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Abstract

In this paper we present a survey of large deviation local limit theorems for random
vectors. We then establish a more extensive large deviation local limit theorem that
requires somewhat weaker conditions even in the special cases proved earlier.
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1. Introduction

Suppose that {T,} is a sequence of random variables in R,,, the m- dimensional
Euclidean space such that T,,//n converges in distribution to a non-singular multivariate
normal distribution. A local limit theorem is a result concerning the limit of the probability
density function (p.d.f.) of T,,/\/n at a fixed point z € R,,. A large deviation local limit
theorem is a similar result concerning the p.d.f. of T,,/\/n at a point z,, where z,, — c©
and z, = O(y/n). It is more convenient to state that it as a result concerning the p.d.f.
of T,/n at a point z, where z, = O(1).

When T, is the sum of n independent and identically distributed nonlattice valued
random vectors X},...,X, with common distribution function (d.f.) F, Richter(1958)
established the earliest result on large deviation local limit theorems for T, /n at a point
T, where z,, = o(1) and \/nz, > 1. This is stated as Theorem 2.5 in Section 2. The main
conditions imposed on the existence of a moment generating function ¢ (m.g.f.) for X,
and some integrability properties of ¢, which in turn imply the existence of a p.d.f. for
T,/n.

Phillips(1977) extended the above theorem for arbitrary nonlattice random vectors T,.
The conditions imposed here were on the m.g.f. of T,,. This result is stated in Theorem
3.1 in Section 3. The asymptotic expression for the p.d.f. of T,/n at z, given by both
the above authors involved the so called Cramér series. As we had pointed out for the
one-dimensional case in Chaganty and Sethuraman(1985), this can be greatly simplified
by the use of the large deviation rate 4, of T,,/n, which exists under the already imposed
assumptions.

Furthermore both the authors impose the condition z, = o(1). In Section 3, we
dispense with this condition and require only that z,, = O(1) which corresponds to an
arbitrary large deviation. Borokov and Rogozin(1965) have established a large deviation
local limit theorem for sums of i.i.d. nonlattice randon vectors requiring only that z,, =
O(1). This is stated as Theorem 2.6. Our main result stated in Theorem 3.2 is in the
same spirit and holds for arbitrary nonlattice random vectors and requires conditions on
the m.g.f. of T,, which are weaker than those imposed in Theorems 2.6 and 3.1.

The organization of this paper is as follows. Section 2 consists of some preliminaries
and lists the resuits of Richter(1958) and Borokov and Rogozin(1965). Section 3 contains
the result of Phillips(1977) and our main result. Section 4 gives the analogous results for
lattice valued random vectors.
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2. Large deviation local limit theorems for

X i.i.d. nonlattice random vectors
o |
':‘?t? In this section we will describe several well known local limit theorems for random
' vectors in R,,, the m-dimensional Euclidean space with real components. In order to stan-
o dardize the notation used by several authors, we begin with a description of the notations
:,:4 used throughout this paper. The space of m-dimensional vectors with complex components
:':1: will be denoted by C,,. We write just R for R; and C for C;. Throughout this paper
‘j:{f!: we denote points of R, by ¢, u, r, s etc., and a point of R,, with nonnegative integer
components by a and a point of C,, is denoted by z. The j** component of a vector z is
it denoted by z;. We shall further use the following standard notation:
o
i 2% =2t 2am,
"—h dt = dtldtz-o-dtm,
PR <zit>=zit1 t 23l + -+ Zmibm,
;3_‘ (2_1) ’ --:1— 22_ m*m
e zZ=(21,%2,..-,Zm),
’-iq, az = (azy,az;,...,a2y,) when a€ R,
and 1=(1,...,1).
[} . . . oy .
3:.3% When f is a complex valued function defined on R, and j, k are positive integers we
“3‘:%.\ write
et
e ¢
iy D;f(t) = d{T(),
:i(.{.i j
A;\'u‘\! dz f(t)
AR
2-2 Daf(8) = oo,
(2-2) ) = g at,
" V() = (Duf(t)s- .. Dm (1)),
AN =
ad V(1) = (Daf())-
R
.,'42{_:: The determinant of the matrix V2 f(t) is denoted by | V2£(t) |.
:::::': Definition 2.1. A polydisc s(z,r) of radius r = (r,,...,r,,) around a point z =
el (215++-+2m) is defined as
.‘::ﬂ.
gy
(2-3) 8(z,7) = 8(z1,71) X 8(22,72) X --* X $(2ms"m)
i
N where
JQ':r)
o 4

