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the four threefold rotation axes, and the three fourfold rotation axes, respectively.
The permutation groups of the vertices of the cube and icosahedron contain only
even permutations which leads to a natural pairing of their chiral ligand partitions
according to equivalence of the corresponding Young diagrams upon reflection
through their diagonals. The two lowest degree chirality polynomials for the cube
have degree 4 and can be formed from two degree 4 generating polynomials f
and g through the relationships ~2g and f-2g where f and g measure the effects
of the Sg improper rotation and C,4 proper rotation axes, respectively. The four
lowest degree chiral ligand partitions for the icosahedron have degree 4 and lead
naturally to a single degree 4 chirality polynomial with 120 terms of the general
type (x-y)2(z-w)2. This chirality polynomial for the icosahedron cannot be broken
down into simpler generating polynomials in contrast to the lowest degree chirality
polynomials for the octahedron and cube. This appears to relate to the origin
of the icosahedral group from the simple alternating group As. The full icosahedral
chirality polynomial can be simplified to give a chirality polynomial for the chiral
boron-monosubstituted ortho and meta carboranes of the general formula
B2C1oH11X.
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Abstract

\3 The lowest degree chirality polynomials for the regular octahedron, cube,
and regular icosahedron are -discussed. All- three of these regular polyhedra are
chirally degenerate since they have more than one lowest degree chiral ligand
partition by the Ruch-Schdnhofer scheme. The two lowest degree chirality polynom-
ials for the octahedron have degree 6 and can be formed from three degree 3
generating polynomials f, g, and h through the relationships f(g+h) and f(g-h) whﬁr:
f, 8, and h measure the effects of the three separating reflection planes Tfh),
the four threefold rotation axes, and the three fourfold rotation axes, respectively.
The permutation groups of the vertices of the cube and icosahedron contain only
even permutations which leads to a natural pairing of their chiral ligand partitions
according to equivalence of the corresponding Young diagrams upon reflection
through their diagonals. The two lowest degree chirality polynomials for the cube
have degree 4 and can be'\?ormed from two degree 4 generating polynomials f and
g through the relationships -2g and f-2g where f and g measure the effects of
the Sg improper rotation and C4 proper rotation axes, respectively. The four
lowest degree chiral ligand partitions for the icosahedron have degree 4 and lead
naturally to a single degree 4 chirality polynomial with 120 terms of the general
type (x-y)2(z-w)2. This chirality polynofnial for the icosahedron cannot be broken
down into simpler generating polynomials in contrast to the lowest degree chirality
polynomials for the octahedron and cube. This appears to relate to the origin

of the icosahedral group from the simple alternating group Ag. The full icosahedral

chirality polynomial can be simplified to give a chirality polynomial for the chiral

boron-monosubstituted ortho and meta carboranes of the general formula

B2Cq0H11X.
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1. Introduction

The geometrical and algebraic theories of chirality1r2v3r4'5r6r7'8 are important
for the understanding of chemically significant pseudoscalar measurements such
as optical rotation and circular dichroism. Such theories have the following
objectives:

(1) Determination of the ligand partitions for a given achiral molecular skeleton
which lead to chiral systems, namely how unsymmetrical must a ligand partition
p be before all improper rotation symmetry elements Sp (including reflection planes
S4=0 and inversion centers Sp= i) of an achiral skeleton are destroyed. This leads

naturally to the idea of chiral dimensionality,1 Xq = n!/| G |, for an achiral skeleton

having n sites and point group G; the chiral dimensionality corresponds to the
number of enantiomer pairs when each site of the skeleton has a different ligand
or substituent.
(2) Determination of mathematical functions (chirality functions) by which the
magnitude and sign of a given pseudoscalar property (the dependent variable) can
be calculated for a given skeleton using parameters which depend only upon the
ligands located at specific sites on the skeleton (the independent variables). The
chirality polynomial of lowest degree in the Ruch-Schdnhofer scheme45 s parti-
cularly significant since by using algebraic invariant theory Meink&hn9,10

has shown that only the lowest degree chirality polynomials for a given skeleton H
are required to have the desirable property of depending only upon the differences
between the ligand parameters. For this reason this paper will be conce-rned only
with the chirality polynomials of the lowest degree.

