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ABSTRACT

The electron beam in a free electron laser (FEL) becomes

axially modulated at the optical wave length of the FEL radiation.

This electron beam passed through a gas may produce intense

Cerenkov radiation. The effects of the radial and axial

dimension of the electron bunches on the radiation are explored.

M



I. Background

In several publications,1 ,2 we have explored the coherent

Cerenkov radiation produced by electron beam bunches in a

dielectric medium, such as air. The radiation from a single

electron is weak, yielding of the order of ten optical photons

per meter in air. The beam bunches from an r.f. accelerator,

with 1011 electrons per bunch, radiate coherently at low

frequencies which allows radiation in the microwave range. The

factor of 104 loss, occurring because the intensity is

preportional to the frequency, is more than offset by the

increase resulting from coherence. The coherent radiation tends

to cancel at higher frequencies, in which the wavelength of the

radiation is smaller than bunch size. The size is about 1 cm for

the bunch from an S-band accelerator implying a maximum radiated

frequency of about 30 G Hz.

II. Basic Formulation

The electron beam from a free electron laser (FEL) offers

the possibility of observing and using coherent Cerenkov

radiation at optical frequencies and their relatively high output

power. The electron beam in the FEL, after interacting with the

wiggler and radiation fields, must become modulated in the axial

direction. This "wasted" electron beam, usually stiff because it

is relativistic, could maintain its modulation, pass into a gas

cell and produce coherent Cerenkov radiation. The resulting

radiation could be used to diagnose the electron beam modulation.

At higher currents the radiation intensity might be a significant
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power source, although, breakdown of the gas would be a

limitation. Hollow dielectric wave guides, successful for the

microwaves 5 , have not been used in the optical range, but could

possibly be used to avoid problems associated with passing the

beam directly through the dielectric medium.

III. Cerenkov Radiation from Charges and Charge Distributions

Frank and Tamm 6 deduced the power radiated by a charge

moving at velocity v in a medium in which the radiation velocity

is c, and v>c. The radiation velocity in free space is co and we

let cosec - c/v, where c - (E) - 1 / 2 and co is the free space

value, the radiation is produced in a cone propagating at an

angle ec with respect to v. The radiation has a continuous

spectrum, and in the frequency range dw, the radiated power for

an infinite path length is

) =V 2 2 2

d - q sin(ec kd ), (

where

F(k) - q JJle P (C4)dv, (2)

and Pc(r) is the charge density evaluated in the lab coordinate

system at t-o. The vector k is in the direction of the emitted

radiation and k - w/c. F(k) may be called the form factor of the

charge distribution, and it is normalized to be unity in the

limit k - o. For a point charge F(k) is identically one for all

values of k. The actual forms of Eq.1 and 2 are those given in

Ref.1,2 and reduce to the Frank and Tamm results if F - 1.
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For a periodic series of charge bunches, the corresponding

derivation predicts radiation appearing at harmonics w of the

bunch angular frequency wo, with the power given by

P(w) = 1% o sin 2 e F2 ()q 2 (3)

for an infinite path length. Here q and P(M) are the charge and

the power radiated per bunch. F(k) is still defined by Eq.2, and

in this periodic case, the integration is carried out over a

single bunch. Eq.3 is derived by completely classical reasoning

and has been confirmed 1 ,7 for radiation in the microwave range

for bunch sizes about 1 cm in length and emitted radiation up to

30 GHz. In the optical range where quantum effects might be

expected, Eq.1 is satisfied for point charges (with F-i). We

assume that the Eq.3 holds in the optical range. The charge

distribution must be specified to proceed. Let s2-x 2 +y2 and

po(r) - pr(s) PL(z) (4)

With this form for po(r), the form factor becomes

4F( ) - F r(ks ) F z(k Z ) (5)

The charge per bunch, q is

q - I t/v (6)



where I is the current, 9 is the spacing between bunches, v is

the bunch speed.

Letting N be the harmonic number, the power radiated per

bunch is

P(w) - irN v sin 2 c i 2 F2  (7)

which depends on the current in the bunch, not on the total

charge. Also, the radiation is more efficient for large N if the

form factor F allows such high harmonics. Finally, the

efficiency increases with I, because the beam power is

proportional to I but the radiated power varies as 12.

To consider the efficiency for radiation further, Eq.7 may be

manipulated. The energy radiated per unit length by one bunch is

P/v, while the energy required to form the bunch is qV or I1V/v,

where V is the accelerating voltage in Volts. If the radiating

medium is of length L, we may form the dimensionless ratio

E(radiated)/E(beam) which from Eq.6 become

E(rad)/E(beam) - v N Z IL 2 2 (8)
o V I c0si 0cF

wnere Zo is the impedence of the medium, i.e., Zo - (V/c) I/ 2 .

Let I-10 2 A, V-10 8 Volts, sinec-10 - 2 , F-I L-1 m and j-10-6 m. Then

E(rad)/E(beam) is about 10%. Thus fairly high efficiency for
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radiation may be achieved for possible values of L/i, and

extremely high efficiency could occur if i, the beam period, is

in the optical region, as realized in a free electron laser. The

main problem is the small value of F which results for a wide

beam.

IV. Specific Considerations for an FEL Beam.

The Equations developed (Eq.7,8) describe the radiation by a

periodic electron beam. The main problem comes from the form

factor F which describes the charge distribution. For an FEL,

the axial charge distribution is modulated at the optical wave

length, of the order of microns, but the radial beam dimensions

may be as large as millimeters. Then F, which describes

diffraction, may be very small. To proceed, we consider a

modulated beam, in which PL(z) in Eq.4 is given by a cosine

function, which restricts harmonic production to N - 1. Thus,

PL(z) - 1 + A cos(Kz) (9)

We may let Pr(s) be axially symmetric, in the form of a uniform

disc of radius r, or a gaussian in the form of exp(-s 2 /a2 ).

