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Optimal Replacement Age in an
Imperfect Inspection Model

by

Donna C. Herge, Frank Proschan
and Jayaram Sethuraman

ABSTRACT

-' A device is maintained under an age replacement policy. The status of the

device (functioning or failed) is known only by inspection at some fixed interval

k. With probability q, an inspection error may be made, and a functioning unit

will be declared to have failed and be replaced by a new unit. On the contrary,

when a failed unit is inspected, it is assumed that no inspection error will be

made. Assuming that the cost of replacing a failed unit (actually failed or

believed failed) is greater than the cost of replacing a functioning unit, we

show that we can obtain an optimum replacement age which minimizes L(T), the

long-run expected cost per unit of time. We find a lower bound for the optimal

replacement age and obtain asymptotic and monotonicity properties for L(T).
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1. INTRODUCTION

Most of the recent work on maintenance models takes into account additio'..al

real-world factors like "iminimal'? or "imperfect" repair actions. Another relevant

factor, imperfect inspection, has not been considered extensively in the literature.

Brown and Proschan (1983) propose several different imperfect maintenance

and imperfect inspection models in (31 and study properties of the distribution

of the mean time between perfect repairs in (4]. Fontenot and Proschan (1984)

then develop optimal policies for several maintenance models based on the imperfect

repair model in 141.

The objective of this paper is to develop an optimal replacement policy for

an imperfect inspection model. Derman and Sacks (1960) solved the problem of

choosing an optimal replacement rule for deteriorating equipment when the amount

of deterioration is observed periodically. Perfect inspection was assumed.

Barlow, Hunter, and Proschan (1963) showed how to obtain optimum inspection

schedules for a broad class of failure distributions in [1]. For an unknown

failure has probability p >0 of being detected by an inspection, and in the

absence of failure the unit is replaced at some specified time T. More recently,

Taylor (1975), assuming a cumulative damage model for system failure, found an

optim~al replacement strategy that minimizes the long-run expected cost per unit

of time.

In this paper we are concerned with a device subject to an age replacement

policy. We assume that all repair (replacement) actions are perfect and repair

time is negligible. The state (functioning or failed) of the device is determined

by periodic inspection at a specified interval k. The failure of a unit remains

undetected until the unit is actually inspected. Due to an inspection error
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occurring with probability q, a functioning unit is declared to have failed arU,

is replaced by a new unit. On the contrary, when a failed unit is inspected, no

error in inspection occurs.

An inspection error may be due to human error or malfunction of a detection

device. Inspection policies are frequently used for safety or security devices.

One example is a fire extinguisher which is checked periodically. If the pressure

gauge malfunctions, it may erroneously indicate the extinguisher is empty and

so the extinguisher is unnecessarily replaced.

It is apparent that an age replacement policy is inappropriate if the under-

lying failure rate is decreasing. Thus we will assume that the failure rate

r(t) = f(t)[P(t) l1 is increasing. Ile assume that the life distribution F of

the device is absolutely continuous with density f and F(O) = 0.

We use the notation F = I-F, F. -=(i), and r. = r(i).
1 1

2. FORMULATION AND SOLUTION OF MODEL.

A device has life length X with distribution F. The device is installed

at time 0, and is inspected at successive times k, 2k, .... When the device is

functioning, the probability of no error in inspection is p = I- q. The device

is replaced by a new unit at age T, which is a positive integer multiple of k,

or at the first inspection following failure, whichever comes first. This process

is continued indefinitely. Clearly the process renews itself at times of

replacement.

The probability that the device is replaced after time t = ik is P[Y > ik]

ikp i for i = 0, 1, 2, ..., since the device must survive to time ik and pass

i inspections. Thus Y is the observed life length of the device. Note that
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EY k i k p " Let Z be the elapsed time between replacements; then
i=O

Z = min{Y,T).

Let cI be the cost of an unscheduled replacement (actual or believed

failure) and c2 be the cost of a scheduled (age) replacement. Assume cI < c 2 .

