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the four threefold rotation axes, and the three fourfold rotation axes, respectively.
The permutation groups of the vertices of the cube and icosahedron contain only
even permutations which leads to a natural pairing of their chiral ligand partitions
according to equivalence of the corresponding Young diagrams upon reflection
through their diagonals. The two lowest degree chirality polynomials for the cube
have degree 4 ind can be formed from two degree 4 generating polynomials f
and g through the relationships -2g and f-2g where f and g measure the effects
of the S6 Improper rotation and C4l proper rotation axes, respectively. The four
lowest degree chiral ligand partitions for the icosahedron have degree 4 and lead
naturally to a single degree 4 chirality polynomial with 120 terms of the general
type (x-y)2 (z-w)2 . This chirality polynomial for the icosahedron cannot be broken
down into simpler generating polynomials in contrast to the lowest degree chirality
polynomials for the octahedron and cube. This appears to relate to the origin
of the icosahedral group from the simple alternating group A5 . The full icosahedral
chirality polynomial can be simplified to give a chirality polynomial for the chiral
boron-monosubstituted ortho and meta carboranes of the general formula
B2 C10 H1 1 X.
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Abstract

' The lowest degree chirality polynomials for the regular octahedron, cube,

and regular icosahedron are -discussed. All three of these regular polyhedra are

chirally degenerate since they have more than one lowest degree chiral ligand

partition by the Ruch-Schanhofer scheme. The two lowest degree chirality polynom-

ials for the octahedron have degree 6 and can be formed from three degree 3

generating polynomials f, g, and h through the relationships f(g+h) and f(g-h) where

f, g, and h measure the effects of the three separating reflection planes (?),

the four threefold rotation axes, and the three fourfold rotation axes, respectively.

The permutation groups of the vertices of the cube and icosahedron contain only

even permutations which leads to a natural pairing of their chiral ligand partitions

according to equivalence of the corresponding Young diagrams upon reflection

through their diagonals. The two lowest degree chirality polynomials for the cube

have degree 4 and can be formed from two degree 4 generating polynomials f and

g through the relationships -2g and f-2g where f and g measure the effects of

the S6 improper rotation and C4 proper rotation axes, respectively. The four

lowest degree chiral ligand partitions for the icosahedron have degree 4 and lead

naturally to a single degree 4 chirality polynomial with 120 terms of the general

type (x-y)2(z-w)2. This chirality polynomial for the icosahedron cannot be broken

down into simpler generating polynomials in contrast to the lowest degree chirality

polynomials for the octahedron and cube. This appears to relate to the origin

of the icosahedral group from the simple alternating group A5 . The full icosahedral

chirality polynomial can be simplified to give a chirality polynomial for the chiral

boron-monosubstituted ortho and meta carboranes of the general formula

B2C1 0 HjjX.
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1. Introduction

The geometrical and algebraic theories of chirality 1,2,3,4, 5 ,6 , 7 ,8 are important

for the understanding of chemically significant pseudoscalar measurements such

as optical rotation and circular dichroism. Such theories have the following

objectives:

(1) Determination of the ligand partitions for a given achiral molecular skeleton

which lead to chiral systems, namely how unsymmetrical must a ligand partition

be before all improper rotation symmetry elements Sn (including reflection planes

Sla and inversion centers S2 = i) of an achiral skeleton are destroyed. This leads

naturally to the idea of chiral dimensionality,1 Xd = nl/I C 1, for an achiral skeleton

having n sites and point group G; the chiral dimensionality corresponds to the

number of enantiomer pairs when each site of the skeleton has a different ligand

or substituent.

(2) Determination of mathematical functions (chirality functions) by which the

magnitude and sign of a given pseudoscalar property (the dependent variable) can

be calculated for a given skeleton using parameters which depend only upon the

ligands located at specific sites on the skeleton (the independent variables). The

chirality polynomial of lowest degree in the Ruch-Sch.nhofer scheme4 ,5 is parti-

cularly significant since by using algebraic invariant theory Meinkahn 9 ' 10

has shown that only the lowest degree chirality polynomials for a given skeleton

are required to have the desirable property of depending only upon the differences

between the ligand parameters. For this reason this paper will be concerned only

with the chirality polynomials of the lowest degree.

