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BRIEF OUTLINE OF RESEARCH FINDINGS

1. Backscatter Cross Sections for Randomly Oriented Metallic Flakes at

Optical Frequencies.

The purpose of this investigation is to determine the average normalized
backscatter cross sections for randomly oriented metallic flakes. The
irregular shaped flake is characterized by its surface height spectral
density function and its lateral dimension is assumed to be larger than
oth the wavelength of the incident electromagnetic field and the

correlation distance of the rough surface.

The full wave approach which accounts for both specular point
scattering and Bragg scattering in a self-consistent manner is used to
express the total cross section of the flake as a weighted sum of two
cross sections. The first is associated with the large scale spectral
components of the surface of the flakes and the second is associated with
its small scale spectral components. It is shown that the average back-
scatter cross section per unit volume for the arbitrarily oriented metallic
flakes considered is larger than that for metallic spheres. Thus, the
irregularly shaped flakes could be significantly better obscurants than
metallic spheres, for a given volume of particles. The cross sections
for the metallic flakes are also compared with the cross sections for

similar flakes characterized by either a small scale roughness or by a
large scale roughness.

2. Backscatter Cross Sections for Metallic Spheres with Rough Surfaces.

Since the small scale roughness of the surface contributes significantly
to the scattering cross sections, the full wave approach described in

item #1 is currently being applied to the problem of scattering by
spheres with small scale rough surfaces.

3. Modulation of Scattering Cross Sections by Arbitrarily Oriented Composite

Rough Surfaces.

In this work the full wave approach is used to determine the modu-
lations of the like and cross polarized cross sections for composite
models of rough surfaces illuminated by Synthetic Aperture Radars.

4. Multiple Scattering.

We have decided to analyze multiple scattering using the equation

of radiative transfer with the general Stokes' parameters. Our ultimate
goal is to develop codes which will allow us to compute multiple scattering
for a variety of particle shapes and orientations.
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BRIEF OUTLINE OF RESEARCH FINDINGS

1. Scattering and Depolarization by Large Conducting Spheres with Very Rough
Surfaces.

The purpose of this investigation is to determine the like and cross
polarized scattering cross sections for electrically large finitely conducting
spheres with very rough surfaces. Perturbation theory has been used to
determine electromagnetic scatterig bj spheres with random rough surfaces
provided that the parameter B = 4k0 <h > is much smaller than unity (where k
is the wavenumber and <h > is the mean square height of the rough surface of
the sphere. However, for large conducting spheres with B << 1, the total
scattering cross sections are not significantly different from the physical
optics cross section for smooth (unperturbed) conducting spheres.

In this work the full wave approach is used to determine the scattering
cross sections for large spheres with roughness scales that significantly
modify the total cross sections. The full wave approach accounts for specular
point scattering and Bragg scattering in a self consistent manner and the
total scattering cross sections are expressed as weighted sums of two cross
sections. The results are compared with earlier solutions based on the
perturbation approach and a recent reformulated current method.

2. Scattering Cross Sections of Arbitrarily Oriented Composite Rough Surfaces.

This investigation is an extension of the earlier work on scattering by
randomly oriented metallic flakes at optical frequencies. Full wave solutions
are derived for a relatively small area or resolution cell of the rough surface
that is effectively illuminated by a Synthetic Apature Radar. The relative
modulations of the like polarized cross sections are optimum for incident
angles between 10' and 150 depending on the lateral dimensions of the resolution
cell and the polarization.

3. Multiple Scattering.

The preliminary results obtained for multiple scattering are for (electrically)
large finitely conducting spheres. The standard equation of transfer for
the diffuse intensity is used in these calculation. The effects of the rough
surface of the sphere has not yet been included in this analysis. This will
be done upon completion of the numerical work associated with the investigation
reported in item #1 above.

4. Visited U. S. Army Chemical Systems Laboratory (see Item 7.2).

-2-
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1. Scattering and Depolarization by Large Conducting Spheres With Very Rough
Surfaces

The albedo and the like and cross polarized scattering cross sections have
been determined at optical frequencies for electrically large finitely conducting
spheres with very rough surfaces. (The radius vector to the surface of the rough
sphere is assumed to be r = r0 + h where r is the mean radius and h is a random0 5 0 5

variable.) The total scattering cross sections for slightly rough conductirg
spheres (<<l) are not significantly different from the physical optics cross
sections for smooth (6 - 0) conducting spheres and perturbation theory is appli-
cable. The roughness scale is B - 4k <h.2>. where k is the wavenumber and <h 2 >
is the mean square height of the rouge surface that is superimposed on the smooth
sphere of radius r 0 . However for roughness scales B = k 02<h 2 > ; 1, the albedo
and the like and cross polarized scattering cross sections di fer significantly
from their respective values for smooth spheres (B = 0). In this case the perturba-
tion method fails and the full wave approach is used. Comparisons between the full
wave solution and the perturbation solution are given for S = 0.1, 0.5 and 1.0. The
mean radius of the sphere is r = 10A where A - 0.555xl0- cm is the electromagnetic
wavelength. The relative dielectric coefficient (c r) for aluminum is assumed in this
work. The albedo and scattering cross sections are currently being evaluated for
other particle sizes at different frequencies. This work is being coordinated with
the Aerosol/Obscuration group of the Army Chemical Systems Laboratory, Aberdeen,
Maryland.

2. Scattering and Depolarization by Large Diameter Infinitely Long Conducting
Cylinders with Very Rouh Surfaces.

The albedo and the like and cross polarized scattering cross sections for long
finitely conducting rough cylinders are evaluated at optical frequencies using the
full wave approach. The radius vector to the surface of the rough cylinder is
r = r + h where r is the mean readius (r > X) and h is the rough surface height,
a rangam v~riable wgich depends on the azimuth angle. Both normal and oblique
incidence are considered. The full wave solution which accounts for specular and
diffuse scattering in a self consistant manner is compared with the perturbation
solution for different roughness scales B.

3. Multiple Scattering.

Multiple scattering from slabs consisting of large conducting spherical
scatterers (see item #1) is analyzed using the equation of radiative transfer with
the generalized Stokes parameters. The transmitted and reflected diffuse intensities
are evaluated for polarized plan waves incident upon slabs of different optical
thicknesses. The effects of the rough surface of the sphere will also be included in
this analysis. For smooth spherical scatteres only two elements of the Mueller
matrix need to be evaluated (related to the like polarized cross sections reported
in item #I). However for the spheres with rough surfaces all sixteen elements of the
Mueller matrix have to be evaluated.

Page 2
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1. Scattering and Depolarization by Large Conducting Spheres With Very Rough Surfaces

The initial series of computations of the like and cross polarized differential
cross sections for electrically large finitely conducting smooth and rough spheres has
been completed. In this work the assumed electromagnetic wavelength was X - 0.555 pm and
the mean radius of the spheres ro = 10 X For the wavelength considered the relative
complex dielectric coefficient (aluminum) is Er ' -40-i12. For the perfect spheres (withSsmooth surfaces) the Mie solution was used and for the spheres with random rough surfaces

the full wave solutions (that account for specular and diffuse scattering) were used.
The roughness scale of the surface was characterized by the parameter = 4kJ<h2> where
ko= 2r/A and <hs> is the mean square height of the rough surface (measured normal to the
mean surface of the sphere). Values of B considered range from 0.1 to 1.0.

The full wave solutions were compared with earlier solutions to the problem. The albedo
for the rough spheres were shown to be about 10% to 15% smaller than the albedo for the
smooth spheres. These values differ significantly from those obtained from perturbation
solutions when 0 > 0.1. Following discussions with members of the Army Chemical Research
Development Center (CRDC, Aberdeen, Maryland), a new series of computations were also
carried out for the differential scattering cross sections. The electromagnetic wavelength
assumed was X = 10 Jm. The values of ro (the mean radius of the sphere) considered range
from 2A to 7A. The value for the complex dielectric coefficient (for A = 10im) is
Cr - -60000(i+i). For the surface roughness parameter 0 - 1.0 several surfaces with
different surface height spectral density functions W(k) were considered. (The surface
height spectral density function W(k) is the Fourier transform of surface height auto-
correlation function). For the smaller values of ro/A the diffuse differential scattering
cross sections were found to be critically dependent upon the form of surface height
spectral density function and the mean radius of the spheres.

These preliminary calculations Indicate possible techniques for solving the more com-
plicated problem of inverse scattering. Thus for instance, with an appropriate choice of
the wavelength A, the measured cross polarized differential scattering cross section oVH(e,
could reveal the values of the mean radius of the spheres, the roughness parameter B as
well as the surface roughness spectral density function. Only a set of measurements of
the cross polarized cross section for angles 6 in the near forward direction would be
needed for the purpose of these proposed experiments.

2. Scattering and Depolarization by Large Diameter Infinitely Long Conducting Cylinders
with Very Rough Surfaces

The like and cross polarized scattering cross sections were also computed for long
finitely conducting cylinders. Both electromagnetic wavelengths A = 0.555pm and A - lOm
were assumed and the mean diameter of the cylinders considered ranged from d = 5A to
d - 20A. The effect of surface roughness was also examined as in the case of the
spherical particles. This work was presented at the 1984 CSL Scientific Conference on
Obscuration and Aerosol Research (CRDC Aberdeen, Maryland) June 25-29. (See Item #7.2.3)

3. Multiple Scattering

Using the equation of radiative transfer for scattering by electrically large
conducting spherical particles the generalized Stokes parameters have been evaluated
for different thicknesses of the scattering medium. Conducting obscurants with both
smooth and rough surfaces were considered. The specific diffuse intensities for vertically
and horizontally polarized waves were determined for both circularly and linearly polarizec
incident waves. For optical thicknesses T<0.1, effects of multiple scattering begin to
become significant. The effects of particle surface roughness increase as the optical
thickness T increases and multiple scattering is not negligible. The particle surface
roughness also has the effect of decreasing the degree of polarization of the scattered
waves. The i4ffuse.intensities. and'the degree of polarization become significantly less
dependent on scatter angle when the particle surface roughness is taken into consideration.

Page 2
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Scattering and Depolarization by (Electrically) Large Conducting Particles With
Random Rough Surfaces

In our investigations,the irregular-shaped obscurants are assumed to have the
following physical and electrical characteristics.

(i) The deterministic (idealized) shape of the average particle is spherical or
circular cylindrical.

(ii) The actual surface of the particle is assumed to deviate from the idealized
surface. The particle random rough surface is characterized by its surfo,,
height spectral density function W or the Fourier transform of W, the surfac,
height autocorrelation function <hh'>.

(iii) The particles are characterized electrically by their relative comnley
dielectric coefficients r.

The electromagnetic wavelength X is assumed to be in the 10 pm to 0.5 pm range, and the
diameter d of the (idealized) particle considered is between 5 and 15 wavelengths.

Using the full wave approach it was necessary to express the characteristic function and
the joint characteristic function X of the random rough surface in terms of the roughno,.,
parameter 8 = 4k2 <h2> (where k = ), and <h2> is the mean square height of the rough
surface) and a p~wer series of ?he surface height autocorrelation function <hh'>. For
8 < 0.1 only the first term of the power series expansion is significant and the diffuse
scattering due to the rough surface is identified with Bragg scattering. However as the
roughness parameter a increases several additional terms of the power series expansion
need to be considered. (For example when 8 is between one and two, four terms become
significant). This imposed an undesired upper bound on the value of the roughness par,
meter 8 used in our computations for the scattering cross sections of the rough particle.
This limitation has now been eliminated through the use of more efficient representati,
of our full wave analytical results which yield algorithms that do not require power
series expansions of the characteristic functions. The updated computer programs for 1;,
like and cross polarized scattering cross-sections have been tested for a family of
surface height spectral density functions W with roughness parameters 8 = 10.

In order to compute the albedo for the irregular-shaped particles it is also necessary t:
evaluate the total cross sections (scattered plus absorption cross sections). For
particles with relatively small roughness scales (8< 1), the surface irregularities dc
not significantly effect the forward scattered fields. Thus the total cross sections,
for particles with small roughness scales, are essentially the same as those for the
idealized (unperturbed) particles. However when 8 > 1, this approximation is not valid.
A new approach has been developed to evaluate the albedos when e is not small. This
approach exploits the fact that for large particles (kd > > I) the forward scattered
field (which is related to the total cross section) is the same for all conducting
particles that have the same shadow line.

During the reporting period, a copy of the manuscript on scattering and depolarization b
long conducting cylinders with rough surfaces was submitted to the organizers of the 198
CLS Scientific Conference on Obscuration and Aerosal Research (CRDC Aberdeen,Maryland)
(See Item #7b). The computer programs for the multiple scattering problem were updated
to reflect the advances made in the computations of the scattering cross sections and
the albedo of irregular particles with very large roughness scales a. Numerical results
were also obtained for particles with a broad range of complex dielectric coefficients
corresponding to those of artificial dielectrics such as dissipative plastic and foam
materials.
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BRIEF OUTLINE OF RESEARCH FINDINGS

Multiple Scattering by Irregular Shaped Particles of FiniLe Conductivity
at Infrared and Optical Frequencies

The equation of transfer for a layer of roly distributed particles

has beqa solved for a variety of particle sizes, shapes and complex dielectric

coefficients at infrared and optical frequencies. The unperturbed particle

shape is assumed to be spherical and the actual random surface of the particle

is characterized by its surface height spectral density function or its
Fourier transform, the surface height autocorrelation function. The mean
square height of the rough surface <h

2 > is assumed to be large ($- 4k2<h2> >> 1

where k. is the free space wavenumberl. The full wave approach is used to express
the scattering matrix for the irregular shaped particles as a weighted sum of
two cross sections. The first is a modified contribution from the unperturbed
spherical particle and the second. is the diffuse contribution due to the

surface roughness.
The modified Stokes parameters (incoherent specific diffuse intensities)

are determined for a variety of excitations.
(i) Circularly polarized wavesnormally incident upon the layer of particles.

The solutions in this case are azimuthally independent.
(ii) Linearly polarized waves normally incident upon the layer of particles.

(iii) Vertically and horizontally polarized waves obliquely incident upon the
layer of particles.

The matrix characteristic value approach was used to solve the problem.
Both single scatter and multiple scatter solutions were presented and the
effects of the surface roughness are demonstrated by comparing the results
for irregular shaped particles with the corresponding results for smooth
(spherical) particles.

Written reports on this work are currently in preparation. The principal
Anvestigator also presented a paper on "Multiple Scattering in Media Consisting
of Non-Spherical, Finitely Conducting Particles" at the Chemical Research and
Development Center (CRDC), Aberdeen Proving Cround.Maryland, on June 21

in conjunction with the 1985 CRDC Scientific Conference on Obscuration and
Aerosol Research. During this visit discussions were also held with CRDC
Laboratory personnel on current and future aspects of our research program.

A list of conferences papers and journal.puhlications during this reborting
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Multiple Scattering by Irregular Shaped Particles of Finite Conductivity
at Infrared and Optical Frequencies

The modified Stokes parameters (the incoherent specific diffuse intensities)

for a layered media consisting of a random distribution of finitely conducting
particles with very rough surfaces were computed for normally and obliquely
incident electromagnetic waves. Both vertically and horizontally polarized
excitations at infrared and optical frequencies were considered. For large angles
of incidence (ei = 300), it is necessary to use more than twenty-four terms of

the Fourier series expansions of the Mueller matrix. The analytical solutions are

based on the matrix characteristic value techniques. For these cases the principal

investigator used his access to the Cyber 205 supercomputer at Colorado State

University through a grant awarded by the National Science Foundation. Use of

the supercomputer has enabled us to tighten the accuracy of our computations.

Additional work has been done to determine the albedos and the extinction cross

sections for the irregular shaped particles considered in our investigations.

It is shown that the particle surface roughness results in effectively

blocking transmission windows that appear when electromagnetic waves propagate
through thin layers consisting of smooth (spherical) particles. Particle

surface roughness is also shown to result in a small but significant backscatter

enhancement.

During this reporting period the principal investigator presented papers at

four international/national conferences/workshops (see Item (7.1)). In addition,
he attended the 1985 Advanced Planning Briefing for Industry (APBI) at the

U. S. Army Chemical Research and Development Center, Aberdeen Proving Ground
Maryland in (October 1985). He also visited with Army laboratory personnel at
Aberdeen and provided an overview of his research program.

The principal investigator submitted two additional manuscripts for

publication in scientific journals (see Item (7.2)). Two papers were accepted
for publication (see Item (7.3)) and two papers were published in the Technical

Literature (see Item (7.)) during this reporting period.

The final report for this contract will be submitted by the next reporting

period. This report will also contain documented computer codes on tape.
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Scattering cross section modulation for arbitrarily oriented composite rough surfaces:
Full wave approach

Ezekiel Bahar

Electrical Engineering Department. Unirersity of Nebraska

Clifford L. Rufenach and Donald E. Barrick

NOA A/ERL Wave Propagation Laboratory

Mary Ann Fitzwater

Electrical Engineering Department, University of Nebraska

As a synthetic aperture radar scans different portions of a rough surface, the direction of the unit
vector normal to the mean surface of the effective illuminated area (resolution cell) fluctuates. In this
paper the modulation of the like and cross polarized scattering cross sections of the resolution cell are
determined as the normal to it tilts in planes that are in and perpendicular to the fixed reference plane
of incidence. By using the full wave approach, the scattering cross sections are expre, -d as a weighted
sum of two cross sections. The first cross section is associated with scales of roughness within the
effective illuminated area that are large compared to the radar wavelength, and the second cross section
is associated with small-scale spectral components within the resolution cell. Thus both specular point
scattering and Bragg scattering are accounted for in a self-consistent manner. The results are compared
with earlier solutions based on first-order Bragg scattering theory.

I. INTRODUCTION geometry for both like polarization and cross polar-

Microwave remote sensing of rough surfaces (both ization, since the long ocean waves, in general, travel

land and ocean), using moving platforms (aircraft in arbitrary directions. In the present work, the finite

and satellite) as well as ground-based measurements, resolution of the radar is considered for tilt modula-
has illustrated the need for a better understanding of tion with hydrodynamic effects neglected.

the interaction of the radar signals with these sur- The full wave approach is used to determine the

fiVes. This interaction is particularly important for modulation of the like and cross polarized scattering

the ocean surface where the radar modulation can cross sections for composite models of rough sufaces

yield information about the long ocean wave field. illuminated by SAR. The full wave approach ac-

Radar modulation measurements from fixed plat- counts for both specular point scattering and Bragg

forms have been made in wavetanks and the open scattering in a self-consistent manner. Thus the total

oceans. The surfaces have been described in terms of scattering cross section is expressed as a weighted

two-scale models [e.g., Wright, 1968]. The radar sum of two cross sections [Bahar et al., 1983]. The

modulation is considered to be principally due to (1) first is the scattering cross section associated with the

geometrical tilt due to the slope of the long ocean filtered surface consisting of the large-scale specular

waves and (2) the straining of the short waves (by components of the illuminated rough surface area.

hydrodynamic interaction) [e.g., Keller and Wright, The second is the cross section associated with the

1975; Alpers and Hasselmann, 1978]. For application surface consisting of the small-scale spectral compo-

to moving platforms, synthetic aperture radar (SAR) nents that ride on the filtered surface. The principal

and side looking airborne radar (SLAR), this modu- elements of the fi-Il wave solutions are summarized in

lation needs to be described in terms of a general section 2.
In section 3, full wave solutions are derived for the

This paper is not subject to U.S. copyright. Published in 1983 scattering cross sections of a relatively small area or
by the American Geophysical Union. resolution cell of the rough surface that is effectively
Paper number 3S1006. illuminated by SAI. The normal to an arbitrarily

675
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Alpers et a. [1981]. first-order Bragg scatter due to
capillary waves on a tilted plane is considered. It can
be shown that if the large-scale spectral components
of the surface within the cell are ignored, the full
wave solutions derived here for tilt modulation
reduce to the results obtained by Alpers et al. (The
reader is also referred to the article by Alpers et al.
[1981] for a comprehensive review of the literature

P- on this subject.)
For the illustrated examples presented in section 4,

the scattering cross sections and their derivatives
with respect to the tilt angles are evaluated for all
angles of incidence. The modulation of the like cross
sections near normal incidence is due primarily to
fluctuations in specular point scattering, while the
modulation of the like cross section for near grazing
angles is due primarily to fluctuations in Bragg scat-

Fik- I. Plane of incidence, scattering plane, and reference (x. :) tering. Thus for large angles of incidence the cross
Plane sections for the horizontally polarized waves are

oriented mean plane associated with the illuminated shown to be more strongly modulated than the cross

cell is characterized by tilt angles 1) and z in and sections for vertically polarized waves [Wright.

perpendicular to a fixed reference plane of incidence. 1968].

It is assumed that the lateral dimension of the resolu-
tion cell L, is much larger than both the electro- 2. FORMULATION OF THE PROBLEM

magnetic wavelength and the small-scale surface
height correlation distance for the cell. As the SAR The recently derived full wave solutions for the
scans different portions of the rough surface S, the normalized cross sections per unit area are summa-
direction of the unit vector normal to the cell F flue- rized here for composite rough surfaces (see Figure 1)
tuates. In this paper the "modulations" of scattering that can be expressed as follo, s:
cross sections are determined as the tilt angles f0 and
z fluctuate. In a recent study of "tilt modulation" by h(x, :) = htx, :) + hj(x, :) (1)

Locl CoCcneo
(A, AR ,2-A

3)

6X41.1 PW*e

2n o1 - o ro,,Qh s-nfoce

fi st to e wLee , I A3 6, ,.o

Figl. Z Local plane ol'incidence and scatter and local coordinate system with unit vet~cors At, Az A,3
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The surface h,(x, z) consists of the large-scale spectral
components while h,(x, z) consists of the small-scale --

spectral components. For a homogeneous, isotropic --- ERENCE

surface height the spectral density function is the
Fourier transform of the surface height auto- -1
correlation function (h(x, z), h'(x', z')) [Rice, 1951; n

Barrick, 1970; Ishimaru, 1978]

®
(

.,V. 
h h °

>

cxp (irv xd + iv, z) dxd dz (2a)

where (hh'> is a function of If (x2 + 2)"2 and
S- x' X x - z= (2b)

The surface hAx, z) consists of the spectral compo-
nents k = (v,+ v)1

2 
1 k. and the remainder term

h,(x. z) consists of the spectral components k > k,.
Since the full wave approach accounts for both
specular point scattering and Bragg scattering in a - ,

self-consistent manner, the total scattering cross sec- 0,

tion can be expressed as a weighteo sum of the cross
section (2>0 )1 for the filtered surface h, and the cross
section <a0 %) for the surface h, that rides on the
large-scale surface h, [Bahar et aL., 1983]

-610> = <aQ)o + (o f") (-) Fig- 3. The tilled cLl

Thie angle brackets denote statistical average. The
first superscript P corresponds to the polarization of wave number is ko . An exp (iwt) time dependence is
the scattered wave while the second superscript Q assumed. The vector 6, is the value of the unit vector
corresponds to the polar: ation of the incident wave. i normal to the surface h(x, :) at the specular points.
To derive (3) by using the full wave approach, it is Thus
implicitly assumed that the large-scale surface meets
the radii of curvature criteria (associated with the A = V/IVf I
Kirchhoff approximations for the surface fields) as = d + 4, - h, )./(h. + h

, + 1)1.2 (7a)
well as the condition for deep phase modulation.
Thus the first term in (3) is shown to be where

) - I -l 2 (6 ~o > (4) f= 
y 

- h(x, z) h. = Ahlx h, = eh/e: (7b)

and
in which X' is the characteristic function for the
small-scale surface f, = e/v (7c)

The expression for the physical optics (specular
d(v) = <exp iVk.) point) cross section for the large-scale surface h, is

and4k D 0

/ PQ> LI ,jroll~l
il 1= *i

I
,it) ojil (6) i = I- P(it,, ) (8)

The unit vectors f and fi are in the directions of the in which D'0 depends on W, #;i, 6, the media of prop-
scattered and incident wave normals, respectively; agation above and below the rough surface h(x. z)
thus for backscatter flf = -W. The free space radio and the polarization of the incident and scattered
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II

C

lb'. mW 0.0 30.D WW SLD 8.W W00 0.00

Fig 4. conlinued)

waves [Bahar, 1981a, b]. The shadow function P2 is unit vectors il, ri2, and fi3 (see Figure 2). Thus C can
the probability that a point on the rough surface is also be expressed as
both illuminated and visible, given the slopes fi(h.,
hA), at the point [Smith, 1967; Sancer, 1969]. The e -r n + ',f 2 + rfis(

probability density function for the slopes h, and h, where
is p(n)z The factor X(v) that multiplies <ro > accounts
for the degradation of the contributions from the "' = (nx ,)lnxa, i "2 *1 i3 = tfllx (12)

specular points due to the superimposed small-scale The surface height A, is measured perpendicular to
rough surface h, hl, i.ex, along fi. The function W,(vj, vi)/2

2
"' is the

Assuming a Gaussian probability density function two-dimensional Fourier transform of ((A, ;>)".
for A,, (a >2 is given by the sum

W.(v,. - ~ I cp (ir,i. + iri E) di4 dfd
, X <OP>,. (9) 22 (2

wf W.... ;)Wj(v, - v., v, - v,) drJ dv
where .

0 lu . W._,(v,, v ® W,(v, v,) (13)

•exp (-5V2( )) p(h,. h,) dh. dh, (10) In (13), Ii1,4 - fziil is the distance measured along
2 mthe large-scale surface h, and the symbol 0 denotes

in which <,> is the mean square of the surface the two-dimensional convolution of W.-, with W,
height A, and v , v,, and v, are the components of v The two-dimensional Fourier transform of the sur-
(equation (6) in the local coordinate system (at each face height autocorrelation function (AA is equal
point on the large-scale surface) assocated with the to the spectral density function W1(v,, vi)/4.
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CB

T8

Fig. 4. (continucd)

waves [Bahar, 1981a, hi]. The shadow function P2 is unit vectors fi,, 2, and fi3 (see Figure 2). Thus E5 can
the probability that a point on the rough surface is also be expressed as
both illuminated and visible, given the slopes h(h,,
h,), at the point (Smith, 1967; Sancer, 1969). The V= v, 3 + V 2 + t,,i (I)
probability density function for the slopes h, and h, where
is p(n-). The factor l"(v) that multiplies <(uQ) accounts
for the degradation of the contributions from the 

fI 
= (1xj)/jVhxd, 112 = 3 = i xii (12)

specular points due to the superimposed small-scale The surface height A, is measured perpendicular to
rough surface h,. hA, i.e, along 0. The function W,(v,, v,)/22" is the

Assuming a Gaussian probability density function two-dimensional Fourier transform of (<, A>)'.
for h,, <oaQ), is given by the sum

W~J,(,.,) I r2" 
()

--I(<v->. (9) 2. -_L <AA>" exp (iv,1, + iv, d d , fd
<0=0 <0'> () 2. 2I

where - I -_I(v', t,lW.lvI- v ,v -vi,) dv.'dv't

= 4nk' I I i'lnl ji... W.- _,(v, V,)® W,(v,, v,) (13)

exp (,2, - W , v)p(h, ,) dh, dA (10) In (13), Ii,4 1 - If ,l is the distance measured along
the large-scale surface h,, and the symbol 0denotes

in which <A,> is the mean square of the surface the two-dimensional convolution of W._ , with W1.
height A, and v,, v., and v, are the components of v The two-dimensional Fourier transform of the sur-
(equation (6) in the local coordinate system (at each face height autocorrelation function <A, A > is equal
point on the large-scale surface) associated with the to the spectral density function W(v, v,)/4.
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C

b "
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Fig. 5. (continued)

The first term in (9), <eQ>,1 , reduces to the first- large scale spectral component of the rough surface
order Bragg scattering cross section for #i = by the SAR that effectively illuminates a relatively
4k2 <,> << I. and ji-. , [Rice, 1941; Barrick, 1970]. small area of cell F of the rough surface S and (2) to
In this case p(h,, h.) is given by the Dirac delta func- account for the normal to a reference plane associ-
tions b(h,)bh,) and (10) reduces to [Bahar, 1981a, b] ated with the illuminated cell which is characterized

= xkoID' ,..,v, W,(v_, v,) (14) by arbitrary tilt angles Q" and T in and perpendicular
to the reference plane of incidence (see Figure 3). It is

For # < I and arbitrary p(h, h), the first term in (9), assumed here that the lateral dimension of the cell
<OrPQ>,,is also in agreement with Valenzuela's solu- illuminated by the SAR is much larger than the
tions that are "mostly based on physical consider- small-scale surface height correlation distance for the
ations" [Valenzuela, 1968; Valenzuela et al., 1971]. cell and that as the SAR scans different portions of
For small slopes 4 d, and P << I. the first term in the rough surface S, the direction of the unit vector
(3) reduces to Brown's [1978] solution based on a normal to the cell F fluctuates. Our purpose is to
combination of physical optics and perturbation determine the "modulation" of the backscatter cross
theory. Since it is assumed (on deriving (3) from the sections <oeQ> (equation (3)) as the tilt angles (of the
full wave solutions for the scattered fields) that the normal to the cell) in and perpendicular to the refer-
surface h, satisfies the radii of curvature criteria as ence plane of incidence fluctuate.
well as the condition for deep phase modulation, it is
necessary to choose ,8 = 2t I in order to 3. SCATTERING CROSS SECTIONS
assure that the weighted sum of cross sections (equa- FOR ARBITRARILY ORTENTED RESOLUTtON CELLS
tion (3)) remains insensitive to variations in k,, the oF THE ROUGH SURFACE
wave number where spectral splitting is assumed to Let x, y, z be the reference coordinate system as-
occur [Bahar et al., 1983]. sociated with the surface of the cell F that is illumi-

In order to apply the full wave approach to SAR it nated by the SAR such that the mean surface of the
is necessary to modify the results presented in this cell is the y = 0 plane (see Figure 3). Furthermore, let
section (I) to account for the filtering of the very x', y, z' be the fixed coordinate system associated
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bE

Fig. 6. (continued)

with the large surface S such that the unit vector j' is where
normal to the mean rough surface height h(x', z'). The
unit vector u' = - fi is expressed in terms of the cos 0,, cos (0"o + 171) cos T (19)
unit vectors of the fixed coordinate system (x', y', z'): The angle O(4 between the plane of incidence in the

A' - f
i = sin 0'j, - cos 0'o ,  (is) fixed coordinate system (x', y', z') and the plane of

incidence in the coordinate system (x, y, z) associated
The unit vector 0, normal to the reference surface with the cell is given by
associated with the cell is expressed in terms of the
tilt angles f and t in and perpendicular to the fixed Cos ut- (F'x j,) (A'x d) = d, d' - (o'. d,Xff' a;)
plane of incidence, the x', y' plane. Thus F I Wx jX I I 1x l ;l I I I'X , I I 'x a, I

a, w sin 0 cos T , + cos n cos d, + sin t d, (16) os l cos r - cs 0o cos 0o  cos r sin (0; + 0) (20)
sin 0'o sin 0, sin 00

For convenience, d, and , the unit vectors associ-
ated with the cell, can be chosen such that the plane and
of incidence in the x, y, z coordinate system is normal (I'x d;)4i ix 0,)d?' oil ' ,; j,]
to the vector d. Thus sin *,. loI'x d;l hI'x d , ti'x dl I 'x 0',I

j. - (ix ',)/I li'x j, aj -a, x j. (17) sin (

and the expression for fi' in the x, y, z coordinate sin 0.

system is For backscatter fij -f. Thus the angle Of be-
tween the plane of scatter in the fixed coordinate

A' - (il. O,)i! + (R'.-,), i sin 9,5. - Cos o,, (18) system (x', y', z') and the plane of scatter in the coor-
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Ion UL00 BL, Jo%0n 40.00 MOD N0.00 MW 80.0 0

Fig. 7. (a) -(d~o->dt), and (b) -(d<o'/)/<a-o
r > for 0 - 0 and 7 0 as a function of 0'. Triangle, L. 300

cm; octagon, L, - 10D0 cm; square. L, =2500 ern.

dinate system associated with the cell is in which Co' is the cosine of the angle between the

*fF --0, (22) incident wave normal h' and the unit vector f7
normal to the rough surface of the cell hr~x, z). Thus

The matrix that transforms the incident vertically
and horizontally polarize'd waves in the fixed coordi- C' r -fi 6 - Cos 0i" (26)

nate system to vertically and horizontally polarized where fi' is given by (18) and fi is given by (27a) with
waves in the cell coordinate system is therefore f,(x, y) = y - hF(x, y). The elements of the scattering
[Bahar, 1981a, b)l matrix F in (25) are functions of the unit vectors hi',

T~t" I cs it sin€, ,] f and fi as well as the media of propagation above

r -[cs #r cs #, .j (23) and below the rough surface S [Bahar, 1981a]. The
Sin F CO Cmatrix 7' transforms the vertically and horizontally

Similarly, the matrix that transforms the scattered polarized waves in the cell coordinate system (d., 6,,
vertically and horizontally polarized waves in the cell J,) to vertically and horizontally polarized waves in
coordinate system back into the vertically and hori- the local coordinate system that conforms with the
zontally polarized waves in the fixed coordinate rough surface, ",, fi2, fi3 (12). Similarly, the matrix
system is Tf transforms the vertically and horizontally polar-

Tj --r 
e 
I{ -sin {]ized v, aves in the local coordinate system back into

Ls- [C os of. (4 vertically and ho.'izontally polarized waves in the cell
sin Cs '] (24)coordinate system [Bahar, 198 1 a].

Thus in view of (22), Tf- = T' . The coefficients D4?
e  To account for the arbitrary orientation of the cell,

in (8) are elements of a 2 x 2 matrix D given by the matrix D in (25) must be postmultiplied by T"
and premultiplied by Tj. Thus the elements of the

D C4,oTfrrT (25) matrix D in (8) must be replaced by the elements of
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b

b
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Fig. 7. (continued)

the matrix DF where Thus on replacing the spectral density function

Dr= T.1Dr (27) W(2a) for the surface S by the spectral density func-
tion WF for the cell F (28) and on replacing the ele-

Furthermore, in view of the effective filtering by the ments D"' of the matrix D by the elements DF< of the
SAR of the very large scale spectral components of matrix D. (27) the expression (3) can be used to de-
the rough surface f(x', z') = 0, the spectral density termine the normalized backscatter cross section for
function for the rough surface f,(x, y) = 0 associated an arbitrarily oriented cell F. In view of (23) and (24)
with the resolution cell F is given by the expressions for these backscatter cross sections

Wyv , v,) = W(v,, v,) k > k. are explicit functions of the tilt angles f0 and T. For
(28) the special case r = 0 (tilt is in the plane of inci-

W,v,, Vj) 0 4 < k. dence), the matrices T -and Tf reduce to identity

where W(v,, v,) is the spectral density function for matrices and
the surface S,f(x', z') O. The wave number A, is Cos 00 cos (0o + (1) (30)

k, 2x/L, < At (29) Thus for r = 0
where L, is the width of the area of the cell illumi- o0
nated by the SAR. Other models for the effective . .... (31)
filtering of the spectral components of the rough sur-
face by the SAR could be considered in this analysis; and
however, it would not change these results signifi- / . (0(o<'>a0'0 o...,, (32)
cantly. The very large scale surface consisting of the
spectral components 0 < k < k, are responsible for Therefore to obtain aQ(oQ>/fl for (I = 0 and T = 0
tilting the resolution cell with respect to the mean sea it is sufficient to evaluate (<aQ) as a function of 06
surface. with both 0 and T set equal to zero. The value for
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b

b

8.

Fig. 7. (continued)

the matrix D, where Thus on replacing the spectral density function
D= T DT, (27) IV(2a) for the surface S by the spectrai density func-

tion WF for the cell F (28) and on replacing the ele-
Furthermore, in view of the effective filtering by the menits D' e of the matrix D by tne elements D~e of the
SAR of the very large scale spectral components of matrix D, (27) the expression (3) can be used to de-
the rough surface f(x'. z') 0, the spectral density terrnine the normalized backscatter cross section for
function for the rough surface f,(x, y) = 0 associated an arbitrarily oriented cell F. In view of (23) and (24),
with the resolution cell F is given by the expressions for these backscatter cross sections

W1(v , v,) - W(v,, v,) & > t are explicit functions of the ,ilt angles fl and t. For
(28) the special case e .= 0 (tilt is .a the plane of inci-

W,.(v1 , v)= -0 & < k. dence), the matrices T', and T reduce to identity

where W(v,, v1) is the spectral density function for matrices and
the surface S,f(x', z') =0. The wave number k, is eos 0o = cos (0"0 + (3) (30)

k= 2i/i., < k~ (29) Thus for t = 0

where L4 is the width of the area of the cell illumi- 00 00oI
nated by the SAR. Other models for the effective -.. ," on., (31)

S' filtering of the spectral components of the rough sur-
face by the SAR could be considere& in this analysis; and
however, it would not change these results signifi- (8e)/[ ,; .,.- ( (c'o)/30o,)n.... (32)
cantly. The very large scale surface consisting of the
spectral components 0 < k < k, are responsible for Therefore to obtain a~of')/8fl for 13 -- 0 and e = 0
tilting the resolution cell with respect to the mean sea it is sufficient to evaluate <oq'> as a function of 8'o
surface, with both 0l and x set equal to zero. The value for
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b

Fig 8. (a) -(d<0"")/d). and (b) -(d<vni>)/dt)/<M"). for O- and t -0 as a function of 6 . Triangle,
L, - 300 cm; octagon. L, - 1000 am. squark 4 - 2500 cm.

e<aPQ>/0r can either be evaluated analytically, since [Brown, 1978] and V is the surface wind speed. The
DF

Q (equation (27)) is an analytic function of t, or the wavelength for the electromagnetic wave is
derivative could be evaluated numerically. 4 = 3.0 cm (ko = 2x/3 = (cm)- 1) (35)

4. ILLUSTRATIVE EXAMPLES The relative complex dielectric coefficient for the sea
is

For the illustrative examples presented in this sec-

tion, the following specific form of the surface height e, = 48 - 35 (36)
spectral density function is selected [Brown, 1978] and the permeability for the sea is the same as for

W(V., V')2 S(v., V) = Bk
4  2

)
4  free space (p, = I).

It AK' + k k < k, The mean square height for the small scale surface2 
(33) h. is given by

W(v,, v,) =- S(v., vs) = 0 k > Ate

fT k dk d - - (37)
where W is the notation used by Rice [1951] and S is J 4 2
the notation used by Brown [1978]. For the assumed The mean square slope for the large-scale surface h,
isotropic model of the sea surface within the resolution cell is

B - 0.i46

k2 _ V + V'2 (cm)
-2  

, - 12 (cm)-J (4 4 W k) ktdk do
(34) f

K = (335.2 V')- 1
2 (Cm)-I V - 4.3 (m/s) rlk+ or 3 t

in which k is the spectral cutoff wave number - - -+ cz+2 ,2k + K- k,-o K2)
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b

b

Fig. 8. (continued)

3 ,( I 1) and the physical optics (specular point) backscatter

- (' ' + k' cross section is (equation (8)) [Bahar, 198 Ia]
Ic' 1 sec' 0, tan' 0o

+ t) !- - (38) (LP.Q),= see. " exp -_ -j--1-p~ (41)(k+ Il(k" + at')3 02 ,

in which k, is given by (29). The mean square height in which 6,1 is the Kronecker delta and Rp(P = V,
for the large-scale surface h, is H) is the Fresnel reflection coefficient for the verti-