Our objective is to find the replacement age T which minimizes L(T), the long-run

expected cost per unit of time. In Theorem 2.1 we give a formula for L(T) and

in Theorem 2.2 we describe the optimal value of T. These results are analogous

to those found by Fontenot and Proschan (1984) for a modified age replacement

model with imperfect repair.

Theorem 2.1 !-1
c1 - (cl-c2)FT-kpk

k p
i=0

Proof: The times of replacement are renewal times in a renewal-reward process

whose interarrival distribution is that of Z = min{Y,T}. From renewal theory,

we have that
L(T) - C(T)4 T) (T)

where C (T) is the expected cost per renewal cycle and D (T) is the expected

duration of a renewal cycle. Denote the distribution function of Y by G. Then

n(t) = P[Y>t] (i-l)l I- for (i-l)k t < ik

and i = 1, 2,



Then the expected length of a cycle is

T Tfk ik
D(T) = E(Z) = f (t)dt = I (t)dt

0 i=l (i-l)k

T_
Tfk i-i ik.Fl F(i-l)k P  fi ) dt ki~ I F U p

(i-l)k i=0

T

With probability FT-kp , the device is replaced after time T-k and a cost of

c2 is incurred. Otherwise, it is replaced at or before time T-k and a cost of

c is incurred. Therefore the expected cost per cycle is

T T

C(T) = c1(-FT-k pP  ) + C2 FTkp .

Theorem 2.2. In addition to the assumptions about F in Section 1, assume that

r is differentiable. Then

T
r JF-, i -2

a. L'(T) = FT-kP [k F k A H(T), where

TT

H(T) = (c 1 C2)[(krTk3logp) ikP + T'k ] - V
i=0

b. An optimal replacement age T* exists (T* may be infinite) and T* = k if and
C2

only if p c + kr0).ePc 2- c1

c. T* is finite if and only if r > 1. + 1logp.

(c-C 2 )EY ~op

d. E .Y < _ i p i s th t T
d. 71, implies that T* <m

k C2

e. A lower bound for T* is C2 EY.

c 1
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Proof: a. Differentiate.

b. Given c1 > c2 note that H is increasing since r is increasing and

T_

H'(T) = (ci-c 2 ) k r'k _ Fikp

i=0

Then T* = k <=> L is increasing <=> H(k) a 0 <=> (c 1-c 2 )(kr 0 - logp+l) -C 1 1 0

<=> p 5 exp(- +kro).

If p > exp(-c  kr) , then H(k) < 0. Thus if we can find

T0 = min{T: H(T)ZO, then L' is negative on (0,T0-k) and positive on (T0,).

So we choose T* such that L(T*) = min{L(T 0-k),L(T0)}. Otherwise, if there is

no T such that H(T) Z 0, then L is decreasing and T* = -.

c. The inequality involving r implies lim H(T) > 0. Thus the equation
T-

T = min{T: H(T) 01 has a finite solution.

2 kc l/E c 2

d. Note that L(T*) < L(k) = /k. If T* =- then L(T*) = <EY 2 /k. ByE c1

the contrapositive, EY/k < /c2 implies that T* < -.
C2  c1

e. It is easy to show that L(T) - . Thus (LT) must cross L(-) =- (if it
c2  cI E

crosses at all) to the right of the value at which - crosses E- ; this value

is T = -EY. Therefore, we should schedule replacement at an age greater

cclthan -EY. U
c 1

3. Asymptotic and monotonicity properties of L(T).

If we let p = 1, we get a desired asymptotic result for L(T) as the length of

the inspection interval, k, goes to zero. In this case our model reduces to the

simple age replacement model for which the optimization problem was solved by

Barlow and Proschan (1965), pp. 85- 90. Since the denominator of L(T) is a
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Piemnan sum, it converges to the integral form given in Barlow and Proschan (1965)

p. 88, if P is Riemann integrable.

