
RD-A1?l M R REWRITE RULE MACHINE MODELS OF COMPUTATION FOR THE In
RENRITE RULE HRCHINE(U) SRI INTERNRTIONAL MENLO PARK CR
COMPUTER SCIENCE LAB J GOGUEN ET AL. JUL 86

UNCLASSIFIED N EN14-85-C-0417 F/G 9/2 NL

llllllllllllu

- j:2 .3.

1.6

1111L25 1111114

MICROCOPY RESOLUTION TEST CHART

NATIONAL GUREAU OF STANDADS -~ 16

R.V -Z
'V* VVVVV*p o~** .~*

A- ~ ~ %~*~P% P~ .%~

-~ V.V *~V . V. R.

@11 A REWRITE RULE MACHINE

U" Models of Computation for the Rewrite Rule Machine

Final Report
July 1086

0

By: Joseph Goguen, Program Manager

Claude Kirchner, International Fellow
Jos6 Meseguer, Senior Computer Scientist

SRI Project ECU 1243

Prepared for:

Office of Naval Research

EI z: Information Sciences Division
800 N. Quincy St.
Arlington, VA 22217-5000

E [Attn: Dr. Charles Holland, Code 1133

C
Contract No. N00014-85-4-0417 D T IC• :- .LECTEf

- SRI International
AU6 1 4 196U

, 333 Ravenswood Ave.

Menlo Park, CA 94025
* . .. (415) 326-6200 E

TWX: 9100-373-2046
Telex: 334486

333 Ravenswood Ave * Menlo Park CA 9,4025

ifltrinwflvion 415 326-6200 9 TWX 910-373-2046 e Telex 334-486

86 7 29 124

Models of Computation for The Rewrite Rule
Machine *

Joseph Goguen, Claude Kirchner, Joed Meseguer

SRI International, Computer Science Lab

July 9, 1986

Abstract: A new model of computation, conctrrent tree rewriting,
is proposed as a bridge between easily programmed Ultra High Level
Languages (UHLIs) featuring implicit concurrency, and an advanced
parallel architecture of unprecedented performance, the Rewrite Rule
Machine (RRM) architecture. At the highest level of abstraction, com-
putation is understood as rewriting a tree at multiple sites concurrently.
Less abstractly, such a (possibly very large) tree can be partitioned into
fragments that are assigned to different processors, with each proces-
sor doing concurrent rewriting on its own fragment of the tree; this
gives the second level, parttioned conewrtent rewriting. After introduc-
ing the basic concepts and properties of the model, we discuss tradeoffs
between tree and directed acyclic graph (dag) data representations; we
also study partitioned concurrent rewriting, including tree and rule parti-
tioning, and discuss evaluation strategies as a flexible control mechanism
for concurrent rewriting. The mathematical definitions are gathered in
an appendix.

1 Introduction
This report documents recent progress on models of computation for the Rewrite
Rule Machine (RRM) project at SRI International. The next paragraphs of the
introduction discuss the overall goals of the RRM project, software issues that our
model solves, and the model of computation. Section 2 studies the most abstract
level of concurrent rewriting, and Section 4 treats partitioned tree rewriting. Trade-
offs between the tree and directed acyclic graph representations are discussed in Sec- .n For
tion 3, and rewriting strategies in Section S. For an overview of the RRM project,
the reader is referred to [5). Results on simulation are reported in [13]. The archi-
tectural design, including designs for tree representation and rewriting inside each _D
processor, is documented in 1111 J.. C i t toi

*Supported by OMc. of Naval Researeh Ontact N00014&45O-0417.
t3a leave from CNRS (Cestre de Recherche em Imfomatique de Nancy) Fauce. B

Availati!it- Codes

4

1.1 Goals of the RRM Project

The purpose of the RRM project is to design and test a prototype general purpose,
high-speed, large-scale, parallel computer architecture that is especially suitable
for symbolic computation with ultra-high-level languages (UHLLs). One promis-
lug application area is the support of powerful program development environments,
including "intelligent" editors, compilers, libraries of reusable software, rapid proto-
typing tools, formal specification languages, program verifiers, debuggers, test case
generators, etc. Artificial Intelligence applications are also promising, including
robot planning, natural language processing, high level vision, and expert systems.
A third promising area is hardware simulation.
The RRM will consist of a large number of processors, each with custom VLSI to
process tree-structured data independently and very efficiently. The UHLLs con-
sidered will combine object-oriented, functional, and logic programming, plus other
powerful features, including parameterised programming, graphical programming,
sophisticated error handling, and powerful type systems. Compilers will convert
UHLL programs into sets of rewrite rules for execution on the RRM.

1.2 Software Issues

From the software point of view, tree processing means that manipulations can
easily be described in a way that is independent of the order of execution, and
that also provides ample opportunities for concurrent execution. The basic mode
of tree processing is called tree (or term') rewriting (or replacement or reduction),
and refers to the replacement of one subtree by another, whenever a tree-structured
template is matched. A rewrite rule consists of two such templates, one for the
subtree to be replaced, and another that determines what it is to be replaced by.

1.2 1 Programmabillty

We feel that programmability is one of the most critical issues blocking further
progress in parallel computation: it does little good (except for very homogeneous
problems) to provide lots of processors if the programmer has to explicitly assign
processes to processors. We feel that the best approach to combining hardware ef-
ficiency with programming ease and flexibility is to have a model of computation
that provides a simple bridge between a powerful UHLL and the hardware itself.
We argue that tree rewriting is such a bridge. As shown in this report, concurrency
is implicit in the rewrite rules themselves and can be directly exploited by the model
and the architecture without any explicit concurrency constructs in the program-
ming language. Work on programming language semantics shows how to implement
advanced languages with tree rewriting. We have taken OB32 [41 as our basis. This
is a very advanced functional UHLL based on tree rewriting with a uniquely power-
ful generic module facility and type system. This basis has been extended to include
logic programming [61 and object-oriented programming [71.