An essential feature of chirality algebra is the dissection of a molecule into

a collection of ligands and an underlying skeleton. This terminology refers to

a coordination compound of the generic type MLn (M = central atom, generally
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a metal; Ln = n ligands not necessarily equivalent). However, with no essential

changes in the mathematics the theory can also consider organic skeletons, poly-

hedral boranes, or metal cluster compounds having n substituents or ligands. As

in my previous papers1 ,8 ligand partitions are represented by symbols of the type

(al b l , a2b2,.. .,ak b k ) where ak and bk are small positive integers indicating bk

sets of ak identical ligands and am > am+1 (1 < m < k).

The essential ideas of chirality algebra were first presented by Ruch and

Schdnhofer 3 ,4 and have been reviewed by Ruch2 at an elementary level and by

Mead5 at a more advanced mathematical level. Chirality functions have been

tested experimentally for the methane, 1 1 ,12 allene, 1 3 polarized rectangle8 (e.g.,

[2,2]-metacyclophane 1 4 ,1 5 and 2,2-spirobiindane1 6 ,1 7 skeletons), cyclopentane, 18

and ferrocene 19 skeletons with varying degrees of success. My own papers relate

chirality algebra to the framework groups8 of Pople 20 and use concepts from

permutation group theory and Meinkdhn's9 , 10 development of algebraic invariant

theory to study of chirality in transitive skeletons1 with particular emphasis on

a group theoretical basis for the extensively discussed4 ,5,7, 2 1 idea of qualitative

completeness. This paper extends the ideas of the previous paper l to those

necessary for the study of the lowest degree chirality polynomials of three of

the four regular polyhedra with non-trivial chirality functions, namely the octa-

hedron, cube, and icosahedron. In this connection the structures of the previously

reported lowest degree chirality polynomials of the octahedronl,3,4 and the cube3

are discussed and that of the icosahedron is presented for the first time. The

octahedral skeleton is important in six-coordinate complexes ML 6 , the cubic skele-

ton is important in cubane and inorganic analogues, and the icosahedral skeleton

is important in icosahedral boranes and carboranes such as substitution products

of the three isomers of C2 B10 H 12.

J.
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2. Background

The determination of the lowest degree chirality polynomial for a given skeleton

having n sites involves the following two steps which are discussed in detail else-

where5 ,6, 8 :

(1) The chiral ligand partitions are determined by considering the point group

G as a subgroup of the symmetric grouP n and calculating by standard group theo-

retical procedures2 2 , 2 3 ,2 4 , 2 5 the number of times that the chiral representation

r * of G appears when each irreducible representation of Pn is restricted to elements

of G. In this connection the chiral representation r, has +1 characters for proper

rotations and -1 characters for improper rotations. Character tables for the

symmetric groups Pn are required for this step.2 6 ,2 7 , 28

(2) The chirality polynomial X for a given chiral ligand partition (alb , ab 2

akbk) found in the above step has a term of degree g for each element of G

corresponding to its effect in permuting the sites represented by an appropriately

selected monomial M of degree g. These terms have positive signs for proper

rotations and negative signs for improper rotations. The chirality polynomial

can thus be represented schematically as

X(albl, a2 b2, ... , akbk ) = G*M (1)

The "star" operation "s" in equation 1 refers to a sum of all of the permutations

of the sites represented by M by all of the elements in G with positive signs for

proper rotations and negative signs for improper rotations.6

The set of elements in the point group G are conveniently described by its

cycle index Z(G) which is defined as follows1 ,8, 29 :

! . - , . , - .- .- .- .- .- .. .. . .-... . .. ,.> ..,y .% ..... '.,.,.',.; ;, ;.--.--.. ,%;- " .. ,. .- '. ......- .. . '. '. -. - . 1
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1 i-c ciI ci2 ci2

Z(G) - i =1aixl x2 ...xn (2)

The variables in equation 2 are defined as follows:

IGI -number of elements in G

n - number of sites in the skeleton

c = number of terms in the cycle index

ai = number of elements in the permutation group having the indicated cycle

structure

xk = dummy variable referring to cycles of length k

Cik = exponent indicating the number of cycles of length k in term i

The parity of a permutation is odd or even depending upon whether the total number

of cycles of even length in the permutation is odd or even, respectively. A group

containing only even permutations may be called an even permutation group; import-

ant examples of even permutation groups encountered in this paper are the groups

of the cube and the icosahedron.