n L(T) =r 11c 2 + (Cl-c 2)FT- k c2 + (cl-c 2) FT

k-N) k-N) i -1k f P(x)dx
2 k rik 0
i=O

If 0 < p < 1 we will show that L(T) - as k 0. This result is expected

since more frequent inspections will lead to more units being erroneously replaced.

c2
Case 1. If T = k, then lim L(k) = lim- -

k-N0 kN+O

c1  c1  c 1
Case 2. If T =, then lim L(-) = lim - = lim > fi_

k-) k-+O EY k-NO k cikp' k-*Okj pi

i=0 i=O

- lim l-
k-+) k%)

k (0 k-l.p )  T- T_

Case 3. If k < T < -, then lim > lim ITT
k-O k- O i--

k P ikPi k I p
i=O i=O

T

lim c I- (C 1 -c2) P V = 00
k-+O k (-P ')

1-p 

T
T.

For a particular value p1 of p, we denote L-(T) = tel" (Cl c 2)FTkp

/k PikPl . Then it is easily seen that Lp(T) increases as p + 0 as follows.
icO

a. Note that Fikpl FikP2 for P1 < P2, i=0, I, ... , T9- 1.
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T T-F- k_

Thus 1/[k I Pi ) ] 1/[k for T=k, 2k,.... Whcn T>k, we have stric-
i=0 i=0

inenuality above.
T T
k 1 - ku

b. Note that FT-k pI - !5 F T-k p2  for p1 < P2 and T= k, 2k, .... When T > k

T T
we have strict inequality. Thus c1 - (cl-c 2 )F T-k pl- c1I" (c1C2 )FT-k p2-

From a and b we have LPl(T) = L 2(T) for T= k and LpI(T) > LP2(T) for

Pl < P2 and T =2k, 3k, ... . This is intuitively reasonable since more mistakes

in inspection lead to an increase in unnecessary replacements. This can be seen

in Figure 4.10 in the next section. Clearly lim L (T) = Cl/k
p+0

Since L p(T) is a decreasing function of p, we obtain a sharp lower bound for

L(T) by taking the limit as p increases to 1. Thus

c1 -(cl-C 2 ) T~k-L(T

L(T) a lim L (T) = = LI(T)
p+l p  T "

k F ik

i =0

This bound is shown in Figure 4.10.

We denote the optimal value of T for a particular p as T*. Then the optimal

p
long-run expected cost per unit of time is L (T*) = min L (T). Since for all T

T
we have LPI(T) Lp2(T) for p, < P2 it follows that L I(T* i) = s (T) a

I 2 P1  p1 T m I~T

min L2(T) = L. (T*). Thus L (T*) is also a decreasing function of p. This
T P2  P2 P 2  Pp

can be seen in figure 4.10.

4. APPLICATIONS

Our model makes sense only for a failure rate which is increasing. We see

from Theorem 2.1 that the denominator of L(T) is a sum which can be explicitly

solved for an exponential distribution F. Although it is clear that the optimal
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policy is to replace only at failure times, because replacing an exponential

component by a new component does not change the residual life, we will show

that Theorem 2.2 confirms that T* = w. Let F(x) = e - ,  > 0, and k 1.

Then EY = I (-.)i . Setting L(T) = 0 and solving for T we get
i=O e X

T = 1 log - log

T -e Xexlog
I+L(log e 1

Note that 1 + (log - Ik-l) > 0 since it reduces to the form logx <x -1, which
e e c

is true for x > 1. Thus for T to exist, we need (c1L ) (l-e) + log-L > 0
p 12 - 2 p Ce

which implies Cl->2 X - log p which in turn implies r X < c + logp.
C c-c 2  1 -p/e (c1-c 2)EY

Thus from Theorem 2.2c. we see that T* =

Next we will consider an application of our model to the truncated normal

distribution so that we can compare our results to those in Example 1, p. 90, of

Barlow and Proschan (1965). "Example 1. Many types of electron tubes used in

commercial airline communication equipment and elsewhere tend to have a truncated

normal failure distribution (Aeronautical Radio, Inc., 1958). A certain tube

used in commercial equipment has a truncated normal failure distribution with a

mean life of 9080 hours and a standard deviation a of 3027. Suppose c 1 = $1100

and c2 = $100, so that c1/C 2 = 1U."

