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Optimal Replacement Age in an
Imperfect Inspection Model

by

Donna C, Herge, Frank Proschan
and Jayaram Sethuraman

ABSTRACT

-~ A device is maintained under an age replacement policy. The status of the
device (functioning or failed) is known only by inspection at some fixed interval
k. With probability q, an inspection error may be made, and a functioning unit
will be declared to have failed and be replaced by a new unit. On the contrary,
when a failed unit is inspected, it is assumed that no inspection error will be
made. Assunming that the cost of replacing a failed umit (actually failed or
believed failed) is greater than the cost of replacing a functioning unit, we
show that we can obtain an optimum replacement age which minimizes L(T), the
long-run expected cost per unit of time. We find a lower bound for the optimal

replacement age and obtain asymptotic and monotonicity properties for L(T).
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1, INTRODUCTION

Most of the recent work on maintenance models takes into account addition:al
real-world factors like "minimal" or "imperfect' repair actions. Another relevant
factor, imperfect inspection, has not been considered extensively in the literature.

Brown and Proschan (1983) propose several different imperfect maintenance
and imperfect inspection models in [3] and study properties of the distribution
of the mean time between perfect repairs in [4]. Fontenot and Proschan (1984)
then develop optimal policies for several maintenance models based on the imperfect
repair model in [4].

The objective of this paper is to develop an optimal replacement policy for
an imperfect inspection model. Derman and Sacks (1960) solved the problem of
choosing an optimal replacement rule for deteriorating equipment when the amount
of deterioration is observed periodically. Perfect inspection was assumed.
Barlow, Hunter, and Proschan (1963) showed how to obtain optimum inspection
schedules for a broad class of failure distributions in [1]. For an unknown
failure distribution, Derman (1961) obtained the minimax schedule assuming that
failure has probability p >0 of being detected by an inspection, and in the
absence of failure the unit is replaced at some specified time T. More recently,
Taylor (1975), assuming a cumulative damage model for system failure, found an
optimal replacement strategy that minimizes the long-run expected cost per unit
of time.

In this paper we are concerned with a device subject to an age replacement
policy. We assume that all repair (replacement) actions are perfect and repair
time is negligible. The state (functioning or failed) of the device is determined
by periodic inspection at a specified interval k, The failure of a unit remains

undetected until the unit is actually inspected., Due to an inspcction error




nccurring with probability g, a functioning unit is declared to have failed ard
is replaced by a new wnit, On the contrary, when a failed unit is inspected, no
error in inspection occurs.

An inspection error may be due to human error or malfunction of a detection
device. Inspection policies are frequently used for safety or security devices.
One example is a fire extinguisher which is checked periodically, If the pressure
gauge malfunctions, it may erroneously indicate the extinguisher is empty and
so the extinguisher is unnecessarily replaced.

It is apparent that an age replacement policy is inappropriate if the under-
lying failure rate is decreasing., Thus we will assume that the failure rate
r(t) = f(t:)['!:‘(t)]'1 is increasing. We assume that the life distribution F of
the device is absolutely continuous with density f and F(0) = 0.

We use the notation F = 1-F, F, = F(i), and r; = r(i).

1

2, FORMULATION AND SOLUTION OF MODEL.

A device has life length X with distribution F, The device is installed
at time 0, and is inspected at successive times k, 2k, ... . When the device is
functioning, the probability of no error in inspection is p = 1-q. The device
is replaced by a new wnit at age T, which is a positive integer multiple of k,
or at the first inspection following failure, whichever comes first. This process
is continued indefinitely. Clearly the process renews itself at times of
replacement,

The probability that the device is replaced after time t = ik is P{Y > ik] =
?ik;é' fori =0, 1, 2, ..., since the device must survive to time ik and pass

i inspections, Thus Y is the observed life length of the device., Note that




EY = X Fikpl . Let Z be the elapsed time between replacements; then
i=0

Z = min{Y,T}.

Let < be the cost of an unscheduled replacement (actual or believed
failure) and ¢, be the cost of a scheduled (age) replacement. Assume c1< €y
Our objective is to find the replacement age T which minimizes L(T), the long-run
expected cost per unit of time, In Theorem 2.1 we give a formula for L(T) and
in Theorem 2.2 we describe the optimal valuc of T. These results are analogous
to those found by Fontenot and Proschan (1984) for a modified age replacement

model with imperfect repair.

