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I. INTRODUCTION

A Monte Carlo computer program EDPEC' has been constructed at
the Ballistic Research Laboratory to calculate, as a function of mass depth
along the beam axis, the local energy deposition by an electron beam and
its associated secondary electrons and positrons. Since the distributional
accuracy of calculations using such Monte Carlo procedures varies as i/vrN,
where N is the number of sample cascades, 2 efficient calculational pro-
cedures are generally needed to keep the calculational times at an accept-
able level when high accuracies are required of the answers.

In this connection, the integral equations,

u( To, TU) f d(
T.

and
TsI° OT) dT

I - .R ,), (2)

are frequently solved to find respectively the average energy (To- T,) lost
by an electron or positron which has traveled a known mass distance v and
the kinetic energy T. at which a catastrophic electronic interaction occurs.
The quantity To in the preceding equations is the initial kinetic energy of
an electron, T. is the average residual kinetic energy of an electron which
has traveled a mass distance t4TO,T.), and RM0,1) is a random number
picked with equal probability at any point in the range from 0 to 1. A
catastrophic interaction is identified here as either a radiative transition in
which a bremsstrahlung photon with energy greater than 0.1-MeV is emit-
ted or an electron-electron scattering in which a knock-on electron having
energy greater than 0.1-MeV is ejected.

'W.B. Beverly, "EDPEC: A Computer Program for Calculating the Energy Deposition
by an Photon-Electron Cascade in Multi-Slab Arrays," In Publication as a BRL
Technical Report.

2Y.U. Shreider, The Monte Carlo Method, The Method of Statistical Trials, Pergamon
Press, Aylesbury, Bucks, Great Britain, 1967.
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The quantity e(7) is the restricted stopping power' (MeV-cm2/g) of
electrons and positrons in a material, and a(7) is the mass cross section
(cm2/g) for bremsstrahlung production. All functions used in the preceding
equations are derived by piecewise fitting tabular data to interpolation
functions tractable for calculations of the type described in this report.
Since a significant fraction of the total calculational effort of EDPEC is
expended on evaluating these integrals, an increase in the associated calcu-
lational efficiency would be expected to significantly reduce the overall cal-
culational effort.

These integral equations were initially solved using the bisection
method 4 where about twenty iterations were gener-Hy needed to reduce the
interval enclosing an answer to 0.0001 percent of its initial width. How-
ever, since the calculational times for problems of interest turned out to be
very long, an attempt was made to find more efficient procedures. We
describe such procedures, which are derived by applying Newton's Method4

for finding the zero of an analytic function, in the next section of thisreport. Example calculations, where tractable analytic functions are substi-

tuted for ((7) in Equation I and a(T)/(7) in Equation 2, are described in
Section III.

3M.J. Berger and S.H. Seltzer, "Stopping Powers and Ranges of Electrons and Positrons
(2nd Ed.)," Prepared for: U.S. Department of Commerce, Office of Health and
Environmental Research, Office of Naval Research. NBSIR 82-2550-A, December 1982.

4S.D. Conte and C. deBoor, ELEMENTARY NUMERICAL ANALYSIS, An Algorithmic
Atroh, McGraw-Hill Book Company, Third Edition (1980).
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I1. THE SOLUTION PROCEDURES

An improved estimate _4+1 of the location z, of a zero of the equation

RlZ) = 0 (3)

can be derived from an estimate by using Newton's Method 4, that is

+R ) ,(4)
+1 -F'(zTsi)

if the first derivative F'(zx) is continuous and non-zero between zX and zz.
The application of this method to the aforementioned EDPEC integral
equations will now be described.

The electron-range problem as developed in EDPEC is defined in the
following manner:

1. An electron having an initial kinetic energy To travels a known mass
distance u(T0,T) while constantly losing energy. The unknown residual
kinetic energy, known to lie between To and T,, is obtained by solving
Equation 1,

To dT
14To, T.) = f--. (1)

T. t(7)

The range of validity of a fitted interpolation function extends from To
down to T,. Since the form of f(7) used by EDPEC does not permit the

dTindefinite integral f-dT to be expressed in a closed form, any associated

definite integral is evaluated by expanding the integrand in a convergent
To

series. Consequently, the definite integral j -L- and any intermediate
T, E(7)

definite integral whose lower limit lies between To and T, can- be approxi-
mated to any specified accuracy by evaluating a sufficient number of terms.