Another fundamental idea of chirality algebra is that of depicting ligand parti-

tions as a collection of boxes called Young diagrams.3 0 A Young diagram for
b l,  b2 abk) has bi rows where the first b1 rows havea ligand partition (ai ,a2 ... ,' ak

al boxes, the next b2 rows have a2 boxes, etc. Reflection of a Young diagram

through its diagonal gives its dual Young diagram, e.g.

ref lect (3)

_____________________

(32) (221)

.No.
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A pair of Young diagrams consisting of a Young diagram and its dual is called

a dual pair. A Young diagram which is identical to its dual is called self-dual,

e.g.

reflect % (4)

(312) (312)

A balanced set of Young diagrams or corresponding ligand partitions contains

only dual pairs and self-dual Young diagrams.

Important properties of ligand partitions and their Young diagrams are their

degrees and their dimensions. The degree g of a ligand partition can be determined

from the corresponding Young diagram by the following sum over all of its columns:

1 m
9 g. ck(ck-1) (5)

where c k is the length of column k and m is the number of columns. The degree

g as determined by equation 5 corresponds to the degree of the lowest degree

chirality polynomial. The dimension of a partition of n ligands is the dimension

of the corresponding irreducible representation of the symmetric 30 group Pn- The

sum of the dimensions of the chiral ligand partitions for a given skeleton with

n sites is its chiral dimensionality, Xd, which may be calculated by the following

equation:

Xd = nI/ IGI (6)

This equation is useful for checking the calculations of the ligand partitions and

JM
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indicating the size of the total set of chiral ligand partitions. The chiral dimension-

alities of the regular polyhedra of interest in this paper, namely the tetrahedron,

octahedron, cube, icosahedron, and dodecahedron are 1, 15, 840, 3991680, and

approximately 2.0274183 x 1016, respectively. The regular dodecahedron is excluded

from detailed consideration in this paper not only by its unmanageably large chiral

dimensionality but by the intractably large size and complexity of the required

character table for the symmetric group P2 0 of order 20M 2.432902 x 1018. Study

of the regular dodecahedron is only feasible by using computers with the prior

need for development of software to handle character tables for groups as large

as P20 - Such efforts do not yet appear warranted since the first regular dodeca-

hedral skeletons, namely dodecahedrane derivatives,3 1 ,32 have only recently been

prepared and still are only available in very limited quantities.

Study of the chirality polynomials of the cube and icosahedron is facilitated

by the even permutation groups of these skeletons. In this case the following

theorem is used:

Theorem: The chiral ligand partitions of a skeleton having an even permutation

group form a balanced set.

The proof of this theorem depends upon the observation that irreducible represent-

ations of the symmetric group Pn which correspond to ligand partitions having

dual Young diagrams have the same characters for all even permutations. 2 6 , 30

Therefore, if the permutation group is an even permutation group with no odd

permutations, both members of a dual pair must appear equally in the representation

of Pn subduced by G.

In this paper the sites of the regular polyhedra are labelled by capital letters

as indicated in Figure 1. For clarity the same letters will also be used to represent

the parameters for the ligands located at these sites.

The chirality polynomial for the tetrahedron is well known2,3,4 ,5,6 and using

.4

, . : ,'-'4 - ; ,"€ - "; "-%";-%.' ,".'","¢ • , " .",'""' " ,-"-'., . . . . . . . ',-' , . " , ." '" ." ."," -' -.'" ."-" ,,"" - .o
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the notation in this paper can be written as follows:

X(14 )(Td) = (A-B)(A-C)(A-D)(B-C)(B-D)(C-D) (7)

In the context of this paper this chirality polynomial may be regarded as trivial,

and therefore is not discussed further. Also the lowest degree chirality polynomial

for the trigonal antiprism (framework group D3d[3 a d(L2)]),8 although not that

of a regular polyhedron, is significant in this paper for indicating the effect of

an S6 axis, such as in a cube. This degree 2 polynomial corresponds to a chiral

ligand partition (42) and can be written as follows:

X(42)(D3d) = (A-B)(D-F) - (A-C)(D-Ei (8)

3. The Octahedron

The chiral dimensionality of the octahedron is 61/ IOh = 720/48 = 15 and the

octahedron has two chiral ligand partitions, namely (313) and (23) of dimensions

10 and 5, rer. ctively. Both of these chiral ligand partitions are of degree 6

indicating that the lowest degree chirality polynomial contai.1s terms corresponding

to both chiral ligand partitions. A polyhedron, such as the octahedron, having

more than one lowest degree chiral ligand partition may be called chirally degen-

erate.

