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FOREWORD

This report summarizes the work accomplished under Phase I of the Dynamic Image

Disparity Analyzer (DIDA) program. This in-house effort was conducted by the Advanced

Systems Research Group (AAAT-3), Information Processing Technology Branch (AAAT),

Avionics Laboratory (AFWAL/AA), Wright-Patterson AFB, Ohio, under Project 2003, Task

06, Work Unit 51.

r The research was performed during the period March 1981 to November 1983.
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SECTION I

INTRODUCTION

This report summarizes the work accomplished under Phase I of the Dynamic Image

Disparity Analyzer (DIDA) program from March 1981 to November 1983. Image disparity

analysis is the determination of geometrical differences between two or more images

caused by binocular parallax, camera motion, object motion, or some combination of

these. Disparities between images can be represented as a vector field mapping one

image into the corresponding points of the other image. The disparity field can

provide important 3-D information about structure and motion which is impossible or

very difficult to derive from a single image.

The goal of the DIDA program was to develop advanced real-time systems, as

depicted in Figure 1. Dynamic image analysis embraces two distinct areas: (1) the

correspondence problem and (2) interpretation. This report (and most research in the

literature) deals with the first area, the correspondence problem of associating

corresponding structures in different images; i.e., the determination of the

disparity field. The interpretation problem is concerned with transforming measured

disparity fields derived from 2-D images into physical parameters related to 3-D

structure and motion of objects. Interpretation procedures are poorly understood.

Current papers on the interpretation problem assume solutions to the

correspondence problem which unfortunately are not always possible. Theory and

formalism are presently in a state of flux. Journal articles are usually less than

ten years old in this area, and there are no comprehensive review articles or text

books. One encounters major difficulties approaching an interpretation problem with

no a priori knowledge. The basic reason for the difficulties is that the general

problem deals with non-linear equations of enormous complexity. These equations have

multiple answers and require numerical analysis to achievE approximate solutions.

These numerical methods may converge to a wrong answer and are sensitive to

initializing parameters. Additional constraints and other a priori-knowledge are

often utilized to simplify both disparity analysis and the difficult non-linear

interpretation problems. It is too early now to anticipate the final formulations of

and practical solutions to interpretation problems.
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IMAGE SEQUENCE
1! (t)

DYNAMIC IMAGE DISPARITY
ANALYZER (DIDA)

WITH SHORT TERM MEMORY (STM)
D(x,yt)

DISPARITY TO
FIELD STM

INTERPRETATION MODULE
CONVERTS FIELD INTO DESIRED PHYSICAL DATA:

VELOCITY, DISTANCE, SHAPE, ETC-

PHYSICAL2 DATA

APPUCATION MODULE
PASSIVE NAVIGATION

PHOTO ANALYSIS
ROBOTICS

TARGET DETECTION, ETC-

Figure 1. Dynamic Image Analyzer
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The type of information derivable from a disparity field includes depth,

surface orientation, object boundaries, camera motion, and object motion. -

Derivation of this physical data from sensor inputs is fundamental to many military

applications, including automatic target detection, recognition, and tracking, and

passive navigation with stereo-motion imagery. Currently, there is much research on

the optical flow (continuous field of disparities) problem which seeks to derive an

approximate model of the earth's surface from a sequence of images taken from a

flying sensor. Even a crude surface model provides passive ranging which is

extremely useful in determining whether a blob in the image is the proper size for

selected targets. At the 1983 DARPA Image Understanding Workshop nearly half the

papers dealt with the otical flow problem, which is one of the relatively easy

interpretation problems.

The various successful approaches to the correspondence problems are reviewed and

discussed in Section II. One conclusion of this review is that these approaches do

not form an adequate basis for developing a general purpose real-time high density

disparity analyzer. In the intial phase of the DIDA program, research efforts were

mainly concerned with developing improved algorithms for disparity analysis. The

overall DIDA program plan and other research done in support of it are discussed in

Section III. Theoretical results derived by the author are presented in Sections IV

and V.

3
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SECTION II

TUTORIAL

The ideal solution to the correspondence problem is found in biological vision

systems which are still a mystery. Nature uses a highly parallel network of simple

processors which communicate with their nearest neighbors. The system extracts low

level features from receptor outputs in the retina and weaves these local features

into a global perceptive tapestry. The determination of a universal disparity

algorithm is a very difficult and unsolved problem. These approaches have been

developed which can extract disparity information within their respective domains.

These approaches are referred to as (1)differencing techniques, (2) spatial-temporal

gradient analysis, and (3) feature matching.

1. DIFFERENCING TECHNIQUES

Differencing techniques provide for a point by point determination of

significant changes in a sequence of images (Reference 1, 2, 3, and 4).

Differencing requires registered images and is therefore not suitable for moving

camera applications. Early techniques were based on thresholding simple temporal

differences:

I(X,Y,T) - I(X,Y,T - AT) > (1)

Current techniques are more elaborate neighborhood functions such as

[(Sc + SR)
2 + (Mc - M2R)22

Sc * SR

where M and S a mean and variance for sample areas from current (C) and reference

(R) image frames. Thresholding results in binary difference images which essentially

act as motion detectors. Disparity fields are not measured directly. In addition

to image registration, occlusion problems and boundary definition require

sophisticated algorithms to track, integrate, and interpret a sequence of binary

images. Application of this approach is suited to initial phases of dynamic image

analysis for initial estimates of velocity field clusters and segmentation estimates.

