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Abstract

In this paper we present a survey of large deviation local limit theorems for random
vectors. We then establish a more extensive large deviation local limit theorem that
requires somewhat weaker conditions even in the special cases proved earlier.
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1. Introduction

Suppose that {T,, is a sequence of random variables in Rm, the m- dimensional
Euclidean space such that T./V/'i converges in distribution to a non-singular multivariate
normal distribution. A local limit theorem is a result concerning the limit of the probability
density function (p.d.f.) of Tn/v/n at a fixed point x E Rm. A large deviation local limit
theorem is a similar result concerning the p.d.f. of Tn/v'np at a point x, where x,,, -- co
and zn = O(V/'). It is more convenient to state that it as a result concerning the p.d.f.
of T,/n at a point z,, where z, = 0(1).

When T is the sum of n independent and identically distributed nonlattice valued
random vectors Xl,... ,X,, with common distribution function (d.f.) F, Richter(1958)
established the earliest result on large deviation local limit theorems for T,/n at a point
z, where Zn = o(1) and v/'nx, > 1. This is stated as Theorem 2.5 in Section 2. The main
conditions imposed on the existence of a moment generating function 4 (m.g.f.) for X,
and some integrability properties of 4,, which in turn imply the existence of a p.d.f. for
T,, /n.

Phillipe(1977) extended the above theorem for arbitrary nonlattice random vectors T,.
The conditions imp;sed here were on the m.g.f. of T,. This result is stated in Theorem
3.1 in Section 3. The asymptotic expression for the p.d.f. of Tn/n at Xn given by both
the above authors involved the so called Cramdr series. As we had pointed out for the
one-dimensionl case in Chaganty and Sethuraman(1985), this can be greatly simplified
by the use of the large deviation rate -1. of T,/n, which exists under the already imposed
assumptions.

Furthermore both the authors impose the condition Zn = o(1). In Section 3, we
dispense with this condition and require only that z, = 0(1) which corresponds to an
arbitrary large deviation. Borokov and Rogozin(1965) have established a large deviation
local limit theorem for sums of i.i.d. nonlattice randon vectors requiring only that Z,, =
0(1). This is stated as Theorem 2.6. Our main result stated in Theorem 3.2 is in the
same spirit and holds for arbitrary nonlattice random vectors and requires conditions on
the m.g.f. of T which are weaker than those imposed in Theorems 2.6 and 3.1.

The organization of this paper is as follows. Section 2 consists of some preliminaries
and lists the results of Richter(1958) and Borokov and Rogozin(1965). Section 3 contains
the result of Phillips(1977) and our main result. Section 4 gives the analogous results for
lattice valued random vectors.
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2. Large deviation local limit theorems for
i.i.d. nonlattice random vectors

In this section we will describe several well known local limit theorems for random
vectors in R., the m-dimensional Euclidean space with real components. In order to stan-
dardize the notation used by several authors, we begin with a description of the notations
used throughout this paper. The space of m-dimensional vectors with complex components
will be denoted by C,,. We write just R for RL and C for C1 . Throughout this paper
we denote points of R by t, u, r, a etc., and a point of Rm with nonnegative integer
components by a and a point of Cm is denoted by z. The jth component of a vector z is
denoted by zi.We shall further use the following standard notation:

a 01 02 am

Z = Z Zi ... ZM
dt = dtdt2 ... dt,,

< Z,t > = ZItt + Z2t2 + '" + tn,

(2-1) = (11, 2,...,t),
az = (aZt, a2,..., azmn) when aER,

and I =(1,...,1).

When f is a complex valued function defined on R. and j, ,c are positive integers we
write

df (t)
Dif(t) = #-('

dt'i

(2-2) Dikf(t) = dtidt)

V!(t) = (Dif(t),... ,Dmf(t)),

and V 2f(t) = ((Dykf(t))).