In order to construct the lowest degree chirality polynomial for the regular

octahedron consider the following three degree 3 polynomials:

f(A...F) = (A-F)(B-E)(C-D) (9a)

! . - . • , 0 = . m . m • q • - q . - . - - . . q - . = . . . o



-8-

g(A...F) = (A-B)(B-C)(C-A) + (C-F)(F-E)(E-C) + (A-E)(E-D)(D-A) + (B-D)(D-F)(F-B)

(9b)

h(A...F) = (A-B+F-E)(A-D+F-C)(B-D+E-C) (9c)

The polynomial f measures the effects of the three orthogonal separating8 reflection

planes (ah) of the octahedron. The polynomial g measures the effects of the four

threefold rotation axes (C3 ) of the octahedron noting the following degree 3

chirality polynomial for the the polarized triangle representing the prototypical

C3 axis3 ,4 :

t(A,B,C) = (A-C)(B-A)(C-B) (10)

Similarly the polynomial h measures the effects of the three orthogonal C4 axes

of the octahedron noting the following degree 3 chirality polynomial for the

polarized square8 representing the prototypical C4 axis:

q(A...D) = (B-A)(D-C)(A-C+B-D) (01)

The three linear factors in h (equation 9c) correspond to the (A-C+B-D) factor

in q (equation 11) with the B-A and D-C factors in q corresponding to the factors

in f (equation 9a). The degree 3 polynomials f, g, and h may be called generating

polynomials for the lowest degree chirality polynomials of the regular octahedron

since arithmetic functions of f, g, and h generate these chirality polynomials.

The degree 6 chirality polynomials corresponding to the two chiral ligand

partitions of the octahedron can be constructed from the degree 3 generating

polynomials f, g, and h as follows:
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X(23 )(0h) = f(g+h) = (2)Oh*(a2 b2 cd) (12a)

X(31 3 )(Oh) = f(g-h) = (2)Oh*(a 3b2c) (12b)

In equations 12a and 12b the designations Oh*(a2 b2 cd) and Oh*(a3 b2 c) refer to

the construction of these chirality polynomials by application of the 48 permutations

of Oh to monomials of the forms a2 b2 cd and a3 b2 c, respectively, as outlined gener-

ically in equation 1 where G is Oh and M is a monomial of the prescribed forms.

4. The Cube

The (vertex) cycle index of the cube has the following form:

Z(cube) = x18 + 8x12x3 2 + 13x2 4 + 12x42 + 8x2x6 + 6x14 x22  (13)

The parities of all of these permutations are even indicating that the permutation

group of the cube is even. Therefore, the chiral ligand partitions of the cube

form a balanced set having total dimension 840 corresponding to the chiral dimen-

sionality of the cube (81/ 10h = 40320/48 = 840). These chiral ligand partitions

are listed in Table 1 as dual pairs with minimum degree corresponding to the lower

degree of the two chiral ligand partitions forming a dual pair. The self-dual chiral

ligand partition (4212) is starred.

Table 1 indicates that the cube, like the octahedron, is chirally degenerate

with the two degree 4 lowest degree chiral ligand partitions (42) and (521) corres-

ponding to the following Young tableaux for the labelling in Figure 1:
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A B C GA B D LG

D EH C F (14)

(42) (521)

The degree 4 chirality polynomials for these chiral ligand partitions can be obtained

from the following two degree 4 generating polynomials:

f(A...H) = (A-G)2 [(B-E)(C-F) - (D-E)(C-H)] - (B-H) 2 [(A-C)(D-E) - (C-F)(E-G)]

- (C-E) 2[(A-F)(B-D) - (F-H)(D-G)] + (D-F)2 [(A-H)(B-E) - (C-H)(B-G)]

(15a)

g(A...H) = (A-C)(B-G)(F-H)(E-D) - (A-H)(B-D)(F-C)(E-G) (15b)

Each term of the generating polynomial f consists of a degree 2 factor (e.g.,

[(B-E)(C-F) - (D-E)(C-H)] for six vertices related by an S6 axis resembling the

degree 2 chirality polynomial for a trigonal prism or antiprism (see equation 8)

and a second degree 2 factor (e.g., (A-G)2) corresponding to the two vertices on

this S6 axis. The four terms in the generating polynomial f relate to the four

S6 axes in the cube. Each term of the generating polynomial g consists of a product

of four differences involving diagonals of four (square) faces of the cube related

by the C4 axis. Thus the generating polynomial f reflects the three-fold and six-fold

symmetries of the cube and the generating polynomial g reflects the four-fold

symmetry of the cube.