Theorem 2,1 _ Tc_-l
¢y = (c,-¢ )P, p
L(T) = 1 17727 T-k .
Ty
kk— F. oot
iz FikP

Proof: The times of replacement are renewal times in a renewal-reward process
whose interarrival distribution is that of Z = min{Y,T}. From renewal theory,

we have that
LM = 5,

where C(T) is the expected cost per renewal cycle and D(T) is the exvected

duration of a renewal cycle. Denote the distribution function of Y by G. Then

- & i-1 g :
G(t) = P[Y>t] = F(i-l)kp for (i-1)k €t < ik
and i = 1, 2, ese




Then the expected length of a cycle is

T _ T/k ik
D(T) = E(2Z) = [ G(t)dt = ] B(v)at
0 i=1 (i~D)k
Ta
Tfk - -1 Tf Ei i
= F.. P - dt = k P
j=1 -1k (i-1)k j=g 1K
Ta
With probability ﬁT—kp , the device is replaced after time T-k and a cost of

€, is incurred, Otherwise, it is replaced at or before time T-k and a cost of
¢; is incurred, Therefore the expected cost per cycle is

T T
- -1 - F—l
(T = cl(l—FT_kp ) + c, FT-kp . 0

Theorem 2.2. In addition to the assumptions about F in Section 1, assume that

r is differentiable, Then

- T F-lr R- = i -2
a. LM =F . p lkizo FixP 17 H(T), where
&1 T,
= i = k-
H(T) = (cl-cz)[(kr.r_k- logp) iZO Fikp + Fr P ] - €

b, An optimal replacement age T* exists (T* may be infinite) and T* = k if and
c
only if p < exp(

—— + kr,).
€=¢y 0

I
. s e . . . 1 1
c. T* is finite if and only if r_ > T-——T—-—cl_cz & * R—log P

¢
d. B oLl implies that T* < = ,
k ¢,
2
e. A lower bound for T* is = EY .
1




Proof: a., Differentiate.

b.

Given ¢, > note that H is increasing since r is increasing and

1° %2
%-1

» ~ A - - E i
HY(T) = (eq-c,) k 17 iZO FiP

Then T* = k <=> L is increasing <=> H(k) 2 0 <=> (cl-cz)(kro- logp+1) =< 20
c
- 2
<=>p < exp(cz_cl +kr0).

€2
€2 %

If p > exp( +kr0), then H(k) < 0. Thus if we can find

T0 = min{T: H(T)20}, then L” is negative on (0,T;-k} and positive on (To,w).
So we choose T* such that L{T*) = min{L(T0~k),L(T0)}. Otherwise, if there is

no T such that H(T) 2 0, then L is decreasing and T* = =,

The inequality involving r_ implies lim H(T) > 0. Thus the equation

Tre
T0 = min{T: H(T)20} has a finite solution.
<) ¢ ¢,
Note that L(T*) < L(k) = “/k, If T* = o, then L(T*) = °“/EY < “/k, By
c
the contrapositive, EY/k < 1/cz implies that T* < =,
<, ¢
It is easy to show that L(T) z-ir . Thus (LT) must cross L(«) = Y (if it
¢ c
crosses at all) to the right of the value at which 1§-crosses E%-; this value
c

is T =-§3EY. Therefore, we should schedule replacement at an age greater

¢2°1
than —EY. 0

€1

Asymptotic and monotonicity properties of L(T).

If we let p=1, we get a desired asymptotic result for L(T) as the length of

the insvection interval, k, goes to zero. In this case our model reduces to the

simple age replacement model for which the optimization problem was solved by

Barlow and Proschan (1965), pp. 85-90., Since the denominator of L(T) is a




Rieman sum, it converges to the integral form given in Barlow and Proschan (1965)

p. 82, if F is Riemann integrable,

Cy+ (cy=Cy) Fo_ Cy+ (¢,-C,)F
lim L(T) = lim 2 = 1727 T-k - 2 . 1 72°T .
k F, 0
jap 1K

If 0 < p <1 we will show that L(T) » » as k +~ 0. This result is expected

since more frequent inspections will lead to more units being erroneously replaced.

