
AD-A±?l 874 A REWRITE RULE WAHINE: PROGRANNING BY GENERIC EXAIULE in
(U) SRI INTERNATIONAL MENLO PARK CA J A GOGIJE JULSUI96--63

I UNCLASSIFIED F/S 9/2 N

Emon EEEooi

.
- 2

liii O12 0

IE EI I 18

-liii -4 i mi 6E

A REWRITE RULE MACHINE

0 Programming by Generic Example

Final Report
K- July 1986

By: Joseph Goguen, Program Manager<L

~ I3SRI Project ECU 1243

Prepared for:

Office of Naval Research
Information Sciences Division
800 N. Quincy St.
Arlington, VA 22217-5000

Attn: Dr. Charles Holland, Code 1133 D TI
S Contract No. N00014-85-6-0417 ELECTE

YESRI International AUG 14 1986 u
333 Ravenswood Ave.

Menlo Park, CA 94025
(415) 326-6200
TWX: 9100-373-2046
Telex: 334486

333 Ravrnswood Ave * Menh Pirk CA 94(0,5
nto41F 326-6200 * TWX 910 , ,'3-2'.l-h e Te,(, 6986 !9

86 7 29 123

S

i

Table of Contents

1 Introduction 1
2 Data Structures 3
3 Examples of Programming by Generic Example 7
4 Icons 10
5 Animation 11
6 Some Problems in Natural Multimedia Interaction 12
7 Discussion 13
8 Appendix: More Specifications 13

List of Figures

Figure 1: Some Default Tree Representations 4
Figure 2: Some Linear Data Type Representations 5
Figure 3: Iconic Variations of Data Type Representations 6
Figure 4: Representations for Card Files 6
Figure 5: Some Representations of Generics 7
Figure 8: Graphical Representation of an Action on Stacks 8
Figure 7: Iconic Representation of a Rewrite Rule 9
Figure 8: Tree Form of a Rewrite Rule 9

Lpccession For

N118S GRA& IDI 1C TAB
Unannounced

' icatian

1By__________
rs'tribution/

.v tlability Codes

Avail and/or
,D.st Special

IQ;

.I #,-* 'I

- I * 5-5

roo~f il IuirA-c9l <gosuom >icoaic.=s.; dmts of 7 J,,l7 19"

Programming by Generic Example,

Joseph A. Goguen
SRI International

333 Ravenswood Avenue
Menlo Park CA 94025

Abstract

, This paper presents some techniques for programming with iconic representations.
These techniques promise to make programming in suitable ultra high level languages
significantly easier and more intuitive. The languages that we have in mind are based
on rewrite rules and/or object-oriented programming, and have user-definable
abstract data types. One technique uses the notion of constructor (from the theory of
algebraic specifications of abstract data types) to automatically generate graphical
representations for data values. Another technique permits defining rewrite rules, as
well as methods (in the sense of object-oriented programming), by the direct
manipulation of iconic representations of generic examples of data values. Some
illustrations are given, based on the OBJ functional programming language and its
extension to object-oriented programming.

1 Introduction

It is notoriously difficult to develop, understand, debug, modify and maintain programs
written in the usual textual formats. Here, we suggest programming by generic example as

a way to significantly improve the programming process for suitable languages, by
supporting the direct manipulation of multimedia iconic representations of program

meaning, rather than merely textual representations of program syntax. The most

important medium is graphics, but mouse manipulations, audio and even text can play

auxiliary roles. Our intention is to make programming as direct and physical as possible, in

contrast to the comparatively arbitrary conventions of standard textual representation.

One could also generate animations of running programs, for debugging and
documentation. Such displays can be made hierarchical (as in VLSI design systems) to

avoid indigestible detail.

Our discussion focusses on programming-in-the-small, that is, on the construction of

algorithms. It seems easier to support programming-in-the-large with graphics, using the

ISupported in part by Office of Naval Research Contracts N00014-82-C-0333 and N00014-85-C-0417, and
a gift from the System Development Foundation.