2. The electron mass range integral (Equation 1) can be rearranged to
the form of Equation 3, that is

T.To d T 
( AR(T)-- f T) -(To, T.) = 0. (5A)

T.

The first derivative, needed in the Newtonian iteration formula, is

-9-



-d- I[ Tj = F'(T.) 1- T' (SB)

since To and u(To, T.) are known in the problems being discussed and Tu is
the unknown quantity.

3. The derivative of R1 7) is non-zero on the range from To to T, since
(7) is positive and non-zero. Consequently, Newton's Method may be

applied to calculate a better approximation Tj+1 from any estimate TJ'
which lies between To and T,.

T dT
4. The mass distance, t4(To, TI)=f -, as well as the associated

indefinite integrals, have been calculated earlier, and these values can be
retrieved and used in further calculations such as the derivation of an ini-
tial estimate Ti of Tu.

5. The value of any element in the set of quantities,
[T', c(T.), F1T~i), F'(Ti), tg To, Ti) , needed during the calculation of a first or
improved estimate, has been or can be easily calculated.

Item 5 completes the definition of the electron-range integral-equation
problem. A first estimate T.1 is derived by assuming that the stopping
power between To and T, is approximated by the linear relation (t(7) whose
slope m is derived from the points, [TO, c(To) ] and [Ti , t(T)] (Figure 1), that
is

m To)- T (6A)

The function tt(7) is then derived by translating the points, [To.(To) ] and
[TjE(Tj)], a distance At so that the mass distance ,t(T 0,T1 ), calculated using
0(7), is equal to u( To, T), that is

To -_ d

=i(O TO f(7 = fnT 1 +( 1 + t4 To, TI) (613)TI ,t(7) TI r( T- TI) + r( TI) + A ( ° ,.(

The magnitude of the translation is derived to be

,) emu(T*'T) - m(To- T,)-c(T,)

I - em u('T',Tj)

and the linear equation tt(7) is given by ..

=() m (T- T) + ((T,)+ A( (61))

-10-
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Figure 1. The Linear Approximation of E(7) Used To Derive a First
Estimate of 7, in the Mass-Range Problem.
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The value of the first estimate T1 of the residual energy of an electron
which has traveled a known mass distance 4To,Tu) is then calculated by
solving the integral equation

Tof dT T (6E)
T, me(T - TI) + t(TI) + A, t T'T)"(E

This is found to be
T =Tn -l 1 PTO) + A, _ i - m u(T0,Tl) (M (TO_- TO) + ,(TO) + A( (6F)T _ 1 (6F)

Finally, the first estimate just calculated is iteratively improved using
Equation 4 until a specified accuracy has been attained.

The first estimate as derived above has proved in practice to be
sufficiently accurate so that subsequent iterations rapidly converged toward
the true answer. In general, three or four iterations are sufficient to attain
an accuracy well within the overall EDPEC calculational accuracy.

The catastrophic sampling problem as developed in EDPEC is defined
in the following manner:

1. An electron having an initial kinetic energy To loses energy continu-
ously as it travels through a medium until it suffers a catastrophic interac-
tion during which a finite amount of energy is instantaneously lost. The
kinetic e- 7gy of an electron as it enters into a catastrophic interaction is
obtained by solving Equation 2,

O-T)-dT
(dT)

I- e -- RNMO,I), (2)

where T. is known to lie between To and Tn. The mass cross sections for
catastrophic interactions are also piecewise fitted on the interval from To to
T, by functions a(7) which are tractable to sampling calculations of the
type discussed in this report. As described earlier in Item 1 of the mass-

, range-problem description, the integrals associated with Equation 2 cannot

be given in closed form. Consequently, the definite integral f . dT andT, (7) Tan

any intermediate definite integral whose lower limit lies between To and T,
are evaluated to an acceptable accuracy by summing a sufficient number of
terms of a convergent series expansion.

-12-



2. The catastrophic sampling integral, (Equation 2) can be rearranged
to the form of Equation 3, that is

ToI O, (T) d'r
I (T) -RN(0,1) = I -c( T s T . ) - RM0, 1) = 0. (7A):

The first derivative F (To) of F1 T0), needed by Newton's iteration formula, is

dT (To) T) dT

dFT.) = (T)= T 1
dT 1) e ] (7B)

since To and RAO,I) are known constants.

3. Since the functions, o( T) and (7), are positive and non-zero between
To and T,, the function F'(7) does not vanish. Consequently, Newton's
Method may be applied to calculate a better approximation T,'+' when 7,i
lies between To and T,.