'Isn this presentation we will often se the word *tree as a synonym for term," except when
discussing data representations for terms, where we wi dlltigaish between tree and dag
representations.

2

1.3.3 Tree-Structured Data and Computation

There are many applications in which the data are naturally tree-structured (in the
sense that there is a natural hierarchy, with a 'root' node at the top and with one or
more branches from each node that is not a tip node), and for which tree rewriting
is a highly effcient and natural mode of execution. Some examples of naturally
occurring tree structures are:

" Menus, such as occur in interactive graphics,

" Expressions, such as (A + B)(A2 + 3) and, more generally, programs,

* Natural language syntax, and many other structures that occur in natural or
artificial languages, such as plans and explanations,

" Most generally, any abstract data type.

In fact, tree structure is a fully general form of data structuring, since any com-
putable function can be seen as a computation on tree-structured data that rewrites
subtrees into other subtrees. In particular, such processes as selecting a particular
item from a menu, evaluating an arithmetic expression, verifying a program, assign-
ing a meaning to a sentence, editing a program, constructing a plan, and compiling
or interpreting a program can all be conveniently described as tree rewriting pro-
cesses. The feasibility of writing nontrivial programs with rewrite rules has been
shown by experience with programming languages like OBJ, Hope, Miranda, and
FP, and by the work of Hoffman and O'Donnell. For example, several different
language interpreters have been written in OBJ, including one for OBJ.

1.3 Models of Computation

Previous tree rewriting studies have addressed the sequential case. In this report we
develop the basic concepts for concurrent tree rewriting, i.e., the rewriting of a tree
at multiple sites concurrently. This amounts to a new model of computation with
some properties analogous to sequential tree rewriting and with new properties of
its own. An issue of crucial importance for concurrent tree rewriting is whether to
represent data as trees or as directed acyclic graphs (dags). Important efficiency
and communication tradeoffs, and even more general ways of performing concurrent
rewriting appear, when considering the choice of trees vs. dags. Since the RRM
architecture provides a network of processors such that each can do parallel tree
rewriting and several processors can cooperate in rewriting a large tree, a natural,
more concrete, refinement of the model is to consider partitioned concurrent term
rewriting. Important issues for partitioned rewriting include: (i) finding appropriate
criteria for tree partitioning; (ii) efficiency issues related to the partitioning of the
rules, since each processor does not need, and cannot store, the entire set of rewrite
rules that make up a large program, and not all the rules are equally expensive;
(iii) communication issues when rewriting takes place at the border separating two
or more fragments o the tree. An additional problem that we address is rewriting
strategies. Strategies can be used as a flexible control mechanism that, while still
allowing concurrency, avoids useless computations that could take up considerable
resources.

3

2 Concurrent Tree Rewriting

This section provides an informal introduction to concurrent tree rewriting. Al-
though the style is informal and intuitive, the ideas introduced here can be made
mathematically precise. Indeed, formal definitions, although not essential to un-
derstand the main ideas, are nevertheless important in order to develop the theory
with mathematical rigor. Mathematical definitions for all the concepts introduced
in this section can be found in the Appendix.
In the concurrent tree rewriting model of computation, data are trees with nodes
labelled by function symbols and leaves labelled by constants, and programs are
sets of equations that are interpreted as left to right rewrite rules. The left- and
righthand sides of an equation are trees with nodes labelled by function symbols
and leaves labelled by constants or variables. A variable can be instantiated by any
tree of the type given to the variable; such an instantiation of a set of variables is
called a substitution or match.
Computation is tree rewriting (or reduction) by matching the lefthand side of a
rewrite rule to a subtree of the tree to be evaluated and then replacing that subtree
by a corresponding instance of the righthand side of the rule. For example, by
instantiating the variable N to the constant 6, the lefthand side of the rewrite rule

(*) fibo() -> fibo(N - 1) + fibo(N - 2)

(where fibo is the function symbol for Fibonacci numbers) can be matched to
f ibo(S) in the term (fibo(e) + fibo(5)) * 0 which can be also represented by
the tree

fibo fib.I I ,
6 5

The subterm fibo(s) where the match has occurred is called a redez. The redex
subterm can then be replaced by the corresponding instance of the righthand side,
so that the original term is rewritten to the term (Cf ibo(6-1) * fibo(6-2)) *
fibo(S)) + 0. Rewriting by applying one rule at ony one location at a time is
called sequential tree rewriting. If the rewrite rule (*) had been applied to f ibo(S)
instead, one step of sequential rewriting would have yielded (f ibo(6) + (f ibo(S-
1) + fibo(5-2))) + 0.
Notice that the rule (*) could instead have been applied concurrently to both
f ibo () and f ibo(5), yielding

((lbo(-1) + fibo(6-2)) + (f bo(5-1) * flbo(5-2))) + 0.

We call this concurrent tree rewriting. In concurent tree rewriting several rules can
simultaneously be applied and several matches for each one of those rules can be
rewritten in a single step of concurrent computation. For example, by applying the
rule (*) concurrently in a first step, and then applying both the rule N + 0 -> N
and a rule for subtraction in a second concurrent step, we can transform the original
tree into the tree

,'4

fib, fib. fib, fib.I I I I
5 4 4 3

in two steps of concurrent rewriting. This process continues until there are no
more matches, then the expression is said to be reduced or in normal form. This
simple example shows that tree rewriting is by its very nature concurrent. We
emphasize that the concurrency is implicit in the rewrite rules themselves, and no
espicit concurrencV conetructs are reguired in the language. We see this as a major
advantage.
A set of rules is called terfniatisg if all possible ways of concurrently rewriting a
term do eventually stop in a normal form (the normal form reached in each case
may in general be different). Some equations are nonterminating and should not be
used as rewrite rules; for instance, a commutativity law X 4 Y - Y * X would lead
to the innite chain of rewritings

fibo(G) + fibo(5) -, fibo(5) + fibo(6) -> fibo(G) * fibo(5) -> ...