4
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2. SPATIAL/TEMPORAL GRADIENT ANALYSIS

The second approach combines the intensity gradient -and temporal gradient at

each pixel in the image; i.e., vI and 6I/6t (References 5, 6, and 7). The basic

assumption made i-n this approach is that the brightness of a displaced patch of a

moving object remains constant:

I(X,Y,t) = I(X+IX, Y+:Y, t+ t) (3)

where the patch undergoes a displacement of X, Y in t. With this assumption, one

can derive a velocity constraint which relates the velocity to changes in intensity

over both time and space:

61 6X + 61 6Y + 61 = 0 (4)
SX _t 5Y t t

where higher order derivatives in the Taylor expansion are suppressed in the limit

:t-0O. The gradient and velocity vectors are given by

vI [5I/X, 61/5Y3 (5)

and

V [6X/6t, 3Y/6t] (6)

where

X/At X/6t, iY/ t - 5Y/3t, and i/,t 6I/6t.

An analysis of higher order terms in the Taylor expansion was made in a study of

error reduction techniques by Thompson and Kearney (Reference 7).

The basic constraint equation can be rewritten as a vector equation:

;I• V + 61/6t - 0. (7)

5
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Note that the constraint equation gives only the component of the velocity vector

(or optical flow) which is parallel to the gradient vector. The optical flow field,

therefore, cannot be computed at a point independent of neighboring points.

Additional constraints are necessary to find the perpendicular component of the

velocity vector. Two reported ways of augmenting the basic constraint equation are

the clustering approach and the using of a smoothness constraint.

The clustering approach is similar to a Hough transform and suitable for

segmenting a sequence of images with multiple rigid body translations and in which

there is no camera motion. The unknown velocity component vi. lies on a constant

line perpendicular to the vii component. Several constraint lines are shown in

Figure 2. In general, the constraint lines of neighboring points will not be

colinear and therefore will intersect. Over the cluster of intersecting points some

average is made to estimate v- A pre-smoothing operation to remove noise and high

frequency texture variations generally improves velocity estimates. Thompson and

Barnard (Reference 8) described a "pseudo inverse" method which is equivalent to

least square error analysis and similar to clustering analysis. These methods have

been successfully tried on real images. They involve relatively complex computations

and cannot deal with rotational motion which generates a continuum of velocity

directions.

A smoothness constraint is obtained from a measure of the departure from

smoothness in the velocity flow, such as:

E [( U/X)2 + (U/6Y) 2 ] + [(V/X)2 + (0V/6Y)2]  (8)

where u,v are the x,y velocity components (Reference 5 and 6). Let

Eb U + VI V + 1 (basic velocity constraint) (9)

Constraint equation are obtained by minimizing

(a E2 + E2) dXdY (10)

6
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using the calculus of variation. This particular measure results in a set of

iterative equations:

ujl Z U - (61/6X) • -b/ 2 + G2 ) , (11)

Vn+1 = (_ I6Y) . Ebl( 2 + G 2 ) ' (12)

G = (SI/X) 2 + (6IfaY) 2  (13)

where the neighborhood averages indicated by bars result in a "fill-in" feature for

uniform regions. That is to say, regions with zero gradients have no local

information to constrain velocity. In this case, velocities are taken to be

neighborhood averages. Eventually, velocities in non-uniform regions or border

regions will propagate inwards and fill in ambiguous regions. This corresponds to

obtaining a solution to the Laplace equation with given boundary conditions. So far,

this approach has been applied mainly to synthetic images. It wcrks best when the

gradient is not too small and varies in direction from point to point. The

smoothness assumption breaks down at discontinuities which may prove to be a major

flaw in this approach. Heuristics have been proposed for establishing motion

boundaries using maximum velocity and orientation similarity.

The foregoing approach was reviewed for two reasons: first, to present a

technique which seeks to find a disparity vector for each pixel and secondly, to

dispel any inference that the computation of the optical field is a closed

problem.

3. MATCHING TECHNIQUES

There are many different approaches to image matching, depending on what is to

be matched and how it is to be matched. The raw data of image analysis is a matrix

of image intensities. Hence, intensity matching using cross-correlation has been

extensively studied and utilized. In image analysis, raw intensity data is

transformed into various representations characteristic of one or more features.

Features are derived from the spatial variations and relationships of the

distribution of features or attributes such as position, size, orientation, color,

adjacencies, etc. Symbolic matching involves less matching ambiguity because complex

8
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features are unique. Another advantage is that they are more invariant to

substantial and arbitrary global changes and orfentation.. A typical strategy of many

symbolic matching algorithms is the coarse-fine strategy in which one selects and

pairs the most obvious matching features initially. Next, these initial matches are

used to find approximate coordinate transformations and scaling factors. Using this

transformation, the remaining segments are modified and matched, the transformation

then refined, etc. Thus, one can see that symbolic matching can work with large

rotations which foil other approaches.

Simple or primitive features such as points, micro-edges, blobs, and texture

measures are local functions of the intensity values over a small neighborhood of

pixels (picture elements). Computation of local features is amenable to pipeline

and parallel processing techniques. An image matching algorithm is outlined in

Section V which features an adaptive blob-matching approach for deriving dense

disparity fields. Simple features, such as points, have multiple possible matches

and require additional measures to reduce ambiguity. With n elements selected in

each image, there are n! possible one-to-one mappings. These measures are

illustrated by the label relaxation technique for matching point sets, which is

described below. Point matching will be discussed in some detail because of its

relationship to work done on "interest measures" under the DIDA in-house research

effort.

The following point matching algorithm, which assumes limits for the amount of

displacement and rotation between images, has been described by Thompson and Barnard

(Reference 8 and 9):

a. Use "Interest Operator" to locate unique set of points in each image.

b. Assign labels and probabilities to candidate matches.

c. Use label relaxation technique to increase local consistency and reduce

matching ambiguity.

