smoke, and dust
in  planetary atmospheres (Chandrasekhar 1950, Ishimaru 1978). However,
in most of the work, the scattering particles are assumed to be of idealized
shapes such as spheres, oblate and prolate spheroids and circular cylinders
for which rigorous separable solutions are known (Ruck et al. 1970). In
many physical problems of interest however, the individual scatterers are
of irregular shapes such as flakes, spheres and cylinders with rendom rough
surfaces {Creenberg 1960, Cnylek 1977a, Scheurman 1980, Bzhar and Fitzwater
1983, Bahar and Chakrabarti 1985). Several thecretical and experimental
techniques used in the study of scattering and absorption by irregularly
shaped particles have been reported in the proceedings on the workshop
on light scattering {Scheurman 1980). A survey of several analytical and
numerical techniques including their respective pros and cons hes been
presented by Yeh and Mei (1980). For example, if the mean square height
of the surface roughness <> is small (B = hk§<h2> << 1, where k_ is the
free space wavenumber) a perturbation approach can be used to account
for diffuse scattering attributable to the rough surface (Rice 1951,
Ruck et al. 15,0, Kiehl et al. 1980). However for B << 1 the effects
of the rough surface upon the scattered specific intensities is
negligidle.

For problems of practical interest with f > 1, the perturbation

solutions are not suitable and a full wave solution, which accounts for
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physical optics and diffuse scattering in & self-consistent manner,
can be used to express the scattering cross sections as weighted
sums of the physical optics and the diffuse scattering cross
sections.

To facilitate the analysis, it is assumed here that the redius
of the sphere is not only large compared to the wavelength Ao’
but also large compared to the rough surface height correlation
length. However, the radii of curvature of the rough surfaces
need not be small compared to the wavelength. Multiple scattering
hétween the different elements of the surface of the sphere is
neglected. The randam rough surface {assumed here to have Gaussian
statistics) is characterized by its surface height (isotropic)
spectrel density function and a corresponding non-Gaussian auto-
correletion function. These full wave expressions may be used to
determine the elements of the phase matrix appearing in the equation
of radiative transfer for a medium consisting of a random distribution of
irregularly shaped particles (Bahar and Fitzwater 1985). Since the
albedo of the particle is an important factor in radiative transfer it
is 2lso necessary to determine the albedo and the extinction coefficient
for the irregularly shaped particles, in order to solve the equaticn of
transfer (Ishimaru and Cheung 1980). When "equivalent" spheres, spheroids
or cylinders do not reasonably represent the basic scattering charac-
teristics of irregularly shaped particles, experimental microwave techniques
developed by Greenberg (1960) can be used to determine the albedo for
particles for which no theoretical metho& yet exists‘(Chylek;1971b,

Scheurman 1980).
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In this paper, the values of the extinction coeffici-
ents and the albedos are determined for  spherical
particles of finite conductivity with very rough surfaces (B + 10). This
is done using the full wave approach. In addition,judicious use is made
of the forward scattering theorem (Born and Wolf 196k) end the very

perceptive observation that for large scatterers (physiczl dimensions

large compared to a wavelength) the forward scattered "shadow forming
wave is the same for 211 surfaces which have the same shadov line"
{Morse end Feshbach 1953).

The problem is formulated in Section 2 end the analyticel approach
is given in Section 3. Several illustrative examples are presented in
Section k. Using the results presented in this work, it can be shown that
particle surface roughness results in the blocking of transmission windows
that appear in problems of propagation through thin leyers of randomly
distributed particles of idealized {spherical, circular cylindricel)
shapes.

2. TFORMULATION OF THE PROBLEM

Using the equation of transfer (Chandrasekhar 1950, Ishimaru 1978)

-

al1
ds

the scettering and depolarization of electromegnetic waves in media

= -[7101] + fIs3[1'Jaw’ a6’ + [1,] (2.1)

consisting of randem distributions of particles has been investigated
extensively. However, most ¢f this work has been conducted for particles
of idealized shapes such as spheres for which rigorous solutions are

known for g1l the sixteen elements of the phase (Mueller) matrix [S] as
well as for the extinction matrix [T]. In (2.1) the elements of the [Lx1]
specific intensity column matrices [I] and [I'] are the Stokes parameters

for the scattered and incident waves respectively.
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Thus for instance,for spheres, the elements of the phase matrix [S] cen
be expressed in terms of the Mie solutions (Ishimaru 1978) for the
scattering coefficients fij that relate the scattered vertically and

horizontally polarized wave amplitudes ER angd Er to the incident verticsally

and horizontally wave amplitues Ei and E;

1
Eol  1f1 Ti2) {Be| expl-ix r)
]
= —_— . (2.2)
1
E T Top] &

In (2.2) k, is the free space vavenumber and r is the distance from the
center of the sphere to the observation point.

The integration in (2.1) is over the solid angle dQ' = sinB'd6'd¢’
= -dp'd¢' where p' = cosb' and 6' and ¢' are the polar and azimuthal
angles of the unit vector ﬁi in the direction of the incident wave normsl.
The unit vector in the direction of the scattered wave normal (6,d) is Ef

The excitation matrix [Ii] is

[1,3=f [s)1 Janas (2.3)
where [IriJ is the reduced incident intensity (Ishimaru 1978). The
differentiation in (2.1) is with respect to the displacement. For spherical
particles the extinction matrix [T] (Ishimaru and Cheung 1980} is replaced
by a scalar guantity, the extinction coefficient (or total cross section)
.- The"forvard scattering theorem" (Born end Wolf 1964) relates the
total cross section to the imaginary part of the scattering amplitude
in the forward direction fii(ﬁr,ﬁi) (vhere n = ﬁi)- Thus for & spherical
particle,the normalized total cross section (per unit area of the cross
section; ﬂaz) is given by

o, = —5 I(r (75a)), tlor2 . (2.)

t k a
()
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In general however, for particles of irregular shape such as finitely
conducting flakes or svheroids with random rough surfaces, it is more
@ifficult to determine the scattering coefficients fij' When the surface

2« 1, where <h2> is

roughness of the particles is small (B = hk <h
the mean square height of the surface roughness measured normal to the

unperturbed surface), perturbation theory can be used to determine the

diffuse scattering contribution due to the surface roughness (Rice 1951,

Ruck et &l. 1970). In this case g, can be approximated by its cor-

responding unperturbed value since the diffuse scattering contributions

for large particles vanishes in the forward direction and the shadow boundary

is practically unchanged. For the cases covered by -

the perturbation restriection (B << 1) however, the effects of surface
roughness upon the specific intensities (Stokes parameters) is very small.

In this work,scattering by particles with very rough surfaces is
considered (10 > B > 1) and perturbation theory cannot be used to determine
the elements of the scattering matrix fij' Thus, the effects of surface
roughness on the specific intensities cannot be ignored.

For the cases considered in this manuscript, the full wave approach
" (Bahar 1981) (which accounts for specular point scattering as well as
diffuse scattering in a self-consistent manner) is used to determine the
elements of the phase matrix [S] as well as values for the total cross
sections o, and the albedos for spherical particles with very rough
surfaces. Thus the phase matrix for the rough particles (in the scattering
Plane) [S'] is expressed as & weighted sum of two matrices (Bahar and
Fitzwater 1986)

(s'] = Ix(F-3)1? [8, 0 + [ (2.5)

lin which x is the characteristic function for the rough surface height h meas-

'“Ted 31038 the normal (B=®.) to the unperturbed (spherical) surface of the

particle. For surface height probadility density functions that are Gaussian
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2 2.2
Ix(v )%= expl-({vi<n >)] (2.6a)
and R
vex G-, veva (2.6v)
o r r
The elements of the matrix SMie are determined by the Mie solutions
for fiJ for a smooth spherical particle and the diffuse scattering contributions

[SRJ due to the rough surface are given by the full wave solutions. It
is assumed in this work that the correlatlon length Tc of the surface
roughness is smaller than the particle radius a and that koa > 15.
Thus the full wave solution (2.5) represents the degradation of the
specular point contribution to scattering {since ]x]2< 1) along with
diffuse scattering [SR] that is due to the surface roughness. For
very small surface roughness (B << l),]x]2 + 1 and the diffus: scattering
term reduces to Bragg scattering (Bahar and Chakrabarti 1985).

The problem of determining the total cross section o, also becomes

more complicated as the surface roughness increases. It has been shown

that for large particles (koa > 15) the forward scattered “shadow forming

wave is the same for all surfaces vhich have the same shadow line.” (Morse
and Feshbach 1953). Thus for small surface roughness (B < 1) the shadow line
(that distinguishes the illuminated surfaces of the particle from the non-
illuminated surface) is practically the same as that for the unperturbed
sphere and the value for the total cross section-is for all practical
purposes unmodified for B << 1. However, as the value of B increases

(B > 1), the shadov line becomes significantly distorted and 0t cannot be
approximated by the corresponding value for the unperturbed sphere. Further-
more, analytical expressioms for the forwe-d scattered, shadow forming waves
fii(ﬁi,ﬁi)are not readily obtained for particles with irregular shape (Scheurman 19&t .

In the next section,expressions are derived for the total cross

sections and the albedos for spherical particles with very rough surfaces,
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making Judicious use of the observation that the "shadow forming wave is
the same for 8ll surfaces which have the same shadow line" {(Morse and
Feshbach 1953) and physical implications of the "forward scattering theorem”

(Born and Wolf 196L).

3. THE TOTAL CROSS SECTIONS AND ALBEDOS FOR
SPHERICAL PARTICLES WITH ROUGH SURFACES

The albedos for particles with rough surfaces &re given by
A= os/ct = oS/(US+ ca) s (3.1)
in which oa is the normalized abscrption cross section and OS is the

normalized scattering cross section (per unit cross sectional area)

_ 4 2 1
US—;a—zfl)(f OMdQ+W[°RdQ

2 og, + 0, s (3.2)

the roﬁgh surface height characteristic function is Y, and OM is the Mie
solution for the differential scattering cross section (per unit solid

angle) for the smooth (unperturbed) sphere {Ruck et al.1970, Ishimaru 1978).

Thus

oSl‘;_gkoa)*2{ 1x12 [l:sl(e)l2 + ]Sz(e)lz:lsinede . (3.3)

Explicit expressions for the terms Sl and 52 in the Mie solution are given

by Ishimaru (1978). Furthermore UR is the diffuse scattering contribution to

the cross section. Thus

Og, = 0.25 f (o;v + UKH + o:v + ogﬂ)sinede s (3.4)
in which U:Q (P=V,H) are the like and cross~polarized diffuse differential
scattering contributions to the cross sections (Bshar and Chakrabarti 1985,
Baher and Fitzwater 1985). The above full wave solution represents e
weighted sum of two cross sections. The first,osr is the modified Mie
solution. The degradation of the physical optics contribution is manifested

by the factor Ix]2<1jnthe integrand of 9y The degradation of the physical
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optics contribution due to the effects of the rough surface is accompanicd
by the diffuse scattering term. This term corresponds toc Bragg scattering
(as predicted by perturbation theory)for B << 1 (Rice 1951). When B = O
(smooth sphere),cs reduces to the Mie solution and the integration with
respect to the solid angle d? cen be performed analytically (Ishimaru 1978).

In order to fecilitate the solution of {3.1),it is rewritten as

follows

[+ O, O ¢} (Y
4 A=_S=oi_2=i[£] , (3.5)
t P.C.

In (3.5) 0,, is the total cross section for the smooth particle. In (3.5)

usé has been made of the "forward scattering theorem" {making A proportional

to the forward scattered field) and the fact that for large particles

(k°a> 1), the forvard scattered, shadow-forming wave is the same for all

surfaces vwhich have the same shadow line (Morse and Feshbach 1953).

Thus the ratio (cto/ot) in (3.5) is approximated by the value of the ratio

for perfectly conducting perticles (Gtolct)P.C.' Therefore, implicit in (3.5) is

the approximation, that for conducting particles, the above ratio (relsted to

the forward scattered field intensities that extinguish the incident fields in
the forward direction) does not critically depend upon the conductivity

ﬂ of the particle. The expressions for %, and (Oto)P.C. are given by the

corresponding Mie solutions (Ishimaru 1978) for finitely and perfectly

conducting sphericel particles. To obtain the value for (ot)P c. use is

made of the fact that

P.C. = (US)P.C- ’ (3.6)

where (US)P c is the normalized scattering cross section for the

perfectly conducting particle with the same rough surface as the one

(ct)

under consideration. Thus (as)P c is given by (3.2) for the corresponding
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[
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perfectly conducting particle and (3.5) is evaluated as follows
o o]
S
A= [o——]/(—i—] = A/A, . (3.7)

to to’P.C.
Examine (3.7) for two limiting cases of particular interest. As the
conductivity of the particle increesses Al -+ A2 end A + 1. Furthermore
as B+ 0 (small roughness) A, + 1 since (GS)PC = (ot)PC -+ (oto)PC and
A+ A = OS/oto' As expectedsthe albedo approaches unity for highly

1
conducting particles and approaches the corresponding value for smooth

particles as 8 + O.
4. ILLUSTRATIVE EXAMPLES
For the illustrative examples considered in this work, the random
rough surface height h is assumed to be homogeneous and isotropic.
Thus, the surface height sutccorrelation function <h(r)h{r')> is only a

function of the distance r, = |r-r'| measured along the surface of the

d
(unperturbed) spherical particle of radius a. It is e&lso assumed that the
rough surface correlation length Tc is smaller than the circumference of
the particle. (Tc =2(<h2>/<c§>)%).

The surface height spectral density function W(VT) (wvhich is the

Fourier transform of the autocorrelation function <hh'>)is assumed to be
wiv,) = 2C/ﬂvh v, < v <V {4.1)
T T d T ¢ ’

for the case presented in Table I. In this case, the roughness parameter

g = hk§<h2> is varied betveen 0 and 1. The value of the constant C

in (4.1) is determined by the parameter B since the mean square height is

v

c
2, =1 cf1_1
<@ =3 W(VT)devT =3l5-2 . (L.2)
ve v
a ¢
Va

The upper bound of vy is usuelly chosen such that v 22k, since the spectral

components vm > 2k, do n * contribute to Bragg scatter. The lover bound of Ve is

vq=2n/D such that the largest spectral component (in wavelengths) of the
rough surface is equal to the particle diameter.
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The values for v, and v, as wvell as the relative dielectric coefficient €.

d
{8duminum Ehrenreich, et al., 1963) the diameter of the particle D and the vaveleny

of the incident excitation XA are given in Table I. The values of cSl’

‘the modified physical opticé contribution, 052 the diffuse scattering
contribution (Bahar and Chakrabarti 1985), and the sum Ogs the normalized
scattering cross section, are given in Table I, together with the corresvonding

values for Al, A2 and the albedo A. The total cross section ot=os/A

is also given in Table I. If the diffuse scattering

contribution o_, is neglected (Abdelazeez 1983) the value of the albedo is

82

given by ASl = USI/Oto' This quentity is also shown in Table I.

The mean square slope of the rough surface with respect to the

(unperturbed) spherical surface
v
¢
2 L 3
<0 > = —
Os 5 J W(VT)VT dv
va
and the ratiosof the correlation length to the circumference of the particle,
Tc/ﬂD,are also given in Tahle I.The surface height characteristic function X

o= o) ln(vc/vd) . (%.3)

for & Gaussian height distribution and the values of the scattering and
total cross sections for the unperturbed particle, oSo and oto are also
listéd in Table I. In Figure Oy and Og, and Oy as functions of B

are plotted. As B increases,the physical optics contribution Oy decreases
while Ose,the diffuse scattering term,increases. Since as B increases,os

decreases more than 0t decreases, the albedo also decreases &8s the roughness
parameter increases (see Fig. 2). Thus the absorption cross section
ca = Ut - cs increases slightly as B increases.

For the ceses considered in Tables IT, III and IV, the surface height

spectral density function is given by
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_ 2 Vp .
wlvy) = "{-2+ 5 . (L.u
T n
Thus the corresponding expressions for the normalized surface height
sutocorrelation function R = <hh'>/<h2> is
D A
R(£) = [1' gt 32"3072] £k, (€)
2 L
1_& _ &2 X
-] e : (1.5)
In (L.5) Ko and Kl are modified Bessel Functions of the second kind,of
order zero and one respectively (Abramowitz and Stegun 1964) and the
dimensionless argument is
£ = v.Ts . (4.6)

For the case concl” red in Table II, the mean square slope of the rough
. 2
surface is <0 > = 0.101 and the roughness parameter B is varied from one
2 . .
to ten. Using the relaticnships between <h > and <0§>and W(VT), it follows

that a?> - ¢/210 v:, <o§> = C/BY v: . (4.7)

Thus the values of C and v, &re determined. Since W(VT) is maximum et Vo T Vs
an increase in vm corresponds to an increase in the high frequency component
of the surfeze roughness. In Table II, the values of the wavelength A, the
diameter D, the relative dielectric coefficient cr (aluminum) and the
scattering and the total cross sections oso and Oto for the smooth (unperturbed)
particles are listed.

The values of 081’ 052, cs, Al and A2 together with the corresponding
values for the albedo A and the total cross sections at are given in
Table II. Clearly it cannot be assumed that O, = 0 - Such &n
assumption would result in values for A greater thar upity as the values of

Al indicate.

In Fig. 3,plots of OSl’ 082 and US as functions of B are given ..
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while the corresponéing values for A and 0t are plotted in Fig. L. Sirce
for A = 10U , aluminum is highly reflecting IEr] >> 1, the albedoc A decreases
only slightly as B increases. The absorption cross section °, increases very
slightly with increasing 8.

Fer the case presented in Table III, X, D and €, end the form of the

surface height spectral densiiy function W(VT) {b.b)are the samc ac ir the

case presented in Table II. However, instead of maintzining z corn
mean sguare slope <0§>, the }ocation of the peak of the spectral cenciity
function vp = v, is fixed (va=h and Tc/ﬂD=0.101). Thus, as 8 is var-

ied from 0 to 10, <0§> also increases (see Table III). In Tatle 1II ,ihc
values for 051, 052, os, Al' A2 as well as for 0t and A are giver fcr

0 f B < 10. Note that the last columns in TablesII and IIT are identicel.

In Figure 5 cSl’ 052 and the sum OS are plotted as functions of £ whilc

ct and A are plotted as functiors of B in Figure 6. There is & scres

larger veriation irn O_ e&s B incresses when the mean sguare slore verier
a
{Tzble III) than where the meen sguare slove is fixed (Teble

The veriaticne in c, end A zre rcre moderate for the ceses precenici irn

Tebles II end III (where ]Crl is very large) than for the case rrecented
in Table I. Ncie zlso that fcr cases vresented in Tables II and 117,

A varies mcre rariély for small values of B and levels off for larger
values of B.

The data presented in Tables II and II1 (and the corresponding

figures) clearly indicate that while the scattering cross section OS derende
primarly on the roughness parameter B, the absorption cross section oa=ct-oS
depends upon both B and the mean square slope <o§>. Thus for particles with
the same value of B the absorption cross section oa increases (and the albedo
decreases) as the mean square slope increases.

