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NEW ADAPTIVE IIR FILTERING ALGORITHMSI
Hong Fan. Ph.D.

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign. 1985

A family of adaptive IIR filtering algorithms is proposed based on the Steiglitz-

McBride identification scheme. The algorithms are shown to be close approximations of

one another for slow adaptation. Because of the non-vanishing gain. they are suitable

for filtering applications and are simple to implement. A convergence proof is carried

out using a theorem of wide-sense convergence in probability in the literature of

stochastic processes. For the *sufficient order" case, the estimates can be shown to

converge to the true values. While for the case of "reduced order.* it is conjectured that

the estimates converge to the best fit, which is supported by computer simulations. The

major drawback is that the estimates may be biased in presence of colored disturbance.

However, this does not restrict the applicability of the proposed algorithms to some

qimportant practical problems. One specific topic. adaptive echo canceling, is extensively

studied and simulated for various situations. The results are favorable compared with

the conventional adaptive FIR cancelers and other adaptive fIR algorithms.
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1. INTRODUCTION

The word "adapt." meaning to make fit for a new situation by modification, has

appeared in filtering literature perhaps since 1960 when Widrow and Hoff published a

U paper on "adaptive switching circuits" [I]. Since then. an increasing stream of papers

and books on adaptive filtering [2] - [42] has been appearing due to its great flexibility

and vast applications. Nowadays. adaptive filters are used in prediction [7] - [10].

spectral estimation [10] - [12]. antenna systems [5], [12]. noise cancellation [6]. echo

cancellation [131 - [19]. channel equalization [20] - [26]. time delay estimation [27] -

1[29]. etc.. Its success is indeed tremendous.

1.1 What is Adaptive Filtering ?S
"Adaptive filters" are the kind of filters which are in some sense self-designing or

self-modifying. When filtering an input signal as a usual filter, an adaptive filter uses

the measured input and output signals (and usually some other "reference" signal) to

adjust the filter characteristics by a recursive algorithm so that the filter is constantly

optimized in some statistical sense throughout the filtering process. Hence. an adaptive

filter apparently performs much better than a conventional filter for the same set of

conditions. This is why adaptive filters are so powerful and have ;rawn so much

interest. Although adaptive analog filters do exist [2]. adaptive digital filters are far

hmore popular because of the rapid development in digital computers and other digital

computing techniques. Throughout this dissertation. only digital adaptive filters will

be considered and will be implied whenever "adaptive filters" are mentioned.

I Two subclasses of adaptive filters can be distinguished analogous to conventional

digital filters: adaptive finite impulse response (FIR) filters and adaptive infinite impulse
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response (IIR) filters. Adaptive FIR filters have been the major topic in adaptive

filtering literature because of the following two reasons: 1) since they have no poles. the

error surfaces i are quadratic and thus a simple gradient search works well for the

recursive adaptation algorithm: 2) also since there are no poles. the filter is always

stable (provided some convergence conditions in 1) are satisfied) during the adaptation

process. Note that these two reasons are distinct, although related. As mentioned

earlier, the pioneering work on adaptive (FIR) filtering was done by Widrow et al. [1].

Widrow then went on to analyze his least mean square (LMS) algorithm [3]. [4].

Meanwhile. he proposed a number of important areas of application [4] - [6]. Later.

Widrow's LMS method was extended to the frequency domain where an FFT can be

used for fast processing [30] - [32]. This idea was then further generalized to so-called

"transform domain LMS algorithms" and was quite successful [33]. At the same time.

researchers also tried to modify Widrow's LMS algorithm to achieve faster convergence

and less computation [251, [34] - [36]. Finally. a lattice structure for adaptive FIR (also

IIR) filters was also proposed [37] - [40]. Most of the above-mentioned progress is

fairly well summarized in two recent books [41] - [42]. Indeed. the literature on

adaptive FIR filtering is vast. On the contrary, the literature for adaptive IIR filtering is

much less excensive. The next section explores this in more detail.

1.2 Adaptive EIR Filtering

The advantages of infinite impulse response (IR) filters over finite impulse

response (FIR) tilters are well known. e.g.. for the same performance. IIR filters require

much less computation than FIR filters, and IIR filters can usually match physical

systems well. whereas FIR filters often give only rough approximations of them. This

By "error surface." it is meant the mean squared value of the output error (see Figure 1) as a function -N
of adaptive coefficients. It is also ca:led "performance surface."

"I'i



3

is also true in the field of adaptive filtering. However, unlike adaptive FIR filtering, the

error surfaces for adaptive IIR filters may not be unimodal, and the poles may move

outside the unit circle during adaptation. These features make the adaptive IIR filtering

problem much more difficult, and thus it was abandoned for a long time [43].

In 1976, Feintuch published a paper on an adaptive recursive LMS filter [44]

which triggered a rebuttal [43] - [46] as well as new interest in adaptive IIR filtering.

Some attempts have been made to study the behavior of error surfaces for the "system

identification mode" (Figure 1) of adaptive IIR filtering. Stearns [47]. based on his

numerical experiments, came up with a conjecture that if the adaptive filter is of

"sufficient order" (i.e.. if A,, >n, and rb >nb ). and if the driving input x (n) is white

noise. then the error surface E {e2(n )} is unimodal. where E[{' denotes the expectation.

Based on his conjecture, we can roughly classify the error surfaces of the system

Disturbance
Dynamic Plant v(n)

b- 4w(n) y(n)

Driving .- aiOutput

Input Error

x(n) " e(n)
Adoptive Filter

n o

-G (n)z
o--

Figure 1 System identification mode of adaptive IlR filtering

-: "
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identification mode in a stationary stochastic setting. with both incredsing complexity

and practicality:

1) sufficient order with white noise input

2) sufficient order with colored (noise) input 2

3) reduced order with white noise input '.

4) reduced order with colored (noise) input

-, where "reduced order" refers to the situation when the conditions for the sufficient order

are not satisfied. The error surfaces for 1) are. based on Stearns' conjecture, unimodal

(yet to be proven). The other three classes may be multimodal. Evidence of

multimodality for case 3) was shown in [45] and [471, and for case 2) was shown in -

[48]. A multimodal example of case 4) can be obtained by generalizing the example in

[48]. as illustrated in Section 2.4. Note that the proposition that the error surfaces of

cases 2). 3) and 4) may be multimodal does not rule out the possibility that they may

be unimodal (even for rA >0). An example of a unimodal error surface for case 3) is

found in [46]. In general, the knowledge about these error surfaces is quite limited.

For error surfaces involving filter orders higher than two. the expressions can become

very complicated. It also becomes difficult to display these surfaces since they are

functions of more than two variables.

Early work in adaptive IIR filtering was mainly restricted to extending Widrow's

LMS method of adaptive FIR filtering based on gradient search [43] - [46]. [491. [50].

Typically, the technique proposed in [49] and (50] can be called "Stearns' algorithm." As N.

just discussed. however, these algorithms may have a guaranteed global convergence

only for case 1). This severely limits their usefulness. It should be pointed out here

2 11 Is understood that to ensure possible parameter convergence the input should always be "persistently

exciting" [52]. [56] - (57].

+.r w .:,p %e,, ,,,Z,, ,;,,',;,'.,,,,' ;v,,...,',,.¢¢ +,'€ <, ,..'s<+',€, +.+. .+ , ,P','. , t,-+ +'' U+ ,

+ + , . .. .,"5 + ,,,, .,,. +. +++ . . .. .. . . .... .,,' +



gthat the direct extension of Widrow's LMS method to the IR case results in the

equation error approach [51]. which shall be called LMSEE (least mean square equation

error). Although LMSEE may be applicable for cases 1) and 2). it is well known that

for non-zero measurement noise v (n ) (see Figure 1) LMSEE results in biased estimates

[511 -[54].

Recently it has been realized [55] that adaptive IIR filtering, as a more general

setting than the FIR. is closely related to the problem of recursive parameter estimation,

a well-developed subject [56]. [57]. This broadens the view of researchers in signal

processing and suggests more alternatives for adaptive IIR filtering. A good example is

given in [58] and [9] where the author adopted a recursive maximum likelihood

estimation algorithm (RML2) for adaptive IIR filtering applications. Although RML2 is

very successful in system identification applications, its direct use in adaptive filtering

may not be very desirable due to its computational complexity. vanishing gain. and

potential false local convergence [57] in reduced order cases 3) and 4).

Another application of recursive identification techniques to adaptive IIR filtering

is represented by a family of algorithms based on the concept of hyperstability [59] -

[66]. Among these. HARF (hyperstable adaptive recursive filter) was proven

asymptotically convergent under the "strict positive reality" (SPR) assumption [60].

Note that HARF is potentially applicable to cases 1) and 2) while a counterexample for

case 3) was reported in [62]. However. the SPR requirement is a major obstacle in the

r. practical application of HARF [62] - [66].

Reference [67] gives a review on adaptive IIR filtering and i's applications.

O
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1.3 The Scope

Twenty years ago. Steiglitz and McBride proposed a scheme for system

identification [68]. Later. Stoica and Soderstrom analyzed this scheme and gave an "on-

line" version of it [69]. [701. In this dissertation, a family of stochastic approximation

variants of the Steiglitz-McBride scheme is developed which shows a close relitionship

with LMSEE. Aiming directly at filtering applications, the contributions of this work

are: 0) the proposed algorithms have a non-vanishing gain which enables the algorithms .

to remain active and to track time-varying systems; ii) the algorithms are "on-line" and

are computationally simple; and iii) an interesting phenomenon - global convergence

regardless of local minima is observed which makes the algorithms promising for more

general error surface cases 3) and 4). The asymptotic behavior of the proposed

algorithms is similar to that of the Steigiitz-McBride scheme as analyzed in [69] and U
[70]. The major drawback is that the estimates are biased in the presence of colored

measurement noise (disturbance). However. the global convergence phenomenon

motivates the study of this family of algorithms. Note that this phenomenon has not

been observed in any other adaptive IIR filtering algorithms (see. e.g.. [45], [62) and

[64]).

Despite the similarity in asymptotic behavior between the proposed algorithms

and the Steiglitz-McBride algorithm, the convergence mechanism of the proposed

algorithms is quite different from the latter because of the non-vanishing gain. Due to

the lack of appropriate mathematical tools. this most practical category of adaptive fIR

filtering problem, non-vanishing gain in a stochastic environment has not received

significant study [67]. Only very recently, a series of papers, e.g. [71] - [74]. on "weak

convergence" of adaptive algorithms for constant gains has provided us with such a tool.

In this dissertation. we will use the results of Benveniste et al. [71] to prove 4

U
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convergence of the proposed algorithm since the conditions in [71] are more "tractable*

than those in others. Specifically. Benveniste's results will be used to translate the

original problem into the study of an associated ordinary differential equation (ODE)

regardless of the orders. The study of the ODE for sufficient order cases 1) and 2) then

results in parameter convergence and output error convergence. This material is all

covered in Section 2.3 (also see [75]) following the development of the algorithms in

Section 2.2 (see [761, [77]). The results are verified by computer simulations in Section

2.4. For the reduced order cases 3) and 4). the ODE is much more difficult to analyze.

However, computer simulations are presented in Section 2.4 which suggest global

hconvergence for these cases. A discussion on convergence rate and other related issues is

contained in Section 2.5. Chapter 3 is devoted to the application in echo cancellation. A

number of computer simulations are presented for various situations. Finally, Chapter

4 concludes the dissertation by discussing some remaining issues and open questions in

adaptive IIR filtering.

Va

''I

U!
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2. THREE NEW ADAPTIVE hR FILTERING ALGORITHMS

2.1 Problem FormulationI

The system identification mode of adaptive IIR filtering shown in Figure 1 is

described by:

i=1 j=0

Y (n )=w(n)+v(n) (lb)

j=1 j=0

e (n )y (n) (n) (ld)

where it is assumed that all the poles of the dynamic plant are inside of the unit circle,

and the numerator and the denominator of its transfer function are relatively prime. If

all 6i (n Ys are forced to be zero. i.e.. no poles are involved in the adaptive filter, we

* would have an adaptive FIR filter. In this case it is easily seen that the mean square

error is quadratic in the ;, (n Ys:

j0

so that the gradient is linear in i, (n Ys:

~ )( E~e2 (n2(n )))=-2E (e (n )x (n -j) 3
I 8hb (n)

Widrow's LMS algorithm is thena

bj n 1)b, n -,'Vi )IE e (n b,(n)+2'Ele(n x n jU
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Ib, (n )+'e (n )x (n-i). (4)

It was proved that the filter weights b1 (n) will converge to their optimal Wiener

solution [3]. [4]. However, due to the structure of the filter. this optimal solution may

still yield a significant mean square error if the number of weights is not large enough.

This motivates the study of the adaptive IIR filtering, i.e.. allowing the freedom in

adjusting ai (n )s.

The problem of adaptive IIR filtering is not as easy as that of FIR. The difficulty

arises from the recursions in . Some existing algorithms mentioned in Chapter 1 are

given here.

A) Stearns' (Recursive Gradient) Algorithm 146/, /49 - 1501,1641, 167/:

ai (n +l=j (n)+re (n) i '(n): i=1,2, • • Aa (Sa)

-: 9, (n + O)=tj (n )+-re (n )xj '(n ) :=0.1. • A-•,b (5b)

where

i '(n )=9 (n -i )+ Ea, (n )9, '(n-I); i 12.'-" A= (5c)~1=1

xj '(n )=x (n -j )+ it (n)xj '(n-l); j=0.1 -• A. (5d)

Note that the quantities corresponding to the gradient in (4). i.e.. 9, '(n) and x, (n) are

computed recursively by (5c) and (5d). As shown by the analysis in [64]. [67] and by

numerical examples in [46]. this algorithm is indeed a gradient algorithm and converges

only to a local minimum. Thus. it may only work well for the error surface case 1).