9
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4. INTEREST OPERATORS

There is no generally preferred local method for identifying the same set of

points in multiple images. The m&tchability of any point depends on the intensity

values of neighboring points. A uniqueness measure for each pixel is a function of

intensity values over a small window about each pixel. Points with the highest

measure in their local region are selected as "interesting" points which have the

highest likelihood of being matched. One early measure is simply the statistical

variance of image intensities within the window:

2
VAR = MEAN (I(i,j) - I(i,j) ) (14)

where

I = MEAN (I(i,j)).

In order to improve localization of selected points, other operators were

developed which are more sensitive to the crossings of multiple linear features. Two

popular window measures are based on the means of the square of intensity

differences between adjacent pixels in four different directions:

D(1) = MEAN (I(i,j) - I(i+1,j) )2

D(2) = MEAN (I(i,j) - I(i,j+1) )2

(15)

0(3) - MEAN (I(i,j) - I(i+1,j+l)
2

D(4) = MEAN (I(i+1,j) - I(i,j+1) )2

The Moravec interest measure (Reference 10 and 11) is the directed variance:

DIRVAR - MIN [D(l), D(2), D(3), D(4)] (16)

The second measure is the Hannah edge variance (References 12 and 13):

EVAR * VAR * MINE T , U , u m, (17)

10
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Both the Moravec and Hannah interest measures seek out the direction associated

with minimum difference. If the minimum is large, the differences in all directions

are large; hence, the features selected tend to be associated with multi-directional

attributes. This in turn insures that the feature is localized and not dominated by

a difference due-to a single linear feature.

Point selection or interest operators can be defined as local maxima of an

interest measure. A generalized treatment of point selection operators will be

presented below based on gradient statistics. It will be shown that the computation

of the Moravec and Hannah operators can be improved and simplified. A new set of

point selection operators are presented for future experimentation and evaluation.

5. RELAXATION FORMULATION

The relaxation labeling process can be broken down into two phases:

initialization and iteration. The discussion follows that of W. Thompson (Reference

8). The initialization phase begins after a set of unique points have been selected

from each image. The problem is to match the points in one image called the

reference image with the corresponding points in the second image. For each point

"i" in the reference image, one constructs a label list Li 1 U i]. where 1
x i - ' xj is the vector displacement between point "ill in the reference image and

point "j" in the second image. Each 1ij is a candidate match or disparity vector

between two points. 1i is a special no-match label for point "i".

The next step is to assign initial probabilities p(l ij), p(li*) to each label

based on local simularity measures (abbreviated pij' pi*). The initial probabilities

p0 (l ij ) are based on correlations between a small reference window from one image

centered on xi and a window from the second image centered at (xi + 1i). The sum of

the squares of the differences between windows has been used as the measure for the

amount of correlation. Many potential matches can be eliminated if an upper limit on

the magnitude for all the disparity vectors is assumed.

11
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t t frallblA consistency measure, qi, is the sum of probabilities PK for all labelsKv

closely aligned with 1iu and in the same neighborhood:
q% = tv • e (18)

where eK. is equal to one if both of the following conditions are satisfied and

equal to zero otherwise.

(1) Condition for point ui" to be near to point "kV:

max [Ix i - XKI' yi - yKI] _. R (constant). (19)

(2) Condition for ii, to be closely aligned to lkv:

11 1iu KvI < E (constant). (20)

The consistency measures are used in turn to update the label probabilities.

Let

-t+l = pt * (A + B * tPij P ij (Aqij") (21)

and

St+l* = Pt* (22)
1 I

represent the new unnormalized probabilities where A and B are adjustable gain

parameters (typically A = 0.3 and B = 3). To normalize, let

p t~l . t~l / ( E t ). (23)

ALL

Note that the probability of the no match label is affected only by this

normalization step.

12
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6. IMPLEMENTATION

Current implementation of matching systems focuses mainly on stereo systems,

either binocular or motion (monocular) stereo. All these approaches are

characterized by point or edge matching between images taken at approximately the

same time and perspective. In stereo matching, the possible disparities are tightly

constrained. Here the matching problem requires a dense grid of points making the

matching problem considerably more difficult than determination of distance. Some

systems concerned with automatic or robotic navigation will trade off density for

accuracy. Sub-pixel accuracy is sought using point matching and cross correlation.

At the time of this report, there are no complete real-time systems. However, a

near real-time prototype matching system is being developed at MIT, which produces a

16 by 16 array of depth measurements every 15 seconds from a vidicon camera. For

more information, see the excellent survey article by Barnard and Fischer,

"Computational Stereo From an IU Perspective" in the Proceedings: DARPA Image

Understanding Workshop (April 1981).

Optical techniques are not included in this survey.

13
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SECTION III

DIDA RESEARCH PROGRAM

Dynamic and 3-D image analysis is a rapidly emerging research area. Real-time

systems, however, are slowly emerging because current algorithms have limitations.

This area of research is difficult because it includes automatic image understanding,

non-linear adaptive scene analysis, enormous data manipulation problems, and

knowledge base design problems beyond current methodology. This research, which is

basic to developing robust computer vision, will certainly draw upon and enhance our

understanding of biological vision systems.

The in-house DIDA program was initiated at AFWAL/AAAT in the early part of

1981. DIDA is an acronym for Dynamic Image Disparity Analyzer. The long term

objectives of the 'TDA program were to focus research in the area of real-time vision

systems and to develop requisite in-house expertise and processing facilities. The

initial objective was to conduct research applicable to the development of a real-

time disparity analyze-. Figure 3 depicts the DIDA Program Plan. This technical

report summarizes the work accomplished in Phase I of the program. The DIDA program,

if support , would stimulate important main stream research and contribute to

advanced image understanding technology for: robotics, passive navigation, photo

analysis, target detection, recognition, and tracking, and multi-sensor management

techniques.

