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I. FOREWORD

It has been well recognized that the most immediate and important
applications of integrated/fiber optics lie in the areas of wideband
multichannel communications (for both military and civilian systems) and
signal processings (for military hardware such as radars). Various kinds of
high-performance active optical devices such as high-speed multichannel
deflectors/switches and modulators are needed for the realization of these two
areas of application. For example, one of the important functions of an
optical receiver terminal is the routing or fanning-out of incoming optical .
signals to a large number of separte channels or users. Integrated optic }
device modules, aside from being smaller and lighter, can potentially perform
this function in a simpler manner, at a faster speed, and at lower cost. !
Thus, the general objectives of this AROD-sponsored reseatch-ate to discover i
and study novel concepts and devices based on electrooptic and acoustooptic
effects in planar and channel optical waveguides and to develop and realize
related integrated optic modules for such applications. As a result of this
regsearch effort a number of such integrated optic device modules have been

realized.
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Guided-wave electro-optic prismlike deflectors using the tilted
electrodes on Y-cut LiNbO3 waveguides. (a) Basic prism
deflector; (b) two basic prism deflectors in parallel.

Actual design of the deflector.

High-Speed Integrated Electrooptic Multiport Deflector/Switch
Module.

Guided-wave beam deflector/switch and modulator using apodized-
electrode array structure on Y-cut LiNbO3 waveguide.

Light beam deflector using apodized-electrode array structure in
channel optical waveguide.

Planar waveguide lens in LiNbO, formed by Titanium Indiffused
Proton Exchanged (TIPE) technique.
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switch/coupler uéing total internal reflection.-

Electrooptic crossed channel waveguide total internal reflection
modulator incorporating a notch for multigigahertz bandwidth
operation,

A packaged electrooptic crossed channel waveguide device module
using a traveling-wave coplanar microstripline structure with
No. 70 coaxial cable and flange-mount SMA connectors.
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switches (A), and output waveforms (B).
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reduction, _

Acoustooptic diffraction from surface acoustic wave in corssed-
channel waveguides.
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Acoustooptic time-integrating correlator using anisotropic Bragg
diffraction and hybrid optical waveguide structure.

Hybrid integrated acoustooptic time-integrating correlator

module.
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IV. BODY OF REPORT

A. STATEMENT OF THE PROBLEMS STUDIED

This Army Research Office-sponsored research program was concerned with
guided-wave electrooptic and acoustooptic devices and modules for very high-
speed multichannel light beam deflection/switching and RF signal processing.
Specific research tasks are: (1) to study in detail a number of novel device
concepts and relevant device parameters, (2) to advance the performance
characteristics of the resulting devices, (3) to realize and study integrated
optic modules based on these concepts and devices, and (4) to identify
specific applications of such modules in integrated/fiber optic systems and
electronic/optical computers. The ultimate goal is to advance the capability
of wideband multichannel optical systems relating to Army Technology. The six
specific subjects that have been studied are:
1. Very High-Speed Electrooptic Multiport Deflector/Switch Using Tilted-
Electrode Structure

2. High-Speed Multiport Deflector/Switch Using Electrooptic Phased-Array
Structure -

3. Light Beam Deflector/Switch/Coupler Using Electrooptically Controlled
Total Internal Reflection
i. Planar Waveguide Device
ii. Channel Waveguide Device With Taper~Horn Structure
iii. Channel Waveguide Device Without Taper-Horn Structure

4, Channel Optical Waveguide Switching Networks and Matrices

5. Acoustooptic Bragg Deflection in Crossed Channel Optical Waveguides

6. Integrated Optic Modules for Acoustooptic Time-Integrating

Correlation.