12, 11, W(k) cally or horizontally polarized waves [Bahar, 1981a,

4 In Figures 4a, 4b, and 4c, ( 7 VV), -(daVV/df)),

~~~ '~j.~, and -(d(Gvv>Idf1)I<aiv> are plotted for Q = 0 and
= [.+' kJ + K2\ + a)' (k, + i') x= 0 as functions of 0'o, the angle of incidence with
4 /respect to the fixed reference system (x', y', z'). In

T i (39) these figures L, = 300, 1000, and 2500 cm.
S+ i')' (k2 + I)' In Figures 5a, 5b, and 5c and Figures 6a, 6b, and

For , =4ko2(<> 1.0, ki =0.201. Thus for L, 6c, these results are repeated for (a"> and
300, 1000, and 2500 cm (equation (29)), a42 = 0.0102, >(c ) = (crvN>. It is interesting to note that the ef-
0.0143, and 0.0152, respectively, and k2(h2> = 21.9, fective filtering of the very large scale spectral com-
173, and 357, respectively. The slope probability den- ponents of the rough surface (0 < k < k,) by the SAR
sity function within a resolution cell is assumed to be does not significantly change the value of ape unless
Gaussian; thus L, < 300 cm (see Figures 4a, 5a, and 6a). As one may

expect, the modulation of the scattering cross sec-r [ + hfa ( tions in the plane of incidence Id(aVV)/dflI is
(h.,h) -2exp - (40) strongest for the SAR corresponding to the nar-
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b

b

Fig. 9. (a) -ad*OHldT), and (b) -(d(v'1>/dT)/1<a
m

> for il/ 0 and T f 0 as a function of 6'.. Triangle, L, 3(0

cm; octagon, L, - 1000 can; square, L, 20 cr.

rowest effective beam width L, = 300 cm (see Figures n4 and I v, D"v 11 is proportional to 12 _ (ft. fi)2 (2 for
4b, 5b, and 6b). Except for near-normal incidence the highly conducting surfaces, for large angles of inci-
relative modulation Id ,a'Q>1df~j/<,r12 is larger for dence I vDM " is more strongly dependent than
the horizontally polarized waves than for the verti- I v hDV"lI on the slopes (,(h=, At.)). The largest modu-
cally polarized waves (see Figures 4c and 5c). This is lation of the Fke polarized cross sections occurs in
because for large angles of incidence 0'o, the domi- the transition region where the contribution to the
nant term in the expression for the total cross section cross section due to Bragg scatter becomes larger
is (equation (3)) <a'Q>,,, corresponding to first-order than the contribution due to specular point scatter,
Bragg scatter. Since I vD" I' is proportional to (A' - namely at about 5* (see Figures 4b and 5b). The de-

8 . . . m, m mmilmmm mmm m
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polarized cross section (o'Q> (P * Q) does not have with the surface consisting of the small-scale spectral
a contribution due to specular point scatter [Bahar, components. It can be shown that if the large-scale
1981a, b). There are two peaks in the value of spectral components of the surface of the cell are
I d(aVn>/df1, one at about 4' and the larger one at neglected, the second cross section accounts for first-
about 13; however, both peaks are much smaller order Bragg scattering and the results are in agree-
than the peak value of Id(Gar)/dQ I for P = V, H ment with earlier published results [Afpers et at.,
since the like polarized cross sections are much larger 1981). However, for typical terrain or sea surfaces,
than the depolarized cross sections. the large-scale spectral components are not negligi-

In Figures 7a and 7b, (-d(av>/dr) and ble.
-(d<,,"Y>/dr)/<r vv) are plotted for 0 = 0 and T = 0 By using the full wave analysis, the modulation of

as functions of the angle of incidence 0'. These re- the like-polarized and cross-polarized cross sections
suIts are repeated in Figures 8a and 8b and Figures can be determined for all angles of incidence and tilt
9a and 9b for (c"'H> and (<v

n> = (a"'>. In Figures angles. On the other hand, first-order Bragg scatter
7-9, the width of the SAR is also L, = 300, 1000, and theory does not account for backscattering near
2500 cm. Unlike Id(oa>/dfQlI (P = V, H) the peak in normal to the surface of the cell [Alpers et al., 1981].
the derivatives I d(o'e)/dT I occurs at normal inci- The results based on the two-scale model indicate
dence (0o = 0). For near-normal incidence the depen- that the relative modulation of the like-polarized
dence of Id(anU)dfl/(a> on the angle of inci- backscatter cross section is maximum for angles of
dence O' is very similar to that of Id(avV>/deI incidence between 10' and 15' (depending on polar-
/(Gav>. However, the modulations of the vertically ization and effective width of the resolution cell L.).

and horizontally polarized waves differ significantly The analyses based on first-order Bragg scatter do
for near-grazing incidence. As noted above, since not provide these results. It is also shown that as the
(ot> is more sensitive than (aVv) to slope vari- angle of incidence approaches zero, the modulation
ations, the relative modulation of the horizontally of the scattering cross sections in and perpendicular
polarized backscatter cross sections <0") is signifi- to the plane of incidence becomes comparable.
cantly larger than the relative modulation of (aV>. When the normal to the cell is tilted in the direc-
The physical optics contribution to the depolarized tion normal to the plane of incidence (r #k 0), the full
backscatter cross section is zero, and the derivative wave analysis not only accounts for the change in the
Id<oV"')idr peaks at about 100 rather than at local angle of incidence O, (equation (19)), but also
normal incidence as in the case of the like-polarized takes into account the fact that the local planes of
backscatter cross sections. The relative modulation of incidence (or scatter) are not parallel to the reference
the depolarized cross section I d(av />IdT I /(v ) in- planes of incidence (or scatter), namely, 0, -
creases rapidly near normal incidence and remains - Of * 0 (equations (20)-(22)). Since Alpers et al.
practically constant for large angle of incidence 0'o . [1981] do not account for the effects of the large-

scale spectral components of the surface within the
S. CONCLUDING REMARKS resolution cell the results presented here for the mod-

The full wave approach is used to determine the ulation of the like-polarized scattering cross sections
scattering cross sections for arbitrarily oriented reso- near normal incidence are significantly different from

lution cells on random rough surfaces illuminated by those given by Alpers et al. The cross-polarized back-

synthetic aperture radars. The purpose of this analy- scattering cross sections based on the first-order
sis is to determine the modulation of the like and Bragg scattering theory used by Alpers et al. [1981]

cross polarized scattering cross sections as the are not published.
normal to the cells tilt in and perpendicular to the
plane of incidence. The full wave approach accounts Acknowledgments. This paper was sponsored by the U.S
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Backscatter cross sections for randomly oriented metallic
flakes at optical frequencies: full wave approach

Ezekiel Bahar and Mary Ann F'zwater

The backscatter cross sections for randomly oriented metallic flakes are derived using the full wave ap-
proach. The metallic flakes are characterized by their surface height spectral density function. Both spec-
ular point and Bragg scattering at optical frequencies are accounted for in a self-consistent manner. It is
shown that the average normalized backscatter cross sections (per unit volume) for the randomly oriented
metallic flakes are larger than that of metallic spheres.

I. Introduction It. Formulation of the Problem
The purpose of this investigation is to determine the To determine the scattering cross section for arbi-

average normalized backscatter cross sections for ran- trarily oriented metallic flakes at optical frequencies,
domly oriented metallic flakes. The irregular-shaped it is convenient to use a-two-scale model of the rough
flake is characterized by its surface height spectral surface of the flakes. Thus, F,, the position vector to
density function, and its lateral dimension is assumed a point on the surface of the flake, is expressed as follows
to be larger than both the wavelength of the incident (see Fig. 1)
electromagnetic field and the correlation distance of the
random rough surface. Thus, scattering by the edges t' = I,(X.2) + l, (1)
of the metallic flakes is ignored.1  In Eq. (1), y = hj(x,z) is the equation of the surface

The full wave approach which accounts for both consisting of the large-scale spectral components, and
specular point scattering and Bragg scattering in a , is the height of the small-scale surface measured in
self-consistent manner is used to express the total cross the direction of the normal (f) to the large-scale surface.
section of the flake as a weighted sum of two cross sec- It is assumed that the lateral dimensions of the flake LF
tions (see Sec. I). The first is associated with the are much larger than both the wavelength of the elec-
large-scale spectral components of the surface of the tromagnetic waves and the correlation distance of the
flakes, and the second is associated with its small-scale random rough surface h, [Eq. (1)]. For a homogeneous
spectral components. The unit vector normal to the isotropic surface height, the spectral density function -4

mean surface of the flake is characterized by the polar is the Fourier transform of the surface height autocor-
angle 0F and azimuth angle OF (see Sec. III). Through relation function (h(x,z)h'(x',z'))
a suitable choice of the coordinate system, the average
with respect to the azimuth angle OF is evaluated ana- W(o,,v,) -. f (hh') enp(iv~xd + irzd)dxddzd, (2)
lytically, while the average over the polar angle OF is

evaluated numerically (see illustrative examples Sec. where the symbol (.) implies statistical average, and
IV). It is shown that the average backscatter cross (hh') is a function of IFd:
section/unit volume for the arbitrarily oriented metallic I' I'% + (Z - Xdi, + Zdl, (3)
flakes considered is larger than that for metallic spheres.
In Sec. IV the cross section of the metallic flake is also The surface hi is assumed to consist of the spectral
compared with the cross sections of similar flakes components
characterized by either small-scale or large-scale kr < k = (4 + v2)1 f < kd, (4)
roughness. where kFr 21/LF is the smallest wave number char-

acterizing the surface of the flake, and kd is the wave
The authors are with University of Nebraska-Lincoln, Department number where spectral splitting (between the large- and

of Electrical Engineering, Lincoln, Nebraska 68588-0511. small-scale surface) is assumed to occur. The surface
Received 3 June 1983. h, consists of the small-scale spectral components
0003-6935/83/233813-0701 .00/0.
01983 Optical Society of America. kd < k - (v. + v,')/2 < k,, (5)
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r f/l Vfl =(-h, E, + E,- h. 1,)/(h,' + I + h,) 
1
/2

ea siny cos6k, + cos-y, + sin-y sinAi,, (10)

where

I - y - h(x),h, =Oh/Ax.h, = ah/z, (I1)

ii, = V/v. (12

The expression for the physical optics cross sectioi
(cr) for the surface h, is

#g N) 4x k1 D
P Q 

1(ii'1 1s) (13,

in which DP Q depends on the polarization of the inci-
dent and scattered waves, the unit vectors i, If, and
i land the relative complex permittivities and permea-
bilities of the flake. The shadow function P 2 is the
probability that a point on the rough surface is both il-
luminated by the source and visible to the observer

Fig. 1. Plane of incidence, scattering plane, and reference (xz) given the slopes if(h ,.h,) at the point.9'10 The function
plane. p(1') is the probability density of the slopes h. and h,.

The coefficient 1JX12 that multiples (aCQ) is a
where kc, the spectral cutoff wave number s is the largest weighting function that accounts for the degradation
wave number characterizing the flake, of the specular point scattering cross section due to the

The full wave approach, which accounts for both superimposed small-scale rough surface h,.8 Thus,as
specular point scattering as well as Bragg scattering in h- -. 0, [XsI 2 

_ 1.
a self-consistent manner, is used in this work to deter- The scattering cross section ( a PQ), for the Gaussian
mine the scattering cross section of the composite model surface h, that rides the large-scale surface h, is given
of an arbitrarily oriented flake.5 Thus, the total nor- by the sume
malized scattering cross section/unit area (a PQ) is ex-
pressed as a weighted sum of two cross sections (aPQ), - PO)- (14a)

(VPQ) - (UPQ)1 + (UpQ)., (6) where

in which (uPQ) 1 is the cross section associated with the , lDP
0I p7(J2 iH' I

large-scale filtered surface hl, and the cross section (OeQ'" - 4o f n,

(GfQ), is associated with the small-scale surface h, that L12,h
rides on the large-scale surface h. The first superscript ×exp[-v2( T  [21 -plh..h,)dhdh,
P corresponds to the polarization of the scattered wave,
while the second superscript Q corresponds to the po- (14b)

larization of the incident wave. In Eq. (14) (R) is the mean square of the surface height
On deriving the full wave solution it is implicitly as- ha, and vy, vy, and v, are the components of V [Eq. (9)1

sumed that the wave number where spectral splitting in the local coordinate system associated with the unit
occurs, kd, is chosen so that the large-scale surface h, vectors U1, Ef, and n3 (at each point on the large-scale
satisfies the radii of curvature criteria (associated with surface hi, see Fig. 2). Thus, V is also expressed as
the Kirchhoff approximations of the surface fields) and
the condition for deep-phase modulation. The scat-
tering cross section (a 'Q) is given by7 . -1

(o'Q)I = IX'( 2. ( ) (7) ,,

in which X' is the characteristic function for the
small-scale surface

x(v-'W.) - x'() - (expivg.), (8) A N

,,[- -ka(Ut - W) v 1171, (9) ,

The unit vectors ffi and A/ are in the directions of the
incident and scattered waves, and ko = (/ uoo) t/

2 is the
free-space wave number for the electromagnetic waves
(po and co are the free-space permittivity and perme- -

ability). An exp(iwt) time dependence is assumed in
this work. The vector !i is the value of the unit vector
N normal to the surface h (xz) at the specular points. Fig. 2. Local plane of incidence and scatter and local coordinate
Thus, system with unit vectors 5, 2,N 3 .

3814 APPLIED OPTICS / Vol. 22. No. 23 /1I Dfcembe 19A3
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M, 9 1 5 + UY2 + VK3, (15) i, (ix i,)/I i' X i, I and i, -ii, Xi. (20)

where The expression for i in the flake coordinate system is,

Ki (F X )Id/l f X 1, f2 - iU. U1 X'6. (16) therefore,

The function W.,,(vt-,v2 )/22 is the 2-D Fourier trans- 1 - (-n* !,)!. + (iiii = sindZ - cos6)E, (21)

form of (O)~)" where
We(vl) . f (K.z) p(iuY4d + ivs!d)dxddz-d Th6nil - -1i" , - F COsF. (22)

2." ='(-) The angle F between the reference plane of incidence

1 f W.-.I(u.vi)WI(ui -vivi -v)dvidu (normal to !; in the fixed coordinate system), and the
T- plane of incidence in the flake coordinate system (nor-

1 (17) Mnal to K' X !,) is
C -S-" .F Ki - " (1 5,;- . COSF, (23)

In Eq. (17) the symbol 0 denotes the 2-D convolution r ji x iI 16, X El I fi X Ed
of W_ with WI. The surface height h. is measured thus
normal to the surfacey = hi, and lindfl + adfi3l is the
distance measured along the large-scale surface hI. The in = X (

i 
X Ns). w5'inor. (24)

2-D Fourier transforms of the surface height autocor- I Ni x 1A2

relation function (hh;) is equal to the spectral density Since Ef = -W for backscatter, the angle I4- between
function WI(us,vj)/4. When the parameter 4k0 (h,) the plane of scatter in the fixed (x',y',z') coordinate
=-6 << 1 and f- t ,y, the first term in (14) accounts for system and the plane of scatter in the flake coordinate
first-order Bragg scattering, and the higher-order terms system (x ,,z) is
m >- 2 may be neglected. In this case, the full wave .
solution Eq. (14) is in agreement with Brown's solutions  = (25)

based on a combination of physical optics and pertur- Thus, the matrix that transforms the vertically and
bation theory. However, since it is assumed using the horizontally polarized incident waves of the fixed
full wave approach that the condition for deep-phase coordinate system to the vertically and horizontally
modulation is satisfied, it is necessary to choose 0 = polarized incident waves of the flake coordinate system
4k2(h') _ 1. Since fewer terms in Eq. (14) need to be is7-a
evaluated for smaller values of#, in this work the value
assumed for -is 1.0. r sin c(

While the perturbed-physical optics soutions
5 -." 12  0 (26)

for the cross sections critically depend on the choice of
kd (the wave number where spectra splitting is assumed y
to occur), the full wave approach is insensitive to vari-
ations in kd for f > 1.

6  -r
Since the metallic flakes are randomly oriented with Y

respect to the fixed observer, in Sec. III the analytical
results presented are modified to account for arbitrary
orientation of the normal to the mean surface of the

flake.

Ill. Scattering Cross Sections for Arbitrarily Oriented
Metallic Flakes

Let x',y',z' be a fixed reference coordinate system,
and let xyz be a rotated coordinated system so iat the
unit vector j is normal to the mean surface of the flake
(y = 0) (see Fig. 3). For backscatter it is convenient to R

choose the unit vectors gI = -Iii so that ,

O-

The unit vector ily normal to the mean surface of the ,,
flake can be expressed as follows in terms of the fixed
reference coordinate system

ii= sF cosiC '. + C018ri; + ain- sinori,. (19)

For convenience the two orthogonal unit vectors 1. and
1. in the mean plane of the flake are chosen so that the
plane of incidence in the flake coordinate system is the
Yy plane (normal to l). Thus, Fig. 3. Randomly oriented flake.

I December 1983 / Vol. 22. No. 23 / APPLIED OPTICS 3815
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Similarly, the matrix that transforms the vertically and uniformly distributed in the interval [0,27r] the back-
horizontally polarized scattered waves in the flake scatter cross section for an ensemble of randomly lo-
coordinate system back into vertically and horizontally cated flakes is given by the sum of the individual
polarized scattered waves of the fixed coordinate system backscatter cross sections.I Thus, accounting for th(
is random orientation of each individual flake, the averagc

r- I -] backscatter cross section of a single scatterer in thf
sn " (27) ensemble of flakes is

Thus, in view of Eq. (25) for backscatter, =-'_-) f-./2 .2 (PQ)p(8r,o)d d~r
(2,8)

-f2(PQ~op(FdP. (37)The coefficients DPQ in Eq. (14) are elements of the 2X 2 matrix D given by1'8  in which it is assumed that the unit vector normal to tht
D C 1TIM. (29) mean surface of the flake is uniformly directed in th(

D half-space 0 :5 OF < ir/2, 0 < OfF < 2r and
in which CU' is the cosine of the angle between the in- .
cident wave normal 'i [Eq. (21)] and the unit vector K p(0p,8t) = n . (38)
normal to the rough surface of the flake [Eq. (10)]. 2w 2w
Thus, Since (WPQ) is dependent on OF only through the sines

and cosines of the angles (1,i + OF) [Eq. (36)], it is con-C0" B = cosy cosGF - siny sin cosS. (30) venient to evaluate the average of (a PQ) with respect
The elements FPQ of the scattering matrix F in Eq. (29) to the angle OF analytically by first evaluating the av-
are functions of the unit vectors fiiffI/A and the relative erage of IDIQ12 with respect to OF. Thus, for P 9
permittivity and permeability of the flakes.7  The Q,
matrix Ti transforms the vertically and horizontally -- [ 2 r (C)2 "
polarized incident waves of the xyz coordinate system FDi,- f'J lDNrdOr= C) SIF"
to vertically and horizontally polarized waves of the 2r . 2r

local coordinate system (iln 2,W3) associated with the + F KlSdoi,
rough surface of the flake [Eq. (16)]. Similarly, the = !i)2I

matrix FVV+Fnsm2e (39)matrix Tstransforms the vertically and horizontally 8 V
polarized scattered waves of the local coordinate system and for P = VHback into vertically and horizontally polarized waves of
the xy,z coordinate system 25 of-te flak Ifl Jf '1 I2doF ,' o.[FVVI2

To account for the arbitrary orientation of the flake 2r 2JO"

with respect to the fixed (x',y',z') coordinate system +SJIFHHIZ-2CtSl-Re(FVvFHH*)ldOr[Eq. (29)] must be postmultiplied by T' and premul-
tiplied by T -. Therefore, in the expressions for the
scattering cross sections [Eq. (6)], the elements of matrix . 1/(Ci-)2(4IFVVI2 + 4luH

1 
2 - IFVV +Ft2) (40.

D must be replaced by the elements of matrix DF given in which the symbol * denotes the complex conju-
by gate.

Dr " TJDT = C"TT/FTdTr

where -(

T fTT .Cos(0'+ OF) sin(O' + OF) 1IC' S'-'%l
TI.T,- s-.if(4' + OF 006W + l -S c ) 6

(32)

In Eq. (32)

cos'
i 

- lcos7 sinF + sin'y COSOF 0oe5/S.', (33)

sino
i - sin-t sinb/S'. (34)

where
S0' - [1 - (C .),ln. (35)

For backscatter T1 = Tr arA FVH = FHv = 0, thus, .
D - C id Cl-F"" -SlFHH CrSr(P VV + FHOJ (36) ________________________

_CrSr(FVV+FaH) C-F-HHSl-FVV  *.(6)...... .. . .. 8,

Neglecting multiple scatter and assuming that the phase Fig. 4. (umn )s = (avv)# for the composite surface h as a function
of the scattered signals from the individual flakes are of OF.
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The expressions for FVv and F" are complicated (hj) - f2 , Wk) kdkdo = BL - iJ

functions of 0
F. Thus, the integrals with respect to OF

are not evaluated analytically. Instead, (aePQ) [Eq. - 0.791 X 10-
1 cm'. (48)

(379) , is evaluated numerically M Eq. (14) with Thus kg(h?) > 1 and the physical optics treatment of
2(P,Q = VH ) replaced by ID 2 Eqs. (39) and (h?)tering nd the phs ic turepis tust e nt of

(49)]. To obtain the ensemble average for the scattering scattering by the large scale structure isjustified. The

cross sections (uPQ) [Eq. (37)], the result from the total mean square slope of the large-scale surface h,

previous integration (orPQ), is multiplied by p(OF) = IS
sinOF and integrated with respect to OF. Thus, a,4 (hl) 

f  
k' W(k) 0kdkd,

summing up, the integral (37) is performed analytically hr 4

with respect to OF and numerically with respect to OF- - B In 0.298 X 10-1 (49)
The integrations with respect to h,h, [Eq. (14)] are also (kr 1
performed numerically. The slope probability density is assumed to be Gauss-

ian, thus,

I . (5h0)IV. Illustrative Examples P ... exp (50)

The specific form of the surface height spectral den-- I -(
sity function (Eq. (2)] selected for the illustrative ex- In Figs. 4 through 8, the backscatter cross section
amples presented in this section is (ae Q)a averaged over the range of the azimuth angle OF

is plotted as a function of the polar angle 0 F (see Fig. 3).
3 Blkl. krS-5k - This is formally given by

W(uxlv) =
f 0, k>k andk<kp. ("PQ). - 1 o (oPQ)d0F (51)

I. However, in Sec. IV it is shown that Eq. (51) can be

in which evaluated directly on eplacing IDPQ1 2 in Eq. (14) by
its average value IDr ) 2 [Eqs. (39) and (40)].

B - 0.016 ' In Fig. 4, (aPP), (P = V,H) is plotted as a function

k
2 - L4 + v1 (cm)-2  of OF for the composite surface characterized by the

spectral density function [Eq. (41)]. This cross section
hF - 2r/LF and L = 0.O

2
cm (42) includes the effects of both the small and large rough-

k, - 0.45 x 10cm- 1 ness scales of the surface of the flake. Thus, it takes
into account both specular point scattering and Bragg

(For naturally generated surfaces, W can be approxi- scattering. In view of Eq. (40), the average cross section
mated by k-", where n is between 3 and 4.41 The is the same for vertically and horizontally polarized
wavelength of the electromagnetic wave is waves. The average cross section of a single scatterer

in the ensemble of randomly oriented flakes is (_--F)
Ao - 0.555 x 10- cm 1.132 X 10= cr-• (43) = 0.77 [Eq. (37)]. For a conducting sphere of radius oF,

the normalized cross section is 0.92 provided that k0a.
The relative complex dielectric coefficient for the alu- >> 1 and c, is given by Eq. (44).
minum flakes at the assumed optical frequency is13  In Fig. 5, (aPP), (P = VH) is plotted as a function

,, - -40 - i12, (44)

and the permeability of the flake is assumed to be that f
of free space (p, = 1).

The mean square height for the small-scale surface - a
h,(kd <k < k,)is given by

k.) hW(k)
lib P S - kdkd#fo d' 4

B(- 1 -0.195X 10,o ,M2. (45)2 001

since in this work f = 4k 2(h) = 1.0. The wave number
where spectral splitting (between the small and large
roughness scales) is assumed to occur is

kA - 12BkgkAl(k, + 2Bk) ' = 0.202 X 105 (cm)-. (46)

For Gaussian surface heights,

Ix,(il)I2 
- exp(-vI(N.l), and XI(v)- elp(-#). (47)

The mean square height for the large-scale surface h Fig. 5. (0 m), = (rvV),, for the large-scale filtered surface h, as
a function of Or.
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of OF for the large-scale filtered surface only (kF :S k <
kd). Thus, only specular point scattering is considered
here. In thiscase (aPI) = 0.47. In Fig. 6, (a"'), (P
= VH) is plotted as a function of OF for the small-scale
surface only (kd <_ k <_ he). Since aOt - 0 for this case,
to evaluate (ae), using Eq. (14), p(h.,h,) is set equal
to the product of the Dirac delta functions 5(h. )b(h.).

Thus, . IDPQ 1

1 X lx
'

p( i<K?)) (52)
N 1 a-i,

and the leading term in the sum (aPQ), (i.e., m = 1)
reduces to the first-order Bragg scattering cross section.

a-For this case, (a-P), = 0.5. The corresponding co-
. herent scattering term for a smooth flat flake3 is (0rPP)

Fig.6. (am"),- (vv).for othesmall-salesurfaceh, asa function = 0.32. A flake with a two-scale roughness has, on the
ofr. average, a larger backscatter cross section than a cor-

responding flake with no small-scale roughness. Since,
for the randomly oriented flakes,( ) = 0.77, their
backscatter cross sections are on the average smaller
than the cross sections for spheres with a cross-sectional
area ra - = Lj- ((?a' ) = 0.92). However, considering

the fact that a volume of nine flakes each of thickness
d n- LF/12 is approximately equal to the volume of a

a sphere of radius aF, for a given volume of particles the
backscatter cross section for the flakes is 7.5 times larger
than the cross section for the spheres. In Fig. 7 the
cross-polarized backscatter cross section (averaged over
Op) (aV~l) ,JHv)e is plotted as a function of O-. The
value of (a 54) (0.522 x 10- 2) is significantly smaller
than the average backscatter cross sections for the like
polarized case (ae). In Fig. 8, (acPQ)e (P * Q) is
plotted as a function of OF for the small-scale surface

- only (Rd:.- k < kc) IEq. (52)]. At near-normal incidence
the cross section (UVH)o is very small since ID V'I, is
very small for backscatter when OF << 1. Furthermore,

Fig. 7. (av)# a-%v) forthecompoite aurface hasa function since W, = 0 fork <kAd, therefore, (a VII),I -- 0 for 0F
of 9,. - 0. For grazing angles, higher-order Bragg terms

become very small and (a VH), t( i/H in E. 0 14).
For the flake with the small-scale roughness, (a ")
0.52 X 10-2.

V. Concluding Remarks

The average normalized backscatter cross sections
for arbitrarily oriented metallic flakes are derived using

* the full wave approach. Thus, the total L scatter
'' cross section is expressed as a weighted sum of two cross
- , sections. The first is associated with the filtered surface

consisting of the large-scale spectral components of the
composite rough surface, while the second is associated
with the surface consisting of its small-scale spectral
components that ride on the large-scale surface.' 4-'6

These backscatter cross sections are compared with
those of similar flakes having either a large- or a small-
scale surface roughness.

It is shown that the average normalized backscatter
cross section (per unit volume) for the flake with the

Fig-8. (av5 )o (em~v)s forthesmal-aalsemrace h.e a function composite surface is larger than the backscatter cross
Of #. sections for metallic spheres.
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SCATTRING CROSS SECTIONS FOR PAITICLES OF IRUECUIIL SHAPE

Ezekiel Bahar

Electrical Engineering Department

University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511! I.
ABSTRACT

The full wave approach recently applied to the problem of electromagnetic scattering by a two sc!.

model of random rough surfaces has been shown to account for both Bragg scattering and Specular Pcint

scattering In a self-consistent manner. Thus scattering cross sections can be expressed as weighted sut,,;

iof two cross sections. The first is associated with a smooth, filtered surface consisting of the large

:scale spectral components of the rough surface and the second is associated with its small scale

!spectral components.

I n a siailar manner the scattering cross sections for a particle of Irregular shape can be charac-

!terized by weighted sums of two cross sections. The first is related to the cross section for a "smooth'

,particle of arbitrary shape and the second accounts for the small scale surface roughness of the partit,

:To apply such an approach to the scattering proble, ,it is necessary to assume that the principal dimen-

isions of the particle are larger than both the wavelength of the scattered fields and the small scale

;surface height correlation distance.

Both the depolarized and like polarized components of the scattered fields are accounted for in

the full wave analysis. These solutions are consistent with reciprocity and realizability relationshipr

in electromagnetic theory and they are invariant to coordinate transformations.

1. Introduction

I The purpose of this investigation is to determine the.average normalized backscatter cross sectioo;

;for randomly oriented metallic flakes. The irregular shaped flake is characterized by its surface heig4'

spectral density function and its lateral diiension is assumed to be larger than both the wavelength o

the incident electromagnetic field and the correlation distance of the rough surface.

The full wave approach which accounts for both specular point scattering and Bragg scattering in a

;self-consistent manner is used to express the total cross section of the flake as a weighted sum of two

cross sections (see Section 2). The first is associated with the large scale spectral components of th:

;surface of the flakes and the second is associated with its small scale spectral components. The unit

i vector normal to the surface of the flake is characterized by the polar angle 6 F and azimuth angle *F

r(ee Section 3). Through a suitable choice of the coordinate systam, the average with respect to the

.aimth angle is evaluated analyticaUy vhile the average over the polar angle 0 can be evaluated

Isarcly
_ _ _ _ _ _ _ _ _ _ ~I_ _ _ _ __
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2. Formulation of the Problem

To determine the scattering cross section for arbitrarily oriented setallic flakes at optical fre-

;quencies, it is convenient to use a two-scale model of the rough surface of the flakes. Thus. the

tcomposite surface of the flake Is expressed as follows (see Fit. 1)

b(x,z) - h,(x.z) + h(XZ) (2.1

-in equation (2.1), hi consists of the large scale spectral components of h while h consists of its

;small scale spectral components. It is assumed that the lateral dimensions of the flake LF are much

:larger than both the wavelength of the electromagnetic waves and the correlation distance of the roug!

surface h, (2.1). For a homogeneous isotropic surface height, the spectral density function (Rice 1951,

'Darrick 1970. Ishimaru 1978), is the Fourier transform of the surface height autocorrelation

<h(x,z)h' (x' ,z')>

lW(VxV * ) "I J <hh'>exp(iVxd * iVzd)dxddZd (2.2)

.vhere the symbol <-> implies statistical average and <hh'> is a function of Irdi.

d " (x-x')' x + (z-z')'s " xd~ x + Zd s  (2.3)

Thus, 'the surface h consists of the spectral components
2 2 h

k 7 <k- (v + <k (2.4)

where k. - 2w/L T is the largest wavenumber characterizing the surface of the flake and kd is the wave-

number where spectral splitting (between the large and small scale surface) is assuoed to occur. The

surfaCe he consists of the small scale spectral components

* kd <k . v) (2.5)

where kc, the spectral cutoff wavenumber (Drown 1978) is the smallest wavenumber characterizing the

flake. .

The full wave approach which accounts for both specular point scattering as well as Bragg

! scattering in a self-consistent manner is used in this work to determine the scattering cross section

'of the composite model of an arbitrarily oriented flake (Uahar, et al. 1982). Thus, the total normalize

iscattering cross section per unit area <a> as a weighted sum of two cross sections

COPQ. . < K>. + <0?Q>s  (2.6)

in which <a is the cross section associated with the large scale filtered surface h and the

cross Isection <OPQ> Is associated vith the small scale surface -:s that rides on the large scale

surface b.. The first superscriptPcorresponds to the polarization of the scattered wove while the

I second superscript corresponds to the polarization of the incideat wave.
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On deriving the full wave solution it Is Implicitly assumed that the wavenumber where spectral

Splitting occurs, kd, is chosen such that the large scale surface hg satisfies the radii of curvature

crlterl associated with the Xirchhoff approximations of the surface fields and the condition for

deep pbase modulation. The scattering cross section < s tI given by (Behar 1981a.b)

Ix•(v') 2 c-Z> (2.7)

In vhich X' Is the characteristic function for the small scale surface

x(.) X(v) - <exp ivh.) (2.8.

and

;o " -iko( -)(2.9)

The unit vectors n' and n are In the directions of the Incident and scattered waves and ko- u(Vity

Is the free space wavenumber for the electromagnetic waves (p. and E. are the free space permittivity

and permeability). An exp(iwt) time dependence Is assumed in this work. The vector na is the value of

the unit vector n normal to the surface h(xz) at the specular points. Thus
Vf/lVfl - (-h - + - 2 +1 + hz) (2.10)

E sin CoSS as + cosy;y + siny sin a

where

f - y-h(x.z), h - 3hlx. h - ah/3z (2.11)
x z

asnd
- ;/v (2.12)

The expression for the physical optics cross section <Orq>, for the surface h£ is

X 0) [I D~j.PI.. 1 2 (f ~ P( (2.13)

in which D "q depends on the polarization of the incident and scattered waves, the unit vectors n *n

and n and the relative complex peruittivities and perseabilities of the flake. The shadow function P

is the probability that a point on the rough surface is both Illuminated by the source and visible by

the observer given the slopes, ;(hx,h ) . at the point (Smith 1967, Sancer 1969). The function p(;) is

* 2 pa.
the probability density of the slopes h X and h . The coefficient IX j that multiplies <. 

> " is a

weighting function that accounts for the degradation of the specular point scattering cross section d-'

to the superimposed small scale rough surface h (Bahar 1981b). Thus, as hb 0 1xI.- 1.

The scattering cross section <Opqa. for the Gausaian surface h5 that rides the large scale surfac,'

hi is given by the sum, (Bahar et al. 1982)

:WQ !<p>(21a
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vhere

y a ] V T--P~bx'Z~dx"Z(2.147

2 [ ]f'
2  v.: b1  .)ddh

In (2.14) 4h4> is the mean square of the surface height hs and vj,v Y and v. are the components of

(2.9) in the local coordinate system associated with the unit vectors and n3 (at each point 6r

the large scale surface hi. see Fig. 2). Thus ; is also expressed as

V-. U + V y n + v. 3  (2.15'

where
! ,. -U x .)/I, ; I x 2-n " (2.16'

z n
The functionIVv'v )2 is the two dimensional Fourier transform of <hsh>

V (v..,v.) ,
I Z.VE I tb+i d
2 7 <h hexp(iv, . I" 4i )d xdd~d2 (21) J

: "..,,~ I .l., ,)T...p,..,v , ,

-2 I 3_1(vrv1 ) ® V1(V,.V. ) (2.17)

'In (2.17) the symbol ( denotes the two dimensional convolution of W_1 with nd d + "d D31
is the distance measured along the large scale surface h1 . The two diensional Fourier transforms of the

,surface height autocorrelation function <h h'> Is equal to the spectral density function Wl(Vr..Vi)/4.i ~s•
2>:When the parameter 4k ch> -B << 1 and n = A the first term in ( 2.14) accounts for first order Bragx

I I

scattering and the higher order terms m > 2 may be neglected. In this case, the full wave solution (2.1'

Is in agreement with Brown's solution (1978) based on a combination of physical optics and perturbatio

.theory. However. since it is assuied using the full wave approach that the condition for deep phase

modulation is satisfied, it is necessary to choose 0 - 4k2ch2> > I in order to assure that the weightc,

,sum (2.14) remains insensitive to variations in kd (the wavenumber where spectral splitting is assumed

:to occur, (Bahar et al. 1982). Since fewer terms in (2.14) need to be evaluated for smaller values of 8,

it is appropriate to assume B - 1.0.

Since the metallic flakes are randomly oriented with respect to the fixed observer, in Section 3,

'the analytical results presented in this section are modified to a.count for arbitrary orientation of

the normal to the mean surface of the flake.

*1I
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3. Scattering Cross Sections for Arbitrarily Oriented Metallic Flakes

Let x',y',z.' be a fixed reference coordinate system and let xy,z be a rotated coordinated system

Isuch that the unit vector a Is normal to the mean surface of the flake (y-O) (see Fig. 3). For back-
' -f -i

scatter It is convenient to choose the unit vectors n - -n such that

I _~f -i -, 
(..1

I n f _n, (3.1)

The unit vector a normal to the mean surface of the flake can be expressed as follows in terms of the
I y
,fixed reference coordinate system

B -sinO coo P + CosB ; + sine, siF Is (3.2)

iFor convenience the two orthogonal unit vectors ax and az in the mean plane of the flake are chosen such

:that the plane of incidence in the flake coordinate system Is the x,y plane (normal to as). Thus

! " . x , - - - (3.3)ias (nxa)j and •. Z

iThe expression for n-in the flake coordinate system is therefore

m -(na;)a +( ~ -sine' -coseo a (3.4)
xx y ox y

vbere

COe C . o (3.5)

The angle between the reference plane of incidence (normal to a' in the fixed coordinate system) and
F Z

-I
'the plane of Incidence in the flake coordinate system (normal to n x ay) is

7

Cos I~ I -n I -' I COSF (3.6)

y y y
thus ~ *i )~ 37

sI y 6in# 3.7

Since n- -n for ba-kscatter, the angle * F between the plane of scatter in the fixed (xe,y',z')

,coordinate system and the plane of scatter in the flake coordinate system (x.z,z) is

f (3.8
i F

'Thus the matrix that transforms the vertically and horizontally polarized incident waves of the fixed

coordinate system to the vertically and horizontally polarized incident waves of the flake coordinate

saystemi is (Bahar 1981&,b)

r i

I Coe* I
* . [5WF co

4
Fj

SiamLarly, the matrix that transforms the vertically and horizonta~ly polarized scattered waves in the

flake coordinate system back Into vertically and horizontally polarized scattered waves of the fixed

coordinate system Is .

__-_!



p i -sii i

f - f
Fl ' €o*F (3.10)

.Thus, in view of (3.8) for backscatter J

TF -T (3.11-

The coefficients D
p q 

in (2.1') are elements of the 2 x 2 matrix D given by (Bahar 1981a.b)

nD f (3.12

*in 0 ;i
in which C. is the cosine of the angle between the incident wave normal n (3.4) and the unit vector0

:normal to the rough surface of the flake (2.10). Thus,

Cin - -n *n cosy cose -ainy sineF cos6 (3.13)Foo

iThe elements F
P Q 

of the scattering matrix F in (3.12) are functions of the unit vectors n n , n and the

relative permittivity and permeability of the flakes (Eahar 1981s). The matrix Ti 
transforms the

,vertically and horizontally polarized incident waves of the x.y.z coordinate system to vertically sod

horizontally polarized waves of the local coordinate system (',n 2' 3 ) sasociated with the rough

f
,surface of the flake (3.16). Similarly, the matrix T transforms the vertically and horizontally

:polarized scattered waves of the local coordinate system back into vertically and horizontally polarize,

'waves of the x,y,z coordinate system (Dehar 1981a,b).

To account for the arbitrary orientation of the flake with respect to the fixed (x',y'.z)

i f
,coordinate system (3.12) must be post-multiplied by T and pre-ultipled by Ti. Therefore, in the

expressions for the scattering cross sections (2.6), the elements of the matrix D must be replaced by

ithe elements of the matrix D. given by
T; D '-C _fii

F F F o F

inf i
Cr I TT. T, (3.14"'where ro.<T,,, .,,,,,, r c sl

IT - o( u . in(#4I+ ST'
s i n % I'  + .# F C O ( * I + 4 M J -s T C T ( 3 .1 5 :,

In (3.15)

(os
i  

[cosy sinG1 + siny cose coeS]/Sin (3.16
sin* tiny sind/so (3.16'

!where I

si Il (in)2P
. . ,-. (3.l6,.

For backcatter T T .T and F" " - 0 thus.

I ."

* I_ _1 _ _
-I
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T T 2Dy [11 C F S F EH CTS CrVV*F )

I 2 2 VB2
-CST (F+FS ,. cT  J- V (3.18)

jNeglecting multiple scatter and assuming that the phase of the scattered signals from the individual

flakes are uniformly distributed in the interval [0.21J the backscatter cross section for an ensemble

.of randomly located flakes is given by the sum of the individual backscatter cross sections (Beckmann

,and Spiuzichino 1964). Thus, accounting for the random orientation of each individual flake, the' averal

;cross backscatter cross section of the ensemble of flakes is
it/2 2w ./2

<
Q
> - <Q>P (e0F)dOFdOF <0PQ, P(eF)dO (3.19a)

0 0

.n which
21r

-<PQ> <0pQN> (3.19b)e 21
0

'and it is assumed that the unit vector normal to the mean surface of the flake is uniformly directed in

-the half" space 0 < OF< /2, 0 <-#r < 21r. Thus,

sine F P(OF) 
(3.20)P(eSiInc 2p 2enetonw)

;since <C
pq> 

is dependent on only through the sines and cosines of the angles ( 4 +$) (3.18). it is

convenient to evaluate the average of <oPQ> with respect to the angle *F analytically by first

evl,,atin the average of ID~l2 with respect to *4" Thus for POQ

F F,
(Cinin

,--o IFVVr 1 I2  
-(3.21

and for P reV.1 2

i 2S

* ~. (C~)
2
( 4jFV ~j'j2  

-H IF 2 ) W

IInP whc iheP d#bo dente 2he cope conjugate.
Th xpesinfo2w n F~ art copiae fucrn ofF.Tss ntgaswt epc

2 o
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jVIth IDPQ12 (PQ-V,H) replaced by JD4Q12 (3.2) and (3.22). To obtain the ensemble average for theF ~ II

6scattering cross sections <'Q> (3.19) the result fro the previous integration p is mutipl.e

[by p(er) - s e nd integrat wth respect to OF. Thus summing up, the Integral (3.19) is performed

analytically with respect to #F, however it must be performed numerically with respect to 8 F . The

:Integrations with respect to hxh (2.14) must also be performed numerically.

4. Concluding Remarks

E xpressions for the average normalized backscatter cross sections for arbitrarily oriented

imetallic flakes are derived using the full wave approach. Thus, the total backscatter cross section

is expressed as a weighted sum of tvo cross sections. The first is associated with the filtered surfac

'consisting of the large scale spectral components of the composite rough surface while the second is

!associated with the surface consisting of its mall scale spectral components that ride on the large

scale surface.

1 To obtain numerical values for the average normalized backscatter cross sections, using the full

:wave approach presented in this paper, It Is necessary to know the surface height spectral density

W(v ,v ) (2.2) and the complex dielectric constant of the metallic flake. Several models of metallic* a,
.flakes are currently under investigation.
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Figure 1. Plane of incidence, scattering plane, and reference (x,y) plane.
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F igure 2. Local plaen* of incidence and acatter and local coordinate system

vith unit vectors 2. On 3-



iI 
, 

6

I 
T

"ii

91

X1

z ' 0

iz

iiue3 h adml retdfae



69
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ABSTRACT

As a synthetic aperture radar 00000 different per- of curvature criteria (associated with the Kirchhoft

nios of a rough sorface, the direction of the unit approxtmationo for the sorface fields) an well ashe
vector norml to the mean ourlace of the effective condition for deep phase modulation. Thu the first

illamsnated area (resolutfon cell) floctoates. In this term in (3) is shove to be
paper the modulations of the scattertng cress sections
of the resolution cell are deternined as the normal to coe%1 " IX'& S)I

2
cn'2o (4)

it tflto in places that are io end perpendicular to the

fixed reference plane of incidence. Using the foil woos in which X' is the characteriotic function foz the

approath, the scattering cro sections are onpressed ail scale sorface,
so a omighted son of to cross sections. The first cross -;a - . (v) ecp ivhc (5)

,ection is associated with scales of roughness within where ( ;

she rescltion ell that are large compared to the radar if - k (,f- ), v-. . (6)

saoelength, and the second cross section Is associated 0

with small-scale spectral components within the resolu- The snit vectors o asd s are in tho directions of
tion cell. Thus, both specular point scattering and The s ctred and ncid e In nra reapeoriroy

Bragg orattering are accounted for In a self-onoisten, the catt.,:d and incident wave normal: r. -ey

smner. The results are compared with earlier solutions thus for backocotter n- The f
i  

spac redin

bsed on first order Bragg scattering theory. wevenumber is kn. A exp(iwt) time dependence is

Pormulation of the Problem asmed. The vector ns is the value of the anit vector
;ohn normal to the surface h(x.z) at the specular points,

The recently derived full wave solutions for the Thus -
merw lized cross sections per unit area are summarized r - Yf/JYfl, f(n.y.e) - y-h(o.n) (7.)
here for composite rough surfaoes. Let the position and
vector to a point en the rough surface be expressed as n

5
- ;/v (7b)

followst
a - ll(xh + ; h. (1), The enpression for the physicsl optics (specular

point) cros0 section for thn large-scaim surface hi is

Is uwhich y - b~rs.o) is the filtered aurface consistfng kb
2
[ Q1,

of the large scale spectral components and h. the mall PQ' 0 _2

enIm. srface height ia mea.ored in the direction of 2 ;.; f

the anal (;) to the large scale surface y - h
i
. For y

a hmegeene , isotropic surface height the spectral in which Dfl depends on n , f. o, the media of propa-
density fsnction in the Fourier tansform of tbe nor- ganbon above snd below the ropgh surface h(os) and

face height autocorcelaton fsnction ch(xz),h'(x',')n the polrination of the incident and scattered
vhs waves.

2
,

3 
The shadow fnction P2 is the probahility

v ,2 s d add d d that a point ththe rough surface ' both illssinted

a- (o2+ i ad and visible, given the slopes n(h .h), at the point.
l. . -hh', 1. a fundtion of d 1 d The probability density function Por the slopes h and

a - z' - a
d 
and a - a' -

t
d* (2b) ht is p(.). The factor XOv) that multiplles O

P Q ;

accoust: for the degradation of the contributions from
Thesurface hg(.) consiess of be spectral componenta the specolar points doe to the superimposed smell

k - ( dvs ) - k d and the reminder ter. h. consists of ecsl rough surface ha.

e ctral components ince the fllAssming assan probability density function for
approach accounts Ior both specular point scattering h, is given by the swo

and Bragg scattering in a sn.f-consincent menner the a PQ PQ
total scattering cross section can be eopressed as a 400,. Lu o (9)

wighted swm of the cross section o.Pn> for the whereDpQ,2 ma-
n

-

filtered surface h and the cross section 
0
o > fur 2

the surface ha that ride on the large-scale ournc 4 f

P oPQ' I . . o P Q" (3) . 2 fi2 y
e"(-V " <ha1)[ _X P(hmhs)dhodhs (10)

The symbol n n denotes statistical average. The first

superscript P corresponds to the polarization of the in which oh
2
l is the em square of the surface height

sttered wooe while the second superscript Q cortes- h. and v-, vi and v- are the components of 8 (N) in
ponds no thn polartoasion of the incident wave. To de-
rims (3) using the full wave approach it in inplicitly the local coordisate system (at each point on the

asso-md that the large scale surface meets the radii large stcle surface) associated with the unit vector.



y n2 id;" The fonctier. W v v)/2y is the two- system to vertically and horieontally polarized waves

dimensional Fouier transfor of (hah')..is the cell coordinte system ts therefore
2 3

The first t.e i (9) "P%, reduces to the first of sin

order Bragg scattering cross section for f-Abh
2 > 

<< , -a i (17)

In order to apply the foil wave approach to SAR it Similarly, the matrix than tronsforms th scattered
is necessry to nodity the results presented in this vertically and horieoncaly polarleed raven Jr the cell

mection () to account for the filtering of the very coordinate system back Into the vertically and horizon-

large scale spectral component of the rough surface by tally polarized waves in the fixed coordinate system is

the SlR that ef fccivoi,,illates a relatively f g
maIll area of cli F of tin rough surface and (h) to c -os -sin$7
account for the normal to a reference plane ansociated TV- f f()
sdth the lllu inated cell which is characterized by Fn3 toOJ
arbitrary tilt angles I and T In and perpendicular to
the reference plane of incidence (see Fig ).t In is Thus in view of (16), Tf - T'. The coefficients D

P q 
in

assumed here Ithat the lateral die-1ln of the cell (8) are elements of a 2x2 smtri D glves by
Ill uminated by the tAR is much larger than the snall i

n  
f t

stale surface height correlation distance for the cell D - C . V (19)
and that as the tAR scans dIfferent portions of the
rough surface I the direction of the unit vector normal in which Cin is the cosine of the angle between the
to the tell F fluctuates. I ncident wave nvrmal n' and the unit vector c normal to

Scattering Cross Sections fcr Arbitrarily the rough surface of the cell h7(oFu) Thus

Oriented Resolution Cells of the Iough urface tin _ .;- osn (20)

Let xy.z be the reference coordinate system aso- 0 ,

rioted with the surface of the tell V chat is il luin- where 51 i. given by (1) and is lgiven by (7) with
atea by the SA such that the sean surface of the cell ip(o.a) - y-hF(xz). The elements of the scattering
is the -0 plane (see Fig. 1). Furthermore, let m'a,y',s mtrix F in (19) are function% of the unit vectors
be the fixed coordinate system associated with. the -l -f -
large surface I such that the unit vector Z' is nornal e ; and n as nil as the mldla of propagation above

to the man roSh surface height h(x',z'). 
y 

The unit and below the rough surface 1,2 Th satric Ti tress-

vto te -ii is expressed in terms of the unic vec- forms the vertically and horioontally polarized waves

tors of the flued coordinate system (x',y',z'): in the coil coordiate syste. io vertcal

; _I f sis a - toss a . (11) and horizontally polarized waves in the local coordin-
a y eae eyste that ce.fo sI- th the rough surface,

The unit vector a normal to the reference surface ' ; .n. Stmilarly, the matrx T
f 
transforms the

assoctetd with Ae cell Is expressed in terms of the 1 r t

tilt angles i ond : i n and perpendicular to the fied vertically and horlentally polarized waves In the
plasm of incidence, the 0.y' plane. Thus mccl courdinain system back into vertically and hurl-

amStall polarited waves in the cell coordinate
- n e ofi ros ,a cosi nose. ;' sine .0' (l) .y.tet.

y I To account for the arbitrary orientation of the cell,
For convenience ; and a the omit vectors associated the matrix D is (19) must be post-multiplied by T
with the cell. can he chosen such that the plane of and pre-multiplied by T. Thus the elements of the
Incidence in the x,ye coordinate systeo is normal to greplaced
the vector s Th"smtrix D in (8) war be by the elements of the

-- - - j1 fli ,

W( ; ,)/1
1
ea Y .a ag a

s  (13) T ST . (21)

ad the expression for ;
i 
in the x.y.z coordinate sys- Furthermare, in view of the effective filtering by the

ta is J Il of the very large stale spectral components of the

-I sine a - co. aY (1) rough surface f(xos') - 0, the spectral density fun-
tio for the rough surface fy(x.t) - 0 associated with
the , Ionctllo Fel S-e n by

cme - ose 4 l.os v. (lb) I(v-,v) I k > k. 2/L.
' I 5 -5s 5

The ange s between the plane of incidence In the UF(v,- /. (22)
fined coordinate system (a',y',s') and the plane of 1k k. - 2(

incidence in the coordinate systen fo.T.e) aesociared
vith the cell is given by where h(vv) is the spectral density function for the

surface S f5' ,r') - 0, and Le is the width of the
Sose sin(e + ) resolution cell.

€oO5
F  

sine.. (is)' Illoscretire Examples

Fo at ng eten the For the illustrative example. presented in this sec-11or bah Eater ;f- -61. Thus the angle ofbtee h

plane of scatter in the fixed coordinate system tion. the following specific form of the surface height
e' ,y'.o') sId the plane of s.oter in the coordinate spentrel density function is selected

S

d I th the cell is ,(2)8k l/(nl k
2

)
4  

k k b
t' i I lf(v

1
,v

1
) -.

The matri. that transforms the incident vertically and k kchoriontally polarlzed waves In the fixed coordinate

2 m
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FOr the assumed Isotropic model of the se& tirtace 5. Brown, C. S. (1910: bctscattering frot & -aussln-
disteibrted petfetly conducting rough surface, ItEE

k 0.0046 trasactions on Antennas and Propagateion. A-26(3),

2£ + I (c -2 , k€  12 (C.) 672-482.
(24) 6. V.leno-es, C. 1. (1968): Scattering of electro-

4 - 1 (352V
6

w(a
1
, V*63 s atic waves froa a tilted slightly tough s..rface,

.3Radio Sri., 3 1051-1066.

in oich kc is the spectral cutoff wavenumber
t 

and V is 7. Wright, J. W. (1968): A new odel for sea clutter,

the surface ind speed. The vovelength for the electro- IEE Tran.atcione on Anternas and Propagatlon.

eamgontic =ave 4. 1.-16(2). 217-223.

A. -
3
.0r. (N- 2.13 (cm)

-
) . (25)

The relative ctrples dielectric coeffilcient for the
see le

-48 - 35 (26)

and the permeability for the sea is the sae as for

fret space (ur - 1). The slope probability density lontrarions

fonction withfn a resolution 
cell Is assuted to be

Ien S 2ian.

Is Fig.. 2. and 2b, town, and -(do.1/dn)/o >

are plotted for ) I 0 and I - 0 as functions of 0., the

angle of innidence with respect to the fixed reference

2500 ca.

'Ifiigs' . e nd 3b theme results ate repeated fo - ertff

o4> . It i Interesting to note that the effective
filtering of the very large scale spoctral componeoenta _ -_

of the eough surface (0 < k < k.) by the SIAdoes not o-
significantly change the -alue of .

P 
unless

.o300 rs Xe ant sa aes h n ation nf the
scattering .rose sections in the plant of Incidence

jdcoat/dil is trongest for the SAX corresponding to

the arroeet effective heat width L. - 300 ce.

In Fig. A -(do nldr)l<n
w

r iS plotted for n - 0
Me , - 0 as a function of the angle of Inridence On.

These result* are repeated te Pi. 5 for ce 0. In
Figs. 4 and I the width of the SAR is also Le - 300.

1000 and 2500 c. Unlike Ido r/dn (P-V,H) the peak

is the derivatives Id-o PP,/dv octurs at normal
Incidence (9. - 0).
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Scattering Cross Sections for Composite Rough Surfaces
Using the Unified Full Wave Approach

EZEKIEL BAHAR, SENIOR MEMBER, IEEE. AND MARY ANN FITZWATER

Aburact-Te full wave uppOch Is used to derive a unified formula-
Has. for the like and cross polarized scatterig cross sections of composite
rough surfaces for on angles of Iucideuce. Earlier solutions for electromag-
ai scattering by composit random rough srfaces are based on two.
scle models of the rough sarface. Thus. on applying a hybrid approach
physical optics theory Is used 1o accounl for specular scttering assoclated
with a fieted surface (consisting of the large scale spectral components of
The surface) whle perlurbalion theory is used to account for Brogg
saallttag ssoclated with the surftce consisting of the small scale spectral
compoaels. Sicr the fall wave approach accounts for both speculur point
scallering sad Bragg scatteriag In a elf-consslent menner. the two-scale

model of the rough srface Is aml adopted Sn this work. These unified full
wave solultoas c compared wi

t
h she earlier solutions and She simplifying

assumptions tt are coamon sa an the earlier oltons are examined. Nis

shwn l do whie She full wave nalul4ons for She like polarized scattering

em sedions based a". She Iwo-scale model are in reasonably good
*%lequmeu wlih the unified ful wars solut os. se two solutions for she

crem polarized crae aclsm differ ver slglificantly.
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was appoeed by the U.S. Air Force under Contract FI9628-81-K-0025,

The akers ore with ihe Deprtsmem of Electrical Engineering. University of
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1. INTRODUCTION The first assumption was that the large and small scale surfaces
Traditionally physical optics and perturbation theories have were statistically independent (Brown [71). It would seem

been used to drive the like and cross polarized scattering cross reasonable to make such an assumption if the two surfaces are
sections for composite random rough surfaces Beckmann [6], results of independent processes. For the general case, however,
Rice 113). To this end two-scale models have been adopted one cannot assume statistical independence of the large and small

and the rough surfaces are regarded as small scale surface per- scale surfaces.

turbations that are superimposed on large scale, filtered surfaces The second simplifying assumption that was made was that the
(Wright [71, Valenzuela 117]. Barrick and Peake [5). Thus the mean square slope o. for the total surface was approximately

scattering cross sections are expressed as sums of two cross equal to the mean square slope o.F for the filtered large scale
sections. The first accounts for specular point scattering. It is surface.

given by the physical optics cross section for the filtered surface The third assumption was that the mean square height of the

consisting of the large scale spectral components. The second total rough surfa:e was large compared to a wavelength, and the

accounts for Bragg scattering. It is given by the perturbation surface height characteristic function for the total surface was

cross section for the surface consisting of the small scale spectral negligibly small compared to unity.
components that ride on the filtered surface. Finally, the physical optics approximation for the cross

On applying the perturbed-physical optics approaches it is polarized backscatter cross section is zero (Brow n [7]). As a

necessary to specify the wavenumber kd where spectral splitting result, the cross polarized backscatter cross section for the fd-
is assumed to occur between the large and small scale spectral tered surface is set equal to zero when the two-scale model is
components of the rough surface. Thus Brown [7] who applied used. However, for backscatter, only the specular points on the

a combination of Burrows' perturbation theory [8] and physical rough surface do not depolarize the incident whave.
optics (Beckmann 161). to obtain the scattering cross sections in this communication the full wave approach is used to derive

for perfectly conducting random sough surfaces, specified kd a unified formulation for the like and cross polarized cross sec

on tie basis of the characteristics of the small scale surface tions for all angles of incidence. These solutions are compared
(l0 z4k21a ) - 01, where k0 is the electromagnetic wavenumber with earlier solutions based on a two-scale model of the random

and (1
2
) in the mean square height of the small scale surface). rough surface (Bahar et al. [4]). Thus, the simplifying assump-

However, using the approaches of Hagfors 191 and Tyler [161, tions, that are common to all the earlier solutions based on two-

the specification of kd is assumed to be based on the character- scale models of the rough surface, are carefully examined. It is
istics of the large scale surface. In general the restrictions on both shown that while the full wave solutions for the like polarized

the large and small scale surfaces cannot be satisfied simultane- scattering cross sections based on the two-scale model are in

ously and, using the perturbed-physical optics approaches, the reasonably good agreement with tIre unified full wave solutions,

evaluation of the scattering cross sections critically depend on the two solutions for the cross polarized cross sections differ
the specifications of kd (Brown 171 ). very significantly.

More recently the full wave approach has been used to deter-
mine tie scattering cross sections for composite random tough fl. APPLICATION OF THE FULL WAVE SOLUTION

surfaces of finite conductivity (Bahar [2), Bahar and Barrick WITHOUT SURFACE DECOMPOSITION
[31 .. Since tire full wave solutions account for Bragg scattering The starting point for this analysis is the full wave expres-
and specular point scattering in a self-consistent manner, it is sion for the like and cross polarized scattering cross sections of
not necessary to decompose the surface into two surfaces with the rough surfacey = h(x, z) (Bahar e al. [4])
small and large roughness scales. However, when such a decompo-
sition is feasible, the full wave solutions for the scattering cross k"

sections can be expressed in terms of a weighted sum of two cross (aop) - [(S
PQ exp [itr(h - h')]

sections (Bahar [2), Bahar and Barrick [31). Thus on adopting -

a two-scale model, the full wave solution resolves the discre,
pancies betwcen Valenzuela's [171 solution (mostly based on D P2(i', l ,i )
physical considerations) and Brown's solution [7). Furthermore, - Ix(v). nJ

in an attempt to draw more definite conclusions regarding the

choice of kd, it was varied over a wide range of values (Bahar
et al. [4[ ). It was shown that while, as expected, the cross sec- eXP [iV.Xd + WaZd) dxddZd (I)

tion associated with the individual large and small scale surfaces in which

critically depend upon the choice of kd. the weighted sum of the
like polarized cross sections remain practically insensitive to = - ) +
variations in kd for 0 > 1.0. Thus, provided that the large scale d X a +0 - ZW. = Xd'. + ZdaS (2)

surface satisfies the radii of curvature criteria (associated with the is the radius vector between two points on the reference plane
Kirchhoff approximations for the surface fields) and the condi- (x, z). The vector ii is

tion for deep phase modulation, the full wave solutions for the
like polarized scattering cross sections based on the two-scale b= k0 (T- W) = i, + Viy + Viu. (3)

model is practically independent of the specified value of kd.
However. on applying the full wave approach to evaluate the where k0 is the free space wavenumber for the electromagnetic

like and cross polarized scattering cross polarized scattering wave and 54 and nI-' are unit vectors in the directions of the
cross sections for two-scale models of composite rough surfaces, incident and scattered wave normals, respectively. As exp (il)

several assumptions were made to facilitate the computations. time dependence is assumed in this work. 1lhe symbol (-) denotes
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the statistical average and it would be necessary to know the large and small scale surface
kg height joint probabiity density function for two adjacent points

(S
P Q 

exp livy(h - h')]) on the rough surface to determine X2 (8) alone.
Since the full wave solutions account for both Bragg scatter

k2J [ D(, and specular point scatter in a unified, self-consistent manner
= -- I lp(h. h.)dh. d

h
t in this communication solutions for (1) are developed withou

T n - ay ,adopting a two-scale model of the rough surface.

Xa(vY' u y) =IPQ(if, x2 (v,, -vp) (4) It has been noted in the introduction that the physical optic
approximation for the cross polarized backscatter cross sectior

in which (7(h., h.) is the unit vector normal to the rough surface is zero ((or
0

)F = 0 for P * Q) (Brown [7] ). However, even the

f(x, y, z) = y - h(x, z)= 0. (5) large scale filtered surface will depolarize the backscattered field
at nonspecular points on the surface. Therefore the present

Thus, analysis should shed more light on the evaluation of the like and

Vf= i .Vfl = V(y - x,z) = (-hi, + - h~i,) (6) cross polarized backscatter cross sections and the suitability of
the two-scale model even if it can be assumed that the large and

in which tIre components of the gradient ofh(xz) small scale surfaces are statistically independent.
hx = ahlOx, h. = ahlaz (7) Assuming that k2(h

2
) ), I and I X 12 4 1, the scattering cross

section (I) can be expressed as follows:

are the random variables and p(h, A.) is the probability density
function for the slopes h. and ha, The expression for the scatter- (0PQ) 

= 
I'Q(nfi W)Q(ifi W, R) (9a)

ing cross sections (W12Q ), 
(1) accounts for shadowing: thus in which fQ is defined by (4) and

P2 (ii
f
. Wil F) is the probability that a point on the rough surface

is both illuminated and visible given the value of the slopes at I (X2 - I X12) exp UV Xd + iVZd] dxd dZd, (9b)
the point (Sancer 1141). The characteristic and joint character- =__

istic functions for the surface height h are x(vy) and X2(Vy, -Uy). is the two-dimensional Fourier transform of (X2 - lX 12) (8). It
It is assumed in this work that the probability density function
for the surface height is jointly Gaussian. Thus therefore depends on the surface height correlation coefficient

R

I x(vy) 12 = exp (-,(h 2
)), R = (hh)/(h2). (10)

)2 (vy, -u y) = exp(-g(h2)+ t4th')) (8) The surface height spectral density function h'(v_. v.) is related

where (h 2) is the mean square height and (hh') is the surface to the two-dimensional Fourier transform of the surface height

height autocorrelation function. The coefficients D'
Q depend autocorrelation function.

explicitly upon the polarization of the incident wave (second I(Vx. V2) 1 hh') exp [V xd + iV,:a dXd dZ. (
superscript Q = V-vertical, Q = H-horizontal) and the polariza- V (
tion of the scattered wave (first superscript P = V, H) the direc-
tion of the incident and scattered wave normals i' and ;if, Thus assuming that the rough surface is Gaussian and stationary,

respectively, tite unit vector ii normal to the rough surface and to compute the scattering cross sections (9) it is necessary to

the complex permeability and permittivity of the medium of prescribe the two-dimensional slope probability density function

propagation, respectively (Bahar 1t). On deriving (4), it is p(h, h), (4) and the surface height autocorrelation function or

assumed that the rough surface is Gaussian and stationary. thus its Fourier transform (the surface height spectral density func-
asshedh er surface heighthand&lopes (husshn ae statically, ts tion). Since it is assumed in this work that the surface is isotropic,the surface height A and slopes (i. ha) are statistically inde- (Jtht) depends only on the distance ra = lJ~a I between the two
pendent (Brown [71. Longuet-Higgins [Il]). It is also assumed ( , depe nd nly on the rd surIbce n ths

that for distances I id I less than the surface height correlation points (x, A, z) and (x', A. z') on the rough surface. Thus

distance, 1c ii(I,, h,) m
- 

/'(h x , h). It has been shown that if f._u,)
the principal contributions to the scattered fields come from (hh) = 27r 4 Jo(V-rd)V , dv, (12)

specular points on the rough surface (i = F,), (1) reduces to in which J0 is the Bessel function of order zero and
the physical optics solution for the scattering cross section.
If, however, the roughness scale of the surface is small com- V+? (13)
pared to the wavelength (kg2

1 ) C I) and the surface slopes
hA and h. are very small, (I) reduces to the perturbation solu- W(V,,)
tion for the scattering cross uctions (Rice 1131). Thus, in this (A2)= 2w I er, dv, (14)
case Bragg scattering is accounted for and the backscatter cross I

sections for grazing angles are strongly dependent on polariza- and the total wean square slope is
tion. Recently a two-scale model was adopted to determine 2 r va). dv,
the corresponding full wave solution for the scattering cross q,=2rn d-.(15)
sections (Bahar and Barrick 131). To facilitate the application of
the two-scale model it is assumed that the small scale surface h.
and tie large scale filtered surfacc hF are statistically independent Ill. ILLUSTRATIVE EXAMPLES
(Valenzuela 1171: Wright 1181; Brown (71). In the general case For the following illustrative examples the special form of
however, if the two-scale model is used to analyze the problem the surface height spectral density function is chosen (Brown
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171)

W(va, U' =) S(ux, v.)

2 Bk4 k
2 

+ 2)4, k 4 k,

I O, k>kc (16)

where W is the spectral density function (16) and S is the corre-
sponding quantity used by Brown 171. For the above isotropic
model of the ocean surface

k2 =V+ V (cm-
2

. k=12(cm)
-

t, B=0.0046

K= (335.2 V4
)

- t
/

2 (cmy t , V= 4.3 (m/s), (17)

in (17) V is the surface wind speed. The wavelength for the elec-

tromagnetic wave is

Xo= 2 (cm), (ko = 3.1416 (cm)- )
.  

(18) Fig. 3. factcanercross sections < a > for rough surfaces charactenzed
by W1q aj given by (16). (0) Two-scale model and (L) unified full wave

Equation (14) for the mean square height of the rough surface lutin (4). Relative complex permittivity is j, = 42 - i39.
yields

(
2
) Bk B = 87.9 cm2 . (19)

6x2(.12 + k 2) 6j.
2

The surface height autocorrelation function (hh') (12) can be -

expressed in closed form for kc -v. Thus the surface height
correlation coeffiient R(rd)(1O) is given by (Miller eral). [12] ..

R(ra) [I + - (Krd)2 (Xrd)KI(crd) - (erd)
2
Ko(Krd)

(20)

in which K o and KI are the modified Bessel functions of the a
second kind and of order zero and one, respectively. Since kc >
K and k, > ko the above closed form expression is used for R
in this illustrative example. The total mean square slope of the
rough surface is obtained on substituting (16) into (15).

k+ X
2  

k'(6K' + 15K
2 
k +IIkca2= B l° In .

Fig. 2. Bekusctler cross sections < v80> for rough surfaces characterized
= 0.034. (21) by Wv . given by (16). (0) Two-scale model and (6) unified full wave

For typical sea surfaces the relative complex dielectric coefficient soluton (4). Relative complex permituiity is e, = 42 - i39.
at 15 GHz is given by (Stogryn [15I)

e, = 42 - 139. (22) more accurate. Furthermore, on deriving the solution based on
the two-scale model, the quantity x(vy) (8) is assumed to be

The slope probability density function p(ha. h,) is assumed to negligible compared to x2(vy, -vy)(8)forrd<lc.Since 4k' (h2)
be Gaussian. In Fig. 1, the like polarized backscatter cross sec- 3468 for this illustrative example, the resulting approximation
tion (ovv) is plotted as a function of the angle of incidence is very good except very near grazing angles. In Fig. 2, the cor-
06' using the expression derived in Section 1H. These results are responding results are given for the horiz, ntally polarized back-

compared with the two-scale full wave results (Bahar ei al. [4)) scatter cross sections (a"#). It is interesting to note that the
based on the choice of kd (the wavenumber where spectral full wave solution (3) yields the proper polarization dependence
splitting occurs) corresponding to 0 = 1. Both results yield the of the scattering cross sections for all angles of incidence without
same general dependence of (0 v

) on the angle of incidence, use of a two-scale model since it accounts for specular point and
The small difference in level is primarily due to the fact that in Bragg scattering in a unified, self consistent manner. In Fig. 3
(3) the mean square slope os of the total (unfiltered) surface is the cross polarized backscatter cross sections (ovt) = (of')
used, while for the solution based on the two-scale model the are plotted as functions of the angle of incidence. Here too,
mean square slope o2,$ for the filtered surface hF is used (Bahar both the solutions based on the two-scale model as well as the
et al. 141). It should be noted that in deriving the expressions for solution derived in this section are presented. Unlike the solutions
the scattering cross sections based on the two-scale model, it for the like polarized backscatter cross sections (oPP)(p = V,H).
was assumed that o2S 0 2. Thus the results based on (3) are the solutions for the cross polarized backscattet cross sections

FS S'un ln I ~ l m
l l l
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Kirchhoff approximations for the surface fields), the physical
optics approximations for the scattered fields may not be valid
unless for the given incident and scatter angles specular points

.,.42-.s9 exist on the surface and significant contributions to the scattered
fields come from these stationary phase (specular-points) of the

U. surface. This explains why the physical optics approximations for

grazing angles even if the surface meets the radii of curvature
criteria associated with the Kirchhoff approximations.

There are additional important reasons for preferring to use
the analysis developed in this section over those that are based on
two-scale models of rough surfaces. Firstly, if the two-scale
model is used, it is necessary to assume that the large and small
scale surfaces are statistically independent (Brown 171 ). Secondly,
even if the assumption of statistical independence is acceptable,
when the two scale model is used, it is still necessary tojudiciously
specify kd (where spectral splitting is assumed to occur). These
problems do not arise when the unified full wave formulation is

Fig. 3. Backscatter cross sections <aVs> = <a't'> for rough surfaces used to evaluate the scattering cross sections.
characterized by W(u,, a,) given by (16). (0l) Two-scale model and (t)
unified full wave solution (4). Relative complex permiltivity is t, = 42 - ACKNOWLEDGMENT
139. The manuscript was prepared by E. Everett.
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ABSTRACT

Microwave remote sensing of rough surfaces (both land and ocean), using moving
platforms (aircraft and satellite),-as well as ground based measurements has illus-
trated the need for a better understanding of the interaction of the radar signals
with these surfaces. This interaction is particularly important for the ocean surface
where the radar modulation can yield information about the long ocean wave field.
Radar modulation measurements from fixed platforms have been made in wavetanks and
the open oceans. The surfaces have been described in terms of two-scale models. The
radar modulation is considered to be principally due to: (1) geometrical tilt due to
the slope of the long ocean waves and (2) the straining of the short waves (by
hydrodynamic interaction). For application to moving platforms, Synthetic Aperture
Radar (SAR) and Side Looking Airborne Radar (SLAR), this modulation needs to be
described in terms of a general geometry for both like- and cross-polarization since
the long ocean waves, in general, travel in arbitrary directions. In the present
work, the finite resolution of the radar is considered for tilt modulation with