The determinant of the matrix V 2f(t) is denoted by I V 2f(t)

Definition 2.1. A polydisc a(z,r) of radius r = (ri, ...,rm) around a point z =
(z',... ,Zn) is defined as

(2-3) ,(z,r) = 9(zi, rL) x .(z2, 2) x ... x (z,Tm)

where
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3 (zr)[ : < i], = <,...

The closure of s(z, r) is denoted by !(z, r).

Definition 2.2. A complex valued function f is said to be holomorphic at a point zo
of C,. if there is an r > 0 such that

(2-4) f(z) = E a. (z- zo)a, for z E s(zo, r)

jaI>o

where aa E Cm ; and the above power series is absolutely convergent.

Let (z+rei°) =(z+r .,forr= (r,...,) and)(,.. ,,,).
The following theorem can be found in Vladimirov(1966) pp 30-31.

Theorem 2.3.(Cauchy). Suppose that a function f(z) is holomorphic and that it
is bounded in the closed polydisc 3(zo, r). Then the coefficient a, in the expansion of f(z)
is given by

15 a,2w 2w f(zo + re'9 ) exp(-i < $,a >)d0.(2r)= . ex

Consequently,

1
(2-6) la.5 sup If(z)I.

ra E(or)

Let XI, X 2 ,... be a sequence of independent and identically distributed m-dimensional
nonlattice random vectors with common distribution function F. Let E(XL) = 0 and
Cov(X) = V be the covariance matrix of XL. Let the moment generating function of X,
be given by

(2-7) O(z)-J exp(< z,y >)dF(y), for z E Cm.

When z = s is real then O(z) as a function of a is the usual moment generating
function and when z = it is purely imaginary, O(z) as a function of t is the characteristic
function of X 1. Let 7,, = S,,/n, where S,, = XL + ... + Xn is the n" partial sum. We
assume that the following conditions are satisfied for the distribution of XI:

5
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I. There exists a nonempty open set A C R, such that 0(t) is finite for t C A.

II. There exists a natural number no such that X, o has a bounded density Pno.

The following theorem can be found in Chapter 4 of Bhattacharya and Ranga Rao
(1976). It provides necessary and sufficient conditions for condition II to hold:

Theorem 2.4. Let {Xn, n > 1} be a sequence of i.i.d. nonlattice random vectors with
values in Rm. Assume that E(XI) = 0, Cov(XI) = V, where V is a symmetric positive
definite matrix. Let O(z) be the moment generating function of X1 . Then Condition II is
equivalent to each of the statements stated below:

(i) There exists p __ 1 such that

(2-8) IR M 1(it)IPdt <00

(ii) There exists no such that for n > no, X,, has a density p,n and

(2-9) lim - = 0,

where n(z) is the multivariate normal density with mean zero and covariance matrix V.

Let O(s) = log 0(s), a E A, be the cumulant generating function of X 1 . Let the large-
deviation rate function be given by

(2-10) -y(u) sUp[< u, s > -O(s)], u E R,.
seA

Since 1 is a closed subset of R,,, the supremum is always attained, i.e., for any u E Rm
we can find r(u) E A such that

(2-11) u= VO(r(u)) and

(2-12) 7(U) = [< Ur(U) > -O(r(u))],

where Vb = (DjO,..., D,b) is the vector of first order partial derivatives. Let us denote
by B C R., the set of values of u for which r(u) E A. Let A , be an arbitrary closed
bounded subset of A and B1 C B be the image of A, induced by the mapping r-'(.).
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Richter(1958) obtained the fundamental large deviation local limit theorem for the
sample mean of ii.d. nonlattice random vectors which satisfy conditions I and I. This
extended his earlier work for real valued random variables (see Richter(1957)). We state
Richter's result in the next theorem:

Theorem 2.5.(Richter). Let X1, X 2 ,... be i.i.d. nonlattice random vectors with
values in R,.. Assume that E(XL) = 0 and Cov(Xi) V is a positive definite matrix.
Let zx, = (z ,X...mn) be such that V~/inz" > 1 and jn -- + 0 as n -- oo for all
1 < j < m. If X, satisfies conditions I and I then the density pn(Z) of X,, exists and

(2-13) =,-- (2 r)/ 2I 12 exp(-n-,(Xn)) [1 + 0(11 X, II)]

where -y( .) is the large deviation rate function of X 1 .