The density f(x) of the truncated normal distribution may be written as

fx)

0 otherwise,
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whre )ex 2 /  and b f xj ) dx. From L(T)= 0 we get

T -1 T-

(2.1) (krT..ogp) +_T- -lo P 1 -kP T 2T-* F(xp

Making the change of variable y. = -- and defining rN(x) = i ,)we have

from (2.1) for a truncated normal distribution F, f*(t)dt
x

C'YO+p 17y!V1
00y0 CO

(2.2) K~ (r (y 0  logp) p1 f V (v)dv + p f *(v)dvi=O ik- Yo
a

bc1  bc2

c1-c2 c1-C2

If 2--! 3, then f(x) is very close to the density of a normal distribution witha

mean p and standard deviation a.

In Example 1, Barlow and Proschan estimate b by I and use a graph of

~ = K(yO) + b forv
= 3 to find yo. To obtain more accurate results for

bc 2

comparison with our model, we compute b = .9987 and K(Y 0 ) = -- = .09987. Then

Y0 = -1.63 andthe optimal replacement age is 4146 hours with an associated

minimum cost of L(4146) = $.036.

For our model we consider several examples with various values for k, the

length of the inspection interval, and p, the the probability of no error in

inspecting a functioning unit. Note that for the truncated normal distribution,

1" = -, so that we know by Theorem 2.2c. that T* is finite. Using (2.2) we

wish to find the value of T such that T--- ) is nearest to K(yO) = bce I

1.0986.

9



Example 2: k = 1000, p = .95

Using (2.2) we compute the following values:

T y K(y)

1000 -3.00 1o050

2000 -2.67 1.051

3000 -2.34 1.060

4000 -2.01 1.088

5000 -1.68 1.149

FIGURE 4.1: Values of K(y) for k = 1000, p = .95.

L (T) EXAMPLE 2

1 5
Cl =.4

EY .140

.130

.120

.110

SC
L c2

k -. 100

.090

.080

.070

- '' I • ;. T'1

CD 0 CD 0 CD

FIGURE 4.1: Values of L(T) for k = 1000, p = .95.
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We see from Figure 4.1 that T* = 4000 is the optimal value, which gives us

the minimum cost L(T*) = $.0710 as shown in Figure 4.2. We compute EY = 7629.

Recall from the proof of Theorem 2.2e that c1/EY = .144 is the horizontal
C2

asymptote for L(T). Also - EY = 694 is a lower bound for T*.

We see from Figure 4.3 that T* = 4000 is the optimal value and L(T*) = $.1271
c 2

shown in Figure 4.4. We compute EY = 5979. Then EY = 544 is a lower bound
forT* Ntic i Fgur 34 ha 2 c 1 1

for T*. Notice in Figure 3.4 that - > - , thus the implication in Theorem 2.2d

cannot be reversed.

Comparing Examples 2 and 3, it is clear that more frequent inspections

result in a higher optimal cost L(T*).

We see from Figure 4.5 that the graph of K(y) does not cross K(yO) = 1.0986.