An essential feature of chirality algebra is the dissection of a molecule into

a collection of ligands and an underlying skeleton. This terminology refers to

a coordination compound of the generic type ML, (M = central atom, generally
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a metal; Lp = n ligands not necessarily equivalent). However, with no essential
changes in the mathematics the theory can also consider organic skeletons, poly-
hedral boranes, or metal cluster compounds having n substituents or ligands. As
in my previous papers"r8 ligand partitions are represented by symbols of the type

bz,...,akbk) where ay and by are small positive integers indicating by

(a1b1, aj
sets of ay identical ligands and ap, > am+q (1<m <k).

The essential ideas of chirality algebra were first presented by Ruch and
Schdnhofer3:4 and have been reviewed by Ruch? at an elementary level and by
Mead> at a more advanced mathematical level. Chirality functions have been
tested experimentally for the methane,‘”r12 allene,13 polarized rectangle8 (e.g.,
[2,2]-metacyclophane14r15 and 2,2’-spirobiindane16r17 skeletons), cyclopentane,18
and ferrocene19 skeletons with varying degrees of success. My own papers relate
chirality algebra to the framework groups8 of Pople20 and use concepts from
permutation group theory and Meink8hn’s3:10 development of algebraic invariant
theory to study of chirality in transitive skeletons1 with particular emphasis on
a group theoretical basis for the extensively discussed45,7,21 jdea of qualitative
completeness. This paper extends the ideas of the previous paper‘1 to those
necessary for the study of the lowest degree chirality polynomials of three of
the four regular polyhedra with non-trivial chirality functions, namely the octa-
hedron, cube, and icosahedron. In this connection the structures of the previously
reported lowest degree chirality polynomials of the octahedron1:3/4 and the cube3
are discussed and that of the icosahedron is presented for the first time. The
octahedral skeleton is important in six-coordinate complexes MLg, the cubic skele-
ton is important in cubane and inorganic analogues, and the icosahedral skeleton

is important in icosahedral boranes and carboranes such as substitution products

of the three isomers of C2B1gH12.
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2. Background

The determination of the lowest degree chirality polynomial for a given skeleton

having n sites involves the following two steps which are discussed in detail else-

where>/6,8;

(1) The chiral ligand partitions are determined by considering the point group
G as a subgroup of the symmetric group P and calculating by standard group theo-
retical procedure522'23'24125 the number of times that the chiral representation
'+ of G appears when each irreducible representation of Py, is restricted to elements
of G. In this connection the chiral representation T's has +1 characters for proper
rotations and -1 characters for improper rotations. Character tables for the
symmetric groups P, are required for this step.25r27:28

(2) The chirality polynomial X for a given chiral ligand partition (a1b1, azbz,
coer akbk) found in the above step has a term of degree g for each element of G
corresponding to its effect in permuting the sites represented by an appropriately
selected monomial M of degree g. These terms have positive signs for proper
rotations and negative signs for improper rotations. The chirality polynomial

can thus be represented schematically as

X@{?1, 222, ..., 3,0 = G*Mm )

The "star" operation in equation 1 refers to a sum of all of the permutations
of the sites represented by M by all of the elements in G with positive signs for

proper rotations and negative signs for improper rotations.b

The set of elements in the point group G are conveniently described by its

cycle index Z(G) which is defined as follows1,8,29;
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Z(C) = I‘C’] _21 X1  x2  ..Xp )
The variables in equation 2 are defined as follows:

|G| = number of elements in G
n = number of sites in the skeleton
c = number of terms in the cycle index

aj = number of elements in the permutation group having the indicated cycle
structure
xx = dummy variable referring to cycles of length k

cjk = exponent indicating the number of cycles of length k in term i

The parity of a permutation is odd or even depending upon whether the total number
of cycles of even length in the permutation is odd or even, respectively. A group

containing only even permutations may be called an even permutation group; import-

ant examples of even permutation groups encountered in this paper are the groups

of the cube and the icosahedron.