The conclusion (2-13) in Theorem 2.5 is the same as (1) in Richter's(1958) paper. We

have re-written the infinite series appearing in the asymptotic expression for the density in

Richter's paper in terms of the large deviation rate function and displayed its crucial role.

This simplification has not been noticed by authors in the area of large deviations before

Chaganty and Sethuraman(1985) for the case of real valued random variables. Borokov

and Rogozin(1965) generalized Theorem 2.5 for sequences {Y,}" which may not converge

to zero and obtained sharper estimates for the remainder term and their result is stated
below.

Theorem 2.6.(Borokov and Rogozin). Let {X,, n > 1} be a sequence of i.i.d.

random vectors satisfying conditions I and I1. Let {y,n} be a sequence such that y,n E B,

for all n > 1. Let p,n = r(y,.) E A, for n >_ 1. Then for any integer k > 1, the density
of the sample mean T,. is given by

nm/2 k- t

(2-14) Pn(Yn) = (2-)/2 exp(-n-I(yn)) [1 + 1 Cjnn-" + O(n-h)].
(27r m/2jV~j(Pn~ 1/2j=1

The coefficients ci. depend only on yn and on the first (2" + 2) moments of the

distribution of Xj'and are uniformly bounded for Y, E B 1 .

As an application of Theorem 2.6, Borokov and Rogozin(1965) also obtained integral

theorems, that is, estimates of Pr(Yn E Dn), for suitable Dn, as a function of the large

deviation rate.
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3. Large deviation local limit theorems for
nonlattice random vectors.

The results of the previous section are applicable only to sample means of independent
and identically distributed random vectors. In applications that arise in mathematical
statistics and probability we come across functions which are more general than sample
means. In this section we present some generalizations of the theorems of Section 2 which
apply to arbitrary sequences of nonlattice random vectors.

Let T,T 2 ,... be a sequence of nonlattice random vectors in R,". Let 4,.(z) =
Eexp(< z, T >) be the moment generating function of T,, for z E C,". Assume
that 0,,(z) is holomorphic and non-vanishing in fl ' , where 1 = {z + iy : x E I =
(-a,a),y E R} for some a > 0. Let 0.(s) = log 0. (a), for I s 11 5 a. Let VP,,(s) =

) ,Dmbn()) be the vector of the first order partial derivatives and V 2tb ()
denote the matrix of second order partial derivatives. The determinant of the matrix
V2 0"(s) is denoted by IV 2 0,,(S)I. For u E Rm, we denote the large deviation rate func-
tion of T ,/n by

= sup [< u,.> >~s]
#el m

Theorem 3.1 stated below, is due to Phillips(1977). It extends the results of the previous
section for arbitrary sequences T., n _> 1, of random vectors.

Theorem 3.1. Let {T,,, n _ 1} be a sequence of nonlattice random vectors such that
E(T,) = 0, Cov(T,1 ) = n E,.. Assume that T,. satisfies the following conditions:

(a) The covariance matrix E,, has a positive definite limit as n --* 00

(b) There exists positive numbers k,, and K , such that for 1I z Il< a we have

: (3,-1) k. I¢,,(z)1- K,.

(c) There exists I > 0 and b > 0 such that

(3-2) 4i0n(it)I dt = O(e - ) for all K > 0.

Let Z, - (Zin,..., Zmn) E Rm be such that V/xz., > 1 and zin -0 0 as n --+ oo for

1:5 j5 _m. Then we have

8
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(3-3) (X)= ) /2, exp(-nt'vy(x.))[1 + 0(1I x, 11)]

where Irnl is the determinant of the covariance matrix of T,,/r and -Y,.(.) is the large
deviation rate function of T,/n.