In computing 9, '(n )'s and xj'(nYs as given in (5c) and (5d). (Ai,+Aib+l)Xra

storage space is required. Since 9i'(n) and x,'(n) are updated for each i and j

w* .'
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independently, it requires ("I +Ab +1)Xri 0  multiplications at each step n. Johnson

mentioned in [67] a simplified version of this algorithm:

b, (n +1)=bj (n )+,re (n ) '(n -i ): i =1.2, ., (6a)

where

C.( ( )+ Eal (n ) ( (6c) :"

x '(n )=x (n )+ Li t (n )x '(n -1) (6d)
1=1

In other words, time shifted versions of 9'(n) and x'(n) are used instead of II

independent 9, '(n )s and x, '(n )s. In comparison with (5c) and (5d). (6c) and (6d)

require only 24A storage spaces and 24A  multiplications at each step. For slow

adaptation (small r). the results using these two versions are essentially interchangeable

[67). The Stearns' algorithm can be thought of as a direct extension of Widrow's LMS

algorithm in that if a =0. thtn (5) and (6) simplify to (4). Another important point is

that the algorithm cannot guarantee the stability of the filter during adaptation. Thus.

an expensive stability monitoring device needs to be incorporated into the algorithm.

B) Simple Ryperstable Adaptive Recursive Filter (SHARF) 159/ - 16 7:

The algorithm was proposed as a simplified version of the hyperstable adaptive

recursive filter (HARF) [601. For h n. 4A =nb, and v (n )-O. the SHARF is described

as follows:

a, (n + 1)-a, (n )+,re '(n ) (n -i ): i = 1.2. •... (7a)

/ -(n+I)=b,(n)+e'(n)x(n0.1 .-.j j (7b)

A e
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e'(n )=e (n )+ Ycle (n -I)(7c)
*=1

3 where the coefficients c's are chosen so that the strictly positive realness (SPR)

condition

1 + ' z -

Re{H(z)}>0. for all I 1=1; H(z)= £f (8)

I- az -!

is satisfied. While SHARF is capable of dealing with error surface cases 1) and 2) and

has guaranteed stability, the SPR requirement is an obstacle, since some a priori

knowledge about the unknown plant parameters al s is needed. After exchanging ideas

through extensive correspondence in journals and conference proceedings [62] - [66].

researchers came up with a modified SHARF algorithm that eliminates the SPR

requirement as well as. unfortunately, the guaranteed stability [63]. (66]:

(n +)=, (n )+,re I(n ) (n -i i =1.2. (9a)

g ~9 (n +0)=9, (n )+-re '(n )x (n -j) =0.1. • - (9b)

€, k (n + 1)= k (n )+-re'(n )e (n -k ): k =1.2. • • • it. (9c)

e'(n )=e (n) ' (n )e (n -1 (9d)

provided that

C (n ,z-)=+F1 (n )z-' has all roots within the unit circle (10)

during adaptation, wh:ch requires also a stability monitoring device [66]. [67).

!t
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Note that a rigorous convergence proof applies only to HARF. which is

computationally much more complicated [60]. The SPR requirement (8) and the

stability requirement (10) were imposed on HARF. Nevertheless, for small - SHARF

remains a close approximation to HARF. and thus these requirements are essentially

applicable to SHARF [59].
p'..

For reduced order cases 3) and 4). SHARF (or HARF) fails to converge to the

desired global minimum as demonstrated in [62].

C) Least Mean Square Equation Error (LMSEE) Algorithm 1511 - /54]: .

Another way of directly extending Widrow's LMS algorithm to the IIR case is by

filtering the output error through an all-zero (post) filter identical to the denominator

of the adaptive filter, so that this filtered output error, or the "equation error." is linear

in a, (n )'s and 9, (n )s [521:

e '(n )=e (n)-Y" , (n )e (n -i).

=y (n )- ai (n )y (n -i )-U (n )-E (n)9 (n -i)]
i=1 i..

=y (n )-Ea" , (n )y (n -- -E#(n )x (n -j ).(1)1,%

It is then a simple matter to minimize E le '2(n ) by the widely used LMS method. i.e..

a Ee'2 (n A)2e'(n) e'(n )=-2e'(n )y(n-i) i =1.2. ,fo (12a),(n )(

a E {e 2(n )I 2e '(n ) e '(n )=-2e '(n )x (n -j): =0.1 • • b (12b)
8b(n) 8b 1 (n)

such that

' ii . p .. • • • i •+,1 . b • i b . . . . " ,, , • ". . . ' ' • ~ lbd.' M '* " ",1 . +U
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I ai ~~(n 1)= (n )+re '(n )y (n -- ; i =1,2, . (13a)

5(n +i=,(n )+Tre'(n )x (n -j) j=0. 1. ., (13b)

This approach minimizes the (squared) equation error but does not necessarily minimize

the (squared) output error unless the minimum values are zero (one being zero implies

the other as clearly seen in (II). assuming 1- i (n )z - ' having all its roots within
i=1

the unit circle), which corresponds to the error surface cases I) and 2) when the

disturbance v (n )M0. For non-zero v (n) the parameter estimates are generally biased

[51] - [54]. Debiasing requires a priori knowledge about the statistics of v (n) and thus

may not be desirable [51].

Other adaptive IIR filtering algorithms also exist. e.g.. RML2 adopted by

Friedlander [58]. However, as mentioned before, due to the computational complexity

and other reasons, they are not presented in this dissertation.

2.2 Development of the New Algorithms

The family of the new algorithms is developed oased on the LMSEE algorithm.

Consider for the moment x' (n) as the input. e' (n) as the output error, and V (n) as

the disturbance in Figure 2 (this subsystem is the same as Figure 1). e (n) then becomes

the "equation error" as described in Section 2.1 and can be expressed as

e (n )=e' (n)- (n )e' (n -i ).(14)

where

e'(n )y'(n )-'(n) (15a)
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=y' (n)- a (n )y' (n -i )- b, (n )x' (n -).(16)
L=1 J -0

Here e (n) is linear in a, (n )s and/b, (n )s assuming y and x' are independent of these

adaptive coefficients for the moment. Then minimization of E {e2(n )} yields

0 E e 2(n )}2e (n) e (n )=-2e (n )y' (n -i): i =1.2, • (17a)
8b (n) 0b (n)

)Ele 2(n )}:2e (n) e(n )=-2e (n)x'(n-j) j =0,1. 0 7 b )
j (n(17

such that
suchthataj (n +I 1)=aij (n )+,re (n )y' (n -- : i=1.2. •i••.A (18a)

/b, (n +1)=/b, (n )+-re (n )x' (n -j ): =0.1. A rb . (18b)

As stated before, this approach minimizes the (squared) equation error but not the

(squared) output error. To circumvent this. an all-pole filter which is the inverse of the

post-filter is added as a pre-filter at the input, as shown in Figure 2. Note that the

overall response from x (n) to e (n) is not the same as that of Figure 1. due to the

time-varying nature of the filters. However. for slow adaptation it is a close

approximation to that of Figure 1. Moreover. at a convergence point where all adaptive

coefficients tend to be constant, these two systems become exactly the same. Thus e (n).

the equation error with respect to x' (n). can be thought of as the output error for the

input x (n). Then the quadratic minimization scheme for the equation error ((14) -

(18)) can be applied provided x' (n) and y' (n) are independent of £, (n )'s and 9i (n)' .

Due to the pre-filter. this is apparently not true. However. we observe that Equation

(17b) is valid, since x' (n) and y' (n ) are independent of Si (n )'s. and the derivative of

U e (n) with respect to d, (n). considering (15b). (15c). (05d) and (16). is

gV
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e ) [w'(n)+v'(n) - (n) ' (n-1 )-y'(n -i)
(n) (n 0 (n)y

-obj (n) ' ,)(n --J

n..j
I =0 & , (n x 0 On = a,

nJt

=Zaj W0 w',-1)+ Eb, 0 x'(,n-)+ (n ) v'(n -1) ,
1.1i 6j (n) =-o aj (n- (n_

+v'(n -i) (n [w(n-)+v(n-1)A- (n) x(n-j)

-y'(n -i)

n~V

[a, -St (n )I w°(n -I )+ [bj -b, (n) x' (n -j)-w' (n-i )
---- I j =0(

--- w'(n-i ) 12..r, (19) '56

where n 1=max{n, 'a and n 2=maxfnb. b). From this it is seen that Equation (17a)

is an approximation in that w is replaced by y' and the two summation terms are -

ignored in the last step of (19). Note that this is a reasonable approximation for the

following reasons. First. because v (n ) (and hence v (n)] is unmeasurable. y' (n -j ) is

the only measurable quantity that gives an approximation for w (n-j). For v (n )-O

this approximation becomes exact. Second. for the sufficient order case , n,, .Ab =n,, .

the two summation terms in (19) indeed approach zero nea the (parameter)

convergence point and hence resulting in a gradient nature at that point which

guarantees the local convergence at that (global minimum) point. Whereas at other

points (possibly other local minima) the two ignored summation terms are not zero. and

hence the algorithm does not exhibit a gradient behavior, which may prevent itself

Z'N7
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I ~ ~=y' (n)-Y (n (tY (n -i )-Fb, (n )x' (n - j ) 16)

j =0

Here e (n) is linear in a, (n )'s and b, (n )s assuming y' and x' are independent of these

adaptive coefficients for the moment. Then minimization of E {e 2(n )) yields

0 Ele 2(n)}2e(n) a e(n)=-2e(n)y'(n-i) i=1.2. a (17a)| i oa(n)

)Ee( 2 (n)}-2eb(n) a e (n)=-2e(n)x'(n-j i =0. 1 'b (I7b)

such that

ai(n +l)=a i (n)+,re (n )y' (n -i): =1.2. •• (18a)

b, (n + 1)=b (n )+,re (n )x' (n -) j =0.1. • Ab. (18b)

m As stated before. this approach minimizes the (squared) equation error but not the

(squared) output error. To circumvent this. an all-pole filter which is the inverse of the

post-filter is added as a pre-filter at the input, as shown in Figure 2. Note that the

overall response from x (n) to e (n) is not the same as that of Figure 1. due to the

time-varying nature of the filters. However, for slow adaptation it is a close

approximation to that of Figure 1. Moreover. at a convergence point where all adaptive

coefficients tend to be constant, these two systems become exactly the same. Thus e (n).

the equation error with respect to x' (n), can be thought of as the output error for the

input x (n ). Then the quadratic minimization scheme for the equation error ((14) -

(18)) can be applied provided x' (n) and y' (n) are independent of a, (n )s and 9i (n )s.

Due to the pre-filter. this is apparently not true. However. we observe that Equation

(17b) is valid, since x' (n) and y' (n) are independent of b, (n )'s. and the derivative of

e (n ) with respect to £, (n considering (15b). (15c). (15d) and (16). is

J I

E~N
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e e(n) [w* (n )+%,(n)I a(n) a '(n -)-'(n-ii i (n ) , (n aa (n 1 "

- b, (,)-- x'(n-j )

Ea w,(n )+Ebx )__a__ , '

-.,-

U, -y* (n-

ni n2

E~ ~ (,S (tW (n -1)+ E[b -b, (n) x'(n -J)-w'(n-i)

(n1.2. (19)

where n 1=maxlna. A and n 2=maxinb, 4.1 From this it is seen that Equation (17a)

is an approximation in that w' is replaced by y' and the two summation terms are

ignored in the last step of (19). Note that this is a reasonable approximation for the

following reasons. First. because v (n ) [and hence v' (n ) is unmeasurable. y' (n -j ) is

the only measurable quantity that gives an approximation for w' (n -j). For v (n )-O

this approximation becomes exact. Second. for the sufficient order case n3 =n0 . A, =n.

the two summation terms in (19) indeed approach zero near the (parameter)

convergence point and hence resulting in a gradient nature at that point which

guarantees the local convergence at that (global minimum) point. Whereas at other

points (possibly other local minima) the two ignored summation terms are not zero, and

hence the algorithm does not exhibit a gradient behavior, which may prevent itself

a!
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from being trapped at a local minimum as other algorithms are. For reduced order cases

the situation is more complicated and it may also very well be these ignored terms that

make the algorithm converge globally (see Section 2.4). Another more heuristic

argument for this approximation may be as follows. At each step of adaptation. the

input x (n) is pre-filtered, producing x' (n). before the adaptive coefficients are updated.

P It is thus assumed that the pre-filter is a constant filter with coefficients fixed at a, (n )s

at each step of adaptation n. Then x' (n) and y' (n) can be thought of as independent

.1 of the coefficients , (n )s and /, (n )s in the adaptive filter and the post-filter at the

time instant n . The quadratic scheme (14) - (18) can still be applied. After updating.

the coefficients in the pre-filter are also changed, resulting in a new fixed pre-filter for

the next adaptation. This argument is more valid for the "IF" algorithm appearing next.
aNi

In short. Eqns. (14). (15). and (18) together with

x* (n )=x (n )+~d (n )x' (n-i) (20)

constitute one version (system identification mode) of the proposed algorithm. It shall

be referred to as SIM algorithm in the sequel.

.*Note that since v(n ) is not measurable. (15d) is not practically realizable. Thus

SIM algorithm is applicable only when v (n )-O. Also, in the general adaptive filtering

.4 mode. y (n) is usually the given data ("desired response") so that y'(n ) cannot be

obtained by feeding x'(n) into the (unknown) dynamic plant and measuring the

output. as described by (15b) - (15d). In this case, another version of the proposed

algorithm can be comprised of Equations (14). (15a). (15e). (18). (20) and

y' (n)=v (n)+ ,(n)v'(n -i ).(21)

where v(n ) is the given data which can. for example, be modeled by (la) and (1b).

.0

• ' • 4' • " * ° 4' • - . -•o ' .° -, - - ° " ° - ,° "



Note that the two pre-filters ((20) and (21)) are necessary to obtain x' (n) and y' (n) to U

update the coefficients. However. it is not necessary to calculate e (n) using (14). (15a).

(15e). (20). and (21). In fact. the pre-filter and the post-filter approximately cancel as

argued before and thus e(n ) can be calculated directly from (1d). Therefore, the

adaptive filtering mode of the proposed algorithm (AFM algorithm) is described by

Equations (1c). (1d). (18). (20), and (21). Figure 3 shows the implementation. Note 4
that besides the adaptive filter and the coefficient updating mechanism (18). only two

additional filters are used. Thus. it is computationally simple and efficient.