[
Case 1. IfT =k, then lin L(K) = lin - = =,
A k-0 k-+0
cl cl Cl
Case 2, If T = =, then lim L{x) = 1lim Y ° lim —~ > 1lin
- k-0 k>0 k>0 = i k»0 ¢ i
k.Z F P k_{ pt
i=0 i=
C
= lim } = @ -
k0 k(l_p] T T,
¢y = (ey=Cc,)Fr 1 P ¢y = (cy-¢,) p
Case 3. Ifk < T <, then lim 2 T-K > lim 21 2
k=0 Fil‘_ : x*0 F{l :
k) F..p k) p
j=o 1k i=0
%-1
¢, ~ (¢y=c,) p
Lim 21 1°%2
= im T/k = ®,
k=0 1-
k()

T
=1
= k
For a particular value p, of we denote (T) = [cq=(cy=c,)Fr . P ]
T 1 °f P, “p, 1° (6me)Frg Py
3 i
/k z Fik Py - Then it is easily seen that Lp(T) increases as p + 0 as follows,
i=0

= i_ = i s
- 9% Note that Fikpl < Fikpz for pl < pz’ 1:0, l, svey {“ l-




-1 £-1
Thus 1/[k §J F..n'121/[k § E. pl] for T=%, 2k, .... ‘hen T>k, we have stric
120 ik'1 i=0 ik'2

=} 3

ineaquality above,

T T
--1 -1
- k -
b. Note that FT_k P, < FT-k P, for Py <Py and T=k, 2k, ... . When T > k
T T
x-1 r!

we have strict inequality. Thus ¢ - (cl-cz)FT_k P, Zz¢- (cl-cz)FT_k P, -

1 = t = >
From a and b we have Lpl(T) Lpz(T) for T=k and Lpl(T) Lpz(T) for
Py <Py and T=2k, 3k, ... . This is intuitively reasonable since more mistakes
in inspection lead to an increase in unnecessary replacements, This can be seen

in Figure 4.10 in the next section, Clearly lim Lp(T) = cl/k‘
p¥0

Since LP(T) is a decreasing function of p, we obtain a sharp lower bound for
L(T) by taking the limit as p increases to 1, Thus
¢y - (ey-e) Pk

L(T) 2 lim L (T) =
ptl P T

k -
kizo ik

= Ll(T) .

This bound is shown in Figure 4.10,
We denote the optimal value of T for a particular p as T;. Then the optimal
long-Tun expected cost per unit of time is LP(T;) = min Lp(T). Since for all T

T
we have Lpl(T) 2 Lpz(T) for Py < Py, it follows that LP1(T51) = m%n Lpl(T) 2

m%n LPZ(T) = LPZ(T;2)' Thus Lp(T;) is also a decreasing function of p. This

can be seen in figure 4,10,

4. APPLICATIONS

Our model makes sense only for a failure rate which is increasing. We see
from Theorem 2.1 that the denominator of L(T) is a sum which can be explicitly

solved for an exponential distribution F, Although it is clear that the optimal




nkia

policy is to replace only at failure times, because replacing an exponential

Jr——

component by a new component does not change the residual life, we will show

a

that Theorem 2.2 confirms that T* = », Let F(x) = e'xx, A> 0, and k = 1,
Then EY = z L%r]l = ! . Setting L°(T) = 0 and solving for T we get
=0 e 1-P7 5
e
(1 B 2
(C—-'T:-z_)(l-e")+ log X
T =1+ log P 10g'I% . }
1+'T (log%--l) e !
e e

Note that 1 + l%—(log 1%-1) > 0 since it reduces to the form logx <x -1, which

e e
A c
is true for x = £~ > 1, Thus for T to exist, we need ( 1 ) (1--2-) + logJ%'> 0,
P €17¢2 et e
1 A-1lo !
which implies —— > gf , which in tumn implies r, = A < g+ logp.
172 1-p/e “17%2

Thus from Theorem 2.2c, we see that T* = =,

Next we will consider an application of our model to the truncated normal
distribution so that we can compare our results to those in Example 1, p. 90, of
Barlow and Proschan (1965). "Example 1, Many types of electron tubes used in
commercial airline commumication equipment and elsewhere tend to have a truncated
normal failure distribution (Aeronautical Radio, Inc,, 1958). A certain tube
used in commercial equipment has a truncated normal failure distribution with a
mean life of 9080 hours and a standard deviation o of 3027. Suppose ¢ = $1100
and c, = $100, so that cllcz = 11."