We have restated the asymptotic expression for f,(z,.) in (3-3) in terms of the large
deviation rate -Y(.). We notice that Theorem 3.1 requires that Xn -- 0, much like Theorem
2.5. We now present our local limit theorem, Theorem 3.2, that does not impose this
restriction, which is in the same spirit as Theorem 2.6. After stating and proving Theorem
3.2 we will compare its conditions with those of Theorem 3.1.

Let {y,.} be a sequence of vectors in R,. Theorem 3.2 below is a direct extension
of Theorem 2.1 of Chaganty and Sethuraman(1985) to. the multi-dimensional case. It
provides an asymptotic expression in terms of the large deviation rate function -fn(.), for
the density function of T/n at the point y,.. Instead of imposing the condition y, - 0,
we will require the condition ",,(Y,) =< n,,y, > -,,(r,) for some rn in (-a,, a,) where
a, < a. Let I, = (-aL, a,) and define

G, (t) = ?,,(r,) + i < t, Vn (r,,) > - On(rn + it)

for t in Rm. Recall that Itl = Itil + It21 + + ItrI, for t = (tj,...,tm).

Theorem 3.2. Assume that T, satisfies the following conditions:

(A) There exists 01 > 0 such.that Ikn(z)l <#L, for all z in nIm and n > 1.

(B) There exists r. in Iln such that V~&,(r,) = y,, and V2 ,,(r) is positive definite
with the eigenvalues bounded below by /2 > 0, for all r E I m and n > 1.

(C) There exists q > 0 such that for any 6, 0 < 6 < 77,

(3-4) inf Real(G,(t)) = min[Real(G C(1),Real(Gn(-b1))I
ItI>6

for all n > 1.

(D) There exists 0 < q < 1/3, L > 0 such that

(3-5) fim j4,(rn + it)/4,,(rn) 1/n dt = O(en").

E I



If f,,(x) denotes the probability density function of Tr/n then

rnm/2

(3-6) f. Y,,) = (27r)m/ 2 IV2 0n(Tn) 1/ 2 exp(-n-n(,!,,))[1 + 0(1/n)].

Remark 3.3. The conclusion of Theorem 3.2 still holds true if we replace Condition
(C) by the following Condition (C') (see Chaganty and Sethuraman(1987)):

A (C') Given 6 > 0, there exists 0 < tj < 1 such that

(3-7) limsup sup IO(rn + it)/On(rn)i1 "n ?_ 77.
n>1 ItI>6

We will postpone the proof of Theorem 3.2 until the end of the following lemma.

'C Lemma 3.4. Let {T, n > 1} be a sequence of nonlattice random vectors taking
values in R,. Assume that conditions (A), (B) and (C) of Theorem 3.2 are satisfied. Let
G,(t) = [?,0(r,) + i < t, y,, > -',(r, + it)]. Then there exists 6 < 77 such that for

<(3-8) inf Reai(G,(t)) > #12 m62 /4, for all n> 1.
(tl> - _

Proof. Since io,, is a well defined holomorphic function in fl' and r, is in I ' for all
n > 1, the following expansion is valid for Itt < (a - a,)/2,

(3-9) bk.(r,,+it) = 'On (r) 4-i < t,V W,(r,)>-_t'V2 ln(7n)t-i (,)t"+Rn(r,+it),
2 ~ a1=3

C.:, where R,(rn, + it) = Zi.I>4 a(f)(it)*. By Cauchy's Theorem 2.3 and Condition (A) we
*#1 get the following bound for a.

(3-10) Ia.' - -<_)1
-a a)IaV1

Thus for ItI < (a - a,)/2 and for all n > 1,

I n(", + it)l < 5 It, l" (a_ - ,)101

(3-11) 1a1>4i= (
< 2#1,1tl14
(aO - a,)4"

10



It follows from the definition of Gn(t), (3-9), (3-10) and (3-11) that for n > 1,

G, (t) t'V 2 V),(T,,)t a< Z, 1=3 a(7 t+ R,(rn + it)

(3-12) It12  21t 2  ItL2  + t

,,)< /311 + 23J
"' -- (a - - a l) 3  (a - a ) 4 .