Analogous to (5) and (6). as in Stearns' algorithm, a somewhat more complicated

version of the proposed algorithm can be obtained as follows. Instead of using a time-

shifted version of y' and x', i.e.. y'(n-i) and x'(n-j) as in (18). a set of

independently filtered quantities. y, '(n) and x/ (n ) is used. They are obtained by

Desired" , (n)
Response -------------------

A !n)

' ;='

1-2 ~(n z x ~z

F daotive filter i
Sigr( l Paamte

x~n) -- , b''n~ 'Adlusting -
, (6 Mechalnism-,z

55

outputError .

1- (n~z- e n)

Figure 3 Adaptive filtering mode of the proposed algorithm

11 %
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y, '(n )=y (n -i )+ Ei, (n )y, '(n -1); i =1.2, • A, (22a)
1=1

xj '(n )=x (n -j )+ " (n )x, '(n-I): =0.1. .. (22b)1=1

This can be applied to either SIM or AFM. Since AFM algorithm is more practical and

can also be used for the system identification purpose, only an AFM version of this

independent filterirg (IF) algorithm is considered. As in the Stearns' algorithm, the

storage space and the number of multiplications at each step will increase from 2A,

(AFM) to (h, +h +l)XAia (IF). Although the IF algorithm does not seem to be

computationally more advantageous than the others, it allows the development of a

rigorous convergence proof presented in the next section. which will guide the use of the

AFM algorithm, since it is a close approximation of the IF algorithm for slow

adaptation. One can easily see that if ai (n )s are not time-varying, then (22) is the

same as the time-shifted versions of (20) and (21). Although theoretically these three

algorithms are all different due to the time-varying nature of the filters, asymptotically

pthey behave the same because as the filter coefficients converge, these filters become

more time-invariant (see Section 2.3). Practically. for slow adaptation (usually the

case) even at points other than the convergent ones, these algorithms still behave almost

the same. Our computer simulations show that the convergence paths and mean square

error progressions using these three algorithms are almost indistinguishable (see Section

2.4).

Finally, all the three proposed algorithms are summarized below.

A) SIM Algorithm (Figure 2):

,(n +0)=a, (n) +,e (n )y '(n -i ): i =1.2. A, .i (23a)It

U
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b. (n +1)=b, (n )+,re (n )x '(n -j) j =0.1. Ab(23b)

j=1

e'(n )=y'(n )-9 '(n) (23e)

with

w E(n) w '(n -i )+ E b x '(n -j) (230)
=1 j=0

y I(n )=w (n )+v '(n) (23g)

j=1 J=0

B) AFM Algorithm (Figure 3):

ai (n +i)=, (n )+re (n )y '(n -i) i =1.2. . n (24a)

b, (n + 1)=b, (n )+,re (n )x '(n -j) =0 1. - - (24b)

y (n )=y(n )+ (,n )y'(n -L (24c) N

x'(n )=x(n )+ (n )x'(n-i (24d)
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e (n )=y (n)-. (n) (24e)

with

(n )= E, (n). (n -i )+ b, (n )x (n -j )(24f)i =1 =0

C) IF Algorithm:

i (n + 1)=i (n )+ e (n )Yi'(n ); i = 1.2. ••• , (25a)

j(n +l)=b¢ (n )+re (n )xj '(n ): j=01. • b(25b)

y 'Cn )=y (n -i )+ E., (n )y '(n - 1 : = 1.2. •, (25c)

xj'(n )=x (n-j)+I a(n )xj'(n-1) j =.1,'' Ab (25d)

' e (n )=y (n )- (n) (25e)

~with

i :(n) -i (n ): (n -i )+ 1: b (n )x (n -j )(25f)

~It is interesting to note that the only difference between AFM. IF algorithms and the

corresponding versions of Stearns algorithm is that in these algorithms y is filtered to

~~obtain y' whereas in Stearns algorithm is filtered to obtain '

~2.3 A Convergence Proof

I The convergence proof presented in this section is for the IF algorithm only. A

~convergence proof for the AFNI algorithm has not been developed yet. However. as

e yv..a
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mentioned before. the AFM algorithm is a close approximation of the IF algorithm for

slow adaptation. Thus. the theory developed for the IF algorithm can also be guidelines

for the AFM algorithm. In the following, a theorem of wide-sense convergence in

probability by Benveniste et al. [71] is presented. Then the original problem is

translated into the study of an associated ODE. Finally, the study of the ODE gives us

the desired convergence.

2.3.1 A Theorem of Wide-sense Convergence in Probability

Consider the recursive parameter estimation scheme

0, +=6 +TV" (60,). 6o=0e! (26)

where O, is the parameter vector estimate of dimension d at the n th step. Here. the

capital 0 is used to denote the randomness, whereas the lower case 0 denotes a

deterministic parameter vector. V, (0) is a stationary random vector function over !DC

which is in turn a prescribed compact region in ,. r > 0 is the constant gain. Consider

also an associated ordinary differential equation (ODE) with (26):

d9(t ( -[7(t 27)
dt

Here V[(t )]=E(V, (i)} II=4) depends on t but not on n since V, (0) is stationary.

Assume that (27) has a solution 5" (t ). t e R. which satisfies

'(t)Ekb. t 6). (28) -

Then the following theorem is due to Benveniste et al. [71].

Theorem:

"Ott
. .. . , . - . - - .. . , . . .. . .. . .. . .. . . .. . - .. . -. ... ; . . -,. .- -. -. ... . , . . , , .. ', r - . , . , ,.\ ' ,, -,, '~ r ,;, '.\I , k
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If the following assumptions are met:

i) Smoothness. There exists a positive random variable C 1(W) such that E (C i)<oo and

Iv,1 (O1,,,)}-V ( 2.,W)II <C 1(,&) II i,-bO for all , l,' 26D5

ii) Boundedness. There exists C 2 <oo such that

vup, E 11 V" 2)1/2 <C2:

OeDc

iii) Mixing Condition. There exists a stationary random sequence I },, defined over

the probability space fl. ax I with values in some measurable space 1E. 9 ). which is

0-mixing in the following sense:

E 'O 1/2 < 00
k =0

j where

=supfiA eolf 1 . I -<O)Ok- €=Sup IP(A IB)-I(A)!" B er{l 6, n >0)

Furthermore, there exists, for every 0<rm K<o. a function V,(i) which is g(,6, )9

* -m _ * . .... ) • -measurable. and a decreasing sequence {v,,, ;o such that

U.0

m =0

where

,,,,, >_.,,,, E II vn (b)-V .(O)II 2.
9*Dc

Then. for S <oo fixed, there exist two positive and finite constants C and C'. and a

positive function e(r) going to zero with r. such that the estimates in (26) satisfy

P II -b"(,,)II. >Ce(r)1<C'e(r) (29)

Jf ,



hU

24

where 0' (t) is given in (28). Furthermore, if 0' =Iim0' (t) exists, then
I -00

P, S-1 -0' 11 ,+C 07i) J<c'e(i) (30)

where [H] denotes the upper nearest integer and 71 is such that (S)-0 <7).

Remark: For adaptive IIR filtering application, the stability is of most importance.

Hence. the theorem stated here is actually a modified version of that of [71] in that we

are restricted to work in 6, instead of , . Its importance will be clear in the next i.

section.

The expression of e(7) and other loosely related information will not be covered

here. One can refer to [71] for further details.

2.3.2 Association of the Algorithm with the ODE

Using the unit delay operator q-'. i.e.. q- 1x (n )=x (n -1). the following

polynomial operators are introduced:

, (n., q- = 1,(n )q-l ',° (n ),q

B (n. q-,)=o(n )+b1 (n -1 + (n )q-

A (q -')=l-a q- q

B(q-)-bo+blq-+ .-.. +b,6q-.

If the IIR filter and the dynamic plant in Figure I are considered as operators, then

A (n. q -) and h (n. q-1) are the denominator and the numerator of the IIR filter, and

A (q -1) and B (q -1) are that of the dynamic plant. Note that their orders n,. . a.

and nb are arbitrary.

%U
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Let x (n) be the input signal, v (n) be the disturbance (or measurement noise).

and

I a4i(n)

bo( n)

41 4P (n)

B B(q x)(n) (n
.. '

~1 E(q-')x~n~l) 1 v~fn--1e)A (n. q) A (q) 1 A(n. q )

1 B (q-lx( n + 1 v(
I ;~ 6 =A (n , -X (n ()-+ A (n q-1) V(

I x (n)
A (n. q-')

1 x (n -
A (n, q -1 )

Then the IF algorithm is (25) is a close approximation (see [70]. [75)) of-

, +1 -e, + O(n .,)e (n .e, ) (31)

where

n B(q-) x(n )+v1(n B (n" q-')x(n (32)
n.nA (q-1) 4 (n. q-1)

It is obvious that (31) is in the form of (26) with V, (8, )=(n .R, )e (n .e, ).

Now define the compact regions D, and 6, as closed subsets of stability regions.

D, C D, = O: All zeros of A (:-) are inside of the unit circle
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D, C B, ={: All zeros of A (z-) are inside of the unit circle }. (33) 1

Note that the dimensions of Dc and D5C may be different. Usually Dc and Dc should be

taken as close to D, and f)D as possible. We now have

Theorem 1:

Let x (n). v (n) be stationary processes with finite 1st. 2nd and 4th moments.

Assume that

a) A (q-1) is stable, i.e.. OeDc:

b) A (n. q -) is stable for all n. i.e.. 6, eD/ : and

c) Ix (n). v (n)} is 0-mixing in the following sense: 4

Go4

k =0

where

k =sup{IP(U I V)-P(U)I: U eoix (n ).v (n)]: n (01

V er{[x (n +k ).v(n +k n ' 0)

Then the three conditions in Benveniste's theorem are satiFfied. and hence the proposed

adaptive IIR filtering algorithm converges to the solution of the ODE (27) and (28) in

probability as given in (29) and (30).

To prove Theorem 1. we first introduce two lemmas which are of interest in their

own rights. The proofs are contained in the Appendix.

Lemma 1:

Consider the following stochastic iinear time-invariant system:

Y (n. i-=F()Y (n -1. )+ +u (n (3) .

-q7
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3 where F (0). G( ) are deterministic bounded matrices. U (n ) and Y(n .6) are stationary

stochastic processes with E { 1 U (n) I' bounded and the initial value Y (0. 5)-Y (0)

3 bounded. Furthermore, assume that

i) F(0) has all its eigenvalues inside of the unit circle (which may be translated into

constraints on 6, e.g.. 0 eb ); and

ii) F (0) and G (0) are Lipschitz. i.e.. there exist 0 <C 1 . C 2 < 00 such that 3

Fl F0 )-F (02) 1< C1I 14-21

I G ( 6 )- -G ( 2 ) I < C 2  II 0 1 -0 2 II

Then. Y(n .0) is also Lipschitz in 0 for all n, i.e.. there exists a random variable Y>O

with E I Y) <co such that

II Y(n .61)-Y (n .2)I Y " OI#O2 II. (35)

Lemma 2:

Consider four linear time-invariant IIR filters having stable rational transfer

functions. Let ui (n) denote the i th stationary input and y, (n) the i th ',utput.

Furthermore. assume that ui (n) has finite 1st. 2nd and 4th moments, i.e..

04, IE lui (n )}) I<M I< oo

14 i 44
04E u (n )2 )<M 2 <oe for all l < (36-< 0 o oo<n <oo (36)

0 4E {ui (n )4) 4M.<oo

Then y, (n) has finite 1st, 2nd. 3rd and 4th moments. i.e..

3 For the definition of matrix norms, see [78]. Here we use PA II=[tr. (rA la,)]I2_-[ t 1211 2 which is

compatible with 12 vector norm.

It..I

.1* ~ '.P% \ 5 I 4' -- *,~~;'.q .
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0< IEly,(n )l <KI<oo

0 < JE yi (r)yj (m))J I4K 2 <0 
(37)

01< IE{y, (n)yj (m)yk (f)1 I <K 3 <oo

0< IE4 y, (n )y) (m )yk (f)y( (Q) I<K, <oo

for all I <i .j k <4 and -oo<nm.f.< oo.

Proof of Theorem 1:

The three conditions in Benveniste's theorem are all in terms of the deterministic

time-invariant parameter 0ED65 instead of the stochastic time-varying 6,. This makes

the analysis much easier. As shown before, the proposed algorithm can be written as in

(26) with V, ()=Ok(n .h)e (n .0). Because of time-invariance. e (n .0) as given in (32) p
can be written as

.. B (q -) B (q-) x(n-i) 1 ,.1 +"
A (q-')A (q-' -A (q- 1 )A (q- 1 ) A (q -1)

B (q-) x(n)+ v(n)A (q -')A (q -1) A (q -1)

_ B (q-'A(q- _x(n-i)+A (n-i) A -x(n-j) 0 (38)

eA (q-)Aq -A-(q A (q

where a(q-')=I q!4'q - with 6=[d I a /.. ' ]T being constant

(compare with A (n.q - ') and A(q - 1) defined earlier). Define the (A3+flb+1)-

dimensional vector

U

C V.'~.*V.' V. ,* *
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B B(q') x (n -i )+ (n

Y*(n .0) 1'I5 =6(n ('A(q)A(q).)

A (q - ')

l<i <ri. O0<j 'ri. (39)

We have

V, (60(n .)e (n .6)Y (n. O[y I(n i )-Y (n b)T 0]. (40)

i) Smoothness Condition:

It is seen that Y(n.0) is a filtered (by ) version of
B (-) A (z -1 )

B (q-) x (n -i )+v (n -i) and x (n -j ). and hence can be written as
A q1

Y (n .0)=F ()Y(n -1.6)+GU i(n)

where, assuming n , =n .

a 1 ".. a 10

,% 1.....0 0 O

G 1 0

0 1 ... 0-Q 01

1 .... O0 000
00
1L00 1 o

B (q-')v (,-I )+i'(n -l)

A1 (q~'

p;(=x (n)

Note that there is no loss of generality in this analysis by assuming n., For



.-

30

nb <,. Y (n.0) as defined in (39) with rb = is longer than what we need. Obviously WX

it is sufficient to show that Y(n,0) for the enlarged rb is Lipschitz. For hb >ra.