hydrodynamic effects neglected.

1. INTRODUCTION

The full wave approach is used to determine the modulation of the like- and
cross-polarized scattering cross sections for composite models of rough surfaces
illuminated by SAR. The full wave approach accounts for both specular point scatter-
ing and Bragg scattering in a self-consistent manner. Thus, the total scattering
cross section is expressed as a weighted sum of two cross sections (Bahar et al.,

1983). The first is the scattering cross section associated with the filtered surface
consisting of the large-scale specular components of the illuminated rough surface

area. The second is the cross section associated with the surface consisting of the
small-scale spectral components that ride on the filtered surface.

Full wave solutions are derived for the scattering cross sections of a relatively
small area or resolution cell of the rough surface that is effectively illuminated by
SAR. The normal to an arbitrarily oriented mean plane associated with the illuminated
cell is characterized by tilt angles 0 and T in and perpendicular to a fixed reference
plane of incidence. It is assumed that the lateral dimension of the resolution cell
Ls is much larger than both the electromagnetic wavelength and the surface height
correlation distance for the cell. -As the SAR scans different portions of the rough
surface S, the direction of the unit vector normal to the cell F fluctuates. In this
paper the "modulations" of scattering cross sections are determined as the tilt
angles ) and T fluctuate. In a recent study of "tilt modulation" by Alpers et al.
(1981), first-order Bragg scatter due to capillary waves on a tilted plane is consid-

ered. It can be shown that if the large scale spectral components of the surface
within the cell are ignored, the full wave solutions derived here for tilt modulation
reduce to the results obtained by Alpers et al.
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-Vf/jVfj - (-h + a- haz h )/(h x + 1) (7a)

where f y - h(x,z) , hx . ah/2x , h =h/3z (7b)
andz

-v /v. (7c)
S

The expression for the physical optics (specular point) cross section for the
large-scale surface h is

Q ~ 2 po2PQ0 I  -f;- - -,J2 2oQ -- r(n ,n Wpn),e

in which DPQ depends on n , fi, f , the media of propagation above and below the
rough surface h(x,z) and the polarization of the incident and scattered waves
(Bahar, 1981a,b). The shadow function P2 is the probability that a point on the
rough surface is both illuminated and visible, given the slopes 5(hx,h ), at the
point (Smith, 1967; Sancer, 1969). The probability density function for the slopes

hx and h. is p(n). The factor XS(v) that multiplies <ao!> accounts for the degrada-
tion of the contributions from the specular points due to the superimposed small
scale rough surface h.-

Assuming a Gaussian probability density function for h, <0PQ> is given by
the sum

<OPQs <0 PQ > (9)

where QIDPI2 p( f i )

< 0 Q> = 4 k2  f
sm 0 na

y2 2~m W (v-'v )

- exp(-vhs>) 4 M! p(hxWhvz)dhWdh (10)

in which <h > is the mean square of the surface height h and v_,v- and v- are the
5 s x y Z

components of v (6) in the local coordinate system_(at each point on the large
scale surface) associated with the unit vectors n1 ,n 2 and n3 . Thus v can also be
expressed as

v-v-n + v- n + v n
x 1 y 2 i 3 (11)

where

1i xi)1- 2 - n ,n 3 - n I xn. (12)

The function W (v-,v )/2 2m is the two-dimensional Fourier transform of (<h h;>)m.
m x' 2 QSS

For P - 1 and arbitrary p(hx,h z) the first term in (9), <a >sl is also in

agreement with Valenzuela's solutions that are "mostly based on physical considera-

tions" (Valenzuela, 1968, Valenzuela et al., 1971). For small slopes ii = and

S<< 1 the first term in (3) reduces to Brown's solution (1978) based on a combina-
tion of physical optics and perturbation theory. Since it is assumed (on deriving
(3) from the full wave solutions for the scattered fields) that the surface h
satisfies the radii of curvature criteria a5 wll as the condition for deep pase

modulation, it is necessary to choose 0-4k <h' >1 in order to assure that the
0 S-

weighted sum of cross sections (3) remains insensitive to variations in kd, the
wavenumber where spectral splitting is assumed to occur (Bahar et al., 1983).

In order to apply the full wave approach to SAR it is necessary to modify the
results presented in this section (a) to account for the filtering of the very
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For the illustrated examples presented, the scattering cross sections and their

derivatives with respect to the tilt angles are evaluated for all angles of inci-

dence. The modulation of the like cross sections near normal incidence is due pri-

marily to fluctuations in specular point scattering while the modulation of the like

cross section for near grazing angles is due primarily to fluctuations in Bragg

scattering. Thus, for large angles of incidence the cross sections for the hori-

zontally polarized waves are shown to be more strongly modulated than the cross

sections for vertically polarized waves. The relative modulations of the like polar-

ized backscatter cross sections are optimum for incident 
angles between 100 and 150

depending upon the lateral dimension of the resolution cell and the polarization.

2. FORMULATION OF THE PROBLEM

The full wave solutions for the normalized cross sections per unit area are

summarized here for composite rough surfaces. The position vector to a point on

the rough surface is expressed as follows:

r. = r(x,h ,z) + nh (1)

in which y-ht(x,z) is the filtered surface consisting of the large scale spectral

components of the rough surface and ha, the small scale surface height is measured

in the direction of the normal (n) to the large scale surface y=h1 . For a homogenous,

isotropic surface height the spectral density function is the Fourier transform of

the surface height autocorrelation function <h(x,z),hI(x',z')>.

W(VxV) - zz<hh'>exp(ivxxd+ 'Vzzd)dxddzd (2a)

2 22where <hh'
> is a function of distance I rdI (xd + z d ) and

x - x, - x d and z -z' - z d ' (2b)

The surface hj(x,z) consists of the spectral components k = (v + vz) kd and the

remainder term hs(x,z) consists of the spectral components k > k d. The full wave

approach accounts for both specular point scattering and Bragg scattering in a self-

consistent manner the total scattering cross section can be expressed as a weighted

sum of the cross section <aPQ' for the filtered surface hL and the cross section
<GPQ> .for the surface h. that rides on the large-scale surface hL (Bahar et al.,

1983) <oPQ> = <oPQ>L+ <oPQ>S . (3)

The symbol < > denotes statistical average. The first superscript P corresponds to

the polarization of the scattered wave while the second superscript Q corresponds to

the polarization of the incident wave. To derive (3) using the full wave approach it

is implicitly assumed that the large scale surface meets the radii of curvature

criteria (associated with the Kirchhoff approximations for the surface fields) as

well as the condition for deep phase modulation. Thus the first term in (3) is

<oPQ,, _iXs(;.n.)12 <o QP (4)

in which xs is the characteristic function for the sm-ill scale surface

and X(v ) Xs (v) -<exp ivhs> (5)
an .if i k(f - ;i) , s v (6)-- f -i

The unit vectors n and n are in the directions of the scattered and incident wave

normals respectively; thus for backscatter ;f- -n . The free space radio wavenumber

is ko . An exp(iwt) time dependence is assumed. The vector ns is the value of the unit

vector n normal to the surface h(x,z) at the specular points. Thus
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large scale spectral couponent of the rough surface by the S)R that effectively illu-
minates a relatively small area of cell F of the rough surface S and (b) to account
for the normal to a reference plane associated with the illuminated cell which is
characterized by arbitrary tilt angles fl and r in and perpendicular to the reference
plane of incidence. It is assumed here that the lateral dimension of the cell illu-
minated by the SAR is much larger than the surface height correlation distance for
the cell and that as the SAR scans different portions of the rough surface S the
direction of the unit vector normal to the cell F fluctuates. Our purpose is to
determine the "modulation" of the backscatter cross sections <0PQ> (3) as the tilt
angles (of the normal to the cell) in and perpendicular to the reference plane of
incidence fluctuate.

3. SCATTERING CROSS SECTIONS FOR ARBITRARILY ORIENTED RESOLUTION CELLS OF THE
ROUGH SURFACE

Let x,y,z be the reference coordinate system associated with the surface of the
cell F that is illuminated by the SAR such that the mean surface of the cell is the
y=O plane. Furthermore, let x',y',x' be the fixed coordinate system associated with
the large surface S such that the unit vector V is normal to the mean rough surface
height h(x',zt). The unit vector i= -fif is expressed in terms of the unit vectors
of the fixed coordinate system (x',y',z'):

-i -f
n = -n . sine' a' - cose' a' . (13)

ox o y
The unit vector a normal to the reference surface associated with the cell is ex-
pressed in terms Yof the tilt angles fl and T in and perpendicular to the fixed
plane of incidence, the x',y' plane. Thus

a sinl cosT i' + cosn cost a' + sinT ' . (14)
y x y z

For convenience ax and i., the unit vectors associated with the cell, can be chosen
such that the plane of incidence in the x,y,z coordinate system is normal to the
vector a . Thus

z y 
= 
(nxax)/j-i x y x ay z (15)

and the expression for n in the xy,z coordinate system is
-i -i - -i -n - (ni ax )ax + (*a a)

w sine a - cose a (16a)where 0 X o y

cose = cos(6' + fl)cosT . (16b)
i 0The angle #F between the plane of incidence in the fixed coordinate system (x',y',z')

and the plane of incidence in the coordinate system (x,y,z) associated with the cell
is given by cost sin(e' + 0)

Cost (17a)
Fo* sine

and 0it sint
sin* I sinT (17b)

-f -i f 0

For backscatter n - -n . Thus the angle #f between the plane of scatter in the fixed
coordinate system (x',y',z') and the plane of scatter in the coordinate system asso-
ciated with the cell is

f 1 (18)
F F

The matrix that transforms the incident vertically and horizontally polarized waves
in the fixed coordinate system to vertically and horizontally polarized waves in the
cell coordinate system is therefore (Bahar, 1981a,b)
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T cos-' Sijl (19)

-aino. Cos* F

Similarly, the matrix that transforms the scattered vertically and horizontally
polarized waves In the cell coordinate system back into the vertically and hori-

zontally polarized waves in the fixed coordinate system is

rCOS* f -$in f,

f (20)

Thus in view of (18), Tf = Ti. The coefficients DPQ in (8) are elements of a 2 x 2

matrix D given by DC in f FT (21)

0
in -i fF~ (1

in which C is the cosine of the angle between-the incident wave normal n and the

unit vectoorn normal to the rough surface of the cell h.(x,z). Thus

C in . _i,; . cosein (22)
0 0

where ; is given by (16) and E is given by (7a) with fF(xy) - y-h(x,y). The ?le-
ments of the scattering matrix F in (21) are functions of the unit vectors ii ,i and

as well as the media of propagation above and below the rough surface S (Bahar,

1981a). The matrix Ti transforms the vertically and horizontally polarized waves in
the cell coordinate system (a ,! , ) to vertically and horizontally polarized waves

in the local coordinate system t~at conforms with the rough surface, nl,n 2;.; (12).

Similarly, the matrix T
f transforms the vertically and horizontally polarized waves

in the local coordinate system back into vertically and horizontally polarized waves

in the cell coordinate system (Bahar, 1981a).

To account for the arbitrary orientation of the cell, the matrix D in (21) must

be post-multiplied by Ti and pre-multiplied by T. Thus the elements of the matrix

D in (8) must be replaced by the elements of the matrix DF where
DF - TEDTi (23)

Furthermore, in view of the effective filtering by the SAR of the very large scale
spectral components of the rough surface f(x',z') - 0, the spectral density function

for the rough surface fF(xy) - 0 associated with the resolution cell F is given by
(V-,V), k > ks

WF (V.) {xZ . (24)
Fxz0 ,k < k

where W(v-,v-) is the spectral density function for the surface S, f(x',zt) - 0.x Z

The wavenumber k is
6 ks - 2I/Ls < kd  (25)

where L. is the width of the area of the cell illuminated by the SAR. The very large
scale surface consisting of the spectral components 0 < k < k. are responsible for
tilting the resolution cell with respect to the mean sea surface.

Thus on replacing the spectral density function W (2a) for the surface S by the

spectral density function WF for the cell F (24) and on'replacing the elements D
PQ

of the matrix D by the elements DPQ of the matrix (23) the expression (3) can be

used to determine the normalized backscatter cross section for ar arbitrarily

oriented cell F. In view of (19) and (20) the expressions for these backscatter

cross sections are explicit functions of the tilt angles 0 and ,T. For the special
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case T - 0 (tilt is in the plane of incidence) the matrices TF and f reduce to
identity matrices 

and

c°se f cos(e, + 0) (26)
Tis for T 0 0 0

01I
• -- -const " ' j_ 0-const (27)

and 0 0

(a<v l~e'-onst = (>/an >0<0lae1')0o (28)
<oPQ>Q

Therefore to obtain D<o >/2 fof 0 0 and T - 0 it is sufficient to evaluate o PQ>
as a function of e' with both A and t set equal to zero. The value for a<oPQ>/BT can
either be evaluatea analytically since DfQ (23) Is an analytic function of T, or the
derivative could be evaluated numerically.

4. ILLUSTRATIVE EXAMPLES

For the illustrative examples presented in this section, the following specific
form of the surface height spectral density function is selected (Brown, 1978)

(2 "{(=)Bk /(K2+ k ) k < k
xNEvv -i- S(v ,v 0 k > kc  (29)

where W is the notation used by Rice (1951) and S Is the notation used by Brown (1978).

For the assumed isotropic model of the sea surface

B 0.0046

2 2 2 -2
k= v + vz (cm) k - 12 (cm) 1

x z C

= (335.2 V4) -  (cm) - I  
, V - 4.3 (m/s) (30)

in which kc is the spectral cutoff wavenumber (Brown 1978) and V is the surface wind
speed. The wavelength for the electromagnetic wave is

0 = 3.0 cm (k. . 2w/3 (cm)-1) .(31)

The relative complex dielectric coefficient for the sea is

E - 48 - i35 (32)

and the permeability for the sea is the same as for free space (ir - 1).

The mean square height for the small scale surface b is given by

,< 2 > . 2/o kf W kdkd# 1 W -(33)

The mean square slope for the large scale surface h within the resolution cell , is

2  . 'h2  - k ) _ k3dkdj (34)

is LX 4 (34)(k
ok

in which k. is given by (25). The mean square height for the large scale surface
hi Is
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2> 
kd

ff W(k) kk#(5ok
s

2 -2
For - 4k < 2> "1.0, kd - 0.201. For L. - 300, 1000 and 2500 cm (25)

2
0 Is = 0.0102, 0.0143 and 0.0152 respectively

and k2<h> -21.9, 173 and 357 respectively. The slope probability

oI
density function within a resolution cell is assumed to be Gaussian; thus

2 2
1 hx + hz(6

p(b,h) Z exp 2(6
* s Is

and the physical optics (specular point) backscatter crosi section is (8) (Bahar,
1981a)

sec e 0  tan 2 (37)- 6PQ 2 -x 2-I1 7
a Is  ors

in which 6pQ is the Kronecker delta and Rp(P-V,H) is the Fresnel reflection coefficient

for the vertically or horizontally polarized waves (khar, 1981a,b).

In Fig. la, and b <a >, and -(d<a W>/dn)/<a > are plotted for f2 = 0 and T - 0 as
-functions of 0' the angle of incidence with respect to the fixed reference system

(x',y',z'). In these figures LS - 300, 1000 and 2500 cm.

Figure la. <a >, for f = 0 and
T - 0 as a function of 6'.

0

(46) L 300 cm, (0) Ls  1000 cm,

(0) Ls  2500 cm.
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W Wv
P ' Figure lb. -(d"a >Id l)/ca > for

-0 and T- 0 as a function of

e (6) L - 300 cm,

(0) L = 1000 cm,

(jJ) L - 2500 cm.

N" -l 0 ft. me U." 16

In Fig. 2a, and b these results are repeated for <a >. It is interesting to note

that the effective filtering of the very large scale spectral components of the rough
surface (0 < k < k5 ) by the SAIR does not. significantly change the value of vPQ unless
Ls < 300 cm. As one may expect, the modulation of the scattering cross sections in

the plane of incidence jd<oYV>/d2 is strongest for the SAR corresponding to the
narrowest effective beam width L. = 300 cm. Except for near-normal incidence the
relative modulation Id-oPQ>/dflh/<oPQ> is larger for the horizontally polarized waves
than for the vertically polarized waves. The largest relative modulation of the like
polarized cross sections occurs in the transition region where the contribution to
the cross section due to Mragg scatter becomes larger than the contribution due to
specular point scatter namely at about 10o-150 -(see Figs. lb and 2b).

Figure 2a. < HH >, for n - 0 and

,0 as a function of e'.
0

-a ( ft. (A) Ls - 300cm, (0) Ls  1000 cm,

(0) L " 2500 cm.

a
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Figure 2b. - for

D - 0 and T - 0 as a function of

6'. (A) L - 300 cm,0 8

(0) L - 1000 cm,
(D) L - 2500 cm.

5. CONCLUDING RMARKS

The full wave approach is used to determine the scattering cross sections for
arbitrarily oriented resolution cells on random rough surfaces illuminated by
synthetic aperture radars. The purpose of this analysis is to determine the modu-
lation of the like polarized scattering cross sections as the normal to the cells
tilt in and perpenditular to the plane of incidence. The full wave approach accounts
for shadowing and both specular point scattering as well as Bragg scattering in a

self-consistent manner. Thus, the scattering cross sections are expressed as
weighted sums of two cross sections. The first cross section is associated with the
filtered surface consisting of the large-scale spectral components of the rough
surface. The second cross section is associated with the surface consisting of the
small-scale spectral components. It can be shown that if the large-scale spectral
components of the surface of the cell are neglected, the second cross section
accounts for first order Bragg scattering and the results are in agreement with
earlier published results (Alpers et al., 1981). Bowever, for typical terrain or
sea surfaces, the large-scale spectral components are not negligible.

By using the full wave analysis, the modulation of the like and cross polarized
cross sections can be determined for all angles of incidence and tilt angles. On
the other hand, first order Bragg scatter theory does not account for backscattering
near normal to the surface of the cell (Alpers et al., 1981). The results based on
the two-scale model indicate that the relative modulation of the like polarized
backscatter cross section is maximum for angles of incidence between 100 and 150
(depending on polarization and effective width of the resolution cell, L.). The
analyses based on first order Bragg scatter do not provide these results. It is
also shown that as the angle of incidence approaches zero, the modulation of the
scattering cross sections in and perpendicular to the plane of incidence becomes
comparable.

When the normal to the cell is tilted in the direction normal to the plane cf
incidence (T 0 0), the full wave analysis not only accounts for the change in the
local angle of incidence 6' but also takes into account the fact that the local
planes of incidence (or scatter) are not parallel to the -eference planes of
incidence for scatter), namely 4 - -*f j 0.

F F
Since Alpers et al. (1981) do not account for the effects of the large scale

spectral components of the surface within the resolution cell the results presented
here for the modulation of the like polarized scattering cross sections near
normal incidence are significantly different from those given by Alpers et al.
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V TH ROUGH SURFACES-FULL WAVE SOLUTIONS

Ezekiel Bihar
and

Swapan Chakraharti
Electrical Engineering Department

University of Nebraska-Lincoln
Lincoln, NE 68588-0511

ABSTRACT

The scattering cross sections for large finitely conducting spheres with very rough surfaces ar

determined for optical frequencies using the full wave approach. For the roughness scales considered

the scattering cross sections differ significantly from those of smooth conducting spheres. Several

illustrative examples are presented and the results are compared with earlier solutions to the problem.

1. :itroduction

The purpose of this investigation is to determine the like and cross polarized scattering cross

sections for electrically large finitely conducting spheres with very rough surfaces. Perturbation

theory has been used to determine electromagnetic scattering by spheres with random rough surfaces

provided that the parameter B - 4k 7h 2o is such smaller than unity (where k. is the wavenumber and
0a 0

<h2> is the sean square height of the rough surface of the sphere, Barrick 1970). However, for large
5

conducting spheres with B -< 1, the total scattering cross sections are not significantly different

from the physical optics cross section for smooth (unperturbed) conducting spheres.

In this paper the full wave approach is used to determine the scattering cross sections for large

spheres with roughness scales that significantly modify the total cross sections. The full wave

approach accounts for specular point scattering and Bragg scattering in a self consistent manner and

the total scattering cross sections are expressed as weighted sums of two cross sections (Bahar and

atrrIck 1983). In Section 2 the problem is formulated and the principal elements of the full wave

solution are presented. Illustrative examples at optical frequencies are presented in Section 3 and

the results are compared with earlier solutions based on the perturbation approach (Barrick 1970) and a

recent reformulated current method (Abdelazeez 1983).

2. Formulation of the Problem

The purpose of this investigation is to determine the like and cross polarized scattering cross

sections at optical frequencies for large conducting spheres with very rough surfaces. The position

vector r to a point on the rough surface of the sphere is (se . Fig. 1)

s a hor 
+ 
bar (21)

In which ir is the radius vector is the spherical coordinate system. ha, the radius of the unperturbed

sphere.ia large compared to the waveleasth 1o of the electromagnetic waveand h e is the random surface
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height measured along the radius vector ; r For a homogeneous isotropic rough surface height he. the

spectral density function (Lice 1951, Derrick 1970. Ishimaru 1978) is the Fourier transform of the

surface hight autocorrelation function <h(xz),h'(x'.z')>

V " <h h;' exp(ivxd + ivzzd)dxddzd (2.2'

in which the symbol <.> denotes statistical average and <hshn> is a function of distance measured aloc

the surface of the sphere. It is assumed that the correlation distance LC for the rough surface

height he is very small compared to the circumference of the sphere. The unit vectors ni and n f 
are i

the directions of the incident and scattered waves and the vector v is given by

; - k(nf- (2.3)

where k° is the electromagnetic wavenumber (k. - 2u/,10).

-I -
yo

-f fn sin 
f 
a

+ 
cos a (2.5

0 o 0 yo

in which o. ay° and azo are unit vectors in the reference coordinate system (see Fig. 1). Associated

with a point on the surface of the unperturbed sphere is a local coordinate system x.y~z whose unit

vectors are

;*x;o)[ Zz 2 . ;2 A nf3 1~ (2.6:

Thus 2 is in the direction normal to the surface of the sphere and n1 end n2 are tangent to the

surface of the sphere. When the distance rd measured along the surface of the sphere is commensuratc

with the correlation distance I
C

r (x- ) + (- (x + ')2 (2.7:

Thus for points on the surface of the sphere at a distance rd - Ir. the surface height autocorrelation

function is <hsh'> - <h ,/a (where <h 2 is the mean square height and a is the Neperian number). The

surface h consists of the spectral components

- 2 + T2
kd< k - (v Z) kc  (2.8

where kd - 2v/d Is the smallest vavenumber characterizing the rough surface of the sphere (d - 2h o ) an,

k i the spectral cutoff wevenumber (Brown 1978). Perturbation theory has been used to determinec

electromagnetic scattering by rough surfaces (Rice 1951. Burrows 1967, Valenzuela 1968, Barrick 1970

Brown 1978). To apply perturbation theory. it is necessary to assume that 0 - 4k 2h 
2  c< 1. For larg

o s

conducting spheres. the scattered fields are primarily due to specular point scattering. Thus. if the

2mean square height -he , of the rough surface is restricted by the perturbation condition 0 << 1. the
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total scattering cross aections for spheres with rough surfaces is not significantly different from

those of unperturbed conducting spheres.

Since the full wave approach (Bahar 1981, 1982. Bahar and Barrick 1983) accounts for specular

point scattering and Bragg scattering in a self consistent manner.the perturbation restriction need not

2be imposed on the mean square height <h > of the rough surface. In this work we consider spheres with5

large roughness scales whose scattering cross sections differ significantly from the cross sections of

unperturbed spheres. Thus using the full wave approach the total normalized scattering cross section

per unit area <oPo' is expressed as a weighted sum of two cross sections

<o0QI ) <0PQ>I + CGPQ>s (2.9)

in which <oIa> Is the cross section associated with the large scale unperturbed surface and <a PQ> is

the cross section associated with the small scale surface ha that is superimposed on the large scale

surface. The first superscript P corresponds to the polarization of the scattered wave while the

second superscript Q corresponds to the polarization of the incident wave. The scattering cross section

<oPQ> is given by (Dahar 1981)

<o Q> jX (v)j2 <o > (2.10)

in which X
s 

is the characteristic function for the surface ha

xs(v) - <exp iv h,> (2.11)

and v is the magnitude of the vector v (2.3). Thus the weighting function lxaI2 is less than unity.

2
It approaches unity for <h,> - 0. For Gaussian rough surfaces h.,

-4k 2h 2>cos2 (8 f/2) -v 2<h2> (2.12)

,xs 2 . e o a 0 e y 8

Since in this work the unperturbed surface is assumed to be the surface of a large conducting sphere

(d >> Ao), the cross section <o
p . 

is given by the physical optics expression (Barrick 1970)

oPQ> .6 IIP1 2  (2.13)

in which RP is the Fresnel reflection coefficient for vertically (P-V) or horizontally (P-H) polarized

waves and 6PQ is the Yronecker delta. For Gaussian rough surfaces h ,the term <apQ> can be expressed

as
PQ >PQ (2.14)

where

-CQ 41k 
2 JID PQ 2 2(;f.;i1 ;

2 xp.v< (2
) A 

W (v v
)

ys 2 < 1)-I-! p(hx*hz)dh xdhz (2.15)
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In (2.15) vv y and v. are the components of (2.3) in the local coordinate system (2.6)

Vx V I 
+ 
Vy n2 + Vx n 3  (2.16)

The shadow function P2 ((;f.;11) is the probability that a point on the rough surface is both Illuminated

by the source and visible to the observer given the slopes n(hxhz) at the point (Smith 1967, Sanar

1969). The function p(;) - p(hx.hz) is the two-dimensional probability density of the slopes hx and h .

The expression D
P Q 

depends on the polarization of the incident and scattered waves, the unit vectors

- -f~n and nand the relative complex permittivity cr of the conducting sphere. The function

H (v ,)/22m is the two-dimensional Fourier transform of <h h'n. It can be expressed as follows

a , - f <h h'> exp(ivx dv +i )dxd d
22

m  
(21)2 a + zddd

_L - w (x ,v)W(v -v,.vz-vz,)dv dv.,

I mWl(Vx0Vz) W l(Vx.Va  (2.17)

In (2.17) the symbol G denotes the two-dimensional convolution of WM-1 with W I

It should be noted that for B - 0 the scattering cross section (2.9) reduces to the scattering

cross sections for large conducting spheres i for B << 1, it reduces to the perturbation solution

(Burrows 1967) since in this case Ix'1 = i and (2.14) reduces to the leading term m - 1 (Bragg scatter).

In a recent analysis of wave scattering from a large sphere with rough surface (using a reformulated

current method) ,Abdelazeez (1983) obtains a solution which corresponds to the first term in (2.9).

garrick (1970), who considered backscatter by spheres with mall scale roughness, presents a solution

that accounts for <oPQ> and the first term in (2.14). The weighting function IxI2 that ultiplies

<oPQ- accounts for the degradation of the specular point scattering cross section due to the super-

imposed rough surface h . The second term in (2.9), <oPQ >, accounts for diffuse scatter due to the

rough surface ha. The leading term In <oPQ>, (m-l) corresponds to Bragg scatter (Rice 1951.

Valenzuela 1968, Barrick 1970, Brown 1978). In the next section illustrative examples of spheres with

very rough surfaces are considered. The significance of the different terms of the solution (2.9) are

considered in detail and the results are compared to earlier solutions. On replacing <o
Pq > 

(2.15) by

the expression for large scatterers of arbitrary shape (such as ellipsoids).one can obtain the effects

of surface roughness on large scatterers of any desired shape.

3. Illustrative Examples

Assuming a homogeneous isotropic random rough surface h, the surface height spectral density

function (2.2) (Rice 1951) considered for the Illustrative examples is
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W(,Vz) - wk)- A  k, k s

0 k k crad k < kd (3.1)

in which
k2 . v2 + V2 (cm)-2

S  z (3.2)

The smallest wavenumaber characterizing the rough surface he is

kd -d (3.3)

where

d - 20 A0

is the diameter of the sphere and An is the wavelength of the electromagnetic wave

lo - 0.555 x 10 cm k -(k " 1.132 105 al). (3.4)

The spectral cutoff number is (Brown 1978)
kc - 4.5 x 105 cm-1 (3.5)

C

The mean square height of the rough surface ha is

2w k

<0,. . I c(3.6)

4220 kd

Thus the value of B (3.1) in terms of the parameter B - 4k2 h
2
> is

0 a
2  

2Bk kd
B- 2 k 2.2 (3.7)

V 2k (k -kj)

For B - 1.0 (3.8)

the corresponding value of the mean square height is

<h2,> . 0.195 x 10-10 ca2 (3.9)

thus

B - 0.125 x 10-2  (3.10)

At optical frequencies the relative dielectric coefficient of aluminum is (Ehrenreich 1965)

: - -40 - i12 (3.11)
r

The permeability of the sphere Is assumed to be that of free space Po - 1. For the unperturbed sphere,

the probability density function of the slopes (2.15) is given by

p(h',hz)dhdb-pygrd - sin ydydd (3.12)P~x h~hdhz - p(y,6)d-rdd 2,

where y and A are the latitude and azimuth angles in the spherical coordinate system.
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In Fig. 2 the vertically polarized scattering cross section <a W (2.9) is plotted as a function of

the scatter angle B
f 

(see Fig. 1). The parameter B - 4kh 2  
" 1.0. In addition to the plot of

<UW> (2.9) (the total cross section),plots are also given for the Individual terms In (2.9);

<VP' -1 81'
2  

V VV a Te em cVPIW> V * sl an -" s2 The terms VV2' am for a > 3 are negligible. The value of

<GW> - R.V,
2 

(corresponding to the physical optics cross section for the unperturbed sphere) is also

given for the purpose of comparison. Note that the total scattering cross section <o > for the rough

sphere is significantly smaller than that of the unperturbed sphere <0 >. Furthermore, for a - 1.0

the contribution of the term o W (2.9) is not negligible and 'a o cannot be approximated by the5

first term <oW>" - IRVXs
2. 

The corresponding results (8 - 1.0) for the horizontally polarized
IN

scattering cross sections < S are presented in Fig. 3. These results are similar to the results for

the vertically polarized waves except near the quasi-Brewster angle.

The cross-polarized section <off% - (<0V> is presented in Fig. 4 for B - 1.0. In view of (2.13)

there is no physical optics contribution to the cross-polarized cross section. Note also that for

backscatter, 8f 
- 0. <o HV> becomes vanishingly small. For B < 0.1, the terms <0> for m > 2 are0 sm -

negligible. Furthermore since e
-
0 . 0.9 for B - 0.1, the perturbation solution (Barrick 1970)

is approximately equal 0 the full wave solution. For very small values of B the full wave solutions

equal those of the reformulated current method (Abdelazeez 1983) since the second term in (2.9),

<0oPQ> becomes very small compared to go However, when the scale of the roughness is very small

(0 < 0.1), the scattering cross sections of rough spheres are not significantly different from that of

unperturbed spheres. As B (the roughness of the surface) increases.the weighting function IxSI 2

decreases and the contribution of the term <OPQ, increases. Furthermore, an increasing number of

terms <C P% (m-l,2,3 .... ) need to be evaluated as B increases.am

4. Concluding Remarks

The full wave approach has been used to determine the scattering cross sections for electrically

large conducting spheres (d >> A.) with very rough surfaces. The total scattering cross sections are

significantly modified by the rough surface when the parameter B - 4k 2h 
2 

> 1. In these cases the

perturbation solutions are not valid. For B -C 1 the full wave solutions reduce to the perturbation

solution (Barrick 1970); hovever,for B << 1, the modification of the total scattering cross section is

not very significant. The full wave solutions are compared with the perturbation solutions (Barrick

1970) and a recent solution based on the reformulated current method (Abdelazeez 1983). The full wave

solutions presented here can also he used to determine the effects of surface roughness on the

scattering cross sections for large conductors of different shapes such as ellipsoids.
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Scattering by Anisotropic Models of Composite Rough
Surfaces-Full Wave Solution
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PAbstract-Expresions 
for tie scaltering cross sections of saisotroplc

models of composite random rough surfaces are derived using the full wave
approach that accounts for specular point statering sad Bragg scattering

Is a self-consisteat mauer. Btorscstter cross sectious tre evalualed for

vertlcally and horlzontally polarized waves sa a funcllon of angle of

Incidence for cross wind. tip wind, and down wind directions. The cross

sections are most sensitive to wiad direction for angles of Incidence around
40

°
.

1. INTRODUCTION

Various combinations of physical optics theory and perturba-
tion theory have been used to determine the scattering cross
sections for composite models of rough surfaces 113], [121.
These sositions are based on a two-scale model of the rough
surface. Physical optics [7] accounts for specular point scat.
tering from the large scale surface while perturbation theory
[11] accounts for Bragg scattering from the small scale surface.
However, the results based on the perturbed-physical optics
approach 181 critically depend upon the manner in which the
composite surface is decomposed into a large and a small scale
surface.

Since the full wave approach accounts for specular point
scattering and Bragg scattering in a unified self-consistent manner,
the solutions for the scattering cross sections can be derived from

a single integral. However, the two-scale model can also be adopted
when the full wave approach is used and the results are shown
to be independent of the wavenumber ka where spectral splitting

is assumed to occur, provided that the large scale surface satisfies
the criteria for deep phase modulation [51

In this work, the full wave approach is applied to a rough
surface characterized by an anisoiropic slope probability density
function. In Section I1 the full wave solutions based on the uni-
fied and two.scale model are presented, and in Section III illustra-
tive examples are presented. Backscatter cross sections for both
vertically and horizontally polarized waves are evaluated for all
angles of incidence, and it is shown that the results are most

sensitive to wind direction for angles of incidence around 40'. On
examining the individual terms for the total cross sections based
on the two-scale model, it is shown that the cross sections become
insensitive to wind direction for near grazing incidence.

II. FORMULATION OF THE PROBLEM

In this section full wave analytical solutions are derived for
the like and cross polarized cross sections for composite models
of rough surfaces characterized by non-Gaussian surface slope
probability density functions. As an illustrative example, the

analysis is applied to rough surfaces with slope probability densi-
ties that can be adequately represented by the Gram Charlier
expression [9], 1101. For these surfaces the surface height
and slope probability densities are close to Gaussian. The devia-
tion of the slope probability density from the Gaussian probabil-

Mansaapt received May 2. 1984; revised August IS, 1984. This work was
sipporled i par by the U.S. Army Research Office under Contract DAAG-29-
S2-K-0123 and die Wave Propagation Laboretory.NOAA.

The author it with the Electrical Engineering Department. University of
Nebraska. Lincoln, NE 683118.
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icy density is characterized byv a set of skewness and peakedness
coefficients [9], [101.

Assuming that k2(h 2) ). I where ko is the free space wave-

number and (h
2) as the mean square height of the rough surface

(see Fig. 1), the full wave solution for the normalized scattering
cross sections per unit area is given by (41, 131.

<li-i P20f,"15 In)

exp Iii (i - i)] d ,rd dzd). (I) ,.

In (1) D
P o depends explicitly upon the polarization of incident

wave (second superscript Q = V-vertical, or H-horizontal) and
the polarization of the scattered wave (first superscript P = V, H)
the direction of the incident and scattered wave normals V,
and hf, respectively, the complex permittivity e and permeability Fig. I. Planes of incidence and scatter and the reference plane (x, z).

p of the medium of propagation, and the unit vector 5(h., he)
normal to the rough surface i1), 121. For a random rough sur-
face

f(x.y. z) =y - h(x,z) = 0 (2a) 11, A2 A,

the unit vector Ai is P_

5 = Vf/l Vfl (2b) :'

where
V f = (- . a x + a y - h ~ i ) (3 a ) A3. . .I

ah/ax h, ahaz (3b) s

and 5., ay, ir are unit vectors in the reference coordinate system
(see Figs. I and 2). The plane y = 0 is chosen to be the reference
plane. The function P2(f, ii'li) is the probability that a point
on the rough surface is both illuminated and visible given the
value of the slopes i(h=, hA) at the point. The vector 6 is given by

Pig. 2. Local planes of incidence and scalier and the local coordinate system.

Vi = if - 7?' = k(f- i') =_ vi. + Uy,+ Vsd

= ko 1(sin O cos o- sin Ot cos e)i, + (cos Of Thus in (6)

+ cos Og)i, + (sin Of sin of- sin O sin ))aIj (4) .R ='hR , V(Y-hF)IIV(y -hF)I-VfI VfI = ii (9)
where AR(x, 1) is the displacement of the small scale surface from

and the large scale (filtered) surface. The distance vector i - 9 can

- 9 = (r - x')i, + (h - h')iy + (z - z)5a also be expressed as

= iy, + (h - h')iy + Id (5) i- = (x - x')i + (z - z')a + (hF - h-)i + (h, - i )

is the vector joining two points (x, h, z) and (x', h', z') on the a (x - X)is, + (z - z')i, + [hF(x - x') + hF(z - Z,)] y

rough surface. The symbol () denotes the statistical average over

the slopes and height of the rough surface. For convenience the + (hR - h') ;i =id + (hR - hR)h (10)
position vectors (from the origin to points on the rough surface) where
are expressed as follows (see Fig. 3):

i =iF+ R i(6) h,=ahF/aX2!h,  and hF=aahFlaz2--. (l1)

in which Thus i4 is the distance vector measured in the plane tangent to
the large scale surface

y = hjAX, z) = 0. (12)

is the position vector to a point on the large scale (filtered)
surface [4). Associated with the large wcle surface is a local id = (r - x')j + (z-z')a + thF(x-i) +h'(Z-'
coordinate system (1, ., 1) (see Figs. 2 and 3) with unit vector

Ri, R2 and R3 such that =XFn +d is (13)

Piz (i X Z5 )/l R X i s I. i3 
=

i. = iI X t (8) in which d and id are distances measured along the unit vectors
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1 4LOCAL TANGENT PLANE

FILTERED. LARGE SCALE

SURARFACE~xz

y-T's (s-s'lg+ (h-hzlz 'zFl h

I _--REFERENCE PLANE, y 0

7' -DISTANCE MEASURED ALONG LARGE SCALE SURFACE
Fig. 3. Decomposition of the composite rough surfs=.

fs and ni3 in the plane tangent to the large scale surface. Thus in which

i~ ( -~' =(v +vh~x8 + u vh~)Z, + V;Qs- h (0 PQ)Of DPQ 2  ;Q,,I h) IR 12p(h,h)

= I- d + V;(A- A) (14) exp Li(. + vyh.)X8 + i(V. + Vyh,)z]

in which vi and v; and vi are components of the vector V (4) in 'dxd Zd dhx, dh, (20)
th e lo c a l c o o r d in a te s y s te m . ( P Q2 - r e 'I Dh .h2

v; and vi=D'R 3 . (15) J 5 f - 2

The scattering cross sections (WO), (1) for composite rough

surfaces can therefore be expressed as follows: exp [ivid + tz 8j did did dhx dhz (21)
and p(h, hA) is the two-dimensional probability density of the

k2< i DPQ 12 slopes. Note that in (20) the integration is with respect to Xd
(o2) = < _.j P " 'di and Zd (distances in the reference plane) while in (21) the inte-a gation is with respect to id and 7d (distances along the large

RI X1 j
2 + X _ I XR ] d-X dzd). (16) scale surface). Thus in (21) use has been made of the relationship

in (16) the term dd d d d (22)

IXR 12 -I(exp (iv,;R))P (17) n- i,
To evaluate (20) use is made of the integral representation of

has been added and subtracted for convenience, The expecta- the Dirac delta functions
tion of exp (iuAR) is the small scale surface characteristic func- XP 1+
tion andp [i(u, + VpA1)X1 + i(t) + L'vhg)za1 d 8

t = (eXP 1F(kR - )) 18) = 40 6(u, + vhA)&(u, + yh,). (23)

Thus on integrating with respect to the slopes h, and As, (20)

is the joint characteristic function for the small scale surface. reduces to

It is assumed in (16) that the small scale surface height is inde- (oPO)F
pendent of the surface slopes ih, h,). Thus the scattering cross
section for composite surfaces can be expressed as a weighted 4 wko,' D;KR()m of two cross sections [4J =

0
2- - -I P(24) ii)P(n)' X"(

(0
"2)
" OlQF+ (OM'), (19) " (oqg 12 I (24)
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in which i, is the value of the unit vector normal to the surface where for a wind speed V = 14 m, the skewness coefficients are

i at the specular points. C2 = -0.1404, C03 = -0.542 (30)

ii = i/v = (it - 8')l if - i' j. (25) and the peakedness coefficients are

In (24) (cY) is the physical optics scattering cross section

for the filtered surface y = hF<x, z). It is multiplied by the C40 
= 0.40, C22 = 0.12, C04 = 0.23. (31)

coefficient Ie 12
. This weighting function which is less than The cross wind and up/down wind mean square slopes are

unity accounts for the degradation of the physical optics cross 2= 0.02988 and o2 = 0.04824. (32)
section due to the effects of the small scale surface that rides U

on the filtered surface. In (29) the dimensionless quantities t and 17 are

To evaluate the cross section associated with the small scale t = hx/o and v?= h:/o.. (33)

surface, it is assumed that the surface hR is Gaussian. Thus

(oP1')R can be expressed as follows [4]: The surface of the sea is assumed to be perfectly conducting for
simplicity. The frequency of the radar is

(oPQ) . (oP-)r (26) f= 15 GHz (4 = 2 cm). (34)

The spectral density function W, for the small scale surface
where is given by

(IDPQI12 p2 (if, i Ii)2

nxp(- ah R W5 =Bk
4  kd < k' (35)

n ay

/pAh_ h.)dh d, 27 in which

2 - (27) B = 0.012 k,=12(cm)
-  (36)

and the wavenumber kd where spectral splitting (between the
and W,,(r, v~)/2

2
m~ is the dimensional Fourier transform of large and small scale surfaces) is assumed to occur is chosen such

((hrA )1" [4]. Thus Wj is the surface height spectral density that [51

function and 1 1 .W,,(v 5, vi) P = 4k 2(2= 1.0 = 2k _B• (37)

Thus

rp (ivid + ivid) did did kd = 0.485 (cm)-'. (38)
(2,r7"2

In Fig. 4 (o
v v

) the backscatter cross section for vertically

1' j , - , polarized waves is plotted as a function of the angle of incidence
x 3 0', for the cross wind, up wind, and down wind directions. The

corresponding result for the horizontally polarized backscatter
W. Iicross section (o"H) is given in Fig. 5. For normal incidence

i-~- , W- t, v1) * W1(vi, vi)- (28) o = 0) there is no difference between the backscatter cross
sections for cross wind, up wid, and down wind. This is because

In (28) the symbol e denotes the two-dimensional convolution for normal incidence, specular point scattering (which is polariza-

of W. - 1 with W1. tion independent) dominates. To notice significant differences in
the backscatter cross sections at normal incidence, it is necessary

111. ILLUSTRATIVE EXAMPLES to consider surfaces with considerably larger skewness and mean

For the illustrative examples considered in this section, the two square slopes. Furthermore, all three cases merge for grazing

dimensional slope probability density function is given by [9] angles. This is because, the principal contribution to backscatter
for near grazing angles is due to Bragg scatter which is given by

I the term (op(?)R 1 (27). in this term the effects of the anisotropic

p() =p(h,h.) = reip [ +I,2+ slope distribution are averaged out and the dependence on wind

2ra~o~, 2 direction becomes small for grazing angles. The anisotropic ef-
fects of the slope distribution are most pronounced around

1' 1 3) q2 _1 1 72 Or, = 400. This is hown in Fig. 6 in which (VV) and (
o
HH) are

2 • _ - 3plotted as functions of the azimuth angle 90* < , < 270 with
the angle of incidence 80 = 40*. The up wind and down wind

I / directions correspond to 0 = 900 and 0 = 2700, respectively, and
+ - Co(E - Q' +3)-4 C2 2( 2 

-
I
)
( / 

- I) cross wind corresponds to 00 and 180.
24 4For the illustrative examples considered here, the terms

1 (oPQ)R, can be neglected for m > 4. Individual terms for the

+ - C8 4(7
4 
- 6n2 + 3 (29) total cross section (a v v) are shown in Fig. 7 for the cross wind

24J case.
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Fig. 4. Daekscaner cross sdion for veflicadly poladzd waves. (X) Cross wind, (0) up wind, (A) down wind.

" IO.W ZLO.m 40.00 SI3 gIIs 7&00 10

Fig. 5. Backscatter cross section for bors'izoally polarizd wave. (X) Cross wind, (0) up wind, (a) down wind.



lO
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. AP-33. NO. I. JANUARY 1981 III

Fig. 6. Plots of thc ackscaner cross sections (uvj (X) and (00^) (U1) as fun io ofthe azimuth angle. The angle of incidence is 04
=30%

Fig. 7. liadividuaterms of theetotal cross sections. Total (a Fj solid line. (v ), (X). (111).. (0). (1.o), + vl A

IV. CONCLUDING REMARKS splitting wavenunsber) provided that A3 1.0. On the other hand
The full wave approach has been used to determine the scatter- the perturbed-physical optics solution for the backscatter cross

ing cross sections for composite rough surfaces characterized by sections [8] is very sensitive to the choice of kj
anisotropic slope distribution functions. A two-scale model of The examples in Section Ill illustrate the polarization depend-
the rough surface was adopted and the large scale surface is ence of the backscatter cross sections for all angles of incidence.
assumed to satisfy the radii of curvature criteria and the condi. The results are giver; for the cross wind, up wind and down wind
tion for deep phase modulation. For the illustrative examples directions. It is shown that the backscatter cross sections are
the large scale slope probability density function is given by the insensitive to wind direction for near grazing and near normal
Gram Charlier expression [9). The small scale surface AR is angles of incidence. They are most sensitive to wind direction
chsracterized by its surface height spectral density function. The for angles of incidence around 40n (see Fig. 6).
random rough surface hseighst hR is assumed to be stationary and The full ways approach can be applied to a wide class of
Gaussian. Thus it is asumied that the slopes pni and the small anisosropic: rough surfaces for which the perturbed -physical
scae surface heights i 5 are statistically independent. The like optics apptoach is not suitable. Furthermore, since the full
polarized backscatter cross sections based on the two-scale model wave approach accounts for specular point scatter and Bragg
were shown to be idepeadent of the choice of kd (spectral scatter in a unifiedi self-consistent manner (1), it is not necessary
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to adopt a two-scale model of the surface and spectral splitting

can be avoided.
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Scattering and depolarization by large conducting spheres
with rough surfaces

Ezekiel Bahar and Swapan Chakrabarti

The scattering cross sections for large finitely conducting spheres with rough surfaces are determined for
optical frequencies using the full wave approach. For the roughness scales considered the scattering cross
sections differ significantly from those of smooth conducting spheres. Several illustrative examples are pre-
sented, and the results are compared to earlier solutions to the problem.

I. Introduction II. Formulation of the Problem
The purpose of this investigation is to determine the The purpose of this investigation is to determine the

like- and cross-polarized scattering cross sections for like- and cross-polarized scattering cross sections at
e, ricaly large finitely conducting spheres with rough optical frequencies for large conducting spheres with
surfaces. Perturbation theory has been used to deter- very rough surfaces. The position vector r, to a point
mine electromagnetic scattering by spheres with ran- on the rough surface of the sphere is (see Fig. 1)
dom rough surfaces provided that the parameter P =
4k (h2) is much smaller than unity (where ko is the r, = hod, + h,6,. (1)
wave number, and (h) is the mean square height of the in which A, is the radius vector in the spherical coordi-
rough surface of the sphere'). However, for large con- nate system, h0 , the radius of the unperturbed sphere,
ducting spheres with 0 << 1, the-total scattering cross is large compared with the wavelength Xo of the elec-
sections are not significantly different from the physical tromagnetic wave, and h, is the random surface height
optics cross section for smooth (unperturbed) con- measured along the radius vector A,. For a homoge-
ducting spheres. neous isotropic rough surface height h, the spectral

In this paper the full wave approach is used to de- density function"". 5 is the Fourier transform of the
termine the scattering cross sections for large spheres surface height autocorrelation function (h (x,z),h'-
with roughness scales that significantly modify the total (x',')):
cross sections. The full wave approach accounts for
specular point scattering and Bragg scattering in a W(o.,s) = - f (huh.) exp(i'.r. + ivuzd)dXdd~d, (2)
self-consistent manner, and the total scattering cross 2

sections are expressed as weighted sums of two cross tn which the symbol (-) denotes statistical average, and
sections.2 In Sec. 1I the problem is formulated, and the (hh) is a function of distance measured along the
principal elements of the full wave solution are pre- surface of the sphere, It is assumed that the correlation
sented. Several illustrative examples at optical distance 1, for the rough surface height h. is very small
frequencies are presented in Sec. II, and the results are compared with the circumference of the sphere. The
compared to earlier solutions based on the perturbation unit vectors i i and rf are in the directions of the inci
approach' and a recent reformulated current dent and scattered waves, and the vector v is given by
method.

3  
= kotl/ - f), (3)

where ko is the electromagnetic wave number (ho

2r/Xo):

A'- -d,.(4)

The authors are with University of Nebraska.Lincoln, Electrical+

Engineering Department, Lincoln, Nebraska 65588-051. in which d5 o, dA, and do are unit vectors in the refer-
Received 9 March 1984. ence coordinate system (see Fig. 1). Associated with
0003-6935/85/121820-06$02.00/0. a point on the surface of the unperturbed sphere is a
0 1985 Optical Society of America. local coordinate system xyz whose unit vectors are

1820 APPLED OPTICS / Vol. 24. No. 12 I 15 June 1985
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in which (a, PQ) is the cross section associated with the
r i large scale unperturbed qurface, and (WPQ), is the cross

section associated with the small scale surface h, that
V-~ is superimposed on the large scale surface. The first

superscript P corresponds to the polarization of the
scattered wave, while the second superscript Q corre-
sponds to the polarization of the incident wave. The
scattering cross section (aPQ)t is given by9

(U = I ()l 2 6
(C ). (10)

in which X' is the characteristic function for the surface
h,:

X(v) (exp(tuh.)), (Q1)
( A. and v is the magnitude of the vector v [Eq. (3)]. thus

Fig. 1. Scattering of electromagnetic waves from a rough conducting the weighting function [X 12 is less than unity. Itap-
sphere. proaches unity for (h") - 0. For Gaussian rough sur-

faces h,,

lx,12 = exp[-4klh.2) cos1(8&/2) = exp(-V2(h2)) (12)

= (A X 6,o)/i X daol, A2 = A = 6,, A3 = Al x A. (6) Since in this work the unperturbed surface is assumed

Thus A2  r!e is in the direction normal to the surface Of to be the surface of a large conducting sphere (d >> X0 ),

the sphere, and A, and n3 are tangent to the surface of the cross section (ac
Q) is given by the physical optics

the sphere. When the distance rd measured along the expression'

surface of the sphere is commensurate with the corre- (atQ) = 6p0)Rpl 2. (13)

lation distance 4, in which Rp is the Fresnel reflection coefficient for

d l[(z - x')Z + (z - z')l1
n 

= (4 + ZI)" <<who (7) vertically (P = V) or horizontally (P = H) polarized

For points on the surface of the sphere at a distance rd waves, and 6pQ is the Kronecker delta. For Gaussian

= 1,, the surface height autocorrelation function is
(hh,) = (h,)fe (where (h2) is the mean square height,
and e is the Neperian number). The surface h, consists -

of the spectral components .00 30.00 60.00 9 0.0 C ,20.On 0 50 E-

kd < k - (V. + V,)112 < k,, (8)

where kd = 27r/d is the smallest wave number charac-

terizing the rough surface of the sphere (d = 2h 0), and
k, is the spectral cutoff wave number.6 Perturbation
theory has been used to determine electromagnetic
scattering by rough surfaces. 1.4.6-  To apply pertur-
bation theory, it is necessary to assume that 3 = 4k02(h)
<< 1. For large conducting spheres, the scattered fields
are primarily due to specular poin. scattering. Thus,
if the mean square height (h 2) of the rough surface is g
restricted by the perturbation condition 0 << 1, the total ,'-
scattering cross sections for spheres with rough surfaces "b
is not significantlydifferent from those of unperturbed '

conducting spheres.
Since the full wave approach 2.9,10 accounts for spec-

ular point scattering and Bragg scattering in a self-
consistert manner, the perturbation restriction need 9
not be imposed on the mean square height (h, ) of the
rough surface. In this work we consider spheres with

no beipsdo h ensqaehih h)o h

large roughness scales whose scattering cross sections
differ significantly from the cross sections of unper-
turbed spheres. Thus using the full wave approach the g
total normalized scattering cross sections per unit
projected area (oPQ) is expressed as a weighted sum of
two cross sections: Fig. 2. Vertically polarized scattering cross section: Lo - .0, 0, totl

crons section (av); 0, (a
vv
) - I RvI

2
; X. (oVV) = IRv×'Xl; +.

(cPQ) = (ceo)l + (aPQ)., (9) (0,VV),: A, (UVV).2.

1S June 1985 I Vol. 24. No. 12 / APPLIED OPTICS 1821
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rough surfaces h, the term (rPQ), can be expressed Mil. Ilustrative Examples
as Assuming a homogeneous isotropic random rough

).= (14) surface h,, the surface height spectral density function

where (2) (Ref. 4) considered for the illustrative examples is
(qQ) f4&CDPQIP2QAiIA) Bk

*=h['J e Dxpl-v)(l,') ''" _ W(v.,v.) - W(k). , < k <k, (18)

exp(-u (41)2 ) W p(h h )dh~dh,.

(15) in which
In Eq. (15) vx,vy, and v, are the components v [Eq. (3)1 k' -V, + v" (cm)- 2. (19)
in the local coordinate system [Eq. (6)] The smallest wave number characterizing the rough

v m vA + vyA + VIA&. (16) surface h. is
The shadow function P2(r1,fiAi) is the probability that k, - (2r)ld, (20)
a point on the rough surface is both illuminated by the where d 20Ao is the diameter of the sphere, and Xo is
source and visible to the observer given the slopes
A(h0,hz) at the point."",12 The function p(fi) = the wavelength of the electromagnetic wave:
p(h,h,) is the 2-D probability density of the slopes h. 2 )
and h. The expression S

P Q 
depends on the polar- k. 0.555 A 10'cm 0ko - - 1.132 x 10' cm-). (21)ization of the incident and scattered waves, the unit The spectral cutoff number is6

vectors i,lf, and fit and the relative complex permit-
tivity e, of the conducting sphere. The function k, = 4.5 X 105 cm-. (22)
Wm(vxv)'2 2

m is the 2-D Fourier transform of (h'h) The mean square height of the rough surface h, is
It can be expressed as follows:

W,(U,-o) ( I) W)J W kdkdo = B -j. (231
22 -) f (hh.) - e.p(iv.., + iu.zd)dxddzd 2 k,'

Thus the value of B JEq. (18)] in terms of the parameter
-fw._ (x. ,v, -.. .- v,)du,dv, 4k'(h2) is

W.-I(o,,u) 0 W1(V. (17) B - k (24)
2In Eq. (17) denotes the 2-D convolution of Wk3) For =2.0(casea), = 1.0(caseb),0=0.5(casec),and

with . = 0.1 (case d) the crresponding values of the mean

It should be noted that for -0 the scattering cross square height are
section [Eq. (9)] reduces to the scattering cross sections - S0.390 X 10

-
10 cm 

, 
0 - 2.0,

for large conducting spheres, for P << 1, it reduces to the ' 0.390 x 10-0 cm' , 2 = 2.0,
perturbation solution, 7 since in this case I XI I 1, and 0 2195 X 10 '-1.05)
Eq. (14) reduces to the leading term m = 1 (Bragg | 0.975 X 10-1 cm2.f = 0.5,
scatter). In a recent analysis of wave scattering from 1 0.195 x 10-Il cm2,6= -0.I.
a large sphere with rough surface (using a reformulated Thus
current method) Abdelazeez' obtained a solution which
corresponds to the first term in Eq. (9). Barrick,' who ( 0.250 X 10-',0 - 2,0,
considered backscatter by spheres with small scale 0125 X 1 (26)
roughness, presents a solution that accounts for (a PQ) 1  0.625 X 10-3,0 - .5,
and the first term in Eq. (14). The weighting function 0.625 X 10-3, B = 0.5.
IXi 1 2 that multiplies (vtQ) accounts for the degrada- .125 x 10. -0.1.
tion of the specular point scattering cross section due For X 0 0.555 X 10-4 cm the relative dielectric coeffi-
to the superimposed rough surface h,. The second term cient of aluminum isi3

in Eq. (9), (a, 5 V(), accounts for diffuse scattering due
to the rough surfaceh. Theleadingterm in (oP), (m - -40-412. (27)
= 1) corresponds to Bragg scatter.s.,4A In the next The permeability of the sphere is assumed to be that of
section illustrative examples of spheres with very rough free spacepo 1. For all the cases considered here, the
surfaces are considered. The significance of the dif- mean square slope of the rough surface h, (with respect
ferent terms of the solution (9) are considered in detail, to the surface of the unperturbed sphere) is <0.02. The
and the results are compared to earlier solutions. On projection (in the 0,oA. plane) of an elementary area
replacing (4.Q) [Eq. (15)) by the expression for large of the sphere oriented in the direction i is h cost
scatterers of arbitrary shape (such as ellipsoids) one can sinydyd6, where - and 6 are the latitudinal and azi-
obtain the effects of surface roughness on large scat- muthal angles in the spherical coordinate system.
terers of any desired shape. Therefore in Eq. (15)

1822 APPLIED OPTICS I Vol. 24. No. 12 / IsJuM 1985



llog

109

00 30.-00 60.00 0.00 120.00 S0.00 160.00 f O 30.0 60.00 10.0 20.0 50. i$0 .

,.
5 , 0

4

9

A 4t

Fig. 3. Horizontally polarized cross section 1.0, 0, total cross
section (HH); 0, (o .

H
) - IRHId; X, (OaH)t = lRHxi

0
; +, Fig. 4. Cross-polarized crosssection,.$ 1.0, +.total cross section

Ao .l , ( H ) .2 . ( 0
v H )  =  ( O V ) ; 0 . ( V V H ) ,1 ; A . ( oU V H ) .2 .

p(h.,.)dh.dh. - p(y6)dyd6 -sin-y cosydyd is no physical optics contribution to the cross-polarized

h d cross section. Note also that for backscatter, 0; = 0,

(eV ) becomes vanishingly small. The like- and
0 < A < 0 < 5 < 2r. (28) cross-polarized cross sections for = 2.0 (case a), 0 =

2 1.0 (case b),0 = 0.5 (case c), and/ = 0.1 (case d) are

In Fig. 2 the vertically polarized scattering cross presented in Figs. 5 and 6. Thus one finds that for 0 <
section (a vv) [Eq. (9)] is plotted as a function of the 0.1, the terms (u), for m >- 2 are negligible. Fur-
scatter angle 06 (see Fig. 1). The parameter W = 4k2(h,2) thermore, since e-0 "-- 0.9 for / 0.1, the perturbation
= 1.0. In addition to the plot of (a VV) (Eq. (9)] (the solution' is approximately equal to the full wave solu-
total cross-section) plots are also given for the individual tion. For small values of # the full wave solutions are
terms in Eq. (9): (qvv)j = IRvxi12, (Gvv).,, and also approximately equal to the solutions obtained using
(vv),2. For = 1, theterms (cvv), form?: 3 are the reformulated current method 3 since the second term
negligible. The value of (rvv) - IRvI 2 (corresponding in Eq. (9) ( VV), becomes very. small compared with
to the physical optics cross section for the unperturbed (ovv)1. However, Abdelazeez's solution for (aVH) =
sphere) is also given for the purpose of comparison. (uVi) is zero. When the scale of the roughness is very
Note that the total scattering cross section (a vv) for small (A < 0.1), the scattering cross sections of rough
the rough sphere is significantly smaller than that of the spheres are not significantly different from that of un-
unperturbed sphere (0 vv). Furthermore, for P = 1.0 perturbed spheres. As # (the roughness of the surface)
the contribution of the term (aV). [Eq. (9)] is not increases, the weighting function IX I 2 decreases, and
negligible, and (a vv) cannot be approximated by the the contribution of the term (rgP), increases. Fur-
first term (aVv)1 = IRvxi 2, which corresponds to the thermore, an increasing number of terms (OPQ),, (m
solution based on Abdelazeez's reformulated current - 1,2,3...) needs to be evaluated asf Pincreases. (For
method.3 The corresponding results ( - 1.0) for the ft = 2.0, m -. 1,2,3 is used). In Figs. 5(a)-(d) the dif-
horizontally polarized scattering cross sections (eHH) ferences between the full wave solution, Barrick's so-
are presented in Fig. 3. These results are similar to the lution, and Abdelazeez's solution for (a VY) are shown
results for the vertically polarized waves except near the to increase progressively as 0 increases from 0.1 to 2.0.
quasi-Brewster angle. In Figs. 6(a)-(d), the full wave solution and Barrick's

The cross-polarized cross section (aVH) V(Hv) is solution for (a v H) are compared for/f between 0.1 and
presented in Fig. 4 for l = 1.0. In view of Eq. (13) there 2.0.

l5Jww 985 /Vol. 4. No12 IrePLIE OPTISn182
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F ig. 5. Vertically polarized scattering cross section for (a) 0 = 2.0,
(b 0 = 1.0. (c) fi - 0.5, (d) 05 - 0.1; A. (a VV) total cross-section, +,
(0vv), + (aVv),i (Barrick's solution), 0, (,vv), - IRvx'I' (Ab-

delazeet's solution).

IV. Concluding Remarks For the purpose of analysis, the surface roughness is

The full wave approach has been used to determine characterized by its spectral density function W or by

the scattering cross sections for electrically large con- its autocorrelation function (hh'). A detailed study

ducting spheres (d >> Xo) with rough surfaces. The of the like- and cross-polarized scattering cross sections

total scattering cross sections are significantly modified at different frequencies could shed light on the surface

by the rough surface when the parameter a = 4k02(h2) roughness of the conducting particles (the inverse
> 1. In these cases the perturbation solutions are not scattering problem).

valid. For/f << I the full wave solutions reduce to the
perturbation solution'; however, for P << 1, the modi-
fication of the total scattering cross section is not very
significant. The full wave solutions are compared with
the perturbation solutions and a recent solution based
on the reformulated current method.3 The full wave
solutions presented here can also be used to determine
the effects of surface roughness on the scattering cross This investigation was sponsored by the U.S. Army
sections for large conductors of different shapes (such Research Office contract DAAG-29-82-K-0123. The
as ellipsoids or cylinders), manuscript was typed by E. Everett.
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Fig. 6. Cross-polarized cross section for (a),6 2.0. (hb) 1.0, (c)
-0.5. (d) 0 - 0.1; A, (#VH). . (O.V). total cross-section, 0,

(a vf)1, - (amV)i(Barricks olution).
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SCATTERING AM DEPOLARIZATION BY CNDUCTING CYLDmERS 113
WITH VERY ROUGH SURFACES

Ezekiel lahar
and

Mary Ann Pitzwater
Electrical Engineering Department
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Lincoln, RE 68588-0511

p.. i . Like-and cross-polarized scattering cross sections are determined at optical frequencies for

conducting cylinders with very rough surfaces. Both normal and oblique incidence with respect to the

cylinder axis are considered. Th full-wave approach is used to account for both the specular point

scattering and the diffuse scattering. For the roughness scales considered, the scattering cross

sections differ significantly from those derived for smooth conducting cylinders. Several illustrative

examples are presented.

17. 1. Introduction

The problem of electromagnetic scattering by finitely conducting circular cylinders or spheres

has been dealt with extensively in the technical literature. Perturbation theory has been used to

extend these results to scattering by slightly rough circular cylinders or spheres (Barrick 1970).

22However, perturbation theory is limited to surfaces for which the roughness parameter 0 - 4k2<h > <0.10 5

(k° is the electromagnetic wavenumber and <h2 > is the mean square height of the rough surface, Brown

1978). For 0 < 0.1 the scattering cross sections are not significantly different from those for

smooth conducting circular cylinders.

In this work the full-wave approach is used to determine the like- and cross-polarized scattering

cross sections at optical frequency for finitely conducting cylinders with roughness scales that

significantly modify the scattering cross sections. The radii of curvature of the unperturbed cylinders

considered are large compared to wavelength A. (However, the cross section of the unperturbed

cylinder need not be circular). Both specular point scattering and diffuse scattering are accounted

for in the analysis in a self consistent manner and the-cross sections are expressed as a weighted sum

of two cross sections.

In Section 2 the special forms of full-wave solutions are presented for long cylinders with

mean,orecular cross sections and both the specular point and diffuse contributions are identified.

In Section 3 several illustrative examples are considered for cylinders with roughness parameter

1 " 1. The rough surface is characterized by Its surface-height spectral-density function. The

results are compared with solutions based on the perturbation appz acb.
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2. Formulation of the Problem

The scattered radiation fields for two dimensionally rough surfaces can e expressed In matrix

form as follow@ (labar 1981) Jf afDVDV

S . 1 ) D I G RII exp[tiYQ 1 ds 
( .1)

in which GVf and G are the vertically and horizontally polarized (electric or magnetic) fields

scattered at a distance r in the direction of the unit vector n . Similarly G and C are the

vertically and horizontally polarized fields incident (at the origin) in the direction of the unit

-Ivector n . The scattering matrix D is given by

D - Cin Tf F T
1  

(2.2)0

In which the transformation matrices Tf and Ti relate the scattered and incident waves in the lncal

planes of scatter and incidence to reference planes of scatter and incidence while I is the scattering

matrix defined in the local planes of Incidence and scatter. The coefficient C in
o

C - -ikoexp(-ikor)/2rr (2.3)

the vector 7 is (-f-;
) - V + v y + v I (2.4)

an C( In -;I ;x yy
and . (2.5'

where ; is the unit vector normal to the rough surface S. The position vector to a point on the rough

surface is r8 and for a reference cross sectional area in the x~z plane

dS - dx dz I(n. F) (2.6'

y
The expression (2.1) Is invariant to coordinate transformations. For very (infinitely) long cylinders

the surface integral (2.1) can be reduced to a line integral by noting that

exp(iv z)dz - 27r6(v) . (2.7,

On evaluating the expressions for the radiation (far) fields from the expreaeions for their

transforms (using the steepest descent method. Dahar and kajan (1979) It can be shown that

Cf - Gi JOi exp[£9.(x ix+ y' I )Jdx/(i-'i (2.8)
0 x~Y( y (26

n which

Go " " lko  slo (2.9,'
0 UJ/fts i~x~~I xlik. (P comS+e. n 0 j 2

and for oblique incidence (with respect to the z exis) the direction of the incident plane wave Is

;I --case ; + inae . (2.10)
0y 0

366



The direction of the scattered wave is (Bahar 1981) 115

COW s + COW " + " in" "isVS (2.11)

(where the polar angle is measured vith respect to the y axis. see Figs. I and 2). In view of (2.7)

sine f "f . sin (2.12)
0 0

Thus (2.11) caz also be expressed as

case (Sin co#,; + " (2.13)

w vhere the azimuth angle *' Is measured In the xy plnai th #' - 0 ee the y xis (see Figs. 1 and 2).

The explicit expression for the scattering coefficients D (2.2) have been presented earlier when the

* reference incident plane is normal to nlx a and the reference scatter plane is normal to fx •
y y

-1 -
. ovever, if the plane of incidence (and scatter) Is taken to be the plane normal to n and u (the

normal to the cytinder at the specular point) (Barrick 1970), in these expressions for Tf 
and T the

unit vector ymust be replaced by the unit vector

-;/v - sin(W'/2); + co,(*'/2);y r

81"in0os a + (coos + co.e 
2

-/ " (2.14)

[2 cove (Coso + cosof)P

The .ormalized scattering cross sections (or scattering width) ere for P.Q V.H

-wQ>. Cp 2_2s
iG Qil 2  -e

-<X a k P px dx' > (2.15)

where the radius vector to the surface of the cylinder is
(z a-z+ y 8) 1.6

a ('%);r " (8+.) a

and a - (:2+ 72 is the radius of the unperturbed cylinder, The characteristic function X and the

joint characteristic function X2 for the randous rough-surface height h° are

X - <ezp(lv h)> (2.17)

where

v - 2k 0coo('/2) (2.18)0

and

X2 .<eziv(h,-h;)]) . (2.19)

For Gaussian distributions

lxi 2 . exp(- cos2(,/2)] (2.20)
and

X2- Ixl2 ez'.(v2 a>) (2.21)

367
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whereB 4k
2
<h

2
> 1 (2.22)

0 a

and the surface-height autocorrelation function <hh'> is the Fourier transform of the surface height
0"

spectral density function W(k) f -h (
" k _ - sh' exp (ikt)dt. (2.23)

4 21rja

In (2.23) <hsh'> is assumed to be a function of the distance measured along the cylinder's circumference.

The normalized scattering cross section (2.15) is expressed as a weighted sum of two cross sections

(Bahar 1981, Bahar and Barrick 1982)

< a ..x 2 < o< Q > + < > (2.24)

The first term in (2.24) is the physical optics contribution < OP  > modified by the coefficient IX1
2.

It can be shown (using the steepest descent method) that for a conducting cirtular cylinder2 ..cos(# 2) 1 D

< ol: > ' 0 2
7racose exp(ivx x + IV y)dx .. e2i (.5
~ 0 ~ -a Dn. cs n 1a (225

y n-n

When the plane of incidence is taken to the normal to n x

- cos(O /2)IV 6 P (2.26)

in which R is the Fresnel reflection coefficient and 6po is the Kronicker delta.

Due to the surface roughness the contribution due to specular scattering is decreased by the

factor lXt2 (2.20). The surface roughness also gives rise to the diffuse scattering term

<O
P Q  

>g R <a < Q > ,.m

2 (2.27)

__v._naCT) p2
in11 coseo -V/2 ia --Jd

where

!,C. L 7<k b>m ep~iK~dT(2.28)
22m 2W

in which v and VT are the components of ; (2.7) normal and tangential to the surface of the unperturbec

circular cylinder and P2 (nM, nal•) is the shadow function (Bahar and Barrick 1982).

3. Illustrative Examples

Assuming that the random rough (homogeneous and isotropic) surface height autocorrelation function

<hh'> is a function of distance measured around the circumference of the unperturbed cylinder, we

consider in the following examples the surface-height spectral d-nsity function W(k) (2.23) given by

(Rice '1951)
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2B (k-kd)k 117

2 M4 d  c (3.1)

where

kd - 2/a k - 4 k (3.2)

and W(k) peaks for k-ad K 0. 3 kd. The electromagnetic wavelength is

° -10 )I (3.3)
0

and the corresponding relative (complex) dielectric coefficient for aluminum is

C - -6000(1 + i) (3.4)

[ (where an exp(iwt) time dependence for the fields is assumed). The radius of the unperturbed cylinder is

a - 2.5 X . (3.5)| 0

The shadow function is a product of the unit step functions u

n G (i ) - u(
f .

) u(-.) (3.6)

The constant 3 in (3.1) is determined by the surface roughness parameter
Q 23 - < h 

2 >
2 2o s

In "4 t:'s 3, 4 and 5 <0W> <O > and <oHV> - <oV> are plotted forD - 30
° 
as functIons of 0'

0

for cylinders with smooth (unperturbed) surfaces ,(+) and random rough surfaces, (0). The incident and

scatter planes are normal to -n i
a

y 
and 0f.ay respectively. Note that for finitely conducting smooth

cylinders <oW'> and <OEM> are very small for 0' - /2, and for 0' - 0 these normalized cross sections art

near unity. For the corresponding rough cylinder, the cross sections do not display the sharp minima an,:

near normal incidence they are significantly less than unity. The cross-polarized cross sections

<OvH> - <o> are significantiy different near normal Incidence. For the smooth cylinder <onV> vanishes

for *' - 0, while It is about--5db for the rough cylinder. Thus as the surface roughness increases all

three plots of the cross sections tend to flatten out (as functions of #') except near grazing

angles I' r where the crosp sections for the smooth and rough surfaces merge.

In conclusion, therefore, even a surface roughness corresponding to B - k
2 
<h> 1 cannot be

0 a

ignored since it has the effect of making the scattered fields more isotropic and unpolarized. Using a

perturbation approach to solve the problem one is restricted to values of 8< 0.1 (Brown 1978). In this

case the perturbation diffuse scattering term can be shown to correspond to the first term <o
PQ > 

in the
Rl

expression for <0.aQ rIn this case, however, the effects of surface roughness arepractically insignificant.