The work in Phase I was accomplished by AFWAL/AAAT personnel, two AFIT

students, and an LDF contracted research effort at the University of Minnesota. The

DIDA team roster is shown in Figure 4. Mr. C. Wagner assisted in planning and

enhancing the AAAT DIDA laboratory facilities which was to be merged eventually in

1983 with the current laser vision laboratory at AAAT. A follow-on research effort

at the U. of Minnesota was funded by the Air Force Office of Scientific Research in

1983. The remainder of this section will briefly summarize the documentation

generated in Phase I. Sections IV and V present research results by the author which

are not included in the other DIDA reports mentioned below.

14
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AFWAL/AAAT Dr. Louis A. Tamburino (Project Engineer)
Mr. Charles E. Wagner (Part Time 1981)

AFIT Capt. Franklin D. Cooper (1981)
Major Michael S. Gaydeski (1982)

U. Minnesota Dr. William B. Thompson (1981-1982)
Mr. Joseph K. Kearney (1981-1982)

Figure 4. DIDA Roster

16
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Capt. F. Cooper's Master's thesis entitled "Disparity Analysis of Time-Varying

Imagery" (AFIT/GE/EE/810-1) attempted to devel6p a software simulation packag- to

evaluate point selection and point matching algorithms. In the six month period

alloted to AFIT students, Capt. Cooper managed to produce experimental photographs of

his computer simulation experiments and obtain preliminary results. While these

preliminary experiments provide instructive insights into the subtleties of point

matching algorithms, more debugging of the software is required before its general

acceptance. This work is documented in a 370 page thesis, including software

listings. In the course of this work, AAAT acquired for Capt. Cooper's use image

data bases from three prominent research centers which will also prove useful in

future research.

Major M. Gaydeski's Master's thesis, entitled "Disparity Analysis - Real-Time

Determination of Object Motion" (AFIT/FE/EE/82-1) is a survey of image

transformations and features which could prove useful in mapping grey level images

into binary images via a thresholding function. This survey includes sections on

global threshold selection for segmentation, local segmentation, and global local

edge coincidence. This literature survey was done in support of the adaptive image

matching system discussed in Section V.

The research accomplished at the University of Minnesota by Thompson and

Kearney is documented in AFWAL-TR-83-1035 entitled "DIDA - Dynamic Image Disparity

Analysis." The objective of this study was to perform the initial analysis required

to implement a system for determining disparity values in real-time. The final

report describes the results of a study of the feasibility of developing a device for

the real-time estimation of motion induced disparity in image sequences. The report

describes the nature of the estimation problem and suggests criteria by which

methods for estimating disparity can be evaluated. It includes a theoretical

analysis of one class of estimation methods and shows how such an analysis can lead

to improved performance. The results obtained from a variety of estimation

algorithms are demonstrated on a limited sample of dynamic imagery. Finally,

preliminary hardware and software requirements are provided for real-time disparity

analysis devices. Work under this contract has successfully produced analytical

analyses of the intrinsic limitations of several state-of-the-art algorithms. This

analysis is being used to modify these algorithms to improve performance. Several

17
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hybrid approaches which can combine the strengths of several different existing

approaches have been identified.

18
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SECTION IV

GRADIENT STATISTICS

1. DISCRETE GRADIENT VECTORS

The original motivation for studying gradient statistics was to develop

rotationally invariant and more efficient point selector operators. The gradient

statistics formalism which evolved from this study facilitates not only a unified and

comprehensive treatment of interest measures, but also the development of other

fundamental feature detectors for image understanding systems. Initially, the study

developed simplified algorithms for the Moravec and Hannah interest operators;

however, it also used the formalism to develop new interest measures which are

rotat onally invariant. The presentation of results which follows is organized in a

manner which reflects the chronological order of this research.

By way of review, a gradient is a vector denoting the magnitude and direction

of the maximum rate of change of a scalar. The gradient vector components of a two-

dimensional function I(x,y) are simply the partial derivatives:

Grad. I = (I/ x, 6I/ y) (24)

or, rewritten using an abbreviated notation,

= (I

If a coordinate rotation is given by

x' = x cose + y sine (25a)

y' = -x sine + y cose

then-the gradient vector transformation is

Ix, = I cose + I sinex y (25b)

ly, =-I x sine + Iy cose
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If, for example, e = 450 then

x1 : = (x + y)/ 12; I = (I x + I) / r2
x y

y'= = (-x + y)/ /2; Ia = (-I + I )/ r2 (26a)
x y

(a, B used below to signify 450 rotations).

For this special case, the new coordinates and components are simply the sum and

difference divided by /.

This brief review of gradients uses the conventional formalism for dealing with

analytical functions. How to apply this gradient formalism to digitized images,

which are discrete arrays of intensity values, is not obvious. Consider the 2 X 2

array of pixels depicted in Figure 5. Discrete estimates of the parital derivatives

of I(ij) are given by pixel differences:

Ix = l(b) - 1(a) or = I(d) - 1(b) a
(27)

1 I(c) - (a) or = I(d) - 1(b) ( 7

Y c d

Another estimate with respect to the diagonal coordinate a b
system yields -

I= (I(d) - I(a) ) 72 Figure 5. 2 X 2 Array of Pixels

I = (I(c)- I(b) )/Z (26b)

where the factor /2 is the diagonal distance between the diagonal pixels (assuming

unit distance between vertical and horizontal neighbors). If one uses Equation 25b

to rotate the components 450, one obtains

Ix  S (I -I ) / v2 -I (b) + 1(d) - 1(a) - I(c)]/2 (28)

Iy X (+I ) / [I(c) + I(d) - I(a) - I(b)]/2

20



AFWAL-TR-85-1011

Notice that this discrete approximation for the two partial derivatives differs from

Equation 27. These partial derivatives depend bn four pi.xels instead of two.- The

I x partial derivative is the average of two estimates of Ix type, i.e., D - C and B -

A; ly is the average of C - A and D - B. Although it may appear that matters are

slightly more complicated by using Equation 28 in place of Equation 27, it will be

shown that subsequent formalisms are not only rotationally consistent, but easier to

compute. Definitions 26b and 28 are consistent with the requirement that vector

magnitudes be rotationally invariant, i.e.,

P212 + 12 =12 + 2 (29)
x y =  8

The Sobel edge detector, which is one of the most popular edge detectors, is

defined by two fundamental measures:

Sx =[(c + 2f + i) - (a + 2d + g)]1/8 g h i

d e f
S = [(g+ 2h + i) - (a +2b + c)3/8

Ya b c

where a,b,... are used in place of I(a), I(b),....