For the case presented in Table IV, the roughness paremeter B is fixed at
10 and the quantity va is set equal to 4 as in Table III. However, since
~2A=10pand D/X varies from 5 to 8 the mean square height is fixed (<h2>=2.5/k§)

but the mean square slope <0§> varies (see Table III).
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The materisl of the particle is a dissipative dielectric with €. = 1.5-18.
The values of Ogy» Ogp0 Og» Og, 85 well as O¢s Opgs A and Ao = oSO/cto
are given in Table IV. In Figure 7,051~ Ogp0 O and O, (the scattering
cross section for the smooth particle) are plotted as functions of D/
vhile 0., O, , A end A are plotted as functions of D/A in Figure 8.
Note that while the plots for the scattering crors sections in Figure 7
are relatively flat, the values for ot and oto (and therefore Oa) decrease
with increasing D/A (they asymptotically approach 2 for very large D/X).
The corresponding values of A and Ao increase as D/)A increases; they ilro
tend to level off as D/X becomes large. Both the total cross sections,

o, and albedo A,for the rough particles (B = 10) are smaller than the

t
corresponding values,0; = and A, ,for the swooth particles (g =0).
5. CONCLUDING REMARKS

In the illustrative examples considered, it is shown that surface
roughness results in a small but significant decrease in the values of
the elbedos of spherical particles. For particles made of aluminum,
this effect is more pronounced at optical frequencies (0.555u) (Table 1)
than st infrared frequencies (10u) (Tables II, III and IV). The effects
of varying the roughness parameter f = hki<h2>, the mean square slope and
the surface height spectral density function (varying vm changes the
location of the peak value of W(VT)) have also been investigated in detail
(Tables 11 and III). The effects of surface roughness on the extinction
cross sections and the albedos of particles ere also presented as functions
of particle size (D/A) (Table IV). Both aluminum particles (at 10U &nd
0.555u) and particles made of dissipative dielectric materials are considered.
On examining the results, it is clear that except for B << 1, the

extinction cross sections for the rough particles cannot be approximated

by the velue of the extinction coefficient for the corresponding smooth
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particle (B + 0). In some cases this would lead to values greater than
unity for the albedos (see Table II Al = US/Oto)'

When the optical thickness of the layvers with random distribution
of particles is very small {compared to unity), several sharp windows of
transmission may exist if the particles have smooth surfaces. These
windows of transmission are blocked when the surface of the particle is
very rough (B = 10). Acknowledgnments
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Table I. Extinction Cross Sections and Albedos
for Spheres with Rough Surfaces {0 < B < 1)

9 = 2.093 (8=0)
0., = 2-237 (B;og
> ~(Bcos 60/2)
Ix]© = e
_y.2.2

s-hkohs 0.0 0.1 0.5 1.0
0= == f o Ix|%a | 2.003 2.048 1.892 1.746
a2 ;. . . . .

_ 1 .
050" Iy J 050 0.0 0.0k351 0.1891 0.3103
0= 0 * Og, 2.093 2.091 2.081 2.056
Ay 0.9356 0.9348 0.9303 0.9190
A2 1.0000 1.0002 0.9978 0.987L
A= Al/A2 0.9356 0.9346 0.9323 0.9307

Oy
Ag= 5 0.9356 0.93k2 0.9191 0.8876
to
0= OS/A 2.237 2.237 2.232 2.209
<> 0.0 0.0017 0.0086 0.0172
A = 0.555n, D = 20}, €. = -40-i12, Vg = 2n/D, v, = 8n/A= hko
t /aD = 0.019 w=- v.<v. < v
[ - VE d T ¢

T
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Table II. Extinction Cross Sections and Albedos
for Spheres with Rough Surfaces (1 < B < 10)
<02> = 0.101
S
Og, = 2035 (B=0)
o, = 2.059 (B=0)
o]
2 .f

lx|2 _ e—(B cos 60/2)

g = hki<h§> 1 2 4 8 10
= 2 2 -
og, = =2 f °m|X] an 1.659 1.451 1.2k6 1.095 1.057
oy = 1= J op0 .40k L6027 .7863 .9039 9278
Cg = Oy * Oy 2.06% 2.053 2.033 1.999 1.085
L= og/op 1.003 9974 987k L9711 9641
I
Ay (cs/oto)P.C. 1.020 1.015 1.006 .9915 L98LL
A=A/, .9833 .9825 .98k 9794 .979L
—_—
c, = os/A 2.099 2.090 2.071 2.0l 2.027
sz 12.60 8.92 6.32 4,48 L.00
TC/TID 0.032 0.045 0.064 0.09 0.10
A= 10p , D=sx € = -6000 ~ i6000
g2 Vip 8
T owmy2 2
V, + v
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Table III. Extinction Cross Sections and Albedos
for Spheres with Rough Surfaces (0 <B< 10)
vD=1b
m
Og, = 2.035 (8=0)
o]
O = 2.059 (g=?)
]XIZ " e—(Beos 90/2)
4.2..2
B hko<hs> 0 1 2 L 8 _1c
1 2
o = =35 J o lx|7an 2.035 1.659 1.451 1.246 1.095 | 1.057
Ta
op = 1 J 00 0 .3654 .5658 | .7581 | .8okk| .9278
Og = Og) * O, 2.035 2.025 2.017 2.004 1.990 1.985
Al = US/Oto .9885 .9835 <9795 <9737 .9665 L9641
Ay = (US/UtO)P.C. 1.000 .9961 .9932 .9851 .9852 .98LY
A= Al/A2 .9885 .9873 .9863 L9844 .9810| " .979%
o, = cS/A 2.059 2.051 2.0k5 2.036 2.028 2.027
<c§> 0 .010 .020 .ok .081 .101
A =10y , D=5 s €, = -6000 - i6000 Tc/'nD = 0.101
8
we 2|
n vf‘ + v2
gk m
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Table IV. Extinction Cross Sections and Albedos
for Spheres with Rough Surfaces (5% <D < 8})
vD=14
m
D/A 5 5.5 6 6.5 7 .5 8
Ogy = —35-1 cmlxl2d9 1.116 [1.118 | 1.139 { 1.120 {1.120 .120 | 1.120
ma
_a
O, = 55 J opa? .29%2| .2973| .3000| .3023| .3043 | .3060| .3075
Og = Ogy * Ogp 1.%10 |1.815 |21.k19 | 1.422 [1.%2L JLh26 [ 1.k27
g 1.525 [1.518 [1.513 | 1.507 |2.503 .log | 1.495
A= os/cto .5959 | .6022 .605& .6137{ .618% 6224 | 6261
A, =(°s/°to)P.c. .984L | ,9BL3 | .9845! .98L8| .9852 .9856 | .9861
A= Al/A2 L6043 | .6118| .6179| .6232] .6276 6315 | .6349
o, = os/A 2.333 | 2.313 | 2.296 | 2.282 |2.269 .258 | 2.248
A= “So/°to 6U3% | L6M62 | .6486| .6507| .6526 6543 6558
%, 2.370 |2.350 |2.332 ] 2.317 |2.303 .290 | 2.279
<g_> .101 .0837 | .o704| .0600] .0517 L0450 | .0396
A=2100 , e, = 1.5-i8 , B =10
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Figure Captions

Scattering cross sections cSl’ 052, and US versus B {roughness

parameter) (Table I).

Extinction cross section Ot, oto’ elbedos A and Al versus B

(roughness parsmeter) (Table I).

Scattering cross sections USl’ 052, and OS versus B (roughness

parameter) {Table II).

Extinction cross section Ut and albedo A versus B froughness

parameter) {Table II).
Scattering cross sections oSl’ USE’ and Os versus B(roughness

parameter) (Table 11I).

Extinction cross section Ot and albedo A versus B(roughness

parameter) (Table JIIT).

Scattering cross section OSl’ 052, Us, and cSo versus
D/XA  (Table IV).

Extinction cross section 0., O o’ albedos A and AO versus

t t
D/X  {Table IV).
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CO-POLARIZED AND CROSS-POLARIZED IRCOHERENT SPECIFIC
INTENSITIES FOR WAVES AT OBLIQUE INCIDENCE UPON LAYERS
OF FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE
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and
Mary Ann Fitzwater

Electrical Engineering Department
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Lincoln, Nebraska 68588-0511

ABSTRACT

Opiical and infrared electromagnetic scattering and
depolarization by layers of randomly distributed particles of
irregular shape and finite conductivity are determined through
the use of the equation of transfer. The irregular shaped
particles are characterized by their random rough surface height
spectral density function or autocorrelation function.

The extinction cross section and the elements of the
scattering matrix in the equation of transfer are evaluated using
a full vave approach which accounts for specular point and diffuse
scattering in a self-consistent manner. Both single scatter and
multiple scatter inccherent specific intensities are evaluated

for particles with smooth and rough surfaces.
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1. INTRODUCTION

Optical and infrared electromagnetic scattering &nd depolearize-
tion by random distributions of particles of irregular shere &nd
finite conductivity are determined by solving the eguaticn of
transfer (Chandrasekar 1950, Ishimaru 1978). 1In this work excita-
tions of both vertically and horizontally polarized waves obliguely
incident upon parallel layers of particles are considered. The
irregular shaped particles are characterized by their random rough
surface height spectral density function W or its Fourier transform
the rough surface height autocorrelation function <hh!>.

The full wave approach (Bahar and Fitzwater 1983,1985; Echar ard
Chakrabarti 1985) which accounts for specular point scattering ac
well as diffuse scattering in a self-consistent manner ic used to
evaluate the elements of the scattering matrix and the extincticn
cross section (Bahar et al. 1986) that appear in the equaticrn of
transfer. The equation of transfer is solved for the incoherent
specific intensities using Geussian quadrature and the matrix
characteristic~va1ue techniques (Ishimaru et al. 1982). Both single
scatter as well as multiple scatter results for the co-polarized
and cross-polarized incoherent specific intensities are preserted
for particles with smooth as well as rough surfaces. Thus the
effects of particle surface roughness upon the co-polarized &nc
cross~polarized intensities are investigated in deteil. Special

consideration is given to the degree of polarization of the inccherent

specific intensities (modified Stokes parameters).




2. FORMULATION OF THE ‘PROBLEM
In this section, we formulate the solution for the incoherent
diffuse specific intensity matrix [I]. The elements of the matrix

[1) are the modified Stokes parameters {Chandrasekhar 1950, Ishimaru

1978)
’—Il FEJE;> ]
L| |
[1] = vl = 2Re<ElE;> (2.1)
v 21m<ElE;>-

in which the symbol <*> denotes the statistical average and *
denctes the complex conjugate (a suppressed exp(iwt) time dependent
excitation is assumed). The vertically and horizontally polarized
components of the electric field are El and E2 respectively. A
linearly polarized electromegnetic wave is assumed to be obliquely
incident upon a parallel layer of randomly distributed particles of
finite conductivity and irregular shape. Specifically, in this work
the particles are assumeé <o be spheres whose surfaces are randomly
perturbed (see Fig. 1). Thus if h is the random surface height of
the perticle measured normzl to the unperturbed sphere of radius a,
the redius vector to the surface of the irregular shaped particle is

;S = (a2 + h)a (2.2)
in which Er is the unit radius vector. The mean square height of
the rough surface <h2> is assumed to be such that the roughness

¢

paremeter B = Lko h2> (where ko is the free space wavenumber) is

is large (1 < B < 40). Thus the small perturbation method (Rice

. m ]
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1951; Ruck et al. 1970; Kiehl et al. 1980) cannot ﬁé used to analyze
the scattering by the very rough particles considered. The small
perturbation method is restricted to particles with small roughness
parameters B < 0.1, for which the incoherent diffuse specific
intensities are not significently different from those for the cor-
responding smooth (spherical) particles. Theoretical and experimentel
techniques used in the study of scattering and ebsorption by irregu-
lar shaped particles have been presented in the proceedings on the
workshop on light scattering {Scheurman 1980). A survey of
snalytical and numerical techniques including their pros and cons
has been presented by Yeh and Mie {1980).

The full wave method that eccounts for specular point scatter-
ing and diffuse scattering in a unified, self-consistent manner has
been used in this work to determine the scattering and depolarization
by particles with rough surfaces (Bahar and Fitzwater 1983; Bahar
and Chakrabarti 1985). The random rough surface height h is charac-
terized by its surface height spectral density function W or its
Fourier transform, the surface ﬁeight.autocorrelation function
<hh'>,

The incoherent diffuse specific intensity matrix [I] satisfies

the equation of transfer (Chendrasekhar 1950; Ishimaru 1978)
w80 o [13 +f [s)1vdaw a6 + 1, (2.3)
in which T is the optical distance in the z direction (norzmzl to the

plane of the slab, see Fig. 2).
T =zplo] = zfo,n(D)aD (2.4)
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where D is the diameter of the unperturbed spherical particle,n(D)
is the particle size distribution and 9 is the total cross section
(extinction coefficient). The symbol p[’] denotes integration over
the size distribution. The effects of the particle surface rough-
ness (vhich is assumed to be isotropie and homogeneous)are vanish-
ingly small in the forward direction, thus the extinction matrix
(Ishimaru and Cheung 1980; Cheung and Ishimaru 1982) for the particle
with the rough surface can be represented by & scalar quantity. The
metriccs [1) and [I'] are the incoherent diffuse intemsities for
vaves scattered by the particles in the direction 6 = cos'lu and ¢
and for waves incident in the direction 6' = cos-lu' and ¢'
respectively. The (bx4) scattering (phase) matrix [S] in the
reference coordinate system is expressed in terms of the scattering
matrix [8'] in the scattering plane (that contains the incident
and scatter wave normals Ei and ﬁf respectively, see Fig. 2)
through the following transformation

[s] = Bl(-m + a)1[5'][L(a")] (2.5)
in which [8']) is the weighted sum of two matrices

[s') = Ix(5-3)1%s,, 1 + [s]] (2.6)

In (2.6) ISMie] is given by

1
[SMie] = plot x —

2 2 * *
Bi I£1173 ol pRe(£),1),] -pInl£),1),]
2 2 »* *
ol11 13 olry,l PRe( £ T5,] ~pInlf,) £, ]
2Re[ f‘F ] poRe[t f* ] pRe[ f“ + * ] [ * *
PeRell) Ty PoRelT)pTop) PReLE) \f o070y ] PRelr, £-1 1 ]
* * * L #* *
2In[f. £ £ -
(P21l ey £ p21mle) 5055) pIn( ey 2500 000 ] pRelr) 001 1,0 )]

(2.7)
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vhere fi are elements of the 2x2 scattering matrix for' the umperturbed

J
(spherical) particle

\ P
E, = £, f30|E exp( 1kor) (2.8)

—_— .
E Ty Top||Ep

In (2.8) E!, E; and E are the incident and scattered vertically

L Er
and horizontally polarized electric field components in the
scattering plane and r is the distance to the field point from the
center of the spherical particle. For a smooth sphere fij are given
by the Mie solution (Ruck et al. 1970; Ishimaru 1978) and [f] is a
diagonal matrix. The transformation matrices [it] in (2.5) are
given in terms of the angle o' between the reference plane of
incidence and the scatterihg plane and the angle a between the
scattering plane and the reference plane of scatter (see Fig. 2)
cos?a  sin’a ¥ sin2a O
sinza coszu -% sin2a 0
Wa)] =
-sin2a  sin2a cos2a O
0 0 0 1! (2.9)

The quantity ¥ in (2.6) is the particle random rough surface

characteristic function.

X (5-§r) <exp(iw7~'ar h P (2.10)

in which

= x (B5-0) (2.11)
Thus the coefficient ,xlz in (2.6) accounts for the degradation
of the specular point contributions to the scatcered fields by the

rough surface (]x]2 <landas B0 lxla +1). The diffuse



343

scattering contribution to the matrix 5' due to the particle rough

surface is given by

D q
L1 2] o 0
9 ) o
[sp) = D
0 o [sh) [s3)
0 0 [sf3j [sﬁhj (2.12)

where

A .
[S?J] = E?EI%'T p[<OIJ>D] , fori,3=1,2 (2.13)

t
in which Ay = ﬂa2 is the average cross sectional area of the un-

perturbed particle and ‘<ciJ>D are the full wave solutions for the
like (i=j) and cross polarized (i#j) scattering cross sections

(Bahar and Fitzvater 1983, Bahar and Chakrabarti 1985). The

first end second superscripts i,j denote the polarizations (V vertical

end H horizontal) of the scattered and incident waves respectively

<ot = ?" I i) inyayds /1° (2.14)
0>, = R P2Q sinydyds/u .
where
Q= f (0075 )-Ix(7 & |Pexp(s7-F Dax dz, (2.15)

Since the rough surface beight h is assumed to be isotropic and
homogeneous, the surface height autocorrelation function <hh'> and
the Joint characteristic function X2 are only functions of the

distance r, = (xi + zi)li measured along the surface of the

a
unperturbed sphere. For rough surface heights with Gaussian

distributions
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x(7+8 )17 = exp[-(7:3)%<n®>] (2.16)

and

%p(7+5.) = <exp 17+ (n-n')> =exp[(17'§r)2<hh'>31)((‘7'gr)|f2_17)

In {2.15) it is assumed that the surface height correlation length
T, is small compared to the particle circumference TD.

For i = 3 end 4

[s?i] = p[ReE«%;>D + <oé§>D]]Ay/hnp[ot] (2.18)

(upper and lower signs for i = 3 and 4 respectively). For i#j

[s7,] = el1nl2 <ogp>y + <opi>p 1l fumelo, ] (2.19)

(upper sign for i = 4, J = 3 and lower sign for i =3, §J = 4
respectively).
In the above expressions

<o§i> = fznfﬂki p'd Dkl*P2Qsin'Yde6/Tr2 (2.20)

oo

In (2.1%4) and (2.20), P,, the shadow function, is the probability
that a point on the surface of the particle is both illuminated and
visible given the slope of the surface at the given point (Sancer
1964). The scattering coefficients p'J are functions of ﬁi,ﬁf and n
the normal to the unperturbed surface of the particle as well as its
electromagnetic parameters €,u. The remaining eight terms of the
metrix [sD] venish since D'' ana DY (i#3) are symmetric and
antisymmetric respectively with respect to § the azimuth angle

for the sphere.