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The unified full-wave solutions for the vertically and horizontally polarized scattered radiation fields and the like-and cross-polarized scattering cross sections for random rough surfaces are presented in this paper. They are
compared with the corresponding physical-optics, geometric-optics, and perturbation solutions that are obtained on
adopting a two-scale model of the composite rough surface. Computations based on the unified full-wave solution
(which accounts for both specular point scattering and diffuse scattering in a self-consistent manner) as well as those
based on the two-scale representation of the rough surface are provided for several illustrative examples. It is
shown that the two solutions for the cross-polarized backscatter cross sections differ significantly for near-normal
incidence. The solution based on the unified approach is consistent with experimental data.

1. INTRODUCTION v = (Ai - t)ko = V,6, + .ti, + c,', = kA - kog,  (2.2)

Solutions for the like- and cross-polarized scattered radia- where ko = w(pofo) t0 is the free-space wave number of the
tion fields are presented for rough surfaces using the full- electromagnetic wave. The integration is over A,,,, the illu-
wave approach.- 3 

The full-wave solutions account for spec- minated and visible portions of the rough surface, and
ular point scattering and diffuse scattering in a self-consis-
tent manner. Unified full-wave expressions for the like- dA 

= J dxdz/• a A,,  .dA = dA,
and cross-polarized cross sections are also presented for ran- f E l "JA
dom rough surfaces. In addition, on adopting a two-scale
model of the rough surface, the cross sections are expressed (2.3)
as a weighted sum of two cross sections. The first accounts where t is the unit vector normal to the surface f(x, z) = 0,
for specular point scattering from the large-scale filtered h d + 6 Aid
surface hi, and the second accounts for diffuse scattering = vf/Wfi = ,
from the small-scale surface h, that rides on the large-scale (I + h, + h,2) '
surface h. The solutions based on the two-scale model are ah h
shown to be consistent with the corresponding perturbation, h. = - , h, = L ' (2.4)
physical-optics, and geometric-optics solutions.

In Section 4 several illustrative examples are presented and r is the position vector to a point on the rough surface.
that use both the unified full-wave expressions and those The elements of the 2 X 1 column matrix G are the incident
based on the two-scale model. The discrepancies between vertically and horizontally polarized complex-wave ampli-
the two solutions for the like- and cross-polarized backscat- tudes G vi and GHi at the origin with t x 6, defined as the
ter cross sections are examined in detail. In particular, near vector normal to the plane of incidence. Similarly, GI is a 2
normal incidence (6o - 150) there is a difference of about 15 X I column matrix whose elements are the vertically and
d1 between the two computed values of the ratio of the like- horizontally polarized complex-wave amplitudes GV and
to cross-polarized cross sections (rHH)/(cVH) (V and H cor- GH( (with tt x 6, defined as the vector normal to the scatter
respond to vertical and horizontal, respectively). The uni- plane) at the point given by the position vector
fled full-wave solution for the ratio is consistent with experi-
mental data. r/= x/, + ,ld, + za6, = r4 It. (2.5)

Thus
2. FORMULATION OF THE PROBLEM Gi (G") '(Ev) (H",]  (2. a)
The full-wave solution P-. the radiation fields scattered by Gh' E HHi)

two-dimensionally rovgh surfaces f(x, z) - y - h(x, z) - 0 is and
expressed as follows i, matrix notation (see Fig. 1): G G\ f (EV)' (Ht

GI'Go[ D(li", A)expliv . rjdAGi a SG, (2.1) wa = E ff = ts (26b)
A ' where qo - (po/o)O is the free-space wave impedance. The

in which A, and At are unit vectors in the directions of the coefficient Go is given by
incident and scattered fields, and the v-ector v is Go = ko2 exp[-ikorfj/2rikor, (2.7)

0740-3232 Ot225.09$02.00 e 1985 Optical Society of America
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coordinate transformations, and they satisfy the duality and

reciprocity relationships in electromagnetic theory. In Eq.
(2.1) multiple scattering and the contributions from shadow
regions of the rough surface are neglected. Explicitexpres
sions for the local scattering matrix D(hA, ) [Eq. (2.8)) are
found in the published literature.'

The full-wave solution for the scattered field can be ap-
plied to random rough surfaces.

2 
Thus the scattering cross

P.-. sections per unit projected area Ay for an incident wave with
polarization Q = V or H and a scattered wave with polariza-

>tion P = V or H are given by

(CA') ni

r']dxdx'dzdz' (.9

X exp[(iv - (r - '/1 (2.9)

Fig. 1. Planes of incidence and scatter with respect to the refer- in which the symbol (.) denotes the statistical average over

ence-coordinate system. (Mean reference plane for rough surface is the heights h, h' and the slopes h, W'. Theprobability-den-

y - 0). sity functions for the random slopes h, f' and random
heights h, h' are assumed to be independent. In addition, it

is assumed that the slopes are more strongly correlated than
the heights [p(h, ') - p(h)6(h' - i)]. In this paper the

(A,' -Az. 3 rough surface is assumed to be isotropic (independent of
direction), and its characteristics are independent of posi-

,tion (r). Thus the rough-surface height characteristic func-... 2. "tion

2 " x(uyh) = (exp(ivh)) f exp(ivh)p(h)dh (2.10)

is independent of position, whereas the rough-surface-
height joint characteristic function

. X2(u,.h - vyh') = (exp[it,,(h - h')

= expliu,(h - h')[p(h,h')dhdh' (2.11)

is only a function of distance r measured in the (x, z) refer-
ence plane

rd = (X - x')al + (z - z')ll

Fig. 2. Local planes of incidence and scatter and local-coordinate Ir1 r = [(x - x')
2 + (z - z')1

2 . (2.12)
system (01, A2, h3) In Eqs. (2.9) P2(Af, hih) is the probability that a point on the

rough surface is both illuminated (AW) and visible (Wl), given
and a supressed exp(iwt) time dependence is assumed in this the value of the slope (A) at that point.'
work. Since the full-wave solution [Eq. (2.9)1 accounts for both

The like- and cross-polarized local scattering matrix specular point (physical optics) scattering as well as diffuse

DVVDVff scattering in a self-consistent manner, there is no need to
D(A

f
, h

i
) - D = (-

i'. A)7fF7i (2.8) adopt an artificial two-scale model. To use the two-scale
model, it is assumed that the surface hi(x, z) consisting of the

is derived by (1) using the 2 X 2 matrix '{(h
i
", h

i
) to trans- large-scale components of the surface-height spectral-densi-

form the incident vertically and horizontally polarized wave ty function W(vu, v,) is independent of the surface h,(x, z)

from its representation in the fixed reference coordinate consisting of the small-scale components of the surface-

system (a., d,, a) to its representation with respect to the height spectral-density function. The surface-height spec-
local coordinate system (A,, AZ = A, A3) [the unit vector Ain is tral-density function is the two-dimensional Fourier trans-
the representation of the vector h

i 
in the local coordinate form of the rough-surface-height autocorrelation function

system (see Fig. 2)], (2) using the 2 X 2 local scattering (hh'). Thus
matrix (-h

i
- A) F(Al", hia)dA to account for like- and cross- W(v,, V,)

polarized scattering by an element dA of the rough surface , (hh')exp(iv -rd)dxdZd
(Al" is the representation of the vector il in the local coordi- 4 4wr )_.

nate system), and finally, (3) using the 2 X 2 matrix 7Y(AI. Ir-
A/") to transform the scattered vertically and horizontally - (hh')Jsk)rdr, (213a)

polarized wave from its representation in the local coordi-

nate system to its representation in the reference coordinate where Jo is the Bessel function of order zero and the spatial
system. The full-wave solutions [Eq. (2.1)1 are invariant to wave number k is
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k ff v, = (v,
2 + V,2)I

/2,  (2.13b) where

in which use has been made of the fact that (hh') is only a Q(n19, n ) =vyf(X-Ix')exp(iv-rd)dxddZd, (2.18b,
function ofr. Similarly,

[ - W(v, v,) AN(Af, 9i,9)=
1 
- P2, (2.18c,

(hh') = ] exp(-iv- rd)dv,dv, T v)A - )

=fi 2v f,_ ) Jo(
k

,
)h d h 

- R(-)(hl), (2.14) p(h)d1 = p(h,, h,)dh,dh,, (2.18d,

4 ( and

in which IR(r)l -< 1 is the normalized correlation coefficient (o) r = IxJA(h, 9', 9,) [Q,(ht
, 
W)

and (hl) is the mean-square height

(h) = (hh'),. o = 2. W(k) dk. (2.15) + ;-ux'exp(ivx + ivz)dxdzJ

Thus, using the two-scale model, it is assumed that the large- + I APQ(h1,9h',)h d,Q,, h', ,)p(h)dh

scale surface hi is associated with the surface-height spec-
tral-density function W(k)U(kd - A) and the small-scale _lxI(c-^) + (cr),, f2.19a)

surface h, is associated with the surface-height spectral- where
density function W(A)U(A - kd) in which U(-) is the unit (X21 - lX1l)exp(iv. r)dxdZ, b
step function and kd is some arbitrary value of k where Ql 2 

1  (2.19b)

spectral splitting is assumed to occur.s Brown chooses Ad Q,(h
I, 

h
i , 

m 2 f (x2, - Ix12)exp(iv
" 
r1d)dx ddzl,4 (2.19c)

such that the parameter I ' n
In Eqs. (2.18b), (2.19b), and (2.19c) the integration limits are

fi4k, h,) =0.1 (2.16) (-, -) since L,, L, >>rT and APQ(1f, A&,h) is defined in Eq.

satisfies the perturbation condition for the small-scale sur- (2.18c).
face. However, he shows that the computed value of the To derive the first term in Eq. (2.19a), the slope-depen-
scattering cross sections critically depends on the choice of 0 dent function APQ(il, A, 91) is replaced by its value at the
and therefore on the specified value of Ad. Bahar and Bar- specular point where
rick' considered the two-scale model using the full-wave
approach. It is shown that if kd is chosen such that deep A1 - A, = v/v, v = 1 = v- i ,. (2.20)

phase modulation occurs, it is necessary to choose/f > 1. For surface-height probability-density functions that are
For a range of values of kd corresponding to 0 between l and Gaussian
2 it is shown7 that the values of the scattering cross sections
do not depend on kd. For problems of scattering by random [xV = exp(-v,(h2 )) << 1, (2.21)
surfaces the dimensions of the projected area Ay = 4LL, are
such that L, >> r, and L, >> T, [where R(r,) = exp(-1) and r, x2' - ep(-v,(h,

2 ) + v,,2(hthi')) = exp(V' 2
(hgh1'))Jx 2

is the correlation lengthl. For distances r >> r,, X2 - Id ,  
(2.22,

since (hh') - (h0). Thus, assuming statistical indepen-
dence between the surfaces h, and h, [p(h, h ) 

= p(hi)p(h,)], Thus for ko2(h2) >> I it can be shown that the two-dimen-
the characteristic and the joint characteristic functions of sional Fourier transform [Eq. (2.19b)] is given by
the total surface are expressed as Q2-

, 
h

i) 
= 4,r2p(h,), (2.=

xx'' fi
t x' x

s X(v. •9), X
t 
a o)

X= X 2 X i). 5 a h) (X,), Yin which p(h) is the slope probability-density function at
X2' X2(v " 

A),, ( 17a) the stationary phase points3

X2 ' x21x2' = (X2I - Ix1
2)ll12 + (Xs - Ix2)Xi + IxIx12

,

(2.17b) P(An) - p(h, h,) -2 ex - 2]

in which the superscripts I and s denote quantities associat- 2
ed with the large- and small-scale surfaces, respectively. ex - (h, + 

h
,)1

Using the two-scale model, it is also assumed that tht slopes 2 '[ 26, ' (2.24)
for the small-scale (perturbation) surface are small such that
the slope probability-density function for the total surface is in which the value of the slope at the specular point is
equal to the slope probability function for the large-scale (h,2 

+ _,'), tan2y, = V,21
,

surface p(h) =p(A,)(1i = vfl/(vf) and f# = y - hi). Thus the
unified and two-scale expressions for the scattering cross A.- a, = cos y, (2.25a)
sections [Eq. (2.9)] are, respectively,

IV and the mean-square slope g.2 is(arN)u = j AP(h, h
i', h)p(91)d Q(h1

9
, 9')-

1 4 2 " W(k)k'dk. (2.25b)

+ _ It,.x I exp(iv,x + ivuz)dxdiL'J (2.18a)

A, Ihem the first term in Eq. (2.19a) is given l-y
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1 IloW~~x1
2
AN(6 .. ,6,fl4r'p(6,) (oP'), = ArQ(A,',A)p(A)dAfQ( /, ')

+ A)jv,x ' sinC2(vAL.)snC2(vrL,), (2.26) + A:,IvxI' sinc'(vL,)sinc'(vL,)J (2.32)

in which sinc(a) - sin(a)/a, and Ay = 4LL, is the projected and

area of the rough surface on the x, z plane. In Eq. (2.26) (eQ) = IX (;
2
A" (6/, fi, 6,)[Q,(6', A-)

C (e'Q)1 is precisely the physical-optics solution for scattering + AJ,, xl 2sinc2(t,,L )sinc?(,,L,)]
by the large scale (filtered surface). Thus the coefficient"
I x' < 1 accounts for the degradation of the physical-optics + f A"' ( ', A )- 6,Q (ff,

A (specular point) contribution that is due to the small-scale . )p(6)d6. (2.33)
surface. To facilitate the computations in Eq. (2.33), in which Q, is a

Toderive the second term in Eqs. (2.19), it is assumed that function of A for a given v and R(c), a set of values of Q,/V 2 is
over a correlation length of the small-scale surface, the large- first computed and stored as a function of
scale surface is approximately flat and that the small-scale
(perturbed) surface height is measured normal to the large- vA = (-uzh, + Uy - Uvh,)/(] + h,2 + hh,)1/2. (2.34)

scale surface. Thus The integration with respect to di = dh,dh, is performed
v- (r - r') = v- (r, - r,') + v(h - h')d using values of Q, interpolated from the stored set. For

S- -Gaussian surface-height probability-density functions,
-v -rid + v.6(h - h'), (2.27)

in which the distance rid is measured along the large-scale Q.A', A) = 2XL',
2  eXp(-,,1

2 (h, 2))

surface in the local coordinate system (h 1, '2 = A, f): X lexp[,V (h,2)R(r) - I)
r &= xd fal + ZIAdo,  Ir, = r 1 = (xa,

2  
+ zt)

y r
. (2.28) × > o(Vt l)rtlt

Thus, in the expression for (^N),, the integration is, with n r't2vJ x,(v (2.35)
respect to distances, measured along the large-scale surface kI< I (

and not the reference surface. This is in agreement with the Thus for A - a- and 0 << 1 the last term in Eq. (2.33), (e ).
expressions obtained intuitively by Wright and Valen- reduces to the perturbation solution 3(oe ), an be egarde as anaverag of th scattreddpo e to th (Wp= rtubton',X( soluti Ff 1  ~ Wv
zuela" "mostly based on physical considerations." Thus
(oc'Q),can be regarded asan average of the scattered power (oN), - (UN)p=s 0 c'x'v)- 6)F(6

1
, Oi'l

2
NV,z).

from patches of slightly rough surfaces that ride the large-
scale surface. Brown's

s solutions, which are based on a (2.36)
combination of Burrows's perturbation theory 0 and physi- Note that Eq. (2.33) reduces to Eq. (2.32) if we set (h12) -
cal optics," are in agreement with the full-wave expressions 0 and that Eq. (2.32) reduces to Eq. (2.33) if we set (h, 2

) - 0
for (oN), only in the limit of small-scale slopes, since in his and replace AP'(hf, hi, ) by AP"(6f, h', A.). The term
work h, is measured normal to the reference plane. Howev- containing the product of the sinc functions is the coherent
er, in Burrows's perturbation theory the small-scale surface scattered field. This term vanishes as I )()V -)J

2
- 0.

height h, is measured normal to the large-scale surface hi. For cases in which the physical-optics solutions are valid,
The two-dimensional Fourier transform [Eq. (2.18b)] can the corresponding geometrical-optics expressions for (aPN),

be expressed as are obtained by replacing A by A, in Eq. (2.1) and integrating
over the area A,, (using the stationary phase method) before

Q(A Ai) - 2.v, (X2(v,) - x(vX2)Jo(vr)rdr, (2.29) the expectations (-) are evaluated. Thus in the neighbor-
hood ofa stationary phase point r = cop, where v, + vh, = 0

since the surface-height correlation function (hh') is only a and v, + vA), = 0,2.12 it can be shown that
function of r - ,d =- r4. The corresponding expression for (exp[iv-r dXdz = expfiv .r,,
the Fourier transform IEq. (2.19c)] is dependent on the f, f
slope. Thus iv. 6 +

Xexn-2jh h.or
2-+ h,.o J dxdz

Q,(
1, A', h) - 2rtr5 f (%'(v -h) - 2 "2 Ijp

is exp(iv • r,,) (2xi)

- Ix'(v - A)')Jo(v,,1,r)rd ,,. (2.30) v n,(A(h.P,,PP2" v -, = 2k,(-A' - A,), (2.37)

in which in which the integral has been expressed in terms of the local
coordinates at the stationary plane point (x. y., zp) associat -

v • rd v .(xidA, + Z 3 ) = V,1Xa + 'ItZ, " (2.31a) ed with the unit vectors (A,, 62 - h, 63), A,, and A3, the
vectors in the tangent plane, are chosen such that the princi-

v.A 
5v,.,h v, f -J, ,+ s-,2]t12, (2.31b) pal radii of curvature rp - II/hJ and r, , I l/h,, are

measured 'dong the A, and A3 directions. As seen by an
and o, , Vd, and vU are the components of v in the local observer in the region y > h(x, z), the curvatures h,.P and
coordinate system (6,, 62 = 6. P-h ). Thus the scattering cross h,,, are positive when the surface is concave. They are
sections can be expressed as follows for the unified and two. negative when the surface is convex. When h,,p or h,,, is
snale models: negative, the curvatures are expressed as (h,)1 = i/(rp)M
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and (h,,,)1
'
2 

= i/(rp)'0 . Thus the geometric-optics contri- in which Ko and K, me the modified Bessel functions of the
bution to the normalized cross section from N randomly second kind and of order zero and one, respectively.15 The
located specular points per unit surface area is mean-square height of the rough surface is

( Tp 
= 

Yr,,M[7Fr'IA",NIP 2(fhl
, 
Ai .

), (2.38) (
2 ) B/16W

2
1 + 2/k, 2 )31 = B (3.5)

in which -

R .) 0 ( and the mean-square slope is,2

0 R( = B [ 
1
ln kV.2 1 (6 + 15.

2k 
2 + 11k ') k , 1

and Rv(6op') are the Fresnel reflection coefficients at the I j 
2  

12W + A 2)3

specular points where the local angles of incidence and scat- B(In kA - 11/12). (3.)
ter are -i. = fa" i, = cos 6,pi. Note however, that the
surface will depolarize the incident wave if the triple prod- and the slope probability-density function is assumed to LE
ucts(fi.ni,-6)and(Anf.)donotvanish. [When(Ah'.iy) Gaussian. Two values ofB are assumed in this work. The
and (fil. y) vanish, V' and 71 become identity matrices.] corresponding values for (h2 ) and a.2 and for kd, with 0 = 1

The expectation of (r,,rpN) in Eq. (2.38)13.14 is for the two-scale model, are given below:

(rpr,,N) = p(i,)/(fi. d*)4, A•, -Y = vl(v -h,); (2.40) case (a) case (b)

thus B = 0.0046 B = 0.0092
(h2) = 0.853 X 105 cm2  

(h
2) = 0.171 X 106 cm 2

(oe%. = p(?,)j[TFrj'^1 2
P2(fhf, i'th,), (2.41) n

2 = 0.0498 2 = 0.0997
(it,. &y)' kd = 0.179 cm-

1 kd = 0.253 cm -I  (3.7)

inagreementwith (o"P)j. Thusfor backscatter thegeomet-
ric-optics theory predicts no depolarization: In Fig. 3 the normalized spectral -density function

W(kA)/W_, is plotted as a function of uv,,A 
= 
k/A (14' -

(o . -0)). p(A,)Po(-it'.Ai ,)R5 (O = 0). Wm, atv,, = a). The corresponding surface-height corr I.
(A, - ,)' tion coefficient R(k r) is plotted in Fig. 4 as a function of tIi.,

(2.42) dimensionless quantity az. The above parameters approxi-

In the following illustrative examples the unified full- mate the range of conditions prevailing during the measu,-

wave solution is compared with the solution based on the ments conducted by Daley et al.16 [wind speed 24 m/sec (,,

two-scale model. In addition, the computed ratios of the = 0.05);average wave height650 cm ((h2 ) = 1.05 X 105 cn )I.
like- to cross-polarized cross sections (jHn)/(0VH) are com- In Figs. 5-7, the like- and cross-polarized backscatter cre
pared with the experimental data.

5-'6  
sections (Af = -i)((vv), (6H), and (01rn) = (CIHV) 1,
plotted as functions of the angle of incidence 0o using too
unified and two-scale approaches [Eqs. (2.32) and (2.33)] foc

ILLUSTRATIVE X case (a). The corresponding quantities are plotted in Fi,.
8-10 for case (b). The most significant differences betwe,

The illustrative examples considered are at X band 8.91 the results based on the unified and two-scale approachci
GHz; thus the wavelength X0 and wave number k are occur near normal incidence for the cross-polarized back-

A0 = 3.367 cm, ho = 1.87 cm -
1. (3.1)

The wind velocity assumed is V = 24 m/sec, the relative
complex-dielectric coefficient for the sea is f, = 55 - i37,17
and the relative permeability p, = 1. The surface-height
spectral-density function is assumed to be5

2 C
W(k) = W(u,, v,) = - S(v,, v,)Ar ]

Bv,,'lv,,' + ,')' k 5 k.

0 
k > k A (3.2)

in which S is the corresponding quantity defined by Brown. ,
In Eq. (3.2)

k, = 12 cm-1, , (335.2 V)"2 = 0.948 + 10- ' cm-1.

(3.3)

The surface-height autocorrelation coefficient R(r) corre-
sponding to W(k) [Eq. (3.2)] is given in closed form for « A< koo 1.00 m -5 '.00 00 6.1:

, (Ref. 18):

R(r) I+ I xr)2](ar)K,(ar)-(,r)
2
Ko(xr), (3.4) Fig 3. The normalized surface-height spectral-density funct

L, 8 J~ W Mkl/W (.
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IV:

os
0 2

7-G - ; 0' -0i 50 -

84 0010 0
o 0I. ~ I e

Fig. 4. The surface-height correlation coefficient R(tT).

Fig. 6. The backscatter scattering cross section W"ftM) for case (a).
A, Unified full-wave solution: 0, two-scale model.

S

00 A

S

Fig. 5. The backscatter sc , -ing cross section (a") for case (a).
A, Unified full-wave solution, _. two-scale model.

scatter cross sections. In Figs. 11 and 12 the like- to cross-
polarized backscatter croas-section ratio (aHH)/(avH) is
plotted for cases (a) and (b), respectively, using both analyti- Fig. 7. The backscatter scattering cross section (0,Hv) = (vvH) for
cal approaches. In these figures the symbol x corresponds coe (a). &, Unified full-wave solution: 0. two-scale model.
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00 0

o0 oo .00 4 .00 O-00 s0 9o.5o oo :A.o0 30,00 .5.00 6o..0 0oo o o,

o; 6

S 0

Fig. 8. The backscatter scattering cross section (¢v') for case (b). Fig. 10. Thebackscatterscatteringcross section (V
H

V) (gVH) for
A, Unified full-wave solution; 0, two-scale model. case (b. A, Unified full-wave solution; 0, two-scale model.

g to the measurement taken by Daley et al. (For large wint
speeds few data are given for the like- and cross-polarized
cross sections near normal incidence at X band.) To under
stand the significant difference between the solutions based
on the unified and two-scale approaches for the cross-polar-
ized backscatter cross section, it is necessary to note that for
backscatter at the specular points, 7Y = TI are identity ma-

o 5o trices, and for Ix1
2 << 1 the contribution to (o"Q)r [Eq.

.o0 . . 40. 0-0 75.00 .-. o (2.33)] from the large-scale surface It reduces to
3

8 (,PQ), = I x'
2R, pQ,P,Q = V,H, (3.8)

W. ay)4

in which 6VH - 6HV 
= 0, 6HH = 6vv = l and Rv and RH are the

Fresnel reflection coefficients at normal incidence for verti-
cally and horizontally polarized waves. Thus, as is expect-

ed, physical-optics theory predicts no cross polarization for
backscatter by the large-scale surface h1 . However, the local

scattering matrix DPQ becomes diagonal only at the specular
point, and the contributions to (a"H) come from the neigh-
borhood of the specular points. Physical-optics techniques
fail to predict backscatter cross-polarized cross sections
since the integrand A"Q(Af. h, h) [Eqs. (2.18)] (P # Q)
vanishes at the stationary phase points where A u A,. For
the like-polarized case, or for bistatic scattering in general
when AN(h', hi,fs.) o 0, the physical-optics solutions are
suitable for the large-scale filtered surface. Furthermore,
for scattering at grazing angles (-A'- h - 0 and Af. A - 0)
except forward scattering in the specular direction, the coef-

Fig. 9. The backscatter scattering cross section (amm) for case (b). ficient A'V(AI, A', A) has a pole near the stationary phase
A. Unified full-wave solution; 0, two-sale model points, and the physical-optics solution (^j) 1 [Eq. (2.33)] is



127

2302 J. OpL Soc. Am. AIVol. 2. No. 12/December 1985 E. Bahar and N1. A. Fitzwater

8 p(h,, h,) = p(h.)p(h,). However, in general, statistical inde.
pendence cannot be assumed between the large- and small-
scale surfaces. Using the two-scale model, it is also assumed
that h i, and that p(h) p(Al). Thus the slopes of thfo "small-scale surface are totally ignored when the two-scale

9: model is used. In order to derive the expression tLu: -atter-

a ging by the large-scale surface, it is assumed that the majoi
contributions to the scattered fields come from the vicinity
of specular points and that AP'(ht, h', h) - APQ(A., A. A)

o However, for backscatter near grazing angles, specular
> points are practically nonexistent unless the surface is very

rough. Thus, for the like- and cross-polarized backscatte
cross section, the discrepancies between the two solutions
increase as the angle of incidence 

0
0 approaches 900.

Finally, with reference to Figs. 11 and 12, it is seen from
the published experimental results marked x that for 0 =150, (H)/(U"') 20 dB. Using the unified approach,

this ratio is 21.5 dB for case (a) and 18 dB for case (b).
However, using the two-scale model, (aHH)/(aVH) = 36 dB
for case (a) and 34 dB for case (b). Recently designed dual-

00 s.5 0. 7 .0a~o 0 ----a.ot polarized receivers with significantly improved performance
make it more feasible to use both like- and cross-poIZrized

o '%.. data for the purposes of remote sensing. To this end, addi-

tional measurements are needed to make more extensive
Fig. 11. The ratio (e'Mi)/(vvH) for a e (a); the symbol x corre- comparisons between theory and experiment.
sponds to experimental data.1 6 Unifed full-wave solution; 0,
two-scale model. 4. CONCLUDING REMARKS

In this paper the solutions for the backscatter like- and
cross-polarized cross sections based on the unified full-wave
solutions have been compared with the solution based on the

two-scale model. For the two-scale model the wave number
kd where spectral splitting is assumed to occur is chosen such
that 0 = 4k0

2
(h

2
) = 1. It is also assumed that the two

surfaces hi and h, are statistically independent and that the
I slope of the small-scale surface was neglected (A At). It is

shown that for the like-polarized case, the difference be-
tween the two solutions increases as 6o - r/2. However,
except for near-grazing angles, the two solutions for the like-
polarized cross sections are separated by about 3 dB. For
the cross-polarized case, the difference between the two so-
lutions is most significant near normal incidence 00 < 40'.

For normal incidence (O0 = 0), the two-scale solution for the
cross-polarized cross section is about 15 dB below the uni-
fied solution. As the angle of incidence increases, the differ-

enedecreases and the tosolutionscrsoera , 60
As in the case of the like-polarized cross sections, the differ-
ence between the two solutions increases as 00 - or/2. The

smc.. . o ,'ss # large discrepancy near normal incidence occurs because ele-
.C. A-00 ments of the rough surface that are oriented specularly do

not depolarize the backscattered wave. The depolarization
comes from the neighborhood of these specular points, and
even the filtere I large-scale surface depolarizes the incidentFig. 12. The ratio (0H)/(avH) for case (b); the symbol x corre- waves.21 However, the physical-optics contribution to cross

aponds to experimental data. 14 A, Unified full-wave solution; 0, polarization is zero. The discrepancy near grazing angles
two-scale model. occurs because as 0s - v/2, for backscatter there are practi-

cally no specular points on the surface and again the physi-
not suitable. In this cae the full-wave (complete spectral) cal-optics approximations are invalid. The solutions based
approach can be used to account for the pole in the vicinity on the unified approach are in agreement with experimental
of the stationary phae points (A - h.).W data for near-normal incidence. Finally, it should be re-

There are other reasons for the discrepancies between the called that the assumption p(h, h') = p(h)b(A, h') is valid
solutions based on the unified and the two-scale model. To only if most of the scattering comes from the neighborhood
facilitatespectralsplittingofthesurface. it is assumed that of the stationary phase points A - h.. For near-grazing
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angles this assumption is not valid, since there are practical- cation of the wavenumber where spectral splitting occurs,"
ly no stationary phase points as e0 - r/2. Thus, for near- IEEE Trans. Antennas Propag. AP-31,698-709 (1983).

8. J. W. Wright, "A new model for sea clutter." IEEE Trans.
grazing angles, the solution can be improved provided that it Antennas Propag. AP-16, 217-223 (1968).

is possible to determine the slope joint probability-density 9. G. R. Valenzuela, (1968), "Scattering of electromagnetic wave:;

functionp(h, h') = p(A)p(hl
h ) 

and thejoint probability that from a tilted slightly rough surface," Radio Sci. 3, 1051-106C

two points on the rough surface are both illuminated and (1968).

visible given the slopesit and /t' at the points P(i/, h/ ). 10. M. L Burrows, "On the composite model for rough surfact
b gscattering," IEEE Trans. Antennas Propag. AP-21, 241-24:3

This, however, is not necessary if 1x1
2 

- 0 and if it can be (1967).

assumed that hi ' for distances T less than T, (the correla- It. P. Beckmann and A. Spizzichino. The Scattering of Electro.
tion length for the surface heights), magnetic Wavesfrom Rough Surfaces (Macmillan, New Yorl,,

1963).
12. D. E. Barrick, "Rough surfaces," in Radar Cross Section Hand

ACKNOWLEDGMENTS book (Plenum, New York, 1970), Chap. 9.
13. D. E. Barrick, "Remote sensing of sea state by radar," in Remot,

This investigation was sponsored by the U.S. Army Research Sensing of the Troposphere, V. E. Derr, ed. (U. S. Government

Office under contract DAAG-29-82-K-0123 and the U.S. Air Printing Office, Washington. D C.. 1972), pp. 12.1-12.24.

Force undt r contract F19628-81-K-0025. 14. D. E. Barrick and E. Bahar, "Rough surface scattering using
specular theory," IEEE Trans Antennas Propag. AP-29,
798-800 (1981).

REFERENCES 15. M. W. Long, Radar Reflectivity of 1,ond and Sea (ieath. Lex-
ington, Mass., 1975).

1. E. Bahar, "Full-wave solutions for the depolarization of the 16. J. C. Daley, W. T. Davis, and N. R. Mills, "Radar sea return in
scattered radiation fields by rough surfaces of arbitrary slope," high sea states," Naval Research Laboratory Rep. 7142. IU. S.
IEEE Trans. Antennas Propag. AP-29, 443-454, (1981) Government Printing Office, Washington, D.C., 19701

2. E. Bahar, "Scattering cross sections from rough surfaces-full 17. A. Stogryn, "Equations for calculating the dielectric constant of
wave analysis," Radio Sci. 16, 331-341 (1981). saline water," IEEE Trans. Microwave Theory Tech. MTT- 19,

3. E. Bahar, "Scatteri, g cross sections for composite random sur- 734-736 (1971).
faces-full wave analysis," Radio Sci. 16,1327-1335 (1981). 18. L.S. Miller, G. S. Brown, and G. S. Hayne, "Analysis of satellite

4. M. I. Sancer, "'Shadow-corrected electromagnetic scattering altimeter signal characteristics and investigation of sea truh

from a randomly rough surface," IEEE Trans. Antennas Prop- data requirements," NASA Rep. No. CR-137465 (Research Tn
ag. AP-17,577-585 (1968). angle Institute. Durham, N. C., 1972)

5. G.S. Brown. "Backscattering from a Gaussian-distributed per- 19. M. Abromowitz and 1. A. Stegun, Handbok of Mth,',rotlcu

fectly conducting rough surfaces," IEEE Trans. Antennas Functions (U.S. Printing Office, Washington. D.'., 1964 J

Propag. AP-28,943-946 (1978). 20. E. Bahar,"Scattering and depolarization h% rough surfaces nea

6. E. Bahar and D. E. Barrick, "Scattering cross sections for com- grazing angle-null wave solutions." IEEE Tran, Antnnar

posite rough surfaces that cannot be treated as perturbed phvsi- Propag. AP-30, 712-719 (1982).
cal optics problems," Radio Sci. 18, 129-137 (1983). 21. E. Bahar and M. A. Fitzwater, "Scattering cross sect n f.

7. E. Bahar, D. E. Barrick, and M. A. Fitzwater, "Computations of composite rough surfaces using the unified full wave approach.*
scattering cross sections for composite surfaces and the specifi- IEEE Trans. Antennas Propag. AP-32, 730-734 (19S4

Ezekiel Bahar Mary Ann Fitzwater
.~ - -' Ezekiel Bahar received the B.Sc. and Mary Ann Fitzwater received the B.Sc. and M.ic. degree's in electri

M.Sc. degrees in electrical engineering cal engineering and the Ph.D. degree in engineering, all from thf
from the Technion-Israel Institute of University of Nebraska, Lincoln, in 1971, 1975, and 1978. respec
Technology, Haifa, in 1958 and 1960, re- lively. She was a postdoctoral fellow in the Department f Mechan
spectively, and the Ph.D. degree from ical Engineering, University of Nebraska. Lincoln. for one year

the University of Colorado, Boulder, in followed by a year as assistant professor in the Department
1964. From 1958 to 1962 he was a re- Engineering Mechanics. Since 19,80 she has been a research ass,
search assistant and an instructor at the ciate in the Department of Electrical Engineering
Technion-israel Institute of Technol-

ogy. In 1962 he joined the Department
of Electrical Engineering, University of
Colorado, as a research associate and
from 1964 to 1967 was an assistant pro-

fessor. In 1967 he joined the Department of Electrical Engineering,
University of Nebraska, Lincoln, as an associate professor and in
1971 became professor of electrical engineering. He is the Durham
Professor of Electrical Engineering. His field of research is electro-
magnetic theory, propagation, and microwave theory. He has em-
ployed EM model studies to investigate the problem of propagation
in nonuniform terrestrial waveguides. He has developed transform
techniques to obtain full-wave solutions to problems of depolariza-
tion. diffraction, and scattering of radio waves in nonuniform lay-
ered structures. He has employed generalized characteristic vec-
tors and developed generalized WKB techniques to solve problems
of propagation in inhomogeneous anisotropic media. Dr.Bahar isa
member of Commissions B, C, and F of the International Union of
Radio Science and is a member of the Institute of Electrical and

Electronics Engineers Society on Antennas and Propagation and
the Society on Microwave Theory and Techniques.



129

SCATTERING AND DEPOLARIZATION BY RANDOM ROUGH SURFACES

UNIFIED FULL WAVE APPROACH--AN OVERVIEW
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Abstract

In this paper the principal elements of the full wave approach to problems

of scattering and depolarization by nonuniform stratified media are summarized.

Scattering by random rough surfaces is considered in detail and the full wave

solutions are compared with earlier solutions based on physical optics and

perturbation theories. It is shown that since the full wave approach accounts

for both specular point scattering as well as Bragg scattering in a self-

consistent manner, it resolves the discrepancies between the physical optics

and perturbation solutions and bridges the wide gap between them. Thus, on

applying the full wave approach to scattering by composite random rough

surfaces it is not necessary to adapt a two-scale model of the rough surface.

The full wave solutions satisfy duality, reciprocity and realizability

relations in-electromagnetic theory and the results are invariant to

coordinate transformations. The full wave approach also accounts for coupling

between the radiation fields, the lateral waves and the surface waves that

constitute the complete expansions of the fields and it can be applied

directly to problems of scattering at near grazing angles.

I-
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1. Introduction and Overview

Rigorous closed form solutions for the reflection and transmission of

electromagnetic waves have been derived for multilayered dielectric

structures of uniform thickness (Wait 1962). (See Fig. 1). However, in a

large variety of pertinent radio wave propagation problems the thicknesses

of the layers are nonuniform and the height of the interface between two

adjacent dielectric layers is a random function. (See Fig. 2). In these

cases the incident waves are depolarized and scattered into both propagating

and evanescent waves. Furthermore, an incident plane wave may be coupled

into guided surface waves and lateral waves of the structure.

Often the problem that is actually solved is a highly idealized version

of the original problem and concepts such as "effective dielectric coef-

ficient" and "effective surface impedance" are introduced in order to make

the solution of the original problem more tractable. However, the validity

of such approximations is very limited and often questionable and they do

not necessarily satisfy reciprocity (Schlak and Wait 1967, 1968).

Using a full wave approach it is possible to analyze more realistic

models of the original physical structure without introducing simplifying

approximations that cannot be justified a priori (Bahar 1973c,d).

The principal properties of the full wave solution and its relationships

to earlier solutions of scattering problems are also summarized here (Bahar

1981a). This summary is also presented schematically in Figs. 3 and 4 •

The reader of this manuscript who is not familiar with the full wave approach

will find this summary useful even though the details of the full wave method

have been reported earlier (Bahar. 1973c,d, 1974, 1981a).
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A. Principal Elements of the Full Wave Approach (See Fig. 3)

(a) The electromagnetic fields are expressed in terms of complete

expansions of vertically and horizontally polarized waves. These include

the radiation fields, the lateral waves and the surface waves (Bahar 1973c,d,

1974:,.

(b) Exact boundary conditions are imposed at the irregular surface.

(c) Using the orthogonal properties of the basis functions appearing

in the complete expansions of the fields, Maxwell's equations are integrated

over the transverse plane (y,z) (Bahar 1973c,d, 1974). Green's theorems

are used to avoid term-by-term differentiation of the field expansions.

(d) Maxwell's equations for the electromagnetic fields are converted

into coupled first order ordinary differential equations for the forward

and backward traveling wave amplitudes which are only functions of the

variable x (Bahar 1973c,d, 1974). (In view of the integration in the trans-

verse plane (y,z) the telegraphists' equations are only functions of x).

The coupled equations for the wave amplitudes are referred to the generalized

telegraphists' equations (Bahar 1981a).

(e) A variable coordinate system that conforms with the local features

of the irregular boundary is introduced and the resulting solutions for the

scattered fields are shown to be invariant to coordinate transformations.

(f) Closed form second order, iterative solutions for the radiation

fields are obtained from the telegraphists' equations on neglecting multiple

scattering from the rough surface. These second order iterative solutions

account for wave scattering in arbitrary directions.

(8) The full wave solutions are compared with earlier geometric optics

physical optics and perturbation solutions. The suitability of the two-scale

model is investigated.

I
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1. Principal Properties of the Full Wave Approach (See Fig. 4)

(a) The full wave solutions are shown to satisfy the reciprocity realizability

and duality relationships in electromagnetic theory.

(b) The full wave approach not only accounts for scattering and

depolarization of the radiation fields but also accounts for coupling between

the surface waves, the lateral waves and the radiation fields.

(c) The versatility of the full wave approach is demonstrated by determining

its relationship to earlier solutions. Thus, on using a stationary phase

approach to evaluate the integrals for the scattered fields, the full wave

approach is shown to reduce to the geometric optics solutions (Bahar, 1981a).

(d) If the vector n normal to the rough surface is replaced by its value

at the specular points ns, the full wave expressions for the scattered fields

are shown to reduce to the Physical Optics solutions. Thus the Physical

Optics approach is valid only if the contributions to the scattered fields

come primarily from the neighborhood of specular points on the rough

surface.

(e) In a survey of the technical literature one finds several different

forms of Physical Optics solutions. The discrepancies between the different

Physical Optics solutions and the appearance of the so-called "edge effect"

have been shown to be the result of premature truncation of the closed surface

integrals.

(f) If one assumes that the scale and the slopes of the rough surface

are small, it is shown that the full wave solutions reduce to the perturbation

solutions.

(g) The Physical Optics solutions for the backscattered fields become

singular for near grazing angles. Thus in this case, even if the rough

surface satisfies the radii of curvature criteria (associated with the

Immm mm•mm mi m mm mslimmmm mm
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Kirchhoff approximations of the surface fields), the Physical Optics solutions

cannot be used and the far fields cannot be represented by plane waves at

grazing angles. This is because at near grazing angles, the principal

contributions to the backscattered fields do not come from specular points of

the rough surface. (In this case specular points, if they existed, would be

on vertical portions of the rough surface). It is shown that the full wave

solutions for the backscattered fields remain valid as one approaches grazing

angles (Bahar 1982).

(h) The full wave solutions have been compared with the hybrid perturbed-

physical optics solutions (Bahar and Barrick 1983, Bahar et al 1983) based

on a two-scale model of the rough surface. It is shown that while the solutions

based on the perturbed-physical optics approach critically depend upon the

wavenumber kd where spectral splitting is assumed to occur, the solutions

based on the full wave approach are relatively insensitive to the choice of kd for

the like polarized case (Brown 1978). However, for the cross polarized case,

the results based on the two-scale model are incorrect (particularly for back-

scatter for near normal incidence). This is because the physical optics

contribution to backscatter from the large scale surface is assumed to be zero.

2. Formulation of the Problem

For the convenience of the reader the principal steps in the derivation

of the full wave approach are summarized in this section. It is assumed that

both electric and magnetic sources (j,p and M,pm) are present in any of the

m+l layers of the structure.A suppressed exp.(iwt), time dependence is assumed

in this work. The its layer of the structure is characterized by the complex

electromagnetic parameters Ci and p and the interface between medium i and

i+1 is given by the surface (See Fig. 2).

I ~ ~ mmmm| m m~
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y hi 1  
(1)

Maxwell's equations for the transverse components of the electric and

magnetic fields, E.1 and KT respectively are (Bahar 1973cd).

iti H x a) V V(I - (R X
ax X icac T T

- - 1
+ M X ax + - VTax  (2)

and a

ax. xT iW- X
- - 1

+ a x J +j V7H,. (3)

in which the operator VT is given by

a. - a y a (4)

and the transverse vectors are

A ayA Y+ aAz, A -E,ii, or Mi (5)

The following field transform pairs provide the basis for the complete

expansion of the transverse electric and magnetic fields into vertically (V)

and horizontally (H) polarized waves:

Ek(xy,.) - Z  (xvw)eT-V + (xvweTW-  
(6)

where

FY~xv~w)~ i.(x,y,z).(h x ax)dydz. P-V or H,(7

(xT.y.z) E V -V + H dw,)

v H(x,v,w)hi xvw

where

H' (x,v,w) _ r(xy,z) (a x  ; )dydz, P-V or H, (9)

The basis functions for the vertically polarized waves are

_V Z z W "IV 110
- Z (ay (vy) -2 + 2 a1

u1)vz (10
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and (v'y)$vz)-- Vvy)(,)(11)

and the complementary basis functions for the vertically polarized waves

are

e V " -+ --- B *c vw,z) (12)
(a~ +(v,y) w

and

, - a Nv V(V.Y)oc(w,Z). (13)

For the horizontally polarized waves, the basis functions and the complementary

basis functions are respectively,

-ST ;z*(v,y)¢(w,z) ( 14)

-- yH~,) aziw a*'~v~y)

14 YB(- ; y (vy)+ 2 - y )(Wz) , (15)y

and

- azNIH(v,y)oc(w,z) (16)

-T a iV Hy'-).c.
h2 yHp *q (Y.wz) ((17)

ine y u 2 +w2 a

in which--P are normalization coefficients, Z and YP are the wave impedance and

admittance and

*(w,z) - exp(-iwz) and c(w,z) - O/27)exp(iwz) (18)

The scalar basis functions are

exp (iv0y) + oexp (-ivy).

for medium 0,
r 7Jp-1

Dh P Hl p expI.*q= lVp~qq.1qJ

L 0;(vy). = -
-

q

x [exp(Iv Y) + Dh

for medium r " 1,2,3,...,m, (19)

II
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m-r TU m-r
TU - exp (iqlVmq,m+1 q m-qm4 .-q

T N q 

mPm-q

Sx [exp(iVY) + exp(ivrY) , for medium r-0,l,2,... ,m-J

exp(-iv y) + Rjr exp(ivmy), for medium m, (20)

exp[-ivn(y-ho,)] for medium 0,

2n n Dh
T -H exp(-iv, h o ,1 I ( v +P l exp (-ivlY) 3

Pi for medium 1,

P u r T-1
Oi-y Cs0.".1) -L p o,l) h ..i 1I

TDH I O'l.q-2 TD

x ex(i 2Vq qhq. )[exp(v +

for medium r-
2 ,3,.. min (21)

where

[* h /iZ Po d (1

The scalar functions for vertically and horizontally polarized waves

#V (vy) and * (v,y), are given by (19), (20), and (21), on replacing the

letter P in all the expressions by V and H respectively. The reflection

coefficient at the i,i + 1 interface for waves incident from above is

N, and is the reflection coefficient at the i - 1, i interface for

waves incideut from below (See Fig. 1). Thus, for P - V or H,

p DE
D (Rt+I1 i + RjI+l)

Dt - p - DH - 0,1,....m

(1 + i+l,A'i+l)

asd

]P H
- . i (R 1 + Ri _)3 P 0 'P p UH , i-l ,2....,m. (23)
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V
where and Ri are the two medium Fresnel reflection coefficients

for vertically and horizontally polarized waves respectively, and

DR D Dh D x~~vh )
RPi - i exp(-i2viHi). , h - , exp(R2vi±i,.+l)

"-E exp(-12viR) - 1 l exp(-12vih,_.) (24)

The transmission coefficients are

DD D
Pil+ i -l

TH DH UH UH+ p
Pi 11 P ii-1 i (25)

and N are normalization coefficients. The symbol Z denotes summationV

over the entire wavenumber spectrum v. The generalized Fourier transform

consists of two infinite integrals (continuous parts of the wavenumber

spectrum) which are associated with the radiation and the lateral wave terms

and a finite set of surface wave terms (discrete part of the wavenumber

spectrum). The infinite integrals in the v plane are associated with

branch cut integrals Im(vO) - 0 and Im(vm ) a 0 in the complex v plane, while

the surface wave terms are associated with the residues of the poles at

RrO - O~or i/R[ - 0). The modal equation which determines the surface

wave parameters vn(Im(v) < 0) is given by

U D 22_2 v (6

1-Rj, R , exp(-12viH,)- 0, v ':(ki u -w (26)i1 v~

for P equals V or H and i - 1,2,3,...,or m - 1.

The irregular interfaces y - hi,i+l are assumed here to be continuous

functions of x only. Thus the exact boundary conditions at y - hi,i+l - h(x)

can be expressed exclusively in terms of the transverse field components

Imm mm
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~VT(H T x ax) - - Ey d~h [1 -0 (27)

(. x xEy 0 .(27)

Wh- h-

The complete field expansions are substituted into Maxwell's equations

for the transverse field components and use is made of the orthogonality

relationsb.1p, Green's theorem, and the exact boundary conditions, to obtain

the differential equations for the field transforms Ep and H . These may be

P Pexpressed in terms of -the forward and backward wave amplitudes a and b

respectively, as follows:

- + bp and E - a 1 bp , - V, upper sign

H, Ilower sign (29)

Thus Maxwell's equations are converted into the following generalized

telegraphists' equations for P-V or H (Bahar, 1973c,d)

Ps ,/S aQ  A
da - iua - Z !(SA aQ + S bQ)dw' - Af (30)

dX Q v' PQ PQ

and

db-+ iub p  
a vRSA aQ+ SA b- dw' + BP  (31)dx Q v(PQ PQ

Explicit closed form expressions for the reflection and the transmission

scattering coefficients have been derived (Bahar 1973d).

Icitations of vertically and horizontally polarized waves (with

respect to the reference (x,z) plane) are considered. The terms AP and

BP appearing in (30) and (31) account for the electric and magnetic sources

3,p and R,p.

; I
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PThe first-order iterative solutions for the wave amplitudes a and

b are obtained by neglecting the transmission and reflection scattering

coefficients in (30) and (31). These first-order solutions are substituted

on the right side of (30) and (31), and the resulting equations are solved

to obtain the second-order iterative solution for the wave amplitudes.

These second-order iterative solutions are used in the complete expansions

for the electromagnetic fields to obtain the desired iterative solutions

for the scattered radiation fields through the use of the steepest descent

method. Thus the first-order solutions to (30) and (31) are the unperturbed

vertically and horizontally polarized fields excited by the vertical electric

and magnetic dipoles respectively. The second-order iterative solutions

which account for depolarization and scattering in arbitrary directions are

suitable when multiple scattering can be ignored. Since the full wave

expressions for the fields (6), (8) are valid for all points in space, they

can also be used to determine the surface fields. The above iterative

procedure can be extended to account for multiple scattering. In Section 3

we consider the specific case of scattering and depolarization by a random

rough interface between two semi-infinite media.

- - 3. Scattering by Rough Surfaces-

Unified and Two-Scale Formulation

The full wave solution for the radiation fields scattered by two

dimensionally rough surfaces f(x,z) - y - h(x,z) = 0 (see Fig.5 ) is

expressed as follows in matrix notation

G f = GeJ D(;f,n)exp[iv.r]dA G' E SG' (32)

Aiv
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in which ;i and nf are unit vectors in the directions of the incident

and scattered fields and the vector ; is

v- (n -ni)k°  v a + v a + v a (33)

where ko- wyrV is the free space wavenumber of the electromagnetic wave.
0 0

The integration is over Aiv the illuminated and visible portions of the rough

surface and LL
dA- I dxdz/n'ay & A, .dA J'.dA (34)

-Lz -Lx Aiv

where n is the unit vector normal to the surface f(x,z) - 0

-ha + a-ha h ah
-Vf/jVf- xx hzz -xh h (35)(l+h +a2 x x ' hz az 3

x z

and r is the position vector to a point on the rough surface. The

elements of the 2 x 1 column matrix G are the incident vertically and

horizontally polarized complex wave amplitudes GV i and GH i at the origin

with n x a defined as the vector normal to the plane of incidence.Y

Similarly Gf is a 2 x 1 column matrix whose elements are the vertically

and horizontally polarized complex wave amplitudes Gv f and GH f (with

n x a defined as the vector normal to the scatter plane) at the point
y

given by the position vector (see Fig. 5)

-f f- f- f- f-f

r xa + yay + zfa Z r n (36)

Thus

G I f.: C Vi [H"EVi (37a)o,. . . o~II,Hioj H ij %"i

l lEHfj Of (37b)

I



vhere 7o = A5c is the free space wave impedance. The coefficient G
0 0 0

is given by

G - k2 exp[-ikorf]/2Tiko r f  (38)
0 0

and a suppressed exp(iwt) time dependence is assumed in this work. The

-f -i
like and cross polarized local scattering matrix D(n ,n

-f-i = HJ . (-i- )Tf F Ti (39)

i -in -i
is derived by (a) using the 2 x 2 matrix T (i,n ) to transform the

incident vertically andhorizontally polarized wave from its representation

in the fixed reference coordinate system (a ,-a ) to its representation

;epc (l n n)(heui
with respect to the local coordinate system (n, n,n3 ) (the unit

vector n is the representation of the vector n in the local coordinate

system (see Fig. 6)), (b) using the 2x2 local scattering matrix (-i. n).

F(nf ,n )dA to account for like and cross polarized scattering by an

element dA of the rough surface (n is the representation of the vector

-fn in the local coordinate system) and finally (c) using the 2 x 2 matrix

f -f -finT (n ,n ) to transform the scattered vertically and horizontally polarized

wave from its representation in the local coordinate system to its

representation in the reference coordinate system. The full wave solutions

(32) are invariant to coordinate transformations and they satisfy the

duality and reciprocity relationships in electromagnetic theory. In (32)

multiple scattering by the rough surface is neglected. Explicit expressions

for the local scattering matrix D(nf,n i ) (39) are found in the published

literature (Bahar 1981a).
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The full wave solution for the scattered field can he applied to

random rough surfaces (Bahar 1981b). Thus the scattering cross sections per

unit projected area Ay for an incident wave with polarization Q=V or H and

scattered wave with polarization P=V or H are given by

<FPQ> = <A_ 2 -f,-i;. ...- ))cxdx' dzdz'> (40)n'a -2n n n x v .(r r (40

y y

in which the symbol <-> denotes the statistical average over the heights

h,h' and the slopes n,n'. The probability density functions for the random

slopes n,n' and random heights h,h' are assumed to be independent. In

addition it is assumed that the slopes are more strongly correlated than

the heights (p(n,n') + p(6n)6(n'-n)). In this work the rough surface is

assumed to be isotropic (independent of direction) and its characteristics

are independent of position (r). Thus the rough surface height characteristic

function

X(vyh) = <exp(ivyh)> = fexp(ivyh)p(h)dh (41)

is independent of position while the rough surface height joint characteristic

function

X2 (Vyh-vyh') = <expiv y(h-h')I>

= Jexp ivy(h-h')]p(hh')dhdh' (42)

is only a function of distance T measured in the (x,z) reference plane

rd (x-x')ax + (z-z')Z, rdl - T = (x-x')
2 
+ (z-zt) 

2
J (43)

In (40) P2(jnl I) is the probability that a point on the rough surface is

both illuminated (n ) and visible (n ) given the value of the slope (n)

at that point (Sancer, 1968).

Since the full wave solution (40) accounts for both specular point

(physical optics) scattering as well as diffuse scattering in a self-consistent

I
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manner there is no need to adopt an artificial two-scale model. To use the

two-scale model, it is assumed that the surface h (x,z) consisting of the

large scale components of the surface height spectral density function

W(vxvz) is independent of the surface hs (x,z) consisting of the small

scale components of the surface height spectral density function. The

surface height spectral density function is the two dimensional Fourier

transform of the rough surface height autocorrelation function <hh'>. Thus

W(Vx'v) 2  <hh'>exp(iv'rd)dxd dzd

=12 J<hh'>J (kT)TdT (44a)

where J0 is the Bessel function of order zero and the spatial wavenumbero

k is

k = vx 7 (44b)

in which use has been made of the fact that <hh'> is only a function of T.

Similarly, WV, )  __

<hh'> J 4 exp(-iv'rd)dvx dvz

S21 k____) J (kT)kdk = R(T)<h2> (45)

0

in which jR() < 1 is the normalized correlation coefficient and <h 2> is

the mean square height

<h 2> = <hh'> 27 W k ) kdk (46)

0
Thus using the two-scale model, it is assumed that the large scale surface

hL is associated with the surface height spectral density function

W(k)U(kd-k) and the small scale surface h is associated with the surface

height spectral density function W(k)U(k-kd) in which U(.) is the unit
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step function and kd is some arbitrary value of k where spectral splitting is

assumed to occur (Brown 1978). Brown chooses kd such that the parameter

B = 4k2<h2 > = 0.1 (47)
o s

satisfies the perturbation condition for the Small scale surface. However,

he shows that the computed value of the scattering cross sections critically

depends on the choice of B and therefore the specified value of kd. Bahar

and Barrick (1983) considered the two-scale model using the full wave approach.

It is shown that if kd is chosen such that deep phase modulation occurs it

is necessary to choose B = 1. For a range of values of kd corresponding to B

between 1 and 2 it is shown (Bahar et al. 1983) that the values of the

scattering cross sections do not depend on kd.

For problems of scattering by random rough surfaces the dimensions of

the proj~ected area A = 4L L are such that L >> T and L >> T (wheretepoetdaeAy x z x c z c

R(T) = exp(-l) and Tc is the correlation length). For distances T >> Tc;

X2 _ IX12 since <hh'> - <h 2>. Thus assuming statistical independence between

the surface hi and hs (p(h.,h s ) = p(hi)p(hs)) the characteristic and the

Joint characteristic functions of the total surface are expressed as

I s _  t=i =L_

X X X S; X5 xS(v'n), X- X(v ), X (v'-n), - X(v) (48a)(y, 22 2 - 2(Vy) ha

X2  XL X= (4 1iX£12)lXs12(X 2, -IXi2)4 . I xS, 2  (148b). . .2 X2 2 2

in which the superscripts L and s denote quantities associated with the

large and small scale surfaces, respectively. Using the two-scale model, it

is also assumed that the slopes for the small scale (perturbation) surface

are small such that slope probability density function for the total surface

is equal to the slope probability function for the large scale surface

p(n) p1()(n = VfL/(Vf) and f = y - hI). Thus the unified (U) and two-

scale (T) expressions for the scattering cross sections (40) are respectively,
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=JQ JAPQ(nf'.n',n)p~n)d[IQ (nf, ni)+ 1 9IyXiexp(iV x X+iv zz)dx dzj 2] (149a)
y

where

Q(n-,ni) =v 2(x 2)exp(i 'd)dd dzdz (49b)

k 
(49c)

p(n)di = p(hx ,hz)dhx hz  
(49d)

and

<PQ> T = iXs
2 
A( nf,ni,ns )[Q,(nf,i)+ AivyXexp(ivxx+iVzz)dx dz 1]

y~~ ~ ~~ AP(fi,)'yQ(f, ni,)()a

f AN'(nf,ni ,n)r a Qs C7,,)p()d3

= Ix' 2<0", + <0K> (50a)

where

(n ex; i rd)dxd dzd (Oh)

Q,(nfl, nn)= Vyj(Xf-.i " v ex;(vr d)axd dzId (50c)

In (49b), (50b) and (0cc) tL' Ir rjon limits are ( since

PQ -fne
LLz >> i and A (n ,n n) is defned in (

1
9c).

To derive the first term in (50a), the slope dependent function

APQ(nfn,n) is replaced by its value at the specular point where

n n = v/v, . = [ l= ' (51)S S

For surface height probability density functions that are Gaussian

Ix±I2= exp(-V2<h 2>) << 1 (52)
2 2 k +#hh>: h >i~ 2

x exp(v -V<h£> + hh>=epv< j X1( 53 )

Thus for v 2<h 2> >> I it can be shown that the two dimensional Fourier
y

transform (50b).is given

f,-i) = 2 C) (54)

in which p(ms) is the slope probability density function at the stationary

phase points (Bahar 1981c)



P(n) = p(h h ) h z 2 exp -L2 v2J2 1Ta a- n y]

21To2 exp --~ -h+2
2 s (5

in which the value of the slope at the specular point is

2 + h2  tan2  2 2 -"a = cosy (56a)
(h = t'Y= /Vy n a

and the mean square slope 02 is
n

2 
563On = W~k)k dk (56b)

0

Thus the first term in (50a) is given by

IxSl 2 <oPQ= IXsi2APQ( nf, ni, ns [2p(n + Ay IvyXI 2 s inc 2 (vL)sinc2 (vL,

(5?)

in which sinca = sin(a)/a and A = 4L L is the projected area of the roughy xz

surface on the x,z plane. In (57) <0PQ > is precisely the phyzical optics

solution for scattering by the large scale (filtered surface). Thus the

coefficient 1X5s < 1 accounts for the degradation of the physical optics

(specular point) contribution due to the small scale surface.

To derive the second term in (50), it is assumed that over a correlation

length of the small scale surface, the large scale surface is approximately

flat and that the small scale (perturbed) surface height is measured normal

to the large scale surface. Thus,

+ '-(h-h') h-h') (58)

in which the distance rid is measured along the large scale surface in the

local coordinate system (nln2= n n3 )

-i= X dl+ Z l3 d? = 2 + (59)
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Thus in the expression for <0 Q>s, the integration is with respect to distances

measured along the large scale surface and not the reference surface. This is

in agreement with the expressions obtained intuitively by Wright and

Valenzuela "mostly based on physical considerations" (Wright, 1968;

Valenzuela, 1968). Thus <oPQ > can be regarded as an average of thes

scattered power from patches of slightly rough surfaces that ride the

large scale surface. Brown's (1978) solutions which are based on a combin-

ation of Burrows' perturbation theory (Burrows 1967) and physical optics

(Beckmann 1963) are in agreement with the full wave expressions for <7
P Q >

only in the limit of small scale slopes since in his work h is measured

normal to the reference plane. However, in Burrows' perturbation theory

the small scale surface height h is measured normal to the large scale
5

surface hi.

The two-dimensional Fourier transform (h9b)can be expressed as

Q( f,n ) = 2 ( (V-(v 2 J(vT)TdT (60)

y (X2yXy xz
0

since the surface height correlation function <hh'> is only a function of

= rd = Irdl. The corresponding expression for the Fourier transform

(50c) is dependent on the slope. Thus

Q(n fi = 27rVy J (2( n)_IXS(£. )j2 o(vxz£TL)-kdT £  (61)
0

in which

v-rd = -(xidnl+ zid n3) = v x£ d + vz Zid (62a)

vn =vy [v + (62b)

and vxt , V z and Vy£ are the components of v in the local coordinate system

(nn2 M nn3 ). Thus the scattering cross sections can be expressed as

follows for the unified and two-scale models

<a U- A Q ( f ' n 'n lp (n )d ;[Q (n- n' )+Aylvyxl2sinc2
(vxLx)sinc2 (vzLz)

] (63)
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and

<nd = IxSl2 APQ(nfn in ) f , + IV X 1 sinc 2(v L )sinc 2 (v L

T ns )[ys n + y y x x z z

+IAPQ(,ni,n)n" a Qs(nf n.n)p(n)dn (6 )

To facilitate the computations in (64) in which Qsis a function of n,

for a given and R(T)aset of values of Qsr/Vy first computed

and stored as a function of

V'n = (-v h + V - V h )/(l + h 2 + h 2 ) (65)
x x y z z x z

The integration with respect to dn = dh dh is' performed usingx z

values of Qs interpolated from the stored set. For Gaussian surface

height probability density functions (52) and (53)

Q s(nn n)=27rV yJexp(-v <h >) [expv y<h s R -1 jo(V xzTk)-IdT

v2 -f -i 2 - 2 v2 vxS( .)IW(vi) (66)

y , <<l y yR. XZ

Thus for n-a- and B << I the last term in (64) <oPQ> reduces to they 5

perturbation solution (Bahar 1981c)

<OPQs - <OPP= 7k2v2 IxS(v )(-n n)F( fn i  W(V (67)

Note that (64) reduces to (63) if we set <h2> * 0 and (63)

reduces to (64) if we set <h2 > - 0 and replace AP(nfn n) by
APQ,-f-i-
A ( n ,n ,ns ). The term containing the product of the sinc functions

is the coherent scattered field. This term vanishes as )(v Y)12 _ 0.

For cases in which the physical optics solutions are valid the

corresponding geometrical optics expressions for <aPQ>I are obtained

by replacing ; by ns in (32) and integrating over the area A.i (using

the stationary phase method) before the expectations <*> are evaluated.

Thus in the neighborhood of a stationary phase point r e tOP , where

Vx+ y andv+vh = 0 (Barrick 2970, Bahar 1981b) it can be shown
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that

e(-; dxdz =f.p-- __pi;- sE 2 +h Z2 )xd

S.a zzo p p p
y

exp[iv.i ] (27ri)

I . sh = 0on ns )  (68)

S xxp zzp

in which the integral has been expressed in terms of the local coordinates

at the stationary plane point (x p,y pZ p) associated with the unit vectors

(nl-n= 
n 'n 

) and n and n3 the vectors in the tangent plane, are chosen
1' n2 '3 1 3'

such that the principal radii of curvature rxp = 11/h I and rzp = I

are measured along the n and n3 directions. As seen by an observer in

the region y > h (x,z), the curvatures h and h are positive when
4 xxp zzp

the surface is concave. They are negative when the surface is convex.

When h or h are negative, they are expressed v = i/vr and
xxp zzp xxp xp

A-= i/vrcr
- . 

Thus the geometric optics contribution to the normalized
zzp zp

cross section from R randomly located specular points per unit surface

area is

_op =rr r NETF T 2 nn ) (69)XP p n 2
s

in which

F(nv(eop) 0 (70)

0 R (eio
H eop.

and R (0' and (i° ) are the Fresnel reflection coefficients at the

specular points where the local angles of incidence and scatter are

-ni'ns nfn. coso . Note however, that the surface will depolarize

the incident wave if the triple products (n n a and f i ) do not
Y' y

vanish. (When(n ;' ayI and (G nf i ) vanish Ti and Tf 
become identity

matrices).

The expectation of (r xpr zN) in (64) (Barr'edkc9T2, Barrick and
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Bahar 1981) is

<rXP r zpN> =p(s)( s'.y) ,i. s v/( '.s) (71)

thus

<0 PQ )rP f-i (72)
sy )s

in agreement with <0 PQ> Thus for backscatter geometric optics theory

predicts no depolarization and for the like polarized case

<0PP(f * I -ii -Il~(o=~ 2
< nP(f ;)>. 4 (nYj ) (s)P2 ( i po (73)

s y

4. Concluding Remarks

The solutions for the backscatter like and cross polarized cross

sections based on the unified full wave solutions has been compared

with the solution based on the two-scale model. For the two-scale model

the wavenumber kd where spectral splitting is assumed to occur is chosen

such that = 2k 2<h 2> = 1, (Bahar et al. 1983). It is also assumed that
os

the two surfaces h and hs are statistically independent, and the slope

of the small scale surface was neglected (n = n). Except for near grazing

angles the two solutions for the like polarized cross sections are in

good agreement. For the cross polarized case, the difference between

the two solutions is most significant near normal incidence. The large

discrepancy near normal incidence is due to the fact that elements of

the rough surface that are oriented specularly do not depolarize the

backscattered wave. The depolarization comes from the neighborhood of

these specular points and even the filtered large scale surface depolarizes

the incident waves (Behar and Fitzwater 1984). However, the physical

optics contribution to cross polarization is zero.

|
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The discrepancy near grazing angles is due to the fact that for ,

T/ir/2, there are practically no specular points on the surface and0

again the physical optics approximations are invalid.
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6. Figure Captions

1. Electric and magnetic sources distributed in the layers of a uniform

multilayered structure.

2. Electric and magnetic sources distributed in the layers of a nonuniform

multilayered structure.

3. Principal elements of the full wave approach.

4. Principal properties of full wave approach.

5. Planes of incidence and scatter with respect to the reference coordinate

system. Mean (reference plane for rough surface is y = o).

6. Local planes of incidence and scatter and local coordinate system

,n 3 .
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ABSTRACT

The incoherent specific intensities for the waves scattered by a random distribution of particles
with rough surfaces are derived. Since large roughness scales are considered, the diffuse scattering
contributions to the like and cross polarized scattering cross sections are given by the full wave
solutions. The acattering matrix in the expression for the equation of transfer is given by a weighted
aum of the scattering matrix for the smooth particle and the diffuse contribution due to the rough
surface of the particle. Illustrative examples are presented for the propagation of a circularly
polarized wave normally incie -.t upon a parallel layer of particles. Particles with different surface
height spectral density functions, roughness scales, complex permittivities and sizes a-e considered.
Both first order (single scatter) and eILtiple scatter solutions are provided and the results for
particles with smooth and rough surfaces are compared.



162

1. ITMODUCTIO

Scattering of electromagnetic waves in media consisting of random distributions of particles has

been investigated exztensively using the equation of transfer (Chandrasekbar 1950, lshimaru 1978). The

main difficulty in setting up the equation of transfer lies in th determination of the elements of the

44A scattering matrix for the individual particles. Thus most of the work has been done for particles

of idealized shapes such as spheres.

In this work a method is presented for the modif~cation of the results derived for particles with

idealized shapes to account for the random surface roughness of the particles. To this end the full wave

approach was used to determine the rough surface contributions to the like and cross polarized

scattering cross sections and the elements of the scattering matrix are given in terms of a weighted sum

of the Hie solutions and the diffUse scattering terms due to the particle surface roughness (See Section

.2). For convenience in this work a circularly polarized wave is assumed to be normally incident urcn a

parallel layer consisting of a random distribution of irregular shaped particles.

For the illustrative examples presented in Section 3 both first order (single scatter) and multiple

scatter results are presented for smooth particles and for particles with rough surfaces. The matrix

characteristic value technique is used to account for multiple scattering (Ishimru and Cheung 1980).

2. FORMUIATION OF Tha PROBULY

In this section the principal elements of the full wave solutions for the like and cross polarized

differential scattering cross sections of nonspherical particles are summarized. The contributions of

these cross sections to the familiar ecuation of transfer (Ishimaru 1978), in a medium consisting of a

random distribution of noospherical particles are also indicated explicitly.

The radius vector from the center to the irregular surface of the particle is given by (see Fig. 1)

S sh *h a (2.1)
5 o r a r

in which ar is the unit vector in the direction of the radius vector, b. is the radius of the

urverturbed sphere and bs is the random rough surface height measured in the direction normal to the

surface of the unperturbed sphere. In this work it is assumed that the bean square of the rough surface

height, <h>, can be sufficiently large such that standard perturbation techniques are not applicable

(Barrick 1920). Thus the rough surface parameter, 2 , considered In this work Is In the range

0< B< 10.

The full wave solutions for the normalized scattering cross sections <oiJ per unit cross sectional

area (A - 2) are expressed as a weighted sm (Debar and Chakrabart i 1985)
t 

<0> 22
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the symbol <-> denotes the statistical average. In the above expression the first ad second super-

scripts indicate the polarizations of the scattered and incident waves respectively. Thus 1 , - 1

denotes Vertical polarization and 1,j - 2 denotes Horizontal polarization. The cross section <oj>A is

the modified cross section associated with the unperturbed sphere.

(oiJ> - JX'(v)J
2 
<oij>3 e (2.3)

In (2.3) <oij>i e is the Mie solution (Ishiaaru 1978). for the like and cross polarized cross sections

of the unperturbed sphere. For large spheres, koh ° > 20, (k ° is the free apace Vavenuaber), the most

significant parts of the solution are the specularly reflected wove ad the shadow forming wave (Morse

and Feshback 1954). The coefficient of (0 '. e is the rough surface height characteristic function

X(s(,) =<exp lvhs> (2.4)

In which v is the magnitude of the vector

- k rf-ni) (2.5)

where if and n are unit vectors in the direction of the scattered and incident wave normals. The

coefficient ] s]2 accounts for the degradation of the reflected wave due to surface roughness. The

coefficient is minimum for backscatter and approaches unity for forward scattering.

The second term in (2.2) <O14 is the contribution to xhe total scattering cross section due to

the surface roughness. It is expressed as (ahar snd Chakrabsrti 1985)

<Cij>.s  A I (if, , a) (n.;a )Qs(;f,;1.;)p(i)dZ (2.6)

in which ; is. a unit vector normal to the surface of the scatterer,

-- ,I o -.
2  

-f-I -(

AiiPnfPn .-  ; ?)(S '' 2(0 .(2.
(-,I,)n . 2 )dx (2.8)

Q(frn j (;f)2 f(sX( . a)I2) .xp(iv.)bXd (2.8)

and p(;) is the probability density function for the slope of the surface of the scatterer. In (2.7),

D i tI I he scattering coefficient which depends on the polarizations and the directions of the wave

normals for the incident and scattered waves as well as the complex electrmagnetic parameters (C,u) of

the scatterers. The tarm P2(nf,njn) is the probability that a point an the rough surface is both

illuminated by the source and visible to the observer given the slopes (G) of the surface of the

scatterer (Smith 1967. Sancer 1969). Since a ;ar" P2 - u(-ni' )u(if'A) where u(-) is the unit step

function.

In (2.8) 
4  

.r is the rough surface height Joint characteristic function

X2;';,) - <cpvrrh.-b')3> (2.9)

!In blob - v'a.
r
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With the above expressions for the scattering cross sections (2.2). the general expression for the

equation of transfer (Ishimaru 1978) can be vritten as follows for a plane parallel slab consisting of

rough spherical particles (see Fig. 2)

d - - [I] * J [s)['Jdj'd' [1k (2.10)

In (2.10) T Is the optical distance In the z diredtion (normal to the plane parallel slab)

C P[otz B f Ot n(D)df z , D - 2b (2.)

vhere n(D) Is the particle size distribution and 0t Is the extinction coefficient. Since <0i>

vanishes in the forward direction, the extinction matrix (Ishimaru and Cbeung 1980) for the rough

sphere, can be represented by a scalar quantity. The matrices [I) and [I'] re the (hxI) incoherent

specific diffuse intensity matrices for waves scattered from the particles in the direction 6 - cos-1 W

and * and for waves incident in the direction 6 - cosp and #', respectively. The elements of [I

are the modified Stokes' parameters. The (hxh) scattering matrix [S] in the reference coordinate system

can be expressed in terms of the scattering matrix [S'
] 

in the scattering plane as follows:

[S) - [ (- *O)]S')EZ(o') (2.12)

in which

i.) xis(;.i&r )12[S HieJ CS a) (2.13)

In (2.13) [Si e ] is given by

fP[If 1I
2) [ [If212] pRe[ 1 1

f:'
2
) -Pinf") 1

I f213 P[jf 2 j
2  

pRe[f 21f22) -plm[f 21f2 )

,p2lm[ fl 3 f1) p2 m[f f1 2 f 2 )3 P1 inf 1f2 2
f 2 f 2 1J pJe~ f1 2 2 -f 2f2 l (2.14)

where if are elements of the 2x2 scattering amplitude matrix [f] and P[') denotes integration over the

'particle size distribution o(D) (2.12)

E .,[:: "1 V ikar)

]j jexp(
E0 (2.15)

f22

In (2.15) Et and E r are the vertically and horizontally polarized field components in the

scattering plane and r is the distance from the center of the sphere to the field point. An esp(iwt)

time dependence is assumed In this work.

For a smooth sphere the elements f,, are given by the HJe solution for a smooth sphere (Barrick

1970, Ishiaru 1978). The transformation matrices [I) in (2.12) account for the angles of rotation

between the reference planes of incidence and scatter and the scattering p7 ane containing ;n and nf.

In (2.13) the coefficient IX,(;.r )12 accounts for the fact that the specular point contributions

to the scattering cross sections are decreased because of the rough surface (Ixj
2 

< I and

I1
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IX i 2  