Therefore there exists 0 < 61 < n such that for ItI < bi we have the inequality

(3-3)Gn,(t) t'V2',n(r ,)t "' 3-
(3-13) t2 21t12  4m'

which implies that

Real(G,,(t)) It'V 0(Tn)tI 02

(3-14) Itt2 -: 21t12 4m

> _2 _ /32 = /32

- 2m 4m 4m

We have used Condition (B) and mlt'tI > ItI2 in the last inequality. Thus, if Itl < 61
then Real(G,(t)) > 21It 12/4m for all n > 1. Now for 0 < b < bt it follows from Condition
(C) that -

inf Real(G,.(t)) = min[Real(G, (61)),Real(G, (-61))]
> /32 m62 /4, for all n > 1.

We now return to the proof of our main Theorem 3.2.

Proof of Theorem 3.2: The proof parallels the proof of Theorem 3.1 of Chaganty
and Sethuraman(1987). Proceeding as in Chaganty and Sethuraman(1987) we can show

*{ that Condition(D) implies that the density function of T/n exists and equals

POPP n (x = n"-n <rn +t > t

(3-16) fn(z) = (Onm ] - ,(rn + it) exp(-n<r,+it,x>)dt.

Substituting z = yn, we get

A n)- (2---m Rm,,(r +it)<exp(-n<r+it, , >)dt

(3-17)
n)) exp(-n,(y)) I,,

(27r~rn211711



where,

(3-18) In n v/12(2r)j/2 .+(r+ + it) exp (n (-In(y+)- < T,, + it, Y,, >] dt

(27r)m/2 9

Noting that ' (yn) =< rT,,yn > - 'On(r,), we can write

= ( )/2 =V2 ( I)j1/ 2  exp(., O, ( r- + - ) - - < , Y > j) dt

(22r)m 1/2  LI PS n & r~ t /,(~ 1
(3-19) = nlm/ 2 .V2 (T)1l/2 r >+_exp(-nG(t)) dt + exp(-nG,(t)) dt

- (27r1jm/ 2  LJtfn Itj<n- J
= I,1 + I,2 (say),

where A is chosen to be a number such that q < 1-2A < 1/3 and q is as in Condition(D). We
shall complete the proof of the Theorem 3.2 by showing first I,, goes to zero exponentially
fast and then showing that In2 = [1 + 0(1/n)]. By Lemma 3.4, we can find N such that
for n > N, infltl>,-; Real(G.(t)) >= 2mn. 2 /4. Thus for n > N,

II Il = (2+)-O->--'1/2 exp(-nG.(t)) dt

(3-20) < (2i.),+/2 max [exp(-(n - )G,(t))] exp(-IG,(t)) dt

= 0(n/2eV',) max. [exp(-(n - I)Rea2(Gn(t)))]
ItI ,I.-

= o(nm/2 exp(-32m(n - 1)(n-2 \)/4 + ,q))

which goes exponentially fast to zero, since 0 < q < 1 - 2A. Substituting a/V/n for t in the
second term, In2 of (3-19) we get

In2 = I V2fOn("r)1/2 exp(-nG (s/v" )) ds

I(21r)l/2 f ij<,,i,-A

(3-21) - IV2 Ii(7n) '/2 J exp(- ls"V7'Oj (r)a + Zn (s)) ds

V2O'(,r")1 /2/f exp(-lSIV2? On(7) 8) [1 + Zn (8) + Ln (a)] ds
(21r)m/2 ji*<,+I,2- 2

where Z,(e) = [-nGn(s/vq + (ja'V 2 On(r))] and L+(8) = [exp(Z,(a)) - 1 - Z (a)].