In this work it is assumed that a linearly polarized wave

(vertical or horizontal) is obliquely incident upon a parallel layer
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of optical thickness To containing & random distribution of particles
with rough surfaces. The incident Stokes matrix at z = 0 is

{see Fig. 2)

[1,,J = Thetw-uh)sle") (2.21)

in vhich p* = cosB®, the direction of the incident wave is (6°,0)

and
1 0
v ° H_l
1 = and I0 =
° o 0
0 ] (2.22)

for P = V (vertical) and P = H (horizontal). In (2.21)6&(+) is the

Dirac delta function. Thus the reduced incident intensity is

[Iri] = [Iinc] exp(—T/ui) (2.23)
and the (bx1) excitation matrix (2.3) is
[1,) = fIs)(1  Jaw'aé’ = [Flexp(~t/u') (2.24)
in vhich the (4x1) matrix [F] is
[F] = [SJ[IZJ o (2.25)
¢'=o

P
and the matrix [Io] is defined in (2.22). The matrix [F] can be

expressed as & Fourier series (Ishimaru et al. 1982)

[F] = T [F® cosmp + £ [FI® sinmé (2.26)
m=0 o n=1 m
in which
L 0
F 0
a 2 b _
[FJm = 0 ’ [F]m = Fm3
0 Foy (2.27)
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For mormally incident (Si=0) linearly polarized waves, the terms
1=0 and m=2 are the only non-vanishing terms and for normaelly
incident cirewlarly polarized waves the only non-vanishing term is
T=0. BHowever, for the obliquely incident linearly polarized waves
considered in tuis work, the number of terms of the infinite series
needed to be considered depends on the desired accuracy of the
numerical results (see Section 3).

From (2.26) it follows that

a 1 2n
[F1C = 55 cj’ [rlas (2.282)
and form > 1

on on
[rj;: = 11—1‘{ [F]cosm¢d¢s[F]3 = %(f) [F)sinmda¢ . (2.28b)

The incoherent specific intensity matrix [I] can also be

expressed in terms of the Fourier series

[1) = £ [1)2 cosmp + I [112 sinmd (2.29)
m=0 m=1

Since the elements of the scattering matrix [S] are functions of
¢'-$ it is expressed as follows

[s] = ‘5_’1—‘_[332 + %. I [[S]:cosm(¢'—¢)+ ‘:S]zsinm(qﬂ—tt)] (2.30)
DA o |

Furthermore, for the rough sphere fii are even functions and fi,j
(1¥3) are odd functions of ¢'-~¢, for m=0,1,2 ... , thus
b

[s; 12 o o Is)]

sy =| 1" [T = i
a b
oI5 [, o (2.31)

vhere

[s,05, [5,10, [8,)) ana [5,20 - . - (2.32)
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are {2x2) matrices given by

2n
[s.7% = [ [5.] cosm(¢'-9)a(é'-¢) , i=1,4, (2.32a)
i ™m ° 1
2n
[s. 1P = [ [s.) sinm(¢'-¢)a(¢'-¢) , i=2,3 (2.32b)
i ™nm o 1

and [Si) are the {2x2) matrices defined by

sll [52]

[s] =

[53] [shJ (2.33)

It therefore follows that the first two elements of the Stokes
ma‘l:rix,I_.L and 12, are even functions of ¢'-¢ while the last two
elements,U and V,are odd functions of ¢'-¢ {(Ishimaru et el. 1982).

Thus for m=0,1,2 ...

Iml 0
a In12 b © b
[1)° = and [I]) = where [I]° = [0] (2.3%)
m m v o
m
0 v
m

The equation of transfer for each of the Fourier components can be

written as follows

u 3% [1] = -[1] + {I[SJm[I‘deu‘ + [F]meXP(-T/ui) (2.35)
in which
[13, = [1% + (10, [F] = [FIZ + [FD (2.36)
and

[s, 2 [s,2}
Is )=

S L - (2.37)
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’ b . b
Note that since [I]Z = [o0], [sijo = [0] (i=2,3) and [F]o = [0] the
last two elements of the matrix equation (2.35) vanish for the

case w=0.

The boundary conditions for the Stokes matrix [I] are

[1],=0 foro<uglatt=0 (2.38a)

and
[1],=0 for0>p>-latt=r1 (2.38p)

Equation {2.35) together with the associated boundary conditions
(2.38) are solved for [I]m using the Gaussian gquadrature method
(to discretize the angle B) and the matrix characteristic value
technique (Ishimaru 1978).

Jt is 8lso necessary to determine the extinction coefficient
{tota) cross section) 0, in order to solve the equation of transfer
(2.3) When "equivalent" spheres do not reasonably represent the
basic scattering characteristics of irregular shaped particles,
Greenberg has developed experimental microwave techniques to
determine the albedos of particles for which no theoretical method
existed (Greemberg 1960, Chylek 1977, Scheurman 1980). In this work
the full wave approach (which unlike the small perturbation method
is pot restricted to small values of B) is used to evaluate o,
{Babar et 8). 1986) by making judicious use of the forward
scattering thecrem (Born and Wolf 1964} and the very perceptive
observation that for large scatterers (compared to wavelength) the
forward scatter "shadow forming wave is the same for all surfaces

vhich have the same shadow line" (Morse and Feshbach 1953).
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The diffuse specific scatiering intensities Il and 12
corréspond to vertically polarized (Ee) and horizontally polarized
(E¢) v&vés respectively. In practice, however, the polarization of
the receiver is either parallel (Ex) or perpendicular (Ey) to the
polarization of the incident wave. The corresponding diffuse
specific intensities Ix and Iy are the co-pclarized and cross
polarized incoherent specific intensities (Cheung and Ishimaru
1982). They are obtained from I1 and 12 through & linear trans-
formation.

The degree of polarization m of the scattered wave is
(Ishimaru 1978),

[(1,-1,)% v%+ v2)
n= <1 (2.39)

+ -
Il I2

3. ILLUSTRATIVE EXAMPLES

For the illustrative examples considered in this work, the
particle random rough surface height h {(meesured normal to the
unperturbed surface) is assumed to be homogeneous and isotropic and
the unperturbed surface is assumed to be spherical (2.2). Thus,
the rough surface height autocorrelation function <h{r)h(r')> is
only a function of the distance r, = |r-r'| = (xg + zi);é measured
along the surface of the (unperturbed) spherical particle of
radius a. It is also assumed that the rough surface correlation

2 exp(-1)) is smaller than the

distance r_ (vhere <hh'> + <h
circumference of the particle. The correlation length is related

2
to the mean square height <h > and the total mean square slope
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<o§> through the expression
2 3
r = 2(<n%>/<0%>)* (3.1)
c s
The surface height spectral density function W(vx,vz) is the
twvo dimensional Fourier transform of the surface height autocorrela-
tion function <hh'>. Since the rough surface is assumed to be

homogeneous and isotropic the spectral density function is only &

function of
Y
vp = (V) + V) (3.2)
Thus
1 0
= ] . Ser .
W(anvz) 2 {m<hh >exp(1vxxd+1vzzd)dxddzd
2
=3 £ <hh'>J (vTrd)rddrd (3.3)

in which Jolvfrd) is the zero order Bessel functicn of the Tirst

kind and v, and v, are components of the vector v = ko(ﬁf—ﬁl) in

the direction of the unit vectors El and 53 tangent to the surface
of the unperturbed sphere. In view of the Fourier transform
relationship between <hh'> and W

© W(v v, )
<hh'> = f —)‘—— ex-p(-nr X3 —1v Z4 )dv dv

= g £ V(v ) (VTrd)devT (3.4)

The following special form is assumed in this work for the surface

height spectral density function

2c| 1
n

Wiv, ) = >
vT+v

T
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Thus the surface height autocorrelation function is

2 Y €
o - [ 2 Eo
+ [l - 5§-+ Ei]czx (z) (3.6)
2 96 o :

in which Ko and K1 are the modified Bessel functions of the second
kind of order zero and one respectively (Abramowitz and Stegun

1964) and the dimensionless argument is
= Vora (3.7)
The dominant roughness scale (where W(vT) is maximum) is Ve = v, end

W(Ym) = C/128w jz. The mean square height is

2 T _ 6 o
<> = E-g W(VT)devT = /210 v (3.8)
and the total mean square slope is
oo
o . m 3 _ 4
<0> = 3 £ W(VT)VT dvT = C/84 v (3.9)
Thus N AT
T, =1.26/x (3.10

Twc special cases are consideied in deteil at infrared end optical

frequencies.
Case (&) A = 10 D = 5\ Er = 1.5-i8 (dissipative dielectric)
2 2.2
va =L, <o > =0.101 ,B = hko<h > = 10, rc/nD = 0.101
Case (b) A =0.555¢ D = 10X e = ~40-i12 (aluminum, Ehrenreich 1965)
2
v.D =14, <0>=0.101, B =40, r_ /m = 0.101.
For case (&) (D = 51) it is pecessary to use a Gaussian quadrature

formula of order 20 to discretize the angle € (Abramowitz and

Stegun 1964 ) and for case (b) (D = 10A) since the d4fferential
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scattering cross sections are very sharply peaked in the forward

direction it is necessary to use a Geuscian quadrature formule of the

order 32. The number of terms needed in the Fourier series expan- ‘
sicns for the incoherent syecific diffuse intensities depence cn the
angle of incidence Gi. As wze noted,for ncremal incidence all the
terms of the Fourier seriec excert m=0 and m=2 vanish. Fcr cace (&) ‘
6. = 30° it it necescury toc account fer the terms m=0,1,2 ... 2% tc

figure sccuracy for the excitation ratrix F (2.25).

L I, anc I_ sre ylctted ac functions ¢f €

4 -
1 Z
c s e e e i_ ..¢
for & verticelly jclerized wave incicdent &t an angle €= 117 ¢=. urcn & 1
parallel lsyver cf crticel thickrese T = CG.2. In Figurer ! and {

the corresperding recultic &re shown for & horizontally polorinel :

incident wave. F th firct créer and midtiple ccoetterirg recults are

o+

te particles ‘
with rough surfaces. For & vertically pclerized incidert wave the

main lobe of the scatiered intensity Il is in the forward direction

6= 150. Since the diffuse scattering contritutions [SD] is |
negligidle in the near forward direction, the effects of the
particle surface roughness is also negligitle in the near fcrwerd
direction. Moreover, since the Mie solution for the scattered field |
has a very large lobe in the forward direction, for To = 0.1 [
maltiple scattering effects are not significant in the forward

direction. Away from the forward direction the effects of particle

surface roughness become significant. The effects of particle




surface roughress gre primsrily manifested in the smoothing out of
the large undulations in the specific intensities for the smooth
spherical particles. The effects of multiple scattering are mcre
pronounced away from the near forward directions. The multiple
scettering effects increase as the optical thickness To increases.
The effects of particle surface roughness are more strongly
meznifested in the results for the cross polarized specific intensity
12 (Fig. 4). The single scatter results are zero for the smooth
particle. However, for the rough particle the single scatter
results are in agreement with the multiple scatter results except
in the near forward direction where the single scatter results are
negligible. This is again because the diffuse scattering contri-
bution [SD] is negligible in the ferward direction. For the sane
reascn in the near forward direction the multiple scatter resultis
are the same for beth the smooth particles and the particles with
rough surfaces.

The principal difference between the results for the horizontally
polarized excitations and the results for the vertically polarized
excitations is that the like polarized intensity 12 (Fig. 6) for &
herizortslly polarized excitation undulstes less strongly. This
results directly from the behavior of the correspondirg Mic soluticns.

In Figs. 7 and 8 the incoherent specific intensities Il and 12
are shown for the case considered in Figs. 3 and & (vertically
polarized excitation) except that here the optical thickness is

To = 20, As the optical thickness of layer of particles increases,

A k. . A
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the incohérent specific intensities become more isotropic and the
levels of the like (11) and cross (I,) polarized intensities
arproach éach other. Multiple scattering cannot be igrored and the
effects of particle surface rcughness increase awey fror the near
forward scattering directicn. The specific intensities are lower
Tor the particle with rough surfaces than for the smooth spherical
perticles since the albedos for the rough particles are smaller than
the albedos for the smooth particles (Table I). The corresponding
results for horizontally polarized excitations {not shown) are
similar to those for vertically polarized excitations. As the
ortical thickness of the layer of perticles To increases the
rultiple scatter results become mere indeperdent of polarization.
In Figs. 9 and 10 the inccherent specific intensities Il and
12 are plotted as furctions of O for vertically pclarized waves
jincident at en angle ot = 30 ,¢.= 0(X = 10u, case (2)). The optical
thickness of the layer is L 1. The effects of particle rough-
ness on both I1 and I2 are negligible in the near forward scatter
direction. H weﬁer, ewey from the forward scatter direction the
effects of particle surface roughness is very significant. The
inccherent specific intensities became more isotropic. Moreover,
it shculd be ncted that for To = 1 while the particle surfece
rougkress reduces the level of Il (1ixe polarized intensity) it

increases the level of 12 {cross-polarized intensity). This is

beceuse the albedoc for the particles with rough surfeces are

smaller than the albedos for the smooth particles, and the cross-
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polarizéd scattering cross secticns ere rot zero for the particles
with rough surfaces. As a result the degree cf polarizaticn is
smallér for thé layér conteining prarticles with rough surfaces.
The single scattér résults, also shown in Fig. 9 indicate the
effect of the particle rough surface is to reduce the sherp
undulations in the specific intensity Il'

In Figs. 11 end 12 the co-polarized (Iy) end crese-polerized
(Ix) incoherent specific intensities are plctted as functions of
the azimuth angle ¢ for horizontally polarized waves incident at
an angle oi= 30°,¢i=0(l = 10y, case {a)). The opticel thickness of
the layer is 7,0.1 and the (forward) scatter angle is 6 = £8.1°.
The first order and multiple scatter results for the specific
intensities Ix and Iy are less than 1/2 db apart for the particles
with rough surfaces. On the other hand, the correspording results
fer the smooth tarticles are far more oscillatory and there ere
csignificent differences between the first order and multiple
scetter results especially for the crecss-polarized intensities (Ix)
in the neighborhood of ¢ = 0 and ¢ = 7.

The co-polarized (Ix) and cross -polarized (Iy) incoherent
specific intensities for vertically pclarized waves incident et
an engle B=30°,¢i=0(k=10u, case (a)) are plotted as functions of
the azimuth engle ¢ in Figurec 13 and 14. The optical thickness
cl the leyer is To = 0.1 ard the (back) scatter angle is 8 = 11].90.
The co-polarized reflected incoherent specifié intensity Ix is

larger for the smooth particles than for the rough particles,
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however since To = 0.1, the multiple scatter and single scatter
results are less than 0.5 db apart. The refletted flux of the
cross-polarized incoherent specific intensity Iy is larger for
the particles with rough surfaces than for the smooth particles
and Iy is more isotropic for the particles with rough surfaces.
The difference between the single and multiple scatter results
is significantly larger for the smooth particles. The co-
polarzied and cross-polaticed specific intensities are even functions
of ¢ (2.34).

In Figs. 15 and 16 the incoherent specific intensities I, and
1, are plotted as functions of 8 (¢ = 0) for vertically polarized
waves incident at an angle Bi = 15°, ¢i= 0(A=0.555u, case (b)). The
optical thickness of the layer T, = 2. Since D = 10X for case (b)
the plot of the specific intensity Il is strongly peaked in the
forward direction and the first order, single scatter results for
the smooth particle oscillate rapidly. In this case it is
necessary to account for the terms m = 0,1,2 ... 26 to get & two
significant figure accuracy. The multiple scatter results for
the smooth particle do not undulste as strongly since To = 2.
For the particles with rough surfaces, both the single scatter
and multiple scatter results for I1 are similar to the corresponding
near forward scatter results for the smooth particles. However,
avey from the near forward direction both the single and multiple
scatter specific intensity Il for the perticles‘with rough surfaces

are significantly different from the corresponding results for the
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smooth particles. The effects of particle surface roughness are

to significantly smooth out the undulations in Il awvay from the
forward scatter direction. Since the albedo for the particles with
rough surfaces is smaller than for smooth particles generally

Il for the smooth particles is larger. This is not the case for

12 {the cross polarized specific intensity). For small values of
To’ I2 is larger for the particles with rough surfaces (since their
cross-polarized cross sections <GPQ>D P#Q are not zero). However
for layers with very large optical thickness To’ the reverse is
true since the albedos for the smooth particles are larger. The
cross-over occurs at about To = 2 where the multiple scatter
results for 12 are approximately the same for the particles with
rough and smooth surfaces (see Fig.16). The single scatter results
I2 for the smooth particles are zero for the ¢ = 0 plane.

In Figures 17 and 18 the co-polarized and cross-polarized
incoherent specific intensities Iy and Ix are plotted as functions
of the szimuth angle ¢ for a horizontally polarized wave incident
at an angle ol - 15°, ¢i = 0% (X = 0.555u, case (b)).The scatter
polar angle in these figures is 8 = 59.5° (forward scatter) and the
optical thickness of the layer is T, = 0.1. 1In view of the
excitation Ix and Iy are even functions of ¢. For this excitation
the co-polarized intensity is Iy (Fig. 18). For the smooth
particles both Ix and Iy undulate very strongly, the major
difference between the multiple scatter and tingle scatter

results occur only at the sharp nulls. For particles with rough
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surfaces both Ix and Iy are significantly more isotropic (with
respect to ¢) and thé difference between the single scatter and
multiple scatter results is less than 1 db.

In Figs. 19 and 20 the co-polarized and cross-polarized
incoherent specific intensity %Y and Ix are plotted as functions
of ¢ for the scatter polar angle 6 = 164.7° (backward scatter).
The excitation is the same as for the case considered in
Figs. 17 and 18. The effect of particle surface roughness is to
smooth out the undulations in the specific intensities for the
smooth particles. Thus the backward scattered inccherent specific
intensities for the particles with rough surfaces are practically
isotropic as well as polarization independent even for layers of
small optical thickness = 0.1. As T increases, the difference
between the single and multiple scatter results saturate at sbout
0.7 db for the particles with rough surfaces.

In Figs. 21 and 22 the degree of polarization m (2.39) is
plotted as a function of the azimuth angle ¢. The excitation is
a horizontally polarized wave incident at an angle ei = 150,
¢i = 0 (X = 0.555u case {b)). The optical thickness of the layer
is T, = 2. 1In Fig. 21 the scatter angles are 8 = 4.2° and
6 = 9.70. Multiple scatter results are plotted for particles
with both smooth and rough surfaces. For the near forward
scatter direction (6 = 9.72 [ ] 0) m is the same for both smooth
and rough particles, however as ¢ increases to 7 the difference
becomes very significant. The results for 6 = 4.2° do not

undulate as strongly as the results for 6 = 9.7° since the main
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scatter lobe is in the direction 6 = Bi = 150, ¢*

= 0. The degree
of polarization m is smaller for particles with rough surfaces.

For the case plotted in Figure 22, the {backward) scatter angles
are 8 = 148.1° ang 6 = 153.70. The backvard scattered waves have
a degree of polarization m < 0.1 for the particles with rough
surfaces. However, for particles with smooth surfaces m oscillates
around the value m = 0.5.

Since the degree of polarization is m < 1, this parameter
together with the single scatter data provide valuable checks
on the numerical results.

L. CONCLUDING REMARKS

The illustrative examples presented in Section 3 vividly
describe the effects of particle surface roughness on the co-polarized
and cross-polarized incoherent specific intensities for optical and
infrared electromagnetic excitations at oblique incidence.