" . as 8 - 0). The diffuse scattering matrix IS] due to the random rough surface b. Is given by

P [S) L) [s2 o

r ( 0 0 (2.16)
| vbere

fA

and p[- denotes Integration vith respect to the particle dittribution n(D). For the contributions due

to the random rough surface b s the only nonvanishing terms are of the formt pE ftj 12 )(see equation (2.14),

the expectations of the pbasor quantities vanish).

In order to simplify the solution of the transfer equation (2.10), It is assumed In tkis York that

the normally Incident wave is circularly polarized. Thus the incident Stokes matrix at z - 0 is given by

Di)nc 1 0 6(I-.)6( ) S In('-l)6(0') (2.18)

vhere the - and * sins correspond to the right and left circularly polarized waves and V • cos6'.

The reduced incident intensity is therefore,

[rIn] - [I nc) exp(-) (2.19)

In (2.10) the (xl) excitation matrix [I J is given 'by

[xI ef [SJ~ )ii do' - [ESHz). ex1 . (2.20)

vhere In. the incident Stokes' matrix is defined by (2.18).

Since the normally incident circularly polarized wave In independent of the azimuth angle 0. the

Stokes' matrices for the incoherent specific intensities arte also independent of 4. And there is no

coup3ng between 11.12 and U,V in (2.10) and the equation of transfer for the normally incident,

circularly polarized wave decouples into the folloving tvo matrix equations

icf'" .. f'lJf a l2JJdu'4 f l

LJ d22j L'i~j (2.21a)

and

AUU
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In which I and 1,2 are the first two elements of the excitation matrix [I] (2.20) while U1 and V1

are the third and fourth elements of the excitation matrix.

3. TLLUSTRATIVE EXAW1ES

For the illustrative examples considered in this section, the random rough surface height h

(measured normal to the surface of the unperturbed spherical particle of diameter D - 2hO ) is assumed

to be homogeneous and Isotropic,. The surface height spectral density function w(v X.v) (which is the

tvo dimensional Fourier Transform of the surface height autocorre-latio function <hh'>) is

V(vI) - W('tv 'V) % (hh exp(Iv x + ve zdx fi
II

2 "
f <hsh> Jo(vTrdlrddrd (3.1)

where .7ovTrd) Is the Bessel function of the first kind and v X and v are components of I in the

direction of the unit vectors ;',;3 tangent to the surface of the unperturbed sphere. Thus

YT - (v2 + v2). (W2 V2) (3.2)
x I r

Similarly the surface height autocorrelation function <h hs> Is given by the Inverse formula

< '> -(.- exp( _iV X-IVd )d dv

f (vT)J (vTrd)vydvT  (3.3)

0

The specific expression for the surface height spectral density function Is

(Tv_." . < V 'C ve
TvT)- [ v!;:v] M d~ (

0 elsewhere (3.)

In (3.4) the smallest spatial vavenumber is

Yd - (3.5a)

and the cutoff wavenunber Is

v c ek4 (3.5b)

vhere k. Is the vavenuber for the electromagnetic wave. The constant C Is chosen such that the scale

of the randm rough surface Is

22 2<b2
>  

1 (3.6)
O s

In(.6<h
2

> i the Sean square height

(h3.-- (.)

0

:1 36 b2 stema qaehih

<b 9l 2m fir i( 2 vvT 37
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The corresponding value for the mean square slope

a = vTdvT (3.8)

Is 0 a 0.013. The parameter v vhere W(vT ) is maximum Is v I 1.2/D. The exponent in (3.4) is D - 14 and

the aterial of the particle Is aluminum. For vavelengtb A - 10 Im the relative (complex) dielectric

coefficient is £r - -6000(Ii*) ( hrenrelch 1965). The diazeter of the unperturbed spherical particle

is D - 5 X and its total (extinction) cross section is aT - 2.059.

For surfaces vith small scale roughnesses 8 < 1. the contribution (2.6) to the total scattering

cross sections due to surface roughness hs can also be expressed as a series

o 2 I12 n-(f' ) w(vT)

2w I/2 2M vn (
Pm (r sioydydd (3-9)

o 0in vbich V (vT)/22 is the tvo aimensional Fourier transform of <hs 
>m 

and the integration is over

the polar angle Y and azisuthal angle 6. For 8 <
< 

I only the first term in (3.9) is non-negligible.

This tern corresponds to first order Bragg scattering from rough surfaces (Bh-ar 1981). For 0 - 1,

it is necessary to evaluate only tvo terms of the series in (3.9). For large values of roughness

scales CO > 2) it is more convenient to evaluate <aol>s using (2.6).

For the Illustrative exaples, it is assumed that a right circularly polarized vave Is nornally

incident at r - 0 (s - ) upon a parallel layer of optical thickness Tn (see Fig. 2). The equation of

transfer for the axtmuth lly independent modified Stokes' parameters (2.21) are solved using the matrix

characteristic een) value technique (Ishimaru and Cheung 1980) subject to the boundary conditions

for the Incoherent specific diffuse intensities

(I] - 0 for 0 < v at 0

(forvard scattered incoherent diffuse Intensities are zero at Tr = 0) and

- (1) 0 for. 0 )_ U ),-1 at T = To

(backvard scattered incoherent diffuse intensities are zero at T - TO).

In Figs. 3 and t I (vertical polarization) and 12 (horizontal polarization) are plotted

respectively, as functions of the scatter angle 0 (0,900) (forvard scattering) for To - 10. The solid

curves correspond to first order scattering solutions cal (Ishisaru 1978) for the smooth (unperturbed

spherical) particles and particles vith rough surfaces. The surface roughness of the particles tends

to smooth out the Incoherent diffuse intensities as functions of 0. Note that the vertically polarized

:intensity is more oscillatory than the horizontally polarized intensity.
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The corresponding solutions that account for multiple scatter are als. given for the smooth (,)

and rough (A) particles. We note that since the albedos for the rouh particles are slightly lover

than the albedos for the smooth particles (see Table 1), the incoherent diffuse intensities are

somewhat lover for the rough particles. For optically very thick layers of particles, the diffuse

Intensities I1 and 12 are practically equal and rather flat functions of 0. Multiple scattering

cannot be neglected in these cases.

N. CLOUDINc RA

In this work scattering of electromagnetic vaves.by particles with moderate to very large roughness

scales (that cannot be accounted for using .e standard perturbation methods) has been considered. The

incoherent diffuse scattering intensities for the rough particles have beez compared with the cor-

responding results for smooth particles. Both first order (single scatter) and multiple scatter results

have been presented for the case listed in Table 1.

As the scale of roughness 8 - k-C
2

bh
2

> increases, the scattering coefficients an well as theo s

incoherent diffuse scattering intensities become practically independent of the scattering angle.

In addition, for large To the incoherent scattering intensities decrease as the roughness scale

increases. As the optical thickness of the layer increases, the Incoherent diffuse scattering

Intensities become less dependent on scatter angle.
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ABSTRACT

The incoherent specific intensities for the waves scattered by a random distribution of particles
with rough surfaces are derived. Since large roughness scales are considered, the diffuse scattering
contributions to the like and cross polarized scattering cross sections are given by the full wave
solutions. The scattering matrix in the expression for the equation of transfer Is given by a weighted
sum of the scattering matrix for the smooth particle and the diffuse contribution due to the rough
surface of the particle. Illustratlvt examples are presented for the propagation of a circularly

polarized wave normally incident upon a parallel layer of particles. Particles with different surface
height spectral density functions, roughness scales, complex permittivitles and sizes are considered.
Both first order (single scatter) and multiple scatter solutions are provided and the results for
particles with smooth and rough surfaces are compared.
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1. INThODUCTION

Scattering of electromagnetic waves in media consisting of random distributions of particles has

been investigated extensively using the equation of transfer (Chandrasekhar 1950, Ishimaru 1978). The

main difficulty in setting up the equation of transfer lies in the determination of the elements of the

44
5 

scattering matrix for the individual particles. Thus most of the work has been done for particles

of idealized shapes such as spheres.

In this work a method is presented for the modif~catlon of the results derived for particles with

Idealized shapes to account for the random surface roughness of the particles. To this end the full wave

approach vas used to determine the rough surface contributions to the like and cross polarized

scattering cross sections and the elements of the scattering matrix are given in terms of a weighted sun

of the Fie solutions and the diffuse scattering terms due to the particle surface roughness (See Section

2). For convenience in this work a circularly polarized wave is assumed to be normally incident upon a

parallel layer consisting of a random distribution of irregular shaped particles.

For the illustrative examples presented in Section 3 both first order (single scatter) and Mlu!ti;le

scatter results are presented for smooth particles and for particles with rough surfaces. The matrix

characteristic value technique is used to account for multiple scattering (Ishinaru and Cheung 19&O).

2. YORMUlATO1N OF TIM PROBLD

In this section the principal elements of the full wave solutions for the like and cross polarizec

differential scattering cross sections of nonspherical particles are suoarized. The contributions cf

these cross sections to the familiar eouatlon of transfer (Ishimaru 1978), in a medium consisting of a

random distribution of nonspherical particles are also indicated explicitly.

The radius vector from the center to the irregular surface of the particle is given by (see Fig. 1)

r * a *'r-hs a r21

in which a is the unit sector in the direction of the radius vector, h is the radius of th
unperturbed sphere and b is the random rough surface height measured in the direction normal to the

surface of the unperturbed sphere. In this work it is assumed that the mean square of the rough surface

height, 'h,>, can be sufficiently large such that standard perturbation techniques are not applicable

(Barrick 1970). Thus the rough surface parameter, 8 - hh2<h
2> 

considered in this work is in the range

0 < 8 < 10.

The full wave solutions for the normalized scattering cross sections <o per unit cross sect al

area (A ,h
2
) are expressed as a weighted u= (Bahar and Chakrabarti 198t)

< 0a 0>  0 3>, (oiE>s  (2.2)

I
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the symbol <'> denotes the statistical average. In the above expression the first and second super-

scripts indicate the polarizations of the scattered and incident waves respectively. Thus i,j = 1

denotes Vertical polarization and i,J 2 denotes Horizontal polarization. The cross section <Oij>£ is

the modified cross section associated with the unperturbed sphere.

<atJ>- _ iXs(v)l
2 
<o'>M e  

(2.3)

In (2.3) <C 1 is the Rie solution (Ishimaru 1978), for the like and cross polarized cross sections

of the unperturbed sphere. For large spheres, koh° > 20, (k o is the free space wavenber), the most

significant parts of the solution are the specularly reflected wave and the shadow forming wave (Morse

and Feshback 295L). The coefficient of <aoJ>Mi e is the rough surface height characteristic function

xS(v) a <exp ivh 5 > (2A4)

In which v is the magnitude of the vector

S(-f- i) (2.5)

where n and n are unit vectors in the direction of the scattered and incident wave normals. The

coefficient 1x5
2 

accounts for the degradation of the reflected wave due to surface roughness. The

coefficient is minitum for backscatter and approaches unity for forward scattering.

The second tern in (2.2) <oU 
j>  

is the contribution to the total scattering cross section due to

the surface roughness. It is expressed as (Bahar and Charabati 1985)

<ij f ,ifi ,:. )Qs(:f, i,_)p(n)d (2.6)

in which n is a unit vector normal to the surface of the scatterer,

S(nnn -jfo( 2 nf)ik) (2.7)

Q(;f i r = (;.;)2 f(xs(;.;).Ix2.)l)exp(i;-.d)bXddz (2.8)

and p(;) is the probability density function for the slope of the surface of the scatterer. In (2.7),

D" is the scattering coefficient which depends on the polarizations and the directions of the wave

normals for the incident and scattered waves as well as the complex electromagnetic parameters (c,1) of

the scatterers. The term P(;f,Z'j) is the probability that a point on the rough surface is both

illurinated by the source and visible to the observer given the slopes (n) of the surface of the

scatterer (Smith 1967, Sancer 1969). Since v = t a u(- ' )u(nf') where u() Is the unit step

function.

In (2.8) X2(;'ar) is the rough surface height joint cbaracteristic function

;;X*2S--at ) =<expZivr (hab,) ] >  (.9(2.9)

in which v
r r
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With the above expressions for the scattering cross sections (2.2). the general expression for the

equation of transfer (Ishimaru 1978) can be written as follows for a plane parallel slab consisting of

rough spherical particles see Fig. 2)

1i - [ * r [S[I'3dp'd4' * [I (2.10)
d( .i

In (2.20) T is the optical distance in the z diredtion (norma-l to the plane parallel slab)

"cc Prot3z E fo
t 
n()dn , D= 2h (2.11)

where o(D) is the particle size distribution and o :s the extinction coefficient. Since <0 J> s

vanishes in the forward direction, the extinction matrix (Ishimsru and Cheung 1980) for the rough

sphere, can be represented by a scalar quantity. The matrices [IJ and [i'J are the (4xl) incoherent

specific diffuse intensity matrices for waves scattered from the particles in the direction 8 - cos -IP

and 0 and for waves incident in the direction V' - cos-a' and #', respectively. The elements of [I]

are the modified Stokes' parameters. The (txa) scattering matrix s] in the reference coordinate system

can be expressed in terms of the scattering matrix [S'] in the scattering plane as follows:

[S] = [X(-' + )J[S'J[Z (')] (2.12)

In which

Is'] -xi(;';r)1 2[svie ) Is.] (2.13)

1o (2.13) [Elie ] 
is given by

[fl,3 plf 12 1
2J pref l f1 -:~j nl'123

1 [If2 1 22f
2  pRelef21 f*2  ) -plf 2 1f*2]

=P 7t plfl11 13 eflf2 p~e~f2f11 12 , ] -PJO '1 f ]3

21nt1 1 f,) p2lmff1 2 f2  p~ 1 1 f2 f1 2 f21 ] 05 1 1 f2 f 1 2 fX)1] (2.14)

where fi are elements of the 2x2 scattering amplitude matrix [f] and oJ'] denotes integration over the

particle size distribution n(D) (2.12)

In (2.15) E, and E r 
are the vertically and horizontally polarnzed field components in the

scattering plane and r is the distance from the center of the sphere to the field point. An ex(iwt)

time dependence is assumed in this work.

For a smooth sphere the elements fi are given by the )4e solution for a smooth sphere (Barrick

1970. Ish mru 1978). The transformation matrices [I] in (2.12) account for the angles of rotation

between the reference planes of incidence and scatter and the scattering plrse containing and nf

In (2.13) the coefficient IX,(-.tK )1
2 

accounts or the fact that the specular point contributions

to the scattering cross sections are decreased because of the rough surface (hIX _ 1 and
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I x a I as 0 ). The diffuse scattering matrix [s ] due to the random rough surface ha is given by
[5s23

os[a { a [] 0a

0 0 0 0

L 0 0 j (2.16)

where

PIS ) Y p4 ,>] (2.17)

and r[*3 denotes integration with respect to the particle distribution n(D). For the contributions due

to the random rough surface b the only nonvanishing terms are of the form P[ IfIj1
2)(see equation (2.1L)

the expectations of the phasor quantities vanish).

In order to simplify the solution of the transfer equation (2.10), it is assumed in this work that

the normally incident wave Is circularly polarized. Thus the Incident Stokes matrix at z - 0 is given by

)li-c  a 6(v-l)6(4') 2 10 4(i'-2)6(t') (2.1)

where the - and + signs correspond to the right and left circule.rly polarized waves and P' cose'.

The reduced incident intensity is therefore,

[Iril - [li)c exp(-s) (2.19)

In (2.10) the (ha) excitation matrix [I I is given by

[I1 IJ [$][iridd, = j[S[3od. • exp(-) (2.20)

where I, the Incident Stokes' matrix Is defined by (2.2).

Since the normally Incident circularly polarized wave is Independent of the azimuth angle $, the

Stokes' matrices for the Incoherent specific intensities are also Independent of *. And there is no

circularly polarized wave decouples Into the following two matrix equations

[xj 1 [JJ] 4J IJ d ] L (2.21a)t

and

3 [J l
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in which 1,1 and I are the first two elements of the excitation matrix [I 2 (2.20) while U, ad Va i

are the third and fourth elements of the excitation matrix.

3. ILLUSTRATIVE EAMPLES

For the illustrative examples considered in this section, the random rough surface height hs

(messured normal to the surface of the unperturbed spherical particle of diameter D 2h O ) is assumed

to be homogeneous and isotropic. The surface height spectral density function W(v X ) (which is the

two dimensional Fourier Transform of the surface height autocorrelation function <hsh'> ) is

(VT) = (v s) " L<hsh'>ex(ivxd iV5 5d)dX dd

2 fa.a> JO(Trd)rd d (3.1)

0

where Jo(vTrd) is the Bessel function of the first kind and v and v. are components of v in the

direction of the uinit vectors tangent to the surface of the unperturbed sphere. Thus

VT . €v
2  

) 
(v 

- v2) (3.2)X x r

Sirilarly the surface height autocorrelation function <hah'> is given by the inverse formula

hh', = ex(-ivxx d-ivz d)dvdvz

2 1(v)Jo(v~rd)v~dvT

The specific expression for the surface height spectral density function is

F -v 2 2 dV

- 0 elsewhere (3.)

I (3.L) the smallest spatial wavenumber is

vd - f (3.5a)

and the cutoff wavenumber is

vc - 'k (3.5h)

where k is the avenumber for the electromagnetic wave. The constant C is chosen such that the scale

of the random rough surface Is

= 2<h
2

- I (3.6)O s

In (3.6) <h> Is the mean square height

.h%>- J(vT)vTdvT (3.7)

0

U
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The corresponding value for the mean square slope

°2. =i rW T3 dv (3.8)

is o2 - 0.013. The Parameter vm where W(v ) is maximum is v - 1.2/1. The exponent in (3.A) is n andT ma
the material of the particle is aluminum. For wavelength A = U lm the relative (complex) dielectric

coefficient is cr - -6000(.i+i) (Ehrenrelch 1965). The diameter of the unperturbed spherical particle

is D = 5 A and its total (extinction) cross section is aT = 2.059.

For surfaces with small scale roughnesses B f i, the contribution (2.6) to the total scattering

cross sections due to surface roughness h s can also be expressed as a series
<ij . 2ID iI2 p (;f2( f iI 2) W m (vT

-0 > 
1

.k < . n In (v -- X~v )

21r 11 2 t ( rW

42 O P iI2P(E.i)4 r .v Txr) sinydyd8 (3-9)
o m!

0 0

in which W (VT)/22m is the two dimensional Fourier transform of <h hs> and the integration Is over

the polar angle y and azimuthal angle 6. For B << 1 only the first term in (3.9) is non-negligible.

Trils term corresponds to first order Bragg scattering from rough surfaces (Bahar 1981). For 8 = 1,

it is necessary to evaluate only two terms of the series in (3.9). For large values of roughness

scales (8 > 1) it is more convenient to evaluate <o> using (2.6).

For the illustrative examples, it is assumed that a right circularly polarized wave is normally

incident at i - 0 (z o) upon a parallel layer of optical thickness 7o (see Fig. 2). The equation of

transfer for the azumuthally Independent modified Stokes' parameters (2.21) are solved using the matrix

characteristic (eigen) value technique (Ishimaru and Cheung 1980) subject to the boundary conditions

for the Incoherent specific diffuse intensities

[1I-0 for 0<V<I ateaD

(forward scattered incoherent diffuse intensities are zero at c - 0) and

[Il - 0 for 0 > 1 >-. at t -

(backward scattered Incoherent diffuse intensities are zero at *r - 5o
).

In Figs. 3 and k I1 (vertical polarization) and 12 (horizontal polarization) are plotted

respectively, as functionr of the scatter angle 6 (0,900) (forward scattering) for to - 10. The solid

curves correspond to first order scattering solutions only (Ishimaru 1978) for the smooth (unperturbed

spherical) particles and particles with rough surfaces. The surface roughness of the particles tends

to smooth out the incoherent diffuse intensities as functions of 8. Note that the vertically polarized

imtensity Is more oscillatory than the horizontally polarized intensity.
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The corresponding solutions that account for multiple scatter are also given for the smooth (.)

and rough (A) particles. We note that since the albedos for the rough Particles are slightly lower

than the albedos for the smooth particles (see Table I), the Incoherent diffuse intensities are

somewhat lover for the rough particles. For optically very thick layers of particles, the diffuse

IntensItIes I and 12 are practically equal and rather flat functions of 6. Multiple scattering

cannot be neglected in these casrs.

i. CONCLUDING REMAR S

In this work scattering of electromagnetic waves by particles vith moderate to very large roughness

scales (that cannot be accounted for using the standa-d perturbation methods) has been considered. The

incoherent diffuse scattering intensities for the rough particles have been compared with the cor-

responding results for smooth particles. Both first order (single scatter) and multiple scatter results

have been presented for the case listed in Table I.

As the scale of roughness B - k 2<h 
2
> Increases, the scattering coefficients as well as the

o s

incoherent diffuse scattering intensities become practically independent of the scattering angle.

In addition, for large To the incoherent scattering intensities decrease as the roughness scale

increases. As the of iccl thickness of the layer increases, the incoherent diffuse scattering

intensities become less dependent on scatter angle.
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Full Wave Solutions for Electromagnetic Scattering

and Depolarization in Irregular Stratified 
Media

+
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Abstract

Using the complete expansions of the fields and on imposing

the exact boundary conditions at the interfaces of an irregular stratified

medium, Maxwell's equations are transformed into a rigorous set of

coupled first order differential equations for the wave amplitudes.

This full wave approach is applied to a large class of propagation

problems. Since these solutions account for specular point as well as

diffuse scattering in a unified self-consistent manner, it is not necessary

to apply a hybrid physical optics-perturbation approach to problems of

rough surface scattering. The full wave solutions satisfy realizability,

duality and reciprocity relationships in electromagnetic theory. They

are invariant to coordinate transformations.

+Presented at the Workshop on Waves in Inhomogeneous Media, Schlumberger-

Doll Research, Ridgefield, Connecticut, August 8-9, 1985.
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1. Introduction

In this paper the principal elements of the full wave approach to

problems of radio wave propagation in irregular multilayered media are

summarized. The relationships between the full wave solutions and earlier

solutions to scattering problems are also presented. To demonstrate

the versatility of the full wave approach, three broad classes of

propagation problems are considered in some detail. In Section 3, the

full wave approach is applied to problems of scattering and depolarization

by a random rough interface that separates two media with different

(complex) electromagnetic parameters. In Section 4, radio wave propagation

in a three layer structure is considered. The thickness of the intermediate

layer is assumed to vary in thickness. Finally, in Section 5, the boundaries

of the irregular structure are assumed to be highly reflecting, thus the

exact continuity conditions for the electric and magnetic fields are

replaced by the approximate impedance boundary conditions. In this case,

the fields in the layered structure are expressed in terms of trapped

waveguide modes.

The Principal Elements of the Full Wave Approach are (Bahar 1973a,b):

(a) The electromagnetic fields are expressed in terms of complete

expansions of vertically and horizontally polarized waves. These include

the radiation fields, the lateral waves and the surface waves.

(b) Exact boundary conditions are imposed at the irregular surfacer.

(c) Using the orthogonal properties of the basis functions appearing

in the complete expansions of the fields, Maxwell's equations are integrated

over the transverse plane. Green's theorems are used to avoid term-by-

term differentiation of the field expansions.

KI
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(d) Maxwell's equations for the electromagnetic fields are converted
p

into coupled first order ordinary differential equations for the forward

and backward traveling wave amplitudes. The coupled equations for the

wave amplitudes are referred to as the generalized telegraphists' equations.

(Section 2), (Baha 1974).

2. The Generalized Telegraphists' Equations

For horizontally stratified media (see Fig. 1) the following field transform

pairs provide the basis for the complete expansion of the transverse (yz)

components of the electric and the magnetic fields ET and HT respectively in terms

of the vertically (V) and horizontally (H) polarized field transforms (Bahar

1973a,b): [E x v~we H -H
ET(x,y,z) I f J [ x,v ,w

4
e + EH(xww)eTJdw, (1)

V-

where

xv,)= (xYz)h x ax)dydz, P=V or H, (2)

T(XYz) = If N'x ,vw)S4 + HH(x,v,w)hSJdw, (3)
v_-

where

HP(x,v,w) = J T(x,y,z) (a x e)dydz, P=V or H, (4)

In the above expressions E
P 

and H
P 

(P=V,H) are the electric and magnetic

field transforms and eT and RP are the electric and magnetic field basis functionfildtrnfomsan T an Tae

while e -and are the reciprocal basis functions for horizontally stratified
whl p adhp

uedia. The symbol,
,denotes summation over the entire wavenumber spectrum v. The generalized

v)

Fourier transform consists of two infinite integrals (continuous part of

the wavenumber spectrum) which are associated with the radiation and the

lateral wave terms and a finite set of surface wave terms (discrete part

of the wavenumber spectrum).
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The basis functions for the vertically polarized waves are

e (a 0 24,V(v'y) )@Cw,z) (5)
T y 2 2 2 y

and -V - ,Vvy () (6)

and the complementary basis functions for the vertically polarized waves are

-T V V V a ivw a V(,))CWZ
ev = (y*(vy) + u2 + ay ),, (7)

and
-T -VYV= a * (vy),C(V'z). (8)

For the horizontally polarized waves, the basis functions and the complementary

basis functions are respectively,

eT - zH(v,y)O(w,z) , (9)

and =i . H u 2 +w(2 Dy

-Te. awTIH(v,y)Oc(w,z) (1)

= T / *M(vy) a2 Iw a~H~ ) cw
N 22 2 wz) (12)

y U +w

in which NP are normalization coefficients, ZP and YP are the wave

impedance and admittance and

*(W,z) = exp(-iwz) and c(w,z) = (l/2)exp(iwz) (13)

The scalar basis functions for the radiation fields and the lateral waves are

exp(ivoy) + Rhp

for medium 0,

P r 7 -1 r= H exp( q1 p-l,q q-l,q'

Pq

x [exp(iVrY) + Rhp

for medium r = 1,2,3,...,m, Ot)

I
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Mr T _. m-r
11 Pm+1q exp(i v h

q= T U q=l m-q,m+l-q m-q,m+l-q

PM-q

x[exp(-ivry) + RPr exp(ivrY)], for medium r=0,1,2,... ,m-1

exp(-Ivy) + , exp~i my) for medium m, (15)

For the surface wave

ex p-iV(y-h )], for medium 0,
D ojl- exp(-i-vI ho )epi )RD exp(-iVlny)],

TPI I 'l)[x vY I RPI  1

P1 n for medium 1,
.Pn'(v y) = exp(_lh h E)
s s- ( o,1 qP2 o'l ?Hq=2 _p

PI Pq

x exp(i E2Y' h q)[exp(ivrny ) + RDh exp(_ivny)I,

for medium r=2,3,. ,m, (16)
where

[pn /iZ pV d i (17)
' o O l 0 o o UDu(vh )] = u~iz v -- -- 17

The scalar functions for vertically and horizontally polarized waves

IiV (v,y) and VpH(v,y), are given by (.14, (15), and (16), on replacing the

letter P in all the expressions by V and H respectively. The reflection

D
coefficient at the i,i+l interface for waves incident from above is RPi and

RU is the reflection coefficient at the izl,i interface for waves incident
Pi

from below.

The transmission coefficients are
TD =1++ U

D? -RH UB UHPi 1  Pi T i 1 + Rpi

The modal equation which determines the surface wave parameters vn(Im(v) < 0),

is given by
U D 2_ 2 22
RRpexp(i2vHi)=, vi-(kiu w i,iVil-Vi

where P equals V or H and 1=1,2,3,...,or m-l and ki=W(Ijic ) (19)



The basis functions satisfy the biorthogonal relationships for P and Q equal

to V or H

• (axXe P dy dz
-~= p PQ A(V-v')(J-wl) (20)

fQ.(- x-)dy dzJ

in which, for the primed quantities the variables are u', v', and w' and

A(v-v') =
q,r

X j(v-v'), v'jvs

6v,-v S, v'=v s  (21)

The complete field expansions are substituted into Maxwell's equations

for the transverse field components and use is made of the orthogonality

relationship, Green's theorem, and the exact boundary conditions for irregular

stratified media (for example see Fig. l)to obtain the differential equations

for the field transforms E and HP. These may be expressed in terms of the

P P
forward and backward wave amplitudes a and b , respectively, as follows:

lip = ap + bp and EP = a bp , P = V, upper sign (22)
H, lower sign

Thus Maxwell's equations are converted into the following generalized

telegraphists' equations for P=V or H (Bahar 1973a,b):

p_da P  
. P !, (fBaQ EB A P

- - iua C= S a SpB bQ)dw
' 
-A , (23)

and

db- + iub P = +, S + Sp bQ)dw' + (24)

Qv 
PQ

Explicit closed form expressions for the reflection and the transmission

scattering coefficients , Q, SB and S have been derived (Bahar 1973b).

AAThus, for instance, SH(v,v,v',w') accounts for coupling of the incident

horizontally polarized forward wave amplitude a H(v' ,w') into the reflected

vertically polarized wave amplitude bV(v,w). Similarly, SBA(vlw,v,w')

accounts for coupling of the incident vertically polarized forward wave

I!
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amplitude aV (v',w') into the forward scattered horizontally polarized

wave amplitude a H(v,w). In (23) and (24), the terms A
P 

and B
P 
account

for the electromagnetic source excitation in any of the layers of the

structure and (u',v',w'), (u,v,w) are the orthogonal components of the

vector wavenumbers k' and k in the directions of the incident and

scattered waves. The incident and scattered wave vectors ' and k are in

general associated with either the radiation fields, the lateral waves or

the guided waves of the structure. Thus, the scattering coefficients account

for coupling between components of the entire wavenunber spectrum. The

derivations of the generalized telegraphists' equations (23), (24) is

rigorous. They can be solved rigorously using numerical techniques (for

example the eigenvalue-eigenvector technique (Ishimaru et al. 1982).

In the following specific applications some simplifying assumptions are

made to facilatate the solution of these coupled first order differential

equations. Thus for instance, if multiple scattering between differert

portions of the rough surface is neglected, the far fields can be

expressed in closed form as integrals that can be readily evaluated

numerically.

3. Scattering and Depolarization by Random Rough Surfaces

In order to account for specular point scattering as well as diffuse scattering

by random rough surfaces, a two-scale model of the rough surface was adopted

(Wright 1968, Valenzuela 1968, Brown 1978). Thus, on applying the physical optics

approach (Beckmann and Spizzichino 1963) the surface hk consisting of the large

scale components (k < k d ) of the surface height spectral density function W(k),

accounts for specular point scattering. Similarly on applying the perturbation

approach (Rice 1951) the surface h consisting of the small scale componentsS

(k > k d ) of the surface height spectral density function W(k) accounts for diffuse

scattering. On adopting the two-scale approach it is assumed that the large

scale surface hL and the small scale surface hs are statistically independent.
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Several questions arise as a result of the use of the two-stale, hybrid,

physical optics-perturbation approach to problems of scattering by random

rough surfaces. In particular there are conflicting constraints on the choice

of the wavenumber kd where spectral splitting of the rough surface spectral

density function is assumed to occur (Brown 1978, Bahar and Barrick 1983,

Bahar et al 1983). Moreover, since the physical optics solution for the cross

polarized backscatter cross section is zero, the solution based on the two-

scale perturbed-physical optics model does not correctly predict the cross

polarized backscatter cross section particularly for near normal incidence

(Bahar and Fitzwater 1984).

Since the full wave solution is valid in both the high frequency (physical

optics) limit as well as the low frequency perturbation limit =4k2<h << 1,0os

it accounts for specular point and diffuse scattering in a unified self-

consistent manner. Thus it is not necessary to artificially decompose the random

surface into two presumably uncorrelated surfaces when the full wave approach

(Sec. 2) is used. The solutions for the like and cross polarized scattering

cross sections per unit area, that follow from the full wave approach,upon

neglecting multiple scattering between different patches of the rough surface)

can be expressed as follows (Bahar and Fitzwater 1985)

1 kDPQ 2

= 1 D (.) [Q, n n -Xfexp(iv x+ivzz)dxdz 12] (25

Y y

in which a is the unit vector normal to the unperturbed reference plane
Y

(x,z), n is the unit vector normal to the rough surface and A is the area
y

of its projection in the reference (x,z) plane. In (25) the superscripts

PQ correspond to the polarizations of the scattered and incident waves

respectively (P,Q=V (vertical), H (horizontal)). The unit vectors ni and

-f
n are in the direction of the incident and scattered wave normals, k is the0
free space electromagnetic wavenumber and the vector v is
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=k 0 (n v a + v a + v Z (26)

The coupling coefficients DPQ depend on the polarizations and the directions

of propagation of the incident and scattered waves as well as the complex

electromagnetic parameters of the medium of propagation. The slope probability

density function for the rough surface is p(n),p(n-y 4 0) dn = sinydyd6 is
\ y

the differential (solid) angle and P2 is the shadow function derived by Sancer

(1968). The coefficient Q(nf, n) is given by

Q( f i) = f(X2-IXl
2)exp(i .Td)dxddzd (27)

in which X2 and X are the joint characteristic function and the char-

acteristic function for the rough surface and

rd = xda+ zda (28)
d dx d z

is the distance measured in the unperturbed reference plane. The first

term in (25) accounts for both specular point as well as diffuse scattering

while the second term is the coherent scattering term. This second term becomes

very small as the mean square rough surface height <h 2> becomes very large

since for a Gaussian surface IX1 2 = exp(-_4v 2 <h 2 >). The unified full wave
y

solutions for the ratio ofthe like to cross polarized scattering cross sections

are shown to be in good agreement with experimental results (Bahar and Fitz-

water 1985), however additional measurements are needed to make more

extensive comparisons between theory and experiment.

|
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4. Propagation in Nonuniform Stratified Structures

Propagation of radio waves in nonuniform stratified structures is of

interest in a large variety of technical problems. For instance, Schlak and Wait

(1967, 1968) treated the problem of propagation over a nonparallel stratified

earth using a geometrical optical approach to derive an equivalent surface

impedance at the air-earth interface (see Fig. i). The resulting mixed path

propagation problem was solved through a judicious use of the compensation

theorem. The realization of the salient features of the solution to this problem

led Schlak and Wait to submit their solution to a critical reciprocity test

which pointed out several restrictions on the geometrical optical approach.

Wave coupling in a variety of nonuniform layered structures is also of

special interest for the design of a variety of devices in optical waveguide

systems (R. G. Hunsperger 1982). The full wave solutions (23),(2L)explicitly

account for coupling between the different spectral components of the complete

expansions. Thus, these solutions can be used to design nonuniform layered

structures that effectively couple electromagnetic signals into and out of

optical waveguides.

The full wave solutions are shown to satisfy the duality, realizability

and reciprocity relationships in electromagnetic theory. Thus for the vertically

polarized case (see Fig. 1) for example, the radiation (magnetic) field scattered

by the nonuniform stratified structure shown in Fig. 1 is expressed as

follows (Bahar and Fitzwater 1978a,b)

Hf (xy)=(2/k P)exp(ik P)exp(i7/4)P(v f,vi )Hi (29)

in which Hi is the magnitude of the incident magnetic field at the origin,m

p is the radial distance from the z axis and P(v ,v ) is the radiation pattern:

f f i f i (0P(v ,v) v P(,v) I p , q (v ,v (0)
p~q

where

Po(v ,v )=(1-S 1S-zs )T21(v )T2 1 (v )T10(v )T1 0 (vi )A"r (31)

In (31) r is the relative complex dielectric coefficient for the overburden

and z is the normalized surface impedance of the substratum. The complex angles

JS
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for the incident and scattered waves in free space (subscript o) and the over-

i . f f
burden (subscript 1) are related by Snell's law and SI=sinO,

8  =sin 
• 

The

transmission coefficients from the overburden to the substratum are T21 (v,)

T(f )  i freptilywhe

and T v ) for the incident and scatter angles eI and 6 respectively, while
T21 1 I

the corresponding tansmission coefficients from the air to the overburden

are T1 v ) and T0(v f). The terms in the double infinite sum are

I (vf,v
i ) 

= [R01 (v)R 2 1 (vf)P-l[Ro1(vi)R21(vi)q

p,q (2p-l)Cf + (2q-l)ci

L
ko exp[i(uf u )x-i{(2p-l)v + (2q-l)vl)h(x)]dx (32)

in which R21 and R01 are the overburden to substrate and overburden to air

21 011 i ii

Fresnel reflection coefficients respectively, while C =cose=u /k 1 and
cf eff.

c Coel=u /kI . The arbitrarily varying height of the overburden substratum

interface is hx). It is interesting to note that while the solution

based on the geometrical-optics approach involves a single summation (that

depends on the direction of propagation of the incident wave), the full wave

solution involves double infinite sums that satisfy the reciprocity relations

in electromagnetic theory. For the special case when ko=k (no overburden)

and h=0, the full wave solution (29) reduces to the physical optics expression

for diffuse scattering in the specular direction

H (x,y)=(i/2TkoP) exp(-iklp)2koLC21 H (33)

5. Waveguides with Irregular Boundaries

When the boundary conditions for the electromagnetic fields at the uppermost

interface and the lowermost interface of the irregular stratified structure can

be approximated by a surface impedance condition, namely

E = Z-Rxn (34)

in which Z is an impedance diadic (Gallawa 1964), (as in the case of highly

reflecting boundaries such as good conductors), the electromagnetic fields

may be expanded completely in terms of waveguide modes. The wave spectrum in

this case is discrete (the radiation fields and lateral wave contributions
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vanish). The resulting telegraphists' equation (23),(24) for the coupled forward
and backward propagating waveguide modes of the irregular structure can be

readily solved numerically using the Runge-Kutta method (Abramowitz and

Stegun 1964).

The full wave approach can also be applied to problems of propagation

in irregular stratified cylindrical and spheroidal structures (Bahar 1975,

1980; Bahar and Fitzwater 1983). For these structures, the contribution

from the continuous portion of the wave spectrum vanishes if the electro-

magnetic fields at the innermost interface of the structure can be characterized

by a surface impedance condition (34).

6. Concluding Remarks

An interesting feature of the full wave solution is that by avoiding

the imposition of simplifying assumptions (such as Kirchhoff or perturbation

approximations) at the outset of the analysis, it is possible to demonstrate

succinctly the limitations of the earlier solutions and the relationships

between them. Thus for instance, by simply replacing n in (25)by its value

at the specular points n = v/v (v2 = v. v) one.obtains the physical optics

solutions. Furthermore by replacing n by a and assuming that 8 0 k
2
<h

2
>

y 0

<< l, the expression for Q (27)becomes Q = 1rrv y X(vy)1
2
W(k) and

(25)reduces to the perturbation solution (Rice 1951).
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ABSTRACT

Like and cross polarized scattering cross sections

are determined at optical frequencies for conducting cylinders

with rough surfaces. Both normal and oblique incidence with

respect to the cylinder axis are considered. The full wave

approach is used to account for both the specular point

scattering and the diffuse scattering. For the roughness

scales considered, the scattering cross sections differ

significantly from those derived for smooth or slightly

rough conducting cylinders. Several illustrative examples

are presented and the albedos for smooth and rough cylinders

are compared.
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1. Introduction

The problem of electromagnetic scattering by finitely conducting

cylinders or spheres has been dealt with extensively in the technical

literature. Perturbation theory has been used to extend these results

to scattering by circular cylinders or spheres with slightly rough

surfaces (Barrick 1970). However, perturbation theory is limited to

surfaces for which the roughness parameter = k2<h2 > <0.1 (k is
0 s 0

the electromagnetic wavenumber and <h 2> is the mean square height

of the rough surface, Brown 1978). For the low frequency limit, (0 << i),

the scattering cross sections are not significantly different from

those for smooth conducting circular cylinders. On the other hand,

in the high frequency limit when the scales of the surface roughness

are large such that the radii of curvature of the surface are large

compared to a wavelength A and the major contributions to the0

scattered fields come from the neighborhood of the stationary phase

(specular) points on the surface of the scatterer, the Kirchhoff

approximations for the surface fields may be used to yield the

physical optics solutions (Beckmann and Spizzichino 1963; Barrick

1970). For the general case however, when the high or low frequency

approximations are not applicable, the physical optics or perturbation

methods cannot be used.

In this work the full wave approach is used to determine the

like and cross polarized scattering cross sections at optical

frequencies for finitely conducting cylinders with roughness scales

that significantly modify the scattering cross sections (81).

While the radii of curvature of the unperturbed cylinders considered are large

.ompared to the wavelength X the radii of curvature of the rough
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surfaces are not. The cross section of the unperturbed cylinder need

not be circular. Both specular point scattering and diffuse

scattering are accounted for in the analysis in a self-consistent

manner and the cross sections are expressed as a weighted sum of two

cross sections. Multiple scattering from the surface of the cylinder

however, is neglected.

In Section 2 the special forms of full wave solutions are presented

for long cylinders with mean circular cross sections and both the

specular point and diffuse contributions are identified. The solutions

are given in :matrix form to include both the like and cross polarized

contributions. The solutions are presented as closed form integrals

(not integral equations) involving the scattering surface. Thus , al-

though they remain valid for large and small roughness scales, they are

no more difficult for a user to employ, than the corresponding

physical optic- or perturbation expressions. In Section 3 several

illustrative examples are considered for cylinders with roughness

parameter B=l. The random rough surface (assumed here to have Gauss-

ian statistics ) is characterized by its surface height (isotrolic)

spectral density function and a corresponding non-Gaussian auto-

correlation function. The like and cross polarized cross sections

as well as the albedos for smooth and rough cylinders are compared.

To facilitate the analysis, it is assumed here that the radius of the cylin-

der is not only large compared to the wavelength but also large compared to

the'rough surface height correlation length.
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The scattered radiation fields for two-dimensionally rough surfaces

can be expressed in matrix form as follows (Bahar 1981a)

t f - I D W D 21t§1exp[iV- sds 
(2.1)

GV Ef HfD 
Hi

in which G
v f and G

H I are the vertically and horizontally polarized (electric

or magnetic) fields scattered at a distance r in the direction 
of the unit

-f Vi Hi
vector n . Similarly, G and G are the vertically and horizontally

polarized fields incident (at the origin) in the direction of the 
unit

vector ni. The scattering matrix D is a function of the direction 
of the

-i -
incident and scattered waves n and n , the unit vector n normal to the

rough surface and the complex permittivity E and permeability V of the

medium. It is expressed as (Bahar 1981a, 1982)

in f i -i- -fD = Ci0 T F T U(-ni n)U(n fn) (2.2)0

in which the transformation matrices Tf and T relate the scattered and

incident waves in the local planes of scatter and incidence to reference

planes of scatter and incidence while F is the scattering matrix defined

in the local planes of incidence and scatter. The coefficient G is
0

Go = -ik0exp(-ik0r)/21Tr (2.3)

An exp(iWt) time dependence is assumed in this work and U(a) is the unit

step function. The vector v is

n k f(n n) v a + v a + v a (2.4)
o x x y y zz (24

and cin= i (2.5)

whee ;istheunt vctr C0= -n (250

where n is the unit vector normal to the rough surface S. The position

vector to a point on the rough surface is Fs . In view of the unit step

functions appearing in (2.2), the integration in (2.1) is over the surface

that is illuminated and visible. Thus (2.2) does not include the shadow

forming wave (Morse and Feshbach 1953). The differential cross sectional

area is

dS = dx dz/(.ay) (2.6)
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In order to derive the full wave expression (2.1) complete spectral

expansions of the electric and magnetic fields are used, exact boundary

conditions are imposed and Maxwell's equations are converted into rigorous

sets of telegraphists' equations (Bahar 1973a,b). The far field approximations

(2.1) are obtained from these telegraphists' equations on neglecting

multiple scattering from one element of the rough surface to another and

on employing suitable coordinate transformations (Bahar 1981a). The expression

(2.1) is invariant to coordinate transformations and it satisfies duality

and reciprocity relationships in electromagnetic theory. For very (infinitely)

long one-dimensionally rough surfaces,t' e integral (2.1) can be reduced to

a line integral by noting the integral expression for the Dirac delta function

exp(ivzZ)dz 2r6(v ) (2.7)

On evaluating the expressions for the radiation (far) fields from the

expressions for their transforms (using the steepest descent method, Bahar

and Rajan (1979)),it can be shown that

Gf = Gi DGi exp[i (x a + y a )]dx/(nay) (2.8)
0) fX y y

in which

Gi - 2 s exp(i/4)exp 11 z sine] (2.9)

and for oblique incidence (with respect to the z axis) the direction of the

incident plane wave is
-in .-cos 0 a + sine 0 (2.10)

no ey 0oz

The direction of the scattered wave is (Bahar 1981h)

-f f f - f - f f-
n - sine f cos4 a + cose f a + sinef sin f a (2.11)0 x 0oy o Z

(where the polar angle is measured with respect to the y axis, see Figs. 1

and 2). In view of (2.7)

I!
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sinBf sin f = sine0  (2.12)
00

Thus (2.11) can also be expressed as

-f i
n = cos 0(sin' x+ cos4' y) + sinO 0 z  (2.13)

where the azimuth angle 0' is measured in the x-y plane with ' = 0 along

the y axis (see Figs. 1 and 2). The explicit expressionsfor the scattering

coefficients D (2.2) have been presented earlier when the reference incident

plane is normal to nxa and the reference scatter plane is normal toy

-f -
n x a . However, if the planes of incidence and scatter are taken to be

y

the planw normal to nim ns (ns is the normal.to the cylinder at the specular

point) (Barrick 1970) in the expressions for Tf and Ti, the unit vector ay

must be replaced by the unit vector

ns= v/v = sin(O'/2)ax+ cos(o'/2)ay ar

sine cosf ax + (cosa + cosa )ay
0=x0- (2.14)

[2 cosa (cosa + cosa )]J

0 0 0

To facilitate the derivation of the scattering cross sections for cylinders

with rough surfaces from (2.8), it is assumed that the radius of the cylinder

is large compared to the wavelength and the rough surface height correlation

length. In view of the conductivity of the cylinders, transmission through

its cross section is negligible. Thus the normalized scattering cross sections

(or scattering widths)for cylinders with rough surfaces are for P,Q=V,H

< PQ> = <,GPf12> 2p

IGQij
2  ira

k DPQDeQ*'exp[iVx (x-x')+ iv (Y-Y')]_ _ °_ _ _ x d x dx ' (2 .1 5 )

ira Cosa 0 (J y Mnay

where the radius vector to the surface of the ro-gh cylinder is

(x a + y ay) (.6

F = (a+h )r = (a+hs) x (2.16)
S sr s a

and a - (x 2+ y ) is the radius of the unperturbed cylinder. The charac-

teristic function X and the joint characteristic function X2 for the random

rough surface height hs are the expectations

S mmm
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where

v = 2k cosO0 cos('/2)ns , Vn - v.n (2.18)

and

a2 = <exp[iv n(hs-hs')> (2.19)

For Gaussian rough surface height probability density functions p(h) and

p(hs,h') 1X1 2  exp[_v<h2 >] (

n s (2.20)

and

X2 = X 2 exp(v2<hsh'>) (2.21)

At the specular point n- ns and

,x,2_ X2 _ p[-v2<h2 >3 . exp[-acos
2 ('/2)cos

2 e (2.22)

The surface height autocorrelation function <hh'> (which is not Gaussian) is the

Fourier transform of the surface height spectral density function .W (Rice 1951)

W-(k) < 1 h h1> exp(ikT)dT (2.23)
4 2r I ss

In (2.23) <h h'> is assumed to be a function of the distance T measured along
ss

the cylinder's circumference. The normalized scattering cross section (2.15)

is expressed as a weighted sum of two cross sections (Bahar 1981b,Bahar and

Barrick 1983)

<oPQ> I <OPQ> + <oPQ> (2.24)
s

The first term in k2.24) is the physical optics contribution < 
P Q> modified

2
by the coefficient xI . It can be shown (using the steepest descent method)

that for . conducting circular cylinder

k a PQ2 
PQ

<Pq > ' exp(iv x x+ ivy~)dxI ol '2
a Cacoses 2J6(.'y) X cos O i nn'

(2.25)
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When the planes of incidence and scatter are taken to be normal to n1x nf

(2.25) reduces to

<o!S = cos(W'/2)IR I26PQ (2.26)

in which Rp is the Fresnel reflection coefficient for the specular angle y given

by cosy = -n ns = coseo cos(o'/2) and 6 is the Kronecker delta.
5 o PQ

Due to the surface roughness, the physical optics contribution

(specular scattering )s decreased by the factor 1x1 2 
(2.20). The surface

roughness also gives rise to the diffuse scattering term

PQ s kD PQ1 IXI2 )dT -x (2.27)<0 >= 0 IID Iexp(iv.1T[) (X2-I 2 dx
ra si nay

Ai --

in which A. is the illuminated and visible portion of the surface. In (2.27),
1

it is assumed that the rough surface correlation distance T=2 (where <h h'>
c s

is equal to <h2>/e) is very small compared to the circumference of the cylinder.s

Mne quantity X2-1X1
2 vanishes for T >> kc (justifying the limits (- , ) in (2.27)).

On expressing it as an infinite series and on noting that for the unperturbed

cylinder n=a r, na y= cosy and dxl(-n-a y)= ady, (2.27) reduces to

PQ = <A P> sm 1 Q (VnVT)dY (2.28)
m=l cose

0

in which Vn and vT are the components of v (2.7) normal and tangential to

the surface of the unperturbed circular cylinder and

Q(vv =i j (X X2)expvTT)dT

IX(V )12 1 j m(v) (2.29)

in which WI - W and for m >2

W . 1_ <h h>mexp(iv T)dT
uM 21T jss T

- W_ 1  W f WMl(k-vT)W(k)dk (2.30)

Thus for a - 4k2 <h2> << 1,(2.28) reduces to the perturbation solution
os

<(I PQs IDQI2 v2W(vT)dy (2.31).
2 cos8 i

0



The full wave solution (2.24) is valid in both the high frecquency physical

optics limit as well as the low frequency perturbation lixlit and it bridges the

wide gap between them.

3. Illustrative Examples

In this section two different sets of physical and electrical

parameters are considered for the illustrative examples. For case (1)

(visual band) A - 0.555 x 10-4 cm, the radius of the cylinder is

a = I0A and the complex dielectric coefficient is E -40 -i12 (aluminum;

Ehrenreich, 1965). For case (2) (infrared band) A 10 x 10-4 cm,

a=2.5X and c = -6000(1+i).

The random rough (homogeneous) surface height autocorrelation

function <hh'> is assumed to be a function of distance T measured around

the circumference of the unperturbed cylinder. The corresponding surface

height spectral density function W(v T ) (2.23) is assumed to be given by

W(k) - 2B k
d <k kc

0 ,elsewhere

k d = /a and k 4.5 x 105 cm
- I

for case (1) and

k 
2 B(k-kd) 4

W(k) -( 2+ 2 4 kd < Ikl < kc
{[(k-kd) +

0 , elsewhere

kd = 2/a ,k =4k 0 and K = 0.3k d

for case (2).

The constants B in the above expressions for W(k) are determined such

that the roughness parameter = 4k 2<h 2> = 1, where the mean square
os

height is given by

<h 2 >n Wk) dk 0 2

a 40
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Thus B = 33.3 cm-1 for case (1) and B - 2 .80 cm- 1 for case (2).

For case (1), the surface height spectral density function W(k) decreases

monotonically as 1/k4 and is maximum at k=k . For case (2), W(k) vanishes

at k=kd and it is maximum at k=k d+ K. For k > k c, (the spectral density

cut off wavelength), the roughness scales are too small to affect the

scattering cross sections (Brown 1978). Case (2) represents a surface

with characteristic scales of roughnessrelative to ko,that are smaller

than those for case (1). The mean sauare slopes a2 are (1) 0.00015 and (2) 0.01.
s 2

The corresponding correlation length to circumference ratios £e/2-a=(<h >/2) 7a as
are (1) 0.015 and (2) 0 c0a

In figures 3 and 4 <aW> and <6HH> are plotted as functions of Of

for 8i = 0 and case (1). The corresponding plots for case (2) are
0

shown in figures 5 and 6. The normals to the incident and scatter planes

are given by -n ix a and n x a respectively. Note that for case (1)

(a/X = 10), there is very little difference between the two polarizations

<0V> and <0 HH > however; for case (2) (a/A
= 2.5), the diffuse scattering

contributions to the cross sections are polarization dependent. In

figures 3 through 6, the contribotions due to specular point scattering

<aPP> 1X1 2 and the diffuse scattering terms <0PP > and <0PP >2 are also

shown separately. For a = 0 there is no cross polarization (<a
PQ > = 0 PiQ)-

0

In figures 7, 8 and 9, the like and cross polarized total normalized

cross sections <a >, <HH > and <0 VH> <0o
V 
> are plotted as functions of

for 6 = 30 and case (2). Cross sections for both smooth and rough
0

cylinders are shown and the incident and scatter planes are normal to

-n x a and n x a respectively. Note that for the smooth cylinders

<0 > and <aR> approach unity for the specular direction *' - 0 and

become vanishingly small for O' - Tr/2. However for the rough cylinder

the like cross sections do not display the sharp nulls near 4- 7r/2 and

-I m mmmm ~ m



203

for the specular direction, 4' = 0, the normalized cross sections are

significantly smaller than unity. On the other hand, for the smooth

cylinder, the cross polarized cross sections are vanishingly small near

the specular direction and peak around 0' = lT/2. For the rough cylinder

however, no sharp null occurs near the specular direction. Thus, we

observe that the scattering cross sections become more isotropic as one

introduces surface roughness.

In figures 10, 11 and 12 the like P-A cross polarized total cross

VV EHi HV VH
sections <0 >, <a > and <0 > = <a > are plotted as functions of '

for 8i = 300 and case (2). In thcse plots however, the incident and
0

-i -f
scatter planes are defined as normal to the vector n x n (Barrick 1970).

Cross sections for both smooth and rough cylinders are shown in figures 10

and 11. For the smooth cylinder there is no depolarization in the

-i -f
specular scatter plane normal to n x n (2.26) (Barrick 1970). It should

be noted that for figures 10, 11 and 12 the definition of the incident

plane depends on the scatter direction while it is fixed (normal to

-i -W-n x a y) in the context of figures 3 through 9.

The normalized extinction cross sections aex t , the albedo for smooth

(0=0) and rough cylinders (8=1) are shown in Table I for case (1) and

case (2) when the incident wave is either vertically (V) or horizontally

ipolarized (H) and e = 0. Also shown in this table is the computed value0

of the albedo for 8=1 when one does not account for the contribution due

to diffuse scattering <a PQ> . Clearly even for 8=1, the contributions

due to diffuse scattering are not negligible. As a increases additional

terms in the expansion (2.28) need to be considered and the solution based

on perturbation analyses becomes inadequate (Rarrick 1970).
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In Table II, the corresponding values for the normalized extinction

cross sections and the albedos are given for the case of oblique

incidence 8 1 300.
0

It should be pointed out that in order to compute the albedo (the total

scattered power in all directions divided by the extinction cross section

for a given incident polarization), the plane of incidence is assumed to be

normal to -n x a . The total scattered power is obtained by averaging overY

the azimuthal angle, *' the expression <aPP> IX2 + <0PF>s + <oQP>MIX
2

+<aQP>S in which <O PP> and <a QP> are the like and cross polarized normalized

Mie solutions (Barrick 1970), for the smooth cylinders and PJQ. The

albedos for case (2) are larger mainly because Iej is larger for

A- 0.555 x 10-4 cm than for I = 10 x 10-4 cm.

4. Concluding Remarks

From the computed values of the like and cross polarized cross sections

and albedos, it is obvious that even for roughness scales correspcnding

to $=I the effects of surface roughness cannot be ignored and the diffuse

scattering contribution is very significant. Using a perturbation approach

to the'problem, one is restricted to values of 0 < 0.1 (Brown 1978). In this case

the perturbation diffuse scattering terms reduce to the first term in (2.28)

<0PQ>sl. This term for 8 < 0.1 is negligibly small compared to the contribu-

tion due to specular scattering (<aPQ>IXI2). Thus the perturbation solutions

for the albedo are not adequate when the effects of the surface roughness

are significant.

Using the full wave approach, the surfrace roughness of the

cylinder is characterized by its surface height autocorrelation function

<hh'> or its Fourier transform W(V). In this work diffuse

scattering due to different forms of W(vT) (namely roughness

I
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scales)is investigated. In the scattering plane normal to n x nf, the cross

VHpolarized cross section is only due to diffuse scattering, thus <a >, as

defined in Fig. 12, is most sensitive to the characteristics of the surface

roughness. The dominant effect of surface roughness is to flatten out the

peaks and dips in the scattering patterns and to make the scatterers more

isotropic.

The albedos of the cylinders are computed for vertically and horizontally

polarized waves at normal and oblique incidence. The results for both smooth

and rough cylinders are given. It is shown in Tables I and II that the contribu-

tion due to diffuse scattering is significant, however, perturbation theory

cannot adequately account for diffuse scattering when -I.
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TABLE I 8 i  00
0

V case 1 H case 1 V case 2 H case 2

0 ext 1.310 1.359 1.373 1.189

albedo 0 = 0 .945 .915 .952 .926

albedo B - 1 .894 .866 .924 .898

albedo 0 = 1  .759 .734 .776 .746
no <PQ>

TABLE 1e = 30O

V case 1 H case 1 V case 2 H case 2

ext 1.281 1.348 1.381 1.179

albedo B = 0 .958 .911 .960 .956

albedo B - 2 .923 .878 .942 .936

albedo 0 = 1

no <UPQ>. .797 .759 .816 .789
s

.. .... ---
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Figure Captions

Fig. 1. Incident and scattered waves in the x-y plane.

Fig. 2. Plane wave incident in the y-z plane.

Fig. 3. <OVV>, (2.24), case 1, 6O = 00,

total(-), Ixi 2 <Gv >(X),<vv>sl (M), < >s2 (A).

Fig. 4. <HH >, (2.24), case 1, 6i = 0° ,
0

0

total(-), lxi2 < >(X),<oH>s1 (0), <avH. 82 s A).

RH1 oFig. 6. <^ >, (2.24), case 2, 6 - 0
total(-), Ixl 2 <0 HH> Wx) v<^ (O), HRW>2 WA.

W 0
totaiC-), Il2 <H> (X),<aRH>s1 (0), <aS>s 2 (i).

Fig. 7. <a >, (2.24), case 2, e = 300

smooth cylinder (+), rough cylinder (0).

RH 1 oFig. 8. <a >, (2.24), case 2, 60 30o

smooth cylinder (+), rough cylinder (0).

Fig. 9. <oHV> . <aVH>, (2.24), case 2, 61 300,
0

smooth cylinder (+), rough cylinder (n).

Fig. 10. <o>, (2.24), case 2, 6 . 30 , scatter plane,
0

smooth cylinder (+), rough cylinder (ci).

Fig. 11. < HH>, (2.24), case 2, 6t 
- 300, scatter plane,

0

smooth cylinder (+), rough cylinder (t]).

Fig. 12. <^> = < VH>, (2.24), case 2, 06 - 300, scatter plane,
0

smooth cylinder (+), rough cylinder (0).
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MULTIPLE SCATTER. ING BY FINITELY CONDUCTING PARTICLES

WIT4,RANDOM ROUGH SURFACES AT INFRARED AND OPTICAL FREQUENCIES

Ezekiel Bahar

and
Mary Ann Fitzwater

Electrical Engineering Department

University of Nebraska--Lincoln

Lincoln, Nebraska 68588-0511

Abstract

The incoherent specific intensities for the waves scattered by a random

distribution of particles with rough surfaces are derived. Since large

roughness scales are considered, the diffuse scattering contributions to

the like and cross polarized scattering cross sections are given by the

full wave solutions. The scattering matrix in the expression for the

equation of transfer is given by a weighted sum of the scattering matrix

for the smooth particle and the diffuse contribution due to the rough surface of

the particle. Illustrative examples are presented for the propagation of

a circularly polarized wave normally incident upon a parallel layer of

particles. Particles with different surface height spectral density functions,

roughness scales, complex permittivities and sizes are considered. Both

first order (single scatter) and multiple scatter solutions are provided

and the results for particles with smooth and rough surfaces are compared.

\b

!
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1. Introduction

Scattering of electromagnetic waves in media consisting of random

distributions of particles has been investigated extensively using the equation

of transfer (Chandrasekhar 1950, Ishimaru 1978). The main difficulty in

setting up the equation of transfer lies in the determination of the elements

of the 4x4 scattering matrix for the individual particles. Thus most of the

work has been done for particles of idealized shapes such as spheres.

In this work a method is presented for the modification of the results

derived for particles with idealized shapes to account for the random surface

roughness of the particles. To this end the full wave approach was used to

determine the rough surface contributions to the like and cross polarized

scattering cross sections and the elements of the scattering matrix are given

in terms of a weighted sun of the Mie solutions and the diffuse scattering

terms due to the particle surface roughness (See Section 2). For convenience

in this work a circularly polarized wave is assumed to be normally incident

upon a parallel layer consisting of a random distribution of irregular shaped

particles. Different particle sizes with different complex dielectric

coefficients are considered. The rough surface height is characterized by

different surface height spectral density functions (the Fourier transform

of the surface height autocorrelation function), and different roughness scales.

For the illustrative examples presented in Section 3 both first order

(single scatter) and multiple scatter results are presented for smooth

particles and for particles with rough surfaces. Layers with different optical

thicknesses are considered and the results are presented for both the forward

and backward scattered incoherent diffuse scattering intensities. The matrix

characteristic value technique is used to account for multiple scattering

(Ishimaru and Cheung 1980).
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2. Formulation of the Problem

In this section the principal elements of the full wave solutions for

the like and cross polarized differential scattering cross sections of non-

spherical particles are summarized. The contributions of these cross sections

to the familiar equation of transfer (Ishimaru 1978), in a medium

consisting of a random distribution of nonspherical particles are also

indicated explicitly.

The radius vector from the center to the irregular surface of the particle

is given by (see Fig. 1)

r a h + h a (2.1)a or sr

in which a is the unit vector in the direction of the radius vector, h isr o

the radius of the unperturbed sphere and h is the random rough surface height

measured in the direction normal to the surface of the unperturbed sphere.

In this work it is assumed that the mean square of the rough surface height,

<h2>, can be sufficiently large such that standard perturbation techniques are5

not applicable (Barrick 1970). Thus the rough surface parameter, 0 - 4k 2<h 2 >,

considered in this work is in the range 0 < 0 < 10. (Smooth particle a=0, moderately

rough particle 5=i, very rough particle 1=10). To apply the standard perturbation

technique it is necessary to restrict the mean square height such that

0 < 0.1 (Brown 1978).

The full wave solutions for the normalized scattering cross sections

<aii> per unit cross sectional area (A - rh2)are expressed as a weighted sum

(Bahar and Chakrabarti 1985)

<u J> . <olj>I+<O
ij

> (2.2)

the symbol <-> denotes the statistical average. In the above expression

the first and second superscripts indicate the polarizations of the scattered

and incident waves respectively. Thus ij - 1 denotes Vertical polarization

and ij - 2 denotes Horizontal polarization. The cross section <orJ> is the

sodifled croa section associated with the unperturbed sphere-.
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<12 IX <) 2 <iU> (2.3)

In (2.3) <aiJ> ie is the Mie solution (Ishimaru 1978), for the like and cross

polarized cross sections of the unperturbed sphere. For large spheres,

k h > 20, (k is the free space wavenumber), the most significant parts of00

the solution are the specularly reflected wave and the shadow forming wave

04orse and Feshback 1954). The coefficient of <0 j>M e is the rough surface

height characteristic function

xS(v) - <exp ivh > (2.4)

in which v is the magnitude of the vector

-k 0(nf-i (2.5)

where nf and n= _ (see Fig. i) are unit vectors in the direction of the

scattered and incident wave normals. For a rough surface h with a Gaussians

probability density

s 2 2 2 f 2 2
xS(v)l2 = exp[-4k2<h2>cos (8f/2)) exp(-v <h 5 >) < 1 (2.6)

in which 8 /2 is equal to the angle of incidence at the specular point. The
0

coefficient IX,12 accounts for the degradation of the reflected wave due to

surface roughness. The coefficient is minimum for backscatter and approaches

unity for forward scattering.

The second term in (2.2)<oij> is the contribution to the total scattering

cross section due to the surface roughness.It is expressed as (ahar and Chakrabarti

1985) ( u-f-'--- -f -i -
< 
=  AI (n,n ,n)('a )Q(n ,n ,n)p(n)d (2.7)

in which ; is a unit vector normal to the surface of the scatterer,

-f- - 1 2 koDi-2

fi ,-. s,-- ~ s-- -~ a (29

(n ,nn) - (V.; r X2 (a'ar)-IX (v'ar)I )exp(';'ddd d ' (2.9)

and p(;) is the probability density function for the slope of the surface of

the scatterer. Thus for a sphere -



p( )dn- siny cosy dydd 0 < y - v/2, 0 < & < 27t (2.10)

where y and 6 are the polar and azimuth angles. In (2.10) it is assumed that

the rough.surface (hs ) mean square slope is small compared to unity (; = ar).

In (2.8), Dij is the scattering coefficient which depends on the polarizations

and the directions of the wave normals for the incident and scattered waves

as well as n, the normal to the particle surface and the complex electromagnetic

parameters (C,11) of the particle (Bahar 1982a). Since Dij is not very sensitive to

small fluctuations in n, in the expression for Di, n is approximated by a . This

does not mean that the effects of rough surface slope is neglected, since it is also

contained in the expression for which depends on the surface height autocorrelatior

function. (See Table I). The term P 2(nf ,nIn) is the probability that a point on

the rough surface is both illuminated by the source and visible to the observer

given the slopes (n) of the surface of the scatterer (Smith 1967, Sancer 1969).

Since n = a , and P is also not very sensitive to small fluctuations in the slope,r . 2
thus P2 u(-n -)u(n'n) where uC) is the unit step function.

In (2.9) X s(va2 and X2 (v.ar) are the rough surface height characteristic

function and joint characteristic function respectively

x(v'a <exp(ivr h s)> (2.11)

and

x ('r) = <exp[iv r (hs-h')> (2.12)

in which v - va . For Gaussian surfaces
r r

and

22 2 2 (vva 12 (2.13b)X2 (var) = exp(-v <h2 > + v2<h h'>) exp(vr<ss IXv 'ar)

The distance between two neighboring points r and r on the surface of the

unperturbed sphere is given by the vector

, 2 2 2
fir r X xd n+ z d  ;3 r- ] d]  rf  d f ( d +  Z d) (2.14)

in which n and n3 are any pair of orthogonal unit vectors tangent to the surface
1 3

of the unperturbed sphere. It is assumed in this work that the rough surface h
5

is homogeneous and isotropic, thus the surface height autocorrelation function

<h h'> is only a function of the distance rd between r and r' and independent
5s s

of direction. Hence Q (2.9) can be-reduced to a one dimensloal integral
-f-i- 2 f(()5( 12)[or( 22) r ]r d dr (2.15)Qs(n n n)=v 2r TX2r X~r)
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In which J is the Bessel function of the first kind. It is also assumed that the
0

rough surface correlation distance rdc (where the correlation coefficient

R(rd )= <h h'>/<h2 >---y-4A-exp(-l)) is small compared to the circumference of the sphere.
d 5 rdrdc

The general expression for the equation of transfer (Ishimaru 1978) can be

written as follows for a plane parallel slab consisting of rough spherical

particles (see Fig. 2)

di = L +(I [SJ[I']dP'dO'i[{I ]  (2.16)dT

In (2.16) T is the optical distance in the z direction (normal to the plane

parallel slab)

I= P[at3z f at n(D)dD z , D = 2h (2.17)

where n(D) is the particle size distribution and ot is the extinction coefficient.

Since <aij> vanishes in the forward direction, the extinction matrix (Ishimaru

and Cheung 1980) for the rough sphere, can be represented by a scalar quantity

as in the case for the smooth sphere. However, if the unperturbed particle is non-

spherical, the first term on the right hand side of equation (2.16) is multiplied

by the extinction matrix. In general <iJ > vanishes in the forward direction due

to the term P2 in (2.8). The matrices [I] and [i'3 are the (4xl) incoherent specific

diffuse intensity matrices for waves scattered from the particles in the direction

8 = cos-2 U and 0 and for waves incident in the direction 8'= cos-1 ' and ',

respectively. The elements of (I] are the modified Stokes' parameters

Li a 2  J (2.18)
U 2Re<E1 E*>

V i 21m<E1 E*>

where the symbol 9 denotes the complex conjugate and E and E2 are the vertically

and horizontally polarized components of the electric field. The (4x4 ) scattering
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matrix [S] in the reference coordinate system can be expressed in terms of the

scattering matrix [S'] in the scattering plane as follows:

[S] - [X(-m + a)][S'][ (a')] (2.19)

in which

['] - JxS(v.a r)2[I.Sie ] + [Ss]  (2.20)

In (2.20) IS~e ] is given by

Cfj~2] p[[f 121
2) pRe[fE

1f 2 ] -PIM[fl f jPl~fll I P11f21 1 121112

1 PEf 2112] p[1f22j2J pRe[f 2 1f 22 -pImf 2 1 f 2[SMie]-PE t]  p2Re[ff;] p2Re[f f2 pRe[fl* *f ) -*lM[f f* 2ff
112 P~L 1 2 2 2J ' 1122 12f21 11 22- 12 21

p2mff P1~ff* PMff* * I peff* ff*I

2L m 11f 21)1 2 11 221f2f21 122 22

(2.21)
where fij are elements of the 2x2 scattering amplitude matrix [f] and p['] denotes

Integration over the particle size distribution n(D) (2.17)E, L 2I f22 L x 0 r ) (2.22)
rE r i E'1

[E f 11 f 12 I r ]2.2
L L21  22J r

In (2.22) E£ and Er are the vertically and horizontally polarized field

components in the scattering plane and r is the distance from the center of the

sphere to the field point. An exp(iwt) time dependence is assumed in this work.

For a smooth sphere the elements f J are given by the MiU solution

(Barrick 1970, Ishimaru 1978) and [f ] is a diagonal matrix. The transformation

matrix [ ] in (2.19) is

Cos 2a sine hsin2a 01
sin2a  coa 2a -h singa 0

-sifi2 a sin2ci cos2a 0

0 0 0 1 J (2.23)

Imman aem m s-iaimiimiI m•m Bi mm
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where a' is the angle between the reference plane of incidence and the scattering

-f -iplane (containing the wave normals n and n ) and a is the angle between the

reference plane of scatter and the scattering plane (see Fig. 2).

In (2.20) the coefficient Ix(v-ar)12 accounts for the fact that the specular

point contributions to the scattering cross sections is decreased because of the

rough surface (CxSl2 < I and xYi2 + I as 0 - 0). The di-fuse scattering matrix

[s]I due to the random rough surface hs is given by

[ss  [s52] o

EE [s 1 0 0

L5  L 0 0 [3s34 (2.24s)

0]= 0 [SS1]

where
A

[SSJ A p[<= __ > ] for ij = 1,2 (2.25a)i 7p[cot] a[°Js

and <a iJ> is given by the full wave solution (2.7)

Furthermore for i = 3 and 4

n> <G12> 3A A/4rP[ot]  (2.25b)
[ii =[e<22 s ±  21 s y

(upper and lower signs for i = 3 and 4 respectively) and for i j J