The degree 4 chirality polynomials corresponding to the two chiral ligand

partitions of the cube can be constructed from the generating polynomials f and

g as follows:
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X(4 2 ) = -2g = (2)0h*(abcd) (16a)

X(521) = f-2g = (2)Oh*(a 2bc) (16b)

The chirality polynomial for the cube given by Ruch and Schanhofer 3  can be

expressed in terms of the generating functions f and g as

X(cube) = af - bg (17)

This chirality polynomial appears qualitatively complete as long as a ' 0 and b :0 2a;

if these inequalities are not satisfied, equation 17 reduces to equation 16a (for

a - 0) or equation 16b (for b = 2a).

5. The Icosahedron

The vertex cycie index of the icosahedron has the following form:

Z(icosahedron) = x112 + 24x12x5 2 + 20x34 + 16x26 + 24x2x1O + 20x6 2 + 15x, 4x24

(18)

The parities of all of these permutations are even indicating that the permutation

group of the icosahedron is even. Therefore the chiral ligand partitions of the

icosahedron form a balanced set having total dimension 121/ ih I = 479,001,600/120

- 3,991,680. These chiral ligand partitions (Table 2) were determined by the

standard group theoretical procedure
5 ,8 using the character tables for the

symmetric group P12 given by Zia-ud-Din. 28

Table 2 indicates that the icosahedron is chirally degenerate like the octahedron
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and cube. The icosahedron thus has four degree 4 lowest degree chiral ligand

partitions, two of the type (921) and two of the type (84). The Young tableaux

for the two (921) chiral ligand partitions are listed below using the labelling in

Figure 1:

A H IF IG IJ 1K II El A I F IG IH I-J IK IL I
B C B D

(921)o (921) m

The chiral ligand partitions (921) 0 and (9 2 1)m correspond to the chiral isomers

of the ortho and meta icosahedral carboranes C2 B10 H1 1 X (Figure 2). The Young

tableaux for the chiral ligand partitions (84)i and (84)o are listed below

A MKC HL 1 1AkLA BJ
F E D LG C MiJlK

(84)i (84)o

In order to obtain these chiral ligand partitions construct the icosahedron from

two nested D3d trigonal antiprisms sharing the C3 axis. Combine the lowest degree

chiral (42) ligand partitions of these trigonal antiprisms in two ways to give (84)

ligand partitions preserving the chirality by not introducing any improper rotation

axes in the combination process. One of these chiral (84) ligand partitions, namely

(84) i, has the four equivalent ligands at vertices of the inner trigonal antiprism

whereas the other chiral (84) ligand partition, namely (84)0, has the four equivalent

ligands at vertices of the outer trigonal antiprism.

These four chiral ligand partitions can be used to construct the lowest degree

L' . . . .. .,. ).- . :.* . . . .. ;. . .. .: : , " . " - 'i I
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chirality polynomial for the icosahedron by the standard group-theoretical pro-

cedure6 '8 which can be represented schematically as follows:

X(icosahedron) = lh*[a2 bc(921)o] + lh*[a2 bc(921)m] + lh*[abcd(84)i] + lh*[abcd(84)oJ

(19)

Since the icosahedral group Ih has 120 elements, the procedure represented by

equation 19 generates 480 terms. Because of the high symmetry of the icosahedron

this is not as forbidding as it might seem and the procedure indicated in equation

19 using monomials derived from the Young tableaux (9 2 1 )o, (9 2 1 )m , (84) i, and

(8 4 )o generates the equation listed in Table 3 for the lowest degree chirality poly-

nomial of the icosahedron. This equation has 120 terms of the general type

(x-y)2(z-w)2 . These 120 terms can be grouped into six sets of 20 terms each. Each

of the six sets is characterized by a common (x-y)2 factor where x and y are para-

meters for ligands at the antipodal vertices related by the inversion operation

("para" vertices in icosahedral carborane nomenclature3 3 ). The six sets of 20

terms arise from the six such pairs of antipodal vertices in the regular icosahedron.