Note that I+/v/ goes to zero uniformly in a, as n -+ oo, for I.J < n/ 2 -, therefore for

12



sufficiently large n the infinite series expansion (3-9) is applicable with t replaced by a/v/n-.
Thus we can write

(3-22) [Zn(,s)] a [-,,a + flR,(Tn + i//

and therefore for sufficiently large n,

1n2 -I
2 &()" 2 [exp(- 1s1V20~n(r,,)s) ds

vi(2r)m/ 2  fLj~1 /2- J~ 1 ,2-2

(3-23) I/(7r,/ 41n/-

+ nI V20P(T ) / 2 ] exp(- 1s V 2 On (rn)s) R,,,(rn + is/ V'-) ds
(2,r)m/2 I<nL/2-A *2

+ (2m2 j~exp(-ISIV2 n(Tn)s) La,(s) d~s

It is easy to verify that the first term on the right hand side is equal to [1 + o(l/n)]
and the second term equal to zero. The proof is completed by showing that the last two
terms are equal to 0(1/n). Since IsI/V'n goes to zero uniformly in s, for Isl < n 1/2-A,

there exists N, such that for n > N1, we have from (3-11) with t replaced by a/ 1 /ii,

*(3- 24) IRn(Ir + is / vin)l 2tJI14
n 2 (a - a) 4 '

Therefore for n > N1,

nI V2 i0.(rn) 1 1/2 fexp(- IV2O~n (rn),S) Rn (rn + is / VII ds
(21 )m/2

(3-25) <5 nI 2 7r)I 2  f exp(1/2--2 On(rn)S) IR,,(Tv + iS/V/7) Id

:5 0,JV Onrn 1/2 exf 1 S'n 3 9d

n(2r)n/(a- a1)4 fJj<n1/2i,% 2

=0(1/n).

13



To show that the fourth term on the right hand side of (3-23) is 0(1/n), we first make
the simple observation that if IzI < 1/2, for complex z, then I exp(z) - 1 - zl < 61Z12 . *This
inequality will be used to get an upper bound for Ln(s). Combining (3-22), (3-10) and
(3-24) we get

14(aI =I- E a(.f)s + nR 1 (r 1 + isI/-n)t
IaI=3

- v/-(a -a I)+ n(a - az)4

< #In 1 3 A 21 1n' -4A
( -a() 3 -+ ( -

for JIs < n1/ 2 A. Since A > 1/3 the r.h.s. of (3-26) converges to zero as n -. o. Thus we
can find N2 such that for n > N2, IZn(a)I < 1/2 for all jiI 5 n 1/ 2 - and hence

(3-27) <6 3,1 2~' + 2a43

Therefore for n> N2 ,

J2 On(sI2(ra LR(.) 1 1/
(21r)r/2 e(p(_1nl/3A 2,n,)L a

< V20s ,r)I'/2 JX ex(- IV24i(r),$) I Ln(a) I ci

(2)m/2  II,12 2

=0(1/n).

The proof of Theorem 3.2 is now complete.

Remark 8.5. We now compare the conditions imposed in Theorem 3.1 and Theorem
3.2. We have already remarked that Theorem 3.2 is valid for sequences {y,j which may not
converge to zero. Condition (A) is similar to Condition(b). Condition (B) and Condition
(a) are the same if y,, --+ 0. Conditions (C) and (D) imply Condition (c) when yn~- 0.
Thus Theorem 3.2 not only generalizes Theorem 3.1 but also weakens Condition (c).
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Remark 3.6. We only require the weaker condition that the eigenvalues of V 2Ik(T )
are bounded below by /2 for all n > 1, in the proof of Theorem 3.2. The stronger Condition
(B) of Theorem 3.2 allows us to obtain further refinements of the expression (3-6) as stated
in the next corollary.