Another fundamental idea of chirality algebra is that of depicting ligand parti-

tions as a collection of boxes called Young diagrams.30 A Young diagram for

a ligand partition (aib1, azbz, eer akbk) has i):bi rows where the first bq rows have

a1 boxes, the next by rows have aj boxes, etc. Reflection of a Young diagram

through its diagonal gives its dual Young diagram, e.g.

A )
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A pair of Young diagrams consisting of a Young diagram and its dual is called
a dual pair. A Young diagram which is identical to its dual is called self-dual,
e.g.

-

. reflect 4)

(312) (312)

A balanced set of Young diagrams or corresponding ligand partitions contains
only dual pairs and self-dual Young diagrams.

Important properties of ligand partitions and their Young diagrams are their
degrees and their dimensions. The degree g of a ligand partition can be determined
from the corresponding Young diagram by the following sum over all of its columns:

1 m
g= cklck-1 (5)
3,0,

where ci is the length of column k and m is the number of columns. The degree
g asldetermined by equation 5 corresponds to the degree of the lowest degree
chirality polynomial. The dimension of a partition of n ligands is the dimension
of the corresponding irreducible representation of the symmetric30 group P,. The
sum of the dimensions of the chiral ligand partitions for a given skeleton with
n sites is its chiral dimensionality, Xg, which may be calculated by the following

equation:

Xd=nl/|G] 6)

This equation is useful for checking the calculations of the ligand partitions and
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indicating the size of the total set of chiral ligand partitions. The chiral dimension-

Bl A

alities of the regular polyhedra of interest in this paper, namely the tetrahedron,

octahedron, cube, icosahedron, and dodecahedron are 1, 15, 840, 3991680, and
approximately 2.0274183 x 1016, respectively. The regular dodecahedron is excluded
from detailed consideration in this paper not only by its unmanageably large chiral
dimensionality but by the intractably large size and complexity of the required
character table for the symmetric group P30 of order 201%2.432902 x 1018, Study
of the regular dodecahedron is only feasible by using computers with the prior
need for development of software to handle character tables for groups as large
as Ppo. Such efforts do not yet appear warranted since the first regular dodeca-
hedral skeletons, namely dodecahedrane derivatives,31:32 have only recently been
prepared and still are only available in very limited quantities.

Study of the chirality polynomials of the cube and icosahedron is facilitated
by the even permutation groups of these skeletons. [n this case the following
theorem is used:

Theorem: The chiral ligand partitions of a skeleton having an even permutation
group form a balanced set.

The proof of this theorem depends upon the observation that irreducible represent-
ations of the symmetric group P, which correspond to ligand partitions having
dual Young diagrams have the same characters for all even permutations.26r30
Therefore, if the permutation group is an even permutation group with no odd
permutations, both members of a dual pair must appear equally in the representation
of P, subduced by G. ‘

In this paper the sites of the regular polyhedra are labelled by capital letters
as indicated in Figure 1. For clarity the same letters will also be used to represent
the parameters for the ligands located at these sites.

The chirality polynomial for the tetrahedron is well known2:3:4,5,6 and using
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the notation in this paper can be written as follows:

X(14)(Td) = (A-BXA-CXA-DXB-CXB-DXC-D) )

In the context of this paper this chirality polynomial may be regarded as trivial,
and therefore is not discussed further. Also the lowest degreg chirality polynomial
for the trigonal antiprism (framework group D3d[3od(L2)]),8 although not that
of a regular polyhedron, is significant in this paper for indicating the effect of
an Sg axis, such as in a cube. This degree 2 polynomial corresponds to a chiral

ligand partition (42) and can be written as follows:

X(42XD34) = (A-BXD-F) - (A-C)D-E) @8)

\ 3. The Octahedron

The chiral dimensionality of the octahedron is 6!/|Op| = 720/48 = 15 and the
octahedron has two chiral ligand partitions, namely (313) and (23) of dimensions
10 and 5, rer .ctively. Both of these chiral ligand partitions are of degree 6
indicating that the lowest degree chirality polynomial contains terms corresponding
to both chiral ligand partitions. A polyhedron, such as the octahedron, having

more than one lowest degree chiral ligand partition may be called chirally degen-

erate.