4. The definite integral, f ff(t dT = c(ToT}), along with the associ-
To 107)

ated indefinite integrals at To and T, , have been calculated earlier and can
be retrieved for subsequent calculations such as the derivation of an initial
estimate T.1 of T. For calculational convenience, p(7) = a(7)/( 7) in the fol-
lowing discussion.

5. The value of any element in the set, [Ti, g(Te"), FIT."), F'(Ti), c(TO,T.)]
between To and T, has been or can be easily calculated during the deriva-
tion of an initial estimate or the conduction of subsequent iterations.

Item 5 completes the definition of the catastrophic-sampling integral-
equation problem. A first estimate T.1 of the solution of Equation 7A is
derived by approximating the function g(-) =o( 7)/( 7) by the more tract-
able linear relation gt( 7). One point on gt(7) is constrained to pass through
the point [To,g( To)] (Figure 2), and the approximation integral et(T0, Tj) is set
equal to the true integral, that is

T. To

et(To, T,) = f gf(7 dT = c(To, T) = f (T) dT. (8A)
T, r, ((7)

Performing the rotation about To as described, the value of g at T, is

-13-



[TO, g(T0 ]

g (T)

g t (T)

IT,g(T1]l

T

Figure 2. The Linear Approximation of o 7)/c17) - g(7) Used To Derive
a First Estimate of To in the Catastrophic Sampling Problem.
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derived to be
t(T) - 2 [C(To, T)J _ (To). (8B)

-T- T,

The linear approximation of g(7) from To to T, becomes

t(71 = m (T- TO) + g(To) (8C)

whose slope m is
O(To) - ATr,

TO0-T (8D)

The first estimate T.' of T. is now derived by solving the integral equa-
tion

e C(T,T.) = 1 - RNMO,I) (SE)

which can be changed to

Tof [m ( T- TO) + g(To)j dT --- nIl - RA0,1)I. (8F)

This reduces to the quadratic equation
(T*) -2[T--J (T) + T2 -I[ RO,1)J - 2-g(TO) To - o (8G)

m m m

of the variable T,' whose solutions are the well known

(74) =-b ± /F7 -4ac
(7 ) =f 2.

where:

-a

b = -2 TO - M(~

and
ffi J- __ .[ -ao~ll- 2 x g(To) x To

m m

It is noted without explanation that Equation 8G is never solved in EDPEC
for RN(O,1) = I so that the infinity of 1,4o) never occurs in practice. The
appropriate solution to the problem at hand is selected from the two

-15-



available solutions as that solution which lies between To and T1. This esti-
mate is iteratively improved using Newton's Method until an acceptable
accuracy has been attained.

The first estimate as derived above has proved to be quite close to the
true answer for a test problem whose solution is illustrated later in Section
III of this report. Four or five subsequent iterations generally proved
sufficient to provide an acceptable accuracy when this first estimate was
inserted into Newton's Procedure (Equation 4).

-16-,



III. EXAMPLE SOLUTIONS OF THE TWO INTEGRAL EQUATIONS

Tractable functions were selected in turn for-/(7) (Equation 1) and
v(7)#/(7) = g(7) (Equation 2) which are illustrative of the behavior of these
functions over the electron energy ranges of interest. Example problems
were devised using these equations and a short computer program was writ-
ten to solve each problem. The range of values of the dependent variable T
was selected for calculational convenience and does not correspond to the
kinetic energy (MeV) of the electrons in problems of interest.

The stopping power in the mass-range problem is taken to be

,(7) = I+0.1T2. (9A)

The initial energy of an electron is taken to be T= 3 (Arbitrary Units) and
solutions are sought for a range of mass distances up to that associated
with a total loss of kinetic energy (T= 0). The mass range integral is

u( To, T.) dT (9B)

T. I+O.1T s '

and the associated equation to be solved is
To TdT

T.) 1+ .' OI = 0,1(c
r. I + 0.1T2 (°T)= ,(C

where To and u(T0, T) are known and T. is unknown. The derivative F'(T)
of F1TU) is

F'(Tu) d - = -1 (9E)
d 1Tu ) I + O.1T,2

The maximum mass distance traveled by an electron in the specified energy
range is identified as

3 d
143,0) = dT (9F)

1+0.1T 2

and can be easily evaluated in closed form.