For functional computations, one expects the final result not to depend on the
particular chain of rewritings that led to it, i.e., one expects all normal forms to be
equal. This property is guaranteed to hold if the rules satisfy the Church-Rosaer
property illustrated by the diagram below

to

\ /

t 3

where the starred arrows denote rewriting sequences of 0, 1, or more steps of (possi-
bly concurrent) rewriting. The Church-Roser property says that any two rewriting
sequences starting at the same term (solid arrows) can always be reconciled by fur-
ther rewriting (dotted arrows). For nondeterministic computations, however, it is
sensible to allow reaching different final results, and the Church-Roser property
should not be expected to hold.
If a lefthand (resp. righthand) side of a rule has only one instance of each of its
variables, the rule is called left- (reap. right.) linear. The rule (*) above is an
example of a left-linear rule. Left-linear rules are easier to match than non-left-
linear ones, since there is no need to check that different occurrences of a variable
are instantiated to the same subterm for left-linear rules.
When doing concurrent rewriting, care has to be taken of the case when two lefthand
sides match in two redexes so that the two lefthand sides partially overlap each other.

5

9

P

AA A

Figure 1: Overlapping and nonoverlapping sets of redexes

Rules for which this happens are called overlapping, or .el-overlapping if overlapping
occurs with the same rule. For instance, the associativity rule

U * Y) 4 z -) X* (T Z)

overlaps with itself, so that it has the entire expression ((6 + 7) + 9) + 7 and the
subterm (5 + 7) + 9 as redexes. This poses a problem for the well-deinedness of
concurrent rewriting because there is a clash of redezes due to overlapping, this is
illustrated in Figure 1. However, later in this report we shall see that such clashes
can be tolerated if a dag representation is chosen for terms.

3 Trees versus Dags

An important question is how to represent trees at the hardware level. An impor-
tant choice is whether or not to use dags (i.e., directed acyclic graphs), which permit
sharing of identitical subtrees. We have considered the advantages and disadvan-
tages of dag versus strict tree structure for abstract concurrent tree rewriting and
for partitioned tree rewriting2 .
The problem of choosing between a tree representation and a dag representation for
terms is not a new one. Several studies on dag rewriting already exist, including
work such as (1 and [3). But, to the best of our knowledge, none of the previous
studies deals with concurrent rewriting or has architectural concerns in mind.

3.1 Trees and Dap

We have already discussed and given examples of tree representations. The dag
representation generalizes this. Notice that a tree is a particular kind of directed
acyclic graph, or dag, having a unique entering node (i.e. a unique node which
is not the target of any edge) and such that each other node is in the target of
exactly one edge. Each dag with nodes labelled by function symbols and having

*Te tree vs. dag questioa b very importam at dffMet kb o modediag, with differemt tradeoft
appeahg at each leveL Simulatioa rmdul wMi be ued to dedde at what kwb trem or dap

boam be cbom.

6

an entering node from which all other nodes are reachable can be trandormed into
a (labelled) tree by successively splitting the nodes that are the targets of several
arrows. We then view all the dags that can be transformed into the same tree as
different representations of the same term. For instance, the term

f(f(f(z, X), f(, 2)), f(f(, Z), f(i, z)))

has, among other, the following two representations:

• \ • X C)•z 3 x x x a z z K-

8.2 Comparisoo of the Two Representatlona

3.2.1 Space Occupation

Obviously the dag representation is more space efficient than the tree representation,
which had more nodes. There is always a dag representation of maximum space
efciency, i.e., having a minimum number of nodes, called a fully shared dag
representation. The dag on the right in the example in section 3.1 is fully shared.
For that example, the space (number of nodes) occupied by the tree was 21 - I as
opposed to 4 for the dag representation. Thus, the space of the tree representation
could be in an exponential relation to the space of the dag representation. In general,
however, a term will not be sufficiently regular to allow an exponential gain in space
by full sharing. Statistics on the space efficiency of the dag representation for a
collection of examples are given in [131.

3.2.2 Criteria Related to Matching

In order to detect a match, one may hae to do either of the following-

test for equality of subtenmn. For example, to match the non-left-linear rule z+
x -. z equality of the two subterms matching the variable x needs to be checked
for the tree representation. In a fully shared dag representation checking for
such an equality is trivial. Another example is given later (see Figure 3).

handle simultaneous read accesses to the sam node. For example, match-
ing the rule f(h(z), h(g(p))) -" q(z, v) to the dag

()

will involve a simultaneous read access to the node labelled h. Such a concur-
rent read must be supported by the hardware in all cases for dag representa-
tions, even for nonoverlapping rules (note that the rule in the example is not
self-overlapping). For the tree representation, simultaneous read access to a
node can happen only when matching overlapping rules.

7

* ,,'.,. . '. i;.'."./.7rY.L?./*;'.a.''J'.. r.J - -r t- * - -

The first point is clearly an advantage of the dag representation and especially of
the fully shared dag representation, where the test of equality is equivalent to the
test of identity. But since rewriting of fully shared dags cannot be implemented
efficiently, the gain will be only partial. Nevertheless, a successful test for equality
can, in the case of a dag representation, be used to increase the amount of sharing,
thus freeing storage resources.
The second point shows a partial advantage of the tree representation since, even

if this kind of simultaneous read access may appear for trees in the case of self-

overlapping rules, it will be much less frequent than for dasp.