The other factor, (z-w)2 , corresponds to the ligand parameters for a pair of

non-adjacent, non-antipodal vertices ("meta" vertices in icosahedral carborane

nomenclature3 3 ). The alternation of signs in the equation in Table 3 causes the

240 pairs of terms of the type x 2 z2 to cancel out completely in accord with the

fact that the expansion indicated in equation 19 does not use the impossible a2b2

monomial for a lowest degree chirality function. In the equation in Table 3 the

480 terms of the type x2 wz arise from the (921) chiral ligand partitions and the

120 terms of the type xywz arise from the (84) chiral ligand partitions as indicated

in equation 19.

It is instructive to compare the general form of the lowest degree chirality

polynomial of the icosahedron (Table 3) with those of the octahedron (equations
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9 and 12) and the cube (equations 15 and 16). The polynomial f(A...H) for the

cube (equation 15a) and the chirality polynomial for the icosahedron both have

factors of the type (x-y)2 in which x and y are a pair of antipodal vertices. The

remaining factor of a term of the generating polynomial f(A...H) (equation 15a)

resembles the chirality polynomial of the trigonal antiprism (equation 8) which

is the symmetry of the set of six vertices of a cube remaining after removing

a pair of antipodal vertices. However, the same is not true for the icosahedron

chirality polynomial in Table 3. Thus the 20 terms remaining after factoring (A-M)2

from the first 20 terms of the icosahedron chirality polynomial do not resemble

the chirality polynomial for the pentagonal antiprism determined by Ruch and

Schdnhofer. 3 This as well as the inability to decompose the icosahedral chirality

polynomial in Table 3 into a simpler set of generating polynomials similar to f,

g, and h (equation 9) for the octahedron or f and g (equation 15) for the cube may

relate to the fact that the icosahedral group is isomorphic 3 4 to the direct product 3 5

of C2 with the simple3 6 group A5 . The simplicity of A5 appears to have the effect

of mixing up the portions of the lowest degree chirality polynomial of the icosa-

hedron so that it cannot be decomposed into generating functions reflecting its

different symmetries in contrast to the chirality functions of the octahedron and

cube discussed above.

The lowest degree chirality polynomial in Table 3 is rather forbidding for actual

chemical applications although it would be required in the unlikely case of an

icosahedral borane or carborane having a different substituent in each of its twelve

positions. More realistic cases of possible chemical interest are the chiral monosub-

stituted carboranes C2B1 0 H1 1 X in Figure 2. Thus among the four possible ortho

carboranes monosubstituted on boron only one (Figure 2a) is chiral corresponding

to the ligand partition (92 1 )0 above. Similarly among the four possible meta carbor-

anes monosubstituted on boron only one (Figure 2b) is chiral corresponding to the
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ligand partition (9 2 1)m . The single para carborane isomer is not chiral. For both

of the chiral boron monsubsituted carboranes C2B1 0 H-11X in Figure 2 the chirality

polynomial in Table 3 reduces to

X(921)(C 2B10H 1 1X) = (c-b)2 [(x-c)2 + (x-b)2 - (c-b)2 ] (20)

In equation 20 x is the parameter for the substituent X, b is the parameter for

a BH vertex, and c is the parameter for a CH vertex.

Acknowledgment. We are indebted to the Office of Naval Research for support

of this work.

h~4 --



g-16-

LITERATURE REFERENCES

(1) Part 21: R.B. King, J. Math. Chem, in press.

(2) E. Ruch, Accts Chem. Res. 5, 49 (1972).

(3) E. Ruch and A. Schdnhofer, Theor. Chim. Acta, 10, 91 (1968).

(4) E. Ruch and A. Schdnhofer, Theor. Chim. Acta, 19, 225 (1970).

(5) C.A. Mead, Top. Curr. Chem., 49, 1 (1974).

(6) J. Dugundji, D. Marquarding, and I. Ugi, Chem. Scripta, 9, 74 (1976).

(7) G. Derf linger and H. Keller, Theor. Chim. Acta, 56, 1 (1980).

(8) R.B. King, Theor. Chim. Acta, 63, 103 (1983).

(9) D. Meinkdhn, Theo. Chim. Acta, 47, 67 (1978).

(10) D. Meinkshn, J. :hem. Phys., 72, 1968 (1980).

(11) W.J. Richter, B. Richter, and E. Ruch, Angew, Chem. Int. Ed., 12, 30 (1973).