NI L I L “ LA Pt xR ™ Y ' AT 2 0 ]
RO ei"x",‘l':,_,'.‘ BN hi"‘ﬂ:‘t,‘\'*( | A N ‘i.,“fe.‘“i;bg‘; ‘45,.}‘ iy, ..Q)' 7.8 .% #.‘_ oA ﬂ‘,’;%_",jﬁ ’.".\‘l ) .ﬁ:"- KR (“J!'.l:‘.l. %) 13 (N



s(zj,75) = [z; : | 3';' —z;| < 1], Jj=1...,m.

The closure of s(z,r) is denoted by 3(z,r).

Definition 2.2. A complex valued function f is said to be holomorphic at a point 2,
of C,, if there is an r > 0 such that

(2-4) f(z) = Z aq(z — 20)%, for z € s(2o,7)

|a|20
where a, € C,, ; and the above power series is absolutely convergent.
Let (z+re*%) = (z2+716*%,...,2m+rme?™) forr = (ry,...,rm) and 8 = (0y,...,0).

The following theorem can be found in Vladimirov(1966) pp 30-31.

Theorem 2.3.(Cauchy). Suppose that a function f(z) is holomorphic and that it
is bounded in the closed polydisc 3(20,r). Then the coefficient a, in the expansion of f(z)
is given by

2n 2n 10
f(20 +re’’) :
(2‘5) (27r)m / o= exp( t < 0,& >) da.
Consequently,
1
(2-6) |@al < = sup |f(2)|.

367('0\’)

Let X}, X3,... be a sequence of independent and identically distributed m-dimensional
nonlattice random vectors with common distribution function F. Let E(X,) = 0 and
Cov(X;) =V be the covariance matrix of X;. Let the moment generating function of X,
be given by

(2-7) #(z) = /; exp(< z,y >) dF(y), for ze€ Cp,.

When z = s is real then ¢(z) as a function of s is the usual moment generating
function and when z = it is purely imaginary, ¢(z) as a function of ¢ is the characteristic
function of X;. Let X, = /N, where S, = X + ...+ X, is the n** partial sum. We
assume that the following conditions are satisfied for the distribution of X;:
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L}

k)

i I. There exists a nonempty open set A C R,, such that ¢(t) is finite for t € A.
&
II. There exists a natural number ngy such that Yno has a bounded density p,,.

‘ The following theorem can be found in Chapter 4 of Bhattacharya and Ranga Rao
4o (1976). It provides necessary and sufficient conditions for condition II to hold:

Theorem 2.4. Let {X,,, n > 1} be a sequence of i.i.d. nonlattice random vectors with |