Since the diffuse scattering contributions due to particle
surface roughness are negligible in the near forward direction, the
primary effect of the surface roughness is to smooth out the side
lobe undulations of the specific intensities for the corresponding
smooth particles. Furthermore, the particles with rough surfeces mcre
strongly depolarize the incident wave. Thus since the albedos are
smaller for the particles with rough surfaces than for the smooth
particles, the co-polarized specific intensities are smaller for
the rough particles while the cross-polarized specific intensities

are smaller for the smooth particles when the optical thickness of
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the lsyer of particles is small T < 3. Rowever, as the optical
thickness of the layer increases (T > 1) both the co-polarized
and cross-polarized specific intensities are smaller for the
particles with rough surfaces.

In general as the optical thickness increases and rultiple
scattering effects become significant, the layer consisting of
particles with rough surfaces tend to scatter the incident waves
in a mwore isotropic manner. The sharp undulations in the specific
intensities are smoothed out and the results become more polariza-
tion independent. Thus the degree of polarization for the particles
with rough surfaces is significantly smaller than for the smooth
particles when the layers of particles with rough surfaces are
ortically thin, the first order single scatter results and the
maltiple scatter results for the co-polarized and cross-polarized

intensity are in very good agreement.
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Table I

) Case a Case b
B 10 ko
2 10u .555u
€. 1.5-i8 -40-112
2a =D 5A 10X
ot’ smooth 2.370 2.259
ot, rough 2.333 2.213
albedo, smooth .643Y .9356
albedo, rough L6043 .8579
Wv) = 5o v2:32 ° , vgD=k, <o2> = .101, r_/a>=.10]

T m

Table I. Values of parameters for the surface height
spectral density function W, wavelength A, dielectric

coefficient cr and diameter D for the scattering particles.
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6. Figure Captions

Scattering geometry

Scattering geometry

for & rough conducting sphere.

indicating incident and scattered wave

normals 51 and ﬁf and corresponding field components El

parallel (vertical)

polarizations.

Incoherent specific
wave incident at 67
First order smooth

smooth, {A) rough.

Incoherent specific
vave incident at 6%
First order smooth

smooth, (A) rough.

Incoherent specific
vave incident at 6%
First order smooth

smooth, (A) rough.

Incoherent specific
vave incident at 6%
First order smooth

smooth, {A) rough.

Incoherent specific
veve incident at 6%
First order smooth

smooth, (&) rough.

Incoherent specific

vave incident at gt

and E. perpendicular (horizontal)

2

intensity Il for & vertically polarized
=15°, ¢* = 0, case (a), T, = 0.1.

and rough (——). Multiple scatter (+)

intensity I2 for & vertically polarized
= 15°, ¢* = 0, case (a), T = 0.1.

and rough (—). Multiple scatter (+)

intensity Il for a horizontally polarized
=15°, ¢* = 0, case (a), T, = 0.1.

and rough {—). Multiple scatter (+)

intensity I2 for a horizontally polarized
=15%, ¢" = 0, case (a), T_ = 0.1,

and rough (—=). Multiple scatter (+)

intensity I1 for & vertically polarized
= 150, ¢t = 0, case (a), T, = 20.

and rough (—). Multiple scatter {(+)

intensity 12 for a vertically polarized

= 15°, ¢i = 0, case (a), T, = 20,

First order smooth and rough (—). M.ltiple scatter (+)

smooth, (A) rough.
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12.

13.

1k.

15.
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Incoherent specific intensity I, for a vertically polarized
wave incident at 6% = 30°, ¢t = 0, case (a), T, = 1.

First order smooth and rough (——). Multiple scatter (+)
smooth, (4) rough.

Incoherent specific intensity I, for a verticelly polarized
wave incident at gt = 300, ¢1 = 0, case (a), To = 1.
First order smooth and rough {—). Multiple scatter (+)

smooth, (A) rough.

Co-polarized specific intensity I_ for a horizontally
polarized wave incident at 6l - 30°, ¢i = 0, case (a),
1,=0.1, 6= 68.1°. First order smooth and rough (—).
Multiple scatter (X) smooth,{X) rough.

Cross-polarized specific intensity Ix for & horizontelly
polarized wave incident at gt = 30°, ¢* = 0, case (a),
1, = 0.1, 8 = 68.1°. First order smooth and rough {——).

Multiple scetter (X) smooth,{X) rough.

Co-polarized specific intensity I_ for a verticelly
polarized weve incident at gl = 30°, ¢i = 0, case (a),

1 = 0.1, 8 = 111.9°. First order smooth and rough (—).
Multiple scatter (X) smooth,(X) rough.

Cross-polerized specific intensity I for a verticeally
polarized wave incident at ol = 3b°, ¢i = 0, case (a),

T, = 0.1, 8 = 111.9°. First order smooth and rough (—).
Multiple scatter (X) smooth ,(X) rough.

Incoherent specific intensity I. for a vertically polarized
vave incident at ei = 150, ¢i = 00, case (b), T, = 2.

First order smooth end rough (—). Multaiple scatter (+)
smooth, (4) rough.




16.

17.

18.

19.

20.

el.

22.

Incoherent specific intensity I for a vertically polarized
wave incident at gt = 150, ¢1 = OL, case {(b), To =2,
First order smooth and rough (—). Multiple scatter (+)

smooth, {A) rough.

Co-polarized specific intensity Iy for 8 horizontally
polarized wave incident at gt = 150, ¢1 = 0, case (b),

T, = 0.1, 8 = 59.5°, First order smooth and rough (—).
Multiple scatter (X) smooth,(X) rough.

Cross-polarized specific intensity I for a horizontally
polarized wave incident at ei = 150, ¢i = 0, case (b)

T, = 0.1, 8 = 59.5°. First order smooth and rough (—).
Multiple scatter (X) smooth,{X) rough.

Co~polarized specific intensity I for a horizontally
polarized wave incident at ei = 300, ¢i = 0, case (b),

1, = 0.1, 8 = 164.7°. First order smooth and rough (—).
Multiple scatter (X) smooth,{(X) rough.

Cross-polarized specific intensity Ix for a horizontally
polarized wave incident at ot = 300, ¢1 = 0, case (D),

1, = 0.1, 8 = 164.7°. First order smooth and rough (—).
Multiple scatter (X) smooth,(X) rough.

Degree of polarization m for a horizontally polarized wave
incident at 8% = 15°, ¢* = 0, case (b), T, = 2, 9= 4,2°
(+) smooth, (X) rough, 9.7° (0) smooth,(A) rough.

"

Degree of polarization m for a horizontally polarized wave
incident et 8% = 15°, ¢* = 0, case (b), T =2, 8 = 1:8.2°
(+) smooth, (X) rough, 6 = 153.6° (0) smooth,(A) rough.
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COMPUTER AIDED GRAPHRICS FOR THREE DIMENSIONAL OBJECTS

BASED ON FULL WAVE THEORY

Ezekiel Bahar
and
Swepan Chakrabarti
Department of Electrical Engineering

University of Nebraska-Lincoln
Lincoln NE 68588-0511

ABSTRACT

A new reflection model for computer generated synthetic
iceges of métallic objects is developed. This model is besed on
a full vave analysis of electromagnetic scattering by rough surfaces.
The full wvave approach accounts for specular point scattering end
diffuse scettering in a self-consistent manner. The model presented
hére is compared with earlier models. It is shown that the practical
applicetion of the new reflection model to computer aided geometric

design of manufactured objects is relatively easy to implement.
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i I. INTRODUCTIOR

_Over the period of the last decede the reflection mocels for
computer generated synthetic images hzve been improved in order to
produce very realistic images of three dimensionzl objects on z
two dimensional screen. Phong [18) begen by computing the intensity
of each pixel as a linear combination of diffuse ané speculerly
reflected components. Diffuse reflection was simulated using
Laqbé;t's cosine law. While §pecular reflection was accounted for
by using the cosine function raised to the nth pover (typically
n ranges from 1 to 10) with its peak at the specular point.

Blinn [7,8) modified this model by adopting the specular reflection
model described in the wvork of Torrance and Sparrow [7]. 1In their
model the simulated rough surface is assumed to be corposed of
mirror-like microfacets which are oriented randomly zll over &
smooth surface. Later Whitted [19) introduced an enhanced rey
tracing model, in vhich the intensity at each pixel is computed from
the global illumination information. Cook and Torrance [13, 1k)
applied their reflectance model to computer graphics. Their model
took into account the effect of the spectral distridbution cf the
energy of the incident light and the reflectance spectra of the
cbject to display the ;olor of the object. Recently Kajiye [17]
introduced an anisotropic reflection model for surfaces which

exhidbit anisotropy in their scattering pattern. However, in
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practically all the above menticned models the speculer reflection
component is ctharacterized by the Fresnel reflection coefficient
£nd the diffuse contribution is assumed to be Lambertian.

In this poper scattering from rough surfaces based on full
wave theory is reviewed. The full wave theory is bzsed on the

complete spectrel representation of the scattered fields and upon

_the imposition of exact boundary conditions at the irregular

surface. This theory eccounts for both specular reflection and
diffuse reflection. A reflection model for computer generated
synthetic images is derived from the full wave analysis.

In this investigation the rough surface is assumed to be
iso?rcpic and hcoogenecus. In addition the mean squere slope of
the random rough surface, vhich is superimposed on the unperturbed
surfzce, is escumed to te small (<0§> < 0.1). EHence for convex
shapes (as in cylinders, spheres or cones) multiple scettering
betveen different su-face elements of the object is ignored.

In Section II th~ problem is formulated and the principal
elements of the full rave solutions are obtained. Expressions for
the total reflected intensities are evaluated in Section III for
objects illuminated by unpolarized light. In Section IV the diffuse
ané specular scattering contributions from different surface elements
of the objects are exanined in detail. and the full wave reflection
model for computer generated synthetic images is derived.

In Section V the full wave reflection model is used to generate the
three dimensionsl primitives for combuter aided geametric design by

locating isointensity contours.
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II. FORMULATION OF THE PROELEM

For the purpose of computer ajded graphics of manufactured ob-
‘Jects, it has been shown [15) that a2lmost 95% of the surfzces of
the manufaétured objects can be described a2s combinztions of planes,
cones, cylinders and spheres. In generzl these primitives have some

measure of roughness and therefore it is necessary to examine in

- detail scattering from rough surfaces. The objective of this research

is to develop realistic models in order to generate these primitives
for computer graphics. In this presentation spherical scatterers are
considered in detajl and in the analysis, it is assumed initially
that the spheres are illuminzted by vertically or horizontally
polarized light [3).

Consider & large sphericel surface perturbed by a superimposed
random rough surface. The height of the randcm rough surface h is
measured along the normal to the unperturbed spherical surface. It
is chargctgrized by its spectrzl density function. The position
vector ;s to 2 boint on the rough surface is given by

r =ad +ha (1)

wvhere Er is the unit radius vector and the radius of the unperturbed

sphere, &, is essumed to be laerge compared to the wvavelength, Ao,

of the incident wave.

The normal to the unperturbed sphere fi = ﬁr is

8 = siny cosd ﬁx + siny sind ﬁy + cosyﬁz (2)

A ]




393

vhere y and § are polar and azimuthal angles respectively

{Fig. 1). In view of the spherical symmetry, the coordinate f

system is chosen such that unit vectors n’ and nf in the direction

of the incident end scattered waves are {see Fig. 1).

a i~ i~

n- = sineo gy, - cosb &, (3)

Sf = siner a + cosef a (L)
oy oz

in which 6: = 67. The vector 7 which bisects the angle between

the incident and scattered wave normals is

v = kolﬁf-S') = 2% cosegjéz =Rl (s)
and
7= = ;Z (6)
Iv]

For a Gzussian rendom rough surface height h, with mean square height
<h2> the characteristic function is
2,2
x{v.) = exp{-v.“<h>/2) , (v_ = v:n) (1)
z z z
in vhich vi_is the component of v normal to the unperturbed surface.

The total normalized differential scattering cross section per

unit projécted erea A of the object is given by [26)

12, P2
«ofS = Ml e (8)
A Qi

z E
In (8) the second superscript @ corresponds to the polarization of 1
the incident field end the first superscript P corresponds to the
polarization of the scattered wave. Pursuant to the choice of the
coordinate system, the plane of incidence (normal to ﬁxﬁz) and the
plané of scatter (normsl to ;fxﬁz) are in the scattering plane

ol Af) PL Qi

(normal to &* x & E end E are the scattered

*
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and incident electric fields respectively [12]. The distance to
the observetion point from origin is r°.
PQ

Using the full wave approach <0" ™ is expressed as a weighted

sum [2)

<oPQ> = <oPQ'>£ + <aPQ>R (

in wvhich <c7PQ>‘Q is the cross section associated with the large
scale unperturbed surface and <0PQ>R is the cross section associated
with the rough surface h that is superimposed on the large scale

spherical surface. Using a steepest descent or stationary phase

approximation [5) <0PQ>£ reduces to the form
P 2 2
<o Q>1 = Ix 1%[ry1%6,, (10)

where BP is the Fresnel reflection coefficient for verticazlly
{P=V) or horizontally(P=H) polarized waves and 6PQ is the Krenecker
deltz. The unit vector normel to the unperturbed surface zt the

-specular point is given by

hoot-d

s z
and (11)

Yoo o=v

s
Hence equation {10) reduces to
P, -hk§<h2>cos26£ >
<o 2 = e IRPI GPQ (12)

In equstion (10) ]x |2 represents the degradation of specular

point, physical optics, scattering cross section of the large

\0
~—
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scele smooth sphere due to the rough surface superimposed on its
surface. This decrease in the speculer point scattering is

o a .s . . . PQ N
eccompanied by the diffuse scattering contribution <o >R due to

the rough surfece h.

Using the full wsve spproach [ L] it is shown that

21 +1
P 2 PQ,2
'S =¥ { _{]n 47 qtv,vp)p, aues (13)

wvhere-dpdé =-d{cosy) d8 is the differential solid angle. The
function P2 is unity for the illuminated and visible portions of

the sphere and it is zero elsewhere. Furthermore,

+oo .
2y ==
QE(V,VT) = fm (x2—lxl )exp(lv-rd)dxédyd

=on [ ey IXIP) tvgrr gar, (1te)
o}

vhere Jo is the Bessel function of the first kind of order 0 and x2,
the Joint surface heightAcharacteristic function for Gzussian

surfaces,is given by [€]
x, = Ix|Zexpl-con'> v. %) (101)

in which <hh'> is the rough surfzce height azutocorrelation
function. The component of v tangent to the unperturbed surface is

/ 2 2 . - 2, 2 .
= /v-S4v- = + -asured eleng
VT vx +vy and the distance rd xd yd is measured elong

the surface of the unperturbed sphere. In equation (13) pFe is

an element of a 2x2 scattering matrix whose elements are functions
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of ﬁi, Bf, n . the complex electric permittivity and permiability of

the particle [12].
Hence from equations (9) and (10) one obteins
<°VV> = <ovv>R + IX (v)[2]Rv]2
VH VH>

<g > = £g R

<0Hv> = <0HV>R

<« <aHB>R + |x (v)lzlﬂnlz (15)

The above equations imply that there are no physical optics
(specular point) contributions to the cross polarized cross
sections (vhere the plenes of incidence and scatter are in the
scatter plane). It is assumed in {1da) that the rough surface height
correlation distance T, {where <hbh'> reduces to exp(-l)<h2>) is

smeller tl.a the particle circumference.
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III. COMPUTATIONS OF SCATTERED INTENSITY FOR

UNPOLARIZED EXCITATIONS

Metallic objects ere Vi;ible due to the light that is
reflected primaerily from their surfaces [13). In this section
the full weve expressions for the scattered intensities from
surfaces illuminated by unpolarized excitations are derived.

For single scatterers the incident and scattered intensities

Ii and Ifare related by the bxk phase matrix S. Thus [16]

[1) = 218117 ) (16)
(r)

in which the elements of the bxl column metrices [I') and [If]
are the modified Stokes parameters (vatts/m2) for incident znd

scattered vaves respectively.

ﬁi QIEVk|2>

1% = Ig = <IEHkl2> (17)
* Re<(2E Fg%*)>
v‘: In< (28 FpE" »]

In (17) X = i or f and the ensemble average is denoted by the
syzbol < >, A

For netural light, vhich is unpolarized, the intensities of
the electromagnetic fields are the same for all directions perpendi-
cular to the direction of propagation of the wase and there is no
correlation between the orthogonal components of the fields. Hence,

if the total incident intensity is unity, the incident modified
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Stokes parameters are I; = I; = %-and v =v =0, Thus, for
unpolarized light equation (16) reduces to [L]
i (s, Is,,1|[1ze]
10 _ 1 11 12
| —?§? (18)
| &F|ls,) Is,,) J/zJ
where
A
z VvV
S5 <9 2
A
= 2 '
s12 R A
(19)
A
= 2 Y
S0 50 92
A
z ER
Spp =4y <0

and the scattering'cross sections <UPQ> are Gefined in equaticn
(15). since scattering in the neer specular direction from the surface
element of the conducting object is practically independent of
polarization it is assumed that the incident unpolarized light
remains unpolarized upon reflection by the object. Thus, Ur =V =0

and the total unpolarized scattered intensity is

A
IR S w VE HV HR
IT _Il + 12 s —s [{<o >R+ <0 ot <o >pt <o >R)/2
hn(r)
+ Xi%R1?) (20)

vhere ]R|2 = (]Rv|2 + IRHIZ)/2 is referred to as the Fresnel

pover reflection coefficient for unpolarized light.
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Equation (20) is revritten for convenience as follovs
Az
}I? = b—ﬂ-(:;;z\(aﬁ +oy) (21)

vhere crd is the total normalized diffuse differentiasl scettering

cross section. It is given by

= ((°W>R + <OVH>R + <0}W> + <om>ﬂ)/2 (22)

% R

The corresponding specular point contribution is given by

Op = Ix (v)]2]R l2 (23)
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IV. DEVELOPMENT OF THE FULL WAVE REFLECTION

MODEL FOR DIFFUSE AND SPECULAR SCATTERING

+

For the illustrative examples used in the development
of the full wave reflection nodel, the rough surface height

spectral density function is assumed to be

8
-l
u(YT) gl (2k)
T m
The peak value of W(V ) is W[v_=v ) = —C—- . The corresponding
T by m 1287 v8
m

mean square rough surface height <h™> end the mean square slope

<0§> are given by

s = c/{210 "2) (252)
2. _ !
<0 > = c/(8k vm) (25b)

The vavelength of the monochromatic illumination is

- RD = 0.555 x 10'-,'l cm (26a)
and
2
X, =5 (26b)
o
The diameter of the unperturbed sphere is
D = 10A (27a)
and
v = 4/D = 0.4/A) (27v)
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The relative dielectric coefficient is £, = -Lo-i12

(aluminum) [3].

The randon rough surface height (Rayleigh) parameter is

defined by
B = x’<n®> (27¢)

The constant C in {2k) is related to the roughness parameter B

through (25a). In Fig. (2), the spectral density function W(VT)

lequation (24)) is plotted for several values of 8.