[22] -PLm[± <On> + <U2> s - A/IP[Ot] (2.25c)

(upper and lower signs for i,J= 4,3 and i,j =3,4 respectively)

In the above expressions
k 2 D

i j D 
k
1*

1 ic 2 i 0 P QPG)dn (2.25d)
k9U ( - 2 2 s

r y
The remaining eight terms of the matrix [S ] vanish since D and Di(ilj) are

symmetric and antisymmetric respectively with respect to the azimuth angle 6.

In order to simplify the solution of the transfer equation (2.16), it is

assumed in this work that the normally incident waye is circularly polarized. Thus

the incident Stokes matrix at z = 0 is given by [1

(in] = 0Il l)5.l')-Io(j'l)6C$'

0 (2.26)

IF
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where the - and + signs correspond to the right and left circularly polarized

waves and p' . cosO'. The reduced incident intensity is therefore,

[Iri = [I inc] exp(-T) (2.27)

In (2.16) the (4xl) excitation matrix [I i  is given by

[IJ -l f [SEIi dJ'do' - [[5 [HI)] 0- *exp (-T) (2.28)

V.=0

where I, the incident Stokes' matrix is defined by (2.26).

Since the normally incident circularly polarized wave is independent of the

azimuth angle 0, the Stokes' matrices for the incoherent specific intensities

are also independent of 0. The elements of the scattering matrix [S] (2.16)

are functions of 4"- ' only. Upon integration with respect to 0' over a range

of 27 the scattering matrix [S] reduces to the following form (Ishimaru and

Cheung 1980).

Sll S12 0 0

Is] = 2 s22 0 0

0 0 533 341

0 S43 $44 (2.29)

Since f11 and f22 are even functions of *-,' while f21 and f12 are odd

functions of 0-4'. As a result there is no coupling between IlI2 and U,V in

(2.16) and the equation of transfer for the normally incident, circularly polarized

wave 4ecouples into the following two matrix equations

~l1 j [Ill] + j[S1  121[id'+[] (2.30a)dTJ 2J 2l s 2JI J [1,2J

andr r'

TT - V S 4J1 d' + (2.30b)

in which hl and 112 are the first two elements of the excitation matrix [11](2.28)

while U and Vi are the third and fourth elements of the excitation matrix.
i

aBilH Il llllll l• a
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3. Illustrative Examples

For the illustrative examples considered in this section, the random

rough surface height hs (measured normal to the surface of the unperturbed

spherical particle of diameter D - 2h ) is assumed to be homogeneous and

isotropic. Different forms of the surface height spectral density function

W(VxV z) (which is the two dimensional Fourier Transform of the surface height

autocorrelation function <h h'>) are considered.ss

W(vT) - W(vxV z) - s xXd + iVzZd )dxddZd

2 <hsh;> J(vTr )r dr (3.1)
ii j s o d d d

0

where vx and vz are components of v in the directions of the unit vectors nln 3

tangent to the surface of the unperturbed sphere. Thus

VT = (vx + v 2 2 vr  (3.2)

Similarly the surface height autocorrelation function <h h'> is given by the

ss

inverse formula
SW(Vxz

<hsh'> xvv exp(-iv x -iv z )dv dv
a j x d z d x z

=" (Vr)JoCv r )vTdV (3.3)
f I vT jo~ Td T
0

For case (a) (see Table I), the specific expression for the surface height

spectral density function is

2c ) (VT-vd) 1n
W(v1 ) " LVT-Vd)2+ v J Vd < vT < Vc

- 0 elsewhere (3.4)
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In (3.4) the smallest spatial wavenumber is

vd = 4/D (3.5a)

and the cutoff wavenumber is

T -4k (3.5b)C 0

where k is the wavenumber for the electromagnetic wave. The constant C is0

chosen such that the scale of the random rough surface is

-4k 2<h 2> 1 (3.6)
0 s

In (3.6) <h 2> is the mean square height
S

<h > vdT  (3.7)
s 2 f W~vT~vTV

0

The corresponding value for the mean square slope

2 i f 3
ys  T fW(v )v IdvT (3.8)

0

is 2 = 0.013. The parameter vm where W(vT ) is maximum is v = 1.2/D.

The exponent in (3.4) is n = 4 and the material of the particle is aluminum.

For wavelengths X =1 0 pm the relative (complex) dielectric coefficient is

E - 4000(i+i) (Ehrenreich 1965). The diameter of the unperturbed sphericalr

particle is D = 5 A (See Table I case (a)).

For surfaces with small scale roughnesses B < 1, the contribution (2.7)

to the total scattering cross sections due to surface roughness h can also
5

be expressed as a series

- 2 IDI p 2(nfn In) (v rw(vT)
s m o 2 vray

217r i2 2mW (vT))((V

"Z 4k 2  IJ 1D2l2 (nf, nln)[ J m T sinydyd6 (3.9)

0 0
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in which W (v )/2 is the two dimensional Fourier transform of <h h'>m and
MT s s

the integration is over the polar angle y and azimuthal angle 6. The Fourier

transform W can also be expressed as
m

2m (2VXz 1  
(hshs)m exp (ivXxd+ ivzzd)dxddzd

.. f W (v',v')W (v -v',v -v)dvdv'
2 x z x x x X ;

1 Wl(vxv) ®- W(v,v ) (3.10)

In (3.10) the symbol @ denotes the two dimensional convolution of W M_1 with

W1 = . For 0 << 1 only the first term in (3.9) is non-negligible. This term

corresponds to first order Bragg scattering from rough surfaces (Bahar 1981 a,b).

For case (a) (0-1), it is necessary to evaluate only two terms of the series

in (3.9). For large values of roughness scales (0>1) it is more convenient

to evaluate co'J> 5 using (2.7).

For cases (b) (c) and (d) the specific form of the surface height spectral

density function considered is

.2C - v T_ VT> 0  (3.11)2 + 2 '

where the exponent is assumed to be n - 8. For case (b) the roughness parameter

is -= 1 and for cases (c) and (d) it is 8 - 10. The corresponding values for
vm  2

s' A, Crand D are shown in Table I cases(b) (c) and (d). For these cases,

2the surface height autocorrelation coefficient R(C) E <h h'>/<h > can bes s 5

expressed in closed form

Q) 4 [1 - _6 2 + 372JCl()

I4

2 _- y-3J~
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In (3.12) K and K. are modified Bessel functions of the second kind of order

zero and one respectively (Abramowitz and Stegun 1964) and the dimensionless

parameter C is
E v mr d (3.13)

For all the illustrative examples, it is assumed that a right circularly

polarized wave is normally incident at T = 0 (z = o) upon a parallel layer of

optical thickness T (see Fig. 2). The equation of transfer for the azumuthally
0

independent modified Stokes' parameters (2.30) are solved using the matrix char-

acteristic (eigen) value technique (Ishimaru and Cheung 1980). For case (b)

(/)=10) the scattering cross sections are more sharply peaked in the forward

direction, thus it is necessary to use a Gaussian quadrature formula of order

32 (Abramovitz and Stegun 1964 ). The boundary conditions for the incoherent

specific diffuse intensities are

[I] = 0 for 0 < v < 1 at T = 0 (3.14)

transmitted incoherent diffuse intensities are zero at T = 0) and

[I = 0  for 0 > V >-I at T =T (3.15)

reflected incoherent diffuse intensities are zero at T = T
0

For case (a) (see Table I) II (vertical polarization) and 12 (horizontal

polarization) are plotted in Figs. 3 and 4, respectively, as functions of the

scatter angle e (0.900) (transmitted T > T ) for To = 10. The solid curves

correspond to first order scattering solutions only (Ishimaru 1978) for the smooth

(unperturbed spherical) particles and particles with rough surfaces. The surface

roughness of the particles tends to smooth out the incoherent diffuse intensities

as function of e. Note that the vertically polarized intensity is more

oscillatory than the horizontally polarized intensity.

The corresponding solutions that account for multiple scatter are also given

for the smooth (+) and rough (A) particles. We note that since the albedos for

the rough particles are slightly lower than the albedos for the smooth particles

(see Table I), the incoherent diffuse intensities are somewhat lower for the

I



rough particles. For optically very thick layers of particles, the diffuse

intensities II and 12 are practically equal and rather flat functions of 6.

Multiple scattering cannot be neglected in these cases.

For case (b) (see Table I), the incoherent diffuse intensities I1 and 12

0-

for T0 = 1. The first order solutions are closer to the multiple scattering

solutions for T0 = I than for T0 = 10, however multiple scattering does tend to

make the incoherent intensities more monotonic functions of the scatter angle e.

For optical thickness T = 1, the surface roughness has a smaller effect on the

incoherent intensities and II and 12 are not equal in the intermediate range
1 2

of angles between 100 and 40.

In Figs. 7 and 8 the incoherent diffuse intensities I1 and 12 are plotted

as functions of 6 (900,1800 reflected T < 0)(case b with optical thickness

T = 10). Note again the oscillatory nature of the first order solutions for

1 (vertical polarization).

For case (c) (see Table I), the incoherent diffuse intensities I1 and 12 are

plotted in Figs. 9 and 10 as functions of 6 (0°,900 )(transmitted T > T ) for

T = 10. For smaller particle sizes (D=5A), the first order intensities are less

oscillatory than for large particle sizes (D=10X). Note also that for dissipative

plastic materials, there is a more significant difference between the intensities

for the smooth and rough particles.

For the final case considered (d) (see Table 1), the incoherent intensities II

and 12 are plotted in Figs. 11 and 12 as functions of 0 (0°,900 )(transmitted T> TO )

for T = 10. The only difference between case (c) and case d) is the relative complex0

permittivity C of the particles. Since the particles for cases (a) and (d) are

highly conducting there is a smaller difference in the specific incoherent intensities

for the smooth and rough particles. This is because the corresponding albedos are

not significantly different for highly conducting particles (see Table I). Neverthe-

less, it should be pointed out that for optically thin layers (r° < 1) the principal

effect of particle surface roughness is to smooth out the undulations in the di,'fuse

specific (incoherent) intensities as functions of the scatter angle. The effect of

particle surface roughness is more pronounced for highly dissipative particles with

small albedos,case (c).

The effect of surface roughness on forward scatter (6=0) Ij less pronounced

since <04J> (2.7) vanishes and IxSI 2 _1 for forward scattering.

Is,|I
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4. Concluding Remarks

In this work scattering of electromagnetic waves by particles with

moderate (0-1) to very large (0-10) roughness scales (that cannot be accounted

for using the standard perturbation methods) has been considered. The

incoherent diffuse scattering intensities for the rough particles have

been compared with the corresponding results for smooth particles. Both

first order (single scatter) and multiple scatter results have been presented

for a set of four different cases listed in Table I. Particles of different

sizes, complex dielectric coefficients, and surface height spectral density

functions are considered.

As the scale of roughness - 4k 2<h 2 > increases, the scattering coefficientsos

as well as the incoherent diffuse scattering intensities become practically

independent of the scattering angle. In addition, for large To, the incoherent

scattering intensities decrease as the roughness scale increases. This effect is

more pronounced for particles made of very dissipative materials. As the

optical thickness of the layer increases, the incoherent diffuse scattering

intensities become less dependent on scatter angle.
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TABLE I

case a case b case c case d

4 8 8 8

1 1 10 10

v 1.2/D 15.9/D 4/D 4/D

02 .0131 .10 .10 .10

A lOp .555p lop lOp

Cr  -6000-16000 -40-i12 1.5-18 -6000-16000dissipative
Material aluminum aluminum plastic aluminum

2h - D 5A 10A 5x 5x

Or smooth 2.059 2.259 2.370 2.059

Ot, rough 2.059 2.313 2.333 2.198

albedo, smooth .9885 .9356 .6434 .9885

albedo, rough .9732 .8999 .6043 .9724
rd 2 <h 2> 5

- - - .089 .016 .102 .102

COs
Table I. Values of parameters for the surface height spectral density

function W, wavelength A, dielectric coefficient cr and diameter D

for the scattering particles.
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Fig. I. Scattering geometry for a rough
conducting sphere.
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Fig. 2. Scatt ering geometry indicating incident and scattering wave normals
n' and nf and corresponding field components El parallel (vertical) and E
perpendicular (horizontal) polarizations.



238

00

0o
H0 0

4+4

+4 I
cc. 0 r-

000

0 W- 0.

4D 44
.~on (n t :

4-r-

00

0)( '- 4-'0
0

C Ou

4 -1 40 4.

+4-

+4) 40 41(

0 0 *.0

00 1) - 0o000o)0 -o - 0 *0.0,9



00

-10 0

toH0
4- 0

4- C

+4)

+ 41 + . 4~

4- 00

C. 00

+44

4-'

oo

o+4 Ez I

I,- I
oo-?I'-~~ ~ ~ ~ ~ -07-z--..-400 0*9 0-4



24o

w0

0< E

4 0
9.c\ 0)4

E. H w

00

4-~U 0

o4 - 0
C '

0Qs--

0 .44
3-.

o44 - , 4-
II U

If) 4)1 u

4- H6U
.44 4

0H 0
00

4)3 4-'

* .4v

pC.) 04

Id -' U

00 190

- o 80
ooloz 00o ood oo' ooloz- oolo& -



24
1

0
0 0

44

00

I)+4 H

Lr)) 41

4-4~ 0

0 0 4-'H

-H

4-,..,,

SO) 0,H 4S'
S I

.4.4 0)11
40eU

-K1 4-'
0 1

04J

) p - )

ob

41 o1o
00

0 so

00oOz 00o1i 00cf oo0,0- oo~oz- o0*oe-



*0

00

1. 0 c :

1 10

+4 ~ 0

+4 0. a 0t.

;"' r'

0 0-

0 11 0 9

o 0 4+'
0

+4 v-S Eo

0 +4 -~ 4H,0~

0
E

H I

0+4 o eta

0 -ow w
HIt4J +1

0 . W0-

444

+4

08- oo0l- 0oz'- 00- OOO- 00-01- OO-s,



2143

0

o '0

04)

H to

-4 -:
LO :31 0

1~10

0+40

0 1.)f 4

C?4 44 -0.-

LO 4)U I. 10.

+4

9- 0~4 4)

Co +4
..-LI 4)

+1) +4 )

4)22r. 0.

P..g

o~c go2

o4 A4 P4~

:0 04
+4

08 - u 0001- OO-Oz 00 Oe J 0 0.t' O-s



o 244

0
4-0

0 4 'd

o P 0 0

cc)a 0

SLr\

40

+ to U

0,- 4,

0 0or- in j ,:(0 + 4 I

C) + -- t 4- V

l0 0

Cf) 4) ca

0 O

00
00

oi -4 LO~

00

0o) I'- ooloz- 00ok- 000t'- 00,09- 00109-



'0
4 1

0 10 0 0

+4 q
I0

+.-+

0- 00

4-, 0j

00 +1 to

0 'i .13

o >
0'

0 0 4J 0 C; .

a) H
'0 )

o +)
o ~ 4-' 4

o + 0 0H

to kC

0H C
00 P,

oY so'"

o0 li 02? ,-e 0I- 0o'- 0*9



o 246

0 N r

0 CN 0

+o 41

C +4
O0 0

0I 0

+4 ~-.0U H"

'-1

to +O H N.0

to +4 "0 4

0 + 41N 1 N

0i 4-

PP

4-HNol

41l

I ')

-4'H c
P4 p P

so '

00 0 - o- 00oc- 0,01- ooos- 0,09 001 N -



247T

(u

0 '0

o 4-

0 

0 IL

CO 0

+4j s.. 0

-4

o 4 to- 3t

44-

0~

0 4
40 -

-H--

0 "-4 r

U) E- 4 0d

EI 4- L

o4 +r u .-

oo * ;-I 1
0'

>1 P)4

so ' -''

0 L- 0 i 0 E- 0 00- 0, 9



248

SCATTERING AND DEPOLARIZATION OF LINEARLY POLARIZED

WAVES BY FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE

Ezekiel Bahar

and

Mary Ann Fitzwater

Electrical Engineering Department

University of Nebraska--Lincoln

Lincoln, Nebraska 68588-0511

Abstract

In this work a layer consisting of a large variety of

randomly distributed finitely conducting particles with

irregular shapes is assumed to be excited at infrared and

optical frequencies by a linearly polarized wave. The

resulting incoherent specific intensities as well as the co-

polarized and cross polarized intensities are evaluated.

Both single scatter and multiple scatter results are presented

for particles with smooth and rough surfaces and the effects

of particle surface roughness on the degree of polarization

are considered in detail.
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1. Introduction

In this work the scattering and depolarization of linearly

polarized waves by a random distribution of finitely conducting

particles of irregular shape are presented. Infrared and optical

excitations of a large variety of particles with different sizes,

shapes and complex dielectric coefficients (see Table I) are

considered in detail. The random rough surface of the particle is

characterized by its surface height spectral density function (or

its Fourier transform the surface height autocorrelation function).

The full wave approach is used to account for both specular

point scattering as well as diffuse scattering by the particle in a
1

self-consistent manner and the equation

of transfer 2'3  for the modified

Stokes parameters is solved using the matrix characteristic value

4
method Both single scatter and multiple

scatter results are given for particles with smooth and rough surfaces

and the effects of particle surface roughness are considered in

detail.

Both the co-polarized and cross polarized incoherent diffuse

intensities are plotted as functions of the azimuth angle and the

optical thickness of the layer of particles. The degree of polarization

of the scattered waves is also evaluated as a function of the azimuth

angle.
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2. Formulation of the Problem

In this section we present the analytical solutions for the modified

Stokes incoherent specific diffuse intensity matrix (I]. A linearly

polarized wave is assumed to be normally incident upon a parallel layer

of randomly distributed non-spherical particles. Thus the like and cross

polarized incoherent intensities are azimuthally dependent. Special

consideration is given to the effects of the surface roughness of the

particles of finite conductivity. Since the roughness parameter = 4k 2<h 2 >
o s

(where k is the free space wavenumber of the electromagnetic wave and <h 2>
0 s

is the mean square height of the particle rough surface) is assumed to be
1

large (0 < B < 10), the full wave solutions

are used to determine the elements of the scattering matrix for the equation

of transfer2 '3

- [I] + S[I'Jdv'do' + [I. (2.1)

In (2.1) T is the optical distance in the z direction (normal to the plane

of the slab, (see Figs. 1 and 2)

T = p[G tz J at n(D)dD z (2.2)

where D is the diameter of the unperturbed spherical particle, n(D) is the

particle size distribution and at is the extinction coefficient. The symbol

p[l' denotes integration over the size distribution. Since the effects of

the particle surface roughness are vanishingly small in the forward direction,

the extinction matrix
5 ,4

for the rough sphere can be represented by a scalar quantity. The (4xl)

matrices [I] and [I'] are the incoherent diffuse intensity matrices for waves

scattered by the particles in the direction 6 = cos- i and f and for waves
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incident in the direction 6' = cos-1 ' and 4' respectively. The elements

of [I] are the modified Stokes parameters3
.

1 1

2 2 2

V 1< E*>j (2.3)

where the symbol * denotes the complex conjugate (an exp(itat) time dependent

excitation is assumed)and E and E2 are the vertically and horizontally

polarized components of the electric field. The (4 x4 ) scattering matrix IS]

in the reference coordinate system is expressed in terms of the scattering

matrix IS'] in the scattering plane through the following transformation

Is] = [t (-n + a)][S'][.(a')] (2.4)

in which IS'J is the weighted sum of two matrices

[S,] = (S . j2[SiJ + [s (2.2
r ie s(2 )

In (2.5) [SMie] is given by

P[JfnI12]  j 12 j 2  PRe[f 1 1 f 2 ] -PIm[ f1 r;2
]

ij =[lf211
2) " If22

2  PRe[f 2lf22] -p 22rn1 2 ]

p2Re[fllf2 L1 p2Re f12 f2 ] pRe[f f22 f

p2Im[fllf2l] p21m[f12f 2] pM1f11 22 f  2 ' pRe[f f2*-fl

(2.6)

where fiJ are the elements of the 2x2 scattering matrix If] for the unperturbed

(spherical) particle.

r~ i =[f 31 l '2] [L exp (-ik r }

[E [~ f22J [E r (2.7)
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In (2.7) E and E . are the vertically and horizontally polarized field

-i
components (in the scattering plane which contains the unit vectors n

-I.and n in the directions of the incident and scattered waves), and r is

the distance from the center of the spherical particles. For a smooth

sphere f are given by the Mie solutio6,3

and [f] is a diagonal matrix. The transformation matrix [ ] in (2.h) is

cos a sin 2 sin2a 0

sin2a os2a sin2a

far ()] = (2.8)
-sin2a sin2a cos2a 0

0 0 0

where a' is the angle between the reference plane of incidence and the

scattering plane and a is the angle between the reference plane of scatter

and the scattering plane (see Fig. 2). In (2.5) xS(var ) is the particle

random rough surface characteristic function

x5 (~ a r= <exp(iv-ar h s  (2.9a)

in which

v= k0 (ni) (2.9b)

and nf and -n are unit vectors in the directions of the scattered and

incident wave normals. The random rough surface h is measured normal
s

to the unperturbed (spherical) particle. Thus, the radius vector to the

surface of the irregular particle is (see Fig. 1),

r s -h o a + h -a (2.9c)s o r s r

The radius of the unperturbed sphere is h0 . The coefficient I>X,2 in

(2.5) accounts for the degradation of the specular point contributions

to the scattered fields by the rough surface (IxSI
2 

< 1 and IxS[ 2 
_ 1 as 8 - 0).

The diffuse scattering contribution to the matrix [8'] due to surface roughness

is given by

m Imm mm•mmmm~~
m

mmm mmllmmm mmm
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[S~5] [s 2] o o
Is s I Iss 1 0 011 12

s sss 1.[S= 21 22

0 0 IS 3 1 [S 3 (2.10)

o o Es 3) [s ]

where
A

[Ssj I p<o'j>sJ, for i,j = 1,2 (2.laa)

in which A = h 2 is the cross sectional area of the unperturbed particle and
y 0

<Gij> are the full wave solutions for the like and cross polarized normalizedS

scattering cross sections.1  The first and second

superscripts ij denote the polarizations (V vertical, H horizontal) of the

scattered and incident fields respectively.

'qj s = f IkoDi0 P2 Qs siny dyd6/7
2  (2.11b)

00

where

Q= f O(( - Ix 5-. )I 12 )exP(i;.rd)ddzd (2.11c)

The Joint characteristic function X2 for the rough surface h is only a function

of distance rd= (X 2+( 2 measured along the surface of the unperturbed sphere.n d  dd7

Furthermore for i = 3 and 4i

Sii 6P [Re [<22> s <o0 2>]Ay /rp[otI (2.11d)

[upper and lower signs for i = 3 and 4 respectively) and for i j j

Es =PIE < 11> 12 <x A ]J14 [pft (2.11e)

(upper and lower signs for i,J=4,3 and i,J=3,4 respectively). In the above expressions
27t r 2i kt<a =i f kDiJ Dk P P Q siny dyd6/ 2  (2.11f)

'k2. o 2 s
0 0

In (2.11) P2 is the shadow function and the scattering coefficients Di j are

functions of n ;f and n the normal to the unperturbed surface of the particle

as well as its electromagnetic parameters E41. The remaining eight terms of the

matrix [Ss3 vanish since Dii and DiJ(iSJ) are symmetric and antisymmetric

respectively with respect to 6,the azimuth angle of the sphere.

In this work it is assumed that a linearly polarized wave is normally incident

upon a parallel layer (of optical thickness T ) containing a random distribution of

irregular particles. Thus the incident Stokes matrix at z=O (Fig. 2) is



254

n 10 6( '-l)5(4') - o1(P'-l) (4') (2.12)

in which () is the Dirac delta function.

Thus the reduced incident intensity is
[I ri] =fnlep-)(-3

and the (4xl) excitation matrix in (2.1) is

[Il] = f [S[I riIdV'do' = [Fjexp(-T) (2.14)

in which the (
1xl) matrix F is

[F ] = [S ] [ I ° 3 ' =

1 1,=o (2.15)

and the matrix [I is defined by (2.12). The matrix [F] contains terms that

are azimuthally independent as well as terms that are proportional to cos2o and

sin2o. Thus [F] is expressed as follows
4

[F] = IF] 0 +F] a cos2 + IF]b sin2o (2.16)

in which, for a rough sphere,

[Flo -  F 0 , IF] F--  2 , [F3h --

] {j [ S 4J -t (2.17)

and F i
= Sil - S i2 (upper and lower signs for o=0 and a=a respectively.)

The solution of the equation of transfer (2.1) for the incoherent specific

intensity matrix can be expressed in terms of the Fourier series

[I] = -- f-Jo os mb +
-  -[i]l 'sin m o (2.18)

Since the elements of the scattering matrix IS] are functions of 4'-4 it is

expressed as follows

s = I s]a + IaCos m(O'-O)+ 5 ]b rin m(0'-) (2.19)
[s [sJ + LSJcos

Furthermore, since in (2.7) f,, and f2 2 are even functions while f1 2 and f21

are odd functions of 0'-0, for a=0,1,2
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[[S) [:J and [S]3= 2.0

in vhich Isi]aM and ISbi n are 2x2 matrices

27T
[si] 3 Is icos m(',d€-) i=iL (2.21a)

0

and

27r

Is = i [s.isin m(i',)d(,'-,) a=2,3 (2.21b)

0

and [S.] are the (2x2) submatrices

[S] = Is1 [2

[[S 3J [SO] (2.22)

In view of the excitation, (2.1) through (2.17), the only non-vanishing

Fourier terms are m=O and m=2 The equation of

transfer for the m=O Stokes matrix is

I
p~[I] ,j1a4 [SJa[,,Ja jI + [F3 exp(--T) (2.23)JT  0 -

Since the third and fourth elements of [F] (2.17) are zero, and in view

of the special form of [Sja, the third and fourth terms of [1]a vanish.0 0

The equation of transfer for the m=2 term is

1
[IJ]2 = - [I] 2 + [S] 2 [i'] 2 d ' + [F]2 exp(-T) (2.24)

-1

in which

s sr]a [5j[FJ+

[1J [ 2 2SI S a an[ a (2.25)
3 2 4
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The boundary conditions for the Stokes matrix are

[I = [1D 2 = 0 for 0 < j < I at T = 0 (2.26a)

and

[I] °  [I]2 = 0 for 0 > i > - I at T = T . (2.26b)

Equations (2.23) and (2.24) together with the associated boundary conditions

(2.26) are solved for the specific incoherent diffuse scattering intensities

using the Gaussian quadrature method (to discretize the angles e = cos-i)

and the matrix characteristic value technique.
3

The diffuse scattering intensities I and 12 correspond to the

vertically polarized (E ) and horizontally polarized (E ) waves. However

in practice, the polarization of the receiver is either parallel (E ) cr
x

perpendicular (E y) to the polarization of the incident wave. The correspond-

ing specific intensities I and I are called the co-polarized and cross
x y

polarized incoherent intensities respectively.
h

They are related to the intensities I1 and 12 through the linear trans-

formation

I <E E*>
x x x

I <E E *>
y = y y IR[IJ (2.27)
U 2<Re(E E*)>
xy y

V 2<lm(E E*)>

where

Cos ecos 0 sin 0 -1 sin2 cose 0

cos 2esin 2 cos 2 sin2o cosO 0

[ c cos 2sin2o -sin2o cos20 cos 0

0 0 0 cos (2.28)

The degree of polarization of scattered waves is given by
3



257

[I1  12)2 + 2+ 2  
(2.29)

1 + 12

All the specific intensities as well as the parameter m are symmetric about

the , = ,n plane and the $ = 7/2, 371/2 plane.

3. Illustrative Examples

The random rough surface height h (2.9) (measured normal to the surface

of the unperturbed spherical particle of radius ho, see Fig. 2), is assumed to

be homogeneous and isotropic for the illustrative examples considered in this

section. The rough surface is characterized by its surface height spectral

density function W(vxv z ) = W(V T), the Fourier transform of the surface height

autocorrelation function <h h'>.
s s

WCVT) W(Vxv z ) = - f <h hs>exp(iVxd+ iVzd)dddz
T x z fT~ s s xd + vzd acc

f <hs's>Jo(v~rd)r dr

<h : d d
0

in which J (vTrd) is the zero order Bessel function of the first kind arc v

and v are components of the vector v (2.9b) in the directions of the unit

vectors na and n3 tangent to the surface of the unperturbed sphere. Thus

VT (V 2 + v2) = (v 2  v2) (3.2a)

and 2 ..
v - v-v , r = V'a (3.2t)

The surface height autocorrelation function <h h'> is only a function of the
s s

distance rd measured along the unperturbed surface

,"Wv ,v dv

<hsh~s -b exp(-ivxx ivzZd)dV dV

= J W(VT)( Trd )vTdVT (3.3)0 Vr

Io
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Different forms of the surface height spectral density function W and

2 2
different roughness parameters = k2<h > are considered for particleso s

of different sizes D = 2h and relative complex permittivities C excitedo r

at infrared and optical frequencies (see Table I). Thus for case (a)

(Table I), the specific form of the surface height spectral density function

is

W(vT) 2C (vT-Vd) I n  
< < (3.4a)

2 -;V )2. d  T c

= 0 elsewhere

In (3.4a)the smallest spatial wavenumber is

Vd = 4/D (3.b)

and the cut-off wavenumber is

V = 4k (3.bc)

in which k is the wavenumber for the electromagnetic wave. The constant

C is determined by the choice of the roughness parameter (Table I).

b 2<h2> (3.5)
0 s

In (35) <h 
2> 

is the mean square height
s

<h > =- i (v )v dv (3.6)
s 2 jT T T

0

The corresponding value for the mean square slope is (Table I)

<02> = (VT)V dvT (3)

0

For case .(a) the parameter vm = 1.2/D (W(VT vm  vd ) is the maximum value

of W), the exponent n (3.4a) is n = h and the diameter of the particle

is D = 5A (Table I). For wavelength ) = l0]j the relative (complex)

dielectric coefficient of aluminum is 
C = -6000(1+i)

r
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For cases (b) through (d), (Table 1), the specific form of the surface

height spectral density function is

W(vT) = ?C[ vT > 0 (3.8)T +v j

in which the exponent is assumed to be n = 8. For case (b) the roughness

parameter is I = and for cases (c) through (e) = 10. The corresponding

values for vm W(Vm) =(Wmaximu m) c and 2h are shown in

Table I. The analytical expression for the surface height autocorrelation

function for cases (b) through (e) is

R() E 2 ~4 6

+ 1 ~j 2K (C (3.9)

In (3.9) K and K1 are modified Bessel functions of the second kind of

order zero and one respectively, and the

dimensionless argument is

C Evrd (3.10)

For all the illustrative examples it is assumed that the normally incident

wave is linearly polarized with the electric field in the direction of the x

axis (in the 0=0 plane, see Fig. 2). The equation of transfer for the Stokes

parameters (2.23) and (2.2N) together with the associated boundary conditions

(2.26) are solved using the matrix characteristic value technique.
3

For case (b) (D/X=10), the scattering cross sections are very sharply

peaked in the forward direction, thus it is necessary to use a Gaussian

quadrature formula of order 32.

In Figs. 3 and 4, the incoherent diffuse transmitted intensities II

(vertical polarization) and 12 (horizontal polarization) for case (a) are plotted

as functions of 8(0,900) with 0=0 and T =10. The solid curves correspond to first

order scattering solutions only3 for the smooth (unperturbed
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Pspherical) particles and particles with rough surfaces (12 0, for single

scatter smooth particle). The corresponding solutions that account for

multiple scattering are also plotted in these figures. The albedo for

highly conducting particles with roughness parameter 0 = I is 0.9732 and

the albedo for smooth particles is 0.9885 (see Table I). Thus for

case (a) there is only a 2 db difference between the diffuse intensities

for the rough and smooth particles. Note also that for T = 10 except for
0

scattering in the forward direction II = 12 (degree of polarization m = 0.

In Figs. 5 and 6 the transmitted incoherent intensities I 1

and 12 for case (b) are plotted as functions of 0(0,900) with 0 = 0 and

= 10. At A = 0.555P the dielectric coefficient is c = - 40 -i12 for
o r

aluminum. In this case there is a more significant difference between the

albedoes for the rough and smooth particles (see Table I). Consequently

there is a larger difference between the results for the smooth and rough

particles for this case than for case (a) where A = 10P. Note again that

I = 12 except for the near forward direction.

In Figs. 7 and 8 the transmitted specific intensities II and 12

for case (c) are plotted as functions of 6(0,900) with 0 = 0 and T = 1. The0

particle surface roughness tends to smooth out the first order solution

(solid line). In this case A = l0p and c = -6ooo (l+i), the albedoes for both

the smooth and rough particles are near unity however surface roughness does

have a very significant effect on the specific intensity 12* For To = 1 I1 > 12

particularly in the forward direction. The corresponding results (case (c))

for the co-polarized and cross polarized incoherent specific intensities Ix

and Iy respectively are plotted as functions of 0 in Figs. 9 and 10 with 6 = 15- 4
0
.

In Figs. 11 and 12 the reflected co-polarized and cross polarized

specific intensities II and 12 are plotted for case (d) as functions of the

azimuth angle 0(0,1800) with 6 = 164.6 0 and T = 1. It is interesting to note

II
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that the co-polarized intensity I is smaller for the rough particle than forIx

the smooth particle since the albedo for the rough particle is smaller. However

the cross polarized intensity Iy is smaller for the smooth particle than for

the rough particle in this case. This is because the rough particles tend to

depolarize the incident wave more strongly. As 0 becomes very large (T > 10) Io 0 y

for the rough particle becomes smaller than I for the smooth particle.

In Figs. 13 and 14 the transmitted specific intensities I and 12 are plotted

for case (e) as a function of e with $ = 0 and T = 1. In this case particles of
0

varying sizes ranging from D = 5X to D = 8X are considered. As a result the plots

for I do not exhibit the sharp undulations present in the corresponding plots of

II for particles of uniform size. Furthermore in the near forward direction (e < 10)

multiple scattering and the rough surface effects on I are small. From these plots

it follows that the degree of polarization is largest in the near forward direction

and it becomes very small for near grazing angles.

In Fig. 15 the transmitted co-polarized and cross polarized specific incoherent

intensities I x and Iy are plotted as functions of the optical thickness T for

case (c) with e = 6.70 and 4 = 0. For T<2 the results for the smooth and rough

particles are practically the same, however for T > 15 I I (degree ofx y

polarization m becomes very small), and the effects of surface roughness become

very significant.

In Fig. 16 the transmitted co-polarized and cross polarized specific incoherent

intensities I and I are plotted as functions ofr 0 for case (d) with e = 6.70x y 0

and 0 = 0. In this case the particles are more dissipative than for case (c).

The effect of surface roughness is more pronounced on I than on I . Both Iyx x

and I peak around 1 -- 2.y o

In Figs. 17 and 18 the degree of polarization (2.29) is plotted for case (a)

as a function of azimuth angle 4 vith 8 = 6.70, 6 = 15.40 , 
6 = 24.20 and 6 = 330.

For near forward scattering 8 = 6.70, the degree of polarization m for the smooth

and rough particles is close to unity for all angles 0. For 8 = 15.40 the degree
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of polarization m undulates strongly as a function of . It is smaller for the

rough particles. As the angle 6 increases (see Fig. 18) the degree of polarization

decreases and becomes more dependent on particle surface roughness.

The extinction cross sections OT and the albedoes for the different smooth and

rough particles considered are given in Table I.

4. Concluding Remarks

The specific incoherent diffuse intensities II and 12 as well as the co-polarized

and cross polarized intensities are evaluated for a layer of rndo..Lly distributed

finitely conducting particles of irregular shape. A variety of particle sizes with

different complex dielectric coefficients are considered. The rough surfaces of

the particles are characterized by different surface height spectral density func-

tions and roughness parameters . The layer of particles is assumed to be excited

by normally incident linearly polarized waves at wavelengths A = 10P and A = 0.555P.

The rough particles will generally depolarize the incident waves more than the

:mooth particles and the specific intensities tend to be less oscillatcry functions

of e for the rough particles. Since the albedoes for the rough particles are smaller

than those for the smooth particles (the difference increases for more dissipative

particles), hence for very thick layers the specific intensities are smaller for

the rough particles. Both single scatter and multiple scatter solutions are given.

For small optical thickness r < 1 I1 is smaller for the rough particles than for

the smooth particles (since the albedo for the rough particle is smaller). However

12 is larger for the rough particles since the rough particles more strongly

depolarize the incident waves (see Figs. 11 and 12). The reflected specific

intensities II and 12 are generally less dependent on angle 6 than the transmitted

specific intensities. The particle surface roughness has a very significant

effect on the degree of polarization m especially as the particle roughness

parameter B increases.
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Figure Captions

FIG. 1. Scattering geometry for a rough conducting sphere.

FIG. 2. Scattering geometry indicating incident and scattered wave

-i -fnormals n and n and corresponding field components E1 parallel (vertical)

and E2 perpendicular (horizontal) polarizations.

FIG. 3. Specific incoherent intensity I., = 1, vm 
= 1.2/D, X = 101j,

= -6000-i6000(AL), D = 5A, case (a), transmitted, T = 10, 4 = 0.

First order (-), smooth and rough particles. Multiple scatter:

(+) smooth, (A) rough.

FIG. 4. Specific incoherent intensity 12, = 1, vm = 1.2/D, X = IOU,

E =-6000-i6000(AL), D = 5A, case (a), transmitted, 0 = i0, = 0.

First order (-), rough particles. Multiple scatter: (+) smooth,

(A) rough.

FIG. 5. Specific incoherent intensity 1l, , = 1, vm = 15.9/D, X = .55511,

£ = -40-il2(AL), D b 10A, case (b), transmitted, T = 10, 4 = 0. Firstr 0

order (-), smooth and rough particles. Multiple scatter: (+) smooth,

(A) rough.

FIG. 6. Specific incoherent intensity 12 , ' 1, vm = 15.9/D, X = .5551j,

Er = -40-il2(AL), D , 10A, case (b),transmitted, To = 10, 4 = 0. First

order (-), rough particles. Multiple scatter: (+) smooth, (A) rough.

FIG. 7. Specific incoherent intensity Ill = 10, vM = 4/D, X = l0p,

Cr = -6000-i6000(AL), D = 10A, case (c), transmitted, To = 1, $ = 0.

First order (-), smooth and rough particles. Multiple scatter:

(4) smooth, (A) rough.

FIG. 8. Specific incoherent intensity 12 , 8 = 10, vV = h/D X = lop,

Cr = -6000-i6000(AL), D = 20A, case (c), transmitted, TO f 1, 0 = 0.

First order (-), rough particles. Multiple scatter: (+) smooth,

(A) rough.
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FIG. 9. Specific incoherent intensity I, = 10, v = 4/D, X = 10,'m

cr = -6C00-i6000(AL), D = 5X, case (c),transmitted, T = 1, e 15.40.

First order (-), smooth and rough particles. Multiple scatter: (X)

smooth, (X) rough.

FIG. 10. Specific incoherent intensity I, = 10, vm = 4/D, X = 1O1,

c = -6000-i6000(AL), D = 5A, case (c),transmitted, T = 1, e = 15.4
°

r o

First order (-), smooth and rough particles. Multiple scatter; (X)

smooth, CX) rough.

FIG. 11. Specific incoherent intensity Ix, B = 10, vm = h/D, A = 101,

C = 1.5-i8(PLASTIC), D = 5X, case (d), reflected, T = 1, 0 = 164.60 .
r o

First order (-), smooth and rough particles. Multiple scatter: ()

(x) rough.

FIG. 12. Specific incoherent intensity I, B = 10, v = 4/D, =10,

C = 1.5-i8(PLASTIC), D = 5X, case (d), reflected, T = 1, e = 164.6o .
r o

First order (-), smooth and rough particles. Multiple scatter: (3)

(X) rough.

FIG. 13. Specific incoherent intensity Ii, S = 10, vm = h/D, A = 10W,

C = 1.5-i8(PLASTIC), D = average of sizes, case (e), transmitted,r

To = 1, $ = 0. First order (-), smooth and rough particles. Multiple

scatter: (+) smooth, (A) rough.

FIG. 14. Specific incoherent intensity 12, = 10, vm = 4/D, A = 10p,

C = 1.5-i8(PLASTIC), D = average of sizes, case (e), transmitted,r

To = 1, 0 = 0. First order (-), rough particles. Multiple scatter:

(4) smooth, (A) rough.

FIG. 15. Specific incoherent intensity Ix and I, B = 10, Vm = 4/D.

D = 5A, X = 10P, C =-6000 (I+i)(AL), case (c), e = 6.70 and = 0 .

r
(0) Ix smooth, (A) Iy smooth, C+) Ix rough, Cx) Iy rough.
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FIG. 16. Specific incoherent intensity Ix and I, 8 = 10, vm  4/D,

D = 5X, I = 101j, cr = 1.5-i8(PLASTIC), case (d), e 6.70 and 4 = 0.

(0) 1x smooth, (L) Iy smooth, (+) Ix rough, (X) Iy rough.

FIG. 17. Degree of polarization m, P = 1, v = 1.2/D, D = 5X, X - lop,

r= -6000(1+i), case (a), ° = 1, 8 = 6.70 (+) smooth, (X) rough;

8 = 15.40 (0) smooth, (A) rough.

FIG. 18. Degree of polarization m, B = 1, v = 1.2/D, D = 5A, X = l0p,

r = -6000(1+i), case (a),To = 1, e = 24.2
0 (+) smooth, (X) rough;

8 = 33.0° (0) smooth, (A) rough.
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ABSTRACT

The like and cross polarized backscattered scattering cross sections

are evaluated for random rough surfaces using the full wave analysis.

The resulting cross sections are also expressed in terms of a weighted

sum of two cross sections in keeping with previous two-scale interpre-

tations of scatter. The first is associated with the cross section

for the large scale filtered surface and the second is the diffuse

scattering term associated with the small scal? surface component.

Special attention is given to waves at normal incidence. Both perfectly

and finitely conducting boundaries are considered. The random rough

interface is characterized by its surface height spectral density function

and detailed consideration is given to the choice of the wavenumber where

spectral splitting (between the small and large scale surfaces) is

ssuid to occur.
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Brown's and Tyler's criteria for decomposing the rough surface cannot be

satisfied simultaneously. Neither reconciles the observed discrepancy at normal

incidence for sea return and the resulting values of the slopes of the large

scale surface (producing the specular echo) are considerably different.

The full-wave solution for rough-surface scattering reduces to an

integral similar in form to the physical optics or perturbation solutions

(Bahar 1981). In its derivation from the exact telegraphists' equations,

multiple scattering is neglected. The full wave solution has been shown to

reduce to the specular-point result in the high frequency limit, and to the

pe7 Lrbational result (with the correct polarization dependence)in the low

fraency limit. Since it is valid across the spectrum for all roughness

scales, it is not necessary to adopt the two-scale model to analyze rough

surface scattering problems. In recent work however, (Bahar and Barrick 1983),

the full wave solution has been artificially decomposed into two components

to elucidate the mechanisms at play in the two-scale models discussed above.

For the like polarized case the sum of the two terms of the full wave solution

is approximately constant as the break point between the large and small

roughness scales varies as B ranges from 1 to 2. For normal incidence the

values of like polarized cross sections based on the unified and two-scale

solutions are the same for 8 = 0.25. For this case the specular point

contribution from the large scale surface is the only significant contribution.

Thus through a judicious choice of the break point (between the large and

small scale surfaces) corresponding to B = 0.25 a single-term large-scale

specular-point model can be used at normal incidence for microwave like polarized

backscatter cross sections of the sea.
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I. Introduction

A specific and important application of rough-surface scattering at normal

incidence concerns short-pulse satellite microwave altimeter return from the sea

surface. In addition to its use to measure ocean wavehe.ght at nadir as on Seasat

(Barrick and Lipa 1985), the altimeter has also been employed to infer wind speed

from the backscattered signal intensity, since the roughness statistics depend

strongly on surface wind. Up to now, attempts to establish a quantitative connection

between altimeter nadir backscattered cross section (per projected area) and wind

speed have employed a physical-optics derived specular-point model that (i) relates

the backscatter cross section to rms surface slopes, and subsequently (ii) relates

surface slopes to wind speed in some manner (Barrick 1974). Unfortunately, the

returns predicted thereby are several dB greater than the measured (Brown 1979),

leading to use of empirical rather than theory-based models to establish the

connection (Chelton and McCabe 1985). This discrenancy can only be due to the

inadequacy of the simple, specular-point model, as it has been used, to describe

the backscattered return even from a gently sloping sea at normal incidence.

Composite rough-surface models (Barrick and Peake, 1968; Wright, 1968; Brown,

1978) break the surface roughness into two scales: large and small. Brown

formulated the first detailed analysis of this model, describing the small-scale

surface component as riding on the large-scale surface, while allowing the

large-scale slope statistics to modulate the smaller component's return. He

proposed one method for spectrally dividing the surface into large-scale and

small-scale regions, based on the criterion that the mean square height <h 2> ofs

the small-scale componen- be small enough (8=4k <h 2><O.l where k is the free snace
0 s 0

wavenumber) to guarantee the satisfaction of the perturbation approximation. Tyler

(1976) suggested that the rough surface height spectral components (that contri-

bute to the large scale slopes) should be determined by the requirement that the

mean of the large scale surface radius of curvature be larger than a wavelength.

This is also a physically reasonable proposition since it is inherent in the

tangent-plane approximation of physical optics. However, in general
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The illustrative examples of the individual terms contributing to the

solution are given as a function of the parameter A for like and cross-polarized

returns. It should also be noted that the previously mentioned approximate

methods produce a zero cross-polarized backscatter component at normal incidence,

although measurements clearly indicate a non-vanishing contribution which is

close to the value predicted by full-wave theory (Bahar and Fitzwater, 198L).

2. Formulation of the Problem

On adopting the two-scale model of the rough surface, the full wave

solutions for the normalized like and cross polarized scattering cross sections

(per unit projected area) reduce to a weighted sum of two cross sections

(Bahar and Barrick 1983).

<Gol = <1P%£ I+ <C PQ = V or H (2.1)£ s

in which the first ane second superscripts P and Q denote the polarizations

of the scattered and incident waves (V vertical, H horizontal). The first

term in (2.1) is the modified cross section associated with the large scale

filtered surface h

<axQ, )
2
<,pQ. (2.2)

in which <0 Q> is the physical optics expression for the scattering cross

section of the large scale surface and (s(;.n ) is the small scale surface

characteristic function. For rough surfaces with Gaussian height distributions

(" 2I<exp(i -nshs)>I'= exp(-(vns ) <h >) (2.3)

in which <h2 > is the mean square of the small scale surface height h,

v = k f( -i) , v = 2 (4.I)

where k is the free space wavenumber, nf and n i are unit vectors in the0

directions of the scattered and incident wave normals. The unit vector normal

to the actual rough surface is n and s is its value at the specular points
s
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is = /v (2.5)5

The coefficient jxsj2 in (2.2) accounts for the degradation of the physical

optics scattering cross section due to the small scale surface hs that rides

on the large scale surface. The second term in (2.1) is the diffuse scattering

cross section due to the small scale surface hs. It can be expressed as an

infinite sum as follows

<°PQ> <0-> (2.6)
s m=l sin

where

<0 <PQ> = ikk2 <-D
Q I P2 (nin IXsf2

am 0 .
n~a

y,v_2m W (v-,v-)
". X (2.7)

The symbol <*> denotes the statistical average over the slopes n(hx h ) of the

large scale rough surface (hx  3h/ax, h h k/z). In (2.7) vxv. and v.

are components of the vector v (2.4) in the local coordinate system

v= vin1 + v2 + VZn3 (2.8)

in which n2 = n is the unit vector normal to the large scale rough surface,

n and n3 are unit vectors tangent to the large scale rough surface. The unit

vector a is normal to the mean surface (the reference plane). Note that

<h > is assumed to be zero and that h is measured normal to the large scale
5 5

surface. The scattering coefficients D
P Q depend upon the incident and

acattered wave polarizations and wave normals ni and as well as the

electromagnetic parameters of the medium (Bahar 1981). The two dimensional

function W is the Fourier transform of the mth power of the small scale
m

surface height autocorrelation function <h h'>s5s
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W (v- v) m X [<h h'>m exp(ivxa + iv z-)dx- dz-
2 (2m) s d s

= -. J-I ....- W w(,V!)Wl(V_-V!,V, v1)dv! dvz

- A W (jV,v) 19W (V.,v.) (2.9)

In (2.9) the symbol denotes the two dimensional convolution of W with

W3 and U2 + z2 = r- is the distance between two points r-r' measured along

the large scale surface. In this work the rough surface is assumed to be

homogeneous and isotropic, thus the surface height spectral density function

(the Fourier transform of the rough surface height autocorrelation function

h h') is only a function of
s s

VT = v 2+v..)j = ~ ( )", (2.10)
x z y

and the autocorrelation function depends only upon the distance rd measured

along the large scale surface. It is also assumed that the width of the

illuminated patch of the rough surface is much large than the rough surface

correlation length. The shadow function P 2(nf,nin) is the probability

that a point on the rough surface is both illuminated and visible given the

slopes at the point (Smith 1967, Sancer 1969).

To facilitate the adoption of the two-scale model of the composite

rough surface it is assumed that the filtered large scale surface hk is

associated with that part of the surface height spectral density function

for which vT _ vd and the small scale surface hs is associated with the

remaining part of the surface height spectral density function (vT > vd )

(Brown 1978).

In a recent investigation of scattering by composite perfectly conducting

rOagh surfaces based upon a perturbed-_physical optics approach, Brown obtains

the following solution

I =,m m m n



r

292

<aP Q  = <OPQ . <0PQ> (2.11)

in which <cQ> is the physical optics scattering cross section for the

filtered large scale surfeae and

<aPQ> = 4k 2 < I 2 P (nfin)W (v ,V)> (.12)

y

In (2.12) v ,v and vz are components of the vector v(2.
4 ) in the fixed

reference coordinate system

v = v a + v a + v a (2.13)xx y y zz

in which a and a are unit vectors tangent to the mean plane. The results

obtained by Brown (1978) on using (2.11) to compute the scattering cross

sections is shown to depend very strongly upon the choice of the wavenumber

vd where spectral splitting is assumed to occur. Since Brown uses Burrows' (1967)

perturbation approach in his work he concludes that the appropriate value of vd

must be based on the choice of the roughness parameter for the small scale surface

= k <h 2> = 0.1 (2.14)o s

However, in the work by Tyler (1976) the specification of vd is assumed to be

based on the characteristics of the large scale surface (radii of curvature)

and for backscatter near normal incidence Tyler neglects the second term in

(2.11). In general however, the conditions specified by Brown and Tyler for the

choice vd cannot be satisfied simultaneously. In an effort to resolve these

discrepancies, computations of the scattering cross sections based on the two-

scale full wave approach (2.1) were performed (Bahar et al. 1983). Note that

for surface with small slopes (n = ay) and with B << 1, l v-n)I 2 n i, the full

wave solution (2.1) reduced to Brown's perturbed physical optics solution (2.11).

In this work we evaluate the backscattered like and cross polarized

cross sections for normal incidence as the parameter vd is varied. Both

perfectly conducting and finitely conducting media are considered.

I



293

The contributions of the individual terms of the full wave solution (2.1)

and the perturbed-physical optics solution (2.11), are examined in detail.

Since the full wave approach accounts for specular point and diffuse

scattering in a unified self-consistent manner, it is not necessary to adopt

the two-scale model of the rough surface. It is done here in order to elucidate

the interpretation of rough-surface scattering in terms of the two-scale

(or composite) models that have been in use for nearly two decades and in order

to see whether through a judicious choice of the break point vd (between the

large and small scale surfaces) a single-term large-scale specular point model

could be used to determine the like polarized backscatter cross sections for

the sea at normal incidence. In addition to the numerical solutions based on

the two-scale model, the results corresponding to the unified full wave solutions

are also presented (Bahar and Fitzwater 1984). The unified full wave solution

for the incoherent scattering cross sections can be expressed as:

f Ik D PQ 
2

<aP> Q(f 1) n__ f( ni n-)pCn-)dn (2.15a)

in which

Q(n,n') = (X2 - 'XJ2)exp(i r d)dx ddZd (2.15b)

where X2 and X are the joint characteristic function and the characteristic

function respectively for the total rough surface h and rd = (X2 + Z2 is the

distance measured along the reference surface y = 0. The two dimensional slope

distribution of the total rough surface is p(n).
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3. Illustrative Examples

For the illustrative examples considered in this section, the specific

form of the surface height spectral density function is a polynomial

approximation of the Pierson-Moskowitz spectrum for the steady-state response

of the ocean surface to a surface wind of speed V (m/s) (Brown 1978).
2 4 2 K2 4

W(v-,vi) = ()s(v-,v-) BT c

0vT > vc (3.1)

in which W is the notation originally used by Rice (1951) and S is the

notation used by Brown (1978). For the above isotropic model of the ocean surface,

we select as an example a typical, moderate wind speed sea, and radar frequency
corresponding to space borne altimeters such as Seasat's:

B = o.oo6 v = 4.3 (m/s) (3.2)

K = (335.2 V4) A(cm)-l vc= 12 (cm)FI  (3.3)

The wavelength of the electromagnetic wave is

A = 2.22 (cm) (k° = 2.83 (cm)-1 ) (3.4)

The mean square height of the small scale surface h is5

vv
2 iv_ W(vT) wTdTd 1~[. ~ =02k

o wd0 v d

and the total mean square slope for the large scale filtered surface is

a = <h2s> = 2JW(VT)3dvdoPS --Is-v j T T

0 0

- 6 + tn 2 (3.6)

In (3.5) and (3.6) it is assumed that vd >> K. The wavenumber where spectral

splitting is assumed to occur, v , is determined by the choice of the roughness
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parameter 0 = 0k2<h2>. Thus,
o s

2 -i + ; k , 0.1 < 0 < 2.0 (3.7)2 2 2ko

Vd 0

The slope distribution is assumed to be Gaussian

f 2 * h2

P(s) = p(h'h) = -T aqx - (3.8)
I °rs °'s

For backscatter with normal incidence, the wave normals are

-f -i
-n = a (3.9)

and

= 2k 0n =2k 0 , n =a (3.10)0 oy s y

The relative permeability is assumed to be Pr = 1 and the ocean is characterized

by i) a perfect conductor Idrj -+ and (ii) a relative complex (dissipative)

dielectric coefficient representative of ocean water (Stogryn 1971)

C = 42 - i39 (3.11)r

The functions Wm(vT ) are evaluated numerically for m=2 and 3 since for the

range of values of 0 considered only three terms of the series expansion

(2.6) are non-negligible.

For the range of values of 5 considered (0.1 < 0 < 2) the corresponding values

for the wavenumber vd (3.7) (where spectral splitting is assumed to occur),

the mean square height for the small scale surface <h 2> (3.5) and the mean

square slope for the large scale surface o2 (3.6) are listed in Table I.

In Figures 1 through h, the backscatter cross sections <oPQ> and the

individual contributions <oPQ> I <oPQ>sl , <oPQ>s2 and <oPQ>s3 are plotted

as functions of the roughness parameter 0. When the characteristic function

Xs (2.3) is set equal to unity in (2.2) and (2.7), the corresponding results

are denoted by the superscript o. The results for <aPQ>o <P Q>L <PQ>o
0,< A' sl
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and < 3PQ>o are also plotted in Figures 1 through 4. It should be
s2 S3

pointee out that

<aPQ°o <GPQ> (3.12)

corresponds to the physical optics contribution to the cross section (from the

large scale surface) in Brown's formulation (2.11), and

<aPQ>o = <GPQ> (3.13)
si p

corresponds to the perturbation (small scale) contribution to the cross

section in Brown's formulation. The dashed horizontal lineo in all of these

figures correspond to the unified full wave solutions (2.15)that are not
artificially split into two components.

In Figures I and 2, the like polarized backscatter cross sections

<a PP> = <0> = < HH> for normal incidence are plotted as functions of 8 with

c -- (perfect conductor) and c = 42 - i39 respectively. In Figures 3 and 4

the cross polarized backscatter cross sections <0
P Q> = <a H> = <oHV> for

normal incidence are plotted as functions of 8 with E - (perfect conductor)

and r = 42 - i39 respectively. Note that <opQ> 0 for the cross polarized

case.

In all the plots we find that for the range of values 1 B B < 2 the full

wave solutions for the (total) backscatter cross sections <JQ> is relatively

independent of B even though the individual contributions to < PQ> are very

sensitive to variations in S. Significant variations in the cross sections

occur only for 8 < 0.25. On the other hand, Brown's solutions for the back-

scatter cross sections are very sensiti-ve to the choice of 8(v d). He notes

that on the basis of the two-scale perturbed physical optics approach he

used, vd should be chosen such that 8 = 0.1. For 8 = 0.1 and small surface

slopes the full wave solutions reduce to Brown's solution (with only one

significant term needed in (2.6) For normal incidence the unified full wave
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solutions < PP>U (2.15) intersect the full wave solutions based on the two-

'PP
scale model <0 '> (2.1) at points corresponding to B = 0.25. For the cross

polarized case however, <aPQ>U is about 15 dB above the corresponding

values based on the two-scale approach. This is because for backscatter

<cPQ> - 0 (PYQ) even though the large scale surface hk does depolarize the

backscattered wave.

It is also interesting to point out that for normal incidence, the

backscattered like polarized cross sections
<PP PP o (3.14)

<0<> <0

and that for 1 < B < 2 these results are relatively insensitive to variations

in B. As noted above, for normal incidence the unified full wave solution

for <0PP>U intersects the results based on the two-scale model <0 PP> at

B = 0.25. However, the point of intersection of the two results will in

general depend upon the angle of incidence 6. For the like polarized case, the

main drawback in the analysis based on the two-scale model is due to the

assumption that the large and small scale surfaces (which are spectrally

separated at the wavenumber v d ) are statistically independent. Note that

the value of v is selected in order to conform with the mathematical two-

scale model and not witbany physical feature of the rough surface. For the cross

polarized case this drawback is compounded by the fact that <O PQ> - 0 while

the large scale surface is also responsible for depolarization.

For the isotropic surface height spectral density function assumed here (3.1),the

mean square radius of curvature <p 2> is given by

W(v) /2 (3.15)
f v' dvT 1vd2

Thus on imposing the condition (for the decomposition nf the rough surface)22 22

suggested by Tyler (1976), B v /2k = . However, in view of (3.5) Bs=k 2<h 2>

22 2 5 do 0
=2Bk Ivd. Thus S=B =2.116xI0 - 5 . The corresponding value for <Opp > is about

2 dB below <CFP>U .

Immm~ ~ m mwm mm



4. Concluding Remarks 29B

There are two ways in which the full-wave two-scale solution for like-polarized

backscatter at normal incidence differs from the previous composite models (Brown

1978). First, the large-scale term for the full-wave solution is multiplied by

Ixi 2 (2.2) accounting for the fact that the specular-point regions are roughened

by the small-scale surface component. Hence, the Fresnel reflection for specular

return is reduced exactly in the amount predicted by Rice (1951) from perturbation

theory, due to the energy scattered away from the specular direction by this small-

scale roughness. Second, the full-wave contribution due to the small-scale roughness

(which also contains the term jxsI 2 ) is actually an infinite series in which more

terms become significant as B increases, while for the perturbed-physical optics

two-scale model B is kept low enough so that the perturbation criteria is satisfied

by the small scale surface. Therefore, interpretation of the full-wave two-scale

mathematical solution elucidates the physical mechanisms one would expect to occur

when the surface is broken artificially into two scales of roughness. It is

interesting that for backscatter at normal incidence and for the gently sloping

sea-surface examined here, the choice by Brown of B = 0.1 as the break between the

roughness scales produces results for the like polarized cross sections that are

only about 1 dB below the full-wave solutions indicating the soundness of that

approach. Such agreement however, does not hold for the cross polarized cross

sections off normal or for surfaces with larger slopes. Tyler's criterion (1976)

for using the radius of curvature condition to locate the break point is somewhat

less suitable for the sea surface considered here, although it may be more suit-

able for more irregular planetary surfaces.

As mentioned earlier, there is no need to split the full-wave solution into

two components; the integral (2.15) represents the entire solution. It can and has

been evaluated as one term (dashed lines in illustrations). Since the splitting

is artificial, the validity of the full-wave two-scale arproach can be tested by

checking (i) whether the weighted sum (2.1) varies significantly with the

splitting parameter, B; (ii) whether the two-scale full-wave solutions agree with

the unified full-wave solutions. The curves for the like polarized cases (Figs. 1
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and 2) show that the sum of all terms of the two-scale full-wave solution is

nearly constant over large variations in the break point, i.e., for 1 < a < 2.

For normal incidence it agrees exactly with the unified, full-wave solution at

a = 0.25 and differs from it at most by about 2 dB at B = 2. On the other hand,

the results based on the perturbed physical optics model begin to vary

significantly from the full-wave solutions for B > 0.25. The ieason for the

small disagreement between the unified and two-scale full-wave results stems

primarily from the fact that on artificially splitting the surface it is assumed

that the small scale rough surface is statistically independent of the large

scale rough surface. This assumption becomes decreasingly valid as B increases.

The unified full-wave solution is self-consistent; no such assumption is made and in

fact it is the only valid solution for the cross polarized return, -where the

asymptotically evaluated "specular" contribution from the large scale surface is

meaningless.

A final conclusion is that, for backscatter from the sea at normal incidence.

the simple Gaussian-slope specular-point solution <oT PP >o R(O)12/(2s s

(Eq. (9) of Barrick and Lipa (19 8 5))can be used with reasonable accuracy,

(R(O) is the normal incidence Fresnel reflection coefficient of sea water and

s X, sz are the rms slopes of the sea surface along the major and minor roughness

axes). Although this specular-point result <a >£ (which neglects the small-

scale characteristic-function factor) is observed in Figs. 1 and 2 to be almost

independent of the split point for 1 < B < 2, the correct value for P is shown

to be 0.25 at the intersection with the unified full-wave solution, The value 6

enters the above equation implicitly (through vd) in the expression for the rms

slopes of the large scale surface. They are logarithmic functions of vd the wave-

number where spectral splitting is assumed to occur (3.6) for the idealized sea-

surface vaveheight spectrumassumed here (3.1).

!I
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Figure Captions

Fig. 1. Like polarized backscattered cross sections for normal incidence

as a function of the roughness parameter B or vd ; Cr  w (perfectly

conducting boundary). P=V or H (vertical or horizontal polarization).

Fig. 2. Like polarized backscatter cross sections for normal incidence as

a function of the roughness parameter B or vd ; r = h2-i39 (finitely

conducting boundary). P=-V or H (vertical or horizontal polarization).

Fig. 3. Cross polarized WQ) backscattered cross sections for normal incidence

as a function of the roughness parameter B or vd ; Er * = (perfectly

conducting boundary). P,Q=V or H scattered and incident polarizations

respectively.

Fig. 4. Cross polarized (PJQ) backscattered cross sections for normal incidence

as a function of the roughness parameter S or vd ; Er = 42-i39 (finitely

conducting boundary). P,Q=V or H scattered and incident polarizations

respectively.
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TABLE I

1 < 2 >(m2 CY2Vd (cm) <h2> (m2) 2L
ds L£S

. .856 .00312 .0219

.25 .542 .00780 .0178

.50 .384 .0156 .0182

.75 .313 .0234 .0172

1.00 .271 .0312 .o166

1.25 .243 .0390 .0161

1.50 .222 .0468 .0156

1.75 .205 .0546 .0153

2.00 .192 .o624 .0150

Table I. List of the values of vVd <h 2> and <a2> for different
S 5

values of the roughness parameter 0.

List of Symbols and Notatios in

Illustrations I Through 4.

Symbol Notation Cross Section Symbol Notation Modified Cross Section (X s - 1)

<OP P >  total two-scale - <0 P >°  total two-scale

<OPP, large scale x <Op >0 large scale (Brown)

<PP PP0- < >sl small scale <0>.s small scale m=l (Brown)
m=l

-<J'> small scale - <G>s2 small scale m=2
s2 m=2

<OP> small scale % <^'>O small scale m=3
n 3

Unified Full Wave Solutions
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ABSTRACT

The incoherent diffuse scattering intensities (Stokes parameters) are evaluated for infrared and
optical excitations of a layer consisting of random distributions of finitely condwcting irregular
shaped particles. The full wave approach is used to determine the elements of the phase matrix and
the extinction cross sections appearing in the equation of transfer. The rough surface height of the
particles is characterized by different surface height spectral density functions.

1. INTRODUCTION

Scattering of electromagnetic waves in media <o> s jA"(nfl,'n)(n'a )Q,( f,_,n)p(n)dn (5)
cossigo admdistributions of particlesyeonsisting of rsndoa ditiut~ fPrils in which n is a unit vector normal to the surface

has been investigated extensively using the equa- on th sarer,

tion of transfer.
1
.
2 

The main difficulty in or the scatterer,

setting up the equation of trans-fer lies in the k Dij 2
determination of the elements of the hi. scatter- Ij -f i (6)
Ing matrix for the Individual particles. Thus, A (" ;j - -y. P (
most of the work has been done for particles of r y*
idealized shapes such as spheres. _f . f [ )-x(;' )12)

In this work a method is presented for the a r (X 2  r r

modification of the results derived for particles exp(iv d )dxddzd  (7)
with idealized shapes to account for the random and p(s) is the probability density function for
surface roughness of t~e particles. To this end. the slope of the surface of the scatterer. In

the full wave approach was used to determine (6), DiJ is the scattering coefficient which
the rough surface contributions to the like and
cross polarized scattering cross sections. Dif- depends On the polarizations and the directions

of the wave normals for the incident and scat-ferent particle sizes with different complex di- trdwvsa ela h ope lcrmg

electric coefficients are considered. The rough tered waves as -ell as the complex electomag-

surface height is characterized by different netic parameters (Ct) of the scatterers. The

surface height spectral density functions (the terc '2(Bf,1'iIs the probability that a point
Fourier transforms of the su~rface height auto- on the rough surface is both illuminated by the
correlrton fntions)e source and visible to the observer given the

slopes (i) of the surface of the scatterer.
5

2. FORMULATION OF THE PROBLE4 In (7) Xs(V-ar) and Xs(v-r ) are the rough

The full wave solutions for the normalized surface height charactcristic function and joint
scattering cross sections <GJ> per unit cross characteristic function respectively,
sectional area (Ay-1h) are expressed as a 

5
( v - e h (8)

weighted sum
3  and X r) < rxp(iVr s):,

<iJ>,<oii> *<oi i)s  (I) X2(;',p<exp[ivr (h -h')]> (9)

the symbol <'> denotes the statistical average, in which v rv'ar
In the above expression the first and second super- With the above expressions for the bctter-
scripts indicate the polarizations of the scat- Ing cross sections (1). the 5eneral expression
tered and Incident waves respectively. Thus iJ=l for the equation of transfer can be written as
denotes Vertical polarization and i,J-2 dhnotes follows for a plane parallel slab consisting of
Horizontal polarization. The cross section <Oij> rough spherical particles
is the modified cross section associated with the
unperturbed sphere. I Ls-2 -[1]4f[s)[v'dh'd4'-[I 1 (10)

Loi>.j] (v)j2<o>Mie  (2) In (10). 5 is the optical distance in the z di-
In (2) 01i rection (normal to the plane parallel slab). Since

n O>Mie is the Mie solution,
2 

for the like <oij>s vaiShes in the forward direction, the ex-
and cross polarized cross sections of the unper- 6ct'ov r , r r

turbed sphere. The coefficient of <oiji> Is the represented by a acalar quantity. The matrices

rough surface height characteristic function [I and [19 are the (xl) incoherent specific

X*(Y)- <exp ivh5 > (3) diffuse intensity matrices for waves scattered
from the particles in the direction 6-cos-' and

in which v is the magnitude of the vector * and for waves incident in the directlor
;.ko( f-. ) - (I0) b-cos-I and 0', respectively. The (4xL)

scattering matrix [S] in the reference coordinate
wbere if .n ;' are :nit vectors in the direction system can be *rpressed in terms of the scatter-
of the scattered and Incident wave normals. The i s matrix [S) in the scattering plane as
coefficient ixSi 2 

acons for the degradation of fo.llows:
the reflected wave due to surface roughness. [S)=[t(-ws)[S[ao)) (11)

The second term in (1) <a j", is the contri- In which [Z] is a transformation matrix and
bution to the total scattering cross section due
to the surface roughness. It is expressed ask [s,)jxS(;.;)i 2[s~)*+s• (12)
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] 

is the sccttering matrix for the 3. ILLUSTRATIVE EXM(PLES 306

orperturbed sphere. The coefficient IXs(;ar)1
2  

For the ill strative examples considered in
accounts for the fact that the specular point this section, the random rough surface height h s
contributions to the scattering cross sections is (measured normal to the surface of the unper-
decreased because of the rough surface. The dif- turbed spherical particle of diameter D=2ho) is
fuse scattering matrix [s

] 
due to the random assumed to be homogeneous and isotropic. Differ-

roulh surface height h
5 

of the particle is given ent forms of the surface height spectral density

by function V(vxvz.) (which is the two dimensional
t~
5  

t[S 0 corela-Jon function h h>)sre considered.

S [S 2 ]  0 " 0 For cases (a) and (b) the specific form of
21 22 I the surface height spectral density function

I- 0 considered is-0 t333 ESS4 18
o33 T3 ( 3 ) 2 "T 1 ,

here T m
[ A iC[ w1) here the exponent is assumed to be n-

8
. For case

P LO3 hi'pta.) g a (a) the roughness parameter is Aik2<h2>le.nd for

in vhich <O>
s 

is given by the full wave solution case CL) it is a=n0. This sets the alue of the

(5), Ut is the total cross section and P[] constant C i (21) sinc

denotes average over particle size. <h
2
> ' (, T )vTdvT (22)

F'urthermore for i=3 and 1. 0 2

n, 12 Thc corresponding Values for vals, and D are[SI=[e[O.> ± 0o1>5 ]]Aylli[ot] (15) m
in Figs. 1-4. For these cases, the surface

(upper and lower signs for 1-3 and 4 respec- height autocorrelation coefficient R(t)-shh>,As'

tively) and for i1J can be expressed in closed form

Es5 2 22 . 61pEi <0 1 l>cc 1>2]]A/7[rpo] (16) - C 6 K
(upper and lower signs for i,J-i,3 and rI "1 4 ok

1,3 = 3,4 respectively. *L - - (23)(C)

In the stove expressions In (23) Ko and K
1 are modified Bessel functions

of the second kind of order zero and one respec-

OkO >= - " o P Q sP(;)( (17) tively and the dimensionless parameter C is

ra nay (24)(v ) '- d (21)
The remaining eight terms of the matrix [s.] For all the illustrative exaples. it is
vanish since D

I I 
and DiJ(iJj) are symmetric and assumed that a right circularly polarled u.'ave Is

antisymetric respectively with respect to the normally incident at T=0 (z=o) upon a parallel
azimuth angle 6. layer of optical thickness Io. The equatico. cf

In order to simplify the solution of the transfer for the azimuthally independent modified

transfer equation (10), it is assumed in this Stokes parameters are solved usine the gatrix
characterist c (eigen) value technique. For casework that the normally incident wave is circularly (a) (Il/l..0) the scattering cross sections are

polarized. Thus the incident Stokes matrix at

z = 0 is given by more sharply peaked in the forward direction,
thus it is necessary to use a Gaussian quadrature
formula of order 327The boundary conditions for
the Incoherent specific diffuse intensities are

Einc a 6(iJ-I)d(.)iI6(IJ-l)6(..) (18) [I) - 0 for 0 < i < 1 at 'r0 (25)

(transmitted incoherent diffuse intensities are
zero at 7*0) and

where the - and + signs correspond to the right (I) a 0 for 0 > I. >-l at T-1. (26)
and left circularly polarized waves and A'- cose.
The reduced incident Intensity is therefore, (reflected incoherent diffuse intensities are zero

l I - 1 )ex (--r)at 
TOT0).

I Inc [l neep(-r) (19) For case (0), the Incoherent diffuse inten-

]I. given itles I 1 
and I are plotted it, Figs. 1 and 2 as

In b 0) the (41) excitation matrix (IuI vn nctions of 0(9Os9OO)(transMitted 7 > TO) for
Tel. The solid curves correspond to first order

[1±.J[SHI ri dp'd'=[ ) (20) scattering Aolu.ions only for the smooth (unper-
"I turbed spherical) particles and.particles with

4'.0 rough surfaces. The first order solutions are

vher. I n the incident Stokes matrix is defined by close to the multiple scattering solutions for
(18). tlO-, however multiple scattering does tend to

make the incoherent Intensities more monCtonic
functions of the scatter angle 8. For optical
thIcsess Teol, the surface roughness has a
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Fig. I. Specific intensity I1 case (a), 1,o .. Fig. 3. Specific intensity I1 case (W),I10,o P..I

v D-15.9, A=-.555P, c- -40-i12 (AL), D-101, .v4D=, A=101, c- -C000(l.i)(A)), D=A,
1m-l, 4-0. First order (-3, multiple scatter: 'ro-lO. First order (-3, multiple scatter: (.3

(a) smooth, (A) rough. smooth (A) rough.

5

Fig. 2. Specific intensity 12 ease (a), Blo
2
-.1 Fig. 4. Specific intensity I2 case (b), '1.,0

2
".115~l.9, A=.555 , .C- -D-2 A l =ox. S vmD', A-lop, c- 6000(l~i3(L), D-5;,

T , *-0. First order (-), multiple scatter: T-o10, First order (), multiple scatter: ()

( ) smooth. (A) rough. smooth. () rough.
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Abstract