Y (n . 0) should be lengthened. F (0) should also be enlarged by appending to it columns

of zeros and rows that are similar to the last row here. However, this only adds more

zero eigenvalues to F (b). and changes nothing else.

It is clear from the form of F(9) that it has one zero eigenvalue and double

eigenvalues which are the roots of z "A (z -1 ) [56. Chapter 21. By the assumption b),

these roots are all inside of the unit circle. It is also easily seen that F (O) is Lipschitz.

i.e., there exists 0-<C <co such that

Fl (0 1 )-F (02) 1< C 116 1-6211 for all 61.02eD~c

because F II 0 2) 11 2. Then by Lemma 1. Y (n .6)

is Lipschitz for all n. Now by (40). 11 VY (01)-V, (02) 1 can be written as

+ IIY (n ,61)Y (n , 1) T 6 1-y (n. 62 )Y (n 2)r "6211'

=11 [10 . btY(n +1,01)Y (n. 6 )'r [ 1 0 - .. 0Y (n + 1.62)Y (n. 2)T 11

+ 11Y (n , 1)Y (n 61)r 61-Y(n ,061)Y (n. 61 )T 6

+Y (n . 0&)Y (n. 0 )r 0 -y (n. k)Y (n )T 62 II

,< IY(n + 1.61)Y(n . 6 ,)"-..Y (n +l1.6 2 W (n .062).rI + Il(n . 1)Y(n 5, 1 0 ~i0162 I

+ II' (n * 0)Y(n . 6'r-Y(n .62)1(n .62) 11110211

< lY(n +i.O,) 1 >'(n. o,)-Y(n .0) + I>(n +l.0,)-Y'(n +1.6)II II Y(n .62)1P P, w

~ I
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+IIY(n0ij)Y(n 61r Il10I+IY (fl. 1)I IY(n . j-Y (n , 2)I 1121

+1 Y (n . 0)-I-(n , '2)l Y Y(n .0'2)11'121

<C (f, .W,) II , I

where EIC(DC ) )koo for all n and for all 01,02eD by virtue of the stability

assumptions a). b) and again Lemma 1. Thus condition i) is satisfied.

ii) Boundedness Condition:

E Iv, (0)I11 II E ,(, .)e (n .0)11 2

B (q- 1 )
,-q - x (n -i )+A v (n -i)

EIA (q-')A (q-) A (q-')

AI(q--1 x (n -j)

IA (q')AA(q 1 ) n 1lA~~q- )[sB(q- x (' - s  - )n (q(_.,n )+v(,n) 112

A (q 1 ) A (q)2

V.,

'N=E B (q -1) x (n) ( q x (n )+v (n)2

, A (q) A (q-)

Let B(q-) x(n)=w(n B(q-x (n)=w2(n) B(q-1) x(n)=w3(n).
A (q-) A (q-) A (q-')A (q-)

1 (n )w 4 (n), and v (n )=v I(n ). We have
A (q -1) A (q -1 )
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E Vo ()II =E [w I(,n )-w(f )+,( )2 [ ( 3- )+v z-i )F+ w, (n- )2
)=0

=E {[w 1(n )-w 2(n )]2+2[w j(n )-w 2(n )]v (n )+v (n )2).

1W 3(n -i ) 2+2w 3(n -i )v 1(n-i )+v 1(n-i )2]

+ {[w I(n )-w2(n )]2+2[w I(n )-w2(n )]v (n )+v (n )21w4(n -j)2

< {[w I(n )-w 2(n )]2w 3(n-i )2) +2 E [w I(n )-w2(n )]2W 3(n-i )vi(n-i )1

+E ((w 1(n )-w ,(n )]2v (t -i )2) +2 E [w I(n )-w 2( )]w 3(fl -i )2. (rt)"

+41 E [w l(n )-w 2 (n )]w 3 (n -i )v (n )v 1(r -i ) C

5%m

4 '4...'. ; ., ., - - , . .-,"..-.- -. ,. , . , c - - 2 " " , "" " ": " """"" ' " , ' "" " " ' €
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+2 1E[wj(n )-w 2 (n )]v (n )v l(n -i )21

+ EIv (n) 2 w 3 (n -i )21+2 IEW 3(n -i )v (n ) 2V (n-i )+E [v (n )v (n -i )21

+ [w j(n )W2(n)]W 4(n -j)2j+2 IE[wj(n )w2(n )]W4(n -j )2V(n)1

+ Ew 4(n -j )2V (n )2

By the assumptions and Lemma 2. we see immediately that all terms above are finite

for all Obeb. Hence condition ii) is also satisfied.

iii) Mixing Condition:

The sequences considered in Benveniste's theorem are all two-sided, whereas in a

physically realizable situation as ours all sequences start from n =0. i.e.. one-sided, as

considered in Lemma 1. Obviously it makes no difference in our proof for i) and ii).

This is also the case for part iii) because of the equivalence of 0-mixing for one-sided

and two-sided sequences [79. p.169I. For convenience, we will consider two-sided

sequences in this part of the proof This also gives a slightly more general taste. All

3one-sided sequences can be thought of as two-sided with zeros for n <0.

* x
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The sequence {f, I here is {x (n ),v (n )1 which is 0-mixing by the assumption.

Thus we only need to show the existence of the sequence {Iim 1. We first define V,(0).
B (z -1)

Let h 1(n .0) be the unit pulse response of A (z ) h 2 (n .0) be the unitA (z-1 )A (z-')

pulse response of I- . Then

A (z-1)

fCO CO

2(n. ,) E h 2 (n ')x (n -n' )

Define the truncated versions of y I and y 2 as

M1
y (n.6)-- E hi(n'.O)x (n-n')+ (n h('.O)v (n-n,'

'-m n' =-m

Y -2(nA.)- m h 2(n '.i)x(n -n' )
n' =-mi

Analogous to (39). we define

-2" (n -j .0) < <o

Then it is natural to define

V ,m(i)=- (n. 6)[y-7 (n. i)-- (n,. i)r- l.

We are now ready to calculate

[Eli V," (O)-Vn?(O)I 12jEIY(n )yj(n O)-Y'"(n ,6)y-(n 0)

I 
%
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+2E IIY (n ,iO) I(n .6)-Y - (n . 6)y' (n I)112

3 +2E~IIY(n )Y(n6)TYm(n AYi(n6)rl2 1/21

+ --52I Y (n l.i)Y n 6r- n(n )Y (n 2 1 1/

where the inequality (a +b ) 2 2(a 2+b 2 ) is used. It is more convenient at this point to

lump detailed calculation into a lemma whose proof is also contained in the Appendix.

Lemma 3:

With the assumptions of Theorem 1. there exist 0<ofl.C2<oo and 0<p <I suchIthat

Y) nI.Y( 6)Y(n 6);r-Y (n.)Y(n.2) I 2 < ,alp end

for all OeDC.

It is then obvious that we can let v2/2-1 V- (aIm4x I o I +C,)p and

V 1v22 <oo,%.M =0

since 0<p < 1. This concludes our proof.

Remarks:

1) Notice that in the proof many common restrictions are not imposed, e.g.. i) x (n)

and v (n) do not have to be independent: ii) s (n) may not be white: iii) A (q-1)

S- . ~ *
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and B (q-) (also A (q-') andh B(q-')) do not have to be coprime: and iv) nothing

is said about the orders. Thus, this convergence is quite general. although this

generality will be somehow reduced when we study 0" (t) (see Theorem 2 in the

next section).

2) 0-mixing implies uncorrelation when separation is large (cc), e.g., a sequence of

independent variables is 0-mixing, an m-dependent sequence is also 0-mixing [79].

0-mixing also implies ergodicity. see. e.g.. [80]. Note that if x (n) and v (n) are

independent of each other, then Ix (n ).v (n )) being 0-mixing implies each of

Ix (n and {v (n ) being 0-mixing.

3) Since the estimate 6n is restricted to fall into Dc for all n . a monitoring device

has to be incorporated into the algorithm ((25) or (31)) to project 9,, back into D!

once it gets beyond. This might be computationally expensive and, in fact. is not

well solved yet [67]. On the other hand. as long as (28) is satisfied. T can always

be selected such that C e(T) in (29) and (30) is much less than the least distance

from 6' (t) to the boundary of b,. Then the probability of the filter becoming

unstable can be made arbitrarily small in theory. This is confirmed by computer

simulations in Section 2.4. U-

4) The requirement (28) is essential. What happens if (28) is not satisfied can be seen

as follows. Suppose 6" (t) exits D6c at a boundary point 0. Then by (29). 0, will

attempt to exit D5C at somewhere near 0. However, the projection device [see 4)

above] will pull it back int f),. Because of (29). e, will try to exit again. An

infinite number of repetitions of this process result in k,, converging (in

probability) to the boundary point 0. instead of tracing 6" (t ) further, as also

noted in [57. Section 4.3.3]. Satisfaction of the requirement (28) has not yet been

well studied, although such difficulty has not been seen in our computer

p-
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3 simulations. However, it is certainly crucial for convergence and should not be

omitted as in [70].

1 5) As pointed out in [71]. S in (29) and (30) can never be infinity. This may not be

very restrictive since in many applications the algorithm is to be turned off after a

finite number of adaptations.

2.3.3 Stability of the ODE

1Having established (29) and (30). the next step is naturally to study the ODE (27)

and its solution 0* (t). A desirable property is the parameter convergence. i.e.. if

limb (t )=O' exists, would it be the same as the true parameter vector
t -00

SO=[a I ... a,., b o "."." b,, ]r D? We consider "sufficient order" case and "reduced order"

case separately.

SA) Sufficient Order Case:

Sufficient order means n' =min (Aa -no . Ab -nb 0. In this case D C D,. It can

then be written =[a ... a, 0 ... bobl . . . b, 0 .OV e/ . For n' =0. the global

stability of the ODE is guaranteed by the following theorem.

I Theorem 2:

Let n' =0. Assume that the stationary processes x (n) and v (n) are independent

of each other, and A (z-1) and B (-- 1 ) are coprime. Let the stability conditions a) and

I b) in Theorem I hold (substitute 6(t ) for 6, in b)).

t 
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i) If v (n) is white and x (n) is persistently exciting of order m +1 with m -ra +Ab.

i.e.. there exist 0<p.p2<oo such that

x (n)
0<p0l1<E [X (n x • (n -m )]p21. (41)

x(n -M)

then the ODE (27) is stable and 0 (t ) converges to the true parameter value 0.

ii) If v (n) is not white, then the ODE is not guaranteed to be stable and the estimates

(if they converge) are generally biased.

Proof:

For simplicity. we drop the time-variable t in the notation 6(t).

i) Observe the identity

B(q_) x(n)I B(q_) (n-i) 1 x(n-j)1, <i 4 , .O4j4rtb.

A (q-')A (q-) A (q-)A (q-) A (q-')

and consider the RHS of the ODE. Since x (n) and v (n) are mutually independent. we

have (using (38))

-' B (q -1)-. Bq 1 ) x (n-i )

". A (q-j))A (qA) B(q-') ( )
r,~~ ~ ~ (q qX) ql

1 v(n-

B (q _)x (n x(n-) +E Avq
A (q-')A(q) A(q' ) J o v(

%
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B B (q ) x( nB q
=E A (q -')A (q-7) B (q (n-i x (n-j)1 (n -j) A (q -')A (q) A(q - ))

A (q- 1 )

+EA (q -) v (n (42)

0

B(q) x (n-i
=-E A (q-')A (q I) B (q - x ((n- j ( 3)

A (q n-j) A (q-')A (q- 1 ) A (q-)

The last step is obtained because v (n) is white and 1 v (n -i ) depends only on
A (q -)

past values of v (n -i ). Consider (see [69])

B (q-) x (n -i )

E A (q ')A (q -) _) x (n -i x (n -SA(q) x (n -j) A (q-')A (q -) A (q-)

-x(n)
A (q-')A (q)

(A .B )E -IA (q -')A (q -l x) .••

1 x (n -m

(q-')A (q - m)

A (q -')A (q-l

4- where

l'" " " "- " " -" 'u 'C I '' ' ' : 'P -:
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U

(B --bb I ... n
I -a

ObbI... .

0Obobl In
.r(A lB--a if Ao =no, , > nb ,

Obob, " b,.,o

1 -a

..

Since A (z -1) and B (z-) are coprime. the Sylvester matrix ,j (A B) for these three

cases are all non-singular [561. (81]. The matrix in the middle of (44) is positive

definite for all 0(t )D),, by persistent excitation assumption and (57. Lemma 4.7]. Thus.

from the structure of the matrix (44). we see that it is positive definite for all i(t )d)D.

We now choose V-T 0-0 2 > 0 as the Lyapunov function of the ODE. The

derivative of V is

d dO
dt dt

'. V *.*. ** '* ,~. ~~~ 5
.i*i* ~',>*f* ~V
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B(q') V(n -i)

=-(6-0_ E A(q ')A (q-1 ) B (q ) X (n -i x (n (0-0)
1 A(q 1) x (n -j) A (q-')A (q-1) A(q -)

(0 (45)

with equality iff =0 at which point d0=0. Thus the assertions in i) are proved.

ii) For v (n) non-white, one cannot derive (43) from (42). Thus. it may not be

feasible to find a Lyapunov function. If we consider possible convergence points, i.e..

stationary points of the ODE. it is seen that E [V,, (0)1=0 results in

B (q-1) x (n -i)O=O A(qZB(-i) (-)I
SA(q-)A q')x (n -i) x (n -i)

x (n -j A (q-')A (q) A (q)

v (n -i)
A (q-) (46)E' v(n)

0

which does not lead to 0=6 and hence 0 (if exists) will be biased and may even go

A. beyond the region b5 .

Remarks:

1) Theorem 2 together with Theorem 1 give a rigorous convergence proof for the IF

algorithm in the sense of (30) with G' replac-d by 0.