One can easily see that Sx equals the average of the four horizontal gradient

components (Equation 28) derivable from the four 2 X 2 areas, which fit inside the 3

X 3 area. Similarly, Sy is also the average of four estimates of the vertical

derivatives. Hence, one can think of the Sobel operator as an average over the more

fundamental 2 X 2 operators. This local averaging tends to eliminate noise and

smooth out edges.

2. IMPROVED INTEREST MEASURE ALGORITHMS

If the DIRVAR and EVAR interest measures defined in Section II are reviewed in

light -of the rotationally consistent gradient definitions defined in this section,

several improvements are readily evident. The horizontal and vertical difference

statistics (recall Equation 15) can be interpreted as

D(l) - E[I(i+l,j) - I(ij)]2 . Z i

(30a)
D(2) - r[I(i,j+l) - l(i,j)] • E 2
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where I, I are the partial derivative estimates are defined by Equation 27. In a
K, y

similar manner, the diagonal difference statistics can be written as.

D(3) - r[I(i+l,j+l) - I(i,J)]2 = r(42 1 (30b)

D(4) = z[I(i+l,j) - I(i,j+l)] 2 = r(/-2 I)2

where I and I, are defined in Equation 26b. If the interest operators are to be

rotationally invariant, the coordinate system used should make no difference; i.e.,

the use of (I , I) and (Ix I y) should be interchangeable. This would mean the

diagonal differences D(3) and D(4) should be scaled by the factor 1/2 relative to

D(1) and D(2) in order to account for the VF-distance between diagonal pixels. In

other words, by properly scaling differences, one compares the slope of the intensity

in four principal directions. This is more meaningful and consistent than comparing

just the pixel intensity differences.

Interest measures based on the directional statistics D(i) would be enhanced

and simplified if the following definitions are adopted:

D(l) = :2 D(2) = Z I2 (31)x' y (1

D(3) = 2 2
(a, = 

where (Ia, I,) are defined by Equation 26b and O x, I y) by Equation 28. It now

follows from invariance of vector magnitudes that the newly defined D(i) satisfy

D(l) + D(2) -0(3) + 0(4) (32)

hence only three of the D's are independent. Equation 32 can be used to solve for

the fourth 0 which means computations are effectively reduced by 25%.

The three independent statistics which characterize the four D's and link them

with the formalism to be developed and used in the remainder of this paper are:

A - 12 + 1 2 . D(1) + D(2) - D(3) + D(4)

B a r 12 12 .D(3) - D(4) (33)
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C = 12 i2 = 2 r 12 Ax y x

whee-

2 D(i) = [A + C, A - C, A + B, A - B] (34)

Substitution of the D(i) from(Equation 31) into the original definitions for

directed variance and edge variance (see Equations 16 and 17) yields

DIRVAR = MIN [D(i)] = (A - MX)/2 (35)

EVAR = VAR * MIN [D(i)/D(i)] = VAR * (A-MX)/(A+MXj (36)

where MX = MAX [B , ICI]. (37)

The selection of the minimum value is now accomplished with one compare operation

where originally it took three. Also note that this definition of EVAR requires only

one division.

Both the (x,y) and (a,6) components of the gradient vector are derivable from

the same 2 x 2 array of pixels. Since the 2 x 2 arrays fit evenly into rectangular

windows, an equal number of components in the four principal directions are obtained

within such windows. In the original definitions of the D(i), this was not the case

(see Equations 15). The original D(i) were defined as averages to compensate for

the variation in the number of diagonal and horizontal or vertical pixel differences.

Hence the process of sorting and averaging would require division operations. The

new directional statistics(Equation 31)always involve the same number of terms, hence

they may be sorted and compared without division by the number of terms.

The improvements in the computation of interest measures demonstrate the

advantage to be derived from consistent use of gradient statistics. A more

generalized treatment of applications for gradient statistics follows, which will

include new interest operators which are rotationally invariant and analytic.
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3. INTERPRETATION OF GRADIENT HISTOGRAMS

Given a localized set of gradient vectors, how can one extract various

interesting image features from this data? Originally, we used gradient histograms as

the basis of statistical interpretation. Computation of these gradient histograms

requ1ires the direction and magnitude of each vector:

= 12 + I2 = __i7+ 1y

(38)
e =tan " 11yl/lx 

= (t a n " 11B II ) -14

The angular dimension is quantized into M bins, each spanning 2W/M radians. The

magnitudes of the vectors falling into each bin are summed
Shj Z i (39)

iE Bin(j)

and a normalized set of weights obtained by

M
Pj = h/ z h K)  (40)

J K=I

Figure 6 depicts some idealized histograms and corresponding examples of

localized window images. Histograms may be characterized by various parameters

which ideally correspond to meaningful features in the localized images. One

example of a useful parameter is entropy,

M
E = - PK In(PK) (41)

which equals zero for a single edge and equals the maximum value (In M) for uniform

histograms. The entropy measure does not distinguish between histograms b and c

which have equal entropy.