In order to construct the lowest degree chirality polynomial for the regular

octahedron consider the following three degree 3 polynomials:

f(A...F) = (A-FXB-EXC-D) (9a)

LRy ",

L3

3 .' -~ ! \ " ". ..- .. \. \' .!‘ , .' ..-‘bv lI' \. \'. “ .P' .l. .‘. ‘. “‘ ‘-. .‘\‘ - \. %: \- “‘ -‘ \. !' \;.“" .‘ ‘---'-‘ \..-".\. - ‘-. - .-" .-‘ '-. \-‘ '-. s
o o PN .

WA TR AT



g(A...F) = (A-B)B-CXC-A) + (C-FXF-EXE-C) + (A-EXE-DXD-A) + (B-D)XD-F)(F-B)
(9b)
h(A...F) = (A-B+F-EXA-D+F-CXB-D+E-C) (9c)

The polynomial f measures the effects of the three orthogonal separating8 reflection
planes (gn) of the octahedron. The polynomial g measures the effects of the four
threefold rotation axes (C3) of the octahedron noting the following degree 3
chirality polynomial for the the polarized triangle representing the prototypical

C3 axis34:

t(A,B,C) = (A-CXB-AXC-B)

Similarly the polynomial h measures the effects of the three orthogonal C4 axes
of the octahedron noting the following degree 3 chirality polynomial for the

polarized :aquare8 representing the prototypical C4 axis:

q(A...D) = (B-AXD-CXA-C+B-D)

The three linear factors in h (equation 9c) correspond to the (A-C+B-D) factor
in q (equation 11) with the B-A and D-C factors in q corresponding to the factors
in f (equation 9a). The degree 3 polynomials f, g, and h may be called generating

polynomials for the lowest degree chirality polynomials of the regular octahedron

since arithmetic functions of f, g, and h generate these chirality polynomials.

The degree 6 chirality polynomials corresponding to the two chiral ligand
partitions of the octahedron can be constructed from the degree 3 generating

polynomials f, g, and h as follows:




X(23)XO0p,) = f(g+h) = (2)0p*(a2b2cd)
X(313)O0p,) = f(g-h) = ()0p*(a3b2c)
In equations 12a and 12b the designations Oh‘(azbzcd) and Oh‘(a3b2c) refer to

the construction of these chirality polynomials by application of the 48 permutations

of Op to monomials of the forms a2b2cd and a3b2c, respectively, as outlined gener-

ically in equation 1 where G is O, and M is a monomial of the prescribed forms.

4, The Cube

The (vertex) cycle index of the cube has the following form:

Z(cube) = x18 + 8x12x32 + 13x9% + 12x42 + 8xoxg + 6x19x22

The parities of all of these permutations are even indicating that the permutation
group of the cube is even. Therefore, the chiral ligand partitions of the cube
form a balanced set having total dimension 840 correspond?ng to the chiral dimen-
sionality of the cube (8!/|Op| = 40320/48 = 840). These chiral ligand partitions
are listed in Table 1 as dual pairs with minimum degree corresponding to the lower
degree of the two chiral ligand partitions forming a dual pair. The self-dual chiral
ligand partition (4212) is starred.

Table 1 indicates that the cube, like the octahedron, is chirally degenerate
with the two degree 4 lowest degree chiral ligand partitions (42) and (527) corres-

ponding to the following Young tableaux for the labelling in Figure 1:




Yo

alelclc als] o] el ¢
DlE]| FLH C|F (14)
H
(42 (527

The degree 4 chirality polynomials for these chiral ligand partitions can be obtained

from the following two degree 4 generating polynomials:

f(A...H) = (A-G)2[(B-E)XC-F) - (D-EXC-H)I - (B-H)2[(A-C)XD-E) - (C-FXE-G)]
- (C-E)2U(A-F)B-D) - (F-HXD-G)] + (D-F)2[(A-H)}B-E) - (C-HXB-G)]

(15a)

g(A...H) = (A-CXB-G)F-HXE-D) - (A-HXB-D)F-CXE-G) (15b)

Each term of the generating polynomial f consists of a degree 2 factor (e.g.,
[(B-EXC-F) - (D-EXC-H)] for six vertices related by an Sg axis resembling the
degree 2 chirality polynomial for a trigonal prism or antiprism (see equation 8)
and a second degree 2 factor (e.g., (A-G)2) corresponding to the two ;/ertices on
this Sg axis. The four terms in the generating polynomial f relate to the four
Sg axes in the cube. Each term of the generating polynomial g consists of a product
of four differences involving diagonals of four (square) faces of the cube related
by the C4 axis. Thus the generating polynomial f reflects the three-fold and six-fold
symmetries of the cube and the generating polynomial g reflects the four-fold
symmetry of the cube.