For either case, Eq.9 yields

(k 6  + A6k + 6k (10)

From the general considerations of Ref.1,2, the vector k is at

an angle ec to the beam axis, the radiation at any frequency
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stays in phase with the electron bunch, and ks - k sin 0c.

From Eq.10 with kz = K, the radiation matches the periodicity of

the electron beam, and higher harmonics in Eq.9 would give

kz = NK. Note that because w = ck for the radiation and wo = vK

for the beam, and kz - k cos Oc we have, setting kz = NK, cos

.c - c/v gives w = Nwo . This means that the Cerenkov radiation,

in the medium with velocity c, has the same frequency as the FEL

radiation in vacuum, or an integer multiple thereof.

For the disc of radius r,

Fr (ks )  2J 1 (ksr)/ksr

For the gaussion radial distribution,

-k 2 a/
Fr(k s ) = e s . (12)

Both form factors arise from a non-zero radial distribution of

charge, and both yield a great suppression of radiation from

diffraction from a finite source when the radius parameter (r or

a) is many times larger than the wave length of the radiation.

If the beam radius parameters in Eq.11 and 12 are I0- 3 m, the

radiation has A = 10- 6 m and Oc - 1.30 for air, and is very small

for the gaussian, because ln Fr2 = -5.09xi0 3 . For the disc, ksr

a 141.5 and Fr2 = 8.79x10-7 if the envelope of the oscillating

function of Eq.11 is considered.
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To conclude this section, we substitute the results of Eq.9,

10 into Eq.7 to obtain the power radiated per (optical) bunch of

the electron beam

*Tf2 2 2
P(w) - Nv sin ec I A2 F2 (k ) (13)

In this form the parameter A describes the axial modulation of

the charge according to Eq.9. If harmonics other than N-I are

considered, Eq.9 becomes a Fourier series and depends on N.

V. Enhancement of FEL Cerenkov Radiation

The previous section shows that the FEL electron beam,

because of its short axial modulation length is potentially an

efficient radiator but a wide radial dimension may severely limit

the radiation, by diffraction. Eq.11, 12 are identical to

optical diffraction by uniform and gaussian shaded apertures, but

the Cerenkov condition requires the vector k to be on the

Cerenkov cone, which picks out a narrow ring far out on the

circular diffraction pattern. The radiation could be increased

. at least three methods (a) concentration of the same current

into a smaller radius, (b) passing the beam through an aperture,

which would decrease the current but increase the form factor,

and (c) bending the beam in a magnet. The last two are

considered in more detail below

A. Radiation Enhancement - Aperture

Let the beam pass through an aperture of small radius r'

The gaussian beam then becomes a uniform disc with a form factor

-8-
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given by Eq.11 with r' replacing r. Using the envelope form

2J1 (x)/x -- (8/7rx 3 )1 /2,

PA 8 (r ) +k2 a2/4A
3 e s (4i(ksr ) a (14)

where PA and P are the powers with and without the aperture. The

power increase may be very large, but only because the gaussian

originally caused strong suppression.

For the disc beam, the result is

PA (15)
P r

There is a loss of power for the disc, because the square of the

form factor is proportional to (r,)-3 but q2 varies as (r )4

B. Radiation Enhancement-Deflected Beam

Let the beam velocity be deflected by an angle ec by a

magnet. The planes of the charge discs will be unchanged so that

the normal to the disc will be at an angle ec to the velocity.

Part of the Cerenkov cone will then be perpendicular to the disc

with no difiraction. Let 0 be the azimuth angle of k in the

Cerenkov cone, relative to the direction in which k is

perpendicular to the disc. As the direction of k changes, the

first diffraction null occurs for

-! 1.22 (16)
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The fraction f of the Cerenkov cone within this first diffraction

lobe is then approximately

f 1.22 A 1
2 irk --' 2r sin e (17)

For the given X, r and e0 , f - 4.28 x 10-3.

The effect is that this small fraction f of the cone

produces radiation, which is relatively strong, with Fr2 - 1 in

this region, as opposed to Fr2 - 8.79 x 10- 7 for all the cone of

the undeflected beam. Thus the power output is enhanced greatly

over the diffraction-suppressed radiation without the magnetic

deflection.

VI. Summary

The modulated beam from an FEL will produce Cerenkov

radiation if it passes through air, if the energy is above

threshold. This radiation is potentially very strong, because

the electron bunches radiate coherently and the efficiency

increases with frequency. Realistic beams pose a problem because

the relatively large radial dimensions result in diffractive

suppression of the radiation. In the text, two methods are

considered to alleviate the diffraction loss-passing the beam

through an aperature, and bending it in a magnetic field. The

latter method seems more promising for the assumed beam

parameters.
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These calculations are based on classical electrodynamics.

The results are verified in the usual point particle Cerenkov

effect in the optical range, and coherent emission by beam

bunches in the microwave range. But here, a new process is

explored-coherent Cerenkov emission but in the optical range.

Experiments should be done, to explore the physics in this range,

as well as provide diagnostics for FEL beams.
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Figure 1. The modulated bunches produce Cerenkov radiation, but

a relatively large radius produces diffraction losses.

Figure 2. The charge bunches are bent in a magnetic field, which

changes the direction of v but leaves the plane of the

disc unchanged.

Figure 3. The ray shown by k is on the Cerenkov cone and normal

to the disc, so radiation is strong. This strength

will persist out to an angle e such that diffraction

produces a null. Thus part of the Cerenkov cone

produces strong radiation.
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