
AD-AI7I 698 PARTITIONING REAL-TINE ROA (T RADE NME) SOFTWARE FOR 1/1
DISTRIBUTED TRGETS(U) GTE LABS INC UALTAN FIA COMPUTER
SCIENCE LAD A CHOW ET AL. NAY 86 TM-BS-B5B. SI

UNCLSSIFIED M9BS4-85--C-8?96 F/0 9/2 NL

108
IMIeu2 L

4.

0Technical Note No. 86-858.01

0

PARTITIONING REAL-TIME ADAV3
SOFTWARE FOR DISTRIBUTED TARGETS2

by

A. Chow

M. Feridun

May 1986 DTIC
yELECTE

Computer Science Laboratory AUG 1,
GTE LABORATORIES INCORPORATED A

40 Sylvan Road

Waltham, Massachusetts 02254

S'Ada is a registered trademark of the U.S. Department of Defense, A.JP.O.

2This research has been partially supported by the Office of Naval Research
under grant number N00014- 85-C-0796.

80 6 12 07
- . -.

UNCLASSIFIED 4/ / /(j
SECURITY CLASSIFICO.TION H THIS PAGE (*%on Des Entered) /

REPRTDOUMNTAIO PGEREAD INSTRUCTIONS woJ
REOR DCUENATONPAEBEFORE COMPLETING FORM %~~h

REPOT NMBE 2.GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER b

4. TTL E (and Subti tie) 5. TYPE OF REPORT & PERIOD COVERED

PattoigReal-Time Ada Software for Technical Note
Distributed Targets _____________V__

S. PERFORMING ORG. REPORT NUMBER

86-858.01
7. AUTHOR(&) I.CNRC RGRN UBR@

A. Chow N01-5C09
N. Feridun

9. PERFORMING ORGANIZATION NAME AND ADDRESS tC. PROGRAM ELEMENT. PROJECT, TASK

GTE aboatoies ncoportedAREA & WORK UNIT NUMBERS

~ 6115::, RRQ14-08,
Computer Science Laboratory
40 Sylvan Road, Waltham, MA 02254 RROl4-08-0l, NR 049-635 .i

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

OffOieof Nava SReerc (Code__1133)__May_1986

1.NUMBER OF PAGES .

Wrington. VA 22217-5000 18
4. RNAGNYNAME & ADDRESS(if differtent from, Controlting Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE *

16. DISTRIBUTION STATEMENT (of thin Report)

APEROVED [OR PUBLIC RELEASE; DISTRIBUTION' UN'LIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

III. SUPPLEMENTARY NOTES

e.

19. KEY WORDS (Continue on reverse side It necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

%5

DD IJAN 73 1473 EDITION OF I NOV 65 1S OBSOLETE UNCLASSIFIED
S/N 0O102- 014- 6601

SECURITY CLASSIFICATIONA OF THIS PAGE (When Dots, Swte)

4f. do
0. -b% %

TABLE OF CONTENTS

1.0 Introduction. 1
2.0 Partitioning Problem. 4
3.0 Partitionable Units 7
4.0 Partition Model. 10
4.1 Interunit Communication. 10
4.2 Computational Complexity of the Units 13
5.0 Conclusion and Future Plans. 16

%-4

I-A.

1.0 INTRODUCTION

Task allocation - The assignment of tasks to processors is an important

problem in the design of distributed real-time systems. A task allocation

scheme is required in order to produce a feasible partition of tasks

across processors in the system, and to ensure high performance,

especially for systems with real-time operational requirements. The task

allocation problem for distributed systems has been studied by several

researchers; [Chu8O] contains a survey of various approaches.

- One of the problems of current interest in real-time system design is the

development of real-time Ada software for distributed systems. Several

approaches have been proposed and are being studied, a survey can be found

in [Arm84]. -'The approaches can be characterized as either

* source code allocation, the development of a multitasking Ada

software which is then partitioned; this approach allows development

and testing of the software as a whole before allocation;

, target-code allocation, where a compiler is responsible for performing

task allocation, perhaps with some user-imposed contraints; or

- separate program development, where allocation decisions are made

early in the development phase, and separate programs are developed.

The traditional approach of developing separate source programs for each

processor in the distributed system requires the system designer to make

early decisions on allocation, taking into account resource and

r,-1

4*m n - r.: € . , """_ ' ., " , """

. -~ b_ . Z bc*. ". " . I"- . . .-.

performance constraints. This approach, however, increases the difficulty

of software reallocation in the later phase of the software life cycle.