3.2.3 Criteria Related to Tree Replacement

We now consider the problem from the point of view of tree replacement. There are

again several aspects:

number of copies needed. Many rules, such as the distributive rule

z (V + Z) -. (z * V) + (z * z)

are not right-linear. For dags, duplication of a variable by rewriting involves
only modification of a pointer, but for trees one has to copy the duplicated
subtrees, which can be very large.

direct modification of node labels. Such a modification is correct in the case
of trees but not in the case of dags (except for the node corresponding to the
top of the redex). For instance, rewriting the tree representation

a b b

by means of the rewrite rule

/S -) .S,

b /k b
a b a b

can be accomplished just by modifying the node at occurrence 2.1, to obtain

a bk b

whereas for the dag representation

a local copy is required. The result is:

8

f

f..o I :i f

S I%
f f " *af "/ . . *, , GARBAGEf

9 4

ovrlppn of rues By ipe ntin a grp ertngwihmdfisolh

~' \ REWITING ' Xe ,I COLLECTION

Figure 2: Concurrent dog rewriting with the asociativity rule.

overlapping of rule.. By implementing a graph rewriting which modifies only the

node at the top of the redex, one can rewrite concurrently without worrying
about self-overlapping rules. A natural example using the associativity rule
((zfy)fz) - (zf(vfz)) is described in Figure 2. Notice that this kind of
rewriting with self-overlapping rules makes no sense for terms or trees.

3.2.4 Other Considerations

Other issues are also affected by choice of representation:

1. Freeing unreferenced items will be simpler for the tree representation, since
something like reference counts will be needed for the dag representation.

2. Simultaneous attempts to read a value needed for finding a match or for testing
equality of subterms, may induce delays in the cue of the dag representation.
However, that problem may be solved at the hardware level.

Figure 3 gives examples that illustrate the different criteria of comparison that we
have discussed between tree and dag representations of a term.

9

'9 " S - - -,: ; " ';',t .t,. € ,,-,?-:,.,',,?,.-. ,,. ,, , ,.-,,? .,v,--".X,'4,,'r.;, - ;" , ,.' ,. ,. ,-. r, ",.

Tree Dag

Depending on how the reduction
of dags is implemented, the nor-
mal form (b) is reached in one
(resp. two) step(s) of concur-
rent rewriting. The second step

The normal form b is would be needed if simultaneous
reached in one step read access to a node is sequen-

g z of concurrent rewrit. tialised. In this case we obtain
ing. first

':p

The normal and then b.
The normal form

aa b C

is reached by one step
of concurrent rewrit- in eached by one step of concur-
ing at occurrences I rent rewriting at occurrence 2.1.
and 2.1.
One needs to test eq-
uality of the subtrees

">y at occurrences l and The sme result is obtained with
z 2. 1. TL, result b is the same rewriting but the equal-

x y obtained in one step ity test is trivial
of concurrent rewrit-
ing at occurrence t.

I

z b/%a'b fga
zb g bb a

cla ocurne21
By only modifying the The previous trick can not be
cell atoccurence2.1, used and local copying is re-
one obtains quired. The result is

b h b I
/6 £""~

a b
_ _ _ _ _ _ _ _ _ _ _ _ __ 9 b"

Figure 3: Impact of the term representation on rewriting

.''.., i' , .'g i ia k . :'" .r. ';'",. !- -,',4 i' ,,' ".,.--.'_.-.. " '.'.'.' '-:,', -;.-,V.".>,,'

3.2.5 Summary

The following table summarizes the points we have discussed.

Tree Dag
* Allows (possibly maximal) shar-
ing and thus is more space-
efficient.

•There is no shared struct- efcet
ure and thus no overhead due e Testing equality of subtrees is

ure nd tus n oveheaddue generally efficient and is trivial

Advantages to multiple read access to a

node. in the case of maximal sharing.
* No copying is needed when
subtrees ame duplicated.
* There is no need to avoid over-
lapping in concurrent rewriting.

* Testing equality of subtrees

is expensive.
* Copying of duplicated sub- e Rewriting may require local

Drawbacks trees is needed, which can be duplication in the dag.
expensive for large trees.
* Overlapping redexes require
special treatment.

4 Partitioned Term Rewriting

In order to be able to execute large programs on the RRM, both the terms to be
reduced and the set of rules constituting the program have to be partitioned:

* Terms should be partitioned among different processors because:

- The size of each processor is limited,
- Each processor is working in a SIMD mode and in general the terms are

not homogeneous (in the sense that the function symbols appearing in
different parts of the tree may be quite different) so that the potential
for parallelism cannot be exploited if the tree is not partitioned.

* The set of rules is partitioned because:

- The size of each processor's rule memory is limited,

- For efficiency purposes it is appropriate:
* To increase the number of successful matches by flow analysis, which

allows localizing the set of rules that can possibly apply on a given
term,

* To isolate as much as possible the rules involving node or processor
communication such as:

• Non-left-linear rules which require testing for equality of sub-
terms,

• Overlapping rules, which require mutual exclusion of matching
in a given neighborhood.

All these points are developed and discussed below.

11

- ~ *l~>df' .- *&* .~* ~ .'~r:--'.w

4.1 Partitloning of Rules

4.1.1 Stratfication by Rule Comnplvdty

The complexity that we have in mind regards difficulty in matching a rule. The
concurrent matching process is simplest for sets of left-linear nonoverlapping rules;
it becomes more complex with the presence of non-left-linear or self-overlapping
rules. The worst case is a rule that is not left-linear and, in addition, overlaps with
itself.
A left-linear rule is less complex than a nonlinear one. For instance, rule (0) in the
rational numbers example (Figure 4) is the only left-linear rule. To decide whether
rule (0) matches the term