(12) W.J. Richter, H. Heggemeier, H.J. Krabbe, E.H. Korte, and B. Schrader, Ber.

Bunsenes. l'hys Chem., 84, 200 (1980).

(13) E. Ruch, W. Runge, and G. Kresze, Angew. Chem. Int. Ed., 12 20 (1973).

(14) H. Keller, C. Krieger, E. Langer, H. Lehner, and G. Derflinger, Liebigs Ann.

Chem., 1296 (1977).

(15) H. Keller, C. Krieger, E. Langer, H. Lehner, and G. Derflinger, Tetrahedron,

34, 871 (1978).

(16) H. Neudeck, B. Richter, K. Schl6gl, Monatshefte f dr Chemie, 110,931 (1979).

(17) E.H. Korte, P. Chingduang, and W.J. Richter, Ber. Bunsenges. Phys. Chem.,

84, 45 (1980).

(18) W.J. Richter and B. Richter, Isr. J. Chem., 15, 57 (1976).

(19) V. Rapi4, K. Schldgl, and B. Steinitz, Monatshefte fdr Chemie, 108, 767 (1977).

(20) J.A. Pople, J. Am. Chem. Soc.. 102, 4615 (1980).

(21) C.A. Mead, Theor. Chim. Acta, 54, 165 (1980).

'0 * . > '. >r ' : ; ¢' .' ,,' ' ' ' r * , ,



-17-

(22) F.A. Cotton, "Chemical Applications of Group Theory," Wiley-lnterscience,

New York, 1971.

(23) D. Gorenstein, "Finite Groups," Harper and Row, New York, 1968, Chapter

4.

(24) L. Jansen and M. Boon, "Theory of Finite Groups. Applications in Physics,"

North-Holland, Amsterdam, 1967.

(25) S.L. Altmann, "Induced Representations in Crystals and Molecules," Academic

Press, London, 1977.

(26) F.D. Murnaghan, "The Theory of Group Representations," Johns Hopkins,

Baltimore, Maryland, 1938, Chapter 5.

(27) D.E. Littlewood and A.R. Richardson, Phil. Trans. R. Soc. (London) Ser. A,

233, 99-141 (1934).

(28) M. Zia-ud-Din, Proc. London Math. Soc. 42, 340 (1936).

(29) N.G. De Bruin in "Applied Combinatorial Mathematics," E.F. Beckenbach,

Ed., Academic Press, New York, 1976, Chapter 5.

(30) C.D.H. Chisholm, "Group Theoretical Techniques in Quantum Chemistry,"

Academic Press, New York, 1976, Chapter 6.

(31) L.A. Paquette, R.J. Ternansky, D.W. Balogh, and W.J. Taylor, J. Am. Chem.

Soc., 105, 5441 (1983).

(32) L.A. Paquette, R.J. Ternansky, and D.W. Balogh, and G. Kentgen, J. Am.

Chem. Soc.. 105, 5446 (1983).

(33) R.N. Grimes, "Carboranes," Academic Press, New York, 1970.

(34) R.B. King and D.H. Rouvray, Theor. Chim. Acta, 69, 1 (1986).

(35) M. Hamermesh, "Group Theory and its Application to Physical Problems,"

Addison-Wesley, Reading, Massachusetts, 1962, Chapter 2.

(36) F.J. Budden, "The Fascination of Groups," Cambridge University Press, London,

1972, pp. 410-413.