The diffuse and specular scattering contributions to the
total reflected intensity are considered separately in this
section. Using equations (22) and (13), the diffuse scattering

contribution is expressed as follows

Q
1

Loom -l . .
= ki I I[lDV\’lz + IDVHIZ + IDHVIE . ]D}zHIQJ
0 +1
'QR'Pz_dudé

"

d
J 00 (Y,6)eQ (28)
vhere d= ~dudé is the differential solid angle end the integrand
a
g in equation (28) is the normalized diffuse intensity scattered

by an element of the surface of the sphere subtended by the sclid

angle 40.
T

o = 0) the normalized

For the backscatter case (Bi =6
diffuse scattering cross section (per unit solid angle) og (28)
is plotted in Figures (3) and (4) &s & function of the polar angle
Y and the szimuthal angle & (see Figure (1)). In Figure (3) the

roughness parameter is B = 10 and in Figure(h),B = k0. Note that
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og is azimuthally symmetric for backscatter since v = 22. In
Figure B)og is plotted for the bistatic case, with 8é= 62= 40° ang
8 = k0. Here, too, og is practically independent of 6. It is
apparent from Figures (3), (L) and (5), that the diffuse scattering
contridbution og decreases more rapidly es & function of Y than
predicted by Lambert's cosine law. indeed it is shown in this
section that the dependence of og upon Y is very nearly Gzussian
for B> 1.

It is interesting to note that using & physical optics
(Kirchhoff) approach [5,6] it has been shown that the mean
pover reflection coefficient is proportionzl to the probability
density for the rough surface slopes et the specular point. Thus,
sincen is the normal to the unperturbed reference surfaces (gz in
Beckmann's work) the angle between the disector of the incident
and scattered waves and the normzl to the unperturbed reference
surface is

o=cos @R =y {far §=4) (292)
Thus Cook and Terrence [1k] who adopted Beckmann's results
obtained images of three dimensional metallic objects that are
more realistic than the images obtained on assuming Lamberti's
ctosine lav.

In viev of the azimuthal symmetry of cg for erbitrary
92 = 6: only the backscatter case Bi = 8: = 0 is considered here

in detail and Og is plotted as a function of & only. 1In Figure (6)

the normalized quantity og/bg(o)' is plotted as a function of
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a{0 <a < m/2). For all the plots in this figure, the mean square
slope of the rough surface is constent (<c§> = 0.1) while the
roughness paremeter 8 is 1, 5, 7, 10 and 40. For B > T the
plots of og(a)/cg(o) are rather insensitive to variations in B.

As B decreases below T the diffuse scattering contribution
from regions around the specular point decreases. However, as B
decreases the Ciffuse scattering contribution becomes less
significant than the physical optics contribution (equation (21)).
Bence, the total (diffuse + specular) scattered intensity is
meximum at the speculer points even for small B. In Figure (T)
ug/og(o) is plotted as a function of o for mean square slopes
0.1, 0.05 ané 0.025, resrectively.

In €11 these plots the correlation length is fixed and
Tc/'nD = 0.032. 1In Figures(8) (o) o), og. are plotted as functions
of o for the three cases shown in Figure (7). 1;1 these figures the
Tull wave solutions for og ere compered with the analytical expression
exp(—(o2/<o§>)). It is apparent from Figures (6) through (10)
that the angular dependence of the diffuse component is primarily

a function of the mean square slope of the rough surfaces.

In Figure (11) ag(o)/czglo)lc [in is plotted ss a functicn of B
r ;

. 8=T.
for the backscatter cezse (ﬁf='-51). The permittivity of the

scatterer is essuved to be (a) Icrl + « (perfect conductor)
(v) = -40-112 (aluminum) [3) eand (c¢) €_ = 1.5-i8 (dissipative

Plastic). For 8> 7 og(a) is maximum at a = 0 (see Figure (6)).
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An approximate enalytical formula of the form
1 4 (-}
Ef —— =0 (0)/0 (0)
f8) = ToammrezE Y 8 % e, (29v)
min - B=B in

is found to spproximate the anelytical results (obtained using

the full vave approach) reasonably well for B > Bmin =T.

In Figure (12) the ratio 05(0)/[03(0)] 5 J is plotted
degS=0.1

es & function of the mean square slope<c§> for B = 20. It is found
0.1

to de in good agreement with the formulas f(<o§>) >
<g“>
s

Using the ebove result based on full wave theory, the
following simplified analyticz)l model of the diffuse reflection

contribution to the backscattered power is proposed
d d 2, 2
= ol - > 30z
oﬂ(a) %0 f{Blexp(- a /<0 ) (202)
. 2 2
since f(£) =1 for B = B ip = T 2nd exp(~ «%/<0_>) = 1 fer a = 0,

the coefficient Ugo is egual to cg(o) evaluated for B = 7.

Thus using (28)
(] 2 2
0,(0) = 2k°|R| Q% (30p)

Vhere Q reduces to (for ]x|2 << 1)
QR =2n f exp[~v§<h2>(l-Rc(rd”
"Jo(vTrd)rddrd (312)

in vhich the normalized autocorrelation function is

R (r,) = <hh'>/<h> (31p)

-
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For the surface height spectral density function assumed (2k)
3¢2 éﬁi 6 1 52 4 5
R (rgmtivy)el1-3 + s e Erlg- - 5165 (6) (32)

where K0 and Kl are defined as Bessel functions of the second kind
of order zero and one respectively. However to evaluate (32) for

B >> 1 it is sufficient to retein the first two terms of the Tzylor

series expansion of Rc(rd). Thus

. rd 2
Rc(rd) =1 - [i] (33)

where

2 "
T2 = 2/R0(0) (34)

Since J:(O) = vg/z it follows that

<o§>
R'(0) = - (29)
[4 2<h2>
Hence
2 2., 2. {1.265)%
T° = h<h> /<> = {———J (36)
c S Vm

a
and on(o) for the backscatter at normal incidence (vT= 0) reduces to

o 2
2 T J 2
znxog exp[-g[T—c] rjar, IRl

2nk§rf]ﬁ[2 2Ir12. 4
=——zp = * %o (37)

n

og(o)

<o
s

This result is in complete agreement with the slope dependence

d o
of 09(0) shown in Figure (12). Note that the sbove analyticel
approximation for OS(O) is independent of B. However, the exact

numerical results obtained from the full wave analysis show
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thet cg(o) is weakly dependent on the roughness parameter B (see
Figure {11)). As B increases (above T) og(o) decreazses slightly
since there is 2z smell increase in the power absorbed by the
rough surface &s the roughness paremeter B increases [3]. Note

d d
2lso that the level of the curves for 09(0)/09(0)l€]""° (see
> B=1
Figure (11)) depenés on |R|® es predicted by equation (37).

The physical optics (specular point) contridution to the
full vave reflection model Oy (equation (23)) is considered now
in detail. It is expressed in & similar way &s the diffuse
scettering contribution %4 (equation (2B)). Thus defining og as
the normalized physical optics intensity scattered by an element
of the surface cf the rough cphere subtended by the solid angle

dQ, the totzl physicel optics contribution S5 is given by

P 2 2
60 = J oble)a = [x|?[5] (38)
wvhere
o= cos_l(ﬁ-s) =y for (¥ = az)
. £
ogle) = cglo) e (% (59)
Thus

"

21012
g‘g(o) J.Xl_lﬁj_ (ko)

2
o
o

The engle o is the value of a where og(a) = og(o)/exp(l). It is odbtainec

on expanding the exponent in the integral expression for the
physical optics contribution to the scattered field [5) in a
Taylor series about the saddle (specular) point. Thus it can be

shown that

e,
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2
L= , (k1)
o va
vhere a = g , 1s the radius of the sphere. For nonspherical
objects "a" should be replaced by the geometric mean of the
principal radii of curvature of the specular points. It is
interesting to note that the arez of the first Fresnel zone
eround the specular point [10)
A = qa) (k2)

The poler engle 60 subtended by the first Fresnel zone is given

by the following expression

6
0
A= Tad = azf sinBdgés = 2ﬂ32(l-cosﬁo)= _ 65 (43)
A .
Thus
eo = Az = J/In uo (Lk)

The ratio og(O)/og(O) is given by equations (37) and (L0).

Thus for B > 7

= 2
ag(o) o Ix[2e2

PR L. L
od(o) n202 (e
1] o
For the parameters of the sphere with the rough surface
assumed in this section (a = SAO, <0:> = 0.1 and 8> 7).
O‘P]( 0) -3
< 0.6 x 10 (46)
F -
0n(0)
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Thus in order to compute the backscattered intensity eat
each 'piiel IP of constant area on the image plane, the reduced
physical optics contribution og(u) is neglected end the follcwing
e#pression is used (30a)

2, 2
- ﬂ]RJEf(B)exP(_(a /<Os>)) + P (47)

a

1 -
F (ﬁ'ﬁf) <o§>

where the constent Pa represents the contribution due to embient
illumination. For backscatter from convex objects, Pa can be set
equal to zero for the purpose of computer graphics. The factor
ﬁ.ﬁf = cost in the denominestor relates the erea on the surface

of the éphere to the (constant) projected area of the pixel on

the imege plane. For backscatter ﬁ-ﬁf = fi+¥.
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g

v_“
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2+ y? = osin = 2 . (52)

Thus for metellic spheres (B = 10, <o§> = 0.1) of the ball

bearing (Figure (13)) ss the value of r is varied from L
10 zerq the corresponding values of O are evaluated using (52)
in order to derive the normalized intensity IP et the pixel on
the image plane. Breserhan's glgorithm is used in this work to©
generate the circles. The unshaded arees that &ppeer bdbetween two
consecutive circles (due to the digitization of the coordinates)
are shefed vith an intensity IP ecual to thet of an edjacent pixel

For the tiststic cace (ﬁf # -ﬁi) the loci of constant IP does
not coincide with the lcci of a = ccnetent. This Is due tc the
term A 27 ir the Gercm.oretir of b lequaticn (LT))- Tt s

.

interesting tc ncte that ¥ tr terzm o7 i igncrel the leol of constent

IP on the inzge plene ter "o v ... ifef. At g recult, however the quelity

of the imege is reduced s.grn.7icently. Fer conec end cylincers
vhere f ic ccrcturnt aleng €ire.fnt .iner cn the surface, (9,117, Ip
vill also be constent aleng thece lines for the general bistatic
cese {since fi+% and ﬁ-ﬁf are constent along these contours).
The simplified enalyticel ferm of IP leguation (47))
based on the full wave solutions is very easy to use in order
to generate all the primitives (planes, cones, spheres end
cylinders) for computer eided design of complex three dimensional
obJects.

The computer generated image of the model shown in Figure (14)

is for B = 10 and <of> = 0.1. The principal primitives in
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this image are cylinders. In Figure (15) ideelized renditions

of missiles are presented (B = 10, <0§> = 0.1). The primitives
for these images are cylinders, cones, and plenes.

Assuming a two-scale composite model of the rough surface
the full wave solution can elso be decomposed into a veighted

sum of the two contributions [1 ). Thus for a two-scale model,

the total normalized reflected intensity IP of each pixel céan

be expressed as
_ 1eq2 2, 2 2, 2 1\
I, = |r] (Py, expl-a <o y> )+ Py, expl-a /<°ss>’) (53)

In equation (53) the first term is the contridbution to I, from
the large scazle rough surface while the second term is the
contridbution to IP from the small scale rough surface. The
surface with the large scale roughness is given by W(VT)
{equation (24)) for Vo < Vg vhile the surface with small
scale roughness is given by W(VT) for Vo > vy. For the imzges
shown in Figures (16) and {17) the mean square slopes are

<g> 3= 0.01 {for the large scale surface) and <o§s> = 0.1

s8
{for the small scale surfece). The coefficients Pdl end Pds are
dependent on the values of B,<6§>and Ya (where the spectral
splitting between the large sczle and small scale rough surfzce
.35 essumed to occur). For the illustrative examples (Figures (16)
end (17)) Py, = 0.7 and P, = 0.3. It is interesting to note

that equation (53) strongly resembles the empirical formula used

by Cook and Torrence [1l].
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YI. CONCLUDING REMARKS

A simple reflection model for computer generated synthetic
irzges of three dimensionzl objects is developed in this work.
It is besed on & rigorous full wave anelysis of electromagnetic
scattering by rough surfeces. The full wave enalysis accounts for
physical optics-specular point reflection as well as diffuse
scattering in a self-consistent manner and its use is not limited
by the small perturbation restriction. Thus using the full wave
approach, it is not necessery to adopt twvo scale models of rough
surfeces even when the Rayleigh parameter B = hk§<h2> is not very
szzll compared to unity.

For the roughress parzmeter B > 7 it is shown that the physicel

P
¢

o]

s . . d < ce s
scattering contribution 09(0). In this case, it is only necesseary

optics contribution (o) is negligible compared to the diffuse
to chose the rough surfaces parameters (<h2>, <c§>) and the Fresnel
reflection coefficients Rv and RH for specular reflection (corresponding
to normal incidence for backscatter) and to locate the loci of the
isointensity contours (for backscatter a = const).

The reflection model based on the full wave enalysis has been
compered to earlier semi-emperical models used in computer aided

graphics. It is found to be very practical, efficient and easy to use.
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Fig. 2.

Fig. 3.

" Fig. k.

Fig. 5.

Fig. 7.
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VIII. LIST OF FIGURES
Scattering geometry for a rough conducting sphere.
Plot of spectral density function (2L) B = 10, 20, Lo.

. . . . d
Xormzlized diffuse intensity 09 (28) scazttered by zn element

of the sphere as & function of poler angle (y) and

azimuthal angle (§) for 8 = 10 (backscatter af = 4t

. . : X d
Normelized diffuse intensity Oq (28) scattered by en element

of the sphere as & function of polar angle (y) and

azimuthel angle (8) for B = 40 (backscatter af = .ty

of the sphere 2s a function of polar angle (Yy) and

f

azimutkel angle (&) for B = L0 (bistetic, Gi € = 50°).,

n

d, d
Rormelized @iffuse intensity OQ/OQ(O) (28) as 2 function of
polar angle o = y where 0 < o < m/2 for B = 1,5,7,10 and k0.

Mean square slope (<o§>) is constant at 0.1.
a, d . 2
°n/°n(°) (28) es a function of a for <0> = 0.025, 0.05, 0.1.

03/03(0) (28) as a function of o {—).

exp(-uz/<0§>) as & function of a {(----).

<0§> = 0.025,
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Fig. 9.

Fie.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10.

11.

12.
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og/og(o) (28) as & function of a {—).
exp(—u2/<o§>) as a function of a (--—--).

2 .
<0 > = 0.05.

og/cg(o) (28) as a function of & (—).
e3"."(—(!2/<0§>) as a function of a (--—--).

2
<°s> = 0.1.

4 d <
°9(°)/°9(°)]clw (28) as a function of B for backscatter

case (7 = -a). 1(B) (6.296) (—-).

d d . -
09(0)/[09(0)]<°§>=0.1] (28) as a function of the meazn square

2
slope <0§> for B = 20. f(<05>) 0—21 (---).

<g>
s
Ball bearings (using only @iffuse reflection compcnent).
Metallic valve {using only diffuse reflection component).
Missiles {using only diffuse reflection component).

Ball bearings (using two-scale model).

Metallic valve (using two-scale model).
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SEASAT MICROVAVE ALTIXFTER MEASUREMENT OF THE OCEAN GRAVITY VAVE
EQUILIBRIUK-RENJE SPECTRAL BEBAYIOR USING FULL-VAVE TEEOKY

D. E. Barrick

Ocean Surface Research
1131 Cranbrook Court
Boulder, Cclorado 80303 USA

ABSTRACT

A nev spectral lav for the equilibrium region
of the wavebeight spatial spectrum 18 derived
from the sxtensive SEASAT altimeter dats set
Applicable to the open ocean under all oondi-
tions of wave aevelopmeut, the result 3s a
= pover-lav dependence rather than the
olassio k*. This spectral model 3s estat-
liehed using the speocular-point result for
bachscatter supported by full-wave theoiy to
determine the proper upper vavenuaber limit
for the slope spectruz

1. INTROOUCTIOK

Hicrovave backecatter (of the expected
polarization state} from the sea near normal
incidence bas long been known to be explaiu-
able by a epecular-point wodel (Refe. 1.2).
According to this model, backscatter comes
from smoothly ourving “specular points” dis-
tributed over the vaves, i.e., facets tilted
normal to the line of sight. (By the same
specular-scattering mechanism, bowever, this
wodel fails oowpletely for the cross-polarized
scatter componelt, which it predicts to be
2ero.  Since altimeters to date bave been cou-
structed to receive ouly the expected same-
sanse polarized ooxpouent, we need not be con-
cerned vith this limitation here.) The specu-
lar-point model gives the baockscattering cross
section per unit surface area, O°, as the
Fresnel pover reflection coefficient divided
by the mean-equare slope of the sea ae geen by
the radar. This mean-square slope sbould be
obtainable by integrating the beight spectrum
~- timez vaveoumber squared -—- betvecn a lower
aud upper limit. The lover limit depends on
wind epeed in a kuovn mauner. The frequenocy
in soms vay determines the upper limit of the
apatial roughness scales that the radar can
disoetu. Sinoe classic vind-vave wave spec-
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. tral models have been available for nearly

three decadee (¢.g.. the Phillipe epectrum,
Ref. J), 1t vas recoguized some time agu that
one should be able to produce a valid theore~
tical model for the wind-ppeed dependence of
microwave (padir-looking) altimeler returu
Alttough suct models indeed slow the correct
abape of O° vo vind epeed (Ref. 4), extensive
and caretully calibrated dats sete from GECS
and SCASAT shov 2 persistent disorepancy in
amplitude of ~) dB (Refs. 5,8).

Full-vave theory (Ret. 7) produces an exact
#olution for soatter from rough surfaces for
which multiple scatter is not signifiocant;
this solution is as ibtegral tbat 1s no wore
oomplex thap olassical physical optics. Ite
pover lies 3o the fact that tbe surface does
not bave to be split artificially ioto tve
scales of roughness (e.g., Refs. 8.9}, al-
though it does allov examinstion of the vali-
dity of such camposite models. In particular,
it sbovs that ibdeed, at porms) incideoce for
the » backscatter is vel) predicted by the
speoular point model for the same-sense polar-
jzatior as vas transmitted, and it gives the
upper limit for the wvavebeight spectrusn
seoquired in the expressian for mean-squase
slope (Refe. 10-12).

Hence, (i) baving a valid wodel for altimeter
soatter, i.e., the specular-pornt model; {21)
knoving the lover limit for the spectrum,
(13i) baving determined the correct upper
Jimit to use from full-wave theory, we resson
that the 3 dB discrepancy an O° must be due to
the inadequacy of the classic vaveheight apeo-
tral models in the equilibrium region  The
equilibrium region 33 defined ac the wave-
wumber (k) portion far removed from the peak
at lower end, wbich ie strongly vind-speed
dependent, it is this equilibrium region that
bas tbe greatest influenoe ob mean-square
slope. In faot, for the claseic Phillaps ™
dependence that overpredicts C° by 3 dB, the
moan-square slope depends logarithmically ou
the upper limit used for the spectrus, and
benoe the equilibrium regivn contributes very
strongly. If O° is overpredioted by the k4

b3k

.




equilibrium region, this implies that the
Bean-equace slope derived therefrvm o too
small. Therefors maintain D{ this argu-
mout that the olasaio tuvecse-4th speotra
depeudence on the open ooean J2 Lo¢ ptroug.