.-, interest measures, the orthogonal aspects of b, d, and e are significant.

The fted to distinguish histograms with large orthogonal aspects leads to the

following concept of directional weighted averages for each bin:

M
W r PK Isin(eK - el)j (42)
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a. Straight Edge,
Zero Entropy

b. Corner,
Orthogonal Set
of Gradients

C p.

c. Anti-Parallel

fSet

d. Rectangle Pair
of Orthogonal
Anti Parallel

Sets

e. Uniform
Distribution,

Maximum Entropy

Figure 6. Gradient Histograms
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The term Isin Lei is a relative weighting factor which is maximum for ek orthogonal

to 0, and which diminishes to a zero value as the ek align with the direction of eI.

To convert these directional bin averages into a single parameter, the following

average of w, was defined:

T= PKwK = T Z P I Isin(eI - eK)I (43)
KI

which is a measure of the orthogonal aspect of the gradients in a sampled window.

It is easy to see that T tends to zero for cases like histograms a and c. Windows

with larger T values have more orthogonal or omnidirectional attributes which are

desirable for selecting localizable and distinguishable pixels. This line of

investigation was abandoned because the expressions are computationally cumbersome;

however, the concepts discussed above were modified and incorporated into the

analytical formalism presented next.

4. ABC's OF DIRECTIONAL WEIGHTING FUNCTIONS

Several directional weighting functions, such as Equations 42 and 43, evolved

from early investigation of histogram statistics. Formally, the definitions of the

orthogonal and parallel weighting functions are:

wi(a) 2 P sin 2 ( -e) (44a)

i=l 1

N 2 2
w11(e) = Z Picos (0. " e) (45a)

i-l

where N = Number of gradient samples.

= Magnitude and direction of ith vector (see Equation 38).

Note-that these definitions do not depend on the establishment of angular bins such

as were used in histogram formalism. It is an easy exercise to derive the following

expressions for the weighting functions:

2wi(e) A- B sin 2e - C cos 2e (44b)

2w[1(e) " A + B sin 2e + C cos 29 (45b)
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where

N 2  N 2 2

A pi = (I +I)

B = Z pi sin 26.i = Z (I2 I2) (same as Equation 33)

c= 2 12

Utilizing sin 2 Ae as a relative weighting factor in wI. instead of Isin Le as used

in Equation 42 provides an analytic function of 6 with the same A,B,C statistics that

were utilized to simplify the derivation of interest measures DIRVAR and EVAR

(Equation 33-36).

The weighting function wi(e) is a measure of the extent to which the sample

gradients are orthogonal to a given direction (wi(9)=w_(B+r)). The tendency of

vectors to align themselves in a given direction 6 is given by the weighting function
wi (e). These dual weighting functions are both obtained for the price of computing

the A,B,C statistics. The sum of w.Land w! equals A, which is independent of the

relative direction of the gradient vectors. For later reference, we rewrite

Equations 44 and 45 in a form that readily depicts the max and min values for these

dual functions:

2 wi(e) = A - R cos 2(6--) (44c)

2w'1(e) = A + R cos 2 (e-T) (45c)

where

- 2T = tan B/C (46a)

R2  82 + C2  (46b)
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5. ORIENTATION ASPECTS

We now define a new parameter called the orthogonal aspect:

2 2 2  2 [
.T : Pi W(EB) E pi PK sin (ei -OK) (47a)

i i K

Other expressions are:

2T = A2 
- B2 - C2 = A2 - R2  (47b)

T 2 z z (vlix vK) • (Vi x 7IK) (47c)

i<K

where

;I. = [Pi cos i, Pi sin 6el.

We see that T which is a simple function of the gradient statistics A, B, C, is the

continuous analogue to histogram average T (compare Equations 43 and 47a). Equation

47c expresses T as the sum of the square magnitudes of the cross products between all
gradient vector pairs. Recall that the vector cross product between two vectors is

another vector,

Vi x VK = W (48)

such that

IWI - Nil IVKI Isin (ei  - eK)I.

Recall that cross products between parallel or antiparallel vectors vanish. Hence

terms with i - j vanish in Equations 47a and c.
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There are two possible definitions for the parallel aspect, both of which are

dual to the definitions of the orthogonal aspect give, in Equation 47. The first

version, L, is a function of A, B, and C:

w.N 2 N N 2 c- e) (49a)L = Z P i w (al) Z Z O i Cos2 (a e d 4a
_ i ;Ii K

2 L = A2 + B2 + C2 = A2 + R2  (49b)

L + T A2 = 2]2 (50)

L - T = R2 2 2 p2 cos 2 (e - e (51)I K 18K)

The second version, A, is a counterpart to Equation 47c:

=0(V'I i  V• K) 2  (52a)

i < K

A = L - D (52b)

where

P = i:Z(' i  T i ) (53a)

is a new gradient statistic. The ambiguity in the parallel aspect definition arises
from the fact that unlike a cross product, the dot product of a vector with itself

is not identically zero. Equation 51 includes the self products, whereas Equation 52

excludes them. An alternative expression for the sum of self products,

BZ 4 0 2+ 2 )2 (53b)

illustrates that the computation of 0 involves terms 12 and 18 which-are used to
compute A and 8 so that the extra effort to compute D is minimal.
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Other measures are derivable from the statistics defined above:

S A + T= A2 - D 2 Z 2 2 (4iK 1 K -(54)

i< K g{ P

Q= A-T R 2 _ D = 2 E E P2 K cos 2 (e - K  (55)
i<K

r where
-l < Q/S < 1.

The following three ratios may be interpreted as averages of various trigonometric

functions of AG iK = ei - e K with the product of magnitudes (Pi PK)2 utilized as the

weighting parameter:

Q/S = <cos 2Ae> = cos 2Ze

A/S = <cos2 Ae> = cos 5 (56)

T/S = <sin 2 66> = sin 2 a

where

0 < E <.