(Q) (3 / (2 / (3 * 7))) / (3 / (2 / (5 * 7)))

at the top, it is not enough to see that the two subterms below the top __ symbol
are nonzero rationals; one has to check for equality of those two subterms, namely 3
/ (2 / (3 * 7)) and 3 / (2 / (5 * 7)). Left-linear rules we simpler because
matching only requires local inspection of the tree in a region the size of the rule's
lefthand side. For instance, rule (1) matches at the top by instantiating I to 3 /
(2 / (3 * 7)) , R' to 3, and go to 2 / (* 7); no further inspection of those
three subterms is required.
Self-overlapping rules are harder to match in parallel than rules that do not overlap
with themselves. This is because two matches of the same rule can overlap with each
other imposing an additional communication overhead to arbitrate such conflicts.
For instance, rule (1) below overlaps with itself and also matches the left subterm of
the term () above by instantiating I to 3 , 1" to 2, and So to 3 * 7. Rule (1) also
matches the right subterm of (t) in a completely similar way. Thus, attempting to
match rule (1) in parallel to the term (t) will require communication to resolve the
contention between those three overlapping matches. An even worse case appears
when the rule is both non-left-linear and self-overlapping; then, both communication
costs (for deciding equality of subterms and for resolving contention of overlapping
matches) have to be paid. For instance, the rule

I * ((1 I) * I) = I

is an example of a non-left-linear, self-overlapping rule.
Given a set of rules, we may want to stratify the set according to rule complexity
and then partition each stratum into maximal sets of nonoverlapping rules whenever
possible. In this way, we can obtain a partition of the set of rules into subsets that is
optimal from the efficiency point of view. More efficient rules could be tried first and
less efficient rules could be isolated and adequately postponed. Thus, sets of rules
can be organized from more to less efficient according to the following categories:

1. Sets of left-linear, nonoverlapping rules

2. Sets of non-left-linear, nonoverlapping rules

3. Sets of left-linear self-overlapping rules

4. Sets of non-left-linear self-overlapping rules.

12

obj RAT is
protecting INT
sorts Izat Rat
subsorts Int < Rat
subsorts Nzlnt < Xz1at < Rat
op . : h a Izlat -> Rat
op, Ma.1 ,t zat -> Nz3 t
op- :Rat -> Rat.
op -_ :Nat -> .I1st
op . R_ :at Rat -R at [aseec corns
op _ R : at Rat -R at [Easoc con].
op _*_ : NlRat 1M1at -) lIzat Cassoc cor]
Tars 1 8 : tat .
war@ I ' Be: NzRtat.

eq : / I. -- 0
eq : / (R/ ') -(10 8") -- 1
eq : (Re) " I'R/ (R' 0 B) -- 2
coq : JO I1 0 quot(J.gc4(J'.V')) / qsotCI.gcdCJ.I*))

it gcdCJ.') a/= I . -- 3
eq : A/ 11. -- 4
eq : 0/i" 0. -- 6
sq: a/(- 1) - (-R)/" A.-
eq : - (I/I') - (-)/I'. -- 7
eq : At (8 Reit) M R(e* t) +8) / R' --a

q : 1 (8 A/')-()1' . -)
jbo

Figure 4: The rational numbers example

13

... z , . . _ . , .1... .d Z , . ,% . ' , i. .. r .,

In the rational numbers example (Figure 4), the only non-left-linear rule is rule (0).
The overlap between rules is summarised in the table below:

Rule Overlaps with
0 1.9
1 0-9
2 0-9
3 0-2,4,6-9
4 0.3, 5, 7-9
5 1-2, 4, 6-9
6 0.3, 5, 7.9
7-9 0-6

We can then form the following stratified partition of the set of rules 0-9:

1. Non-overlapping and left-linear- (7,8,9), (3,5), (6,4)

2. Non-left-linear and nonoverlapping: (0)

3. Self-overlapping and left-linear: (1,2)

4.1.2 Rule Restriction by Flow Analysis
This is a method to reduce the amount of rules to be tried for concurrent match-

ing. It can be very useful as a way of maximizing the number of successful matches
when reducing a given tree. It can also help using the rule storage resources asso-
ciated with each processor in an elcient way, minimizing rule communication cost.
Additionally, it may even provide a useful heuristic for tree partitioning, since by
clustering of the flow graph, occurrence of critical function symbols that mark tran-
sitions between function clusters could be identified. The method should be seen
as complementary to rule stratification by complexity; combining the two methods
together one obtains a stratification of rules by complexity such that only those
rules that could potentially apply to a given problem are represented.
The key idea is to group together rules having the same function symbol at the
top of their lefthand side, and to relate such sets of rules by flow analysis of their
corresponding function symbols. Here are two simple notions for flow analysis in
this context:

Definition I A function abl /is aid to weakly flow into a function .gmbolr
if there i a rule with f at the top of its lejfAand side such that g occure omewhere
in ift righthand side; if, in addition, g doe. not occur in the lefthand aide of the rule,
th fni. said to strongly flow into g, i.e., strong flow isa subrelation of weak flow.

The diagram in Figure 5 gives the flow graph for the equations of the rational
numbers example. Notice that ged and quot are integer functions; i.e., the flow
graph cuts across different OBJ modules.
We can use such a flow graph at compile time to determine what rules will be needed
to reduce a given tree. For instance, by flow analysis of the rules for the rational
numbers, a compiler could determine that only the rules (0,1,2,3,4,9) and the rules
for gcd and quot will be needed to reduce the term

14

-(Dr
Figure 5: Flow graph for the equations of the rational numbers example

(3 I 6) / (7 0 (16 / 12)).

Thus, to reduce such a term we can restrict the original partition by rule complexity
for the rational numbers example to obtain a smaller partition:

1. Nonoverlapping and left-linear. (3), (4), (9)

2. Non-left-linear and nonoverlapping: (0)

3. Self-overlapping and left-linear. (1,2)

Restricting the set of rules by meas of flow analysis, as in the above example, has
two obvious advantages:

" The rate of successful matches will increase, since r-les that will always fail
are excluded,

* The storage of rules in a processor is facilitated, since fewer rules have to be
stored.