Target code allocation schemes require a distributed target compiler which

is used to generate separate object code files in allocating target code

for each processor. There are two ways that the compiler can partition

Ada application software: (1) being informed via pragmas about a

predetermined partition scheme; or (2) analyzing the application software,

and then applying a partitioning algorithm. The compiler required for

this allocation scheme is complex and difficult to design, and presently

not available.

The source code allocation approach has a number of important advantages.

In an allocation scheme, it is preferable to place minimum design

restrictions on software development, especially since the target

architecture may, in most cases, not be known. It is also preferable to

minimize the burden on the compiler. Additionally, since the underlying

system constraints may vary, a good partition can be achieved only through

iteration, and therefore, creating new partitions should be inexpensive.

One approach that meets the above objectives is source code allocation

approach adopted by GTE Strategic Systems Division in its multicomputer

software technology for Ada. This approach allows an application to be

developed and tested as a single multitasking Ada program on the APSE (Ada

Programming Support Environment), and then partitions and distributes the

tested software to the distributed targets. Program partitioning is done

at the source level, and the distributed software modules are compiled on

the target machines.

2

.... * . .UN Vr ,i % V X -

GTE Laboratories is conducting research to develop a methodology for the

partitioning of Ada source code to execute in a distributed envirorinent.

Two major tasks are involved in the development of such a methodology:

1. the formulation and selection of parameters that can be derived

from the Ada source code, to be used in the partitioning process;

and

2. the development of an efficient partitioning algorithm.

The approach taken closely follows that described in a previous report

[GTE85]. The basic goal of the approach is to transform a given Ada

program into a graph based representation, and then to apply a

partitioning algorithm for task allocation. The graph based

representation is similar to the specification schemes that are being

investigated at the University of Texas at Austin [Mok84, Mok85].

In this paper, we describe the research efforts and progress towards

achieving the above tasks. In section 2, we describe the partition

problem and possibilities for meeting it. In section 3, we define

partitionable units in Ada software. In section 4, we enumerate

parameters derivable from Ada source code to be used in partitionings.
U.

Section 5 concludes the report with a description of planned future work.

3

- ' Z . ,- """" "" '" " ' " '"".""-".

2.0 PARTITIONING PROBLEM

The problem of allocating Ada source over distributed targets can be

formulated as a graph partitioning problem. For purposes of task

allocation, an Ada program can be represented by a graph G = (V,E) as

follows:

" the vertices of the graph G, i.e., the set V, represents the

partitionable Ada program units; and

" the communication or dependency between units is represented by the

edge set E.

Given this representation of the Ada program, weights are assigned to the

vertices and edges; a weight w(v) for vertex v E V represents execution

characteristics of the Ada partitionable unit, obtained from such

parameters as computation , memory and similar resource requirements. The

weight w(e ij) assigned to the edge between unit (vertex) v.i and unit

(vertex) v. represents the total communication cost between the two units;

this weight is obtained from such parameters as the number of data

elements transferred in a communication, and the number of messages

required per transaction.

The partitioning problem for graph G=(V,E) can be formulated as follows:

determine a partition of V into m disjoint subsets V., V,,...,V such that'm %

4'

'

'

.

-4

4 .4!

I w(v) S K, 1 S i S m, for some constant K
vzV.

and

E w(e) : J, for some constant J, E.. E and
ezEEij

(v',v") E Eij => v, C Vi vII z V and V. # V

The partitioning problem, as formulated, aims at reducing the

communication cost between the partitioned clusters, and also places a

load balancing constraint on the clusters. These objectives are

appropriate for the Ada partitioning problem as the performance of a

system is affected by factors such as interproce.ssor communication delays,

processor load, and the amount of parallelism that can be exploited.

The partitioning problem as formulated has been shown to be NP-complete

(Gar79]; however, there are partitioning algorithms that use heuristics to

obtain close to optimal results with acceptable algorithm performance

[Pri84,Ker69].

The heuristic techniques reported in the literature can be classified into

three categories [Lin8l]: (1) constructive initial assignment, (2)

iterative assignment-improvement, and (3) branch and bound technique.

The constructive initial assignment techniques are based on the concept of

assigning one unit at a time to a particular processor until all the units

are assigned. Algorithms vary on the order in which the units are

assigned and the criteria used to select the processor.