Solutions of T, associated with mass depths ranging from the very
small to those close to the maximum value of w43,0) are needed in order to
demonstrate whether the developed procedures are effective over the total
energy range of a problem. In this connection, solutions are calculated in

-17-



turn for depths given by
n[3,(r.)! -- (n- l) 243,0)

25

where n ranges in value from 2 to 25 as well as the values,

U,13,(T.),] = 0.0001

and

u2 [3,( T)2o1 = (3,0) - 0.000.

A short computer program was constructed to solve this set of prob-
lems. The first step in calculating a solution for a specified mass depth is
to derive the linear approximation ft(7) of t(7) (Figure 3). The slope m and
translation increment at are derived as described by Equations 6A and 6D,
respectively. The initial estimate T1 is then calculated using Equation 6F.
Finally, the initial estimate is iteratively improved using Newton's Method
(Equation 4) until a specified accuracy has been attained.

Representative results from the example calculation are given in Table
1. Convergence is very rapid for each problem in the set; three iterations
after the first estimate are sufficient in all cases to obtain a very good accu-
racy.

The integrand g(7) associated with the catastrophic sampling problem
is taken to be

g(7) = MLf - T2 -3T+4. (10A)
eI7)

The initial energy of an electron is taken to be 3 (Arbitrary Units), and the
transport of the electron is to be conducted until it either suffers a catas-
trophic interaction or its energy is reduced to 1. The catastrophic sampling
equation is

1 - -e(T OIT .) . RAMO,) (1O)

where

ToVnT, To

(To, T.) = f (( 7) dT = f g(7) dT = f (79- 3 T +4) dT. (10C)
T 7  T. T.

The associated equation to be solved is

T.) = 1 - RMO,I) - e-(T °,T .) = 0 (1OD)

-18-
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2.0-

1.4-

6 (T)

0.8-

i0

T

Figure 3. The Linear Approximation of t(7) Applied to the Example
Mass-Range Problem.



u(3,0) =2.40039U76b2633 A =-0.1466557965344

T F(Th A

n = 1 u(3,T )= o.oooUloUoUoUOo

1 2.9999824665843 -0.0000007718609 0.0000014665276
2 2.9999810000567 0.0000000000002 -0.0000000000003
3 2.9999810000570 -0.0000000000000 0.0000000000000

n = 5 u(3,T ) U.3840625224421

1 2.3639b20227107 -0.036311085117 0.0212485388507
2 2.3427034838600 0.0000439806607 -0.0000681183890
3 2.3427716U22490 0.0000000004531 -0.0000000007019
4 2.3427716029509 -O.0000000000000 0.0000000000000

n= 10 u(3,T ) U.86414U6754948

1 1.6653316461874 0.003432965U556 -0.0043850393790
2 1.6697166855663 0.0000019628b9 -0.0000025100959
3 1.6697191956623 0.0000000000006 -0.0000000000008
4 1.6697191956631 -0.0000000000000 0.0000000000000

n= 15 u(3,T )=1.3442188285475

1 1.0604190045084 0.0330169617933 -0.0367296810623
2 1.0971486855707 0.0001163822100 -0.00013U3915468
3 1.0972790771175 0.0000000014861 -0.0000000016650
4 1.0972790787825 0.0000000000000 0.0000000000000

n= 20 u(3,T )=1.8242969816001

1 0.5366448399415 0.0445132895760 -0.0457952174943
2 0.58244U05743b7 0.0001089978658 -0.0001126954704
3 0.5825527529061 0.0000000006920 -0.0000000007155
4 0.5825527536216 0.0000000000000 0.0000000000000

n - 26 u(3,T )=2.4003807652633

1 0.0000085334548 0.0000014665452 -0.0000014665452
2 0.0000100000000 0.0000000000000 -0.0000000000000
3 0.0000100000000 0.0000000000000 0.0000000000000

Table 1. Representative Solutions of the Mass-Range Example Problem.
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and its derivative F'(T) is

F'(TO) = 1R ) 9 e-c(T@,T) - [c(T..)] (1E)

Since the maximum value of the catastrophic sampling integral on this
energy range is

3

e(3,1) f f (7-3T+ 4) dT = 14/3, (10F)
1

then a catastrophic interaction will only occur when the random number
lies on the range

0 < RN(0,1) < 1 - -14/$ . (lOG)

Solutions of T, associated with random numbers ranging from those close to
0 to those values close to the maximum value described above in Equation
1OG are used in order to demonstrate if the procedures are effective over
the total energy range of a problem. In this connection, the random
numbers, ordinarily selected using stochastic procedures, are calculated
deterministically as