* - ~ t 2fl~T '' ~ ~ L~ - U * 4 N 7-Y *- *

TABLE 1

THE CHIRAL LIGAND PARTITIONS OF THE CUBE

LISTED AS DUAL PAIRS

Minimum
DualI Pair Degree Multiplicity Dimension

(521) + (3213) 4 1 64

(42) + (24) 4 1 14

(431) + (3221) 5 1 70

(513) + (414) 6 2 35

(422) + (3212) 6 2 56

(4212)* 7 2 90

. . . . . . . . . . . * S



TABLE 2

THE CHIRAL LIGAND PARTITIONS OF THE ICOSAHEDRON

LISTED AS DUAL PAIRS

Minimum

Dual Pair Degree Multiplicity Dimension

(921) + (3217) 4 2 320

(84) + (2414) 4 2 275

(831) + (32215) 5 6 891

(913) + (418) 6 4 165

(822) + (3216) 6 8 616

(741) + (32313) 6 12 1408

(62) + (26) 6 4 132

(8212) + (4216) 7 8 945

(732) + (32214) 7 12 1925

(651) + (3241) 7 8 1155

(7312) + (42214) 8 26 2376

(642) + (322212) 8 26 2673

(7221) + (4315) 9 14 2079

(6412) + (42312) 9 24 3080

(632) + (3313) 9 12 1650

(522) + (3223) 9 6 1320

(814) + (517) 10 4 330

(6321) + (43213) 10 46 5632

(5212) + (424) 10 18 1485

(543) + (3321) 10 16 2112

.. - . .. . ' . . .o * o~ ~ o - p



TABLE 2 (Continued)

Minimum
Dual Pair Degree Multiplicity Dimension

(7213) + (5215) 11 14 1728

(5421) + (43221) 11 48 5775

(6313) + (52213) 12 36 3696

(623) + (4214) 12 2 0 1925

(5321) + (43212) 12 40 4158

(43) + (34) 12 10 462

(62212) + (5314) 13 24 3564

(5413) + (5231) 13 28 3520

(5322) + (42212) 13 30 4455

(4231) + (4322) 13 22 2970

(53212)* 14 68 7700

(4222)* 14 28 24

(715) + (616) 15 2 462

(6214)* 16 16 2100



TABLE 3

LOWEST DEGREE CHIRALITY POLYNOMIAL

OF THE ICOSAHEDRON

X(A ... M) =(A-M)
2 [(B-K)2 - (B-H)2 + (B-L)2 - (B-C)2 + (C-L)2

- (C-i)2 + (C-C) 2 - (C-H)2 + (D-C) 2 - (D-K) 2 +(-)

- (D-J)2 + (E-H)2 - (E-L)2 + (E-i)2 - (E-K)2 + (F-j)2

- (F-C) 2 + (F-K)2 - (F-L)2] + (B-i)2 [(A-K) 2 - (A-H)2

+ (A-E)2 - (A-D) 2 + (C-E) 2 - (C-M) 2 + (C-D) 2 - (C-H) 2

+ (C-D) 2 - (C-K) 2 + (C-H) 2 - (C-M) 2 + (L-H)2 - (-)

* + (L-M)2 - (L-K)2 + (F-M) 2 - (F-D) 2 + (F-K)2 - (F-E) 2 ]

+ (C-K)2 [(A-L)2 - (A-i)2 + (A-F)2 - (A-E)2 + (D-F) 2 - (D-M)2

+ (D-E) 2 - (D-i)2 + (H-E)2 - (H-L)2 + (H-i)2 - (H-M)2 + (C-i)2

-(C-F)
2 + (C-M) 2 - (C-L)2 + (B-M)2 - (B-E) 2 + (B-L)2 - (B-F)2 ]

" (D-L)2 [(A-C)2 - (A-K) 2 + (A-B)2 - (A-F)2 + (E-B) 2 - (E-M)2

" (E-F)2 - (E-K) 2 + (i-F)2 - (i-C) 2 + (i-K)2 - (i-M)2 + (H-K)2

* - (H-B)2 + (H-M)2 - (H-C) 2 + (C-M) 2 - (C-F) 2 + (C-C) 2 - (C-B) 2 ]

" (E-C) 2 [(A-H)2 - (A-L)2 + (A-C)2 - (A-B)2 + (F-C) 2 - (F-M)2

" (F-B)2 - (F-L)2 + (K-B)2 - (K-H)2 + (K-L)2 - (K-M) 2 + (i-L)2

* - (i-C)2 + (i-M)2 - (i-H)2 + (D-M)2 - (D-B)2 + (D-H) 2 - (D-C) 2 ]

* (F-H)2 [(A-i)2 - (A-C)2 + (A-D)2 - (A-C)2 + (B-D) 2 - (B-M)2

* (B3-C) 2 - (B-C) 2 + (L-C02 - (L-j)2 + (L-C)2 - (L-M)2 + (K-C) 2

-(K-D)
2 + (K-M)2 - (K-i)2 +(E-M) 2

-(E-C)
2 + (E-i)2 - (E-D)2]



Figure 1: The vertex labellings used for the polyhedra discussed in this paper.

Figure 2: The two chiral icosahedral carboranes C2B10 H1- 1X. Large black circles

indicate the locations of the carbon atoms.
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