Figure 7 depicts various sample sets of unit vectors and corresponding statistical

measures, which include limits for Q/S = + 1. Statistics derivable from A, B, C, and

D, which are sums of terms with even powers, do not distinguish between parallel and

antiparallel vectors as depicted by seemingly different sets with identical even order

statistics.

The mean gradient vector (G, €)
-.-_-

--N

G cos f a <I > a Z Pi cos *i/N (57)
S i

N
G sin <I > a E P, sin i/N (58)

i
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is useful for characterizing the parallel/antiparallel aspects of the gradient sets.

The direction, i, of the mean gradient provides an invariant reference direction.

The projection of the mean gradient vector onto any direction, e, is %iven by

--- Z i. cos (a. -e)/N - G cos - ) (59)

N
G 2 Z Z PK M(eK)/N Z Pi PK cos (ei -eK)/N (60)

K K. i

Equations 59 and 60 demonstrate more explicitly the dependence of G on the extent

to which the vector pairs are parallel or antiparallel. Note that while the mean

gradient vector is invariant, the vector components depend on the coordinate system

used to define them. If <I X> and <I > were used in Definition 57, G would be thex y

same and the reference angle, *, would be changed by w/4 in the rotated coordinates.

6. NEW INTEREST MEASURES .. . ....... ........

In this segment, we shall explore interest measures utilizing the gradient

formalism already introduced. The modified directional statistics D(i) utilized in

the definitions of DIRVAR and EVAR (see Equations 34-36) can be expressed in terms

of (see Equation 44b): -.

2D() w(37r/4) = A + B

. 2D(2) = w1(3/4). A-B .

2D(3) = w(wI/2) -A + C (34a)

. 2D(4)-wL(O) = A - C -

s o t h a t .. . .. . . . _ _.. .... ... . .. ..... .

-2 OIRVAR wN W'L(OT(,-.L(i4),--w(42) w.(31T4 -_ -- (35a)

......... ... r- ± wi,2,- 3
2 EVAR = VAR * MIN _ ,16 j - .- w--/ (36a)

...... ......... - ..-.-.
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Note that these measures depend on wI(e) evaluated in four principal directions,

which in turn depend on the particular coordinate system 4n use.-41h'i.continuous anc

rotationally invariant analogues to these equations are: .. --

2 DIRVAR' = MIN [wi(e)] = w(min) = A - B (61)

2 EVAR' = VAR * wi(min)/wI(max) = VAR (A - R)/(A + R) (62)

where the angle between wi(max) and wi(min) is w/2. Here we have replaced MX in

Equation 38 and 39 with R /BF2+C 2

Reexpressing the orthogonal aspect in terms of wfmax) and wt(min) yields

T= A2 - R= w-Umax) *_w.Lmin) (63)

which suggests that T be considered as an interest measure for point selection. The

interest measures defined in the last three equations are all analytic, rotationally

invariant, and proportional to wI(min). The relative merits of the various new

measures introduced in this paper await future computer simulation experiments using

different types of imagery...

7. SECTION SUMMARY ..... _

In classical pattern recognition, one extracts a set of features Cfeature vectors)

which is used to distinguish between predetermined classes of subimages or textured

patterns. Effective features provide good separation of the predetermined classes in

the multidimensional feature space. -In image analysis (or image understanding), one

extracts locally derived features (image primitives) and attempts to tntegrate the

simplerprimitives into more complex and globally extended structures.which are .

meaningful to the applications at hand. "The basicprimitives are edges,-texture,

co t .(all of which are to some extent characterized.by gradei_ents_,and -co_-r.

-Sets-of-image primitives-or statistical features may be relatively easy to compute

.as locally derived functions of the A, B,C, and D statistics,-along with first order

statistics (G,j).---ual -drectc~naa4 .Uatistics-have been discussed whichmeasure

,relative orientations-betweer"pfirs of gragient vectors--A'completeevaluation of-
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these aspects and other rotationally invariant functions will require further

experimentation andd computer analysis of digitized images. The following brief

summary of application areas for gradient statistics includes new areas for further

research:

1. Point selection (interest) operators. These were fully discussed,

including old and new definitions.

2. Local edge detectors. By definition these detectors are functions of

local gradients. See the discussion on the Sobel edge detector in this section.

3. Image segmentation. To formulate more extensive and unified image

features, images are segmented into regions with uniform or similar features. Color

is a good feature to use. The use of uniform gradient statistics may also apply to

the segmentation problem.

4. Feature detection. A preliminary survey of the values of T and L for

small binary images inicates that T is sensitive to corners and crosses, while L is

sensitive to straight lines and fibrils (antiparallel sets of lines). This is

encouraging; however, to fully explore the discriminating power of the directional

aspects, interactive experiments with grey level images are required. These

operators can be used to cue areas of potential interest.

5. Textural analysis. Although not discussed in this paper, this

subject has been an active research topic for the last 25 years or so; hence there

is an extensive literature available on it. The techniques for analyzing and

synthesizing texture in images are generally divided into structural and statistical

methods. The first approach looks for repetitive patterns of image primitives such

as lines, simple shapes,etc. The statistical approach utilizes statistical

parameters which characterize the distribution patterns and spatial relationships

betwein pixel gray levels. Some techniques use extensive histograms called Spatial-

Grey-Level Dependence Matrices (Reference 14, p. 186) which quantify-differences not

just of adjacent pixels, but of pixels with different relative separations. Other

techniques analyze polar histograms obtained from partitioning the Fourier power

spectrum. These techniques require extensive computations. The relatively simple

gradient features outlined above may provide simpler alternative approaches for

working with texture. - .
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SECTION V

ADAPTIVE IMAGE MATCHING ALGORITHM

The problem of computing complete image-to-image mapping in real time is

unsolved. In fact, computing a complete disparity field is not well understood.