The density f(x) of the truncated normal distribution may be written as

s vEE), x20

f(x) =
0 otherwise,




2
where $(x) = 1 e X /2

[
andb:%-fﬂ:(«’%—'i)dx. From L*(T) = 0 we get
0

V2w
T
R
(2.1 (krpy-togp) L Fyyp» Fpyp =g
i=0 172
Making the change of variable Yg = T'E'" and defining r, (x) = ;££fl—— , we have
from (2.1) for a truncated normal distribution F, £W(t)dt
1)719{“’_1-1- - W(f‘u .
(2.2) K(yp) = (%rN(yo)-logp) 1 ¢ Jvmav+p B [ ywav
i=0 ik"u Yo
o
= —.2?—1_: b+ bcz
€, =C, €=,

If %-2 3, then f(x) is very close to the density of a normal distribution with
mean p and standard deviation o,
In Example 1, Barlow and Proschan estimate b by 1 and use a graph of

K(yo) = K(yo) + b for %-: 3 to find Yo To obtain more accurate results for
be

comparison with our model, we compute b= .9987 and K(y,) = f = .09987. Then
1772

Yo ° ~1.63 and the optimal replacement age is 4146 hours with an associated

minimum cost of L(4146) = $,036.

For our model we consider several examples with various values for k, the
length of the inspection interval, and p, the the probability of no error in
inspecting a functioning unit, Note that for the truncated normal distribution,
r_ = «», so that we know by Theorem 2,2¢, that T* is finite, Using (2.2) we

Tek-u by
o

wish to find the value of T such that K(————) is nearest to K(yo) =T ¢
172

1.0086.

”>-



Example 2: k = 1000, p = .95.

Using (2.2) we compute the following values:

T y K(y)
1000 -3.00 1,050
2000 -2.67 1.051
3000 -2.34 1.060
4000 | -2.01 1.088
5000 | -1.68 1.149

FIGURE 4.1: Values of K(y) for k = 1000, p = .95.

T

e S S

L(T)
( EXAMPLE 2
250 T
C
—~l—_ D L
EY w0
130 1
120 +
&= 110 4+
e
o c
u3 2 _
o X =.100 4 .
v)
o
S
)} W90 4
2 ]
.080 L
.070 T : . ‘
| 3 —
0
o (=) o o (=] (=]
[ (=] o [ =1 D o
o [=] o o o o
- o~ ™ = w Ne]
HOURS

FIGURE 4.1: Values of L(T) for k = 1000, p = ,95,
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We see from Figure 4.1 that T* = 4000 is thc optimal value, which gives us
the minimum cost L(T*) = $.0710 as shown in Figure 4.2, We compute EY = 7629,
Recall from the proof of Theorem 2.2e that cllEY = ,144 is the horizontal

asymptote for L(T). Also —E-EY = 694 is a lower bound for T*,

c
1
We see from Figure 4.3 that T* = 4000 is the optimal value and L(T*) = §.1271
c
shown in Figure 4.4. We compute EY = 5979, Then EE-EY = 544 is a lower bound

c c 1
for T*, Notice in Figure 3.4 that 1§-> E% , thus the implication in Theorem 2,24

cannot be reversed,

Comparing Examples 2 and 3, it is clear that more frequent inspections
result in a higher optimal cost L(T*).

We see from Figure 4.5 that the graph of K(y) does not cross K(yo) = 1,0986,
Thus there is no solution to L7(T) = 0, so that L” > 0, and the cost is strictly
increasing, as shown in Figure 4.6. Then the minimum cost is $.10 = L(1000) at

T* = k., This is the expected result from Theorem 2.2b since

c
.5 = p < exp(—"—~ +kry) = exp[-.1+1000(,0000015)] ~ .9062. Since EY = 1980,
2
€2
ET'EY = 180 is a lower bound for T*,
1