Thus there is no solution to L'(T) = 0, so that L' 0 , and the cost is strictly

increasing, as shown in Figure 4.6. Then the minimum cost is $.10 = L(1000) at

T* = k. This is the expected result from Theorem 2.2b since

.5 = p exp(c -- C + kr )0 = exp[-.l+ 1000(.0000015)] s .9062. Since EY = 1980,

2EY = 180 is a lower bound for T*.
c1  Just as in Example 4 we see from Figure 4.7 that K does not cross

K(y0 ) = 1.0986, so that cost is strictly increasing and T* = k as expected from

Theorem 2.2b since .5 = p exp ( c2c + kr0) = exp[-.l+ 500(.0000015)] = .9055.
21

A lower bound for T* is c2 EY = 100 (998) = 91.
C1 1100
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Example 3: k = 500, p = .95

T y K(y)

3500 -2.01 1.0700

4000 -1.84 1.0916

4500 -1.68 1.1205

5000 -1.51 1.1605

FIGURE 4.3: Values of K(y) for k = 500, p = .95

L(T)

2 .200 EXAMPLE 3

.190
- = .184-
EY .180

.170

. .160

,, .150
,<0

.140

.130

.120

- I I I I I Ii ,
0T

o o 0> C> 0 CD 0C 00>
05 0 0 0 CD 0D 0> 0 0 0D

0n 0>k C LO C0 CD 0 n 0D
- N N mn -T .- t

HOURS

FIGURE 4.4: Values of L(T) for k = 500, p = .95.
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Example 4: k = 1000, p = .5

T y K(y)

1000 -3.00 1.6923

2000 -2.67 1.5410

3000 -2.34 1.4710

4000 -2.01 1.4490

5000 -1.68 1.4590

6000 -1.35 1.4969

FIGURE 4.5: Values of K(y) for k = 1000, p = .5

[

L(T)

.60[ EXAMPLE 4

Scl .60

= .56 ----------------------------------------------

.50

.40

r .30

.20

c2
= 10

k

0 0> D
0D 0C) 0

HOURS

FIGURE 4.6: Values of L(T) for k = 1000, p = .5
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Example 5: k = 500, p = .5

T y K(y)

500 -3.00 1.6915

1000 -2.83 1.5384

1500 -267 1.4630

2000 -2.50 1.4260

2500 -2.34 1.4096

3000 -2.17 1.4040

3500 -2.01 1.4042

4000 -1.84 1.4089

4500 -1.68 1.4164

FIGURE 4.7: Values of K(y) for k ; 500, p = .5.

LIT) EXAMPLE 5

EY 1.0l 1 _-1.102

1.00

.90

.80

.60

w .50

.30
! ¢22

-c 2=.20

SI I I T

C. 0 0 0> 0D 0C0D

0 C, 0o 000D 0 al
U, 0 U£) 0 02 In 0 In

HOURS

FIGURE 4.8: Values of L(T) for k 500, p = .5
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le summarize the results as follows:

EXAMPLE p k -EP T* EY Lp(F*)

c 1  p p p p p
c

2

1 1.00 0 -- =825 4146 p=9080 $.036
cI

2 .95 1000 694 4000 7629 $.071

3 .95 500 544 4000 5979 $.127

4 .50 1000 180 1000 1980 $.100

S .50 500 91 500 998 $.200

Table 4.9: Summary of Examples.

Asymptotic and monotonicity properties of L p(T) are shown in Figure 4.10

for k= 1000. Optimal values Lp(T*) are circled. For p= .5, .7, and .9 we have

T* = k = 1000. Clearly L (T*) and L (T) are decreasing in p. L1 (T) is a sharp
p p p p1
lower bound. Horizontal asymptotes are labeled L (). Lines connecting values of

L p(T) for a given value of p were drawn to illustrate the trend of L p(T) as

T s

is



L (T)

.600

.570
.560 - L.S(')

.0°- L (T)

, .510

.4-0

C/)
c . 450

.420
z

.390

.360

.350 - -------------------------------- L 7(-)

.330 L 7 (T)

.300

.270

[-. .240

.200

-~.2:0

J .180

z
.150

.120 L 9 (T)

.100 L . 9 2 (T)

.060 
L. 95 (T)

IT

o o 0 0
CD c.D Cf

REPLACEMENT AGE, T HOURS

FIGURE 4.10: Asymptotic and monotonicity properties of Lp(T) for an inspection
interval k = 1000 hours, for a truncated normal life distribution.
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