Point matching algorithms are robust and computationally extensive, but cannot solve

the complete mapping problem by themselves. One attempt to achieve complete mapping

uses spatial-temporal gradient analysis with a smoothness constraint (see Section

II). The smoothness constraint results in iterative equations to "fill in" uniform

intensity regions. The problem with this approach is that the fill-in process needs

to start from high contrast boundary regions in which the smoothness constraint is

weakest. The experimental approach as presented here also addresses the complete

mapping problem.

An adaptive binary image matching algorithm may be characterized as a blob

matcher. in this approach, a uniform region is not viewed as something to be filled

in or as a region devoid of matchable points, but as a unique feature that can be

isolated in separate images and compared. In viewing aerial photographs, a lake will

stand out as a distinctive uniform area, or blob, which is a key feature in one's

initial registration of multiple images. Unfortunately, there are not enough of

these naturally occurring blobs to provide a complete disparity map. The proposed

approach investigates means for generating artificial blobs. In this way, the blob

matching process can proceed until a completely integrated picture of the disparity

field is accumulated.

The problem of generating artificial blobs is equivalent to transforming grey-

level images into binary images. In binary images, the concept of a blob is obvious;

i.e., a blob is an island of black pixels in a sea of white pixels. There are an
4nfinity of such image transformations. Generally, binary images are achieved with

the following two steps: transforming the grey-level image into a different image

representation, and thresholding the new image representation. All conceivable

transformations are not equally suitable. Sought are binary mapping transformations

which have high expectations that corresponding physical elements will map into

corresponding blobs. For example, selecting the brightest regions (or darkest) in an

image will generally be expected to correspond to the same surface elements in

another image.
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4 An adaptive image matching system, together with experinental support

facilities, is depicted in Figure 8. Inputs to-the system are two images, 1 and I',

and the output is a complete disparity vector field, D, which maps the corresponding

points from one image to the other. The input images are subjected to a sequence of

image transformations, T(I), each of which may be transformed into one or more

binary images by thresholding. Each pair of binary images B(I) and B(I') is

compared. The relative displacement of elements in the images provides information

about the disparity field, !D, over the area of the blobs, thus providing a piece of

the disparity puzzle. Some of the pieces, however, may overlap and could have

somewhat different estimates for the disparity field in these overlapping regions.

All partial results are accumulated and integrated in the final block in Figure 8

which also provides executive control over the sequencing of transforms,

thresholding, and interfacing with the interactive work station containing an

extensive software library.

The functional blocks in Figure 8 should be viewed as software modules for near

term simulation and hardware modules for a future prototype real-time image

processor. A realistic research program should constantly attempt to match simulated

algorithms with identifiable hardware technology. The scope of this experimental

approach is very broad, so that a hardware implementation of successful simulated

algorithms could evolve into an experimental test bed for promising image processing

technology.

A workstation, built around a computer such as the VAX-11/780, provides a

general purpose research and development tool for various laboratory projects, as

well as the basis for the matching system. Special care in designing efficient data

structures and management procedures is needed because of the large flow of data

involved in accumulating the complete disparity field. The library should be stocked

with published algorithms and available software packages. This includes a package

to simulate cellular logic or systolic arrays to explore morphological image analysis

for cofparing binary images.

The initial set of transforms used in the matching experiments will consist of

commonly used algorithms utilized in pattern recognition and image understanding.
These tried and tested algorithms can be expected to highlight physically meaningful
attributes, such as texture measures and gradient statistics. Color, of course,
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SOFTWARE LIBRARY

-DIDA EXPERIMENT

3(I) 0') -IMAGE UNDERSTANDING

-MORPHOLOGICAL ANALYSIS

-IN1TERACTIVE PROGRAMS

-ADAPTIVE IMAGE 0ldA/IU RESEARCH
MATCHING SYSTEM WORK STATION
,.PDA- EXPEIMENT)

Figure 8. Adaptive image matching System
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would be an excellent feature to use if available. By keeping histories of

performance, each transform can be evaluated and indexed. Given the ability to

measure performance, automatic means for learning new and useful trazisforms can be

developed for enhancing the system's repertoire. More sophisticated learning

algorithms can learn to select a sequence of transforms to match a priori or

contextual knowledge about the images being matched. Most of the image transforms

will be local neighborhood or window functions to facilitate real-time implementation

schemes. A special module is envisioned for extracting global features and

histograms from the images, in order to supply the contextual information for the

adaptive transform generation.

The feed back path from the comparator to the threshold module would be used to

vary the threshold settings in order to achieve convenient blob density and sizes.

The masking ability would be used to perform blob matching or to concentrate

attention in those regions which are sparsely represented in the disparity field

accumulator. It may be feasible to generate a confidence measure for each entry in

the accumulator. Similar estimates derived from different transforms should increase

these confidence measures. Different estimates will require arbitration.

The use of binary image matching has been presented as a promising alterative

for accumulating complete disparity maps. Image matching systems of the future will

be hybrid systems incorporating a variety of matching algorithms such as reviewed in

Section II. The velocity constraint equation (VI.v + sI/6t = 0), for example, could

help delineate corresponding blobs and provide independent measurements for cross-

checking the accumulating matching results. The technical disciplines needed to

implement real-time systems include image understanding, artificial intelligence, and

dynamic image analysis, plus super-computers for image processing. All of these

disciplines are heavily supported by DOD. One of the original objectives for

creating the DIDA program was to help establish a center for machine perception.

This center would in turn provide an alternative and effective means for harvesting

thegults of DOD's research investment.
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