The iterative assignment-improvement techniques start with an initial

assignment and the next assignment is generated by making a small

5

TV TV -. . -. I.- r ----- w-

improvement to the initial one [Ker69]. The algorithms terminate when no

improvement can be discovered or after a predetermined number of

iterations.

The branch and bound methods are based on the concept of doing an

implicit search of a decision tree. Algorithms use different heuristic

methods for deciding which branch in the decision tree to follow and for

pruning possible solutions.

The iterative assignment-improvement algorithms are used more than the

other two techniques. In general, the branch and bound algorithms are too

slow for large applications and the constructive initial assignment

algorithms do not generate partitions as good as the other two techniques.

One of these types of algorithms will be customized and applied for the

Ada source code partitioning problem. It is expected that the number of

vertices in a graph obtained frbm Ada source will be large, and therefore

heuristics will need to be developed not only for creating good

partitions, but also for partitioning in an acceptable amount of time.

6

L .>4-

3.0 PARTITIONABLE UNITS

In our framework of source code partitioning, we discuss what constitutes

a partitionable unit of an Ada program. Since the partitioned software

has to be compiled on each processor, the partitioned units must be

separately compilable. In Ada, there are four kinds of program units that

can be separately compiled. They are tasks, subprograms, packages, and

generic units.

Subprograms are the basic executable units of Ada programs. They can be

procedures or functions. A subprogram c6mmunicates with outside entities
i

via global declarations or parameter passing upon its invocation and

termination.

In Ada, a collection of logically related entities can be encapsulated in

a package. A package allows its entities to communicate with an entity

outside the package via global* declaration or by the import and export

mechanism. The entities declared in the visible part of the package

specification may be used outside the package. And entities in another

package may be used by establishing the visibility through the with

clause.

Unlike subprograms and packages, tasks operate in parallel with other

program units. The main program unit is implicitly considered to be a

task. In Ada, task interaction is handled by treating each task as a

communicating sequential process [Hoa78]. The tasks are synchronized in

time when they communicate. The explicit synchronization is known as a

rendezvous. Similar to package specification, a task specification

defines the communication entries available to other tasks.

7

e:4J...

These three kinds of program units can be introduced in the declarative

part of any unit. This makes the communication among units non-trivial.

We will discuss this in a later section.

Some distributed Ada systems allow partitioning on task boundaries only.

That kind of approach appears to have achieved a synergy between Ada's

units of concurrency and the underlying system's unit of concurrency, the

processor. However, this approach requires all code being partitioned be

encapsulated by a task. This requires early partition to make sure that

tasks are designed at the appropriate place. This does not meet our

objective of making minimum design restrictions. In some applications,

limiting interprocessor interface to only task rendezvous may be

unnatural; the interprocessor interface may be better represented as a

call to a procedure inside a package and not a call to an entry for a

task.

We propose that partitioning be allowed on these three kinds of program

units boundaries. We do not explicitly include generic units as

partitionable inits. We can view generic packages/subprograms and their

instantiations as packages/subprograms in the partitioning scheme. Since

the partitioned units have to be compiled on the target machines, we may

require the partitionable units to be designed as Ada compilation units

for distribution purposes. This does not impose any syntactic restriction

or any design restrictions since Ada program units can be submitted as

separate compilation units or as one compilation. However, it must be

understood that a compilation unit does not have to be a partitionable

unit. In Ada, each compilation unit specifies the separate compilation of

S

pt..

-- -.. . u '.4 . , . Z ' % ''t,_' -" ' '- "" """" --. ""."• '' ' ''

I a construct that can be a subprogram declaration or body, a package

declaration or body, a generic declaration or body, or a generic

instantiation. A compilation unit can also be the body of a task unit.

i

L:

9

I-
I2

4.0 PARTITION MODEL

We have discussed the general partition problem and our proposed

partitionable units in Ada in previous sections. We now propose a model

for partitioning an Ada program for distributed targets.

The first step in our modeling is to represent the interunit communication

as a graph G = (V,A), where V is the set of vertices representing the

partitionable units of an application, and A is the set of arcs

representing the communication. Our next steps will be examining how to

assign weights to the vertices and the arcs.

4.1 INTERUNIT COMMUNICATION

A unit can be a subprogram, a task, or a package of data objects. There

are four kinds of communication among these units.