The degree 4 chirality polynomials corresponding to the two chiral ligand
partitions of the cube can be constructed from the generating polynomials f and

g as follows:

. ” - - GG CS TR AT S R A U I PRI P I A\ D Z AL RN AN
RS RN A H .'6.-' l;‘iki.\‘ 4. X) \"l l'h“\i ‘)hllb“" k I“. “’l|.' \ -3 N IO * A - - Vo ¥
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X(42) = -2g = (2)Op,*(abcd) (16a)
X(527) = f-2g = (2)Oh‘(azbc) (16b)

The chirality polynomial for the cube given by Ruch and Schénhofer3 can be

expressed in terms of the generating functions f and g as

X(cube) = af - bg (17)
This chirality polynomial appears qualitatively complete as longasa # Oand b # 2a;
if these inequalities are not satisfied, equation 17 reduces to equation 16a (for

a = 0) or equation 16b (for b = 2a).

5. The lcosahedron

The vertex cycie index of the icosahedron has the following form:

Z(icosahedron) = x112 + 24x42x52 + 20x34 + 16x20 + 24x9x10 + 20xg2 + 15x94x4

(18)

The parities of all of these permutations are even indicating that the permutation
group of the icosahedron is even. Therefore the chiral ligand partitions of the
icosahedron form a balanced set having total dimension 121/ |l | = 479,001,600/120
= 3,991,680. These chiral ligand partitions (Table 2) were determined by the
standard group theoretical procedured.8 using the character tables for the

symmetric group P12 given by Zia-ud-Din.28

Table 2 indicates that the icosahedron is chirally degenerate like the octahedron
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and cube. The icosahedron thus has four degree 4 lowest degree chiral ligand
partitions, two of the type (921) and two of the type (84). The Young tableaux

for the two (921) chiral ligand partitions are listed below using the labelling in

Figure T:
T,
AIHIE|F|G]JIKILIM AJCIFIGIH[JIK]ILIM
{ C
D E

(927, (92D

X Y.V

The chiral ligand partitions (921), and (92N, correspond to the chiral isomers
of the ortho and meta icosahedral carboranes C3B1gH11X (Figure 2). The Young

tableaux for the chiral ligand partitions (84); and (84), are listed below

als{mlx]c|nls]L Dlelc|H]A|B|F]|L
ElDG cimlilk
84); 84),

In order to obtain these chiral ligand partitions construct the icosahedron from
two nested D34 trigonal antiprisms sharing the C3 axis. Combine the lowest degree
chiral (42) ligand partitions of these trigonal antiprisms in two ways to give (84)
ligand partitions preserving the chirality by not introducing any improper rotation
axes in the combination process. One of these chiral (84) ligand partitions, namely
(84);, has the four equivalent ligands at vertices of the inner trigonal antiprism
whereas the other chiral (84) ligand partition, namely (84),, has the four equivalent

ligands at vertices of the outer trigonal antiprism.

These four chiral ligand partitions can be used to construct the lowest degree
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chirality polynomial for the icosahedron by the standard group-theoretical pro-

cedure6:8 which can be represented schematically as follows:

X(icosahedron) = In*[a2bc(921)5] + 1n*[aZbc(921)y) + In*labcd(84);] + I, *[abcd(84),)
(19)