) values in R,,. Assume that E(X;) =0, Cov(X;) = V, where V is a symmetric positive
3.‘251': definite matrix. Let #(z) be the moment generating function of X;. Then Condition II is
i equivalent to each of the statements stated below:
qf."‘gr
(i) There exists p > 1 such that
s
e
bt (29 [ 1stre <o
-;‘ (ii) There exists ng such that for n > no, X, has a density p, and
ki
2-9 hm sup ] =P -n(z)| =
il
::? where n(z) is the multivariate normal density with mean zero and covariance matrix V.
o
etk
.", Let y(s) = log ¢(s), s € A, be the cumulant generating function of X,. Let the large-
s deviation rate function be given by
b
Ao (2-10) v(u) = sup[< u,s > —¢(s)],  u € Rm.
- €A
s _
%5: v Since Aisa clos_ed subset of R,,, the supremum is always attained, i.e., for any u € R,
iy we can find 7(u) € A4 such that
D
‘T:E? (2-11) u = Vy(r(u)) and
e (2-12) 7u) = [< u,7(u) > —9(r(w))],
L)
e
S where V¢ = (D1¢,...,Dnt) is the vector of first order partial derivatives. Let us denote
f::::::: by B C R, the set of values of u for which r(u) € A. Let A; be an arbitrary closed
:i"'{:s bounded subset of A and B; C B be the image of A; induced by the mapping r~!( .).
\?:t'
“,?15‘7 6




Richter(1958) obtained the fundamental large deviation local limit theorem for the
sample mean of i.i.d. nonlattice random vectors which satisfy conditions I and II. This
extended his earlier work for real valued random variables (see Richter(1957)). We state
Richter’s result in the next theorem:

Theorem 2.5.(Richter). Let X\, X3,... be i.i.d. nonlattice random vectors with
values in R,,. Assume that E(X,;) =0 and Cov(X,) =V is a positive definite matrix.
Let Z, = (Zin,---»Zmn) be such that /nz;, > 1 and z;, - 0 asn — oo for all
1< j < m. If X, satisfies conditions I and II then the density p,(z) of X, exists and

n™/2

(2x)™/ 2|V |1/2

(2-13) Pn(zn) = exp(—n7(za)) {1+ O(|| zn |I)]

where «( .) is the large deviation rate function of X;.

The conclusion (2-13) in Theorem 2.5 is the same as (1) in Richter’s(1958) paper. We
have re-written the infinite series appearing in the asymptotic expression for the density in
Richter’s paper in terms of the large deviation rate function and displayed its crucial role.
This simplification has not been noticed by authors in the area of large deviations before
Chaganty and Sethuraman(1985) for the case of real valued random variables. Borokov
and Rogozin(1965) generalized Theorem 2.5 for sequences {y,} which may not converge
to zero and obtained sharper estimates for the remainder term and their result is stated
below.

Theorem 2.6.(Borokov and Rogozin). Let {X,, n > 1} be a sequence of i.i.d.
random vectors satisfying conditions I and II. Let {y,} be a sequence such that y, € B,
for all n > 1. Let p, = 7(yn) € A, for n > 1. Then for any integer k > 1, the density
of the sample mean X, is given by

m/2 k-1 )
(2m)™2 va(p..)l‘/’ exp(=n1(ya)) [1 + D ejon ™ + O(n™F)].

i=1

(2-14) Pa(yn) =

The coefficients ¢;, depend only on y, and on the first (25 + 2) moments of the
distribution of X, and are uniformly bounded for y,, € B,.

As an application of Theorem 2.6, Borokov and Rogozin(1965) also obtained integral
theorems, that is, estimates of Pr(X, € D,), for suitable D,, as a function of the large
deviation rate.




hdhed ahendiaiabe o T b —— ————

v 3. Large deviation local limit theorems for

é:.;,’ nonlattice random vectors.
L‘I ,
;:?;
)

. The results of the previous section are applicable only to sample means of independent
it d identically distributed rand In applications that arise i hematical
R and 1identically tributed random vectors. applications that arise in mathematica
f;:::ﬁ statistics and probability we come across functions which are more general than sample
o means. In this section we present some generalizations of the theorems of Section 2 which

apply to arbitrary sequences of nonlattice random vectors.