The first kind is subprogram invocation. A subprogram's execution is

invoked by a subprogram call from another subprogram or a task. After the

association between formal parameters and actual parameters is

established, the execution control is passed to the called subprogram.

Upon completion, control is returned to the caller. The subprogram

invocation follows a single thread of control. The communication cost is

incurred at invocation and completion.

The second kind of interunit communication is task rendezvous. Different

tasks execute independently, except when they communicate. A task entry

can be called by another task. The communicatipn is established when the

10 I0I

-v -'I. *y . *~*g % %'' .-

called task accepts the call. If the entry has parameters, values are

communicated between the tasks. After this synchronization, the task

issuing the entry call and the task accepting the call continue their

execution independently.

Task activation/termination is another kind of communication related to

tasks. This is an implicit communication in the control flow of the task

dynamics. The initial part of task execution is called activation. A

task is activated as a result of the elaboration (execution) of the

declarative part of its parent task or as a result of the allocation of a

new task. A task is said to be terminated when it is completed (it

finishes its last executable statement) and all its dependents are

terminated. Therefore, upon termination, a dependent task needs to

communicate its state to its parent. This kind of activation/termination

communication occurs between a task and any other kind of partitionable

unit.

Data reference/modification is a different kind of interunit communication

that is not explicit. A partitionable unit can refer any visible data

defined in other units. A data definition in a unit is made visible to

another unit either by scope rules or with clauses. Data

reference/modification is purely data flow; there is no control flow

involved.

Two units with any of these four kinds of communication will experience

some network delay when they are allocated to different processors. Over

the same network, different kinds of communication take different amounts

of time. We will discuss the weights on these "kinds of communication in

the partitioning scheme.

. . . .

Although communication is bidirectional, we like to assign direction to it

for analysis purposes. We say a communication is from unit A to unit B if

unit A initiates the communication.

We assign a weight to every communication from unit A to unit B if they

are assigned to different processors. The weight of an interprocessor

communication depends on the number of messages required for such a

communication. In the case of subprogram invocation and task rendezvous,

the number of arguments in the call has to be taken into account for the

weight of the communication.

For a call to a subprogram on a different processor, two messages are

needed: a "call" message containing the IN parameters, if there are any,

and a "return" message containing any OUT parameters.

In addition to the "call" and "return" messages, there are two more

messages needed for each normal task rendezvous [Wea84]. After a "call"

message is sent to the accepting task and when it is ready to accept, an

"accept" message is sent. If the calling task still desires rendezvous, a

"confirm" message, is sent to the accepting task. Figure 1 depicts the

message passing required for task rendezvous. The "accept" and "confirm"

messages are less complex than the "call" and "return" messages that

contain IN and OUT parameters.

In the event of elaboration, a task sends an "elaborate" message to all

its dependent tasks and waits for an "active" message from each of its

dependents. When a task completes its last executable statement, it waits

for a "terminate" message from each of its dependents before it

12

calling task accepting task

"call" message

"accept" message

confirm" message

"return" message

Figure 1. Messages Required'for Task Rendezvous

terminates. Therefore, there are totally three messages between a parent

and each of its dependents required for activation and termination.

For data reference/modification between two units on different processors,

a "request" message is sent from the initiator and a "response" message is

returned.

The weight of an edge from unit A to unit B is the sum of the weights of

all communication from A to B.

4.2 COMPUTATIONAL COMPLEXITY OF THE UNITS

Several program complexity metrics have been developed for various

purposes, such as maintainability, and understandability. For

partitioning purposes, we are interested in the computational complexity

of a unit. The complexity measure includes the unit's time and space

13

N .% %,, . ..- , - ...

requirements. Knowing the compelxity of each unit, we may be able to

achieve better load balancing for the processors in the system. We use a

simple definition of load balancing. Load balancing is an assignment of

units to processors such that the time and space requirements are evenly

distributed to each processor in the system.

A unit, except a package of data, contains a code portion and a data

portion. A suitable metric for measuring the space requirements of the

code portion of a unit might be the number of machine instructions.

However, the number of machine instructions generated from Ada source is

compiler dependent. In general, the expansion ratio of the number of

machine instructions per line achieved by a compiler is not known. GTE-GS

SSD has done some work in measuring emperically the expansion ratio of a

group of compilers [Che86]. Since we are using a less strict definition

of load balancing, that is, we are not aiming at an optimal assignment,

the number of source lines could be a good estimate of the space

requirement for a unit's code portion. Similar to code space

requirements, a unit's data storage requirement is compiler dependent. At

this point, we are going to use a set of assumptions about Ada data type

storage requirements.