4.2 Te. Partition

Each of the processors of the RRM has a limited capacity, so that terms exceeding
a certain size cannot be stored in a single processor. This means that, when trees
get too big, they have to be partitioned so that some upper fragment of the tree
remains in the original processor whereas subtrees below that fragment are shipped
to other available processors. Besides being a need imposed by a processor's storage
capacity, partitioning of a tree may in fact be advantageous to increase the amount
of concurrent rewriting. This is due to the possibly aon homogeneous structure of a
large tree, so that portions of the tree that are distant from each other may involve
very different function symbols. Assuming that each processor will do concurrent
rewriting in a SIMD mode, lack of homogeneity would limit parallelism, since match
attempts for a rule can succeed only in some fragment of the tree. If trees are
partitioned into relatively homogeneous parts, the amount of concurrent rewriting

15

* .-' (*'~C:~,.--,d C0, P'O...,.-.,." . , '

- - - - ., W, N- -. 7, %F X.V - .N 3 W N 6 _i-VV

can incree, since now all fragments of the tree can be active doing concurrent
rewriting with the rules appropriate for each fragment.
We shall address two issues that arise in tree partitioning. The first regards criteria
that should be used to partition a tree, i.e., when and where should a tree be
partitioned; the second has to do with communication and reconfiguration problems
when term rewriting takes place across a partition boundary, thus involving several
processors.

4.2.1 Criteria for Tre Partitioning

Trees should not be partitioned at random; rather, the criteria used should be to
try to maximize parallelism and to minimize communication between the fragments
of the partition (i.e., interprocessor communication, since each fragment will be
stored inside a different processor). Regading tree size, there should be a certain
size threshold, related to the maximal storage capacity of a processor, so that tree
partitioning begins after that threshold has been reached, if other considerations
do not force it before then. In additon to size, the following factors should also be
taken into account in a tree partitioning strategy:

" Ezpected rate of tree grmth a~sociated to a subterm. This can be guessed by
inspection of both the subterm and the equations associated to its function
symbols (more generally, equations of other function symbols closely related in
the flow analysis graph to those in the term) (cf. Section 4.1.2). Information
on this matter could also be the subject of annotations given by the pro-
grammer as for strategies (cf. Section 5). When a subterm with high growth
rate appears in the tree, such a subterm could be sent to another processor,
especially if the original tree already exceeds a certain size.

" Flow Anhlf.i. Information The function symbol flow graph introduced in Sec-
tion 4.1.2 may be used to detect transitions to a different *homogeneous com-
ponent" of the tree, for which rules different than the ones used so far will
apply. Function symbols that show strong flow relations with each other could
be grouped together into clusters, with each cluster corresponding to a differ- ,
ent 'homogeneous component" of the tree. If a subterm marks the transition
to a different homogeneous component, such a subterm, together with the
rules for the new component, could be sent to a new processor. However, such

transitions may be hard to detect if the clustering of function symbols does
not provide sufficient separation between homogeneous components, and more
experience with the flow analysis technique described in Section 4.1.2 will be
needed to assess its potential for tree partitioning.

As with other issues in this report, design of a tree partitioning strategy that takes
advantage of the above factors should be based on experimental results with an
ample collection of examples. The approach to simulation described in [131 should be
extended to partitioned tree rewriting in order to provide the necessary experimental
basis.

16

4.2.2 T'm Rewriting Across Wagnments of a Partition

Trees should be partitioned so as to minimise interprocessor communication. How-
ever, interprocessor communication may be unavoidable, due to matching attempts
that need to inspect a portion of the tree in a boundary between two or more
fragments stored in different processors. Blocking such an attempt could result in
failure to attain the final result of a computation. Two related questions arise in
this context:

1. How should matching attempts across a boundary between tree fragments be
handled?

2. How should the tree be reconfigured after a successful match across a bound-
ary?

Regarding the first question, two alternatives that can be considered are: (i) to ship
a fragment of the tree up, to the parent processor requesting the match, and (ii)
to ask the child processor to do part of the match. The second alternative seems
preferable, since match attempts fail most of the time and may require unbounded
inspection of the child subtree for non-left-linear rules. If the first alternative is
chosen, unnecessary communication cost will be incurred in many cases when a
match did not exist. Also, shipping a subtree up will generally increase the number
of links between processors, since a link to the top of the child subterm would, in
the first alternative, have to be replaced by links to all the children trees of the tree
been shipped up, thus increasing the mount of interprocessor communication.
The configuration question can be considered assuming a tree representation or a
dag representation. In the following we will discuss an example for the dag case;
the tree case is similar, but the reader should be aware of the limitations of the tree
representation discussed in Section 3.
The example is illustrated in Figure 6. The rule f(g(z), f) -. k(r(z, z), h(y)) will
match across trees 2-4. Since tree 3 originally had two links from two parent trees,
the function symbol g has to be recopied after rewriting so that the link with tree
1 remains consistent. How should the righthand side be partitioned between trees
2 and 4? One option is to insert it exclusively within tree 2; this, however, would
unnecessarily increase by one the number of links between trees. A better solution
that would, on the average, tend to balance the amount of tree growth after a
rewriting on a boundary would be to partition the righthand side bringing down as
much of it as possible. This leads to the solution in Figure 6, and (in this case)
avoids increasing the number of links. In general, the amount of space available in
each processor may dictate a different strategy for reconfiguring the tree by insertion
of the righthand side.

5 Strategies

For most computations, the order of evaluation does not affect the final result. This
informal fact has a formal counterpart in the Church-Roeser property of a set of
rewriter rules guaranteeing that different evaluations of the same tree can always be
reconciled by further evaluation. The Church-Rosser property holds for concurrent
rewriting if and only if it holds for sequential rewriting, and indeed this property,

17

A f A. krk

Figure 6: Example of reconfiguration of a tree after rewriting

since it allows rewritings to be done in any order, ensures the fully concurrent nature
of tree rewriting. However, there are reasons that may make advisable imposing
certain control mechanisms, called evaluation strategies, on the order of evaluation,
although evaluation itself remains concurrent. These reasons include:

" Space efficiency, since certain rewritings may perform unnecessary computa-
tions that highly increase the size of the tree.