Let Ty,T3,... be a sequence of nonlattice random vectors in R,,. Let ¢,(z) =

::n,:f Eexp(< z,T, >) be the moment generating function of T,, for z € C,,. Assume
:::" that @,(z) is holomorphic and non-vanishing in 2™, where Q@ = {z +1y : z € I =
o (—a,a),y € R} for some a-> 0. Let ¥,(s) = Llogen(s), for || s |< a. Let Vipu(s) =
oo (D1%n(8)s- .., Dm¥n(s)) be the vector of the first order partial derivatives and V23, (s)
::: denote the matrix of second order partial derivatives. The determinant of the matrix
1" ] V2yn(s) is denoted by |V2y,(s)|. For u € R,,, we denote the large deviation rate func-

X tion of T, /n by
Tn(u) = seur?"[< ©,8 > —thu(s)].

iy
:E:E:‘ Theorem 3.1 stated below, is due to Phillips(1977). It extends the results of the previous
L section for arbitrary sequences T,,, n > 1, of random vectors.
;sz'l
ey,
Theorem 3.1. Let {T,,n > 1} be a sequence of nonlattice random vectors such that
e E(T,) =0, Cov(T,) = nZ,. Assume that T, satisfies the following conditions:
", .
::,E; (a) The covariance matrix L, has a positive definite limit as n — co
"
i (b) There exists positive numbers k,, and K, such that for || z ||< a we have
. ‘f‘\"
i (3-1) kn < |#a(2)| < Ka
o
f_"«.‘{ (c) There exists ! > 0 and b > 0 such that
O
s‘.’q‘
4
e (3-2) / én(it)|dt = O(c=™)  forall K >o0.
oty llell> K=
..ti“
e
;;;:;: Let 2z, = (Ziny...1Zmn) € Rm be such that /nz;, > 1 and z,, — 0 as n — oo for
o 1 < j < m. Then we have

R A S e A O R O OO OO ING
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n™/2

e P (2a)) (L + O] 2a )]

(3-3) fa(zn) =

A

it

where |Z,| is the determinant of the covariance matrix of T,,/y/n and v,(.) is the large
deviation rate function of T, /n.

R

DS We have restated the asymptotic expression for f,(z,) in (3-3) in terms of the large
:: deviation rate v,(.). We notice that Theorem 3.1 requires that z,, — 0, much like Theorem
'.: 2.5. We now present our local limit theorem, Theorem 3.2, that does not impose this
K restriction, which is in the same spirit as Theorem 2.6. After stating and proving Theorem
3.2 we will compare its conditions with those of Theorem 3.1.
o
2
i Let {y»} be a sequence of vectors in Rn. Theorem 3.2 below is a direct extension
K7 of Theorem 2.1 of Chaganty and Sethuraman(1985) to the multi-dimensional case. It
‘}e: provides an asymptotic expression in terms of the large deviation rate function 4,(.), for
h the density function of T,/n at the point y,. Instead of imposing the condition y, — O,
e we will require the condition v,(yn) =< Tny¥n > —¥n(7a) for some 1, in (—a;,a;) where
‘ a; < a. Let I} = (—a1,a;) and define
¢ Gn(t) = Yn(n) + i < t, Vepn(rn) > —tn(rs + it)
i for t in R,,. Recall that |t| = [t;| + [t2| + -+ + [tm]|, fort = (ty,...,tm).
i
;’: Theorem 3.2. Assume that T, satisfies the following conditions:
B
i (A) There exists 81 > 0 such-that |,(2)| < 1, for all zin Q™ and n > 1.
[\
N
::t (B) There exists 7, in I such that Viu(r) = yn and V2y,(7) is positive definite
:: with the eigenvalues bounded below by 82 >0, forall7 € I™ and n > 1.
!‘;
(C) There exists n > 0 such that for any §, 0< 6§ < 7,
iy
'
(3-4) | ti|n>f6 Real(G,(t)) = min[Real(Gpn(61), Real(G,(—61))]
; foralln > 1.
’ (D) There exists 0 < ¢ < 1/3, { > 0 such that
! (3-5) [ 1oatr+it)/8u(rm) " dt = O(e™).
A Rm
9