The time complexity of a task or subprogram unit that does not contain a

loop statement can be measured by the number of machine instructions

generated for the unit. To analyze a unit with loop statements is

nontrivial. A loop statement without an iteration scheme can be

repeatedly executed until a transfer of control occurs. In most cases,

how many times a loop is going to be executed.cannot be predicted until

14

~ *~i-~ *,.~ *f S - .4-

the transfer of control occurs. Even for a loop statement with a "while"

iteration scheme, it is difficult to estimate the number of iterations.

We can only be certain of the number of iterations in a loop statement

with a "for" iteration scheme. We can view all loop statements with or

without iteration schemes as a sequence of code to be executed

periodically. Therefore, the time requirement of a unit can be estimated

by the number of source lines without regard to loop statements.

15

_S. . -o. . . .- -,-*-.,. -* - -* m- •S -* ".'. ' ' .'' °'' q ' : .;,x-- ='; ' '° " ' ' '
* 4'b

5.0 CONCLUSION AND FUTURE PLANS

In this paper, we have discussed the problem of partitioning real-time Ada

software for distributed targets and adopted source code allocation as an

approach to the problem. In this approach, code for an application is

developed and tested as a single Ada program, and then partitioned and

distributed to distributed targets, where compilation takes place at each

location. A partitioning methodology for Ada programs has been outlined.

The next steps in the research program will concentrate on testing the

ideas outlined in this paper. Specifically, the following tasks will be

pursued:

* Guidelines will be developed for use in translating an Ada source

program into a graph for partitioning; this will determine the

validity, as well as the ease of derivation of the parameters

discussed in this paper.

* An efficient graph partitioning algorithm will be developed. This

will entail the derivation of a set of heuristics to enable the

generation of "good" or "close-to-optimal" partitions without

prohibitive computation costs.

* Finally, the performance of the partitioning methodology developed

will be assessed to determine its effectiveness in generating high

performance partitions.

16

REFERENCES

[Arm84] Armitage, J. W. and J. V. Chelini, "Ada Software on Distributed

Targets: A Survey of Approaches," GTE Government Systems, Strategic

Systems Division TN 84 807.6, October 1984.

[Che86] Chelini, J. V., E. B. Hudson and S. M. Reidy, "A Preliminary Study of

Ada Expansion Ratios," ACM Software Engineering Notes, Vol. 11, No.

1, January 1986, pp. 35-46.

[Chu8O] Chu, W. W. et al., "Task Allocation in Distributed Data Procession,"

IEEE Computer, Vol. 13, No. 11 (1980), pp. 57-69.

[Gar79] Garey, M. R. and David S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W. H. Freeman and Company,

1979.

[GTE85] "Task Allocation in Distributed Hard Real-Time Systems," GTE

Laboratories Technical Proposal No. RL 5029 (1985).

[Hoa78] Hoare, C. A. R., "Communicating Sequence Processes," Communications

of ACM, Vol. 21, No. 8, August 1978.

(Ker69] Kernighan B. W. and S. Lin, "An Efficient Heuristic Procedure for

Partitioning Graphs," The Bell System Technical Journal, February

1970, pp. 291-307.

[Lin8l] Lint, B. and T. Agerwala, "Communication Issues in the Design and

Analysis of Parallel Algorithm," IEEE Transactions on Software

Engineering, Vol. SE-7, No. 2, pp. 174-188.

17

3b:

[Mok84] Mok, A., "The Decomposition of Real-Time System Requirements into

Process Models," Proceedings of the 1984 Real- Time Systems

Symposium. pp. 125-134.

[Mok85] Mok, A., and S. Sutanthavibul, "Modelling and Scheduling of Dataflow

Real-Time Systems," Proceedings of the 1985 Real-Time Systems

Symposium, pp. 178-187.

[Pri84] Price, C. C., and S. Krishnaprasad, "Software Allocation Models for

Distributed Computing Systems," Proceedings of the 1984 Distributed

Computing Systems Conference, pp. 40-18.

[Wea8l] Weatherly, R. M., "A Message-based Kernel to Support Ada Tasking,"

Gensoft Corporation, Pittsburgh, PA, 1981.

18

qI

*

I__________________________________