" Termination of computations that in general may not necessarily terminate
but where the order of evaluation matters for finding a final result when there
is one.

" Concurrency control purposes, when term rewriting is used as a method to
implement communication among processes.

The control mechanism that we have been exploring is that of a tree rewriting
strategy. The notion of E-sttegi (B is for evulution) was introduced in sequential
OBJ2 14] as a powerful and flexible way to control the order of evaluation, so as
to improve efficiency of execution. For example, given a three- argument operator
f with strategy [1 2 0 31 and an expression f(tI,t2,ts) to be reduced, the first
argument t, (indicated by the number 1) must be reduced first, say to e, before
reducing the second argument t2 to t; (indicated by the number 2); then we must
rewrite at the top (indicated by the number 0) of f(1, e.,ts) before finally going on
to reduce t3. This kind of sequential evaluation is not appropriate for concurrent
rewriting; fortunately, however, the interpretation of 3-strategies can be generalized
from the sequential case to the concurrent case. For the example given above, we
would begin by evaluating all three major subtrees of I(t,t2, ts) concurrently, until
its first and second subtrees are reduced; then we would apply rules to the top of
the resulting tree before going on to reduce the third argument further (if needed).
More generally concurrent 3-strategies can be provided in the three following ways,
listed in increasing order of amount of control being imposed on the computation:

Concurrency with priority. It is the strategy described previously: concurrency
is not afected until the arguments having priority are normalized, and then

18

one action (in the previous example the reduction on top) is given the highest
priority.

Concurrency with rendes-vous. Reduction is executed concurrently but some
subterms must all be in normal form before reduction at the top is performed.
For example if the operator f has the strategy 112310) then no reduction on
top of the tree can be done before ta and t2 and ts are all normalized.

Exclusivity. That is the strategy which assures the exclusivity of reduction at one
occurrence. For instance, if the operator f has the strategy [:1: :3:0] it means
that the first argument tj must be first reduced before reductions in the others
subtrees t2, ts and on top are permitted. Then t2 itself is exclusively reduced,
next t3, and at last the resulting tree f(e, t, 3) itself is reduced.

We have found that such concurrent rewriting strategies can yield significant savings
of space without reducing the amount of useful concurrency.
More generally, it appears that OBJ with B-strategies can be used to specify quite
general concurrent processes, for example, protocols. If so, this should be an impor-
tant advance in specification technology.

A Appendix: Concurrent rewriting

A.1 Definitions

Our definitions and notations are consistent with those of G.Huet and D.Oppen 191.
Given a set X of variables and a graded set F of function symbols, the free F-algebra
over X is denoted T(F,X) and its elements are called terms. Similarly many-sorted
terms can be defined as in 1121. Terms can be viewed as functions from the free
monoid on the natural numbers denoted NO to FUX. The domain of the term t
considered as a function is denoted 0(t) and is called the set of occurrences of t.
For example, t(e) is the top symbol of the term t. Var(t) denotes the set of variables
of t, tim the subterm of t at occurrence m (for m e 0(t)), and tl.-t'l the term
obtained by replacing tim by e in t. A term is Unear i for any x : Var(t), z has
only one occurrence in t. The set of nonvariable occurrence in a term is denoted
0(t).
Substitutions a are endomorphisms of T(F,X) with a finite domain D(o). A sub-
stitution a is denoted by (:x i as), ... , (zn - t,). We denote by apw the restriction
of the substitution a to the subset W of X. If E is a set of substitutions then
E,- {=wpuI E E) is the set of elements of E restricted to W.
An axiom is a pair {t, e) of terms denoted t = e. A rewrite rule is a pair (t, t')
of terms, denoted t --. t, such that Var(t') is a subset of Var(t). A set of rewrite
rules is called a Term Rewriting System (TRS). A rewrite rule t -. t is called
left-lUnear (resp. right-Enear) if t (resp. e) is a linear term i.e. no variable occurs
more than once in t (resp. e). For example, if z is a variable, e is a constant, and.
is a binary operator, then the rule z * e -, is left-linear.
If R is a TRS, the rewriting relation -., is defined as follows: t -R ' iff there
exists an occurrence n in 0(t), a rule I --o r in R and a substitution a such that
tim = a(l) and ' = t1 ._,(,)], tim is called a redex in t at occurrence m under the
rewrite rule I - r. For t fixed, a redex may be represented by the 3-tuple (m, 1, r).

19

For example, for the previous rule z * e -. z, (I * 2) * e is a redex in the term
2 * (2 * ((I * 2) * e)) at occurrence 2.2. We write t "-. , if we want to make
explicit the occurrence, the substitution, and the rule involved in the rewriting.
A nonvariable term t overlaps a term ' at occurrence m C 0(t') if there exists
a substitution 0 such that 0(t) = *(tlm). For example the term z * e overlaps at
occurrence I the term (2 * v) + 3. A set R of rules is called nonoverlapping iff
for any pair of rules I --* r, P -. r' in R I and I' do not overlap each other at
any (nonvariable) occurrence. Otherwise the set is said to be overlapping. A rule
I -. r is called self-overlapping iff I overlaps itself at an occurrence different from
e; associativity is a typical example of a self-overlapping rule.
Given a set A of equations, the A-equality relation (denoted =A) is the smallest
congruence relation closed under instantiation and generated by the set of axioms
A. HA denotes one step of axiom application.
We denote by -5A the subsumption preorder on T(F,X) defined by: t -<, iff t A

or(t) for a substitution e' called a match from t to e. Composition of substitutions
aand p is denoted by .,. Given a subset V of X, we define u 5A 0' [V] iff
e =A ".o [V] for a substitution 0.
Let t be a term and R a term rewriting system. Let R(t) = {(ui,,r)} the set of
all the redexes in t under R; i.e.