-

BONONEAONOACEY AN g ) ; 3 L5 YA A P
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If f.(x) denotes the probability density function of T,,/n then

n™/ .
@8 Ialin) = Gy SRl + O/

Remark 3.3. The conclusion of Theorem 3.2 still holds true if we replace Condition
(C) by the following Condition (C’) (see Chaganty and Sethuraman(1987)):

(C') Given 6 > 0, there exists 0 < 7 < 1 such that

(3-7) limsup sup |G (7n + it)/n(ra)|//™ < 7.
n21 [¢|26

We will postpone the proof of Theorem 3.2 until the end of the following lemma.

Lemma 3.4. Let {T,,n > 1} be a sequence of nonlattice random vectors taking
values in R,,. Assume that conditions (A), (B) and {C) of Theorem 3.2 are satisfied. Let
Gn(t) = [¥n(ra) +t < t, yn > —t¥n(rs + it)]. Then there exists 6, < n such that for
0<é<éy,

(3-8) Itligf , Real(Gn(t)) = Bamé2%/4, forall n>1.

Proof. Since ¥, is a well defined holomorphic function in 1™ and 7, is in IT* for all
n > 1, the following expansion is valid for |t| < (a — a;)/2,

(3-9) Wa(Ta+it) = Yn(ra) +i < t, Vipn(ra) > —%t'szpu(rn)t—i Y alP)t* 4 Ry (ratit),
|af=3

where Rn(7n +1t) = 32,424 a{™(it)®. By Cauchy’s Theorem 2.3 and Condition (A) we
get the following bound for at™,

A
" 3-10 (n)] < .
:’ ( ) Iaa l -— (a _ al)lal
u,. Thus for [t| < (a —ay)/2 and for all n > 1,
.‘SI.‘
!;EOQ
i - By
i Bt i) < 3 TTIi iy
I (3-11) |a}24i=1 L
”: < 28, |t|* .
: - (a - a1)4
M:
i 10

[ 4 )
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It follows from the definition of G,(t), (3-9), (3-10) and (3-11) that for n > 1,
n) o
< Zla[:S a'Sl ¢
" 18]
Blt] + 26t

~(a-a1)® (a-ay)*

Gal(t) 'V (1a)t
|22 2[¢[?

R, (rn + 1t) ’

2
(3-12) i

Therefore there exists 0 < §; < 1 such that for |t| < §; we have the inequality

‘ Gu(t)  t'V24u(ra)t| B2

im

3-13
(3-13) BE TE

1)

which implies that

Real(G,(t)) ' S t'V2Yn(ra)t] B2

]2 = 2[t]2 " 4m

(3-14)

We have used Condition (B) and m|t't| > |t|2 in the last inequality. Thus, if |t| < §,
then Real(Gn(t)) > B2|t|2/4m for all n > 1. Now for 0 < § < §; it follows from Condition
(C) that .

: inf Real(Gn(t)) = min[Real(G,(61)), Real(Gn(—61))]
(3-15) ¢ 26
> Bamé?/4, forall n>1.

We now return to the proof of our main Theorem 3.2.

Proof of Theorem 3.2: The proof parallels the proof of Theorem 3.1 of Chaganty
and Sethuraman(1987). Proceeding as in Chaganty and Sethuraman(1987) we can show
that Condition(D) implies that the density function of T, /n exists and equals

(3-16) falz) =

n™ ) .
(2m)™ [R $n(Tn +1it) exp(—n < 1, +it,z >) dt.