2) The error surface may not be unimodal even for the sufficient order case [48].

Thus. Theorem 2 proves global convergence regardless of local minima for this

case (error surface case 2)).

.. ,
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3) For n > 0. it was shown in (691 that the stationary points of the ODE are given by

Ai(z 1-)=A(z-')L(z-') and B(z-')=B(z )LCz') where L(z-') is a

polynomial of'degree n *with zeros inside the unit circle.

B) Reduced Order Case:

In this case n < 0. If all conditions in Theorem 2 i) are met. the stationary points

will satisfy

E 19(n.9)e (n .0))

B (q 1 )

(q -~')A (q-') _____B_(q __-1)
=E ~ 1 x (n -j)A( 'A(q-)x(

A (q-1 )

B B(q) _x(n -i) .2- x(n-j)
A (q -)A (q) A (q 1)

.,q-x (n -1)
A (q -)A (q'1)

=E A (q ) xn B (q ) -x(n-1) B (q x()- ,
=E An Aq) (q1 -'A q (--)A(q

A (q

,___ A (qn 
.iA q)
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x(n)... 1 x(n-nb) 0
A (q) A (q-)

-E A(q-')A(q-7) B(q _ x(n-i) x(n = 0 (47)

1 x(n -j) A (q-')A (q -) A (q- 1 )

A (q -)

which implies

S .4 (q -I)A (q 7- ) B (q -1) x (n -i) 1 x
1 A (nq-j ) A (q-')A (q-) A (q -1)~A (q -1)

B(q 1 ) x (n -1)
A (q-')A (q-)

B (q -_)_x 
(nA(q -)A (q -) _x (n -1) B (q -1) x ( -n-

__ x(n) A (qA-)A (q A (q -)A (q)

A (q-1)

1( (n -?

A x (n). x (n-nb )O.8)

A (q -) A (q -)

Note that the second matrix in (48) is not symmetric any more since n' <0. Thus. (48)

is now a complicated non-linear equation in 6. and little can be said about it at present.

However, it should be noted that the matrices in (48) still have a special symmetric

j form due to the use of U(n) (see Proof of Theorem 1, i)) in Ct vector instead of

(n)-B(q-L x(n-1)+v(n--1) x(n)]7 used in most other algorithms such as
A (q-)

V .. # '
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Stearns' algorithm and the SHARF. This is a unique feature characterizing the

underlying equation error approach [67]. which may contribute to the global

convergence as will be seen in the next section.

2.4 Computer Simulation

A number of computer simulations were performed for both AFM algorithm and

IF algorithm. For most cases, these two algorithms are indeed indistinguishable from

casual observance. The only slightly noticeable difference occurs when the adaptive

coefficients migrate slightly outside the stable region. In this case. although the adaptive

algorithm itself has the ability to pull them back into the stable region if they are not

too far away from the boundary (see Figure 7). the adaptation process becomes unstable

so that the adaptive coefficients change more drastically. If. however. T is selected such

that the adaptive coefficients strictly remain inside the stable region. the two algorithms

were found to always behave exactly the same for all the computer simulations

performed. Since it is redundant to present simulations for both algorithms, only those

results using the AFM algorithm will be presented.

Let us consider first the simplest situation: error surface case 1). Figure 4 shows

one example of Stearns' experiments [47] for this unimodal error surface case. The

transfer function of the dynamic plant is H, (z-) 1 and that of the1-1.2-- -'+0.6 --

filter is H (n z)z (n ):2 * The input x (n) is a unit variance white

Gaussian pseudonoise sequence. And the disturbance v (n) is set to zero. The error

surface is normalized to one and is shown by the contours. Starting from an arbitrary

point (d(O), 12 (0)) =(-0.8, -0.2). convergence is obtained for r-0.001. It was

observed that if r is too large, the adaptive coefficients will go beyond the stable region

- %U
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and the filter will "blow up." For r smaller than 0.001 the filter is always stable, and

slower convergence results. A plot of the error progression is shown in Figure 5 where.

for comparison, the equation error is computed by passing the output error in Figure 3

through the adaptive all-zero post-filter as in Figure 2. It is seen that both the output

error and the equation error approach zero after 1500 adaptations.

The same experiment is performed for v (n) a zero mean, unit variance white

Gaussian noise sequence. A noisier version of the adaptive coefficient migration is seen

in Figure 6. It is seen that at the convergence point, the adaptive coefficients wander

around the true value with a larger variance as opposed to Figure 4 due to the non-zero a
disturbance, and hence demonstrating convergence in probability as given in (30). For a

plot of error progression. see the dashed lines in Figures 14 - 16. IV.

'C3

jI A/t .:.

--- --- T -- T -T - ---r--.

Fe,"

Figure 6 Same as Figure 4 with non-zero disturbance

:.
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For the error surface case 2). colored noise input is obtained by filtering a white

noise. To ensure the 0-mixing requirement and the input richness requirement, the

3coloring filter used is FIR. The filtered sequence is an m-dependent sequence and its

frequency response is never zero. Figure 7 shows a multimodal situation constructed

by Soderstrom [48] where H (z -')= 1 H1 (n z-')=(1-0. 7z -9)2'"

°(n )z and the coloring filter is (1-0.7z-) 2 (l+0.7z-) 2 . with. 1~-j (n )z--1--2(n) )z2

v(n)-O. Two minima exist, one being 0.9475 (local) and the other 0 (global). A

global convergence path is shown for 4000 iterations starting from near the local

minimum point. Note that this is also achievable by SHARF (because the filter orders

are sufficient) and LMSEE (because e (n )=0 at the global minimum point) but not

L .96 ... ...5 . .. .. .. .
.985X

8.- - -. 0 a 0 - 2 

SFigure 7 Global convergence path for 1(n ) and S ,(n) sufficient order

with colored noise input,.

I! o
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achievable by Stearns' algorithm.

The above examples merely demonstrate the proved convergence in the last

section. The results are not surprising also because they can be achieved using some

other algorithms as mentioned. However. the examples presented below are unique and

interesting. i.e.. global convergence regardless of local minima for reduced order cases.

Three examples of case 3) are shown in Figures 8 - 12. Figure 8 shows the

145) 0.05-0.4z -
example considered by Johnson et al. [45] where HP (z-')=  0"05"04Z -I+O25zI-1.1314Z -'+0.25z -2 ",

* b9o(n)
H ((n )(z v(n )--0. and the input is again white noise. Again two, (-' - (n )z -'" 'a

minima exist (0.976 and 0.277). Starting from the local minimum, global convergence is

achieved after 6000 iterations (7=0.0006). This result is remarkable in that it was not I

(nb

.91

8.5- •/"'

~ 1.0 / .

-~ T I ,
-I .e -u.s u.s 8.5 t .e

Figure 8 Global convergence path for I (n ) and go(n). reduced order
with white noise input

~ ~ C IICI L~~I .. '-U ~ -,-U ~ -.-. - - - . . -. *.*t * o* , '
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achieved by any other algorithm [45]. [46]. [62]. The error progression is shown in

Figure 9. It can be seen that minimization of the output error does not lead to

minimization of the equation error, and vise versa (compare the two errors at about the

6000th iteration and at about the 3200th iteration). Another example of this case

(Stearns, [47]) is shown in Figure 10 where Hp (z-1)=l+10z- . ,

H, (n 9( (n ) v (n )--O, and the input is white noise. In this1--ij (n )Z-l--J2( n )Z- 2

case the values at the two minima are very close (0.656 and 0.498). The global

convergence is again achieved for more iterations (12000). The same experiment as in

Figure 10 is then repeated for v (n) a white Gaussian noise with zero mean and variance

50.5 (normalized to 0.5 [47] in these two figures). Again the same kind of global

convergence is observed in Figures 11 and 12.

S
-.4

- -.... equation error

- output error

V2

4i '.. ,i...--.

A 11

ep 2 00 0~e 3000 4000 eOOO 61100
Nunl Nr -dani atim

Figure 9 Error progression of Figure 8
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Figure 10 Global convergence path of a 1(n )and a2 (n) reduced order
with white noise input
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Figure 13 Global convergence path for I (n ) and a (n ). reduced order
with colored noise input
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Finally. an example of the error surface case 4) is obtained by extending the

example in case 2) to HP (z-)= H (n -)= bo(n and
(1-0.6z- 1 )3  1- 1(n )z -'-a 2(n )z - 2

the coloring filter (1-0.6z -) 2 (1+0.6z-1)2. and is shown in Figure 13. Note that the

global minimum value is no longer zero (0.016). Global convergence is again observed.

It should be noticed from these simulations that the convergence paths exhibit

gradient nature (of the steepest descent method) near convergence points. This confirms

the statements below (19).

2.5 Convergence Rate and Other Issues

Two remaining issues concerning the convergence of the IF algorithm are ",

considered in this section: convergence rate and the coloring effects of the disturbance

v (n). Again. the fact that the AFM algorithm is a close approximation of the IF

algorithm for small 7 should also be true for these issues. Here. only sufficient order

case will be considered.

2.5.1 Convergence Rate

The convergence rate will be studied for the ideal convergence case only. i.e.. when

the conditions in Theorem I and Theorem 2. i) are met. Assume r small. then O

closely approximates 6' (t) in the sense of (29) as proved in Section 2.3. Thus. to study

the convergence rate of 0,. it suffices tc investigate the behavior of i' (t ). From (38)

and the identity in the proof of Theorem 2. i) (page 38).

e (n B(q -) x(n -[ B (q - ) x (n- i) x (nI-j +v (n)
A (q -)A (q_) A (q -')A (q 1 ) A (q

I-
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9 1(IK, o. 0 ji,

(q -1) ( _- x (n -i ) -) x (n -j ) 0-0) + v (n)

Since {x (n ) and {v (n )) are independent.

Z {e (n.6)2 } = E {v (n) 2)

B (q- X (n -i)

A (q-')A(q-) B(q-) x(n-i) 1 x(n-
1 (G- x (n -j) A (q-')A (q-1) A (q -)

.- +0_2 (49)

where V = 6j 0-0 jj 2 and isE v (i)2) s the variance of the noise sequence. see (45).

Now if 0(t )=0' (t). the quantity V (t ) then represents the (mean square) parameter

error and E e (n .6)2} !=_,,) the (mean square) output error, and they are related by

(49). It can be shown that they are both exponential. which was already observed by

the computer simulations in Section 2.4. In fact. we can write
- d _V =[9. (t )-eF' R [0" (t)I[O" (t )--] (50)

dtVd

where R (0) is given in (44). By the assumptions and the argument below (44).

R [0 (t)] is positive definite, i.e..

K11 (Rg[9"(t )]<(K21.

and hence

K, 1 j I(t )- 2,<gdV <K2 11' (t)-0112.

. ;" ', -,r ' ' v,¢ : t v ":; i\"',V'' ':\' " ":':'i' ''<":: " v ': >dt ' ;
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i.e..

--2KIV(t )>, dV (t )>_21K2V(0-) (51)

Solving (51) yields the bounds for V(t ):

V" (t )=V (O)e -2K 1, (Upper bound) (52a)

V(t )=V(O) X2 (Lower bound). (52b)

Because of (49). the bounds for E {e [n .0' (t A21 are similarly

E{e [n ." (e )]5. =2KV (o -2 1 , +(r (Upper bound) (53a)

E le [n ." (t )]2), =2K IV (O)e -2K y, +or (Lower bound). (53b)

The time scaling between the ODE (continuous) and the adaptation process (discrete) is

t =n.

The above bounds are of little practical value. however, because K1 and K 2

depend on x (n)..A' (q -1), A (q -1). and B (q -1) and are difficult to compute in general.

For a given set of data Ix (n )). {y (n )J. one can only hope to approximate R [6" (t)] with

a constant matrix and to solve the original ODE as a first order linear differential

equation. This approximation might be very rough because " (t) may change

considerably during the adaptation. However, locally it can still be accurate and worth

investigating.

The simulation example presented in Figure 6. Section 2.4 is used to demonstrate

the convergence rate discussed above (for the values used in the example. see page 46).

To obtain V (t ). a suitable constant approximation for R [0' (t)] is made and the ODE as

given by (27) and (43) is solved for 6' (t) [821:

-- I

4.4 %'K .* - . . . . .'i
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(t )-Oe )[6' (t 0 )-0]. (54)

Then V (t )=2[0 (t)--]T [0 (t )-0]. The mean square output error is calculated using

*2

(49) and (50) and plotted on the time scale t =n T'. Three different approximations for

R [0" (t)] are used and their results are shown in Figures 14 - 16. In Figure 14. the

matrix R [6" (t)] is calculated using A (q-')=1-1.2q-1+0.6q- 2 in place of A (q -) and

A (q -) (see (44) for the expression of R (0); B (q -)-1 in this example). In other

words. A (q -) is approximated by its final value. Hence. the above calculation should

at least be accurate locally around the convergence point. i.e, for t large. Three curves

* are shown in Figure 14: a sample curve of the mean square output error of the

simulated stochastic adaptation process (using E. : dashed line), the ensemble average of

20 such curves (solid line), and the predicted convergence curve for the mean square

I
Iii

'T prdic'ted Lur\ e

enst-lh' c a% 'ra t ot 20 arnpit- ,.;r%

N ,,,:: .r 4. ,,l,

o e a,. :,( i%

I f
Figure 14 Convergence rate with A (q-1) approximated by A (q-1)

!I
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error calculated using the above method (solid line). As expected. the predicted curve U

coincides with the ensemble average fairly well for n large, poorly for n small (at the

beginning of adaptation). For the migration of 0n see Figure 6. Next. the initial guess

made in Figure 6. A (O.q-1)=I+O.8q-1+O.2q -2 is used in place of A (q -) while A (q -)

is still the same as before. i.e.. A (q-1) is approximated by its initial value. The same

group of curves is shown in Figure 15. Again, as expected, the predicted curve coincides

with the ensemble average very well at the beginning of the adaptation, and poorly for

n large.