Since the icosahedral group I has 120 elements, the procedure represented by
equation 19 generates 480 terms. - Because of the high symmetry of the icosahedron
this is not as forbidding as it might seem and the procedure indicated in equation
19 using monomials derived from the Young tableaux (921),, (927),, (84);, and
(84), generates the equation listed in Table 3 for the lowest degree chirality poly-
nomial of the icosahedron. This equation has 120 terms of the general type
(x-y)2(z-w)2. These 120 terms can be grouped into six sets of 20 terms each. Each
of the six sets is characterized by a common (x-y)2 factor where x and y are para-
meters for ligands at the antipodal vertices related by the inversion operation
-("para" vertices in icosahedral carborane nomenclature33). The six sets of 20
terms arise from the six such pairs of antipodal vertices in the regular icosahedron.
The other factor, (z-w)z, corresponds to the ligand parameters for a pair of
non-adjacent, non-antipodal vertices ("meta" vertices in icosahedral carborane
nomenclature33). The alternation of signs in the equation in Table 3 causes the
240 pairs of terms of the type x2z2 to cancel out completely in accord with the
fact that the expansion indicated in equation 19 does not use the impossible aZb2
monomial for a lowest degree chirality function. In the equation in Table 3 the
480 terms of the type x2wz arise from the (921) chiral ligand partitions and the
120 terms of the type xywz arise from the (84) chiral ligand partitions as indicated
in equation 19.

It is instructive to compare the general form of the lowest degree chirality

polynomial of the icosahedron (Table 3) with those of the octahedron (equations
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9 and 12) and the cube (equations 15 and 16). The polynomial f(A...H) for the
cube (equation 15a) and the chirality polynomial for the icosahedron both have
factors of the type (x-y)2 in which x and y are a pair of antipodal vertices. The
remaining factor of a term of the generating polynomial f(A...H) (equation 15a)
resembles the chirality polynomial of the trigonal antiprism (equation 8) which
is the symmetry of the set of six vertices of a cube remaining after removing
a pair of antipodal vertices. However, the same is not true for the icosahedron
chirality polynomial in Table 3. Thus the 20 terms remaining after factoring (A-M)2
from the first 20 terms of the icosahedron chirality polynomial do not resemblie
the chirality polynomial for the pentagonal antiprism determined by Ruch and
Schdnhofer.3 This as well as the inability to decompose the icosahedral chirality
polynomial in Table 3 into a simpler set of generating polynomials similar to f,
g, and h (equation 9) for the octahedron or f and g (equation 15) for the cube may
relate to the fact that the icosahedral group is isomorphic34 to the direct product33
of C with the simple36 group As. The simplicity of Ag appears to have the effect
of mixing up the portions of the lowest degree chirality polynomial of the icosa-
hedron so that it cannot be decomposed into generating functions reflecting its
different symmetries in contrast to the chirality functions of the octa-hedron and
cube discussed above.

The lowest degree chirality polynomial in Table 3 is rather forbidding for actual
chemical applications although it would be required in the unlikely case of an
icosahedral borane or carborane having a different substituent in each of its twelve
positions. More realistic cases of possible chemical interest are the chiral monosub-
stituted carboranes C2B1gH11X in Figure 2. Thus among the four possible ortho
carboranes monosubstituted on boron only one (Figure 2a) is chiral corresponding

to the ligand partition (921), above. Similarly among the four possible meta carbor-

anes monosubstituted on boron only one (Figure 2b) is chiral corresponding to the
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ligand partition (921),,. The single para carborane isomer is not chiral. For both
of the chiral boron monsubsituted carboranes CyBqgH1qX in Figure 2 the chirality
polynomial in Table 3 reduces to

X(921X(C2B1gH14X) = (c-b)2U(x-c)2 + (x-b)2 - (c-b)2] (20)

In equation 20 x is the parameter for the substituent X, b is the parameter for

a BH vertex, and c is the parameter for a CH vertex.
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TABLE 1

THE CHIRAL LIGAND PARTITIONS OF THE CUBE
LISTED AS DUAL PAIRS

Minimum
Dual Pair Degree Multiplicity Dimension
(521) + (3213) 4 1 64
(42) + (2% 4 1 14
(431) + (3221) 5 1 70
(513) + (414 6 2 35
(422) + (3212) 6 2 56
(4212)+ 7 2 90