Substituting z = y,,, we get

nm

fn(yn) = (2")77;

/ Gn(Tn +it)exp(—n < 7, +it,y, >)dt
Ry

(3-17) i

= (27)™/2|V24p,, (1) |1/2 exp(—nYn(Yn)) In,




where,

_ nm/2|v2¢“(rn)|1/2
(3-18) I.= Zn)ml

/ Su(Tn + i) eXP(nVn (Un) — < Tm + ity >]) dt
R

Noting that v, (¥n) =< Tay¥n > —¥n(7a), We can write

n'“/zlvzﬂlln (,.n) ' 1/2
(2,r)m/2

(3-19) _ n™2|V2y,(r,)[}/? |
= 22 [/ltl?.n'* exp(—nG,(t)) dt + </|t|<n“‘ exp(—nG,(t)) dt

= Inl + In? (SaY),

I = [ exp(n[ion (7 + it) = Yn(ra) = § < t,yn >]) dt
R

where ) is chosen to be a number such that ¢ < 1-2A < 1/3 and g is as in Condition(D). We
shall complete the proof of the Theorem 3.2 by showing first I,,; goes to zero exponentially
fast and then showing that I,z = (1 + O(1/n)]. By Lemma 3.4, we can find N such that

for n > N, infi¢>-2 Real(Ga(t)) > Bamn=22/4. Thus forn > N, '

_ AV (1) V2 '
[ Ias| = (2n)™12 /l - exp(—nGn(t)) dt
n™/2 |v2¢,n (Tn) I 1/2
(3.20) < I max fexp(~(n - 0Ga(0)] /l pans SPLAG ()

= 0(n™?e") max [exp(—(n 1) Real(Ga(t))))

[tj2n=2
= O(n™/? exp(—Bam(n - 1)(n~?*) /4 + n7))
which goes exponentially fast to zero, since0 < ¢<1 - 2). Substituting s//n for t in the

second term, I3 of (3-19) we get

2 /
foa = lv (g;g:/)’ll - /Ic|<nm-x exp(=nGa(s/Vn)) ds

/2
(3-21) = 'V"'('ﬁ;)‘.’:;’l‘ /|.|<,.m-a exp(—%s'v’du.(r..)s + Zn(s)) ds

_ |V2%a(ra)|!/?
T (2x)m/3

/|.|<,,t/3-x ﬁp(—%s'VQ,ﬁn(rn)a) [1 + Zn(s) + L,.(s)] ds

where Z,(s) = [-nGa(s//n) + (48'V3Yn(ra)s)] and La(s) = [exp(Za(s)) = 1 = Za(s)].
Note that |s|//n goes to zero uniformly in s, as n — co, for |s| < n!/3=2 therefore for
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sufficiently large n the infinite series expansion (3-9) is applicable with t replaced by s/ vn.
Thus we can write

(3-22) [Za(s)] = [—ﬁ Z: a{™s® + nR,(r, + is/\/n)]

ja|=3

and therefore for sufficiently large n,

v2¢n Tn 1/2 1
Inz = | (27|.)(m/)2I ‘/|-|< 1/2-2 exp(—islvzwn(rn)s) ds

I 5 | i
T T U n(2n)™/2 Z e AexP "‘3 V24hn(Tn)s) s™ ds
(3-23) VAT™E e Jeieny
n|v2¢'n(fn)|1/2 1, '
(2")'"/2 ‘/;8l<ul/2—h eXp‘(—-2-s Vzd’n(rn)s) Rn(mn + 13/\/7_‘) ds
[T (1) /2 s
+ (27)™/2 /M<nm_ exp(—-z-s V2%n(tn)s) Ln(s) ds

It is easy to verify that the first term on the right hand side is equal to [1 + o(1/n)]
and the second term equal to zero. The proof is completed by showing that the last two
terms are equal to O(1/n). Since [s|/\/n goes to zero uniformly in s, for |s| < n'/273
there exists N; such that for n > N, we have from (3-11) with t replaced by s/\/n,

2ﬂ1|s|

n2(a —ay)*’

(3- 24) |Rn(7n +is/v/n)| <

Therefore for n > N,,

2 1/2
nlv(:r,;(':,;y / /M<,.m.A exp(—%s'vz'/"n(fn)s) Rn(rn +is/v/n) ds
< 1YW (ra) |/
(3-25) = (2mm3
< 284V %¢n(ra)|'/?
= n(27)™/3(a — a)4
= O(l/n).