Although these two plots are still not practical since A (q-1) is unknown in

reality, they do give some insight into the rate of convergence for the IF algorithm. A

practical approximation for R [W (t)] can be made by replacing the known operator

A (O -')=I+0.8q- 1 +0.2q - 2 for both A (q -) and A (q-. The result is shown in

IJ

, U-

Figure 15 Convergence rate with .4(q -1) approximated by , (O.q-

%% -

_________________________l
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Figure 16. where it is seen that the predicted curve using this approximation is not

satisfactory at all. A more accurate approach would be to solve the non-linear ODE

without approximating R [0" (t )], which is inconceivable at this moment.

2.5.2 Coloring Effect

Let the conditions in Theorem 1 and Theorem 2. ii) be met. As pointed out in the

Nproof of Theorem 2. ii). for a non-white disturbance {v (n)) it is difficult to analyze the

ODE, and the possible convergence points are biased. It is the purpose of this subsection

to heuristically discuss some necessary conditions for the bias to remain small.

From (46), it is seen that the parameter bias is caused by an additive vector

01* I
• ~~~t-L p; - rt'd etd ir~t

-~~~ n'crnihh' v,ra . 1) 0 mrhl, .C

A.0

Figure 16 Convergence rate with A (q-) and A (q-) approximated by A (O.q -)

.5.
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v (n -i)3
A (q (55

A=[R (9)1-'E (v (n
0

where R(0) is given in (44). In order to keep 11A 1 small, it is necessary that

[R (0)-' be small. Using (44). the following can be written:

x (n)
A (q-')A (q-)

II[R( )1-,II=II ,$(A B)- T E x x(n

.1.

IIA (q -')A (q -t n

x (n -m)
A (q -')A (q-

A (q -')A (q _)x (n -m) Z(A X )-,II :

Aq (q -').A (q-) x

-

(A (B EA( -)x (rt)•••,
1

x (n- )
A1 (qn) -mAqq1 ') (

A (q-')A (q)

U,

- ~ - -, .** - *. . '~,* *~*
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~~~~~~~~~~A (q -')A (q- ( -1)} I I (4 )'I.(6

~Consider the factor in the middle first. The matrix in the bracket is at least positive

semi-definite because of its structure. In order to be invertible, it has to be positive

£ ' definite and hence the persistent excitation condition (41) must be imposed on the input

{Ix (n)} as argued before [57, Lemma 4.7]. This is the same requirement as for the white

disturbance case (Theorem 2. 0))

' Next. consider the first and the third factor in (56). As mentioned before and

proved in [56] and [8 1], Z(A .B ) is non-singular if and only if A (q -1) and B (q -1) are

i relatively prime. Moreover, following [56. Theorem A.4.1] it can be shown that for

" II ,Z(A ,B )-1 11 to be small, the zeros of A (q -1) should not even be close to the zeros of-

B (q -1). and vice versa. Let -y be a root of A (q-) and ),+e be a root of B (q -1):

-n +

~~~~~~~A (q -')=( 1--yq -')( 1-a'lq -_... I%-q-" )

~~~B (q-')=(1--yq-1--1-)( b ,o+b 'lq-'+ , .+b ' -Iq-n1)

Eliminating f-q - t) gives

A ( q~- ')(b '0+ b 'lq - + • • •+ b ', -q n' + 1)- R (q - ')( I1- a 'jq -  . a , _q - + )

=eq-1-a 'jq- I  -. . -a', -_q + :)( b'o +b "jq -' -b',, _I
Equating coefficients of qit on both sides gives

.5<(A .B )TO0 =EH' (57)

i11
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where

0'=[ --1 a n .- I' 0 bo ° •• bn _11]T

In - ]T ,
H '= [ 0 0 b 'o b 'j- a 'xb o ... a . _xb ' 11b -

Taking the norm on both sides of (57) gives

II='11e11 (A B )-T II I1H'11 (58)

Now 110'11 and 1H' II are of moderate value. Hence, if e is small. i.e.. the zeros of

A (q -) are close to the zeros of B (q-)-. 11 S (A ,B )-T 11 has to be large, thus proving -

the assertion. Note that this is actually a sensitivity criterion. i.e., the closer the zeros

of A (q- 1 ) are to the zeros of B (q -). the larger the bias if v (n) is colored.

The two necessary conditions derived. i.e.. Ix (n )} being persistently exciting and

the plant not having close pole-zero pairs, are very common in other situations. For I
example, if the plant has close pole-zero pairs, it would not be surprising to see

behavioral difficulties in parameter convergence for any adaptation algorithm.

It should be pointed out that if the correlation of the disturbance is known a

priori, pre-whitening filters can be used to decorrelate the colored noise as proposed in

(83].

I.
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3. AN APPLICATION TO ECHO CANCELLATION

The reason for the rapid development of the adaptive filtering, as stated in

Chapter 1. is that it has a great potential in wide range of applications due to its unique

advantage: adaptability to the (changing) environment. The areas of application for

adaptive filters are tremendous [4] - [29]. For adaptive FIR filtering, the usual objective

for most applications is the minimization of the mean square output error to obtain the

Wiener solution. This proves to be a reasonable objective and is practically useful. For

adaptive IIR filtering, however, more is desired. Since an IR structure can better model

d a real physical system. one of the purposes for using adaptive IR filters is to further

minimize the mean square output error. Moreover, for the sufficient order case.

parameter identification is often desired, in which case the mean square output error can

be reduced to zero. However, it can also happen that one can achieve a reasonably small

mean square error with a relatively large error in parameter identification, due to the

complexity of the error surfaces. One major drawback of the proposed algorithms, as

pointed out in the last chapter, is the parameter bias in the presence of a colored

-.: disturbance. If parameter identification is desired, this drawback may restrict the

algorithms for some applications. However, if only minimization of the mean square

output error is necessary, the proposed algorithms still have a large variety of practical

applications. On the other hand. there are many situations where the disturbance can

be absent, or can be modeled as a white noise sequence. In these cases the proposed

algorithms will achieve both minimization of the mean square error and parameter

identification in the sufficient order case. For the reduced order case. the proposed

algorithns have the potential of achieving global convergence as opposed to other

existing algorithms. An important application of this case, echo cancellation in long-

distance telephone systems, will be studied in this chapter.

A

'1



| -,-,-

62

3.1 The Principle of Echo Cancellation

The problem of echo in long-distance telephone systems becoming of great concern

to engineers can be dated to more than a half-century ago [84]. Some classic methods

were developed which effectively eliminated this problem for systems having a time

delay of less than 100 ms at that time. Recently, due to the development of satellite

communication technique, larger time delay and hence more severe echoes provoked

new blooming for research activities in echo cancellation [13] - [191. [41] - [42]. [84] -

[851. The employment of echo cancelers has proved necessary in expanding telephone

networks to provide a truly world-wide service.

The cause of echo in a typical 4-wire telephone system [85] is demonstrated in

Figure 17. It is a symmetric system for the telephone user 1 and the user 2. Suppose

N

H IIcoPt coPt

FP-8723

Figure 17 A 4-wire long-distance telephone system ;.,

U



i
63

user 1 is speaking and user 2 is listening. The speech signal of user 1 is first transmitted

from his telephone set through a 2-wire line to a local office. In the local office a hybrid

circuit H which acts as a bridge between 2-wire (bidirectional) and 4-wire

(unidirectional) lines connects this speech signal to the upper path of the 4-wire line.

The signal is then transmitted over a long distance by the 4-wire line through the upper

path. The additive noise represents the noise incurred in the 2-wire line and at the

hybrid circuit, which can be well modeled as a white noise. At the receiving end, the

hybrid H at a local office near user 2 sends the speech signal to the 2-wire line which

connects the telephone set of user 2. Ideally. all the energy of the incoming speech

'signal from the upper path of the 4-wire line should be transmitted to the 2-wire line

and to the user 2. This is done to a large extent in practice by careful design of the

sophisticated hybrid circuit H. However, due to the variation of the number of

customers and of the length of the 2-wire lines. H can never be designed to match this

perfectly. In other words. the transfer function of the path across H along the 4-wire

line denoted in Figure 17 as "echo path." is not zero. Thus, the speech signal of user 1

will leak out at the receiving end and will be transmitted back through the lower path

of the 4-wire line, which normally transmits the speech signal of user 2. Since the

preceiving principle for the H at the left is the same as that at the right, user 1 will hear

the delayed version of his own speech. This is called talker echo [41], [84] - [85]. The

larger time delay on the 4-wire line (i.e.. the farther the transmission distance), the

more severe and annoying the echo will be.

The user 2 in the above scenario may also hear echo, which is called listener echo

(41], [84] - [851. This echo occurs when the talker echo signal traveling to the left along

the lower path of the 4-,ire line leaks out along the echo path on the left of the

transmission system due to non-zero transfer function at that side. This echo signal is

NI

superimposed (time delayed) onto the main speech transmission stream on the upper
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path of the 4-wire line. and will be heard by the listener. The listener echo is usually j

less severe than the talker echo. due to the transmission loss and the loss along the echo

paths (the average loss along the echo path is 6 dB [85]). The listener echo can again

leak out along the echo path on the right of the transmission system and be transmitted

back to user 1. which becomes 2nd talker echo. This process can go on to result in 2nd

listener echo. 3rd talker echo. etc.. However, due to the losses, these high order echoes

are not of much concern.

It is observed that the transmitted speech signal travels in the 4-wire line for only

one-way. whereas echo signals travel for at least a round-trip. Thus, an early method
i

for echo control is to insert a 3 dB loss in each transmission direction in the 4-wire line

[85]. Although this method suppresses echo by at least 6 dB. it also introduces an extra

3 dB loss to the speech transmission. A better method using "echo suppressors" were

then developed which disrupts transmission in one direction in the 4-wire line if speech

is transmitted in the other direction [42]. [851. The echo suppressors are quite effective
-

for line delays less than 100 ms. For larger delay. e.g., in a satellite transmission
system. the clipping and the disruption become annoying. It is then necessary to use

adaptive echo cancelers.

An adaptive echo canceler is an adaptive filter placed in parallel to the echo path

(Figure 18). Its task is to simulate the transfer function of the echo path. By

subtracting the estimated returning echo (n ) from the real returning echo y (n), the

new returning echo e (n) is suppressed greatly. A figure of merit for the effectiveness

of an echo canceler is the echo return loss enhancement (ERLE) which is defined as

follows [17] - [191:

ERLE=I0logEly(n)2}IJ (59)

*t** ,r --, , , ,"~. 4 '¢ , €,, .r.",,.*.E n'. -.
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U
x(n)

Echo
Path

EchoI
CancelerH

-j y(n)+
I v(ri)

e(n) + y(n)

FP-8724

Figure 18 Echo cancellation using an echo canceler

Usually 20 dB or more ERLE is expected for effective echo cancellation.

*Almost all echo cancelers today are adaptive FIR filters. Although it is simple to

implement. they cannot model the transfer functions of the echo path well. In order to

achieve satisfactory performance. the number of weights in the cancelers must be large

(e.g., 128 weights for satellite transmission, [85]). which means high cost and high

computational complexity. This motivates the investigation of adaptive fIR echo

cancelers.

3.2 Adaptive HR Echo Cancelers

U Referring to Figure 18, it is assumed that user 2 is quiet. In case of double-talking

(when user 2 tries to interrupt), it is assumed that there is some mechanism (speech

U
=p
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detector) to freeze the adaptation process [851. If the transfer function of the echo path

is considered as an unknown dynamic plant. then the system described in Figure 18 is

exactly the same as that in Figure 1. Since the transfer function of the echo path can be

well modeled as a rational function [85]. it is much more suitable to use an adaptive IIR

filter to simulate or to identify it than an adaptive FIR filter. The proposed algorithm

and the previous analysis can be applied to the echo cancellation as depicted in Figure 5:

18 immediately. A number of computer simulations for various situations are

conducted and will be presented in this section. In order to save computation. the AFM

algorithm given by (24) is used throughout this section. As mentioned before, due to

slow adaptation the AFM algorithm is a close approximation of the IF algorithm whose

convergence behavior is well studied in the last chapter. Rational functions are used to ,

model the echo path transfer function. The AFM algorithm is implemented and

compared with SHARF and an adaptive FIR canceler. The disturbance Iv (n)) isI

assumed to be a white noise sequence. The results will be presented for sufficient order

case and reduced order case respectively.

3.2.1 Sufficient Order Case

An echo path transfer function usually exhibits an all-pass characteristic [85].

Hence, the echo path in this case is modeled as a second order all-pass filter with two

complex conjugate poles located at 0.95e ±J 3°0 and two zeros at 1.0526e J 300. The gain

is selected as 0.44 such that the loss for all frequencies is about 6 dB. as mentioned

before. Figure 19 shows the magnitude of the frequency response and Figure 20 shows 0

the phase. The canceler is a second order adaptive IIR filter with five adaptive

coefficients a 1(n ). 2 (n ), and 9,,(n ) - 9,(n ). Three kinds of input signals are used: a

digitized speech signal of the sentence "you had a problem with the blush" by a male

N
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Figure 19 Magnitude (loss) of the 2nd order echo path transfer function
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voice (Figure 21). a digitized babble signal uttered by many speakers simultaneously

(Figure 22). and a zero mean, unit variance stationary white Gaussian noise sequence.

The sampling frequency for the speech and the babble is 20 kHz. Note that the babble

signal is essentially a band-limited noise. In order to cope with the drastic magnitude

change of the speech signal. the AFM algorithm is implemented with gain

normalization, i.e.. r is replaced by n - (see (24) ). This

_y '(n -i )2+ Ex'(n -j ) 2

i=1 j.=0

regulates the convergence speed quite effectively but does not change the convergence

properties much. although extra computation is required. Simulation results for

v (n )=0 will be presented first, in which case all adaptive coefficients will start from

zero initial values.

'zero

0 Wt.

Fiur 1 Digit s c s

Figure 21 Digitized speech signal

IJq
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Figure 22 Figure 22 Digitized babble signal

The first group of plots shows the basic simulation results using the adaptive IIR

echo canceler for the three different kinds of input. For the speech signal as the input.