Just as in Example 4 we see from Figure 4,7 that K does not cross

K(yo) = 1,0986, so that cost is strictly increasing and T* = k as expected from

-

Theorem 2.2b since .5 = p < exp (—2c— + kry) = exp[-.1+500(.0000015)] % .90S5.
=

1
2 100
A lower bound for T* is —EBY = —=— (998) = 91,
N 1100

11




Example 3: k =500, p = .95

T y K(y)
3500 -2.01 1.0700
4000 -1.84 1.0916
4500 -1.68 1.1205
5000 -1,51 1.1605

FIGURE 4.3: Values of K(y) for k = 500, p = .95.
4
L(T)
c
T? = 200 + . EXAMPLE 3
Cl 190 1
ﬁ- = 184 fecmccccmc e c e e e c e — .=
{ 180 T
170 +
I~ ,160 T
a8}
(29 .
25 150 +
<3
4=
-]
4 g 140 + .
130 4 ) . . .
|
.120 +
| | l | 1 [ 1 i | 1 |
0 L T T { 1 1 1 1 T T
o (=] o f==] o o [=] o o =
(=] o o (=] o o o o o o
gl o v o [Y2] o v (=] wn o
— — o~ o~ o ™ K g = w
HOURS
FIGURE 4.4: Values of L(T) for k = 500, p = .95,
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Example 4: k = 1000, p = .5

T y K(y)
1000 | -3.00 | 1.6923
2000 | -2.67 | 1.5410
3000 | -2.34 | 1.4710
4000 | -2.01 | 1.4490
5000 | -1.68 | 1.4590
6000 | -1.35 | 1.4969

FIGURE 4.5: Values of K(y) for k = 1000, p = .5,

L(T)
EXAMPLE 4
.60
C
Tl 5p e e
‘ EY . .
1 S50 4
40 4+ .
[ &
L8 .30 +
) < O
3 =
2
20 +
C
2
Lo a0+ .
k
J
+ } % i | T
0 o [=3 (o] o [=]
> fon < o j
(=) o <o [=] o
- ~ ) T I
HOURS

FIGURE 4,6: Values of L(T) for k = 1000, p = .5,
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T y K(y)

500 -3.00 1.6915
1000 -2,83 1.5384
1500 -2.67 1.4630
2000 -2,50 1.4260
2500 -2,34 1.4096
3000 -2,17 1.4040
3500 -2,01 1.4042
4000 -1.84 1.4089
4500 -1,68 1.4164

FIGURE 4.7: Values of K(y) for k = 500, p = .5.

H L(T)

= = 1.102

| T -

EXAMPLE §

-

1.00 +
90 +
.80 T .
.70

.60 4#

50 +

DOLLARS PER HOUR

500 —
100 |
1500 —+
2000 -+
2500 |
3000 -}
3500 -}
4000 —+
4500 —F

HOURS
FIGURE 4,8: Values of L(T) for k = 500, p = .5 ,
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We summarize the results as follows:

C
EXAMPLE p K Ei—EYP T EY, L (%)
2
1 1,00 0 -5-1-u=825 4146 u=9080 $.036
2 .95 1000 694 4000 7629 $.071
3 .95 500 544 4000 5979 $.127
4 .50 1000 180 1000 1980 $.100
5 .50 500 91 500 998 $.200

Table 4.9: Summary of Examples.

Asymptotic and monotonicity properties of LP(T) are shown in Figure 4,10
for k= 1000. Optimal values LP(T;) are circled. For p=.5, .7, and .9 we have
T; = k = 1000, Clearly Lp(T;) and Lp(T) are decreasing in p. Ll(T) is a sharp
lower bound. Horizontal asymptotes are labeled Lp(w). Lines connecting values of

LP(T) for a given value of p were drawn to illustrate the trend of Lp(T) as

T*m.

15




-y

.3%0

L (T
600 -+
570 4+
) e m e mm— e mre e e, — -~~~ —— L 5(m)
.5“*0 T /./' L.S(T)
= 510 + /
)
o 480 WL .
oA
o
& 4
<‘ . 0 4+
g K20 4
Z
e

p

.360

350

.330

.300

.270

.240

.2.0

.180

.150

LONG-RUN EXPECTED COST PER UNIT OF TIME, L

120
Lk
.100

090

.060

.030

“7

FIGURE 4,10:

; i s T
1 >

| ] )

T ] L 1 1
D o f=d o o (=]
o > =4 =3 s =
o o o o > o
- o [32] =y v @O

REPLACEMENT AGE, T HOURS

Asymptotic and monotonicity properties of Lp(T) for an inspection
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