/ exp(= 28" V2 (ra)s) |54 d
la|<n1/3-2 2

13
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.;;‘f,:

Z:SF To show that the fourth term on the right hand side of (3-23) is O(1/n), we first make
?:{:g the simple observation that if |z| < 1/2, for complex z, then |exp(z) — 1 — z| < 6|2|2. This

inequality will be used to get an upper bound for L,(s). Combining (3-22), (3-10) and
N (3-24) we get

b [}

Y

f‘i! :

o $ .

|Za(s)l = | = == D als® + nRn(ra +1is/v/n)|

o Vs

i § t‘ 3 4
:fl.:,:' (3-26) < LA - 2|s|*8, “
R vr(a—a;)®  nfa-—ay)

Binl=32  28,nl-4

P T (a—a1)® " (a—ay)*’
Sh
:f?}gg for |s| < n'/2-X, Since A > 1/3 the r.h.s. of (3-26) converges to zero as n — co. Thus we
il can find N, such that for n > N, |Z,(s)| < 1/2 for all |s| < n'/2-* and hence
QY 2
% [Za(s)] < 612a(s)
IAXE
63 (3-27) <8 [ |s|°81 2|s|*B1 r
;;s';';; » = |vn(e—a1)® n(a-ay)t
g
1::;::, Therefore for n > N,
e
. |v2¢n(fu)|1/2 / 1 /o2

. : -=8'V L
e ) Jujenrans TPV Unlinls) Inls) ds
e 93¢ (7a) 113 1
iy < o / =~8'V3Pna(7n)s) |[Ln(s)| ds
pit Br)™ Jupenes 7Y ol (o)l

" 6|V2¢n(rn)|1/2 / 1, [ |3|3ﬂ1 : 2|3|‘ﬁ1 ]2 !
e < —~=8'V2Yp(Tn)s) | —m—s + —=———| ds |
i A Jyeminns TP V) (G0 T et |
B = O(1/n). |
T,"-a:.‘f’g
The proof of Theorem 3.2 is now complete.
i

(X
‘;:.’:‘::. Remark 3.5. We now compare the conditions imposed in Theorem 3.1 and Theorem
e 3.2. We have already remarked that Theorem 3.2 is valid for sequences {y,} which may not

converge to zero. Condition (A) is similar to Condition(b). Condition (B) and Condition

s (a) are the same if y, — 0. Conditions (C) and (D) imply Condition (c) when y, — 0.
e Thus Theorem 3.2 not only generalizes Theorem 3.1 but also weakens Condition (c).

- 14
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Remark 3.6. We only require the weaker condition that the eigenvalues of VZy,(7,)
are bounded below by 85 for all n > 1, in the proof of Theorem 3.2. The stronger Condition
(B) of Theorem 3.2 allows us to obtain further refinements of the expression (3-6) as stated
in the next corollary.

Corollary 3.7. Let {T,, n > 1} be a sequence of nonlattice random vectors satisfying
conditions (A), (B), (C) and (D) of Theorem 3.2 for some sequence {y,} of random vectors
in R,,. Suppose that y,, convergestoyasn — co and n’ || y,—y [|> 1, forsome 0 < § < 1
and for all n > 1. Let E(T,/n) =y and Cov(T,/\/n) = L, be a positive definite matrix.
Then

n™/2

= (27)™/2|E |12

(3-28) fr(yn) exp(—nYn(yn))[1 + O( yn — ¥ |I)]

The proof of Corollary 3.7 is identical to the proof of Corollary 3.8 of Chaganty and
Sethuraman(1987) and hence is omitted.
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. 4. Large deviation local limit theorems

:‘3 for lattice random vectors

:‘ar\‘.