RNJO,1) (n - 1) RMOJ - e714/ 3)

25

where n ranges in value from 2 to 25 as well as the values

RN(0,1) - 0.0001,

and for

RN 20(0,1) = I - t-14/3 _ 0.0001

A short computer program was constructed to solve this set of prob-
lems. The first step in calculating a solution for a specified random number
is to derive the linear approximation gt(7) of g 7) (Figure 4). The derivation
of the linear approximation used here differs from that described earlier for
the mass-range problem in that g({7) is derived by rotating g(7) about T0

until the associated sampling integral st(T,T) is equal to t4 0,T) (Figure 4).
This rotation is conducted as described by Equation 8B, and an initial esti-
mate T.' is calculated by solving Equation 8G. Finally, the initial estimate
is iteratively improved using Newton's Method until a specified accuracy is
obtained.

-21-
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2.0-

0 - , I I I I I I

0 I2 3
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Figure 4. The Linear Approximation of oj ( 7) = g(7) Applied to the

Example Catastrophic Sampling Problem.
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Representative results are given in Table 2. Convergence is very rapid
for all cases; five iterations from initial estimate are sufficient in all cases to
obtain a very good accuracy.

-I

p

t
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c(3.1) 4.6666666666667 [gt(T)] 0.6666666666667

I TI F(T I ) ATs

n = 5 rn = 0.1584952699918

1 2.9564642213854 -0.0010408024U21 0.U003190945754

2 2.9561451268099 -0.0000007673761 0.0000002356134
3 2.9561448911965 -0.0000000000004 0.0000000000001
4 2.9561448911964 -O.OOU00000000 0.0000000000000

n = 20 rn = 0.7528525324609

1 2.6205632622800 -0.0199883563891 0.0248945802238
2 2.5956686820562 -0.0009004277777 0.0012303231939
3 2.5944383588623 -0.0000020420717 0.0000028029407
4 2.5944355559216 -O.0UUUOOOUOU6 0.0000000000145
5 2.5944355559072 0.0000000000000 -0.0000000000000

n = 24 rn = 0.9113478024526

1 2.2888927291901 -0.0215122039163 0.0823122638492
2 2.206b804653409 -0.0024388256425 0.0119032702411
3 2.1946771950998 -0.0000411876600 0.0002080029803
4 2.1944691921195 -0.0000000122261 0.0000000617803
5 2.1944691303393 -0.0000000000000 0.0000000000000
6 2.1944691303393 0.0000000000000 -0.000000U000000

n = 25 rn - 0.9509716199506

1 2.0634113718903 -0.0178810679518 0.1292631377944
2 1.9341482340959 -0.0026371822739 0.0263315613811
3 1.9078166727148 -0.0000806562499 0.0008570572678
4 1.9069596154470 -0.0000000808750 0.0000008611080
5 1.9069587543390 -0.0000000000001 0.0000000000009
6 1.9069587543381 -0.0000000000000 0.0000000000000

n - 26 rn - 0.9905854374485

1 1.0017498014171 -0.0000219519556 0.0011641557120
2 1.0005856457051 -0.0000000191512 0.0000010173989
3 1.0005846283061 -0.0000000000000 0.0000000000008
4 1.0005846283054 -0.0000000000000 0.0000000000000

Table 2. Representative Solutions of the Catastrophic Sampling Problem.
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IV. CONCLUSIONS AND PROGNOSIS

Improved procedures for solving certain integral equations associated
with the Monte Carlo simulation of electron-photon cascades have been
investigated. The efficiency of these procedures has been illustrated for
integral equations where tractable functions, representative of the
bremsstrahlung cross sections and the electron stopping power, have been
substituted. In fact, these example functions may provide a more strenu-
ous test of the forgoing procedures than the actual functions a( 7) and (7).
Example results are given.

These procedures have been introduced into the photon-electron cas-
cade computer program EDPEC. The calculational times for a fixed
number of cascades have been reduced to about 50 percent of those needed
when the bisection method was used to solve the integral equations. In this
comparison, the accuracy criteria for each case was set to be much higher
than the overall calculational accuracy of EDPEC. No error analysis has
been conducted to determine if a lesser accuracy (and associated decrease in
calculational times) can be used without degrading the overall calculational
accuracy of EDPEC.

Smaller improvements in the calculational efficiencies may still be
obtainable by devising better procedures for calculating the first esti-
mate of the solution. This possibility will be kept in mind as EDPEC is
used in future studies.
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