Some very significant results have been obtained in each subject.
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B. SUMMARY OF THE MOST IMPORTANT RESULTS

le Very High-Speed Electrooptic Multiport Deflector/Switch Using Tilted-

Electrode Structure

This research was concerned with a novel scheme to greatly increase
the number of channels for high-speed optical switching. The scheme utilizes
a number of basic tilted-electrode 20(1) deflectors (Fig. 1) which are
successively increased in apertures and are arranged in tandem (along the
optical path) and driven independently with discrete voltages. For example,
for a deflector which uses a LiNbO4 waveguide aﬁd 4 stages with each stage
capable of 9 resolvable channels, the total number of resolvable channels
would be 125. The discrete drive voltages required for each stage can be as
low as a few volts per resolvable channel. However, as indicated in the
originai proposal, the main task was to integrate such deflectors/switches
with wavegide lenses to form hybrid integrated optic modules. Consequently,
it was necessary to study and determine the viability of existing waveguide
lenses. The accomplishment that has resulted from this endeavor 1is described

in the following subsection.

2. High-Speed Multiport Deflector/Switch Using Electrooptic Phased-Array

Structure

As in the first researcﬁ subject, the main task was to incorporate
waveguide lenses to form hybrid integrated optic modules with applications to
the schemes (Fig. 2) for multiport deflection/switching(1'2) and A/D
conversion(z) that had been explored under the preceding Army Research Office
(ARO) -sponsored research grant. Consequently, a great deal of effort was

made to study and determine the viability of existing planar waveguide

lenses. As a result of this endeavor, the titanium-indiffused proton-
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FIG.1a. Guided-wave slectro-optic prismlike deflsctors using
the tilted elsctrodes on Y-cut LINbO, waveguides. @) Basic
prism deflector; ®) two basic prism deflectors in parallsl.
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FIG2Q  Guided-wave beam deflector/switch and modu-
h_(ot' using apodized-electrode array structure on Y-cut

LiNbO3 waveguide.
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exchanged (TIPE) process which had been originally developed for fabrication
of planar waveguides(3) was successfully utilized for the first time to form
single-mode waveguide lenses in LiNbO4 subscrates.(a) For fabrication of the
single-mode microlenses and microlens arrays the well-established TI process
was first applied in a Y-cut LiNb03 substrate to form a planar waveguide that
supports a single TE-mode and a single TM-mode of the lowest order.
Subsequently, a masking material such as SigN, with a designed lens contour
was deposited on the TI waveguide (Figure 3). The sample was then immersed in
molten benzoic acid at 2309C for six hours. As a result of the selective
proton exchange, the region (the shaded area in Figure 3) without the masking
material had its extraordinary refractive index increased by as much as 0Q.l1
in comparison to the remaining TI region. Consequently, this PE ;egion of
appropriate contour will function as a planar waveguide lens. For example,
using the Fermat principle the contour for a plano-convex lens depicted in
Figure 1 has been shown to be an ellipse, A variety of basic (single) lenses
with plano-convex and double-convex contours of various apertures and focal
lengths have been fabriated and tested. The measured half-power (3 dB) width
of the focal spot in light intensity was typically 2.0um. The strength of the E
highest sidelobe was typically ~12 to =16 dB lower than that of the '
mainlobe. The measured focal length of the lens agrees well with the design
value. The average insertion loss of the lens was measured to be 1.5 dB which
corresponds to a throughput efficiency of 71%. An angular field of view of
10-degree has been measured with the plano-convex lenses. 1In the case of

double-convex lenses an angular field of view as large as 25 degree has also

(3
been measured.
A large number of the basic single-mode microlenses as described above but
of much smaller dimensfons in aperture and focal length has also been X
\
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configured into a linear array in the LiNbO, substrate. For example, a 60-
element linear microlens array with each lens element having a 60um aperture
and 200um focal length has been successfully fabricated. The microlenses
fabricated thus far have provided desirable properties such as very short
focal length, large numerical aperture, focal spot size of a couple of microns
for a wide range of focal length, large field of view, and low optical
insertion loss. Subsequent study has demonstrated the viability of this TIPE
process for fabrication of high-performance planar microlenses and microlens
arrays using a single masking step.(s)

The microlenses and microlens arrays described above should facilitate
realization of integrated optic device modules for applications in integrated-
and fiber-optic signal processing and computing as well as communication

systems.