Inter-
estingly, Puillips very recently hes used
energy balance arguments to slov the same
thing (Ref. 1)}: the spectral dependerce he
deduoes 1o the equilibriux region (far from
the peat) ie A5, we exploy the exteneive
STASAT data set (and swpirical vind-speed fat
1o it) given by Cheltou and NcCabe (Ref 6) 1o
darive & pover-lav spectral model in this
paper, and find that 9% f1ts best.

2. SPECULAR-POINT KOOEL

Tbe speoular-poist model relfers to a bighb-
irequescy asymplotio approximsticn for the
Ieturo from & rough surface. It is dersvable
fros ¢itber physical optics or geametrical
optics formilaticns. The assusptions msde in
use of this mode) are that the average ibco-
berent sosttered pover originates from sepa-
fate facets of the surface that are smoothly
ourvisg and separsted in phase (oo the aver-
ags) by at least 1B0°. Tbe former approx-
imation {tbat the radiy of curvature of tbe
spocular facet be large 1n terms of vave-
lengtb) allove one the write the total field
At the surface in terms of the incident field
and a reflection coefficient, and 1s also
called the “tangent-plane” approrimation. Thbe
latter appraximstion, sometimes called the
“deep-pbase” condition, Iequires that the
surface be “very rough,” i e., its rme keight
be large 15 terss of vavelength. The sea
surface in tbe microvave region satisfies both
of these conditions. Scatter according to
this mode), thes, 1s produced by facete {or
epecular pointe) vhose normals bisect the
dpcidence and scatter directions. for bect-
scatter, the porms) points tovard the rader.
Since speculer pointe must exisl is order to
produce scatter at given angles vath respect
8o the surface. one antuitively sees that the
dntensaty of the return vi1ll depend on the
protability dessity of surface slopes with the
fequired sarmsls  The derived soluticos
{Refs. 1,2) indeed sxbubit this dependence

For pormelly incident backscatter {(the condi-
tion for satsllite saltimeters}), the direotson-
ality of ocean vaves 1s irrelevant {i.e., it
is integrated ouvt). and the specular-point
expressios reduces to C° = lR(O)I’/S’, vhere
R(0) is tbe Fresne) retlection cosfficient for
4 amo0th plane at morma) swoidesce (for the
#%a at the 13.5 GHz SEASAT sltimeter frequen-
oy. IN(O)I2 $0.61), and ¢7 10 the mean-square
slope of the a8 seen by the radar. As cnpe
expsots for normally inoideat backsocatler, the
rougher tbe sea (i.e., the bigher the slopes),
the less pover is returped becauze the more
bighly tiltad specular points scatter in other
directions; 8s roughness disappears and s? 30,
the return iocreases to the point vhere one
abandoo the specular-point model {the deep-
pbase criterion fails), end treat the earth as
& amooth sphere.

pdence of alt.meter lntensity on .
# therelore contained in tle slupe o
The meas-square slope 3o turs can be obtaiued
from the {ntegcal of the #lope spectium (va
spatial waveousmbesr), and the latter sxpressed
ia terms of the more famaliar height gpectruc
S(k), as ¥ S(k). Tbe olawsio Fhillips wode)
tor fully developed seas, for exasple, has
S(k) =B/|k|% for & = (k]| greater thap Ik, =
g/\P, wbers g iz the accelerstion of gravity
(9.80¢ 8/s%), U 18 the vind speed in meters
per seoond, and B 1s 2 dimensionless oonstact
estimeted experimentally to be 6.005. Belov
this lover limut, the epectrum is 3ero. Al-
though more sophisticated models are presestly
tavored for the shape c! the spectrux’s lover
epd (ratber tban tbe sharp Phillipe cutoff),
this iseve 1s largely 3rrelevant to slope cal-
oulations because the slope 1ntegral a1 bLighly
insensitive to the detail of bov the spectral
epergy is distributed at the lover end (an
coptrast to the meap-square beaght) Thie 2
easily seen by integrating the Phillipe wodel
to obtain the elope: %) = I K2 S(k)kdh =
Blo{ky! k). Thie 3llustrates tvo pointe (1}
one must specify’a pon-infinite upper limit to
the spectrux. ky , othervise the slope becomes
ipfinite, apd {11) 1t 38 the vast expanse of
the spectrum betveen the upper and lover
Jiits that bas more 1nfluence on slope. and
benoe backscetter, than the detailed shape at
either end.

T

Aocoording to the speocular-point mode]l, there-
fore, ibe mean-square sea siope and bence
backscattered return, depend on- (1) the lover
epd of the spectrus, whick is ioversely pro-
portional to the square of the vind speed
(bigber winds cause rougher seas, decreesing
the scattering cross seotion}); {3:) the spec-
tral bebavior betveen the upper and lower
dimits; {411) the upper limit  Full-vave
theory vill be used to determine the third
itex, the upper limit. Hence, the eecond
tes, tbe vave specicra) shape betveen tle
upper and Jover limits 3s the remsining
Quantity to be detersined 1n thiz stucy

3. USE OF FULL-XAYE THEORY

4s mentioned previously, full-vave theory is
the aoet exact. tractable theory avaslable to
date applicable to rough surfaces vhere mul-
tiple scsttering can be neglected. Ilts pover
Jies 130 the fact that one can integrate the
full-vave solution for backscatter numerizally
vitbout splitting the roughness and its spec-
trum artificially ioto separate cosponents
Hovever, it has been used (Refs. 10,12} to
examipe the older, less aocurate “composite”
theories that bypothesize a splitting of the
zoughoess 1nto Lvo compodents. & quasi-
speoular tersm and the “diffuse” scatter. At
Dadir, only tbe quasi-specular term 15 1mpor-
taat. lo Ref. 12 1t ie shova that the simp-
lest version of the quasi-epecular tets, 1 o,
that given above tor O°, remains very close to
the result predioted by full-wave thecry (vhen
the tro are applied to the same surtace) over
a fairly vide variation of the wpper spectial
lisit. This fact suggeets that the sinple




opeoular-poist model above can io faot be used
Coliably oy prediuiing alllewter retuiu.
Furtbermore, tbe full-vave solution provides
guidancs as to precisely vhat uppesr limit to
use 10 evaluating the slope for the spoocular-
point model. Over the range of obeerved
SEASAT surfeos vind spoeds from 3.5 m/s to 16
m/s, the values of O° obtained both from the
tull-vave solutico and tbe specular-point
model differed from sach otber by less than

0.1 dB for ac upper limit ky = 85 =), Hence

4. A PARAMETRIC MOOEL FOR THE WAVEMLIGHT
SPATIAL SPECTR

¥We pov propose & parametric mode) for the
wavebeight spatial speotrus, and then derive
its parameters based op SEASAT altimeter
feturs. The equilibriuw region for radar-
oboerved spectral scales exteods over a large
range, i.e.. tromk (e.g., =0.1 &' for U =10
/s vind) to ky = 85 a7}, We solect a pover-
lav spectrus. such that S(k) X/ (k% k=),

where K is & dimensionless constant and & is
the pover-lav departure from the claseic
Phillips model. Such a speotrum has a
oonslant shape when pormalized to the
lover-eud, and hence should represent fully
developed seas with any wind epeed. To illus-
trate this parametric shape, ve pormalize
vavenumbers such that X #£/k, . and pote that
the normalized spectrue is nov K/X™ for 1 <
X, which is the parametric version ve vaut.
Therefote, the untoovn constauls, to be
detern:ned frow the SEASAT altimeter data and
specular-poiut model are K and «.

5. DETERMINATION OF MODEL PARAMETERS FRQM
SLASAT DATA

Chelton and ¥oCabe (Ref. 6) established 2 nev
model far altimeter O° vs vind speed by emp-
loying winds measured by the SEASAT scatter-
ameter with 0° obtained from the SEASAT alti-
meter. It is scoepted that the scatterameter
mcasuradent of vind beneath the gatellite s
more accurate because of more ertensive cali-
bration of that apetrument. With pearly 2000
applicable points that vere collected by the
altimeter over the coeans during the satellite
Jifetime, they establisbed an empirical rela-
tionsbip for altimeter O° vs U, the wind
#pesd. They fitted a pover lav over tbe range
3.5 e/s < U< 16 n/s, and obtained O°=

320 4%, arror bounds for the tvo oapstants

 appearing in this m0de] vere derived, and

their 1x;licatjons oo tbe present analysis
vil) be dizcuseed subsequently. Using this in
tbe specular-poirt model for alope, we obtain

s%, =(0.62/32)U7-%** Tbe superscrapt 1 on §7 is

used bere to deaote this as the input to our Lz6
| aualysls.

Using the vavebeiyht spatia) wavelieayht
spsotral model specified in the previous
eectica, then, and fnteyrating this betwesn

the lover and upper lisits, we obtain s3, =
K/olkPrg)% -1] as the aodel to be titted to

the ipput to detersine the tvo unknovps, K and
.. We do this by a least-squares fitting of
§2, to §°), summing over wind-speed samples
equally inoremented at AU = 0.5 /s from 3.5
m/s < U< 16 m/s. The value for k; that ve

employ is 85 w73, as determined froz full-vave
theory. Sipoe tbe model is linear in K and
nonlinear in o, ve elimipate X fromw the least-
. #quares sup by differentiating with rerpect to
K, solving for it, and replacing 1t. Ther the
minimus is sought over o at locrements Ho®
©.0005. The solutioss are K = 0.00512 and & *
0.1355. Bence, the spectral model that des-
cribes the equilibriun region based on SEASAT
Altimeter data is S(k) =0 00512/ (k% % 19

6. VALIDATION OF WAYE AND SCATTER MQOELS

Tvo argumsats can be used to establish the
soundoess of the spectral mode) derived hese
from STASAT altimeter data. The first has to
do with the wnoertaioties 3n the ampirical
vind-speed Bode]l fitted by Chelton and MoCabe
Ro the SEASAT altimetes data. If these are
sufficiently large, they might produce spec-
tral mode) unocertaintiss that would encaapaes
the older, olassic k¥ lav. 1f this vere the
case, thed the k% yould not be statastically
significant. and any claixm for its acceptance
would be veak. To shov that the thbe result
derived bere is indeed statistically signifi-
cant, we plot O° from the Chelton/NcCabe
model 0°= 3207% 15 Fig. 1; showvn 1n shading
around it is the uccertaialy region repre-
#ented by Lyipg tbe standard deviaticns jn
Cheir derived wodel parameters 32 and -.468,
which ve added so as to produce the greatest
departur, The line at the center of the
shading is also of course adentically the
specular-point model applied to our bevly {
derived k3% gpectrum with k, = 85 &™) as the

upper limit, bocause the ioput $?) matches tbe
titted model s2, in the least-squares fitting

to within 20.05 dB. Also plotted 10 the
figure is the older spectrum 0.005/k™ used 1n
the specular-point model, also cut off at the
GAme upper limit ky 785 x"!. The 2-3 dB men-
tioned earlier is in evidenoe bers, but more
importaot, tbe older model clearly lies well
bsyond the ubcertainty region of the SEASAT-
based model decived here. Reference to Fig.
13 of Cheltan and HoCabe (Ref. 6) aleo shovws
that the individual 2000 altimeter points for
0% 411 lie vol] within 3 dB of their empirical
tit, supporting our claim tbat the older spevo-
tral mode] cannot produce a scattering lav
that fits meanured data. Finally, ve note
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Figure 1. Radsr backscatter cross secticp at
13.5 G2 at sorma) ipcidence. Lover curve s
empirical lav fitted to SEASAT data (Ref. ¢),
where shaded region represents statistical
wposstainty to this lav from fitted
parameters. lover ourve aleo sepresents
.g-‘axln-pohl scattering mode]l upon use of

X vave speclrus for required slope. Upper
ourve iz speoviar-point model with the older,
olassic k* spectrun employed ipstead.

that the older 3™ lav cannot be made to fit
very vell merely by takiog a different upper
lasut to the speotrum {eves 1if that step oould
be pbysically justified samehov), & bigher
spper iamit v1ll essentially slide the upper
ourve Jover, but 1ts slope still differs
througbout the plotted range. so that 3t still
does a0t ocanvincingly f1t the messured dats.

A second v lidation of our mode] bas to do
witk “closure.” We started vith the claix
that the mors approximate specular-point model
was a sufficisntly acousate repressataticn of
nadir sltimeter scatter that ve could use it
to derive » yave spectra) model from SEASAT
data. Ve thep invoked the full-vave scatter
solution to find the proper upper limat kg = 85
&! to use in the specular-point model for all
v10d speeds. 1f this prooess all bolds
togetber, we ought to be able to pov put our
Dev vave spectss) model back ipto full-vave
tbeory for scotter and produce the same repult
88 the specular-point model across the
wind-speed range ve vorked with, i.e., 3.5 w/s
< U< 16 mla. We bave done this, and the
ditferences (in dB) for O° betvesn the tvo at
wind speeds of 3, S, 10, 15, 20 a/s are
(respectively) +0.07, «0 .04, -0.02, -0.0%, and
«0.0) dE. Sioce these are vell belov the
soise level of the atigioal model, and since
they are esssntially due to pumerical roypdoft
erfo5s, ve mAintais that tbe argusents that
dovoked full-vave tbeory te validate tbe use
of the speculsr-poist mods) are indeed proven.

7. DISCUSSION

We bave employed SEASAT altimeter data along
vith a damanstratedly consistent scattering
sode] to formulate a Dev equilibrium-raoge lavw
dor tbe vavedeight spat2a) spectrum o5 the
opsd cosan. This lav 1s not sigoificantly
different from the older classic Plallipe lav

20 3

| 0.005/k% lav near the lover end, but departs 437
mackedly at vavenuabers 88 Order of msyiltude
or mare beyond. We illustrate this for the

Dover model B(A) £0.000027/ (k%1 10) iy

older model S(k) =0.005/k* st ky = 85 &' (for
wind spesd 10 m/s); the tvo differ by a faotor
of 2.64. If ooe is willing to extrapolate
both models out to the capillary region where
k. =360 &), this faotor becomes 3.23. The
metbod used involving surface alope precludes
sayiog miob about the shape of the spectrum
pear tbe lover end. In addition, ve bave pot
demonstrated that the pev spectral lav bolds
out to the capillary break k. = 360 »™! since

our fitting stopped at ky = 85 &), oo the
otber band, ve bave no reascn to suspect that
it sbould not be valid 1o this gravity-vave
Tegion as vell.

It deserves montion that the tvo SKASAT
Jastrusents (aliimeter and scattesosectoer) used
to establir: he vind-speed law for the fotrmer
do pot obesrve the ocean at the samwe place and
time. Che. and MoCabe indicated that they
eaployed a matching prooess so that only data
trom the tvo that vere within 100 ks and Jess

. thap one bour apart oo the sea were used. We

: suggest that any errores resulting fram the

. remaining mismatch should be rapdamly dastri-
buted about the mean values. rather than a
bias coe vay or the other; hence they will
;ond 1o average out for the analysis perforsed
ere.

Io sddition to the oceanograpbio implicaticns
of the ney vave spectrum, the present findings
ocastitute validstion of a physically-based
scatterisg algorathe for return frow the sea
at and Dear porma) ipoidence: the specular-
point model, aloog with a slope spectrum and
upper “radar” vavenumber likit for tbe slope
Jotegsa). Tbis should prove to be useful for
both algoriths development and systes studies
associated vitd implementation of future
satellite microvave coean sensors.

It has been normal practice to oobvert betveen
spatial and temporal vavebeight spectra (and
viow veras) through the gravity-vave disper-
sion relation: k =0%/g. Altbough this works
vell pear tbe dominant part of the vave epeo-
trum (i.e., tbe peak), it is pot olear that it
holds vel) out in the equilibrium region (Ref.
14). Tbus ve besitate to say that our
tindings imply a temporal dependence O"", as
the dispersion relatiod would suggest.

The mode] derived bers, with a lover equili-
brius-range vavenumber falloff thas 4, is in
qualitative agreement vith the very recent
findings of Phillipe (Ref. 13). He postulates
-3.5 compared to the ~3.86 derived bere.
Pbillips’ arguments are based oo epesgy
balance at a constant ratio among three
factors: energy input from the vind, energy
dissipation (from the equilibrium region) by
wave hreaking, and energy transfer avay from
the equilibrium region by vave-vave inter~
action processes. The reason for the daf-
ference betveen the tvo values may vell be the

4




feot that glotm]., open-vuenn JKAJAT olwerve-
tions 3oolude all states of vave developasut
and decay. Ooe should sxpeot the greatest
departusre from the —{ lav whep ponlinearities
are the strongest, vhich coours during “fully
developed” (or steady-state) conditions. Whbes
this latter oondition ceases, the aaintenance
of & coostant ratio among the three epergy
processes vill so looger hold, e.g., vind may
die first, folloved later by oessation of
breakiog, aod finslly by a variatioe in tbe
rate of intra-spectral vave-vave snergy
traosfer. & gives point oo the ocean observed
by SEASAT is likely to be in a fully developed
oondition only a tractico of the time. Henos,
the SEASAT-deraved -3.86-lav vould apply to an
averags over all possibl ve development/de-
cay oonditions, vhereas tbe -3.5-lav applies
during steady-state fully developed
oonditicns.

Io calling the ~-lav the “classic Pbillips*
spectral mode)l, we spologize and empbasize
8gain that it was Phillips {Ref. 33) who
Pressnted s oonvincing case for a re-evalua-
tion based oo measured data, and vas the first
to produce a physical model that refutes thigs
Jav. We can only veloome his statement “The
matter clearly deserves reconsideratica - 25
yoars ies a pretty good lifelime far the simple
ideas underlying (1.1) and (1.2) [i.e., the k4
ard 0° lavs), a0d if they are fousd to be no
loager viable, they should be saluted and
doterred with dignity.”
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ABSTRACT

In this work,a layer consisting of a large
variety of randomly distributed finitely con-
ducting particles with irregular shapes is assumed
to be excited at infrared and optical frequencies
ty & normally incident linearly polarized wave.
The resulting incoherent specific intensities as
well as the co-polarized and cross-polarized
intensities are evaluated. Both single scatter
and multiple scatter results are presented for
particles with smooth and rough surfaces.

1. Introduction

In this work,the scattering and depolarization
of lirearly polarized waves by & random distritu-
tion of finitely conducting particles of irregular
shape are presented. The random rough surfuce of
the particle is characterized by its surfuce
height spectral density function (or its Fourier
transforn the surface height sutocorrelation
functicn).

Tre full wave approach is used to scccurnt for
both specular point scsttering as well as diffuse
scattering by the particle in a self-consistent
manner {Bahar and Chakrabarti 1985), and the
equation of transfer (Chandrasekhar 1950 and
Ishimaru 1978) for the modified Stokes parameters
is solved using the matrix characteristic value
method (Cheung and Ishimaru 1982). Both single
scatter and multiple scatter results are given
for particles with smooth and rough surfaces and
the effects of particle surface roughness are
considered in detail.