Figure 23 shows the decrease of the mean square returning echo E le (n )2 as in Figure

18, and Figure 24 shows the convergence path for the two adaptive coefficients in the

denominator. The error surface contour is not analyzed for this case due to the

complexity of the speech signal. Only stability boundary is drawn in Figure 24. From

the pole location of the plant the values of the coefficients of the denominator are easily

calculated as a 1=1.6454 and a,=-0.9025. Convergence of the adaptive coefficients to

this point is achieved after 50.000 adaptations. Figure 25 shows the returning echo for

the babble input, and Figure 26 shows the convergence path for the same adaptive

5 coefficients as in Figure 24. Figures 27 and 28 are the same but for the white noise

input. The value r=0.04 is used for all these three cases. It can be noticed that the
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Figure 23 Mean square returning echo for speech input I
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Figure 24 Convergence path of the denominator for speech input
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Figure 26 Convergence path ol the denominator for babble input
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number of adaptation decreases as the input signal changes from the speech signal to the

white noise. However. parameter convergence is achieved for all these three cases.

although Figure 24 exhibits more irregularity for the speech signal input case.

Rigorously speaking, speech signals are not stationary. Hence, they violate one of the

basic assumptions for the input signal in the convergence proof (Section 2.3). In

practice. however, the generalization of white noise to speech signals when one proceeds

from theory to practice is widely accepted [13] - [19]. The above computer simulations

also show that this generalization is not at all unreasonable. In other words, the

conditions on the input signals for the convergence might be relaxed.

i Next, the experiment for the same adaptive IIR echo canceler with these three

inputs is repeated and compared with an adaptive FIR echo canceler. The number of

weights in the FIR canceler is 32. They are all set to zero at the beginning of the

adaptation. The gain is also normalized to 31 where r (step size) is always

Yx(n-i )1

chosen to be the same as that in the IIR canceler (0.04). The number of multiplications

at each adaptation is roughly 32 for the FIR canceler, and 9 for the IIR canceler. The

ratio is about 3.5. Two kinds of comparison between the FIR canceler and the IIR

canceler should be kept in mind when viewing the simulation results: i) for the same

amount of computation, a comparison of performance: and ii) for the same

performance, a comparison of computation. Figures 29 and 30 show the results with

the speech signal input. The mean square returning echo is shown in Figure 29, and the

ERLE defined by (59) (note that v (n )=0) is shown in Figure 30. Note that due to tne
NVN large number of adaptations required, the input sentence is repeated for as many tim.!s

as needed. It is seen from Figure 30 that the FIR canceler achieves a steady state ERLE

(20 - 50 dB) after 37.500 adaptations whereas the IIR canceler needs more adaptation

U
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Figure 29 Mean square returning echoes for speech input, compared with
an FIR canceler
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and can achieve higher ERLE. For the same amount of computation as for the FIR

canceler with 37,500 adaptations, the IIR canceler can have about 3.5X37,5002130k

adaptations where its ERLE is 75 - 110 dB. On the other hand. for the IIR canceler to

achieve 20 - 50 dB ERLE, it only needs 40k adaptations, which is much less than 130k.

Thus. the IIR canceler performs much better than the FIR canceler in these senses. The

potential for the IIR canceler is even more exciting: at 150k adaptations in Figure 30.

the ERLE reaches the average of 100 dB and is still increasing. Figures 31 and 32 show

.the same comparison for the babble input, and Figures 33 and 34 are for the white noise

input. The IIR canceler outperformed the FIR canceler in the above sense for all these

three inputs. However, the price is slower convergence. It is especially clear from

Figures 33 and 34 for the white noise input. In Figure 34, the FIR canceler quickly

X," converges to its steady state value 22 dB after 2500 adaptations. whereas for the IIR

canceler it takes 6250 adaptations, although the amount of computation at this point

for the IIR canceler is only about 70 percent of that of the FIR canceler at 2500

adaptations.

The potential that the IIR canceler can achieve high ERLE is further investigated

for the white noise input. Figure 35 shows an overall view of Figure 34. where it is

1V seen that after 40k adiaptations the ERLE of the IIR canceler settles at 110 dB level. It

is apparent that the IIR canceler outperforms the FIR canceler tremendously in this

'sense.

The effect of T in the convergence of the ERLE for the IIR canceler is shown in

Figure 36 for T=0.02, 0 04. and 0.08. respectively. The curve in the middle (r-0.04)

,1 corresponds to that in Figure 35. It is seen that the slope of the curve for 7=0.08 is

twice as much as the slope for the curve r=0.04. which is in turn twice as much as that

for 7 =0.02. This is simply because =n r. In other words. the convergence speed is

,w,
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proportional to -r. The variance of the ERLE at the convergence point, as can be seen

from the amount of variation for the leveled off part of the three curves on the top of

3 Figure 36. also increases as r does. as expected. What is surprising in this figure is that

the converged mean value of the ERLE also depends on T. and increases slightly as T

0 does. At this point its cause is not clear yet.

The AFM algorithm is also compared with SHARF algorithm (7) for IIR cancelers.

In implementing SHARF algorithm, the error smoothing filter is selected as c =-0.8

and c 2=0 so that the SPR requirement in (8) is satisfied. In order to achieve comparable

results, the adaptive gain in SHARF algorithm is also normalized to

with r=0.04 which is the same as that used in the AFM
S(n-i )2+ Ex (n-J )2

,..i=1 j =0

P.

algorithm. With the speech signal as the input, the results are shown in Figures 37 and

38. Differing from the AFM algorithm. SHARF starts to show significant returning

echo reduction fairly late, but then it reaches the steady state very quickly. This is

because SHARF uses a different convergence strategy than AFM. The convergence path

of the adaptive coefficients for SHARF is very different from that of AFM. Note in

r'igure 38 that the steady state ERLE levels for the two IIR canceler algorithms are

almost the same.

All the above experiments are conducted assuming v (n )=0. In reality. {v (n)) is
k A

generally non-zero, and can be modeled as a white noise sequence. An experiment

similar to that shown in Figures 29 and 30 is performed with 1v (n)} being a zero mean

white Gaussian noise sequence with variance 0.0001. The same IIR canceler and FIR

canceler are used. Due to the disturbance v (n). the (normalized) adaptive gain must be

much smaller than before (r-0.0016) to achieve satisfactory convergence and to ensure

the stability of the IIR canceler. In order to avoid an excessive number of adaptations

U -
- ,r . , . - . r, . ., ., - '. ,'.'.',. ' '. -'. .'',.". .' , " '¢ 

, "
"', -" " '- ' ' - € "-'p" .''- "A 1- ". , ' '
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for such a small adaptive gain, the IIR canceler is initialized near the convergence point.

It is chosen that aj(0)=1.6. a 2 (0)=-0.8, 9 0(0)=0.5. 9 1(0)=-0.8, and g 2(0)=0.5. The

FIR canceler is initialized with the values of the first 32 samples of the impulse response

of the initial IIR canceler. B (Oz -')/, (O.z- ), which is

h (n )=0.6258(n )-2 Re{(0.0625+j 0.125)(0.8+j 0.4 )n n =0.1, - 31. (60)

This initialization is also reasonable in a practical sense. Usually an echo canceler is

used for a long time after installation; hence, every time it is turned on it always starts

adaptation from some nominal value near the optimum rather than from zero as it is

first installed.

The results of this experiment are shown in Figures 39 and 40. Note that for the

• definition of ERLE as in (59). when the signal part in y (n) becomes small, as a speech

signal often does, both y (n) and e (n) are dominated by v (n) and the ERLE becomes

zero. Thus. the ERLE curve constantly oscillates between zero and its functional value.

Our experience indicates that the situation can be so bad that one cannot obtain any

information from the ERLE curve thus defined, and hence, it essentially becomes

useless. A modified definition used in [181 can overcome this difficulty:

ERLE =lOlog E 1[y (n )-v (n )]21 (61)

EFor v (n )=0. (61) coincides with (59). Note that this definition is not practical since

v (n) is not measurable. However. iL does give some indication about how well an echo

canceler is functioning in the presence of v (n). especially for real speech input. The

ERLE curves in Figure 40 are the results of the experiment using definition (61). It can

be seen from these two figures that the IIR canceler still outperforms the FIR canceler

while both are degraded. However. the improvement of the IIR canceler over the FIR is

much less than the noise-free case. because the noise causes the adaptive coeffic.ents to

U
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wander around the true value with a much larger variance.

3.2.2 Reduced Order Case

To construct a reduced order situation, the echo path transfer function of the last

subsection (sufficient order case) is modified by adding a pole at 0.7 and a zero at 1.4286

so that it still has an all-pass characteristic (see Figures 41 and 42). The gain is 0.3 so

Vthat the loss is about 6.5 dB. The same adaptive IIR canceler and FIR canceler are used

with the three inputs for v (n )-O. The constant r in the normalized gain of the

cancelers is adjusted to have the value 0.01. All the adaptive coefficients are initialized

with zero value.

Figures 43 and 44 show a similar comparison between the IIR canceler and the FIR

canceler as before. It may seem surprising that the IIR canceler not only performs

poorer than the FIR. it also shows nearly no reduction in the mean square returning

echo (Figure 43) and no increase in ERLE (Figure 44). This is probably because of i)

possible shallow holes of the error surface as a (usually complicated) function of the

five adaptive coefficients. and of ii) the non-stationarity of the speech signal. It is

obvious that the global minimum value of the error surface for the IIR canceler

decreases as the number of the adaptive coefficients increases. It reaches zero when a

sufficient order situation is obtained. Similarly. the only minimum value of the

quadratic error surface for the FIR canceler also decreases as the number of weights

increases. However, it will never reach zero if the unknown dynamic plant has a

rational transfer function. What happens here is probably that the global minimum of

the error surface for the adaptive IR canceler is larger than the minimum of the

quadratic error surface for the adaptive FIR canceler. It should not be surprising to see

further deduction in the mean square returning echo (eventually to zero) using the IIR

,-a. .. . .. ..o ..
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canceler if the number of adaptive coefficients increases. U

An overall view of the above situation for the fIR canceler can be seen in Figures

45 and 46 for the returning echo and the convergence path of the coefficients in the

denominator. The adaptive coefficients do converge to some point as seen in Figure 46.

It is interesting to see the repeating pattern of the convergence path as the input

sentence is repeated. Even at the convergence point, the adaptive coefficients circle along

a "P" shape. resulting in the large error at a certain portion of the input signal (Figure

45). This is due to the peculiarity (e.g.. non-stationarity) of the speech signal. which is

not obviously shown in the sufficient order case before. "Better" input signals: the

babble signal and the white noise sequence are used for the same experiment, and the

results are shown in Figures 47 - 50. For the babble input (Figures 47 and 48). decrease

of the mean square returning echo for some portion of the input signal is obvious while

increase for some other portion still exists. The convergence of the adaptive parameters

is seen better than that with the speech signal input in the sense that the variance is

much smaller. White noise is perhaps the most ideal input (Figures 49 and 50).

Decrease of the mean square returning echo and convergence to approximately the same

point is observed. It should be noted that the mean square returning echo reaches a

steady value at only 10k adaptations (two percent of the total number of adaptations).

whereas it took almost 500k adaptations to achieve parameter convergence..

The above IIR canceler (using AFM algorithm) is also compared with the one using

Stearns' algorithm (6) for this reduced order case. The gain in (6) is also normalized to

with r=0.01. From the results in Figures 51 and 52 it is
S -i )2+ E x '(n-i )2

i=1 j =0

seen that the AFM algorithm performs slightly better than Stearns' algorithm. Since

Stearns* algorithm is a gradient algorithm, this ve 'fies that the AFM algorithm has not

I
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3 missed other local minimum points that are lower than the one that AFM is aiming at.

Finally, the AFM canceler is compared with the SHARF canceler used in the last

3 subsection with T changed to 0.01. Note that the SPR requiement (8) is no longer

satisfied with c =-0.8 and zero otherwise. However, it can be checked that the SPR

requirement is violated for only a small amount on a small portion of the unit circle.

Based on the argument that the SPR requirement might be overly restrictive [591. the

SHARF canceler is implemented the same as before without any other modification.

Figures 53 and 54 show the results, from which SHARF is seen to perform much worse

than the AFM algorithm. This confirms the observation of SHARF's misbehavior in the

reduced order case (62]. [64].

From the above rich collection of examples it is clearly seen that. in general.

adaptive IIR cancelers may not perform as well as adaptive FIR cancelers in reduced

order case. However, if one selects the order correctly. e.g.. if a 3rd order adaptive

canceler is used in this subsection, it is obvious that the same results as those in the last

subsection for sufficient order case may be expected. In other words, the 3rd order IIR

pcanceler using the AFM algorithm .vould outperform the FIR canceler having 32 (or

more) taps. although more adaptations may be needed. No more such examples shall be

included here.

I
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4. CONCLUSION

3 A family of new adaptive IIR filtering algorithms. SINM algorithm. AFM algorithm.

and IF algorithm, is proposed based on the Steiglitz-McBride identification scheme. It is

proved using a theorem of wide-sense convergence in probability that the IF algorithm

converges to the solution of an associated ODE under fairly general conditions. It is

gfurther proved, imposing more conditions, that the filter coefficients converge to the true

system parameter values in sufficient order case. The AFM algorithm, which is shown

to be a close approximation of the IF algorithm, is implemented to verify the above

theoretical results. For reduced order case. a number of computer simulations using the

AFM algorithm exhibits global convergence regardless of local minima. The proposed

algorithms are also applied to the problem of echo cancellation. A large variety of

simulations using various input signals is performed and compared with adaptive FIR

echo cancelers and other existing adaptive IR algorithms. The results are favorable.

It is shown in Section 2.2 that the family of algorithms is derived from traditional

pequation error approach. With pre-filtering. Lhe inherent flaw of the equation error

method, parameter bias in the presence of a disturbance, is removed tc the extent that

only a colored disturbance would cause parameter bias. The effect of this bias in

relation to the input and the unknown plant is studied. For a white disturbance, the

algorithm is shown to converge exponentially.

It should be pointed out that the problem of the adaptive FR filtering in the

reduced order case is quite difficult. Some researchers approached this problem by

finding error bounds so that the filter can be guaranteed at least nct to "blow up" [86].