THE CHIRAL LIGAND PARTITIONS OF THE ICOSAHEDRON

TABLE 2

LISTED AS DUAL PAIRS

Minimum
Dual Pair Degree Multiplicity Dimension
(921) + (3217) 4 2 320
(84) + (2919 4 2 275
(831) + (32215) 5 6 891
(913) + (418) 6 4 165
(822) + (3216) 6 8 616
(741 + (32313) 6 12 1408
(62) + (26) 6 4 132
(8212) + (4216) 7 8 945
(732) + (32214) 7 12 1925
(651) + (3241) 7 8 1155
(7312) + (42214) 8 26 2376
(642) + (322212) 8 26 2673
(7221) + (4315) 9 14 2079
(6412) + (42312) 9 24 3080
(632) + (3313) 9 12 1650
(522) + (3223) 9 6 1320
(814) + (577) 10 4 330
(6321) + (43213) 10 46 5632
(5212) + (429 10 18 1485
(543) + (3321) 10 16 2112
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TABLE 2 (Continued)

Minimum

Dual Pair Degree Multiplicity Dimension
(7213) + (5213) 1 14 1728
(5421) + (43221) 1 48 5775
(6313) + (52213) 12 36 3696
(623) + (4214 12 20 1925
(5321) + (43212) 12 40 4158
(43) + (3%) 12 10 462
(62212) + (5314) 13 24 3564
(5413) + (5231) 13 28 3520
(5322) + (42212) 13 30 4455
(4231) + (4322) 13 22 2970

(53212)* 14 68 7700

(4222)+ 14 28 2640
(715) + (616) 15 2 462

(621%)* 16 16 2100
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TABLE 3
LOWEST DEGREE CHIRALITY POLYNOMIAL
OF THE ICOSAHEDRON

(A-M)2 [(B-K)2 - (B-H)2 + (B-L)2 ~ (B-G)2 + (C-L)2

- (C-0)2 + (C-G)2 - (C-H)2 + (D-G)2 - (D-K)2 + (D-H)2

- (D-0)2 + (E-H)2 - (E-L)2 + (E-N)2 - (E-K)2 + (F-))2

- (F-G)2 + (F-K)2 - (F-L)21 + (B-1)2 [(A-K)2 - (A-H)2

+ (A-E)2 - (A-D)2 + (C-E)2 - (C-M)2 + (C-D)2 - (C-H)2
+(G-D)2 - (G-K)2 + (G-H)2 - (G-M)2 + (L-H)2 - (L-E)2

+ (L-M)2 - (L-K)2 + (F-M)2 - (F-D)2 + (F-K)2 - (F-E)?]

+ (C-K)2 [(A-L)2 - (A-)2 + (A-F)2 - (A-E)2 + (D-F)2 - (D-M)2
+(D-E)2 - (D-02 + H-E)2 - H-L)2 + H-12 - (H-M)Z + (G-))2
- (G-F)2 + (G-M)2 - (G-L)2 + (B-M)2 - (B-E)2 + (B-L)2 - (B-F)2]
+ (D-L)2 (A-G)2 - (A-K)2 + (A-B)2 - (A-F)2 + (E-B)2 - (E-M)2
+ (E-F)2 - (E-K)2 + (J-F)2 - (J-G)2 + (J-K)2 - (J-M)2 + (H-K)2

- (H-B)2 + (H-M)2 - (H-G)2 + (C-M)2 - (C-F)2 + (C-G)2 - (C-B)2]
+ (E-G)2 [(A-H)2 - (A-L)2 + (A-C)2 - (A-B)2 + (F-C)2 - (F-M)2
+ (F-B)2 - (F-L)2 + (K-B)2 - (K-H)2 + (K-L)2 - (K-M)2 + (J-L)2
- (J-C)2 + (J-M)2 - (J-H)2 + (D-M)2 - (D-B)2 + (D-H)2 - (D-C)2]
+ (F-H)2 [(A-1)2 - (A-G)2 + (A-D)2 - (A-C)2 + (B-D)? - (B-M)2
+(B-C)12 - (B-G)2 + (L-C)2 - (L-N2 + (L-G)2 - (L-M)2 + (K-G)2
- (K-D)2 + (K-M)2 - (K-1)2 +€-M)2 - (E-C)2 + (E-J)2 - (E-D)2]
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Figure 1: The vertex labellings used for the polyhedra discussed in this paper.
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" Figure 2: The two chiral icosahedral carboranes CoBqgH1qX. Large black circles

indicate the locations of the carbon atoms.
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