3. Light Beam Deflector/Switch/Coupler Using Electrooptically Controlled

Total Internal Reflection

Although three versions of the electrooptically controlled total
internal reflection (TIR) devices(®8) yere mentioned in the original
proposal, a study showed that the third version, namely, Channel Waveguide
Devices without Taper-Horn Structure or Channel Waveguide Devices Using
Straight Intersecting (Crossed) Vaveguides in LiNbO, (Fig. 4)(8) possessed the
highest merit. Therefore, subsequent effort was focused to this particular
version,

Through a variety of designs in terms of the channel waveguide width,
the intersecting angle, and the width and separation of the parallel electrode
pair, a number of desirable features of the TIR channel waveguide devices have

been demonstrated.(g'll) The desirable features include small substrate size

] v e Nai "™ - . R - e, Loa s pe e pey vy v -y - . o h e et
I k’;\ NI T, FatnR ol ot ale ALy NY v Y REE o M ' il - ! =, 1
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Fig#4 Optical Channel Waveguide Double-Pull-Double- Throw Switch/Coupler Using

Total Internal Reflection
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per unit device and thus high packing density, large base bandwidth,
relatively low drive voltage requirement, and relatively low crosstalk. As a
demonstration of wideband capability, a 8.5 GHz bandwidth single-mode
modulator and switch operating at 0.79 um wavelength was realized in a Y-cut
LiNbO4 substrate (Fig. S(a)).(lz)

The resulting wideband TIR modulator/switch module (Fig. 5(b)) should
constitute a desirable modulator or switch that provides a multigigahertz
bandwidth for microwave communication and radar systems. Also, the resulting
optical switching networks or matrices (to be described in the following
subsection) are expected to provide a variety of high-speed operations such as
multiport routing and multiplexing in single-mode fiber optic communication
and signal processing systems as well as residue-based optical

computing.(l3’14)

4, Channel Optical Waveguide Switching Networks And Matrices

A simple 4 x 4 switching matrix/network héving a total device length
as small as 0.75 cm which consists of five basic TIR switches of multi-
gigahertz bandwidth on the same LiNbO, substrate have been realized
(Fig. 6).(9'10) A simple scheme which involves cascade of identical devices
(Fig. 7) for reduction of the crosstalk by a factor of two in db, namely from
-15db to =30 db, has also been dévised and verified experimentally.(ll)

As indicated in the preceding subsection, the resulting optical switching
networks and matrices are expected to provide a variety of high-speed
operations such as multiport routing and multiplexing in single-mode fiber

optic communication and signal processing systems as well as residue-based

optical computing.(l3’14).
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Fig. 5(b) A Packaged Electrooptic Crossed Channel Waveguide

B! Device Module Using a Traveling-Wave Coplanar
N

N Microstripline Structure With No. 70 Coaxial
| Cable and Flange-Mount SMA Connectors.
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5. Acoustooptic Bragg Deflection In Crossed Channel Optical Waveguides

This research project was concerned with realization of single-mode

integrated optic device modules that utilize AO Bragg diffraction in LiNbO4

;
§ crossed channel waveguides (Fig. 8).(15) A high diffraction efficiency
| acoustooptic (AO) deflector/modulator using single-mode crossed-channel
; waveguides in a Y-cut LiNb03 substrate has been successfully realized
z (Fig. 9).(15) Measurements at the center frequency of 320 MHz has
| demonstrated simultaneously a high diffraction efficiency and a large
: deflector bandwidth, namely, a 50% diffraction efficiency and a 13.4 MHz
‘ bandwidth requiring only 0.13 Watt of surface acoustic wave (SAW) power. This
experiment has clearly indicated the possibility of realizing an integrated
§ optic module with a 50-50 power split and a tunable frequency offsgt.(IG)
j Such a module should find a vafiety of unique applicatons 1n.futute 1htegrated
: and fiber optic systems. 1In the application for heterodyne detection the
; frequency~-shifted light can be conveniently used as a reference signal (local
%3 oscillator) in connection with optical communications and fiber optic sensing.
2
: 6. Integrated Optic Modules For Acoustqqptic Time-Integrating
5 Correlation
Some significant progress has been made on a novel interaction
Py configuration that utilizes anisdtrogic AO Bragg diffraction in a planar
‘: waveguide (Fig. 10).(17’18) This novel scheme has resulted in an AO