Corollary 3.7. Let {T, n > 1} be a sequence of nonlattice random vectors satisfying
conditions (A), (B), (C) and (D) of Theorem 3.2 for some sequence {yn} of random vectors
in Rm. Suppose that yn converges to y as n --+ oo and n6 11 yn-y 11 _ 1, for some 0 < 6 < I
and for all n > 1. Let E(Tn/n) = y and Cov(T,,/vn) = En be a positive definite matrix.
Then

(3-28) (y,) -2)/ 2 I l/ 2 exp(-n-y,(y,))[1 + 0(11 Yn - Y II)]

The proof of Corollary 3.7 is identical to the proof of Corollary 3.8 of Chaganty and
Sethuraman(1987) and hence is omitted.
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4. Large deviation local limit theorems
for lattice random vectors

The study of large deviation local limit theorems for i.i.d. lattice random variables
was initiated by Richter(1957). Since then numerous authors including Moeskvin(1972),
McDonald(1979) have extended these results for sums of independent, not necessarily
identically distributed lattice random variables. Recently Chaganty and Sethuraman(1985)
obtained generalizations to arbitrary sequences of lattice random variables and applied
these results for statistics appearing in nonparametric inference. In a subsequent paper,
Richter(1958) proved analogous theorems in the multi-dimensional case. The purpose of
this section is to obtain local limit theorems for arbitrary lattice valued random vectors
in the area of large deviations analogous to the results of Section 3. We begin with some
notation.

Let (e1 ,...,em) be a basis for Rm. Let L,, be the lattice {: = h,n(njej +
". + nmem), n1s are integers }, where (h,. n _ 1} is a sequence of real numbers. Let

{T, n > 1} be an arbitrary sequence of nondegenerate random vectors defined on the
lattice L.. Let {y,.} be a sequence of vectors such that nyn, is in L,., for all n > 1 and
let 4n, 0,, be as defined as in Section 3. Assume that 0,(z) is analytic in the region f1",
where n1 I {z + iy : z E (-a,a),y E R}. For the lattice random vectors T we have the
following theorem, which is analogous to Theorem 3.2 of Section 3.

Theorem 4.1. Let T, be a lattice valued random vector taking values in L,, for
n> 1. Assume that Conditions (A), (B) of Theorem 3.2 and Condition (C") stated below
hold for a sequence {y,,, n 1} of vectors, where n Y,, E L,.

(C") There exists q7 > 0 such that for any 6, 0 < 6 <,r,

(4-1) i Real(Gn(t)) = min[ReaJ(Gn(61)), Real(Gn(-61))&<lIIl,I /l1,.I

for all n > 1, where G,(t) = ( + i < t, V0,(,r,) > -0,(,r + it) and V70(r.) = ,,.
Further amume that the span h. of the lattice L,, is equal to 0(n-P) for p > 0. Let
-,,(u) = sup.eI.[< u, > -t,,(a)]. Then

(4-2) ()l, = ni)) = 1(-nyn(Yn))[1 + 0(1/n)].
In (21r)m/2 IV2 On (Irn) 11/ 2 eXP(-',(,) 1+01n]

Proof. Let r. be such that VW,1(r) = y,, for n _: 1. By definition
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(4-3) 4s(rn + it) - j exp(< r,+it, >)Pr(Tn=

for (r, + it) E flt m . Multiplying both sides by exp(- < rn + it, nyn >) and integrating
over the region Bn = {(t1,...,tn) it31 < r/Ihn,for all j), we get

Pr(Tn = nyn) = I ~l-.Pr(, n.) jhj- exp(-n < r, + it, y, >) 0,n(rn, + it) dt

() 27r' fB.(4-4) il

= () ' () exp(-n-t.(y.)) In,
nm/2 (27)M/ 2 IV2), (r) I1L/2

where

In = (2)I/2 exp(nny7 n (Y) - n < rn + it, yn >) tn(rn + it) dt
(4-5) 21r2 )i/2 II

( n nm/ 2 jV2 jpnrt)j1/2 f exp(-nGn(t)) dt.

(2ir)m/2 [B

Imitating the proof of Theorem 3.2 and noting that

(4-6) J N(r,, + it) /ndt h< 0
__ (___d__ (2w)- " =' ( )

fe. I nr)I - IhnIm

we can show that In = 1 + 0(1/n). The proof of Theorem 4.1 is completed substituting
this in (4-4).
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