[87]. The global convergence of the proposed algorithms in Section 2.4 is unique and

interesting. Although this observation only gives a limited view. it deserves the

following conjecture. For reduced order cases. if all conditions in Theorem I and
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Theorem 2 of Section 2.3 are met. then the IF algorithm converges to the best fit, i.e., the

global minimum point of the mean square error surface, if such a minimum exists. In

practice. however, the effectiveness of using adaptive IIR filters as opposed to adaptive

FIR filters depends largely on the correct choice of the filter orders. Even with the

global convergence, an adaptive IIR filter may still be inferior to an adaptive FIR filter

in the reduced order case. as seen from the application examples in Section 3.2.2.

One major purpose of having constant gain for adaptive filtering is to track time-
a..

varying systems. However. due to the complexity of time-varying situations. not much

analysis has been done [72]. [88]. More powerful convergence theorems (e.g.. [74)) may

be needed, and stronger conditions may have to be imposed (e.g., [891 to allow S -- aa in

(29) and (30)). Having dealt with only the stationary situation and a specific area of

application, this dissertation can be a necessary pre-study for aforementioned more

complicated cases, and be a demonstration of potentially wider application of recent

weak convergence results [71] - [74] to various adaptive filtering algorithms [49] - [5 1].

[59] - [67]. The proposed algorithm might be further modified to estimate the

disturbance so that the bias in the presence of colored disturbances can be removed.

The problem of stability monitoring needs to he studied further. Other areas of

application are also possible. In short. the adaptive IIR filtering is a young and

prosperous research area. The proposition of thle family of new algorithms only opens

an additional window which will hopefully bring in some fresher air.

#4
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3 APPENDIX

PROOF OF THE LEMMAS

3 A) Proofof Lemma 1:

From (34). it follows that

Y (n. el)=F (01) Y (0)+ . F (61) G (01 )U (n -i)
i=0

Y (n . 2 )=F (b2) Y (0)+"F (b2)' G (2)U (n -i)
i =0

Thus.

IIY (n . ,)-Y (n .62) [F (61)- -F (2 )2 ]Y(0)
n-I

+ f F ( 1)'G (01)-F (62) G (02)JU (n -i ) 11

*-: 11 F(01 )' -F(6 2Y' 1111 I()

+ F(01)'G (01)-F(02)G (02)1 IIU(n-i ) i (Al)
i =0

n-i

We now estimate IIF(bjY'-F(O?)- 11 and E IIF(OI)G(Ol)-F(&2YG(02)II.
i =0

U U (n-i)1 respectively.
Using the identity A -A n =A n -A A 2+A n -'A 2-A n - 2A ? + +A A n-I

1. 2

-A 3. the first estimate is

~IIF(O,)o -F(62 /f I=1 7_ r,(O 1 )n-'-' fF(el)-F(e2 ))F(0-,y- II
/20

LII"

S
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F ()' - U F (0)-F (02)II F( )' II (
j =0

4c 1 llO,-Ol Z IIF(O1Y ' -'-i II FIF(0,)j II (.A.2)

j 0

Let ki (0) denote the i th eigenvalue of F (0). By the assumption i). there exists 0<X < 1

such that IA, (0)1 <A for all i and all 0EiD. Hence. by [90. Theorem 5]. there exists

C 3 >0 such that II F(6)1 1< (C 3>-.j So (A2) can be written as

IIF(0,"-F(02Y3 II 1c1cl 110,-0211 - c I04211n " - '. (A3)
j =0

It is easily seen by comparing two adjacent terms that as n increases, the sequence

n V -1 reaches its maximum value (,> 1) at N =[ ] where again [. denotes the upper
1-A

nearest integer, and then decreases monotonically to zero as n --.o. Hence. (A3) is I
bounded by

IF (01) -F 02) II <~ N Xv- I@-1I (A4)

Next. estimate

n-I 
s

E 11 F(01)' G (61)-F (62)' G (02) II U (n-i) I
i so

n-l

= F(0 1 )'G (8,)-F(81 )' G (O,)+F(0,)'G (02)-F(O2 )'G(02) U(n -i )11

l--I1F(,)' ! IG(,)- G()l IIu02 U(n-i)

4 Although in [90. Theorem 5 the conclusion is 11 A ',C,hl Whe • 11 A 11 2 [p(A T  )J1 . it is readi-
ly seen by the equivalence of norms (78] that 1A I C C3 A 2 -C C',. " "5.
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+ F(61 )-F(02Y ii G (02)11 G U (n-i)

11c,C2 II X- ' I ' IIU(n -i ) +C 1 II (2)1 ,1 - II U(n -i )
i =0 =0

where the last step is obtained using (A3). Now the total estimate is

11 Y (n 6 ( 2 1 1 jC 2 NX-v11 Y(0) -+C2 C 3 E l IU(n-) 11

ICi -- _0

3 1 2) 1 n E -iJ U n 0 J 1 1 -1

i=

UY -IIi- 2 11.

It is obvious that Y>O. Its mean is

E {Y) =C IC 2N X - -1 II Y (o) 11 +C 2CE U I U(n- ) II V
• i =0

+c ,c3 JIG (62)II E IIU(,,-i )11 IE_- )Li-,.
1=0

Obviously ',- 4 1 <co. Now since i X'-'= dX i and n is finite, it

I=0 - - d=0

follows that

n-1 d n-i ~1 -nn -I(1..)+An I
<1'1 < 00

d0 i0 dA -A (1-",) 2  (I -x) 2  (1 -X)

Thus by the assumptions it can be concluded that E IY) <oo.

B) Proof of Lemma 2:

Let h. (n). 1 <i 44. -oo<n < o denote the unit pulse response of the i th filter

% (for causal filters. 04n <oo. which falls into the more general case considered here).

*~ . ** * .
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Then

y, (n ) h, (n -n' )u, (W ).

n '=-c

i)"

YM (nyn-nEh(n-')u ( n

n I =--cc =-

The last step is obtained since all poles inside the unit circle implies that

E 1,('l4 oo lo4C4 o9]

y (n )y (m )} , -hi(n--n') ,,=... h(M-m')u((m')

By Cauchy-Schwarz inequality ]E {XY I (E {X 2}E Iy 2 }) 2 [92]. we have

IE lui (n')uj (m')) I < fui (n') 2 E u (m 1)2}I < M2

Hence

IE~y,(n)ys(m)}l<H M 2 1 E h,(n')l I 1 h,(m')I<M 2 K=K2<a.
.,

n'.

iii) Analogous to i) and ii). we have

1E~y,(n)y,(m)y4,(f))}]] E h, (n')[ I h,(mW) I 1 .: h. (69)1

n =?? =:

.I3

I ,- ..... ,-,.., - ,e,:,::- ".",. :.:.: -:' .. ¢ . .:..:.;' : : ; :. .:. : 'U
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,~ !E {u, (n qu,, (m ')u,. (, ')) I

(K 3  U, (n )2u (m ')2 IE J ($,)2} 2 K 3 M 12 V (n ')2u (m )2}

(K SM ,/2 kui (n')}E iu)4 K3( I2M)/2=K3 <oo

iv) Same as before:

IEJy (n)yj(m)yk( )y,()}I h,(n')I I h,(m') hk

I- 0 --.0 m'--: -'-o

I h, (()) I IE lui (n ()u (m )u4 (-')u) ({()) I

< K 4 VU (n )2Uj (M,)221E lu14 (6.)2I ( )2) 1112

K, K 4 M 4=K 4 < c.

C) Proof of Lemma 3:

The proof follows Benveniste et al. [71] closely.

For simplicity, we drop 0 in notations. Using the same definition for matrix norm

as before, we have:

j)

" ~ E Y n 'W (n:, Y -Y-" (n')r (n,) Y

=_ F"E[y 1(n -i )y (n-i )-y" (n-i )yT (n-i )]2
, =It =1

N,

Lill"- - -*
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+ E[y 2 (n -j )y2(n -j )-y - (n -i )y"? (n -
j =Oj '=0

n. '+2) . E [y (n -i )Vy2(n -j )-y (n -i)y" (n -j )]2

=11 =0

= Ely (n -i )y j(n -i ')-y (n -i )y- (n -i ')+y j(n -i )y7' (n -i')

-y T (n -i )y- (n -i)] 2

4,I

+ I :E[y 2(n-j)V 2(n-j')-y 2(n-j)v(n-j')+y 2 (n-j )V(n-j')
- =0j '=0

- ' (n -i )y ' (n -')] 2

• 
,..

<2 E (y I(n -i )2[y I(n -i )-y'" (n -i ')]'+y7' (n -i 1)2[y I(n -i )-y' (n-i )J21

=li '=1

+2 E E {y2(n -j )2[y2(n -j ')-y- (n -j ,)]2+y (n-j ') 2[y 2 (n -j )-y (n - )]2)

+4 E (y I(n -i )2[ Y 2(n -j )-v- (n -i )]2 +y-' (n-i )2[y l -i )-y n -i )]2)

a =1) (n

where the inequality (a+b)2 (2(a 2 +b 2 ) is again used. Now again using Cauchy-

*, Schwarz inequality as in the proof of Lemma 2. we have: I

IIY (n ) (,n p-Y' (,n)Y- (n I1Y.

o O ,99

DU

,9.
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(2n, E n -i) 12I'LYin- )y ~ * 112I
+2 y"EyT(n -i )4 J Evi(f -i ')-y'T (n -i )]4

)4 ~ 11/2 -j )]41/2

+2 1: Z- 1Y2(n -)1~[~ - j )-y - (n-j.]

1 
j = 0 j '= 0

nb b)11/21 
1

+27 1E y T,(n - )j jEY 2(n -j )-y 2 (n -j']

) (n )

V -Ej =0E

~~I In -ic )4 ~ Y nj ) ]4 j yif i)y"(-

+4 Y2n- )-2(n-
i =11 =0

+ ' 4 2 I k' 2( - IEY T ( n -- i ) 4  f y 2(n -- )- Y r ' ( n - i ) ]4

-lE 

[y 
[(n 

--j )-- 
)-y (n -- j ]

+2E T I(n- ) 4 1[4 y,- .' (n - .i) 4 [ n- )yT( ] /

f2 _ .IEj(n -: )4 iy (n - i )-y (, - i .

Now from Lemma 2 we know that Ey 2(n -j ) 4 <2K 4 <o and

U
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Ey 1(n -i )4=E I h (n ')x (n -i -n ')+ h 2(n ')v (n -i -n')

o h (n')x (n-i-n') +4 Eh ' i(n)x an y -n) i is')v (n - -
I . ° I I n = - ..O

+61E .( h ln-i (n -i -n') 12.= 2(n')v (n -i _n 1

3 41

+41E Eh (n')x (n-i -n') E (n )v (n-i-n ') J+E E.,h 2(n ')v (n -i-n ')

g$ # v. t f L ast~A *.- ..-... 'W

4< 16K4<oo"

Also. by the definition of yml(n-i) and y'2(n-j) it is seen that

Ey n-i4 Eln-)<16K4<oo and Ey-(n -<Ey(n-j) l<K,<ao. Note

that K 4 is independent of i . j, and can also be selected so that it is an upper bound for

all khEZc. Let us now examine the following quantity:

Ely 1(n-i )-- (n -i )]4

=E h j(n ')x (n -i-n ')+ 1: h 2(n ')v (n-i-n ')
in'; =M+1 In 'I-M +1

4<E h i(n ')x (n-'- -n')
in'! =M+1

+41E h l(n')x (n-i -n') h_ 2(n ')v (n--)

1n '1 +1 n' -[=m +1

+61E h l(n')x (n -i -n ') 1., h 2(n )v (n -i -n )'
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3i

+41E = l(nt')x (n -i -n) ,nv(ni-)

I n -n=m I in':=,, +1 1

4 .

II+E ~ h ')v-i - )

4 n1= 'fi +1 1n h"n'-+ +1 I n' =lm +1

+6 1; hW 12, 1 h 2( 1 2+1 1nJ2n)

n =m +1

S For the stable filters considered here. their unit pulse responses always have an

exponential form:

EDPL2. n <0. q, ><I

where the summations in k and I are finite. Thus there exists p satisfying ip4 I xp <1

and I ,p <1 for all OEbC such that Ihi(n )Cp"n .Hence

I q1

1/4 j14IIn
-<'(M4)1'4 16

I

U
Ui
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~2(M4 "4 C I p" =2C (M 4 )1/4LT-=3P m
nl=m+1 '

for all n , i. and for all OeD,. By the same reasoning, we have

for all n .i .and for allbe, AinC

Thus. we finally obtain the estimate

Y (n Y (n)r -- (n)Y- n )"112 11/

4 4 42 (K [y 1(n -i ')-y - (n~ _i ]41/

4)1 :' -i (n- 11/ 3
J Oj 1/4

+4 1(K4)1 (Y 2(nE -j )-y (n )4
alj =0j=o

'9~4 'j b j114

+4(K 4)1/ Ey 1Y(n -j )-y - (n -j )]4

i =lj =0 2

for all 1.

i1/2

I Y Y(n )y1(n)-Ym (n )y -(n)I21

lowl~U
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1/2

= .E[y l(n -i )vn)-y '(n-i )y(n )12+ "E[y 2 (n -)yl(n). (n-j )y (n )]2
1=1 =0

= EE[y 1(n -i )y I(n )--y (n -i )yT (n )+y i(n -i )yT (n )-y- (n-i )YT (n )12

1/2

+ TE[Y2 (n - j )yl(n )-Y2(n -j )YT (n )+y2(n -j)yT(n )-y"'(n -j )y-(n )2
kN~~~ j 01

S2EvEj (n -i )2[y I(n )-y- (n)] 2 +yT (n)[y 1(n -i )-YT (n -- )]2

+ J2E 2(n -j )2[y i(n )-yT (n )]2+y (n --j )-y ' (n -j 11

< iG2 (n})4 1/4 1/4

lie ~ ~ Te e Yin)y()] 11/+ f2 ( -j )4 yI (n )-yvT(n )]4 11

3 Then by the same reasoning as in 0), we immediately have the desired result.
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