Using the full wave approach, the scattering cross sections

for finitely conducting particles with very rough surfaces are

expressed as weighted sums of specular point (physical optics)

and diffuse scattering cross sections. Through a judicious use

of the forward scattering theorem and the observation that for large

particles the forward scattered,"shadow forming wave is the same

for all surfaces which have the same shadow line," the albedos and

the extinction cross sections for particles with rough surfaces are

evaluated. These computations are essential to solve the equation

of radiative transfer for the specific intensities (Stokes parameters)

in media consisting of random distributions of particles with rough

surfaces. The particle surface roughness has a significant effect on

the diffuse specific intensities.
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I. INTRODUCTION

The problem of electromagnetic wave scattering by random distribu-

tions of particles has been studied extensively by researchers in a

broad range of disciplines such as atmospheric aerosols, smoke, and dust

in planetary atmospheres (Chandrasekhar 1950, Ishimaru 1978). However,

in most of the work, the scattering particles are assumed to be of idealized

shapes such as spheres, oblate and prolate spheroids and circular cylinders

for which rigorous separable solutions are known (Ruck et al. 1970). In

many physical problems of interest however, the individual scatterers are

of irregular shapes such as flakes, spheres and cylinders with random rough

surfaces (Greenberg 1960, Chylek 1977a, Scheurman 1980, Bahar and Fitzwater

1983, Bahar and Chakrabarti 1985). Several theoretical and experimental

techniques used in the study of scattering and absorption by irregularly

shaped particles have been reported in the proceedings on the workshop

on light scattering (Scheurman 1980). A survey of several analytical and

numerical techniques including their respective pros and cons has been

presented by Yeh and Mei (1980). For example, if the mean square height

of the surface roughness <h 2> is small (5 = hk 2< 2 > << 1, where k is the
0 0

free space wavenumber) a perturbation approach can be used to account

for diffuse scattering attributable to the rough surface (Rice 1951,

Ruck et al. 1510, Kiehl et al. 1980). However for 8 << 1 the effects

of the rough surface upon the scattered specific intensities is

negligible.

For problems of practical interest with 8 > 1, the perturbation

solutions are not suitable and a full wave solution, which accounts for
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physical optics and diffuse scattering in a self-consistent manner,

can be used to express the scattering cross sections as weighted

sums of the physical optics and the diffuse scattering cross

sections.

To facilitate the analysis, it is assumed here that the radius

of the sphere is not only large compared to the wavelength X1

but also large compared to the rough surface height correlation

length. However, the radii of curvature of the rough surfaces

need not be small compared to the wavelength. Multiple scattering

between the different elements of the surface of the sphere is

neglected. The random rough surface (assumed here to have Gaussian

statistics) is characterized by its surface height (isotropic)

spectral density function and a corresponding non-Gaussian auto-

correlation function. These full wave expressions may be used to

determine the elements of the phase matrix appearing in the equation

of radiative transfer for a medium consisting of a random distribution of

irregularly shaped particles (Bahar and Fitzwater 1985). Since the

albedo of the particle is an important factor ii radiative transfer it

is also necessary to determine the albedo and the extinction coefficient

for the irregularly shaped particles, in order to solve the equation of

transfer (Ishimaru and Cheung 1980). When "equivalent" spheres, spheroids

or cylinders do not reasonably represent the basic scattering charac-

teristics of irregularly shaped particles, experimental microwave techniques

developed by Greenberg (1960) can be used to determine the albedo for

particles for which no theoretical method yet exists (Chylek:1977b,

Scheurman 1980).
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In this paper, the values of the extinction coeffici-

ents and the albedos are determined for spherical

particles of finite conductivity with very rough surfaces ( 1 i0). This

is done using the full wave approach. In addition,judicious use is made

of the forward scattering theorem (Born and Wolf 196h) and the very

perceptive observation that for large scatterers (physical dimensions

large compared to a wavelength) the forward scattered "shadow forming

wave is the same for all surfaces which have the same shadow line"

(Morse and Feshbach 1953).

The problem is formulated in Section 2 and the analytical approach

is given in Section 3. Several illustrative examples are presented in

Section 4. Using the results presented in this work, it can be shown that

particle surface roughness results in the blocking of transmission windows

that appear in problems of propagation through thin layers of randomly

distributed particles of idealized (spherical, circular cylindrical)

shapes.

2. FORMULATION OF THE PROBLEM

Using the equation of transfer (Chandrasekhar 1950, Ishimaru 1978)

d[13 -[TI][3 + f[S3[I'3dl' d' + [I (2.1)ds

the scattering and depolarization of electromagnetic waves in media

consisting of random distributions of particles has been investigated

extensively. However, most of this work has been conducted for particles

of idealized shapes such as spheres for which rigorous solutions are

known for all the sixteen elements of the phase (Mueller) matrix [S] as

well as for the extinction matrix [T]. In (2.1) the elements of the [hxl]

specific intensity column matrices [I] and [I'] are the Stokes parameters

for the scattered and incident waves respectively.
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Thus for instance,for spheres, the elements of the phase matrix ES] can

be expressed in terms of the Mie solutions (Ishimaru 1978) for the

scattering coefficients fi that relate the scattered vertically and

horizontally polarized wave amplitudes E and Er to the incident vertically

and horizontally wave amplitues Ei and F'r

f11 f1 exp(-ikor)

I r (2.2)

21 f22 I r

In (2.2) k is the free space wavenumber and r is the distance from the

center of the sphere to the observation point.

The integration in (2.1) is over the solid angle dn' = sine'de'do'

= -dij'd' where )i' = cosS, and 8' and 4' are the polar and azimuthal

angles of the unit vector fi in the direction of the incident wave normal.
-f

The unit vector in the direction of the scattered wave normal (0, ) is n f

The excitation matrix [I.I isa

[I i = f [SX[ridpd , (2.3)

where [Iri] is the reduced incident intensity (Ishimaru 1978). The

differentiation in (2.1) is with respect to the displacement. For spherical

particles the extinction matrix [T] (Ishimaru and Cheung 1980) is replaced

by a scalar quantity, the extinction coefficient (or total cross section)

Gt . The"forward scattering theorem" (Born and Wolf 1964) relates the

total cross section to the imaginary part of the scattering amplitude

in the forward direction f ii(nf,n) (where nf = ni). Thus for a spherical

particle,the normalized total cross section (per unit area of the cross

section; ira 2 ) is given by

4 f ,-f -i

at I-k-2 ii- ,n ) , i=l or 2 . (2.4)
ka0
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In general however, for particles of irregular shape such as finitely

conducting flakes or spheroids with random rough surfaces, it is more

difficult to determine the scattering coefficients f When the surface

roughness of the particles is small (5 = 4k 2<h 2 > << 1, where <h 2 > is
0

the mean square height of the surface roughness measured normal to the

unperturbed surface), perturbation theory can be used to determine the

diffuse scattering contribution due to the surface roughness (Rice 1951,

Ruck et al. 1970). In this case at can be approximated by its cor-

responding unperturbed value since the diffuse scattering contributions

for large particles vanishes in the forward direction and the shadow boundary

is practically unchanged. For the cases covered by

the perturbation restriction (B « 1) however, the effects of surface

roughness upon the specific intensities (Stokes parameters) is very small.

In this work,scattering by particles with very rough surfaces is

considered (10 > B > 1) and perturbation theory cannot be used to determine

the elements of the scattering matrix fJ.. Thus, the effects of surface

roughness on the specific intensities cannot be ignored.

For the cases considered in this manuscript, the full wave approach

(Babar 1981) (which accounts for specular point scattering as well as

diffuse scattering in a self-consistent manner) is used to determine the

elements of the phase matrix [S] as well as values for the total cross

sections at and the albedos for spherical particles with very rough

surfaces. Thus the phase matrix for the rough particles (in the scattering

plane) [S'] is expressed as a weighted sum of two matrices (Bahar and

Fitzwater 1986)

[s,] = Ix(;.r) 2 [sMie) + [sR] , (2.5)
in which X is the characteristic function for the rough surface height h meas-

Ured along the normal P=ir) to the unperturbed (spherical) surface of the

particle. For surface height probability density functions that are Gaussian
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X(V ) 12= expE(v<h 2> 1] (2.6a)

and
V_= k (-i n v F v*a (2.6b)

o r r

The elements of the matrix SMie  are determined by the Mie solutions

for fJ for a smooth spherical particle and the diffuse scattering contributions

[SRI due to the rough surface are given by the full wave solutions. It

is assumed in this work that the correlatlon length T of the surface

roughness is smaller than the particle radius a and that k a > 15.

Thus the full wave solution (2.5) represents the degradation of the

specular point contribution to scattering (since JX1 2 < 1) along with

diffuse scattering IN] that is due to the surface roughness. For

very small surface roughness (a << I),IX
2 _ I and the diffus scattering

term reduces to Bragg scattering (Bahar and Chakrabarti 1985).

The problem of determining the total cross section (t also becomes

more complicated as the surface roughness increases. It has been shown

that for large particles (k a > 15) the forward scattered "shadow forming

wave is the same for all surfaces which have the same shadow line." (Morse

and Feshbach 1953). Thus for small surface roughness (P < 1) the shadow line

(that distinguishes the illuminated surfaces of the particle from the non-

illuminated surface).is practically the same as that for the unperturbed

sphere and the value for the total cross section- is for all practical

purposes unmodified for 6 << 1. However, as the value of 8 increases

(B > 1), the shadow line becomes significantly distorted and ot cannot be

approximated by the corresponding value for the unperturbed sphere. Further-

more, analytical expressionsfor the for'wp-d scattered, shadow forming waves

f i(ni , ni)are not readily obtained for particles with irregular shape (Scheurman 19E(.

In the next section,expressions are derived for the total cross

sections and the albedos for spherical particles with very rough surfaces,
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making judicious use of the observation that the "shadow forming wave is

the same for all surfaces which have the same shadow line" (Morse and

Feshbach 1953) and physical implications of the "forward scattering theorem"

(Born and Wolf 1964).

3. THE TOTAL CROSS SECTIONS AND ALBEDOS FOR
SPKERICAL PARTICLES WITH ROUGH SURFACES

The albedos for particles with rough surfaces are given by

A = aS/at -= aSI(CS a) s (31)

in which a is the normalized absorption cross section and aS is the

normalized scattering cross section (per unit cross sectional area)

aT= 2 fIXf2 a.dl+7 fORd
ra

a S1 
+ S2 (3.2)

the rough surface height characteristic function is X, and oM is the Mie

solution for the differential scattering cross section (per unit solid

angle) for the smooth (unperturbed) sphere (Ruck et al 1970, Ishimaru 1978).

Thus

a s.(k a)'2  xI 2 [IsI(e)1 2 + IS2 (e)12]sinede (3.3)

Explicit expressions for the terms S1 and S2 in the Mie solution are given

by Ishimaru (1978). Furthermore a. is the diffuse scattering contribution to

the cross section. Thus

f (V+ VH HV HH
S52 = 0.25 R O + a * + a. )sin6d6(3)

in which aPQ (P=V,H) are the like and cross-polarized diffuse differential
h

scattering contributions to the cross sections (Bahar and Chakrabarti 1985,

Bahar and Fitzwater 1985). The above full wave solution represents a

weighted sum of two cross sections. The first,a SI is the modified Mie

solution. The degradation of the physical optics contribution is manifested

by the factor IX1 2<l.Inthe integrand of aS5. The degradation of the physical

II!*
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optics contribution due to the effects of the rough surfa!e is accompanied

by the diffuse scattering term. This term corresponds to Bragg scattering

(as predicted by perturbation theory)for B << I (Rice 1951). When 
= 0

(smooth sphere),0 S reduces to the Mie solution and the integration with

respect to the solid angle dS2 can be performed analytically (Ishimaru 1978).

In order to facilitate the solution of (3.1),it is rewritten as

follows

A =S =S ato OS (35)Ot 'to 't 'to ' PC.

In (3.5) ato is the total cross section for the smooth particle. In (3.5)

use has been made of the "forward scattering theorem" (making o t proportional

to the forward scattered field) and the fact that for large particles

(k0a> 1), the forward scattered, shadow-forming wave is the same for all

surfaces which have the same shadow line (Morse and Feshbach 1953).

Thus the ratio (Cto/at ) in (3.5) is approximated by the value of the ratio

for perfectly conducting particles (Oto/a t)p. C  Therefore, implicit in (3.5) is

the approximation, that for conducting particles, the above ratio (related to

the forward scattered field intensities that extinguish the incident fields in

the forward direction) does not critically depend upon the conductivity

of the particle. The expressions for arc and (a to)P.C. are given by the

corresponding Mie solutions (Ishimaru 1978) for finitely and perfectly

conducting spherical particles. To obtain the value for (a t)P.C. use is

made of the fact that

=(t)P.C. = (aS)p , (3.6)

where (a S)P.. is the normalized scattering cross section for the

perfectly conducting particle with the same rough surface as the one

under consideration. Thus ()p.c. is given by (3.2) for the correspondingSi.C
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perfectly conducting particle and (3.5) is evaluated as follows

A = AlIA 2  (37)

Examine (3.7) for two limiting cases of particular interest. As the

conductivity of the particle increases A, - A2 and A -b 1. Furthermore

as 5 - 0 (small roughness) A2 - 1 since (o) = ( t)PC - (to)PC and

A -1 A, = OsI to. As expected,the albedo approaches unity for highly

conducting particles and approaches the corresponding value for smooth

particles as B - 0.

4. ILLUSTRATIVE EXAMYLES

For the illustrative examples considered in this work, the random

rough surface height h is assumed to be homogeneous and isotropic.

Thus, the surface height autccorrelation function <h(r)h(r')> is only a

function of the distance rd = Ir-r' J measured along the surface of the

(unperturbed) spherical particle of radius a. It is also assumed that the

rough surface correlation length I is smaller than the circumference ofc

the particle. (c =2(<h2 >/<O2 >) ).
c S

The surface height spectral density function W(v T ) (which is the

Fourier transform of the autocorrelation function <hh'>)is assumed to be

W(v) 2C/h vd < vT < , (3.1)T 2Cbdv T c

for the case presented in Table I. In this case, the roughness parameter

hk2<h 2> is varied between 0 and 1. The value of the constant C
0

in (4.1) is determined by the parameter 8 since the mean square height is

v
CC

<h2>  J -W(vT)VTdvT a - -1 (4.2)

d Vcv 
d

The upper boumd of vT is usually chosen such that vc> 2ko since the spectral
components vT > 2ko do n I contribute to Bragg scatter. The lower bound of vT is
v4 =27r/D such that the largest spectral component (in wavelengths) of the
rough surface is equal to the particle diameter.
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The values for vd and v as well as the relative dielectric coefficient c

(aluminum Ehrenreich, et al., 1963) the diameter of the particle D and the wavelen'

of the incident excitation X are given in Table I. The values of cS1,

the modified physical optics contribution, 0 S2 the diffuse scattering

contribution (Bahar and Chakrabarti 1985), and the sum aS , the normalized

scattering cross section, are given in Table I, together with the correstonding

values for A1 , A2 and the albedo A. The total cross section ot=Os/A

is also given in Table I. If the diffuse scattering

contribution US2 is neglected (Abdelazeez 1983) the value of the albedo is

given by AS1  0 aSl/Oto. This qsntty is also shown in Table I.

The mean square slope of the rough surface with respect to the

(unperturbed) spherical surface
vc

<2> W(V)v dv Ckn(v/v) (.3)
WN 

2
jT T c d '(43vd

and the ratiosof the correlation length to the circumference of the particle,
Tc/irD,are also given in Table I.The surface height characteristic function X

for a Gaussian height distribution and the values of the scattering and

total cross sections for the unperturbed particle, aSo and cto are also

listed in Table I. In Figure , aS1 and 0S2 and OS as functions of B

SSare plotted. As 8 increases,the physical optics contribution OS1 decreases

while 0Sthe diffuse scattering term,increases. Since as 0 increases,0 S

decreases more than ot decreases, the albedo also decreases as the roughness

parameter increases (see Fig. 2). Thus the absorption cross section

Ca = 't - 0S increases slightly as 8 increases.

For the cases considered in Tables 1I, I1 and IV, the surface height

spectral density function is given by
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V(v VT =
8  (4.7VT v -

Thus the corresponding expressions for the normalized surface height

autocorrelation function R = <hh'>/<h 
2 > is

R(E) gi + .j Y

+ 2l.~ 4 2 ()15

In (4.5) K and K1 are modified Bessel Functions of the second kind,of

order zero and one respectively (Abramowitz and Stegun 1964) and the

dimensionless argument is

Svmrd (4.6)

For the case cons f ; -ed in Table II, the mean square slope of the rough

surface is <o2> = 0.101 and the roughness parameter 0 is varied from one
a2

to ten. Using the relationships between <h 2> and <os>and W(v ), it follows
s T

that 2 6 2 h.
<h > C/220 v ,m <as> = CIA v m (4.7)

Thus the values of C and vm are determined. Since W(v T ) is maximum at vT = VT m

an increase in v corresponds to an increase in the high frequency component

of the surfae roughness. In Table II, the values of the wavelength A, the

diameter D, the relative dielectric coefficient c (aluminum) and ther

scattering and the total cross sections aSo and ato for the smooth (unperturbed)

particles are listed.

The values of aSl aS2' as, A1 and A2 together with the corresponding

values for the albedo A and the total cross sections at are given in

Table I. Clearly it cannot be assumed that at = a.to Such an

assumption would result in values for A greater thar unity as the values of

A indicate.

In Fig. 3,plots of .051, 0S2 and 0 S as functions of B are given -

I



while the corresponding values for A and a are plotted in Fig. h. Since

for A = l0 ,aluminum is highly reflecting ICr >> 1, the albedo A dec2 eases

only slightly as B increases. The absorption cross section 0 increases ver'
a

slightly with increasing B.

For the case presented in Table II1, X, D and e and the form of the
r

surface height s-ectral density function '1(v T ) (4.4)are the sang as In

case presented in Table I. However, instead of maintaining a constan

mean square slope <0 2>, the location of the Peak of the srectral ce: y
5

function vT = v is fixed (v D=4 and T /7D=0.101). Thus, as E is var-

2ied from 0 to 10, <a > also increases (see Table I1). In Table Zs

values for OS1l aS2' as' Al A2 as well as for 0t and A are giver for

0 < B < 10. Note that the last columns in TableII and III are identical.

In Figure 5,0 
0
s1 OS2 and the sum OS are plotted as functions of P w ?:le

at and A are plotted as functions of B in Figure 6. There is a- cn-

larger variation in a as B increases when the mean square slo- \a:c :a

(Table il) than where the mean souare slope is fixed (Table !I).

The variations in ct and A are more moderate for the cases yre(7cntc:

Tables i1 and III (where 1JrJ is very large) than for the case rresentec

in Table I. Note also that for cases Presented in Tables 1I and 71:,

A varies more raTidl. for small values of B and levels off for larf(r

values of B.

The data presented in Tables II and III (and the correspondr.

figures) clearly indicate that while the scattering cross section o, dcrends

prinarly on the roughness parameter B, the absorption cross section 0=o t-OS

depends upon both B and the mean square slope < 2>. Thus for particles with
s

the same value of B the absorption cross section a increases (and the albedoa

decreases) as the mean square slope increases.

For the case presented in Table IV, the roughness parameter B is fixed at

10 and the quantity VmD is set equal to 4 as in Table III. However, since

X=10pandD/A varies from 5 to 8 the mean square height is fixed (<h 2 >=2.5/k)

but the mean square slope <2> varies (see Table III).s
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The material of the particle is a dissipative dielectric with F = 1.5-i8.
r

The values of a Si C$2' as, CSo as well as at, ato' A and A° = a So/ato

are given in Table IV. In Figure 7,oSa, aS2' S and 0So (the scattering

cross section for the smooth particle) are plotted as functions of D/A

while at, Gto' A and Ao are plotted as functions of D/A in Figure 8.

Note that while the plots for the scattering crors sections in Figure 7

are relatively flat, the values for at and ato (and therefore 0a ) decrease

with increasing D/A (they asymptotically approach 2 for very large D/A).

The corresponding values of A and A increase as D/A increases; they '-o0

tend to level off as D/A becomes large. Both the total cross sections,

at and albedo A,for the rough particles (B = 10) are smaller than the

corresponding valuesu to and A0 ,for the smooth particles (6 = 0).

5. CONCLUDING RE4ARKS

In the illustrative examples considered, it is shown that surface

roughness results in a small but significant decrease in the values of

the albedos of spherical particles. For particles made of aluminum,

this effect is more pronounced at optical frequencies (0.5551J) (Table I)

than at infrared frequencies (10j) (Tables I, III and IV). The effects

of varying tht roughness parameter B = 4k2<h 2>, the mean square slope and

the surface height spectral density function (varying vm changes the

location of the peak value of W(vT)) have also been investigated in detail

(Tables II and I1). The effects of surface roughness on the extinction

cross sections and the albedos of particles are also presented as functions

of particle size (D/A) (Table IV). Both aluminum particles (at 10P and

0.555) and particles made of dissipative dielectric materials are considered.

On examining the results, it is clear that except for B < < 1, the

extinction cross sections for the rough particles cannot be approximated

by the value of the extinction coefficient for the corresponding smooth
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particle (S - 0). In some cases this would lead to values greater than

unity for the albedos (see Table II A, = a s/ato).

When the optical thickness of the layers with random distribution

of particles is very small (compared to unity), several sharp windows of

transmission may exist if the particles have smooth surfaces. These

windows of transmission are blocked when the surface of the particle is

very rough (8 = 10). Acknowledgments
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Table I. Extinction Cross Sections and Albedos

for Spheres vith Rough Surfaces (0 < < 1)

aso = 2.093 (a=o)

at0 = 2.237 (8=0)

-(cos2 /2)

I1
2 =e

= 142 h2  0.0 0.1 0.5 1.0
os

0 L _ f- a IX12dq 2.093 2.o48 1.892 1.746
51 2

iTa

1

0S2 f I odS 0.0 0.04351 o.1891 0.3103

GS= Sl+ aS2 2.093 2.091 2.081 2.056

A1  0.9356 0.9348 0.9303 0.9190

A2  1.0000 1.0002 0.9978 0.9874

A A 1I/A2  0.9356 0.9346 0.9323 0.9307

0$1
A S a- 0.9356 0.9342 0.9191 0.8876

l toI

O= 0s/A 2.237 2.237 2.232 2.209

<02> 0.0 0.0017 0.0086 0.0172s

0.5551, D 20X, c -40-il2, v d  = 2n/D, v = 8 /x L:0c 0

2C
c/ D = 0.019 W ---- vd < vT < v

7r VT
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Table II. Extinction Cross Sections and Albedos

for Spheres with Rough Surfaces (I < B < 10)

<02 > = 0.101
s

aSo = 2.035 (B=O)

ato = 2.059 (5=o)

i×12 e cs /2)

8= k2<h2 > 1 2 8 10os

a j X 12dl2 1.659 1.451 1.246 1.095 1.057cSl 2
ITa

C,2 W If d .4048 .6027 .7863 .9039 .9278

sCS0 = y $2 2.06k 2.053 2.033 1.999 1.98

A- = Os/Oto 1.003 .9974 .9874 .9711 .9612

2 S /ato P.C. 1.020 1.015 1.006 .9915 .98LL

A 1 /A2  .9833 .9825 .98.4 .979I

Ct  a s/A 2.099 2.090 2.071 2.041 2.027

v D 12.60 8.92 6.32 4.48 4.00

c /m 0.032 O.0o15 o.064 0.09 0.101

A op , D=5A E = -6000 - i6o00
r

2C [2 vT8

T 2
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Table Ill. Extinction Cross Sections and Albedos

for Spheres with Rough Surfaces (0 < 8 < 10)

vD=

0so = 2.035 (8=o)

ao = 2.059 (0=0)

lx12 = e-(8cos 0 /2)

8= k2<h2> 0 1 2 4 8 iC0 s

aSi 2 f 0J j 2dSl 2.035 1.659 1.451 1.26 1.095 1.057
i4a

1
0S2 : f O~ 0 .3654 .5658 .7581 .8944 .9278

as = aSl + aS2 2.035 2.025 2.017 2.004 1.990 1.985

A, = a S/0t .9885 .9835 .9795 .9737 .9665 .9641

A2 = (0S/Oto)P.C. 1.000 .9961 .9932 .9891 .9852 .984

A I/A2 .9885 .9873 .9863 .9844 .9810 .9794

t as'A 2.059 2.051 2.045 2.036 2.028 2.027

<02> 0 .010 .020 .o41 .081 .101s

A 103 D5 , Cr = -6000 -i6000 ,Tc/rD :0.101

2C [FT1
[Fv + _2J

• I
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Table IV. Extinction Cross Sections and Albedos

for Spheres with Rough Surfaces (5X < D < 8X)

vD = 4
m

D/A 5 5.5 6 6.5 7 7.5 8

= 2 f aIx1 2dQ i.n6 1.1i8 1.J19 1.120 1.120 1.120 1.120
ira

0S2 =7 f OcdS .2942 .2973 .3000 .3023 .3043 .3060 .3075

as = aSl + aS2 1.410 1.415 i.419 1.422 1.424 1.426 1.427

a 1.525 1.518 1.513 1.507 1.503 1.499 1.495

A. = ,S/Cto .5959 .6022 .6084 .6137 .6184 .6224 .6261

A2 =(aS/ato)P.C. .9844 .9843 .9845 .9848 .9852 .9856 .9861

A = AI/A2  .6043 .6118 .6179 .6232 .6276 .6315 .6349

ot = Os/A 2.333 2.313 2.296 2.282 2.269 2.258 2.248

A° = So /ato .6434 .6462 .6486 .6507 .6526 .6543 .6558

Gto 2.370 2.350 2.332 2.317 2.303 2.290 2.279

<02> .101 .0837 .0704 .0600 .0517 .0450 .0396

IC/TD 0.1 , C0 = 1.5-i8 , 
=10

rT
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Figure Captions

Figure 1. Scattering cross sections as., CS2, and aS versus 8 (roughness

parameter) (Table I).

Figure 2. Extinction cross section 0t , ato, albedos A and A, versus 8

(roughness parameter) (Table I).

Figure 3. Scattering cross sections aS1s aS2' and aS versus 8(roughness

parameter) (Table ii).

Figure 4. Extinction cross section at and albedo A versus B (roughness

parameter) (Table JI).

Figure 5. Scattering cross sections S1, a S2, and oS versus 8(roughness

parameter) (Table I1).

Figure 6. Extinction cross section ot and albedo A versus 8(roughness

parameter) (Table 1Il).

Figure 7. Scattering cross section OSI aS2, os , and aSo versus

D/A (Table TV).

Figure 8. Extinction cross section at , Oto, albedos A and A versus

D/A (Table IV).

I
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CO-POLARIZED AND CROSS-POLARIZED INCOHERENT SPECIFIC

INTENSITIES FOR WAVES AT OBLIQUE INCIDENCE UPON LAYERS

OF FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE

Ezekiel Bahar

and

Mary Ann Fitzwater

Electrical Engineering Department
University of Nebraska-Lincoln
Lincoln, Nebraska 68588-0511

ABSTRACT

Opt.ical and infrared electromagnetic scattering and

depolarization by layers of randomly distributed particles of

irregular shape and finite conductivity are determined through

the use of the equation of transfer. The irregular shaped

particles are characterized by their random rough surface height

spectral density function or autocorrelation function.

The extinction cross section and the elements of the

scattering matrix in the equation of transfer are evaluated using

a full wave approach which accounts for specular point and diffuse

scattering in a self-consistent manner. Both single scatter and

multiple scatter incoherent specific intensities are evaluated

for particles with smooth and rough surfaces.

-1-



1. INTRODUCTION

Optical and infrared electromagnetic scattering and depolariza-

tion by random distributions of particles of irregular shape and

finite conductivity are determined by solving the equation of

transfer (Chandrasekar 1950, Ishimaru 1978). In this work excita-

tions of both vertically and horizontally polarized waves obliquely

incident upon parallel layers of particles are considered. The

irregular shaped particles are characterized by their random rough

surface height spectral density function W or its Fourier transform

the rough surface height autocorrelation function <hh!>.

The full wave approach (Bahar and Fitzwater 1983,1985; 1ahar and

Chakrabarti 1985) which accounts for specular point scatterin a

well as diffuse scattering in a self-consistent manner iF used to

evaluate the elements of the scattering matrix and the extincticn

cross section (Bahar et al. 1986) that appear in the equation of

transfer. The equation of transfer is solved for the incoherent

specific intensities using Gaussian quadrature and the matrix

characteristic value techniques (Ishimaru et al. 1982). Both single

scatter as well as multiple scatter results for the co-polarized

and cross-polarized incoherent specific intensities are presented

for particles with smooth as well as rough surfaces. Thus the

effects of particle surface roughness upon the co-polarized and

cross-polarized intensities are investigated in detail, Special

consideration is given to the degree of polarization of the incoherent

specific intensities (modified Stokes parameters).

II



2. FORMULATION OF THE PROBLD4

In this section, we formulate the solution for the incoherent

diffuse specific intensity matrix [I]. The elements of the matrix

[ID are the modified Stokes parameters (Chandrasekhar 1950, Ishimaru

1978)

<EIEI>

2 <E2E2
>

U 2Re<EE (2.1)

V 2Im<EIE2

in which the symbol <"> denotes the statistical average and

n t denotes the complex conjugate (a suppressed exp(iwt) time dependent

excitation is assumed). The vertically and horizontally polarized

components of the electric field are E and E2 respectively. A

linearly polarized electromagnetic wave is assumed to be obliquely

incident upon a parallel layer of randomly distributed particles of

finite conductivity and irregular shape. Specifically, in this work

the particles are assumed to be spheres whose surfaces are randomly

perturbed (see Fig. 1). Thus if h is the random surface height of

the particle measured normal to the unperturbed sphere of radius a,

the radius vector to the surface of the irregular shaped particle is

r = (a + h)a r  (2.2)

in which a is the unit radius vector. The mean square height ofr

the rough surface <h 2> is assumed to be such that the roughness

parameter 0 k<h2> (where k is the free space wavenumber) is0 0

is large (I < B < 240). Thus the small perturbation method (Rice
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1951; Ruck et al. 1970; Kiehl et al. 1980) cannot be used to analyze

the scattering by the very rough particles considered. The small

perturbation method is restricted to particles with small roughness

parameters 0 < 0.1, for which the incoherent diffuse specific

intensities are not significantly different from those for the cor-

responding smooth (spherical) particles. Theoretical and experimental

techniques used in the study of scattering and absorption by irregu-

lar shaped particles have been presented in the proceedings on the

workshop on light scattering (Scheurman 1980). A survey of

analytical and numerical techniques including their pros and cons

has been presented by Yeh and Mie (1980).

The full wave method that accounts for specular point scatter-

ing and diffuse scattering in a unified, self-consistent manner has

been used in this work to determine the scattering and depolarization

by particles with rough surfaces (Bahar and Fitzwater 1983; Bahar

and Chakrabarti 1985). The random rough surface height h is charac-

terized by its surface height spectral density function W or its

Fourier transfozm, the surface height autocorrelation function

<hh'>.

The incoherent diffuse specific intensity matrix [I] satisfies

the equation of transfer (Chandrasekhar 1950; Ishimaru 1978)

d[I] = -[I] +f [SJ[I')d dO + [Ii (2.3)

dT

in which T is the optical distance in the z direction (normal to the

plane of the slab, see Fig. 2).

T = zp[o)t - zfotn(D)da (2.4)
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where D is the diameter of the unperturbed spherical particle,n(D)

is the particle size distribution and t is the total cross section

(extinction coefficient). The symbol p['] denotes integration over

the size distribution. The effects of the particle surface rough-

ness (which is assumed to be isotropic and homogeneous)are vanish-

ingly small in the forward direction, thus the extinction matrix

(Ishimaru and Cheung 1980; Cheung and Ishimaru 1982) for the particle

with the rough surface can be represented by a scalar quantity. The

matric(c [I] and [I'] are the incoherent diffuse intensities for

waves scattered by the particles in the direction e = cos-l and #

and for waves incident in the direction e' = cos -p ' and 0'

respectively. The (hxh) scattering (phase) matrix [S] in the

reference coordinate system is expressed in terms of the scattering

matrix [S'] in the scattering plane (that contains the incident

and scatter wave normals Zi and n f respectively, see Fig. 2)

through the following transformation

[s] = LtC(- + a)][S'J[X(a')] (2.5)

in which [S'] is the weighted sum of two matrices

[s'] = ix(.r')12[SMe ] + [S (2.6)

In (2.6) siNe] is given by
ES ie) = 1~

t

o[lf11
2] plfl 2 12  pRe[ffJ -p [f *f2 ]

PrIfl 12]  P1f 22 12  PRe[f 21f*2] -P,[f2lf2]

P2Rejf f I p2Re[f f pRe~f f *+f f JpRe[ff-11f21 12 22 11 22 12 21 11l22 1l2f21

P2Imff~f P2PMf pm f +f fJ pReff f-11 2JpIDf 2 2 J f
11 22 12 21 11221221

(2.7)
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where fi, are elements of the 2x2 scattering matrix for' the unperturbed

(spherical) particle

E -t =f 2 l f 1 2  E[ exp(-ikor) (2.8)

E f f t r
r 21 f22  r

In (2.8) Ei, E' and E£, Er are the incident and scattered verticallyr

and horizontally polarized electric field components in the

scattering plane and r is the distance to the field point from the

center of the spherical particle. For a smooth sphere f are given

by the Mie solution (Ruck et al. 1970; Ishimaru 1978) and Ef] is a

diagonal matrix. The transformation matrices [a] in (2.5) are

given in terms of the angle a' between the reference plane of

incidence and the scattering plane and the angle a between the

scattering plane and the reference plane of scatter (see Fig. 2)

cos2a sin2a sin2a 6

sin 2a cos
2 a - sin2 0

-sin2a sin2a cos2a E
0  0 0 lj (2.9)

The quantity X in (2.6) is the particle random rough surface

characteristic function.

X (a) = <expfi r h )> (2.10)r r

in which

= k ( f i) (2.11)
0

Thus the coefficient 1X1 2 in (2.6) accounts for the degradation

of the specular point contributions to the scatcered fields by the

rough surface (Ix12 < .1 and as 0 I 0 X12 - 1). The diffuse
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scattering contribution to the matrix S' due to the particle rough

surface is given by

I [sD2] 0 0

o 0 [S

0 0 [S D I [S D j (2.12)

where

fS J = ~ - P o"iJ, , for ij = 1,2 (2.13)
ij iptD

in which A = a2 is the average cross sectional area of the un-Y

perturbed particle and "<oiJ D are the full wave solutions for the

like (i=J) and cross polarized (i#j) scattering cross sections

(Bahar and Fitzvater 1983, Bahar and Chakrabarti 1985). The

first and second superscripts iJ denote the polarizations (V vertical

and H horizontal) of the scattered and incident waves respectively

<°iD 2 7 IkoDiJ12 P2 Q sinydyd6/r2 (2.14)
0 0

where

= ( ' )-X( a l2)exp(i'd)dX ddzd (2.15)_M . 2 r rA dd

Since the rough surface height h is assumed to be isotropic and

homogeneous, the surface height autocorrelation function <hh'> and

the joint characteristic function X2 are only functions of the

distance rd = (x2 + z2) measured along the surface of the
d d d

unperturbed sphere. For rough surface heights with Gaussian

distributions
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X(V.ir )12 = exp[-(V-a) 2 <h2 >] (2.16)

and

X2( Nar) = <exp ia r(h-h')> =exp[ (-ar) 2 <hhl>] X(V" r )12

(2.17)

In (2.15) it is assumed that the surface height correlation length

r is small compared to the particle circumference TD.

For i = 3 and 4

SPi] [<11> <012> ]]A/r[ot]

= pLRe[922 D -
+  21 D y(2.18)

(upper and lower signs for i = 3 and 4 respectively) . For i#j

[s j I= P[ImE+ <(I> + <012 >D1]A /4P[oft (2.19)ij22 D 2 1 y

(upper sign for i = 4 , j = 3 and lower sign for i = 3, j=14

respectively).

In the above expressions

2j 2frl 2 ij kR, 2<'-J> = f koD D P2 Qsinydyd6/2 (2.20)
0 0

In (2.1L) and (2.20), P2 9 the shadow function, is the probability

that a point on the surface of the particle is both illuminated and

visible given the slope of the surface at the given point (Sancer

1964). The scattering coefficients D are functions of n ,n and n

the normal to the unperturbed surface of the particle as well as its

electromagnetic parameters E,Vj. The remaining eight terms of the

matrix [%J vanish since Dii and Dij  (ilJ) are symmetric and

antisymmetric respectively with respect to 6 the azimuth angle

for the sphere.

In this work it is assumed that a linearly polarized wave

(ertical or horizontal) is obliquely incident upon a parallel layer
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of optical thickness T0 containing a random distribution of particles

with rough surfaces. The incident Stokes matrix at z = 0 is

(see Fig. 2)

[lincj = Io6(1,_pi ) (2.21)

in which pi = cosai the direction of the incident wave is (e,0)

and

I
v  and I

N =

.0 and (2.22)

for P = V (vertical) and P - H (horizontal). In (2.21)6(-) is the

Dirac delta function. Thus the reduced incident intensity is

[I ri = [I inc] exp(-T/i ) (2.23)

and the (4xl) excitation matrix (2.3) is

[I i] = I[SH[Irildjj'd ' E [F]exp(-T/Iji)  (2.24)

in which the (4xl) matrix IF] is

IF] = [S[I P 1 (2.25)

and the matrix IP ] is defined in (2.22). The matrix IF] can be
0

expressed as a Fourier series (Ishimaru et al. 1982)

[F] = z [F] cosmo + Z [F]b sinmo (2.26)
m=o m=l

in which

0 m (2.27)
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For normally incident (e =0) linearly polarized waves, the terms

mO and m=2 are the only non-vanishing terms and for normally

incident circularly polarized Nves the only non-vanishing term is

mF=. Eowever, for the obliquely incident linearly polarized waves

considered in this work, the number of terms of the infinite series

needed to be considered depends on the desired accuracy of the

numerical results (see Section 3).

From (2.26) it follows that

271
[Fla = [- , [F]dO (2.28a)

0

and for i > 1

a 2n jb 2r
F]; f [F]cosmod ,[F b 1 f [F]sinmdO (2.28b)Im o

The incoherent specific intensity matrix [I] can also be

expressed in terms of the Fourier series

[I] = . [,]a cosm + z rIjh sinm (2.29)
M=O =l m

Since the elements of the scattering matrix [S] are functions of

0'-4 it is expressed as follows

[s] =r + c 4) CSbm~ (2.30)M7:1

Furthermore, for the rough sphere fii are even functions and fiJ

(iJ) are odd functions of 0'-q, for m=0,l,2 ... , thus

,]a JS33m j ( 2.31)

where
[S],, [S], and rs .
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axe (2x2) matrices given by

27
Is ]a = f [Si] cosm(4'-f)d(*'-4) , i=1,4 (2.32a)

2wr
Is ij  [si] sinm(,-O)d('-,) , i=2,3 (2.32b)

F 0

and Is.3 are the (2x2) matrices defined by

S [S J
12

Is] = 1
ts3 esef (2.33)

It therefore follows that the first two elements of the Stokes

matrix,I1 and I2, are even functions of 0'-0 while the last two

elements,U and V,are odd functions of *'-4 (Ishimaru et al. 1982).

Thus for m=0,1,2 ...

and [I] = where [Ib = [01 (2.3-)

The equation of transfer for each of the Fourier components can be

written as follows

LI -[I] + f [S [I'] dp' + [F] exp(-T/)i) (2.35)

in which

a + [F]a
mi = ' [] [F) = [F], a bF] (2.36)

and

[S]a [sjIl
Is 1. 1in 2 m

-[s] [s]a (2.37)

3 mm 4 m DL mm mmmlmu m m m mmm mIm
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0ote that since I o [ =[ (i=2,3) and [F] £ 0] the

last two elements of the matrix equation (2.35) vanish for the

case m=-0.

The boundary conditions for the Stokes matrix [I] are

11= 0 for o<u<l at T=O (2.38a)

and
fI m = 0 for 0 > P > -1 at T = T (2.38b)

Equation (2.35) together with the associated boundary conditions

(2.38) are solved for [I]m using the Gaussian quadrature method

(to aiscretize the angle 8) and the matrix characteristic value

technique (Ishimaru 1978).

It is also necessary to determine the extinction coefficient

(total cross section) ot in order to solve the equation of transfer

(2.3 When "equivalent" spheres do not reasonably represent the

basic scattering characteristics of irregular shaped particles,

Greenberg has developed experimental microwave techniques to

determine the albedos of particles for which no theoretical method

existed (Greenberg 1960, Chylek 1977, Scheurman 1980). In this work

the full wave approach (which unlike the small perturbation method

is not restricted to small values of B) is used to evaluate t

(Bahar et al. 1986) by making judicious use of the forward

scattering theorem (Born and Wolf 1964) and the very perceptive

observation that for large scatterers (compared to wavelength) the

forward scatter "shadow forming wave is the same for all surfaces

which have the same shadow line" (Morse and Feshbach 1953).
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The diffuse specific scattering intensities I1 and 12

correspond to vertically polarized (E8) and horizontally polarized

(E#) waves respectively. In practice, however, the polarization of

the receiver is either parallel (Ex ) or perpendicular (E y) to the

polarization of the incident wave. The corresponding diffuse

specific intensities Ix and Iy are the co-polarized and cross

polarized incoherent specific intensities (Cheung and Ishimaru

1982). They are obtained from I1 and 12 through a linear trans-

format ion.

The degree of polarization m of the scattered wave is

(Ishimaru 1978), [CIi- )2+ U2 V2]

M = < 1 (2.39)
I1 + 2

3. ILLUSTRATIVE EXAMPLES

For the illustrative examples considered in this work, the

particle random rough surface height h (measured normal to the

unperturbed surface) is assumed to be homogeneous and isotropic and

the unperturbed surface is assumed to be spherical (2.2). Thus,

the rough surface height autocorrelation function <h(r)h(r' )> is

only a function of the distance rd = r = (X2 + Z2) measured
dd d

along the surface of the (unperturbed) spherical particle of

radius a. It is also assumed that the rough surface correlation

distance rc (where <hh'> - <h2 > exp(-l)) is smaller than the

circumference of the particle. The correlation length is related

to the mean square height <h2 > and the total mean square slope
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<G2> through the expressionS

r = 2(<h >/<o >) (3.1)
c s

The surface height spectral density function W(v ,v z ) is the

two dimensional Fourier transform of the surface height autocorrela-

tion function <hh'>. Since the rough surface is assumed to be

homogeneous and isotropic the spectral density function is only a

function of

vT = (v + v)z P (3.2)

Thus
1

W(v ,v 2 ) = -1 <h'>exp(ivxd+ivz d)dxdzd
f2 <hh'>J(vTr )r dr(33)

IT 0 vd d d

in which Jt Trd) is the zero order Bessel functicn of the first

kind and v and v are components of the vector v = k (n -. ) inx z o

the direction of the unit vectors n and n3 tangent to the surface

of the unperturbed sphere. In view of the Fourier transform

relationship between <hh'> and WW(Vx,V z)

<hh> = f ---- V--- exp(-ivxd-iv z )dv dv
xF z d x z

f Cv-- )jo( r )v dv (3.L)

2- wovTo T d T T

The following special form is assumed in this work for the surface

height spectral density function

W(v 2jv .
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Thus the surface height autocorrelation function is

W= [1 - + 3072] 1

+ + ~2()(3.6)

in which K0 and Kl are the modified Bessel functions of the second

kind of order zero and one respectively (Abramowitz and Stegun

1964) and the dimensionless argUment is

= v rd  (3.7)

The dominant roughness scale (where W(v T ) is maximum) is vT = v m and

W(v,) - C/1281f vn. The mean square height is

<h2>27fW(v )vdv = C/210v 6

2 0 T TT M

and the total mean square slope is
2 Wr 3 4

<02> = f W(vT)vT dvT = C/84 v (3.9)
s 20 T T M

Thus
rc = 1.26/km  (3.10'

Twc special cases are consideied in detail at infrared and optical

frequencies.

Case (a) A = lop D = 5X C = 1.5-i8 (dissipative dielectric)

v D =J , <02> =0.101 k - k2 <h 2 > = 10, r/ITD = 0.101M, s 0o

Case (b) X 0.5551 D = OX = -40-i12 (aluminum, Ehrenreich 1965)
r

v D = <a 2> = 0.101, 8 140 , rc [iD = 0.101.ZU s /c 011

For case (a) (D = 5A) it is necessary to use a Gaussian quadrature

formula of order 20 to discretize the angle e (Abramowitz and

Stegun 1961 ) and for case (b) (D = iOX) since the differential
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scattering cross sections are very sharply peaked in the forward

direction it is necessary to use a Gaussian quadrature formula of the

order 32. The number of terms needed in the Fourier series expan-

sions for the incoherent specific diffuse intensities depends on the

angle of incidence ei. As was noted,for norm incidence all the

terms of the Fourier series except n=0 and m=2 vanish. For case (a)

it is necessary to account for the terms =re=,l,...16 when C"l> and when

oi = 300 it is rcessarv to account fcr the terms m=0,l,2 ... 2 to

get a two rg.*ficar.t figure accuracy for the excitation rutrix F (2.25).

In 3 EL and L 72 and :2 are plctted as functions of e

for a verticaly ;clarzei wave incidnt at an angle ei= -C

parallel layer cf CS5..OL. tnc!.es, T :.-. Tn Figurr an
0

the correspcndi, rt ultc arLc ;r, fcr a ,orizntal'y ;lari

incident wave. 1 th first crder and nuitifls scatter" r srt- are

shown for the srooth sEherica2 particles as well as the Tart icies

with rough surfaces. For a vertically polarized incident wave the

main lobe of the scattered intensity I Is in the forward direction

6 15 . Since the diffuse scattering contributions S D] is

negligible in the near forward direction, the effects of the

particle surface roughness is also negligible in the near forward

direction. Moreover, since the Mie solution for the scattered field

has a very large lobe in the forward direction, for T = 0.1o

uultiple scattering effects are not significant in the forward

direction. Away from the forward direction the effects of particle

surface roughness become significant. The effects of particle

lI
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surface roughness are primarily manifested in the smoothing out of

the large undulations in the specific intensities for the smooth

spherical particles. The effects of multiple scattering are more

pronounced away from the near forward directions. The multiple

scattering effects increase as the optical thickness T increases.
0

The effects of particle surface roughness are more strongly

manifested in the results for the cross polarized specific intensity

12 (Fig. ). The single scatter results are zero for the smooth

particle. Bowever, for the rough particle the single scatter

results are in agreement with the multiple scatter results except

in the near forward direction where the single scatter results are

negligible. This is again because the diffuse scattering contri-

bution [SDJ is negligible in the forward direction. For the sane

reason in the near forward direction the multiple scatter results

are the same for both the smooth particles and the particles with

rough surfaces.

The principal difference between the results for the horizontally

polarized excitations and the results for the vertically polarized

excitations is that the like polarized intensity 12 (Fig. 6) for a

horizortally polarized excitation undulates less strongly. This

results directly from the behavior of the corresponding Mic solutions.

In Figs. 7 and 8 the incoherent specific intensitics I and 12

are shown for the case considered in Figs. 3 and 4 (vertically

polarized excitation) except that here the optical thickness is

T = 20. As the optical thickness of layer of particles increases,
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the incoherent specific intensities become more isotropic and the

levels of the like (I ) and cross (12) polarized intensities

approach each other. Multiple scattering cannot be ignored and the

effects of particle surface roughness increase away from the near

forward scattering direction. The specific intensities are lower

for the particle with rough surfaces than for the smooth spherical

particles since the albedos for the rough particles are smaller than

the albedos for the smooth particles (Table I). The corresponding

results for horizontally polarized excitations (not shown) are

similar to those for vertically polarized excitations. As the

optical thickness of the layer of particles T increases the
0

multiple scatter results become roe independent of polarization.

In Figs. 9 and 10 the incoherent specific intensities I1 and

12 are plotted as functions of 6 for vertically polarized waves

incident at an angle 6i = 30 ,0 = O(X = l01, case (a)). The optical

thickness of the layer is T = 1. The effects of particle rough-
0

ness on both I and 12 are negligible in the near forward scatter

direction. However, eway from the forward scatter direction the

effects of particle surface roughness is very significant. The

incoherent specific intensities become more isotropic. Moreover,

it should be noted that for T = 1 while the particle surface0

rougYness reduces the level of I (like polarized intensity) it

increases the level of 12 (cross-polarized intensity). This is

because the albedos for the particles with rough surfaces are

smaller than the albedos for the smooth particles, and the cross-
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polarized scattering cross sections are not zero for the particles

with rough surfaces. As a result the degree cf polarization is

smaller for the layer containing particles with rough surfaces.

The single scatter results, also shown in Fig. 9 indicate the

effect of the particle rough surface is to reduce the sharp

undulations in the specific intensity I

In Figs. ]1 and 12 the co-polarized (I ) and crosc-po2arizcdY

(I x ) incoherent specific intensities are plotted as functions of

the azimuth angle for horizontally polarized waves incident at

an angle ei = 30 ,i=O(X = 1W , case (a)). The optical thickness of

the layer is T =0.1 and the (forward) scatter angle is 8 = 68.1 ° .o

The first order and multiple scatter results for the specific

intensities I and I are less than 1/2 db apart for the prticlesx y

with rough surfaces. On the other hand, the correslonding results

fcr the smooth particles are far more oscillatory and there are

significant differences between the first order and multiple

scatter results especially for the crcss-polarized intensities (Ix

in the neighborhood of 0 = 0 and * = r.

The co-polarized (Ix) and cross-polarized (Iy) incoherent

specific intensities for vertically polarized waves incidcnt at

an angle e=30°, i=O(A=10, case (a)) are plotted as functions of

the azimuth angle @ in Figures 13 and 14. The optical thickness

0cf the layer is T = 0.1 and the (back) scatter angle is 8 = il .90

The co-polarized reflected incoherent specific intensity I x is

larger for the smooth particles than for the rough particles,

I
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however since T = 0.1, the multiple scatter and single scatter0

results are less than 0.5 db apart. The reflected flux of the

cross-polarized incoherent specific intensity I is larger forY

the particles with rough surfaces than for the smooth particles

and I is more isotropic for the particles with rough surfaces.Y

The difference between the single and multiple scatter results

is significantly larger for the smooth particles. The co-

polarzied and cross-polaticed specific intensities are even functions

of 0 (2.34).

In Figs. 15 and 16 the incoherent specific intensities I and
1

12 are plotted as functions of e ( = 0) for vertically polarized

waves incident at an angle 8i = 15 , i= 0(=0.555P, case (b)). The

optical thickness of the layer T = 2. Since D = 10 for case (b)0

the plot of the specific intensity I. is strongly peaked in the

forward direction and the first order, single scatter results for

the smooth particle oscillate rapidly. In this case it is

necessary to account for the terms m = 0,1,2 ... 26 to get a two

significant figure accuracy. The multiple scatter results for

the smooth particle do not undulate as strongly since T = 2.
0

For the particles with rough surfaces, both the single scatter

and multiple scatter results for I I are similar to the corresponding

near forward scatter results for the smooth particles. However,

away from the near forward direction both the single and multiple

scatter specific intensity Il for the particles with rough surfaces

are significantly different from the corresponding results for the
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smooth particles. The effects of particle surface roughness are

to significantly smooth out the undulations in II away from the

forward scatter direction. Since the albedo for the particles with

.rough surfaces is smaller than for smooth particles generally

II for the smooth particles is larger. This is not the case for

12 (the cross polarized specific intensity). For small values of

To, 12 is larger for the particles with rough surfaces (since their

cross-polarized cross sections <CPQ>D PMQ are not zero). However

for layers with very large optical thickness To, the reverse is

true since the albedos for the smooth particles are larger. The

cross-over occurs at about T = 2 where the multiple scatter
o

results for 12 are approximately the same for the particles with

rough and smooth surfaces (see Fig.16). The single scatter results

12 for the smooth particles are zero for the 0 = 0 plane.

In Figures 17 and 18 the co-polarized and cross-polarized

incoherent specific intensities Iy and I x are plotted as functions

of the azimuth angle for a horizontally polarized wave incident

at an angle ei = 15, 0 i = 0o (A = 0.555P, case (b)).The scatter

polar angle in these figures is e = 59-50 (forward scatter) and the

optical thickness of the layer is T = 0.1. In view of the
0

excitation I and I are even functions of . For this excitationx y

the co-polarized intensity is Iy (Fig. 18). For the smooth

particles both I and I undulate very strongly, the majorx y

difference between the multiple scatter and Lingle scatter

results occur only at the sharp nulls. For particles with rough
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surfaces both I, and Iy are significantly more isotropic (with

respect to $) and the difference between the single scatter and

multiple scatter results is less than 1 db.

In Figs. 19 and 20 the co-polarized and cross-polarized

incoherent specific intensity l and Ix are plotted as functions

of 4 for the scatter polar angle 8 = 164.70 (backward scatter).

The excitation is the same as for the case considered in

Figs. 17 and 18. The effect of particle surface roughness is to

smooth out the undulations in the specific intensities for the

smooth particles. Thus the backward scattered incoherent specific

intensities for the particles with rough surfaces are practically

isotropic as well as polarization independent even for layers of

small optical thickness r = 0.1. As 'r increases, the difference0 0

between the single and multiple scatter results saturate at about

0.7 db for the particles with rough surfaces.

In Figs. 21 and 22 the degree of polarization m (2.39) is

plotted as a function of the azimuth angle . The excitation is

i 0a horizontally polarized wave incident at an angle 6 = 150 ,

i* 0 (A = 0.555V case (b)). The optical thickness of the layer

is T = 2. In Fig. 21 the scatter angles are 8 = 4.20 and
0

8 = 9.7 ° . Multiple scatter results are plotted for particles

with both smooth and rough surfaces. For the near forward

scatter direction (0 = 9.7, 4 = 0) m is the same for both smooth

and rough particles, however as 4 increases tow the difference

becomes very significant. The results for 6 = 4.20 do not

undulate as strongly as the results for 6 9.70 since the main
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scatter lobe is in the direction 0 0 = 15', = 0. The degree

of polarization m is smaller for particles with rough surfaces.

For the case plotted in Figure 22, the (backward) scatter angles

are = 148.1 ° and 0 = 153.7 ° . The backward scattered waves have

a degree of polarization m < 0.1 for the particles with rough

surfaces. However, for particles with smooth surfaces m oscillates

around the value m = 0.5.

Since the degree of polarization is m < 1, this parameter

together with the single scatter data provide valuable checks

on the numerical results.

4. CONCLUDING REMARKS

The illustrative examples presented in Section 3 vividly

describe the effects of particle surface roughness on the co-polarized

and cross-polarized incoherent specific intensities for optical and

infrared electromagnetic excitations at oblique incidence.

Since the diffuse scattering contributions due to particle

surface roughness are negligible in the near forward direction, the

primary effect of the surface roughness is to smooth out the side

lobe undulations of the specific intensities for the corresponding

smooth particles. Furthermore, the particles with rough surfaces more

strongly depolarize the incident wave. Thus since the albedos are

smaller for the particles with rough surfaces than for the smooth

particles, the co-polarized specific intensities are smaller for

the rough particles while the cross-polarized specific intensities

are samaller for the smooth particles when the optical thickness of
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the layer of particles is small < 1. Rowever, as the optical

thickness of the layer increases (T > 1) both the co-polarized

and cross-polarized specific intensities are smaller for the

particles with rough surfaces.

In general as the optical thickness increases and multiple

scattering effects become significant, the layer consisting of

particles with rough surfaces tend to scatter the incident waves

in a more isotropic manner. The sharp undulations in the specific

intensities are smoothed out and the results become more polariza-

tion independent. Thus the degree of polarization for the particles

with rough surfaces is significantly smaller than for the smooth

particles when the layers of particles with rough surfaces are

optically thin, the first order single scatter results and the

multiple scatter results for the co-polarized and cross-polarized

intensity are in very good agreement.
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Table I

Case a Case b

10 h40

lOi -555v

i . 5-i8 -40-i12
r

2a = D 5x lox

at  smooth 2.370 2.259

at , rough 2.333 2.213

albedo, smooth .6h34 .9356

albedo, rough .603 .8579

W(VT TV VmD , <> :.i01, re/D=.101= -- 8  ,
T~v) = C25 [ 2 2/vD=4'.202

Table I. Values of parameters for the surface height

spectral density function W, wavelength X, dielectric

coefficient c and diameter D for the scattering particles.
r
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6. Figure Captions

1. Scattering geometry for a rough conducting sphere

2. Scattering geometry indicating incident and scattered wave

normals ni and nf and corresponding field components E1

parallel (vertical) and E2 perpendicular (horizontal)

polarizations.

3. Incoherent specific intensity I for a vertically polarized

wave incident at e i = 150, 4i = 0, case (a), r = 0.1.0
First order smooth and rough (-). Multiple scatter (+)

smooth, (A) rough.

1. Incoherent specific intensity 12 for a vertically polarized

vave incident at 6e = 15', 4) = 0, case (a), T = 0.1.o

First order smooth and rough (-). Multiple scatter (+)

smooth, (A) rough.

5. Incoherent specific intensity I1 for a horizontally polarized

wave incident at ei = 150, 4i = 0, case (a), To = 0.1.
0

First order smooth and rough (-). Multiple scatter (+)

smooth, (A) rough.

6. Incoherent specific intensity 12 for a horizontally polarized

wave incident at ei = 150, 4i = 0, case (a), - = 0.1.
0

First order smooth and rough (-). Multiple scatter (+)

smooth, (A) rough.

7. Incoherent specific intensity I1 for a vertically polarized

wave incident at e = 150, 4) = 0, case (a), T = 20.

First order smooth and rough (-). Multiple scatter (+)

smooth, (A) rough.

8. Incoherent specific intensity 12 for a vertically polarized

wave incident at 6 = 15', 4) = 0, case (a), - . 20.

First order smooth and rough (-). Mkltiple scatter (+)

smooth, (A) rough.
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9. Incoherent specific intensity II for a vertically polarized

wave incident at 8i = 30 , i = 0, case (a), T = 1.0

First order smooth and rough (-). Multiple scatter (+)

smooth, Ud) rough.

10. Incoherent specific intensity 12 for a vertically polarized

wave incident at 8i = 30 , 4i = 0, case (a), T = 1.0

First order smooth and rough (-). Multiple scatter (+)

smooth, (b) rough.

11. Co-polarized specific intensity I for a horizontally
y

polarized wave incident at 61 = 3Y0  1 = 0, case (a),

= 0.1, 6 = 68.1o. First order smooth and rough -).0

Multiple scatter 07) smooth,(X) rough.

12. Cross-polarized specific intensity I for a horizontally
i ox.

polarized wave incident at e = 30 , 4) 0, case (a),

= 0.i, e = 68.10. First order smooth and rough (-).

Multiple scatter (X) smooth,(X) rough.

13. Co-polarized specific intensity I for a vertically
x

polarized wave incident at 61 = 300, fl = 0, case (a),

= 0.1, 8 = 111.90. First order smooth and rough (-).0
Multiple scatter (X) smooth b,(X) rough.

l. Cross-polarized specific intensity I for a vertically
.oyi

polarized wave incident at e = 300 , 0 = 0, case (a),

T = 0.1, e = 111.90. First order smooth and rough C-).o

Multiple scatter (X) smooth ,(X) rough.

15. Incoherent specific intensity I1 for a vertically polarized
i 0 i 0wave incident at e = 15° , 4 = 0o , case (b), T = 2.

First order smooth and rough (-). Multiple scatter (+)

smooth, (L) rough.
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16. Incoherent specific intensity 12 for a vertically polarized

wave incident at 6i = 150, 4i = 0', case (b), T = 2.0

First order smooth and rough (-). Multiple scatter (+)

smooth, Wd) rough.

17. Co-polarized specific intensity I for a horizontally
y = 0 i =

polarized wave incident at 6 = 150, 4) = 0, case (b),

T = 0.1, 6 = 59.50. First order smooth and rough C-).0

Multiple scatter (3) smooth,(X) rough.

18. Cross-polarized specific intensity I for a horizontally
i x .

polarized wave incident at e = 15 ° , 41 = 0, case (b)

T = 0.1, 0 = 59.50 . First order smooth and rough (-).

Multiple scatter (3r) smooth,(X) rough.

19. Co-polarized specific intensity I for a horizontally

polarized wave incident at 8 = 30 , 4 = 0, case (b),

T = 0.1, 6 = 164.70. First order smooth and rough (-).0

Multiple scatter (X) smooth,(X) rough.

20. Cross-polarized specific intensity I for a horizontally
i o ipolarized wave incident at i 

= 30 , 4) = 0, case (b),

T = 0.1, 6 = 164.70. First order smooth and rough (-).0

Multiple scatter (X) smooth,(X) rough.

21. Degree of polarization m for a horizontally polarized wave
i 0 i=0incident at e = 15 , 4) = 0, case (b), To = 2, = 4.20

(+) smooth, X) rough, 6 = 9.70 (0) smooth,(A) rough.

22. Degree of polarization m for a horizontally polarized wave

incident at 6
i = 15

°, 4i = 0, case (b), To = 2, 1 = 1S.10

(+) smooth, X) rough, 6 = 153.60 (0) smooth,(A) rough.
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ABSTRACT

A new reflection model for computer generated synthetic

images of metallic objects is developed. This model is based on

a full wave analysis of electromagnetic scattering by rough surfaces.

The full wave approach accounts for specular point scattering and

diffuse scattering in a self-consistent manner. The model presented

here is compared with earlier models. It is shovn that the practical

application of the ne, reflection model to computer aided geometric

design of ranufactured objects is relatively easy to implement.
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I. INTRODUCTION

Over the period of the last decade the reflection models for

computer generated synthetic images have been improved in order to

produce very realistic images of three dimensional objects on a

two dimensional screen. Phong 118) began by computing the intensity

of each pixel as a linear combination of diffuse and specularly

reflected components. Diffuse reflection was simulated using

Lambert's cosine law. While specular reflection was accounted for
th

by 'using the cosine function raised to the n power (typically

n ranges from 1 to 10) with its peak at the specular point.

Dlinn 17,8) modified this model by adopting the specular reflection

model described in the work of Torrance and Sparrow [7). In their

model the simulated rough surface is assumed to be corposed of

mirror-like microfacets which are oriented randomly all over a

smooth surface. Later Whitted [19) introduced an enhanced ray

tracing model, in which the intensity at each pixel is computed from

the global illumination information. Cook and Torrance [13, l]

applied their reflectance model to computer graphics. Their model

took into account the effect of the spectral distribution of the

energy of the incident light'and the reflectance spectra of the

object to display the color of the object. Recently Kajiya [17]

introduced an anisotropic reflection model for surfaces which

exhibit anisotropy in their scattering pattern. However, in
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practically all the above mentioned models the specular reflection

component is characterized by the Fresnel reflection coefficient

and the diffuse contribution is assumed to be Lambertian.

In this fzper scattering from rough surfaces based on full

wave theory is reviewed. The full wave theory is based on the

complete spectral representation of the scattered fields and upon

the imposition of exact boundary conditions at the irregular

surface. This theory accounts for both specular reflection and

diffuse reflection. A reflection model for computer generated

synthetic images is derived from the full wave analysis.

In this investigation the rough surface is assumed to be

isotropic and h .ogeneous. In addition the mean square slope of

the random rough surface, which is superimposed on the unperturbed

surface, is aszumed to be small (<o2 > < 0.1). Hence for convex
s -

shapes (as in cylinders, spheres or cones) multiple scattering

between different su'-face elements of the object is ignored.

In Section II th- pioblem is formulated and the principal

elements of the full :ave solutions are obtained. Expressions for

the total reflected antensities are evaluated in Section III for

objects illuminated by unpolarized light. In Section IV the diffuse

and specular scattering contributions from different surface elements

of the objects are exanined in detail, and the full wave reflection

model for computer generated synthetic images is derived.

In Section V the full wave reflection model is used to generate the

three dimensional primitives for computer aided geometric design by

locating isointensity contours.
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I. FORMULATION OF THE PROBLEM

For the purpose of computer aided graphics of manufactured ob-

Jects, it has been sho-.m [15) that almost 95% of the surfaces of

the manufactured objects can be described as combinations of planes,

cones, cylinders and spheres. In general these primitives have some

measure of roughness and therefore it is necessary to examine in

detail scattering from rough surfaces. The objective of this research

is to develop realistic models in order to generate these primitives

for computer graphics. In this presentation spherical scatterers are

considered in detail and in the analysis, it is assumed initially

that the spheres are illuminated by vertically or horizontally

polarized light 13].

Consider a large spherical surface perturbed by a superim.pcseCd

random rough surface. The height of the random rough surface h is

measured along the normal to the unperturbed spherical surface. It

is characterized by its spectral density function. The position

vector s to a point on the rough surface is given by
5

r =aa +h (1)
Sa r r

vhere r is the unit radius vector and the radius of the unperturbedr

sphere, a, is assumed to be large compared to the vavelength, A.,

of the incident wave.

The normal to the unperturbed sphere f = a is

r
= sany cos6 x + any sin6 £ + cosya z  (2)

x y z
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where y and 6 are polar and azimuthal angles respectively

(Fig. I). In view of the spherical symmetry, the coordinate

system is chosen such that unit vectors ni and nf in the direction

of the incident and scattered waves are (see Fig. 1).

1 1n = sine cso

n sineia +cose f a (3)

o y 0 Z

in which 8 = e 0 The vector v which bisects the angle between0 0

the incident and scattered wave normals is

k 0 f~n -n ) 2k 0cose 0 J Jj (5)

and

v -= a (6)

Ffl
For a Gaussian random rough surface height h, with mean square height

<h 2> the characteristic function is

X(v ) = exp(-v 2<h2>12) , (v, = ') (7)

in which v- is the component of v normal to the unperturbed surface.
z.

The total normalized differential scattering cross section per

unit projected area Az of the object is given by 1261

,02 IPf 2,

A Z j' Qij

In (8) the second superscript Q corresponds to the polarization of

the incident field and the first superscript P corresponds to the

polarization of the scattered wave. Pursuant to the choice of the

coordinate system, the plane of incidence (normal to £xg ) and the
a

plane of scatter (normal to n axgz ) are in the scattering plane

(norma. to Ai x E ). EPf and EQ i are the scattered
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and incident electric fields respectively [12]. The distance to

fthe observation point from origin is r

Using the full wave approach <o PQ> is expressed as a weighted

sum 12)

<oP>< 0PQ> <oPQ> (9)

in which < PQ> is the cross section associated with the large

scale unperturbed surface and <o PQ>R is the cross section associated

with the rough surface h that is superimposed on the large scale

spherical surface. Using a steepest descent or stationary phase

approximation 15) <0PQ>L reduces to the form

< = Ix (v)i2 R I 26pQ (10)

where R is the Fresnel reflection coefficient for vertically -

(P=V) or horizontally(P=-) polarized waves and 6pQ is the Krcnecker

delta. The unit vector normal to the unperturbed surface at the

specular point is given by

ns~~

and (1)

Bence equation (10) reduces to

-hk2<h 2>cos 2 6 f
<OPQ>, = IX 12 jR 2J 6PQ (2

In equation (10)Ix j2 represents the degradation of specular

point, physical optics, scattering cross section of the large
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scale smooth sphere due to the rough surface superimposed on its

surface. This decrease in the specular point scattering is

accompanied by the diffuse scattering contribution <a PQ>R due to

the rough surface h.

Using the full wave approach [ it is shorn that

< =PAR k 2 f 1 dijd6 (13)B 0  r _ j ,PQ, 2 (vvT)P2o-i

where-djd6 =-d(cosy) d6 is the differential solid angle. The

function P2 is unity for the illuminated and visible portions of

the sphere and it is zero elsewhere. Furthermore,

2

1-.(' (X 2-I )2exp(iv ' d) ddyd

= 21 f (X2 -]xI2)Jo(vTrd)rddrd (4a)
0

where Jo is the Bessel function of the first kind of order 0 and X2'

the joint surface height-characteristic function for Gaussian

surfaces,is given by [6]

X2 = IXI
2exp(-<hh'> v2) ( b)

in which <hh'> is the rough surface height autoco:-relation

function. The component cf v tangent to the unperturbed surface is

2v2 r 2-2VT = V- and the distance rd = is mea!3ured along

the sunface of the unperturbed sphere. In equation (13) DPQ is

an element of a 2x2 scattering matrix whose elementa are functions
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of , , the complex electric permittivity and permiability of

the particle 112).

Aence from equations (9) and (20) one obtains

<0 > = <ov>R _ Ix (v)121RvI
2

<0> = < VH>

<oHV = <0 V>

<oBH= <o"H>R + Ix (v)121EJi 2  (15)

The above equations imply that there are no physical optics

(specular point) contributions to the cross polarized cross

sections (where the planes of incidence and scatter are in the

scatter plane). It is assumed in (14a) that the rough surface height

correlation distance *Tc (where <hh'> reduces to exp(-l)<h 2>) is

smaller th.n the particle circumference.
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1II. COMPUTATIONS OF SCATTERED INTENSITY FOR

UNPOLARIZED EXCITATIONS

Metallic objects are visible due to the light that is

reflected primarily from their surfaces [13). In this section

the full wave expressions for the scattered intensities from

surfaces illuminated by unpolarized excitations are derived.

For single scatterers the incident and scattered intensities

I and Ifare related by the 4x phase matrix S. Thus [16)

[I, ] = ,- (16)
(r)

fin which the elements of the xl column matrices 111 ] and [I I

are the modified Stokes parameters (watts/m 2 ) for incident and

scattered waves respectively.

U = Re<(2EVkEH*)> (17)

Vk Im< (2E kEH*)

In (17) k = i or f and the ensemble average is denoted by the

symbol < >.

For natural light, which is unpolarized, the intensities of