2. Formulation of the Problem

The analytical solutions for the modified
Stokes incoherent specific diffuse intensity
matrix [1] are presented in this section. A
linearly polarized wave is assumed to be normally
incident upon a parallel layer of randomly
distributed non-spherical particles. Thus the like
and cross polarized inccherent intensities are
azimuthally dependent. Special considerstion is
given to the effects of the surface roughness of
the particles of finite conductivity. GSince the
roughriess parameter 8=Lk§<h§> (where kg is the
free sgnce wvavenumber of the electromagnetic wave
snd <hg> is the mean square height of the particle
rough surface) is assumed to be large (B=l0), the
full vave solutions (Bahar and Chakrabarti 1985)
are used to determine the elements of the scatter-
ing matrix for the equation of transfer (Chandrasek-
har 1950, Ishimaru 1978).

usgl = -(1)ef[s)1*Janag +[1,] (2.1)

In { 2.1) T is the optical distance in the 2z direc-
tion (normal to the plane of the slat),

t=pl0,Jz20, niD)aD 2 (2.2)

where D is the diameter of the unperturlted sileri-
cal particle, n{D) is the particle site distritu-
tion and oy is the extinction coefficient. The
symbol p{*] denotes integration over the size
distribution. Since the effects of the particle
surface roughness are vanishingly small in the
forward direction, the extinction matrix (Iskimaru
and Cheung 1980, Cheung and Ishimaru 1982) for the
rough sphere can be represented by a scalar quani-
tity. The (4x1) matrices [1] and [1'] are the
incoherent diffuse intensity matrices for waves
scattered by the particles in the direction
6=cos~ly and ¢ and for waves incident in the dir-
ection 8'=ces~1u’ und ¢' respectively. The clements
of [1] are the modified Stokes parameters (lshimuru
1978). Tne (4xk) scattering matrix [£] in the
reference coordinete system is expressed in tlerms
of the scattering matrix [s'] in the scattering
plane through the following trancforrasticn

[s)=(L(-m+a) 15 )[Xle")] (2.3
in which of is & transformsticnu matrix and [S‘J iz
the weighted sum of two matrices

Sim. = 1@

[s'3=1x®(5-3,) "I 5 J+05,] (2.4)

In (2.4) [SM‘ ] is the scattering matrix for the

unperturbed Sphere (Ishimaru 1978) and x5(¥+&;)1s
the psrticle random rough surface characteristic

function
X3 (v+a_)=<exp(ives h )> (2.5a)
in which T
V=k (' -n') (2.9b)
T [+

and i¥ end B’ are unit vectors in the direction of
the scattered and incident wave normals. The ran-
dom rough surface hg is measured normal to the un-
perturbed (spherical) particle. Thus, the radius
vector to the surface of the irregular particle is
r_=h a +h_a (z.5¢)
s or sr
The radius of the unperturbed sphere is hgy. The
coefficient ]x5|2 in (2.L) accounts for the de-
gradation of the specular point contributions tg
the scattered fields by the rough surface (]xs]dS}
and [x5|2+) as 8+0). The diffure scattering corn-
tribution to the matrix [5'] due to surface roughe
ness is given by
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0 "} in which the (Lx1) matrix F is
o] oy, [FI-[s)(1.)
(s3] [5] © ° 1
[s =] 2 22 . . (2.6) ¢/=0 (2.11)
s 0 [s2.) [s u] d the matrix [I,] is defined by (2.8). The matrix
33 3 [F] contains terms that are azimuthally independ-
0 o] [siz] [s:h] ent &s well as terms that are proportional to cosdd
where and sin2¢. Thus [F] is expressed as follows {Cheung

A
Is] )= 4 i pl<o'd> 1, for 1,3=2,2 (2.7a)

in which =ﬂh§ is the cross sectional area of the
unperturbed particle and <g*Y>; are the full wave
solutions for the like and cross polarized normal-
ized scattering cross sections (Bahar and Chakra-
barti 1985). The first and second superscripts i,J
dencte the polarizations (V vertical, H horizontal)
of the scattered and incident fields respectively.

o w
<od> =f [ [k p"1%p,Q siny avas/a”  (2.7v)
Lo ]

where
®
= J_OGHE, - B (33 ) PdexplsieF dax oz,
(2.7¢)
The Joint characteristic function X5 for the rough
su§fa§e%h is only a function of dlstance rg =
Smeasured along the surface of the un-
perturhed sphere.
Furthermore for i=3 and 4 (Bahar and Fitzvater
1985)

(s{,1= o[Re[<022 J¥<o 21 sJJA Haplo ) (2.74)

(upper and lower signs for i=3 and 4 respectively)
and for i#)

(sf,31 o[Im[*<022>c*<021 RALWZLLCR) (2.7¢)

(upp»r and lower signs for i,}=k,3 and i,4=3,4
respectively). In the above expressions

an .
i, 2,1) ke* R 2
<°kl>_£ £ kZDTD"T PoQ_sinydydé/m (2.71)

In (2.7)P, is the shadow function and the scatter-
ing coefficients D3J are functions of @' 5l ana &
the normal to the unperturbed surface of the parti-
cle as well as its electromagnetic parameters €,u.
The remaining eight terms of the matrix [s ]vanlsh
since DIl and DiJ(i¥)) are symmetric and antisyn-
metric respectively with respect to 4§, the aximuth
angle of the sphere.

In this work it is assumed that a linearly po-
larized wave is normelly incident upon a parallel
layer (of optical thickness T,) containing a ran-
dom distribution of irregular particles. Thus the
incident Stokes matrix at z=0 is

0 f Nz ' '
{r, )= . 8(u-1)80¢")z[1 J6(u"-1)é(¢") (2.8)

in vhich &(¢) is the Dirac delta function. Thus the
reduced incident intensity is

[1,.0=01,, Jexpl-1) (2.9)
and the (bxl) excitation matrix in (2.1) is
[I‘J=I[S][Ir‘]du'do’-[F]exp(-T) {2.10)

and Ishimaru 1962)

[F]=[r]o+[F]sco52¢¢[r]bsinzo (2.12)
in which, for a rough sphere,
01 al ©

F

F
[F) =3} 2 | 071 =5 2| L7 =

. (2.13)
a 2|0 19 -533

[=}

0 'SL'

end F__=5S .S _(upper and lover signs for a=0 and
a=a res;ec%xvefy ) The solution of the equaticn of
transfer (2.1) for the incoherent specific inten-
sity matrix can be expressed in terms of the Four-
ier series

[1)= { [1] cos mé+ { [I]:sin né (2.14)
m=o
Since the elements of the scattering matrix (2] are
functions of 0 ~¢ it is expressed as follows

s ==3{s]

1

2n
@
% Z { S] cos m{¢* 0)*[5] sin m(¢'-¢)] (2.15)
m=1

In viev of the excitation, (2.10) through (2.13),
the only non-vanishing Fourier terms are m=0 and
m=2 (Cheung and Ishimaru 1982). The equaticn of

transfer for the m=0 "tokec matrix is
1
u-§{1]B=-[I]H’f[SJBﬁ']ﬂdu'*[F] expl(-1)  (2.10)

Since the third and fourth elements of [P] (
sre zero, and in view of the special form OA
the third and fourth terms of fl]a vanish.

The equation of transfer for Lhe m=2 term is

1
u;ﬁ{1]2=-[1]2¢{[$]2[1']2du'¢[F]29xp(-T) (2.17)

in which

~ 8 ~ b
[s),- [“llg [“Zli and [FL=[F) +[F),  (:.28)
-Is;); I8, ‘

2.12)
[s13,

a b A ;
in vhich [Si]m and [Si]m are 2x2 matrices

2n
[5,00= J(5,Jcos mle'=)d(e'=0) i=1.k (2.19a)

o
and N on
[5,3= J5,)sin m(e'-¢)al¢"-¢) i=2,3 (2.19b)

[*]
and [SX] are the {2x2) subratrices

e,] (s
[s)] 10 2 (2.20)
[s.] [s,]
The boundary conditions for the Ctckes matrix are
(1] =[1],=0 for 0 <u< 1 at 1=0 (2.21a)

[1] s[1],20 for 0 >u> -1 at 1=1 . (2.21b)
Equations {(2.16) and (2.17) together with the




associated boundery conditions (2.21) are solved
for the specific incoherent diffuse scattering
intensities using the Gaussian quadrature method
(to discretize the angles B=cos™lp) and the
matrix characteristic value technique (Ishimaru
1978).

The diffuse scattering intensities I, and 12
correspond to the vertically polarized (Ee) and
horizontally polarized (EQ) wveves. However, in
practice, the polarization of the receiver is
either parallel (E,) or perpendicular (Ey) to the
polarization of the incident wave. The correspond-
ing specific intensities I, and I, are called the
co-polarized and cross polarized ¥ncoherent inten=-
sities respectively (Cheung and Ishimaru 1982).

3. Illustrative Examples

The random rough surface height hg (2.5¢) (meas-
ured normal to the surface of the unperturbed
spherical particle of radius h,, is assumed to
be homogeneous and isotropic. The rough
surface is chsracterized by its surface height
spectral density function W(vy,v,)=W(vy), the
Fourier transform of the surface height autocor-
relation function <hghg>, vhere vq is the component
of ¥ (2.5b) tangent to the surface of the unper-
turbed sphere,

.2, 2%
vp=lvivl) (3.1)
The specific form of the surface height spectral
density function is

Ve 18 vp=hD
u(v,r)if; > ""2  vg0 D=10A
VetV A=.55%u {3.2)

The constant C is determined by the chcice of the
roughness parameter.

B=krZen2>=l0 (3.3)
In (3.3) <h§>is the mean square height
2 v 6
n N
<> £ Wlvgdvpdvy=c/210v; (3.4)

The corresponding value for the mean square slope
is

-
2..m 3 L
<0S>=y { Wlvg Jvdvy=C/BLy =.10 (3.5)

Thus the correlation length is
. 2 2 %,
rc-z((hs>/<°s>) 1.26/vm=.1o (3.6)
The corresponding values for the extinction cross
sections and the albedos are shown in Table I. The
enalytical expression for the furtace height auto-
correlation function R(()E(hshs>/<hz> is
4 6
3@, , o
R(c)-[l- Tt 52t o8]

2 L
*[%-f—-gg]czxo(c) (3.7)
In (3.7) K_ and K. are modified Bessel functions
of the second kind of order zero and one respec-
tively (Abremovitz and Stegun 1964} and the dimen-
sionless argument is

tEvry (3.8)
For all the illustrative examples it is assumed

that the normally incident wave is linearly
polarized with the electric field in the direction

L

of the x axis (in the ¢=0 plane). The cqustion
of transfer for the Stokes parameters

(2.16) and (2.17) together with the ascocimted
boundary conditions {2.21) are sclved using the
matrix characteristic value technigue (Isihimara
1978). The scattering cross cecticns are very
sharply peaked in the forward o tion, thus it
is necessary to use a Gaussian Quadrzture formula
of order 32 {Abramowitz and Stegun 1Wlu).

In Figs. 1 and 2 the incoterent ciffuse tran.
mitted intensities Iy (vertical polarizsticr; and
I (horizontal polarization) for case (&) (aliur-
inum) are plotted as function. of 6{u,w0U%; w.1n
9=0 and 1,=1. The solid curves correcpond Lo
order scattering solutionc only {Isr
for the smooth (unperturbed spherical) jartizics
and particles with rough surfeces (Ip=+0, rer
gle scatter smooth perticle). The correcjun
soclutjons that account for multiple soaiter:
are also pictted in these figures.

In Figs. 3 and b the tranemitie: inconerent
intensities Il and Iy for case (V) (piastiv) are
plotted as functions of 6(0,9.%; with, wng
Tc=1. There is a larger difference betwe the
results for the enooth and rcuglh particle: fcr
this case than for case (a).

mare i,

£

k. Conciuding Kerarks

The specific incoherent diffuse sntennatien ©,
and I, as well as the co-polarized and ¢
ized intensities are evalustedl for & luyer of rarn-
domly distributed finitely ccniucting part.cl
irregular shape. The rough surfacer of the
cles are characterized by different surtfase
spectral density functionc u
meters §. The laycr of jarticle
excited by norrually incident I
waves at wavelength A=0.9%%u.

The rough particles will generslly dejciurice
the incident waves more than the smoGtil particies
and the specific intensities tend te be leus

o juatr-

Jriur.o

cles. Since the albedos for the rough |
are smaller than those for the smoocth particles
(the difference increases for more ai
particles), hence for very thick lsyers the
fic intensities are smaller for the rough b
cles. Both single scatter and multiple scatter
solutions are given. For small optical thicknes:
1<l Iy is smaller for the rough particles thlan for
the smooth particles {since the albedc for the
rough particle is smaller). However I, is larger
for the rough particles since the rough particles
more strongly depolarize the incident waves.
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Fig. 1. Specific incoherent intensity 1, case {a),
transmitted, T,=1, 6=0. First ocder (—},

smooth and rough particles. Multiple scatter: (+)
smooth, (8) rougn. €, »-40-i12 (Enrenreich, 19€5).
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Fig. 3. Specific incoherent intensity 1,, case (b),
transmitted, T =1, ¢=0. First order (—),

smooth and rough particles. Multiple scatter: (+)
smooth, (8) rough. :r-l.s-iﬂ.

v
L2
Tuble 1
case a case b
€ ~ko-i12 1.5-18
r
material aluminum dissipative pluctic
Oy, shooth 2.2992 2.2k30
Oy, rough 2.2126 2.1%8%
albedo, smooth ,93%6 N3]
albedo, rough .8579 L6108
Table I. The dielectric coefficient £y the
extincticn cross section and the
8lbedos for the scattering part:-lec
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Fig. 2. Specific incoherent intenrity 1, case {(a),
transmitted, 1,1, ¢=0. First orier (—=),
smooth and rough particles. Multiple scatter: (+)
smooth, (4) rough. ¢ w.io-i12.
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Fig. 4. Specific incoherent intensity I5, case (b),
transmitted, T,=1, ¢=0. First order (—),
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SCATTERING CROSS SECTIONS FOR PARTICLES OF IRREGULAR SHAPE

Electrical Engineering Department
University of Nebraska-Lincols, Lincoln, Nebraska 68588-0511
1

[
ABSTRACT
1
The full wave approach receatly applied to the problem of -electromagnetic scattering by a twvo scale

model of random rovgh surfaces has becn shovn to account for both Bragg scattering and Specular Point -

scattering in a self-consistent manner. Thus s:attering cross sections can be expressed a5 weighted sums

:of tuo cross sections. The first is associated with & mot'h, filtered surface consisting of the large

‘:scala spectral components of the rough surface and the second is associated vith its small scale

'spectral components.

In & similar manner the scattering cross sectio;:s for a particle of irregular shape can be charac-

.terized by veighted sums of two cross sections. The first {s related to the cross section for a "smooth"

|

‘particle of arbitrary shape and the second accounts for the small scale surface roughness of the particl:
fTo apply suchk an spproach to the scattering problem,it is becessary to assume that the principal dimen-
'sions of the particle are larger than both the wavelength of the scattered fields and the small scale

| . !
1 Both the depolarized and 1like polarized components of the scattered fields are accounted for in

the full vave analysis. These solutjons are consistent vith reciprocity and realizability relationships

Ein electromagnetic theory and they are invariant to coordinate transformations.
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MODULATION UF SUATILRING LRUDD DLLLIIUND FUR ARDALAARLLG Visaiwtsaw
COMPOSITE ROUGE SURFACES--FULL WAVE APPROACH

Ezekiel Bahar
Electrical Engineering Department
University of Nebraska, Lincoln, Nebraska 68588

Clifford L. Rufenach and Donald E. Barrick
NOAA/ERL/Wave Propagation Laboratory
Boulder, Colorado 80303
'nnd
Mary Ann Fitzvater
Electrical Engineering Department
University of Nebraska, Lincoln, Nebraska 68588
i
ABSTRACT |
As a synthetic aperture radar scans different por-
itions of a rough surface, the direction of the unit ;
:vector normal to the mean surface of the effective )
’ulumina:ed area (resolution cell) fluctuates. In this!
.paper the modulations of the scattering cross sections :
‘of the resolution cell are determined as the normal to:
fit tilts in planes that are in and perpendicular to the
fixed reference plane of inciderce. Using the full wave
approach, the scattering cross sections are expressed
jas a weighted sum of two cross sections. The first cross
‘section is associated with scales of roughness within
:the resolution cell that are large compared to the radar
wvavelength, and the second cross section is associated .
iwith small-scale spectral cowmponents within the resolu-
'tion cell., Thus, both specular point scattering and
ABugg scattering are accounted for in a self-consistent
;manner. The results are compared with earlier solutions
:based on first order Bragg scattering theory. :

LL7
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SCATTERING CROSS SECTIONS FOR LARGE FINITELY CONDUCTING SPHERES
WITH ROUGH SURFACES-FULL WAVE SOLUTIONS ,

Ezekiel Bahar
and
Swapan Chakrabarti
Electrical Engineering Department
University of Nebraska-Lincola
Lincoln, NE 68588-0511

ABSTRACT
The scattering cross sections for large finitely conducting spheres with very rough surfaces ar
determined for optical frequencies using the full wave approach. For the roughness scales considered
the scattering cross sections differ significantly from those of swooth conducting spheres. Several

illustrative examples are presented and the results are compared with earlier solutions to the problen.
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OPTIMUM BACKSCATTER CROSS SECTION OF THE OCEAN
AS MEASURED BY SYNTHETIC APERTURE RADARS

Ezekiel Bahar
Electrical Engineering Department
University of Nebraska-Lincoln, NE 68588-0511

Clifford L. Rufenach and Donald E. Barrick
NOAA/ERL/Wave Propagation Laboratory, Boulder, CO 80303

Mary Ann Fitzwater
Electrical Engineering Department
University of Nebraska-lLincoln, NE 68588-0511

ABSTRACT

Microwave remote sensing of rough surfaces (both land and ocean), using moving
platforms (aircraft and satellite), as well as ground based measurements has illus-
trated the need for a better understanding of the interaction of the radar signals
with these surfaces. This interaction is particularly important for the ocean surface
where the radar modulation can yield information about the long ocean wave field.
Radar modulation measurements from fixed platforms have been made in wavetanks and
the open oceans. The surfaces have been described in terms of two-scale models. The
radar modulation is considered to be principally due to: (1) geometrical :ilt due to
the slope of the long ocean waves and (2) the straining of the short waves (by
hydrodynamic interaction). For application to moving platforms, Synthetic Aperture
Radar (SAR) and Side Looking Airborne Radar (SLAR), this modulation needs to be
described in terms of a general geometry for both like- and cross-polarization since
the long ocean waves, in general, travel in arbitrary directions. In the present
work, the finite resolution of the radar is considered for tilt modulation with
hydrodynamic effects neglected.