il

f:;?:: The study of large deviation local limit theorems for i.i.d. lattice random variables
was initiated by Richter(1957). Since then numerous authors including Moskvin(1972),

flgi McDonald(1979) have extended these results for sums of independent, not necessarily

'::ii' identically distributed lattice random variables. Recently Chaganty and Sethuraman(1985)

ff;fig: obtained generalizations to arbitrary sequences of lattice random variables and applied

e these results for statistics appearing in nonparametric inference. In a subsequent paper,
Richter(1958) proved analogous theorems in the multi-dimensional case. The purpose of

':;:;; this section is to obtain local limit theorems for arbitrary lattice valued random vectors

‘:en"‘ in the area of large deviations analogous to the results of Section 3. We begin with some

W notation.

!'.‘

T Let (e1,...,¢m) be a basis for R,,. Let L, be the lattice {§ : ¢ = h,(n.e, +

Z‘ -++ 4 nmem), nis are integers }, where {h, n > 1} is a sequence of real numbers. Let

»‘d»  {Ta, n > 1} be an arbitrary sequence of nondegenerate random vectors defined on the

;’1' lattice L,. Let {y,} be a sequence of vectors such that ny, is in L,, for all n > 1 and

" let ¢n, ¥ be as defined as in Section 3. Assume that ¢,(z) is analytic in the region O™,

N where 1 = {z + 3y : z € (—a,a),y € R}. For the lattice random vectors T,, we have the

,::; following theorem, which is analogous to Theorem 3.2 of Section 3.

:l:"".

‘:'5 Theorem 4.1. Let T, be a lattice valued random vector taking values in L,, for

g n > 1. Assume that Conditions (A), (B) of Theorem 3.2 and Condition (C”) stated below

_ hold for a sequence {y,,n > 1} of vectors, where ny, € L.

‘."‘5

O':‘I

{f;i;: (C") There exists n > 0 such that for any 6,0 < § < 7,

U

o4 ; = mi -

| (4-1) 65|‘j|1151£/|h.l Real(G,(t)) = min|Real(G,(61)), Real(Gn(—61))]

4".; .

MY

ﬂ‘: for all n > 1, where Gn(t) = ¥a(7a) + 1 < t,ViPa(7n) > —¥a(7a +it) and Vb, (7,) = yYa.

L Further assume that the span h, of the lattice L, is equal to O(n~?) for p > 0. Let

) Yn(4) = sup,erm(< 4,8 > —Yn(s)]. Then

o

i ) 2lp (T, 1 1+0(1

":,: ( ) mﬁ r n - 'Wn) - (Zt)m/zlvzlﬁn(fn)lln exp(—n"n(yﬂ)) [ + ( /n)]'

,; Proof. Let 7, be such that Vy,(7,) = yn for n > 1. By definition
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(4-3) $nltn+it) = D exp(< 1o +it, € >) Pr(T, = ¢),
€ELa

for (1, + it) € Q™. Multiplying both sides by exp(— < 7, + it, ny, >) and integrating
over the region B, = {(t1,...,ts) : |t;] < 7/|hnl,for all 5}, we get

Pr(T,. = nyn) = lh"l / exp(—n < 7, + 1t, Y >) Pn(rn + it) dt
(4-4)
_ on]” ol (o) I
- nm/2(2”)m/2|V2¢n(rn)|1/2 P TnlUn ny
where
n™/2| V2, (r,)|1/2
I, (2”)".,/2 exP(n'Tu(yn) —n<7T,+1tt,y, >) ¢n(7n + zt) dt
4-5
( ) nm/?vawn(Tn)ll/z

(27x)m/2 /B exp(—nGa(t)) dt.

Imitating the proof of Theorem 3.2 and noting that

$(ra +it) /" Cn)™ _ o
(4-5) [t < o =0,

we can show that I, = 1+ O(1/n). The proof of Theorem 4.1 is completed substituting
this in (4-4).
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