the electromagnetic fields are the same for all directions perpendi-

cular to the direction of propagation of the wa-e and there is no

correlation between the orthogonal components of the fields. Hence,

If the total incident intensity is unity, the incident modified
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i i 1 i Vi
Stokes parameters are 11 12 = and = V= 0. Thus, for

unpolarized light equation (16) reduces to [L

Is f]]~ [S [S 11
21 22

where
A

A

12 = <T
A (19)

A

22 =L-' >

and the scattering cross sections <oP are defined in ecuaticn

(15). Since scattering in the near specular direction fron the surface

element of the conducting object is practically independent of

polarization it is assumed that the incident unpolarized light

remains unpolarized upon reflection by the object. Thus, U f = vf = 0

and the total unpolarized scattered intensity is

A

=1 f + Jf = Ar2 [(<a > + <G W> 4 <°HV> + <°HH> )12T 1 2 f nr~ 2  R R R R

* Jxl 2IR12) (20)

where IR12 = (RI 2 + IRH12)/2 is referred to as the Fresnel

power reflection coefficient for unpolarized light.
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Equation (20) is rewritten for convenience as follows

Az

T = o * o- (21)

where ad is the total normalized diffuse differential scattering

cross section. It is given by

ad = (<a + <TH> B + <OHV0> + <O} >R)/2 (22)

The corresponding specular point contribution is given by

07 O X (v) 12R 12 (23)
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IV. DEVELOPMENT OF THE FULL WAVE REFLECTION

MODEL FOR DIFFUSE AND SPECULAR SCATTERING

For the illustrative eiamples used in the development

of the full wave reflection model, the rough surface height

spectral density function is assumed to be

=v 2C f T 8] (214)

The peak value of W(v T ) is W(vT = v) v8 " The corresponding
2 1281T v.

mean square rough surface height <h > and the mean square slope

<a2 > are given by
s

<h2 > = C/(210 v6) (25a)
m

<2> = c/(8 v L (25b)
<0 m

The wavelength of the monochromatic illumination is

X = 0.555 x 10 - h cm (26a)

0
and

k ° = -- (26b)

The diameter of the unperturbed sphere is

D =O (27a)
0

and
v= /D = O.h/ °  (27b)m0
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The relative dielectric coefficient is c = -40-Mr

(aluminum) [3).

The random rough surface height (Rayleigh) parameter is

defined by

8 = 4k<h2
> (27c)

0

The constant C in (24) is related to the roughness parameter 8

through (25a). In Fig. (2), the spectral density function W(vT

(equation (24)) is plotted for several values of 8.

The diffuse and specular scattering contributions to the

total reflected intensity are considered separately in this

section. Using equations (22) and (13), the diffuse scattering

contribution is expressed as follows

d=k 0f f[IDV Il + IDVI + ID~j + IDh~P
o *1

QRP 2 dvd6

= f O(_,)d.Q (28)

vhere d= -dPd6 is the differential solid angle and the integrand

US in equation (28) is the normalized diffuse intensity scattered

by an element of the surface of the sphere subtended by the solid

angle dD.

For the backscatter case (8o = 6f = 0) the normalized
0 0

diffuse scattering cross section (per unit solid angle) Oj (28)

is plotted in Figures (3) and (4) as a function of the polar angle

y and the azimuthal angle 6 (see Figure (1)). In Figure (3) the

roughness parameter is 8 = 10 and in Figure ( 4),8 = 0. Note that
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d.'I is azimuthally symmetric for backscatter since v a z In

Figure ()o- is plotted for the bistatic case, with ei  8f = 400 and0 0

= 0. Here, too, od is practically independent of 6. It is

apparent from Figures (3), (4) and (5), that the diffuse scatterinE

dcontribution o decreases more rapidly as a function of y than

predicted by Lambert's cosine law. Indeed it is shown in this
d

section that the dependence of o upon y is very nearly Gaussian

for 0 > 7.

It is interesting to note that using a physical optics

(Kirchhoff) approach 15,6] it has been shown that the mean

power reflection coefficient is proportional to the probability

density for the rough surface slopes at the specular point. Thus,

sincen is the normal to the unperturbed reference surfaces (a in

Beckmann's work) the angle between the bisector of the incident

and scattered waves and the normal to the unperturbed reference

surface is

a = co- )= Y (for z 2a2.9a

Thus Cook and Terrence [L] who adopted Beckmann's results

obtained images of three dimensional metallic objects that are

more realistic than the images obtained on assuming Lambert's

cosine law.

In view of the azimuthal symmetry of o for arbitraryi f i ef
6 af only the backrcatter case 6 6 0 is considered here

0 0 0 0

d
in detail and 06 is plotted as a function of t only. In Figure (6)

t d qthe normalized quantity OY./6 n W is plotted as a function of



403

a(O < a < 7r/2). For all the plots in this figure, the mean square

slope of the rough surface is constant (< 2> = 0.1) while the

roughness parameter 8 is 1, 5, 7, 10 and 0. For 8 > 7 the

plots of od(a)/ad(0) are rather insensitive to variations in 8.

As 8 decreases below 7 the diffuse scattering contribution

from regions around the specular point decreases. However, as 8

decreases the diffuse scattering contribution becomes less

significant than the physical optics contribution (equation (21)).

Mence, the total (diffuse + specular) scattered intensity is

maximum at the specular points even for small 8. In Figure (7)

a aa(0) is plotted as a function of a for mean square slopes

0.2, 0.05 and 0.025, respectively.

In all these plots the correlation length is fixed and

7 /rD = 0.032. In Figures (8 (91 to), od are plotted as functionsc S

of a for the three cases shown in Figure (7). In these figures the
d

full wave solutions for a0 are compared with the analytical expression

ex2p(-(a2/<o>)). It is apparent from Figures (6) through (10)

that the angular dependence of the diffuse component is primarily

a function of the mean square slope of the rough surfaces.

In Figure (11) od(0)/ d(O),Cr. is plotted as a function of 8

f 8=7.
for the backscatter case ( =-6 ). The permittivity of the

scatterer is assumed to be (a) Ir r I (perfect conductor)

(b) E = --404i2 (aluminum) [3] and (c) c = 1.5-i8 (dissipative

plastic). For 8 > 7 Od(a) is maximum at a = 0 (see Figure (6)).
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An approximate analytical formula of the form

d1 d

n/ min (
is found to anproximate the analytical results (obtained using

the full wave approach) reasonably well for B > Bmin = 7.

In Figure (12) the ratio OS(0)/o (C)j2 )is plotted

as a function of the mean square slope<e2> for B = 20. It is found
2

to be in good agreement with the formula f(<o >) =0.
<02>

8
Using the above result based on full wave theory, the

following simplified analytical model of the diffuse reflection

contribution to the backscattered power is proposed

a (a) = 7 f(B)exp(- a 2/< 2>) o>3'=

since f(8) =1 for B = min = 7 and exp(- a 2 /<02 >) = 1 for a 0,

the coefficient d~ is ecual to o (0) evaluated for S = 7.

7hus using (28)

oR(o) = 2k lR1 2 %R (3ob)

Where reduces to (for IXl2 << 1)

= r f expf-v2<h >(1-R (r)]
Z c d

0 J(voTrd)rddrd (31a)

in which the normalized autocorrelation function is

R c(r d ) = <hh'>/<h 2> (31b)

cd
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For the surface height spectral density function assumed (2L)

2 + 2 
R c(~ m Il 32 3072 ~ 2. Ii-T 9 K. (32)
where X° and K1 are defined as Bessel functions of the second kind

of order zero and one respectively. However to evaluate (32) for

>> I it is sufficient to retain the first two terms of the Taylcr

series expansion of Rc(rd). Thus

H r)= l1f-Jr (33)
Rc~rd )

where

2T = 21R "(0) (3L)
Tc

Since J"(0) = - V
2
/2 it follows that

0 VT
<2>

<00 -

R"(0) -s(35)c 2<h2 >

Hence

2=<h2><2> fl.265 2 (36)
m

and o,(O) for the backscatter at normal incidence (vT 0) reduces to

C1 ) 29Tk. f expf d )frdrId
0d 2

<02> 02o (37)
s

This result is in complete agreement with the slope dependence

d
of cr0() shown in Figure (12). Note that the ab6ve analytical

approximation for SI(0) is independent of H. However, the exact

numerical results obtained from the full wave analysis show
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that o0(o) is weakly dependent on the roughness parameter a (see

d
Figure (11)). As 8 increases (above 7) a (0) decreases slightly

since there is a small increase in the power absorbed by the

rough surface as the roughness parameter $ increases [ 31. Note
d d

also that the level of the curves for oa(O)/oG(O) cj]_ (see

2 8=7
Figure (11)) depends on RI as predicted by equation (37).

The physical optics (specular point) contribution to the

full wave reflection model aPO (equation (23)) is considered now

in detail. It is expressed in a similar way as the diffuse

scattering contribution ad (equation (28)). Thus defining o as

the normalized physical optics intensity scattered by an element

of the surface of the rough sphere subtended by the solid angle

dfQ, the total physical optics contribution o is given by

0 o(o)dq = =X2112 (38)

where

= cos-((*.) = y for ( = )
z

(a o( J2 (39)

Thus

J(0) JX JR 240P a2

The angle a is the value of a where o(a) = o (O)/exp(l). It is obtained
0D

on expanding the exponent in the integral expression for the

physical optics contribution to the scattered field 15] in a

Taylor series about the saddle (specular) point. Thus it can be

shown that
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2L
o va

where a = is the radius of the sphere. For nonspherical

objects "a" should be replaced by the geometric mean of the

principal radii of curvature of the specular points. It is

interesting to note that the area of the first Fresnel zone

around the specular point 110)

A = Tax (42)
The polar angle e subtended by the first Fresnel zone is given

by the following expression

e

A = = a2f sin6ded6 = 2sna
2 (l-cose )

- ia2 O2

Thus

e= (44)
P d

The ratio o (0)/o (0) is given by equations (37) and (40).

Thus for a > 7

- 2 (5

CY(O) 1,1XFSd,,o) 7ra

For the parameters of the sphere vith the rough surface

assumed in this section (a = 5X <02> = 0.1 and > 7).

0) < o.6 x o1-3  (L6)
od(0)
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Thus in order to compute the backscattered intensity at

each -pixel I p of constant area on the image plane, the reduced

physical optics contribution a (a) is neglected and the follcwing

expression is used (30a)

2 > a

vhere the constant Pa represents the contribution due to amr bient

illumination. For backscatter from convex objects, P can be set
a

equal to zero for the purpose of computer graphics. The factor

n. = cosa in the denominator relates the area on the surface

of the sphere to the (constant) projected area of the pixel on

the image plane. For backscatter nn = n.
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2 2 2 2
x + y = a sin a r (52)

Thus for metallic spheres ( 1 10, <72> = 0.1) of the balls

bearing (Figure (13)) as the value of r is varied from rMax
= a

to zerq the corresponding values of a are evaluated using (52)

in order to derive the normalized intensity IP at the pixel on

the image plane. Iresenhar2's algorithm is used in this work to

generate the circles. The unshaded areas that appear between two

consecutive circles (due to the digitization of the coordinates)

are shaded vith an intensity Ip ecual to that of an adjacent pixel

For the bistatic case ( f i) the loci of constant I does

not coincide wih the .cci of a ccnstant. This is due tc the

term Ernf :n t.e cer.G..-.L*r ( " (eo (L7)). It J

interestine tc :.c:e t : , [ -r.Cr the lcci of constan'

I on the ir.ge ;.ase L - .. s As P rest!l, howEvcr the oualitv'

of the imaje is reduced . Fcr conec and cylinders

where a iS cCrEtant a-'cnf f,7'*: /:.es C: the surfaCe, (9,11], I

vill also be ccnstant alcng t .e!:e !Jnes fcr the general bi.tatic

case (since f, and f.-f are constant along these contours).

The simplified analytical form of I P (equation (47))

based on the full wave solutions is very easy to use in order

to generate all the primitives (planes, cones, spheres and

cylinders) fur computer aided design of complex three dimensional

objects.

The computer generated image of the model shown in Figure (14)

is for = 10 and <02> = 0.1. The principal primitives in

Ia
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this image are cylinders. In Figure (15) idealized renditions

of missiles are presented (8 = 10, <0 2> = 0.1). The primitivess

for these images are cylinders, cones, and planes.

Assuming a two-scale composite model of the rough surface

the full wave solution can also be decomposed into a weighted

sum of the two contributions I 1 ). Thus for a two-scale model,

the total normalized reflected intensity I p of each pixel can

be expressed as

IP = Ri2 (Pd sp( i /2 >)+ Pds exp(-a2/<02 >  (53)

In equation (53) the first term is the contribution to Ip from

the large scale rough surface while the second tern is the

contribution to I from the small scale rough surface. The

surface with the large scale roughness is given by W(vT )

(equation (2L)) for VT.f vd while the surface with small

scale roughness is given by W(vT) for vT > Vd. For the images

shown in Figures (16) and (17) the mean square slopes are

<c2 >= 0.01 (for the large scale surface) and <02 
> 

= 0.1
st ss

(for the small scale surface). The coefficients Pdt and Pds are

dependent on the values of 0,<o2> and vd (where the spectral- d

splitting between the large scale and small scale rough surface

is assumed to occur). For the illustrative examples (Figures (16)

and (17)) Pdl = 0.7 and Pds = 0.3. It is interesting to note

that equation (53) strongly resembles the empirical formula used

by Cook and Torrence 1.14.

I-
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VI. CONCLUDING REDMRKS

A simple reflection model for computer generated synthetic

images of three dimensional objects is developed in this work.

It is based on a rigorous full wave analysis of electromagnetic

scattering by rough surfaces. The full wave analysis accounts for

physical optics-specular point reflection as well as diffuse

scattering in a self-consistent manner and its use is not limited

by the small perturbation restriction. Thus using the full wave

approach, it is not necessary to adopt two scale models of rough

surfaces even when the Rayleigh parameter B = Wk <h 2 > is not very
0

srall compared to unity.

For the roughness parameter B > 7 it is shown that the physical

optics contribution a'(a) is negligible compared to the diffuse

scattering contribution ad(a). In this case, it is only necessary

to chose the rough surfaces parameters (<h 2>, <02>) and the Fresnels

reflection coefficients RV and RH for specular reflection (corresponding

to normal incidence for backscatter) and to locate the loci of the

isointensity contours (for backscatter a = const).

The reflection model based on the full wave analysis has been

compared to earlier semi-emperical models used in computer aided

graphics. It is found to be very practical, efficient and easy to use.
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VIII. LIST OF FIGURES

Fig. 2. Scattering geometry for a rough conducting sphere.

Fig. 2. Plot of spectral density function (2L-) 8 = 10, 20, 0.

d

Fig. 3. Normalized diffuse intensity a, (28) scattered by an element

of the sphere as a function of polar angle (y) and

aziuthal angle (6) for 1 10 (backscatter f =

Fig. 4. Normalized diffuse intensity d. (28) scattered by an element

of the sphere as a function of polar angle (y) and

azimuthal angle (6) for 4 = 0 (backscatter nf = i

Fig. 5. Normalized diffuse intensity O (28) scattered by an element

of the sphere as a function of polar angle (-y) and

azimuthal angle (6) for L 140 (bistatic, ei = ef = 00).
0 0

d d

Fig. 6. Normalized diffuse intensity o/o,(0) (28) as a function of

polar angle a = y where 0 < a < 1/2 for 8 = 1,5,7,10 and 40.

Mean square slope (<a >) is constant at 0.1.
a

Fig. 7. d / d (0) (28) as a function of a for <a02> 0.025, 0.05, 0.1.

d d

Fig. B. OCI/o(O) (28) as a function of a

exp(-a 2/<o>) as a function of a

<02> = 0.025.
£
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Fig. 9. od/oC(0) (28) as a function of a (-).

exp(-0 2 /<o2>) as a function of a

s
<0s>= 0.05.

FiL 10. d /0 (O) (28) as a function of a (-).

exp(-a 2/<o2>) as a function of a

<02> = 0.1

Fig. 11. of(0)/o(0) I (28) as a function of 0 for backscatter

case ( f= _i). f(B) (6.296) (--).

Fig. 12. d(O)/[o( 0)12 ] (28) as a function of the mean square
2 2 ( =(2 01

slope <0 > for 5 20. f(<Os >) ---. (---).

<02>

Fig. 13. Ball bearings (using only diffuse reflection compcnent).

Fig. 14. Metallic valve (using only diffuse reflection component).

Fig. 15. Missiles (using only diffuse reflection component).

Fig. 16. Ball bearings (using two-scale model).

Fig. 17. Metallic valve (using two-scale model).



417

Fig 1.



418

CL

Os>: M



~419

m

-



.02

0

yx/



04

LL-

..... . .. ...



Ln

co

0

Ln

'II-in in tn

Ln cuC



423

CD

m

0

-4 Q r



424

LO

ini

It-

o
d m

A _"
.v~

NJ

OD (D

-



4~25

9

01

m If)

C4'-4

\j-

0L

o

C CD



426

G0co

U U")

L

0

A S
_ Im

7,

C- m C V ra C

C 0I



427

Ln

mU

/1C
(0)L



428

/ to



b 29

FIG 13



'43C

FIG 14



FIG 15



432

FIG 16



FIG )7



43

MASAT SICROVAYE ALTIETVI KEAUR~7 OF THE XtA. GRAITY VA FE
EIUILIBRI -43E a'TLM SMYTOR USIM3 FaLL-VAYE TEEoRy

D. 1. Brriok 1. Behar

Oosa. Srarf"c Researoh Electrinal Engineering Dept
1131 Czaabrock Court tliversity of Nebraska

Boulder. Coloado 80303 USA 1-aCol, Naeraska 68586 LESA

tral model. have been available for nearly
three decode. (e.g., the Phillips speotru.

£BSTPCT IRef. 3). it :a! recoguized seow time ag. that
om shild be able to produce a valid thoore-

A new spectral law for the equilibrium region tic[ aodel for the vind-eped dpepu¢dnco of
of the wavebel t spatil spectrum is derived mdorowave (nadir-looking) altimesir oturi-
from the exteusive 5LASAT altimter data set Although mc

h 
models indeed &Low the correct

Applioable to the open ooaan under all OOudi- shape of O* v. wind speed (Ref. 4). exte,sive
tioOe of wave aevelopment. the result ie s ted earetully calbrated data ets from GEC
O

A S 
powr-law dependence rather than the and S AT ef o a priste t diaoraes cy in

olassic k
4

. Thia spectral model is ealt- and STo ot -3 dp diem.. 1,6).

lished using the speoular-point result for

bacehcatter supported by full-cave theory to Fll-vae theory (Ocf. 1) produes an c.
deternine the proper upper waveouaer limit oolutic for scatter from rough surfaces for
for the slope speoct ruin which multiple scatter is not significont;

this solution is AD integral that is on more
oOMPeX thaa lecicl pbyseial optics. Its
power lies in Lhe fact that the surface does
sot hay to be split artificially into two
sca]e. ef roagha.es (e.g.. Pets. 8.9). al-
though it does alor eXaintjoa of the Vali-

1. iNTROtCsTION dlty of uch composite models. In porticular,
it hore that indeed, at aoral incideoce for

Microwave baocecatter (of the expected the sea bAbscoatter is well predicted by the

polarization stat.) from the a" near normal peoular point model for the saame-eeose polar-

Iocidnoss hae long be.. onr, to he hplai.- ifatinO of Va traoemwtted. and it gives the

able by a speculer-point model (iefs. 1.2). upper limit for the wavebeight spectrun.
According to this model, b ckecatter €~. required in the ecpre.eiaa f r ean-equace
from smoothly curving "speculr po.t" die- slope ( e. 10-12).

tributed vcer the waves, i.e.., facet. tilted
ciorol1 to the line of sight. (By the same Bam. (i) havin a valid model for altiiweter

speomlar-eoattering mechanics, 6o-evr, this scatter. i.e.., the speocsar-point model; (ii)

model fails oompletely for the orose-plarized knowing the lower lisait for the spcctno.e,
scatter component, which it predicts to be (iii) having daterwarnd the oorrect uppor

Zero. Since altiUeter. to date have been coo- limit to use from full-wave theory, we ceooon

structed to receive only the expected me- that the 3 dO discrepAncy in 0' mat be due to
sew. polarized component. e Deed not be con- the inadequaey of the el.esie eaveheight ep.o-
earned with this limitation here.) The epecu- tral midels in the equilibrium region Th.
lar-point model gives the baokscattering cross equilibriu region in defined a: the wave-
section per unit surfaoe area. 40. as the ouber (k) portion far removed from the peak
Freenel pacer retleotion coeffcioent divided at lower eod. which is etrongly vind-eped

by the mean-equate slope of the sea as cost by dependent; it ie this equilibrium region that

the radar. This meas-square slope should be has the greatest irftluane on mea-square

obtai able by integrating the height spctr slope. In fat, for the claesic Phillips h
4

-- tiswe wavoomber squared - between a lower dependence that overpredicts 0
4 

by 3 dB, tke
and upper limsit. The lower limit depends on meau-square slope depeod logaritheacally on

ind speed io a knon minter. The freguency the upper limit used for the spectru. and
in mome way determinee the upper limit of the henze the equilibrium region contributes very
spetial roughness scales that the radar van strongly. If Ge ie averprdiotd by the h

4

disoem. Snc olaseio vid-wave cave spec-



equilibrium region. the ies tLN t I t. Tb. d .pe1es o of .lt-et.r t..sity ou
mof.-oqueso elope derived i*eto l toO rOedgh..e I th.eleior. onied Jin t. lL f "
mll. Therefore, Vs tuiat. I a tll - The mae-equal. slope in tua can be obtaind

smut that the olaeele lcvatei-4iI e potra Irom t. integral of the 8
1

0p ep0tiu ('8
dsPe.ad.ees o tte op. . 00ae& u too roio; spatial avenSb). sod the letter" .. pee..d
the de IL2eo,.n s houSd be Ieee than 4. rnter- Jo eere ot the more famaliar height spectue
ectogly. Pllla oery teotly Slit ),d S(.). k' S(k). Th. ole..1 Pbllip. eJ.l
eerlqgy balance Argu ts to at the S- for fully developed goes, ot eple. le
hibg (6f. 13): te P. ctral dejporerde be

deduoe. Iu th quqlibrwzi region (far froa S(k) =BlllJC
, 

for k j Jkj greater than k,
the pek) is tdS. We e1ploy the ete",,e g/1

, 
whare g i1 the acceleratioo of gravity

SLO.AT data sot (ad- I'pd ra wind-speed (it (9.806 d ), U is the tind speed s- -ter.

to i") given by Chelton &M KC0L5 (r (d 6) to per aeooad. aud B 1s a dlaeneione oo a eo.. ...
daarve a poer-tao spectral edel in this *et mted experueentally to be 0005. beov.

Iaper. ad lfind that k
4

m fite beet. thi oler lialt, ih speotra. ie zero. Al-
thouqb r se4 pbisticated eoJel. at. pro...tly

2. SPECUL.AJ-POIKr FXL !&voted tor the ste cl Lbes pectrus lower
*od (rather tb. the #harp Phillipe toil).

The eo el ElrsUe,. i largely irrelevant to elope cal-

~lxoqaury ae-ptotie a tre to n hugh- cotiae bepouws fto e lope integral is hg11y
tjo tt jue~aitIva to the detal of hot te epectral

stat a from A10gb cat o .. It is .,trolx.e eo.rgy is diatrib ted at the loer eDd (ii,
fre "I atbe pby-ioal aptie, or g eteinaI contrest to toe eeaot-squAr. height) Th:e Ie
optis to al atro . te aea raptoes .dt in easily Jeen by Integrotiag te Pbillipe oI
berat e atered peer originate. t9ue sops- to obtal. the Slop 5, k'S(k)kdk
.te taoeie -t the utIate that are eoothly Bl.( 5 1 k,). This Illuetratee to point. (I)
cOrvy

9g and separated In ph ae I the aver-
age) by at least W0 e

. 
The tnrer approc- t. spectai.,to ottsrris t. elope tori....

1aotioD (that the radiia ouroatare ot its ,tioios. n . the t p. of

speoular least be large uo ters of wave- infinite. and fill it ao the vast expanse of
length) Al]oe ooe the trite the total field tbe spectrum between the upper &ad lower

at tb. surfoeo io term of the unjcdent field lists that has sire influence on elope. and

aed a reflection coeficient, sod is also toe I..b b stter, than the detailed shape at
" lled the "taag*ot-plaoe

" approrlaition The either Dd.
laittr &pproa"mateoo. eoetiJee ca]led the
'dejP-pa-e" conditio. requires that te voc.rdl q to the S peoular-polo and] there-

surfce b -vry rgL,' I , ,Ito m Ljg |ofar, h mmeD -s1quale a slop, and hence
earge ie very rofgt. i e. . iTle teight m-eot c oattnte retrtu, depend on (i) the Int4r
selrge In tsr.. of tavtvleogtb sd at thepectrat. wbic is inveeely pro-

nluoao t.e acrotove region satisfies both portiouasl to the square of the t od epeed
Ot the. onditione Snotter according to (higher vide cause rougher seas, decreasing
tii eoel. then. is produced by facets for t. soatieriog creeoaon); (it) t. spec-
speoalr points) Lose nora.vl bieect th tra satteinor b easo tte (1pe the reer

iscnideooe and scatter directions. for beca- Iitel ; (iJa) it the upper nFull-oer
scatter, the coreal pitn toard the radar, itr till be a er to d t thwave
Simoe operoar point. mjat exist 1o Order to t...ry wlbs ape lzto d ers. Sthe thecod
produo. scatter at given angle. vitl, respect it". tae upper ] oJil 1pen es the secood
to tbe surfce. one Intuatively &ees that the It", the wave spectrl shape betwen tle
i ateonlty ft Ste retorn till depeod on the uper and Ioer h.ste ie the faeaainA g
probaiJty density Of oenufae slope with the quantity to be detersaid in t isi stucy
required a ree The derived solutions
(Aeft. 1-.2) ldeed eaibt Oti. dependooe 3. USE OF" lVJU-wAYE TIIXRy

~r Jrearmly lideat bCk4oadtte~r (th e oondi- Ah..momtjomad previously, fll -ao. theory ito for sateli te a ltimeters). the direct o- ths mot exact. traotable t eory avnaiable to
ity Of oSCat eler at Ireevanit (Ir . oi-t date applicable to rough sraoe... there I-
i inteated*5 ot). ad itralevpeot(i5 it tipls scatteri g omo be neglscted Its peter
1 xatsgated oat). sod t.e peonlar-point Iea is Ito fact that one eco integrate the

*epr:esj reduoe, to 0 ' : l Cl/y, tber. ful-tsV solutIon fr bscbaoatter Oujerically
1(0) ts e iFreee] o eflection nocoiooe.t for elibant splitti og the oughoeas ad its spec-
a seth Plan- at looa-] ;.idea.. (foiste tra. artiat ciy Into se.Prate o€aonents

&a" at the 13,5 Glt SEASAT altneter fteueoD- forever it ha. be.o used (Pafe 10,12) in

-Y. fR(0)]' z0.61)o and -' is tbe inb-quare *xWa te older. lees accurate ooeite"
#lOPeO ath *.. As Sed b t. raaqAne tbeories that hypotbesize a splatting of theexpect. fr t -14 incent by l.oadar. As oe rougness 1 to two eampoents a quasi-
pIso tahe r eor l tidert tae atter. tpes epolar tern and the 'dlfiue" scattier Attogher ts poe (i.. te ighsr ts elopes). nadir, ely th quasi-specular terme iszpoT-
gb l tes o.r i4 retoroed beeoue th Lb. ' .s1ot. Is let. 12 it is sbown that the sap-

ksigbly ii~l
-
d eps lar Dpoiats scatter ia otbhr slet trio ot th qua.a - ope l.ar tor , I . .

directions; as toughness disappears and S' *0. that 9iIea above for O. re-ius very close to
th. return !ncrease to the point wbere o# the reSllt predlots by full-wave itory (then
abandon the epeoular-poiDt odel (the deep- Lbs to ar, applied to the sa s urtrace) over
phase criterin faile), od treat the erth a. a fairly wide variation of the upper epectral
a Smooth spele. listat. This faot suggests that the Simple



speouIt r-1 it model above at. i. lout be used used her. to denot. this me the in~uit to or b3
r.34.ng roiite ,5t1a. ialts.

Furthermore, ch. toil-ae solution {avideo
goldano. ae to prooioosIy what upper iaalt to Using the wviblight spatial wvelesivlt
use in evaluating the slope for the speoular- opectral model peoiliwd in the. preIous

Point sand.] 1 01r the range of abserv-ed socties. than, mod Integjrating thit between
SLASA7 sort..e wind .peeds from, 3.5 ./a to 16 th ew~ en md upper imis. cs obtain S
mis. the veaues ot 0' obtained both from, the %c)~hl/)l as th. model to be titte.d to
tall-cave solution and tbe opecular-point
model ditler~d irom each other by less tha the input to deterzine the two unhoocce. Ki and
0.1 dB for an upper limit k0o 65 t ." oc cc. We do this by a losst-eguAree fitting of
this vvrp, 1-e" i. to be rnd "a' the -Poyi ex.. to $21, oummaing over vind-opeed eanmylee
.cJ'e-naC eAgl I.n- with the loe, equally iaoraeoetwd at AU1 - 0.5 at* tram 3.5

licit Yen erierto derive a general ocean msaUa1 i.Tevlefrh htw
,avoh~h,r 1Wanel egvtri ied 'D theWe<U<1 /.Tevlefrkthtw

jggi1h,,_X - C,- rgun .. e on ahecv~ ...... emFTploy is 85 x-1, as determined! froa 1.ll--ov

0 e ~theory. Sivus the model is linssr in K and
zonlinear in ai, we eliminate K tru" the least-

4. A PA.RAJXTRIC 6cOlE1 FOR THE WADX3lbT square& sa" by differentiating cith ceeprot to
5FATIAt SPIXTR20 X. solv*n for it, and replsoingj it. TLtt the

mtinamas Is sought over ui at inCreaants Lo,
we Dor propose a parametcric model fur the 0.0005. The solotcaone are K n 0.00512 sod
waveheight spatial spectrum, and then derive 0.1355. Hanoa, the Spectral muOjel that des-
its Parmameters based on SEASAT altime ter ctribs the q-ilibrjian region hbased -n SFASAT
return. The sqailibri-s region for radar-
"otsrved spectral scales extends over a large altmeter data is S(h n 00512/(k hi k. h~I-)
range. I .*.. tra- h, (..g.,. 0.1 x-1 fur U 0 10 6. VAL10ATION OF WAYE AND SC-ATTERi MOD)lf
Wem in ~td) to ho = 5 a-'. We select . poer-

law pectummuchthatS~k =K/k--k-), Two argumente Con be used to establieb the
Icc pontus. aub hat lh) /(h ~ J Qsuadness of the spotrel model derived hoe

where K in a dimensionlees ounanant nadt is tra Cot ASAT altimieter data. The fanst Lee to
the power-lae departure ite the ohassin do with the uaoertiais in the asparial
Phillip. model. Tsh. a sp..taom hue a wind-speed model fitted by Cbelton Aud Ht~abo
coataut shape when noremiznd to the to th* SEASA? altameter data. It these are
loaer-cod, a-d hence should represent fully sufficiently large, they might produce spec-
developed me with any wibd speed. To illus- trol model uncertainties, that would eacuapes
trane this paraimetric shupe, we Durmoalias the older. olasein k

4 
Is.. If this were the

wveaumbere such that 05a hkk .amd note that case, then the hdM vwld not be Ltatistically~ Oar 1 significant, mod any claim for ite acceptance
the normalized spentrut in amK/" fr would be weah. To #hoe that the the result
K. which is the paramnetrin version we seant, derived here is indeed statistically siguiti-
Thtefot. %L..k- -nio- nonotanne to be cant, we Plot 01e Iram the ChelItuOD/Moabe
datereited tram the SEASAT altimeter data arid model (1*2 3217- -ae in Fig, 1; shown in shading
speular-point model are K sod o,. around it is the uncertainty region repro-

seated by oLxin the standard deniatiuns in
5. DETEWlN&7l0i OF' HOOL PAPt.7ERS FROM their derived model parambeters 32 and -. 466,

SWAT DATA which we added en as to produce the greatert
departures. The line at the cnter of the

Cbeltun and Xeo~be (Plet. 61 etablished a new 4;hading is elsa of ourt. identically the

model for altimeoter Os' vs wind speed by sap- spocalar-point model applied to our newly
laying winds measured by the SLASAT scatter- derived haM' opeetraus with hv = 85 sai as the
ineter with C0* obtained from the SL'iSAT &)ti- Uppsr limit. bo"a.. the Input S2 matChes the
metter. It is accepted that the mcatteromoeter fitted model S25 in the least-eguares fitting
measuremant at wind benea.th the stellite is 1more ancurate because at mo erteusive cali- to within !0.05 dB. Aleo plotted in the
biration of that instrusenLt. With nearly 2000 figure is the older sectrum 0.00SWh ased in
appli cable points that were collected by the the specalar-point model, also out nft at the
alt imetter ever the "oean. during the satellite
lifetime, they established an emspirical Cela- count upper limit h0 - 85 a-'. The 2-3 dB mae-

tionahip tar altimeter C0 e vs U, the wind tioned earlier is in evidoe here. hot more
speed. ?hey fitted a powe r law ever the range important, the older model clearly Los well

beyond the uncertainty region of the SEASAT-
3.5 mls a U a 16 mis, end abtainied 0' besed model derived here. Reterence to Fig.
3211'.aue errour bounde for the twe onstants 13 of Maltm and Mo~abe (Otf. 6) alto &hoes
appearing in this model wac. derived, ad that the individual 2000 altimeter points for
their iWs-liationo on the present analysis Crsall lie well within 3 dB of their eampirical
will be discvesd! auhaegn...tly. Using this in fit. sapporting our claims that the older open-
the specuilar-poirt model for slnpe. we obtain tral mael canot predate a scattering lew
$2, =(0.6I132),7'.5 The SUperscript I an $2 Is that fits measured data. Tinally, we note



0.0051j, I.y near the lower end. but departs, 437
markedly at wavesanLms so order of asagiitad.

13 of more beyond. W# illustrate this for the
14 never model 9(k) a 0.00512/(k).16. kih) god

___is older model S(h) 0 0.005/he at k. = 5 a-' (fu,
wind speed 10 ams); th. two differ by a factor

i12"V~ of 2 .64. if one is wil I Ig to extrapolate
both models out to the capillary region where
k, = 60 a.1 this factor becomme. 3.23. Th.
method used involving surfae slope precludes

siDg mob about the shape of the spectrum
near the lawer end. In addition, we hae. not

Sdemnarated that thy new spectral law hold.

W110 15ed 1i ett h capillary break kc = 360 m-I sinc.

our fitting stopped at h, 85 a-J; on the
Tiger. 1. Itadar hcaksatter cr0.. cecon* other haod, ye have no reasn to caspect that
13.5 Q2 at normal Incidence. Lower curve is it should not be valid in this grovity-vzve
emirlical lce fitted to SLASAT data (Ref 6). region as yell.
where shaded regin represents statistical
esoertainty to this law trom fitted It desarvos mention that the two SL-LAT
paranetsre. Laor cort, also represtt instruseats (altieetor and soattoraaeter) used
sa oulr-ia atebgmoeopaecoto atbe heva-pe la fo teta r

h wave-oa sp ct erifa meodelupn uspe~ do ot ohcab ra te oean.. awh farm placoern
io is pweotrmpor melith thoe. oler doti ohe.r b andA atidia thoe thMpaeyan

classic 0
4 

spectrum employed Instead. emloyed a matching Process so that only data
from, the two that were within 100 km and lega
than oe hoar apart on the sea were used. We

tht tha older 11 law cannot he gode to ft suggest that any error, resulting fromn the
vary well marely by tahing a ditterent upper resmaining mismatch should be randomly distri-
limit to the spectrum (oven if that stop could bated about the sean values, rather than a
he physically 3atitlsd samehoel. a higher biase one way or the other; hence they will
apper Aimit will ... cetially slide the upper teod to aerage oat for the analysis performed
curve lower. bust Its clap. still dfiters here.
thoughout the plotted range. so that It still
does acot oeavseoingly fit the maceared data. In addition to the oceanographic implications

of the new wave sectrum, the present findings
A sewcond v, :id-tieu of oar Model ha. to do oostintt validatin of a physically-sesed
with 'closure." We started with the claim seattebring algorithm for return frow the sea
that the more approximate apecular-pelat mudel at and n"ar marsel mncidence: the specular-
was a sufficiently accurate represeotatiOn Of point model, along with a slope spectrum and
nadir altimeter mcatter that we could as% it upper "radar' wavenenbar limit for the slope
tn jeziys a .. a spectra) modal it- SWAT .iorgs 'This should prove to be useful for
data. We them invoked the fall-wsoe scatter both algorithm devolopmot &ad system studios
solation to find the proper upper limit k. = 85 associated with Implementation Ot future

a- to ese in the cpeolar-peot model for all Satellite microwave oean censors.
wind opoeda. if this process all holdsIthsbe om prcieocnvtbtwn
together, ye Ought to be able to Dow put oaWtEsbe omlpaciet ovr ewe
ne wyave spectral model beck into fall-yav. spatial and temperal waveheight spectra (and
theory for scatter and produce the ame result rises rsar) through the gravity-wave diaper-
s the apsoslar-peist model across the ci1n relation: k o 0

2
19. Although this works

wand-sped rage we orked with. i..., 3,5 via well near the dominant part of the yave epoc-
e U u JG ams. We have done this, and the tram (i.e..the peak), it is AnL clear that it
differences (is dB) far C* betyeen the twn at holds yell out in the equilibrium regin (Ref.
wind speed. of 3. 5, 10. 15, 2t mie are 14]. Thus we hesitate to say that our
(reepertively) e0.07, .0,04, -0.02. -0.0, and findings imply a temporal dep.ee 0e7, as
.0.01 d0. Since these are well belay the thedispersian relation would suggest.
ase level of the original model, and since

they are esentially doe to numerial raundoff The mode] derived here, with a lower equili-
errors. we mintaia that the arqgments that brium-.range wavenumber falloff than -4, is in
invoked full-wave theory to validate the ass qualitative agreement with the very recent
of the specular-poant mdel1 are indeed poven. gindings of Phillips (Ref. 13). Noe postulates

-3.5 cempared to the -3.86 derived here.
7. DISCIBSIQN Phillips,* arguments or. based on energy,

balance at a constat ratio among three
We have emloyed SEASAT altimeter data along factors: energy input from the wind. oaergy
with a domatrstedly consistent scattering dissipaution (from the equilibriuma region) by
model to formalate a ne. equilittium-ra89e low "we breaking, and energy transfer acay fr-n
for the ssvehtigbn spatial spectrum, on the the .equilibrium region by wave-wave inter-
opus ocean. This lay is not significantly action processes. The reason for the dft-
different from the older classic PhillIPo lay fertnhe between the two v"loss may well be the
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lost that gla-.. pm-a... SASAT oWe,.a-
tLoma inclaud all stat.s ot wave devopop-L.t S. .- vua 9 LVIV. r0.1"14" .t

and decay. (be should npeot gt e oatest 5129 autellitaborne radar maeuaat-

departure tro. the -4 laV iben son lnearitiom lt of Ab iioldesoo. aj'i4.. kw-.

a. be strongest. which ours during 'fully 3

developed' (wx steady-state) codition Wb alt" D b P J MOC & 1905, A reviewthis lette r oldii a the saiate noo satelba altJeeit• muaora nt of seaof & ocostax rti(o a" the tbhree energy
p rO*e8 faca o~e odegv~~ es wind speed, J. GaskeT,. ,,. 90(C3),

u ossg will o lnger bold, e.g., wnd my 4107-4720.
di: fig-at. followed hto.by *@sation of
hr abtg, aDd tiil y by v aiation in bthe . War 1 1981 Soatteing oess section f o"
rat itof ist a-spctral wave-wave nergy
tranufer- A given point o the ocean otwerved aidm tough auaces: full wave analysis.
by S ASAT is likely to be in a fully doveIoped Ad.c Axi. 16. 331-341.

oodition oily a traction of the tune. Meanos, . Wrck D 1 & V H Peak. 1968, A revee, of
the SLASAT-dewived -3.86-law vould apply to ain
avetag. voye all possible wave deOelopsaat/do- s.tt d im x surfaces with differen

.y conditions. wtoes the -3.5-law appli. a rougha@sals, a"o S". 3, 6-6.

during steady-state tully developed 9. Drowi C S 1918. Ouobsoattog fron
coiditiona.Gausesi-stxlkated! perf ectly conducting

Is calling the -4-lay the 'classic Phillip,- sP-28. A .-402.
pettl mode,. we apologize and ephasize2
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CO-POLARIZED AND CROSS-POLARIZED INCOIEPENT DIFFUSE INTENSITIES
SCATTERED BY FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE

Ezekiel Bahar

and
Mary Ann Fitzwater

Electrical Engineering Department
University of Nebraska--Lincoln
Lincoln, Nebraska 68588-0511

ABSTRA-T In ( 2.1) T is the optical distance in t1e drec-tion (normal to the plane of the slxi),
In this work,a layer consisting of 

a large

variety of randomly distributed finitely con- T=p[Otlzfot n(D)dD z (2.2)
ductlng particles with irregular shapes is assumed
to be excited at infrared and optical frequencies where D is the diameter of the unperturbed shvri-

by a normally incident linearly polarized wave. cal particle, n(D) is the particle siz, listrits-

The resulting incoherent specific intensities as tion and ot is the extinction coefficient. -te
well as the co-polarized and cross-polarized symbol p[.] denotes integration over the size

intensities are evaluated. Both single scatter distribution. Since the effects of the particle
and multiple scatter results are presented for surface roughness are vanishingly small in the
particles with smooth and rough surfaces, forward direction, the extinction matrix (Isimaru

and Cheung 1980, Cheung and Ishimaru 1952) for trne
1. Introduction rough sphere can be represented by a scalar quan-

tity. The (ixl) matrices [I] and [I'] are the
In this work,the scattering and depolarization incoherent diffuse intensity matrices for waves

of linearly polarized waves by a random distribu- scattered by the particles in the direction
tion of finitely conducting particles of irregular O=cos-lb and $ and for wave. incident ii, the dir-
shape are presented. The random rough surface of ection B'=cos-l

' 
and ' respectively. Th, vlvii.erit.

the particle is characterized by its surface of [I) are the modified Stoke: parameters (lohiaru
height spectral density function (or its Fourier 1978). The (4xi) scattering matrix [C] in the
transform the surface height autocorrelation reference coordinate system is expressed in terns
function), of the scattering matrix [5'] in the scatteing

The full wave approach is used to account for plane through the following transforatien
both specular point scattering as well as diffuse
scattering by the particle in a self-consistent []=[t(-e O)][S'][X(o')] (2.1,
manner (Bahar and Chakraharti 1985), and the in which . is a transformatii. matrix ar.J [Z'3 i
equation of transfer (Chandrasekhar 1950 and the weighted sum of two matrices
Ishimaru 1978) for the modified Stokes parameters
is solved using the matrix characteristic value [SrS(v'ar)2[SMie J(s]24)
method (Cheung and Ishimaru 1982). Both single In (2.) [S ] is the scattering matrix for the
scatter and multiple scatter results are given Mie3 unperturbed sphere (Istimaru 1979) and 1)(v'ir) 55

for particles with smooth and rough surfaces and the particle random rough surface charucteristic
the effects of particle surface roughness are function
considered in detail. xa(v cr)< .arhs (2.5a)

2. Formulation of the Problem in which veko(nf-n
I
) )2.5b)

The analytical solutions for the modified
Stokes incoherent specific diffuse intensity and nf and ni are unit vectors in the direction of
matrix [I] are presented in this section. A the scattered and incident wave normals. The ran-

linearly polarized wave is assumed to be normally dom rough surface hs is measured normal to the un-

incident upon a parallel layer of randomly perturbed (spherical) particle. Thus, the radius
distributed non-spherical particles. Thus the like vector to the surface of the irregular particle is
and cross polarized incoherent intensities are

azimuthally dependent. Special consideration is s -ho arhs;r (2.5)
given to the effects of the surface roughness of
the particles of finite conductivity. Since the The radius of the unperturbed sjhere is h.. Tie
roughness parameter 0__Lk2<h,1> (where ko is the coefficient IXs]1

2 
in (2.4) accounts for the de-

free sace wavenumber of the electromagnetic wave gradation of the specular point contributions to
and <h> is the mean square height of the particle the scattered fields by the rough surface (1x

51-'s
rough surface) is assumed to be large (8u40), the and fX'1

2
-I as 0-0). The diffuee scattering con-

full wave solutions (Bahar and Chakrabarti 1985) tribution to the matrix [S'] due to surface rough-
are used to determine the elements of the scatter- ness is given by
ing matrix for the equation of transfer (Chandrasek-
bar 1950, Ishimaru 1978).

d . [I] f[SJ[i,dP'd,.
1[] (2.1)
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Sl 0 0 in which the (Isxl) matrix F is[s II SS2 0 [F]=[s][I°]I~]Ss]= 1] [ 22] (2.6[ I€'l O (2.)

o o [Si [8 and the matrix [10] is defined by (2.8). The matrix
3F] contains terms that are azimuthally ineperd-

o [ ] [S nt as well as terms that are proportional to cos43 [and sin2 . Thus [F] is expressed as follows (Cheung
where A and Ishimaru 1962)

isa]= p[<oj] f, -,2 (2.7a) [FI=[Eio[F]acos2*[FI bsin2 (2.12)

. for ij1,2 (2.7a) in which, for a rough sphere,

in which An--1"ho is the cross sectional area of the 01 al 0uprub particle and <G'J> s are the full wave 1 02 1Fa (2.13)
solutions for the like and cross polarized normal- [F]o 0 Fa j ,i(.13

ized scattering cross sections (Bahar and Chaskra-
barti 1985). The first and second superscripts i, j Lo [2-J
denote the polarizations (V vertical, H horizontal) and F *=S. . (upper and lower signs for a=0 and
of the scattered and incident fields respectively. respect i ey.) The solution of the equation of

271 r i 1 transfer (2.1) for the incoherent specific inten-
o f s.f J kD I 2

P2QsinY dydi/il (27b) sity matrix can be expressed in tems of the Four-
0 0 ier series

w h e r e [, ] - [ ] , i n

Qs
= 
f ( )-IX(v') ) exp(,;'r_)dx dz mom=2 r r d d d Since the elements of the scattering matrix [J are

(2.7c) functions of 0'-p it is expressed as followsThe joint characteristic function X2 for the rough -[
a

su5 fae&5 h is only a function of distancer d  o S a

(Xdxzd) measured along the surface of the un- 215 o

perturbed sphere. *i g]ao 5 m0-0) [S] sin ( (215)
Furthermore for i=3 and 4 (Bahar and Fitzwater -l a

1985) In view of the excitation, (2.10) through (2.13),
[ss]=p[Re[

11 
>±<>12, ]]A /lP[aJ (2.7d) the only non-vanishing Fourier terms are m=O and

ii 22 s 21 s y m=2 (Cheung and Ishimaru 1982). The equation of

(upper and lower signs for i=3 and L respectively) transfer for the l==D ftokes matrix is
and for iij I

[s ]P[m[± 
1 1  

+ <
12

> ]]A't[ [ (2.7e)F - (2.16)
[ij -22 s 21 sAyl t ( _ 0 0 0

(upper and lower signs for i,j=4,3 and i,J=3,L Since the third and fourth elements of [Fl o (2.13)

respectively). In the above expressions are zero, and in view of th s ecia forr.' of is10,
-i 271 72uiJDk*P 2sinydyd62 the third and fourth terms of [I]a vanish.

or k i (2.7f) The equation of transfer for the m=2 term is
o d 1

In (2.7)P2 is the shadow function and the scatter- rA{]2=-[IJ2 vf[] 2[I] 2dl'+F]2esp(-o) (2.17)

ing coefficients D
iJ 

are functions of fi ,f and 1 dp 2 -1

the normal to the unperturbed surface of the parti- in which
cle as well as its electromagnetic parameters C,.. [ [ s ] [ 2 j(
The remaining eight terms of the matrix [S Ivanish [S]2 1 -1 and [F) 4F]a.[v] ( 18)
since Dii and DiJ(itj) are symaetric and ahtisym- i L $3 [S are 22
metric respectively with respect to 6, the aximuth

angle of the sphere. in which [SI' and [S ]b are2x2matrices
In this work it is assumed that a linearly po- m

larized wave is normally incident upon a parallel [S i]- f[S ]cos i=1,4 (2.19.)
layer (of optical thickness zo  containing a ran- i CJso sm44d)-)ilt )29a

dom distribution of irregular particles. Thus the 
and

2r
incident Stokes matrix at smO is [Si]b f[Si]sin m('-4d)(¢-9) i2,3 (2.19h)

[i s 01 61'- l6(¢')t []6(j'-i)6)¢') (2.8) and [S a re the (2x2) submatrices
in-whhinc [ 

I [C
1
) ['$21 (2.20)

inwih6(') is the Dirac delta function. Thus the J$3] [S4]

reduced incident intensity is The boundary condition; for the Stokes matrix are

[Ir ]4llnc ]exp(-r) (2.9) [I]=[1]2.0 for 0 < P < 1 at 1=0 (2.21a)

and the (Jxl) excitation matrix in (2.1) is and
[I] [I]2fO for 0 -qat o> -I at t h (2.21b)[I re ~.i=f[SX3irldJd4,a[Fjexp(_T) (2.10) Equations (2.16) and (2.17) together with the
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associated boundary conditions (2.21) are solved of the x axis (in the *=0 plane). The equati,
for the specific incoherent diffuse scattering of transfer for the Stokes parameters
intensities using the Gaussian quadrature method (2.16) and (2.17) together with th associated
(to discretise the angles 6=coslp) and the boundary conditions (2.21) are solved using te
matrix characteristic value technique (Ishimaru matrix characteristic value teenique (lOimaru
1978). 1978). The scattering cross ,ectiran are very

The diffuse scattering intensities I1 and 12 sharply peaked in the forward dic-rcto:., t.t it
correspond to the vertically polarized (to) and is necessary to use a Gaussian qcsairatrle forc>.:
horizontally polarized (F4) waves. However, in of order 32 (Abramowitz and Etegun C i 1
practice, the polarization of the receiver is In Figs. 1 and 2 the inco.erc:t ,ff- tr.-
either parallel (E.) or perpendicular (Ey) to the mitted intensities Il (vertical polarizat.Gr. w-,

polarization of the incident wave. The correspond- 12 (horizontal polarization) for ca- (a) (10-
ing specific intensities Ix and I are called the inum) are plotted as function- o! b.
co-polarized and cross polarized {ncoherent inten- 0=0 and o=i. Tte solid care-: ccrrj=c;c::......
sities respectively (Cheung and Ishimaru 1982). order scattering solutios only ',l

3. Illustrative Examples for the smooth (unperturbed spLerical ) 4r.-
and particles with rough surlacc (I- r

The random rough surface height h. (2.5c) (meas- gle scatter smooth particle). Tie. car I 4.

ured normal to the surface of the unperturbed solutions that account for mn..ti;]( -- u~t,:,£
spherical particle of radius ho, is assured to are also plotted in these figure:.
be homogeneous and isotropic. The rough In Figs. 3 and 4 the trancrit-,c
surface is characterized by its surface height intensities 11 and 

1
2 for case (t) (1:4!"- ar

spectral density function W(vx,vz)=W(vT ), the plotted as functions of ,9, with €=, ,
Fourier transform of the surface height sutocor- t=I. There is a larger difference h t,
relation function <hahA'>, where vT is the component results for the snooth and rs cg% part-.., :or
of V (2.5b) tangent to the surface of the unper- this case than for case (a).
turbed sphere, 4. Con'luding H'rark:

,2 2, (3..fr. adn lecae
+v ) (3.1) The specific incoherent diftue ;htn.,t;e-.

The specific form of the surface height spectral and 12 as well as the co-polar:r,, aru a c..;.: or-

density function is ized istensities are evaluats i for a loe o err.-

2C vT 8 Vm=v D domly distributed finitely co:'ti g p:-: i a t.
W(v T -- I-- --I , vT>0 D=10X irregular shape. The roua e .... - of th -

V T .v;2 X.555' (3.2) cles are ciaracterized by diffrtzt ria-, :.-t-.'
L ml spectral density function, an: r.e!.r..

The constant C is determined by the choiee of the meters B. The layer of Tarticl: i; a!
roughness parameter. excited by norrully ncidv:t lir.,a: -y

8=Ilk
2
<h

>
=O (3.3) waves at wavelength h.

I 0 The rough particles will ral :
In (3.3) <hsis the mean square height the incident waves mor- than the - r ,

and the specific intensitie t..i to he is
<h

2
> W(v T)v Tdv TC/21Ov m (31) oscillatory functions of 0 for tic r5 2 cles. Since the albedos for the rouh ;c'tic

The corresponding value for the mean square slope are smaller than those for tie srot, jart icte:

is (the difference increases for more ais:iutive
2particles), hence for very thick layers the ccce:-

<02> F f W(v)v dvTC/eh=,0 (3.5) fic intensities are smaller for the rougnt, prti-
s20 T T T cles. Both single scatter and multiple scattec

Thus the correlation length is solutions are given. For small optical tickes:

r=2(<h 
2

)/<a
2

Nl.26/v.-.10 (3.6) 51 is smaller for the rough prticles than for
a s i the smooth particles (since the albedo for the

The corresponding values for the extinction cross rough particle is smaller). Howeser 12 is larger
sections and the albedos are shown in Table I. The for the rough particles since the rough particle:
analytical expression for the surface height auto- more strongly depolarize the incident waves.
correlation function N(dl<h l's/sb

2
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Table I. The dielectric coefficient Er, ttn

extinction cross section and Lt!

albedos for the scattering part! 1-

00 5.00 30.00 415.0 60.00 75 0 o0.00 s.o o 15.00 30.00 45.00 600 o I oc 90 O

F. 1. Specific incoherent intensity 11 case (a).
transmtted, Tnzl, =0. First order (-,-
smooth and rough particles. Multiple scatterz (0)
smooth, (L) rough. er-_0_il2 (Khrenreich, 1965).

1, Fig. 2. Specific incoherent intenity 1, case (a),
transmitted, I 1, *=o, First orier
smooth and rough particles. Multiple scatter: (+)
smooth, (L) rough. ,-h-i12.

r

o ".0 3.oo .5. o 60 D .1 o 90.0o ,b. 00 5.o 30oo 4?.0 o .o no 75.oo so o

Fig. 3. Spcific incoherent intensity If, case Ib), Fig. .. Spenific incoherent intensity 12, case (b(,
transitted, oj=, 4.0. First order (-) transmitted, i o-, €=0. Pirst order (-),
Smooth and rough particlea. Multiple scatter: (.) smooth and rough particles. Multiple scatter: (+)
smooth, (A) rough. tr l.5-iB, smooth, (A) rough. cr-l,5-iA.
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SCATTERING CROSS SECTIONS FOR PARTICLES OF IRREGULAR SAPE

Ezekiel hahar
Electrical Engineering Department

University of Sebraska-Lincoln, Lincoln, Nebraska 68588-0511
I.

A!STRACT

The full wave approach recently applied to the problem of -electromsgnetic scattering by a two scale

model of random rough surfaces has beLn shown to account for both Bragg scattering and Specular Point

scattering In a self-consistent manner. Thus scattering cross sections can be expressed as weighted suns

;of two cross sections. The first is associated with a smooth, filtered surface consisting of the large

;scale spectral components of the rough surface and the second is associated with its small scale

ispectral components.

I n a similar manner the scattering cross sections for a particle of irregular shape can be charac-

terized by weighted sums of two cross sections. The first is related to the cross section for a "smooth"

:particle of arbitrary shape and the second accounts for the small scale surface roughness of the particli

:To apply such an approach to the scattering problem, it is necessary to assume that the principal dimen-

.8 ons of the particle are larger than both the wavelength of the scattered fields and the small scale

surface height correlatIon distance.

Both the depolarized and like polarized compooets of the scattered fields are accounted for in

the full wave analysis. These solutions are consistent with reciprocity and realizability relationships

:in electromagnetic theory and they are invariant to coordinate transformations.
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COMPOSITE ROUGH SURFACES--FULL WAVE APPROACH L47

Ezekiel Bahar
Electrical Engineering Department

University of Nebraska, Lincoln, Nebraska 68588

Clifford L. Rufenach and Donald E. Barrick
NOAA/ERL/Wave Propagation Laboratory

Boulder, Colorado 80303

'and
Mary Ann Fitzwater

Electrical Engineering Department
University of Nebraska, Lincoln, Nebraska 68588

ABSTRACT

As a synthetic aperture radar scans different por-
;tIons of a rough surface, the direction of the unit
vector normal to the mean surface of the effective

'illuminated area (resolution cell) fluctuates. In this
:paper the modulations of the scattering cross sections
of the resolution cell are determined as the normal to
it tilts in planes that are in and perpendicular to the
fixed reference plane of inciderce. Using the full wave
.approach, the scattering cross sections are expressed
!as a weighted sum of two cross sections. The first cross
:section is associated with scales of roughness within
:the resolution cell that are large compared to the radar
:wavelength, and the second cross section is associated
ivith small-scale spectral components within the resolu-
!tion cell. Thus, both specular point scattering and
:Bragg scattering are accounted for in a self-consistent
;manner. The results are compared with earlier solutions
'based on first order Bragg scattering theory.
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SCATTRING CROSS SECTIONS FOR LARGE FINITELY CONDUC"TINRG SPHERES
WITH ROUGH SURFACES-FULL WAVE SOLUTIONS

Ezekiel Eahar

and
Svapan Chakrabarti

Electrical Engineering Department
University of Nebraska-Lincoln

Lincoln, NE 68588-0511

ABSTRACT

The scattering cross sections for large finitely conducting spheres with very rough surfaces ar

determined for optical frequencies using the full wave approach. For the roughness scales considered

the scattering cross sections differ significantly from those of smooth conducting spheres. Several

illustrative exaples are presented and the results are compared with earlier solutions to the problez.
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OPTIMUM BACKSCATTER CROSS SECTION OF THE OCEAN
AS MEASURED BY SYNTHETIC APERTURE RADARS

Ezekiel Bahar
Electrical Engineering Department

University of Nebraska-Lincoln, NE 68588-0511

Clifford'L. Rufenach and Donald E. Barrick

NOAA/ERL/Wave Propagation Laboratory, Boulder, CO 80303

Mary Ann Fitzwater
Electrical Engineering Department

University of Nebraska-Lincoln, NE 68588-0511

ABSTRACT

Microwave remote sensing of rough surfaces (both land and ocean), using moving
platforms (aircraft and satellite), as well as ground based measurements has illus-
trated the need for a better understanding of the interaction of the radar signals

with these surfaces. This interaction is particularly important for the ocean surface
where the radar modulation can yield information about the long ocean wave field.
Radar modulation measurements from fixed platforms have been made in wavetanks and
the open oceans. The surfaces have been described in terms of two-scale models. The
radar modulation is considered to be principally due to: (1) geometrical ilt due to
the slope of the long ocean waves and (2) the straining of the short waves (by
hydrodynamic interaction). For application to moving platforms, Synthetic Aperture
Radar (SAR) and Side Looking Airborne Radar (SLAR), this modulation needs to be
described in terms of a general geometry for both like- and cross-polarization since
the long ocean waves, in general, travel in arbitrary directions. In the present
work, the finite resolution of the radar is considered for tilt modulation with
hydrodynamic effects neglected.
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SCATTERING AND DEPOLARIZATION BY CONDUCTING CYLDERS
WITH VERY ROUGH SURFACES

Ezekiel Bahar
and

Mary Ann Fitzwater

Electrical Engineering Department
University of Nebraska--Lincoln

Lincoln, NE 68588-0511

ABSTRACT

Like- and cross-polarized scattering cross sections are determined at optical frequencies for

conducting cylinders with very rough surfaces. Both normal and oblique incidence with respect to the

cylinder axis are considered. The full-wave approach is used to account for both the specular point

scattering and the diffuse scattering. For the roughness scales considered, the scattering cross

sections differ significantly from those derived for smooth conducting cylinders. Several illustrative

examples are presented.
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MULTIPLE SCATTERING IN MEDIA CONSISTING OF RONSPHIECAL
FINITELY CONDUCTING PARTICLES

Ezekiel BahLr and Mary Ann Fitzwater
Electrical Engineering Department
University of Nebraska--Lincoln
Lincoln, ebraska 68588-0511
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C) E. Debar and M. A. Fitzyater, "Scattering Cross Sections for Comosite Rough Surface

Using the Unified Pull Wave Approach," IEEE Transactions on Antennas and Propagation, Vol. AP-32,
go. 7. pp. 730-731, July 1981.

D) E. Babar, "Scattering by Anisotropic Models of Composite Rough Surface-Full Wave Solutions,"
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H) E. Debar, "Scattering and Depolarzation by Random Rough Surfaces--Unified Ful Wave Approach,"
Syr osirnfWorkshop on Multiple Scattering of Waves in Randon Media and by Random Rougb Surfaces,"
Pennsylvania State University, University Park, Pennsylvania, July 29-August 1, 1985.

I) E. Dabar, "Unif:'d Full Wave Solutions for Electromagnetic Scattering by Rough Surfaces--
Comparison with Physical Optics, Geometric Optics and-Perturbation Solutions Using To-Scale Models

'of Rough Surfaces," Schluuberger Doll Research Workshop on Waves In Inhomogeneous Media, August 8-9,
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Rough Surfaces-Theory and Experiment," Journal of the Optical Society of America Special Issue on Wave
Propagation and Scattering in Random Media--In press.

L) 1. Debar and M. A. Fitzoate r, "Scattering and Depolarization by Conducting Cylinders Vith
Rough Surfaces," submitted for review.

M) E. Ubar and M. A. Fitzwater, "Multiple Scattering by Irregular Shaped Particles of Finite

Conductivity at Infrared and Optical Frequencies," aubmitted for review.

ABSTRACT

The Incoherent specific Intensities for the waves scattered by a random distribution of particles
with rough surfaces are derived. Since large roughness scales are considered, the diffuse scattering

*contributions to the like and cross polarized scattering cross sections are given by the full wave
solutions. The scattering matrix in the expression for the equation of transfer is given by a weighted

sam of the scattering matrix for the smooth particle and the diffuse contribution due to the rough
surface of the particle. Illustrative exaples are presented for the propagation of a circularly

polarized wave normally incident upon a parallel layer of particles. Particles vith different surface

beight spectral density functions, roughness scales, complex permittivities and sizes are considered.
.oth first order (single scatter) and multiple scatter solutions are provided and the results for

particles with smooth and rough surfaces are compared.
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SCATTERING AND DEPOLARIZATION BY RANDOM ROUGH SURFACES-

UNIFIED FULL WAVE APPROACH

Ezekiel Bahar
Electrical Engineering Department

University of Nebraska
Lincoln, NE 68588-0511

The recent impetus to produce rigorous solutions to more realistic
models of pertinent propagation problems over a very wide frequency
range has generated the need to derive full wave solutions to problems
of radio wave propagation in dispersive, inhomogeneous, anisotropic
and dissipative media with irregular boundaries.

To perform the full wave analyses, it is necessary to develop
generalized field transforms that provide the basis for the complete
expansions for the electromagnetic fields in irregular multilayered
structures with varying thickness and electromagnetic parameters.
These complete expansions consist of the vertically and horizontally
polarized radiation fields, lateral waves and guided surface waves.
The generalized field transforms are used to reduce Maxwell's equations,
in conjunction with the associated exact boundary conditions for the
electromagnetic fields, into sets of first order coupled differential
equations for the forward and backward traveling wave amplitudes.

The full wave solutions, that have been derived for the scattered
radiation fields from rough surfaces with arbitrary slope and electro-
magnetic parameters, bridge the wide gap that exists between the
perturbational solutions for rough surfaces with small slopes and the
Physical Optics solutions.

146
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UNIFIED FULL WAVE SOLUTIONS

FOR ELECTROMAGNETIC SCATTERING BY ROUGH SURFACES--

CO .DARISON WITH PHYSICAL OPTICS, GEOMETRIC OPTICS AND

PERTURBATION SOLUTIONS USING TWO-SCALE

MODELS OF ROUGH SURFACES

presented by

Dr. E. Bahar

at

The Schlumiberger Workshop on

Waves in Inhomogeneous Media

August 8-9, 1985

Ridgefield, Connecticut
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ICOMR DIFFUSE SCATTEING BY IRREUL.A SHAPED PARTICLES OF FINITE CONDUCTIVITY 466
Ezekiel Babar

Mary Ann Fitzwater

Electrical Engineering Department
University of Nebraska--Lincoln
Lincoln, Nebraska 68588-O71u

ABSTRACT

The incoherent diffuse scattering intensities (Stokes parameters) are evaluated for infrared and
optical excitations of a layer consisting of random distributions of finitely conducting irregular
shaped particles. 7he full wave approach is used to deterAine the elements of the phase matrix and
the extinction cross sections appearing in the equation of transfer. The rough surface height of the
particles is characterized by different surface height spectral density f'unctions.
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SEASAT MICROWAVE ALTIMETER MEASUREMENT

OF THE OCEAN GRAVITY-WAVE EQUILIBRIUM-RANGE

SPECTRAL BEHAVIOR USING FULL WAVE THEORY

by

Dr. Donald E. Barrick

and

Dr. Ezekiel Bahar

at

The 1986 International Geoscience

and Remote Sensing Symposium (IGARSS'86)

September 8-11, 1986

Zurich-Irchel, Switzerland
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SEASAT Microwave Altimeter Measurement of the Ocean Gravity -Wave
Equilibrium-Range Spectral Behavior Usig Full-Wave Theory

Donald E. Barrick Ezekiel Bahar
Ocean Surface Research University of Nebraska

1131 Cranbrook Court W 194 Nebraska Hall
Boulder, Colorado 80303 Lincoln, Nebraska 68588

(303) 494-9103 (402) 472-1966

Models for the deep-water ocean gravity-wave spatial spectrum fully developed
by the wind have classically tended to follow an inverse fourth power dependence on
wavenumber beyond the spectral peak (which translates to an inverse fifth power
dependence on wave frequency through the gravity-wave dispersion relation). Such
behavior is predicted if all wave scales can linearly and independently develop to a
maximum, constant slope before breaking. Recent theoretical and experimental
oceanographic results, however, demonstrate the importance of nonlinearities in
determining the characteristics of the shorter gravity waves. Most conventional
instruments are incapable of measuring the wave spectral dependence well into the
equilibrium region, i.e., a factor of 10 or more in wavenumber beyond the peak.

Full-wave theory for scattering from rough surfaces sheds light on the wave scales
that contribute to backscatter at normal incidence. In particular, it shows how the simple
specular-point model can be interpreted in terms of the upper limit on the waveslope
spatial spectrum. This is then used to establish an empirical model for the
wind-developed ocean waveheight spatial spectrum, based on 2000 independent
measurements by the SEASAT microwave altimeter of nadir backscatter cross section vs
wind speed. Although not accurate near the spectral peak, the resulting model gives its
equilibrium behavior, valid for three orders of magnitude beyond its peak but-still
considerably short of the capillary-wave region. The wavenumber dependence follows a
-3.77 power law instead of the inverse-fourth, The confidence in this value is well above
the statistical uncertainty of the data, and other sources of error in this calculation (such
as the presence of swell) are examined and found to be negligible. This departure from
inverse-fourth is sufficient to produce a factor of three higher spectral level two orders of
magnitude beyond the peak, demonstrating the importance of nonlinearities in
characterizing the spectrum of shorter ocean-wave scales.
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SCATTERING AND DEPOLARIZATION OF LINEARLY POLARIZED
WAVES BY FINITELY CONDUCTING PARTICLES OF IRREGULAR SHAPE

Ezekiel Bahar and Mary Ann Fitzwater
Electrical Engineering Department

University of Nebraska-Lincoln NE 68588-0511

In this work the scattering and depolarization of linearly
polarized waves by random distributions of finitely conducting
particles of irregular shape are presented. Infrared and optical
excitations of a large variety of particles with different sizes,
shapes and complex dielectric coefficients are considered in
detail. The random rough surface of the particle is characterized
by its surface height spectral density function (or its Fourier
transform the surface height autocorrelation function).

The full wave approach is used to account for both specular
point scattering as well as diffuse scattering by the particle in
a self-consistent manner (Bahar and Chakrabarti, Applied Optics, 24,
No. 12, 1820, 1985), and the equation of transfer (Chandrasekar,
Radiative Transfer, Dover, NY, 1950 and Ishimaru, Wave Propaga-
tion and Scattering in Random Media, Academic Press, 1978) for the
modified Stokes parameters is solved using the matrix characteristic
value method (Cheung and Ishimaru, Applied Optics, 21, No. 20,
3792, 1982). Both single scatter and multiple scatter results are
given for particles with smooth and rough surfaces and the effects
of particle surface roughness are considered in detail.

Both the co-polarized and cross polarized incoherent diffuse
intensities are plotted as functions of the azimuth angle and the
optical thickness of the layer of particles. The degree of polariza-
tion of the scattered waves is also evaluated as a function of the
azimuth angle.
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Scattering and Depolarization by Rough Terrain

and Vegetation Covered Terrain-Unified Full Wave Approach

Ezekiel Bahar

Electrical Engineering Department

University of Nebraska-Lincoln, NE 68588

ABSTRACT

Traditionally physical optics and perturbation theories have been used to

derive the like and cross polarized scattering cross sections for composite

random rough surfaces. To this end two-scale models have been adopted and the

rough surfaces are regarded as small scale surface perturbations that are

superimposed on large scale, filtered surfaces. Thus the physical optics

cross section accounts for scattering by the filtered surface consisting of

the large scale spectral components and the perturbation cross section

accounts for scattering by the surface consisting of the small scale spectral

components that ride on the filtered surface.

On applying the perturbed-physical optics approaches it is necessary to

specify the wavenumber where spectral splitting is assumed to occur between

the large and small scale spectral components of the rough surface. In

general the restrictions on both the large and small scale surfaces cannot be

satisfied simultaneously and using the perturbed-physical optics approaches

the evaluation of the scattering cross sections critically depends on the

specification of the wave numbers where spectral splitting is assumed to

occur.

More recently the full wave approach has been used to determine the

scattering cross sections for composite random rough surfaces of finite

conductivity. Since the full wave solutions, which are based on a complete

expansion of the fields and the imposition of exact boundary conditions,

account for Bragg scattering and specular point scattering in a self-

consistent manner, it is not necessary to decompose the surface into two

surfaces with small and large roughness scales. Hodever, on applying the full

wave approach to evaluate the like and cross polarized scattering cross

sections for two-scale models of composite rough surfaces, several assumptions

were made to facilitate the computations. The assumptions are: the large and
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small scale surfaces are statistically independent, the mean square slope for

the total surface is approximately equal to the mean square slope for the

filtered large scale surface, the mean square height of the total rough

surface is large compared to a wavelength, the physical optics approximation

for the cross polarized backscatter cross section is zero.

A unified formulation has also been derived for the like and cross

polarized cross sections for all angles of incidence and the simplifying

assumptions, that are common to all the earlier solutions based on two-scale

models of the rough surface, are carefully examined.

The unified full wave solutions are formulated in terms of an integral

(not integral equation) similar to the perturbation and physical optics

solutions. They are shown to reduce to the physical optics solution in the

high frequency limit and to the perturbation solution in the low frequency

limit. The unified full wave solutions which are derived from the rigorous

telegraphists' equations for wave amplitudes can also be used to account for

multiple scattering by the rough surface and for the contributions to the

scattered fields from the non-illuminated or non-visible portions of the rough

surface.

The full wave approach has also been applied recently to problems of

scattering and depolarization by arbitrarily oriented discrete scatterers of

finite conductivity characterized by their surface height spectral density

functions. Therefore using the unified full wave approach it is possible to

analyze more realistic models of propagation paths over the earth's surface.

At microwave frequencies the vegetation that covers the terrain can be

represented by distributions of discrete randomly oriented scatterers rather

than by a dielectric layer with an *effective complex permittivity" or an

effective surface impedance.*
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APPLICATION OF FULL WAVE TH ORY

TO COIPUTER AIDED GEO!TRIC DESIGN

Ezekiel Bahar
and

Swapan Chakrabarti

Department of Electrical Engineering

194 W Nebraska Fall
University of Nebraska-Lincoln

Lincoln NE 68588

Over the period of the last decade reflection modelv,fcr cocputer

generated synthetic imageshave been considerably inproved in order

to generate very realistic images of three dimensional objects on

two dimensional screens. In almost all of the existing models

the reflecting surface is assumed to be a snall-scale,randc- rough

surface superimposed upon a smooth large-scale surface. fc!2cton

from the smooth large- scale surface is characterized by thc Fresne!

reflection coefficients and scattering from the small scal roug:h

surface is accounted for by Lambert's cosine law.

In this presentation a full wave scattering theory is revie'wed

and the corresponding reflection model for computer generaidc synthetic

images is presented.

The full wave theory is based on a complete spectral represen-

tation of the scattered vertically and horizontally polarized fields

and the imposition of exact boundary conditions at the irregu'ar

surface. This theory accounts for both specular reflection and

diffuse reflection in a unified self-consistent manner.

The height of the random rough surface is measured normal to the

large-scale, smoothdeterministic surface and the mean square height
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of the random rough surface, <b 2>, need not be restricted by the

perturbation condition B 2<h2> << i (where k is the free space
0 0

wave number). However, the mean square slope of the random rough

surface (relative to the large scale smooth surface) is assiued to le

small (02 < 0.1). Hence for convex shapes (as in cylinders, spheres

or Cones) multiple scattering between different surface elements of

the object is ignored.

The scattering model based on the full wave theory significantly

reduces computation time of the simulated image without any loss in the

image quality. Use of the full wave theory facilitates the location

of the isointensity lines. This is a very important asset to cooputer

aided geometric design of manufactured objects.

Since the model is based on a rigorous ful wave approach to

electromagnetic scattering, it is applicable to the inverse scatterinC,

computer vision problem in which three dimensional surfaces are

identified by analyzing their two dimsnsional images.

_
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CO-POLARIZED AND CROSS-POLARIZED

INCOHERENT DIFFUSE SPECIFIC INTENSITIES

FOR LINEARLY POLARIZED EXCITATIONS

OF IRREGULARLY SHAPED PARTICLES
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Dr. E. Bahar

at

1986 CRDC Scientific Conference
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June 23-27, 1986

Aberdeen, Maryland
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