(ta,, l , r) 6 R(t) * i -. ri C R and 3a a.t. t. , = ar(I,)

Definition 2 A subset W of R(t) is aid to be nonoverlapping (or non-conflIcting
or consistent) if for any redeze. (u, 1, r) and (u',,r') in W,

* Ulu' (i.e. a and u' are incomparable) or

" u < t' and 3Y : Ov.() #.t. u.Y _ t' where Ov.() is the set of variable
oceurrencee in I:

Ov.(L) = (.%E 0(1) and 1(A) E X}

This definition is illustrated by Figure I in the main text.
Let A(t) be the set of all nonoverlapping subsets of redexes in t.

Definition S The relation --#e of concurrent rewriting is then defined by

W = {(ua, l,ri)l1 5 i _ n) 6 &(t)
and

and •%

Note that the last condition specifies the result of applying the set of redexes in W
with a bottom-up sequential strategy.
In the definition above it is possible to define the result V using the notion of reidual
due to Church as defined in [81 or [2].

Definition 4 Let t a term, R a TRS, and wi = (u',,,ri),i - 1,2 two redezee of R
in t. Then the residual wj\w2 of w, by w2 it the set of red.es defined by:

20

1. If w, doe. not cower w2 (i.e. u1lIu or ul < u2 and the redeze are nonover-
lapping) then fl\wa = {wd};

9. If 3v E Ov.,(12) such that u, = u2.u.t' then
W,\2 = ((u,l, r,)Iu = u2.u'.U' With U' E Ov.(r2, 410);

. Otherwise w,\12 = .

Thi notion it now extended to W, a set of redese. of R in t. Let w = (u,l,r) be ani
redes of R in t. The residual of W breducing the redex wis

W\w= U w'\w.

This allows defining the notion of concurrent reduction by

t-w --OR e for (u,I, r) E W
t --R1 e andt A to

Definition S The relation of maximal concurrent rewriting i.t' i:

t e't* and
W maximal iu(A(t),_)

The relation of maximally concurrent rewriting .Ri-. it:

RNME t -4'o e
t 4 to' and

IWI maximal in A(t) for <

A.2 Properties of Concurrent Rewriting

Definition 6 Let I be a relaion on the set of terms, and be reapectiwly
it# reflexive transitive and symmetri reflexive transitive closures.
A is terminating or noetherlan iff there i no sequence of the form

to .2 tI ... to, A it+I ...

Ait Church-Rosser iff

Yt 1,t 2 ; t91 t 2 =s. 3esuchthatt . tand t 2 . t.

Proposition I

* If -. R it terninating so is concurrent rewriting, and in particular ,

* If -.OR is Church Rosser, then so s concurrent rewriting, and thus..

It is not easy to relax the above termination hypothesis as shown by the following,

21

N

Definition 7 A TRS i weak terminating if erery tern ha. a normal form.

Example of weak terminating system (Barendregt, Huet): Let R be given by

F(z, z)-- A
G(s) -F(x, G(z))
C -. G(O)

" The first rule is non-left-linear.

" Note that C has the two normal forms A and G(A) (among others), and that
R is locally confuent [101 (but not Church-Rosier).

" The concurrent relation R associated to R is not terminating. For example

F(C, G(C)) ... 11t F(G(c), F(G(c), (G(c))))_,..

References

[I] M. Bauderon and B. Courceile. Graph ezpreseon end grph rewriting. Tech-
nical Report, UniversitO de Bordesux 1, 1985.

[21 G. Boudol. Computational semantics of term rewriting systems. In M. Nivat
and J. Reynolds, editors, Appliation of Algebra to Language Definition and
Compilation, Prentice Hall, 1985.

[31 C. Dwork, P. Kanellakis, and L. Stockmeyer. Parallel Algorihm. for Term
Matching. Technical Report, MIT, 1986.

[41 K. Futatsugi, J.A. Goguen, J.P. Jouannaud, and J. Meseguer. Principles of
OBJ2. In Proceeng of lth ACM Symposium on Principles of Programming
Languages Conference, 1985.

151 J.A. Goguen, C. Kirchner, S. Leinwand, J. Meseguer, and T. Winkler. Progress
Report on th Rewrite Rule Mchine. Technical Report, SRI International,
1986.

[61 J.A. Goguen and J. Meseguer. EQLOG: equality, types and generic modules
for logic programming. In D. DeGroot and G. Lindstrom, editors, Logic Pro-
gramming. Functions, Relation, and ,4quton., Prentice Hall, 1986.

17) J.A. Goguen and J. Meseguer. Extensions and foundations of object-oriented
programming. In SIGPLAN Notice., 1986.

[8) G. Huet and J.J. Levy. Computations in Nos-ambiguou Linear Term Rewriting
Systems. Technical Report, INRIA Labora, 1979.

[9] G. Huet and D. Oppen. Equations and rewrite rules: a survey. In R. Book,
editor, Formal Language Theory: Per pectives end Open Problems, Academic
Press, 1980.

22f

............................

(101 J.P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set
of equations. SLAM Journal of Computing, to appear. Preliminary version in
Proceedings 11th ACM Symposium on Principles of Programming Languages,
Salt Lake City, 1984.

[111 S. Leinwand and J.A. Goguen. Architectural Options and Teatbed Faciitie. for
the Rewrite Rule Machine. Technical Report, SRI International, 1986.

[121 J. Meseguer and J.A. Goguen. Initiality, induction and computability. In M.
Nivat and J. Reynolds, editors, Algebraic Methods in Semantics, Cambridge
University Press, 1985.

113) T. Winkler, S. Leinwand, and J.A. Goguen. Simutlation of Concurrent Rewrit.
ing. Technical Report, SRI International, 1986.

23

11114 1*1* ~ U ~ q ~ " ~

I

-. S t p -. . S