correlator module (Fig. 11) which is not only much smaller in dimension along
the optical path (in comparison to that which utilizes the conventional
isotropic AO Bragg diffraction) and capable of providing a larger time window
and a lower optical insertion loss, but also easier to be implemented in

integrated optic format. A brief description of the basic device
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Fig. 9 Single-Mode Crossed-Channel Waveguide Acoustooptic

Modulator Module in LiNbO3 Substrate
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configuraton, working principle, and experimental results of the resulting AO ?
correlator module now follows. t
Time-integrating correlation of RF signals using bulk-wave isotropic E

AO Bragg diffraction(lg) has become a subject of great interest because of its }
applications in radar signal processing and communications.(zo'zz) Some ;
encouraging results with the experiments which utilize guided-wave isotropic ’
Bragg diffraction were also reported earlier.(23-26) Subsequently, hybrid and ;
monolithic structures for integrated optic implementations were ;
suggested.(za) In a conventional configutatioﬁ that utilizes either bulk-wave ;
or guided-wave isotropic Bragg diffraction, a pair of imaging lenses and a ;
spatial filter are used to separate the diffracted light beam from the ‘
undiffracted light beam. Under this ARO program a new and novel hybrid E
structure which utilizes guided-wave anisotropic Bragg diffraction and hybrid ;
integration (see Fig. 10) (17,18) was explored. This new structure can .
conveniently incorporate a thin-film polarizer to separate the diffracted §
light from the undiffracted light prior to detectién and, therefore, ﬁ
eliminates the need of imaging lenses and spatial filter. As a result, fhe AO J
time-integrating correlator is not only much smaller in dimension along the ?
optical path and capable of providing a larger time window and a lower optical i
insertion loss, but also easier to be implemented in integrated optic ;
format. A laser diode and a thiﬁ-film polarizer/photodetector array (CCPD) F
composite were butt-coupled to the input and the output end faces of a Y-cut i:
LiNbO3 plate (2mm x 12mm x 15.4mm), respectively. A single geodesic lens .
(with 8mm focal length) was used to collimate the input light beam prior to ::
interaction with the SAW. The SAW propagates at 5 degrees from the X-axis of .
the LiNbO3 plate to facilitate anisotropic Bragg diffraction between TEO- and h
TMy-modes. In operation, the correlation between the two signals §;(t) and Ei
;.
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Sz(t) was performed by separately modulating the laser diode and the RF
carrier to the SAW transducer. Finally, the time-integrating correlation
waveform was read out from the detector array by the charged-coupled device.

The preliminary experiment carried out with the correlator module
using hybrid integration at 0.6328um wavelength and the SAW at 391 MHz center
frequency had demonstrted a bandwidth of 60 MHz and a time bandwidth product
of 6.2x105, and a dynamic range of -27dB. A considerably larger bandwidth
should be achievable as it 18 now possible to design and fabricate GHz

bandwidth planar acoustooptic Bragg cells(27'28)

and it is also possible to
modulate the diode laser at GHz rates. Fig. 11 shows cﬁe LiNbO3 substrate of
the module with the geodesic lens located at the center and the SAW transducer
at the right end. Finally, it is to be mentioned that the TIPE microlens
referred to previously should constitute an ideal replacemenﬁ for the geodesic

lens, and thus greatly facilitate eventual manufacturing of such integrated

optic correlator modules.
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