A3 vEel o oy 1034V 00 Q00U VE/E-LFOT D

n

(€861 "60L-4569 *(S)1E-dv **aedudosy seuuviuy ~suep guqy
.ututauuwm VIR OpuR 3oy gy ‘g .»ucnmv SUUTI2US $501D oMy Jo
WS poIGYTun uyl Aq uaal¥ ST auuurw JULINIIUOD-JTUS ¥ UT Ju3uds
Y¥wiy pue 103335 de(adeds yiug JO] SIUBOIOP YOFym wdeJans wlTsod
-WO2 333 10} UOTIDUN SS0AD BuTiIIeIS 9yl ‘A[Iafivedsen j8 pur qu
$103294 3JUN 3Y3 JO SUOTIDAAFP UYL UY Vde S[kWAOU Bava pPe*a233¥ds
pue uapiauY ayy - %y ascejans 2135 [ews ¢ pue ¥y sdejang P23y}
PT®3s adaey v ojuy Pesodwodap §¥ (z'x)y 4813y @dejins ydnox ay3
M10A $I4I U 2IUIJUIAUOD 104 puunsse Kigsusp £3y(1quqoad Yy
Jurof ay3 jo wioj 2yjysads 343 uo 23uIpusdup wwes Y3 I1qTYyxa
Baaen pazyaeyod A7yeIuczyioy pue ATedjiava 10} SUOT3IVYS 501>
4222938%D¥Q 2yl Y30G IDUIPTIUY TEwiou 3wsu 304 rpIwneey L3jswp L3
.|~qp:poun 4839y 3ujof ayy jo Wi0J 33)729d% 941 03 IATITEUIN Viow
LR AN FYSTN vuu«w:~on Arreivezyaoy ays 30} uotidaw 5012 2233wdexydeq
EIVE] .0n~kue 32U3PFIUT Jo suTHuv 20) vyl punol wy 31 *$3Insaa
952UI VY PILIVIGO IIP SW1IBI av[ndads addy HOTIAUN] KIT{a3p cu ‘Icua
-~PUIIIPUT TUDTISFIV IS mowdnzm $34¥yuy adujans 4l jo uotawiaiiodap
IPYI NI0m BTYI Uy paunsse s} 3y 33US *$I3eJine y3nod jo s1vpow
P¥ISTIPIL 210U 20) SUOTIJIE %013 333128535 q 243 a0} suojiInyos
A TIRJ P43 BAF20p 03 2[Q¥ssod &f 3f 'Svdvjins uvyssneg ayd puw
T#T3U0u0dX3 243 SITWFT dy3 uj YPNTIUT NI STVUTEAvW YIym 62D¥jane
¥B8roa uvyssnuy-uou JO Arjuv) pwoiaq Kisa w Bujiapysuod 4g

TSu073228 ss03> Buyialaeds vyl 103 SUOTIRwIXOLddy
#5713do 7e33132w0a8 pue $373do raysdyd $9ATI3p uurTWRIIY $UOTIdung
£31suap La1711qeqoad utef Isayy Buysp ‘92udpuadapuy 1edy3y
~%$7303s sayrduy s3ydyoy wdejins jo UOTIBTII1039p IVYL pIUNSSE S}
37 PU¥ 2UITDIT}A03 UOTIETIII0T Y3 JO siamod JO wns IITUFZUT uw se
P3Es31dxa 1# SITITsuIp £3117qvqoad 3ydyay uyof asayy *$33vjins
UsIEsneg-uou 207 ({(6T *S$LT-691 ‘(Z)1z-avy ‘+3aeBedoag swuuajuy
TSueil 3331) uuewxdag AQ padolsadp uaog PARY I%YI SITIFsudp
A311198q0ad 3ydyaq Wil Jo ATywey v Aq P?27223593py> §F 322jane
udnea ay3 3ey1 aiay paunsse €T 17 ‘2¢(nd732ed up *sadejans yInoa
UEIEENEH-UOU JO STOPOW IITSOUWO3 10} EUOFIDIE S801D Jujaalens

43 FUIWAIIp 03 pasn ST ydwoidde anen 110 343 x20n epy3 vy

AAviBins

88589 3N ‘uY0duyT-wyseaqay Jo L31sa3ayup
Juvwiavdag Bujaasujdug T¥27239213
333en2313 uuy Lawy
puv
duyey 1a3%az3
AONFANIJIANT “IvDOILSILves SIIUIHI NOIIVIHNA0DIQA

HOLHmM ¥O4 SROVAUAS HoNow NYISSAVD-NON
40 STIAOH IALISOIHOD ¥04 SNOILIES SSOND oNIWIILIVOS

ANy

Curduniurg

AL3100S
NOILVOVAOHd ONY
SVNN3LINV 333

L e N

r__-“u“‘.}mw\\

AN

N\

SLL3SNHOVSSYIN
NOLSOd

13L0H NILSIM

v861
62-6¢ 3INAP

I INNT0A

NOILYDYdOHd
ONY

Wi o)




P AT T

. CHEMICAL RESEARCH AND DEVELOPMENT

CENTER’S 1984 SCIENTIFIC CONFERENCE
ON OBSCURATION AND AEROSOL
RESEARCH

Edited by Ronald H. Kohl
Deborah Stroud

RONALD H. KOHL & ASSOCIATES
Tullahoma, Tennessee 37388




L35

SCATTERING AND DEPOLARIZATION BY CONDUCTING CYLINDERS
WITH VERY ROUGH SURFACES

Ezekiel Bahar
and
Mary Ann Fitzwater
7 Electrical Engineering Department
University of Nebraska—-Lincola
Lincoln, NE 68588-0511

ABSTRACT

Like- and cross-polarized scattering cross sections are determined at optical frequencies for

conducting cylinders with very rough surfaces. Both normal and oblique incidence with respect to the

4
cylinder axis are considered. The full-wave approach {s used to account for both the specular point

scattering and the diffuse scattering. For the roughness scales considered, the scattering cross

sections differ significantly frow those derived for smooth conducting cylinders. Several {llustrative

exanples are presented.
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MULTIPLE SCATTERING IN MEDIA CONSISTING OF RONSPEERICAL
FIKITELY CORDUCTING PARTICLES

Ezekie) Baher and Mery Ann Fitzvater

Electrical Engineering Department
University of Kebraska--Lincoln
Lipcoln, Nebraska 68588-0511
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ABSTRACT

The iocoberent specific intensities for the vaves scattered by a random distridution of particles
vith rough surfaces are derived. Since large roughness scales are considered, the diffuse scattering
‘contridutions to the like and cross polarized scattering cross sections are given by the full vave
solutions. The scattering matrix in the expression for the equation of trensfer §s given by s veighted
suzn of the scettering matrix for the smooth particle and the diffuse coptribution due to the rough
 Furface of the particle. Illustrative exa=ples are presented for the propagation of & circulerly
polarized veve porzally iocident upon & parallel layer of psrticles. Purticles with different surface
beight spectral density functions, roughness sceles, complex permittivities and xizes are considered.
Both first order (single scatter) and multiple scatter solutions sre provided and the results for
particles vith smooth and rough surfaces are coopared. ,

.
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SCATTERING AND DEPOLARIZATION BY RANDOM ROUGH SURFACES-

UNIFIED FULL WAVE APPROACH

Ezekiel Bahar
Electrical Engineering Department
University of Nebraska
Lincoln, NE 68588-0511

The recent impetus to produce rigorous solutions to more realistic
models of pertinent propagation problems over a very wide frequency
range has generated the need to derive full wave solutions to problems
of radio wave propagation in dispersive, inhomogeneous, anisotropic
and dissipative media with irregular boundaries.

To perform the full wave analyses, it is necessary to develop
generalized field transforms that provide the basis for the complete
expansions for the electromagnetic fields in irregular multilayered
structures with varying thickness and electromagnetic parameters.

These complete expansions consist of the vertically and horizontally
polarized radiation fields, lateral waves and guided surface waves.

The generalized field transforms are used to reduce Maxwell's equations,
in conjunction with the associated exact boundary conditions for the
electromagnetic fields, into sets of first order coupled differential
equations for the forward and backward traveling wave amplitudes.

The full wave solutions, that have been derived for the scattered
radiation fields from rough surfaces with arbitrary slope and electro-
magnetic parameters, bridge the wide gap that exists between the
perturbational solutions for rough surfaces with small slopes and the
Physical Optics solutions.
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UNIFIED FULL WAVE SOLUTIONS
FOR ELECTROMAGNETIC SCATTERING BY ROUGH SURFACES--
COMPARISON WITH PHYSICAL OPTICS, GEOMETRIC OPTICS AND
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MODELS OF ROUGH SURFACES

presented by
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at

The Schlumberger Workshop on
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INCOHERENT DIFFUSE SCATTERING BY IRREGULAR SHAPED PARTICLES OF FINITE CONDUCTIVITY L66

Ezekiel Bahar
Mary Ann Fitzwater

Electrical Engineering Department
University of Nebrasks--Lincoln
Lincoln, Mebraska 68588-0511

ABSTRACT

The incoberent diffuse scattering intensities (Stokes paremeters) are evaluated for infrared and
optical excitations of a layer consisting of random distridbutions of finitely conducting irregular
shaped particles. The full vave approach is used to deteraipe the elements of the phase matrix and
the extinction cross sections appearing in the equation of transfer. The rough surface height of the

perticles is characterized by different surface height spectral density functions.
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SEASAT MICROWAVE ALTIMETER MEASUREMENT
OF THE OCEAN GRAVITY-WAVE EQUILIBRIUM-RANGE

SPECTRAL BEHAVIOR USING FULL WAVE THEORY

by
Dr. Donald E. Barrick

and

Dr. Ezekiel Bahar

at

The 1986 International Geoscience

and Remote Sensing Symposium (IGARSS'86)

September 8-11, 1986

Zurich-Irchel, Switzerland
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SEASAT Microwave Altimeter Measurement of the Ocean Gravity-Wave
Equilibrium-~Range Spectral Behavior Using Fuli-Wave Theory

Donald E. Barrick  Ezekiel Bahar
Ocean Surface Research  University of Nebraska
1131 Cranbrook Court W 194 Nebraska Hall
Boulder, Colorado 80303  Lincoln, Nebraska 68588
(303) 494-9103  (402) 472-1966

Models for the deep-water ocean gravity-wave spatial spectrum fully developed
by the wind have classically tended to follow an inverse fourth power dependence on
wavenumber beyond the spectral peak (which translates to an inverse fifth power
dependence on wave [requency through the gravity-wave dispersion relation). Such
behavior is predicted if all wave scales can linearly and independently develop to a
marximum, constant slope before breaking. Recent theoretical and experimental
oceanographic results, however, demonstrate the importance of nonlinearities in
determining the characteristics of the shorter gravity waves. Most conventional
instruments are incapable of measuring the wave spectral dependence well into the
equilibriva region, ie., a factor of 10 or more in wavenumber beyond the peak.

Full-wave theory for scattecing from rough surfaces sheds light on the wave scales
that contribute to backscatter at normal incidence. ln particular, it shows how the simple
specular-point model can be interpreted in terms of the upper limit on the waveslope
spatial spectrum. This is then used to establish an empirical mode! for the
wind-developed ocean waveheight spatial spectrum, based on 2000 independent
measurements by the SEASAT microwave altimeter of nadir backscatter cross section vs
wind speed. Although not accurate near the spectral peak, the resulting model gives its
equilibrium behavior, valid for three orders of magnitude beyond its peak but- still
considerably short of the capillary-wave region. The wavenumber dependence follows a
-3.77 power law instead of the inverse-fourth. The confidence in this value is well above
the statistical uncertainty of the data, and other sources of error in this calculation (such
as the presence of swell) are examined and found to be negligible. This departure from
inverse-fourth is sulTicient to produce a factor of three higher spectral level two orders of
magnitude beyond the peak, demonstrating the importance of nonlinearities in
characterizing the spectrum of shorter ocean-wave scales.
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SCATTERING AND DEPOLARIZATION OF LINEARLY POLARIZED
WAVES BY FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE

Ezekiel Bahar and Mary Ann Fitzwater
Electrical Engineering Department
University of Nebraska-Lincoln NE 68588-0511

In this work the scattering and depolarization of linearly
polarized waves by random distributions of finitely conducting
particles of irregular shape are presented. Infrared and optical
excitations of a large variety of particles with different sizes,
shapes and complex dielectric coefficients are considered in
detail. The random rough surface of the particle is characterized
by its surface height spectral density function (or its Fourier
transform the surface height autocorrelation function).

The full wave approach is used to account for both specular
point scattering as well as diffuse scattering by the particle in
a self-consistent manner (Bahar and Chekrabarti, Applied Optics, 2k,
Y¥o. 12, 1820, 1985), and the equation of transfer (Chandrasekar,
Radiative Transfer, Dover, NY, 1950 and Ishimaru, Wave Propaga-—
tion and Scattering in Random Media, Academic Press, 1078) for the
modified Stokes parameters is solved using the matrix characteristic
value method (Cheung and Ishimaru, Applied Optics, 21, No. 20,
3792, 1982). Both single scatter and multiple scatter results are
given for particles with smooth and rough surfaces and the effects
of particle surface roughness are considered in detail.

Both the co-polarized and cross polarized incoherent diffuse
intensities are plotted as functions of the azimuth angle and the
optical thickness of the layer of particles. The degree of polariza-
tion of the scattered waves is &lso evaluated as a function of the
azimuth angle.
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Scattering and Depolarization by Rough Terrain
and Vegetation Covered Terrain-Unified Full Wave Approach

Ezekiel Bahar
Electrical Engineering Department
University of Nebraska-Lincoln, NE 68588

ABSTRACT

Traditionally physical optics and perturbation theories have been used to
derive the ilike and cross polarized scattering cross sections for composite
random rough surfaces. To this end two-scale models have been adopted and the
rough surfaces are regarded as small scale surface perturbations that are
superimposéd on large scale, filtered surfaces. Thus the physical optics
cross section accounts for scattering by the filtered surface consisting of
the large scale spectral components and the perturbation cross section
accounts for scattering by the surface consisting of the small scale spectral
components that ride on the filtered surface.

On applying the perturbed&physica] optics approaches it is necessary to
specify the wavenumber where spectral splitting is assumed to occur between
the large and small scale spectral components of the rough surface. In
general the restrictions on both the large and small scale surfaces cannot be
satisfied simultaneously and using the perturbed-physical optics approaches
the evaluation of the scattering cross sections critically depends on the
specification of the wave numbers where spectral splitting is assumed to
occur, )

More recently the full wave approach has been used to determine the
scattering cross sections for composite random rough surfaces of finite
conductivity. Since the full wave solutions, which are based on a complete
expansion of the fields and the imposition of exact boundary conditions,
account for Bragg scattering and specular point scattering in a self-
consistent manner, it is not necessary to decompose the surface into two
surfaces with small and large roughness scales. However, on applying the full
wave approach to evaluate the 1ike and cross polarized scattering cross
sections for two-scale models of composite rough surfaces, several assumptions
were made to facilitate the computations, The assumptions are: the large and
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small scale surfaces are statistically independent, the mean square slope for
the total surface is approximately equal to the mean square slope for the
filtered large scale surface, the mean square height of the total rough
surface is large compared to a wavelength, the physical optics approximation
for the cross polarized backscatter cross section is zero.

A unified formulation has also been derived for the like and cross
polarized cross sections for 211 angles of incidence and the simplifying
assumptions, that are common to all the earlier solutions based on two-scale
models of the rough surface, are carefully examined.

The unified full wave solutions are formulated in terms of an integral
{not integral equation} similar to the perturbation and physical optics
solutions. They are shown to reduce to the physical optics solution in the
high frequency limit and to the perturbation solution in the low frequency
limit. The unified full wave solutions which are derived from the rigorous
telegraphists' equations for wave amplitudes can also be used to account for
multiple scattering by the rough surface and for the contributions to the
scattered fields from the non-illuminated or non-visible portions of the rough
surface.

The full wave approach has also been applied recently to problems of
scattering and depolarization by arbitrarily oriented discrete scatterers of
finite conductivity characterized by their surface height spectral density
functions. Therefore using the unified full wave approach it is possible to
analyze more realistic models of propagation paths over the earth's surface.
At microwave frequencies the vegetation that covers the terrain can be
represented by distrjbutiohs of discrete randomly oriented scatterers rather
than by 2 dielectric layer with an "effective complex permittivity" or an

“effective surface impedance.*
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APPLICATION OF FULL WAVE THEORY
TO COMPUTER AIDED GEOMETRIC DESICK
Ezekiel Bzhar
and
Swapan Chakrebarti
Department of Electrical Engineering
194 W Nebracka Hall

University of Nebraska-Lincoln
Lincoln NE 68588

Over the period of the last decade)reflection wodels,fcr computer

generated synthetic images)have been copsicferadbly imprroved in order
to generate very realistic imeges of three dimensionazl objects on

two dimensional screens. In almost all of the existing models

the reflecting surface is assumed to be & swall-sczle,randen rough
surface superimposed upon a smooth large-scele surface. FRcfleciion
from the smooth large.scale surface is cheracterized by the Fresnel
reflection coefficients and scettering from the smell scele rough
surface is accounted for by Lzmberi's cosine law.

In this presentetion a full wave scattering thecry ir revieved
and the corresponding reflection model for computer gerneraics synthetic
images is presented.

The full wave theory is based on & complete spectral represen-
tation of the scattered vertically and horizontally polarized fields
and the imposition of exact boundary conditions at the irreguler
surface. This theory accounts for both specular reflection and
diffuse reflection in a unified self-consistent manner.

The height of the random rough surfece is measured normal to the

large-scale, smooth,deterministic surface and the mean square height

e MR U




of the random rough surface, <h2>, need not be restricted by the

perturbation condition B = hki<h2> << 1 (where ko is the free space
wave purber). However, the mean sguare slope’of the randem rough
surface (relztive to the large sczle smooth surface) is assurmed to te
small (Oi < 0.1). Hence for convex shapes (as in cylinderc, spheres
or cones) multiple scattering between different ;urface elerents of
the object is ignored.

The scattering model based on the full wave theory significantly
reduces computation time of the simulated image without eny loss in the
image quality. Use of the full wave theory facilitates the lccaticn
of the isointensity lines. This is a very important ssset tc computer
eicded geometric design of manufactured objects.

Since the model is based on & rigorous full wave approzch to
electromegnetic scattering, it is appliceble to the inverse scaitering,

computer vision problem in which three dimensionzl surfaces zre

identified by eanalyzing their two dicensional images.

— et
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CO-POLARIZED AND CROSS-POLARIZED
INCOHERENT DIFFUSE SPECIFIC INTENSITIES
FOR LINEARLY POLARIZED EXCITATICNE

OF IRREGULARLY SHAPED PARTICLES

by

Dr. E. Bahar

at

1986 CRDC Scientific Conference

on Obscuration and Aerosol Research

June 23-27, 1986

Aberdeen, Maryland
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EXTINCTION CROSS SECTIONS AND ALBEDOS

FOR PARTICLES WITH VERY ROUGH SURFACES

presented by

Dr. E. Bahar

at

1986 CRDC Scientific Conference

on Obscuration and Aerosol Research

June 23-27, 1986

Aberdeen, Maryland
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