- - .,. ...-.........- - . -. . . , . . -- AX . .. _.. . .. ,. A -.

2

well-known building block metaphor to display generic modules and various notions of

imported module hierarchy, with ideas like those in OBJ2 [Futatsugi, Goguen, Jouannaud &

Meseguer 851 and Clear [Burstall & Goguen 77, Burstall & Goguen 811 as a semantic basis.

The approach reported here is intended to be helpful to the Rewrite Rule Machine (RRM)

project at SRI International [Goguen, Kirchner, Leinwand, Meseguer & Winkler 861. As

such, it is oriented towards languages, like OBJ2 [Futatsugi, Goguen, Jouannaud &

Meseguer 85], that are based on rewrite rules. The intention is that the RRM should

execute such rules with enormous efficiency. One of these langages, called FOOPS [Goguen

& Meseguer 86], combines the power of abstract data types with that of object-oriented

programming, and seems an especially natural candidate for programming by generic

example. We hope that the research reported here will make programming in ultra high

level languages like OBJ2 and FOOPS significantly easier and more intuitive.

Object-oriented programming, which originated in the Simula language [Dahl,
Myhrhaug & Nygaard 701, is simple and intuitive, since it was developed for simulating real
world objects: a method may generate or modify members of a elms of objects, where

each object has its own state. For example, the class Stack may have methods to push, pop

and create new stacks; there may also be functions which query the top and height of a
stack. Classes may have subelasses; for example, a class NatStack of natural numbers

might have a subclass OrderedNatStack, whose elements must be maintained in decreasing

order. Programming by generic example supports object-oriented programming by directly

manipulating the graphical representations of objects; for example, one could move a data

item from the top of one stack to the top of another by "picking it up" with a mouse,

carrying it over, and then "putting it down" on the second stack.

There has been a great deal of work on various approaches to "visual programming." For

a recent collection, see [Computer 851. Two classical systems are Thinkpad [Rubin, Golin

& Reiss 851 and Pecan [Reiss 851; a more recent system emphasizing programming-in-the-

large is PegaSys [Moriconi & Hare 861. [London & Duisberg 851 mention the connection

with object-oriented programming (through Smalltalk [Goldberg & Kay 76) and also have

an interesting approach to animation. But none of this work attempts to automatically

generate displays for data types, or indeed, attempts to deal with data abstraction in a

systematic formally based manner.

'1 3

2 Data Structures

Our rust step is to provide graphical representations for values from abstract data types;

these should be both suggestive to users and relatively easy to generate. It is known that

every (computable) abstract data type has a finite set of abstract constructor3 that are

sufficient for def'ming its values [17, 0]; in practice, this is a relatively small set. By

definition, a set of constructors provides a (minimal) set of functions for constructing every
value of an abstract data type; thus, every such value is given by an expression consisting

only of constructors. The usual tree representation of this expression yields a default

graphical representation, having constructors labelling all its nodes.

Let us consider two examples, arithmetic expressions and S-expressions (in the sense of

Lisp). Figure I shows the default tree representations that are generated for values of these

types, based on constructors as described above. The expressions represented are
Z (2* (y z))

and

A .a. ((C. nil) .)).

We can describe the arithmetic expression and S-expression abstract data types using

notation from OBJ2. Although these OBJ2 textual representations are not what the user
would actually deal with, they are useful for making explicit the connection with the

underlying logical formalism, which (in this case) is initial algebra semantics for equational

logic 113]. The basis for a non-textual presentation of these data abstractions would be a

structural editor, with mouse-driven graphical menu selection of commands, with an icon

editor2 , and with dynamic object manipulation for defining equations. Since it is difficult

to present the dynamic user interaction with such a system in this paper, which of course is

purely static, we present static OBJ2 text; this also facilitates comparison with our other

papers on OBJ.

*, OBJ2's basic entity is the object, a module encapsulating some executable code. The

keywords obj ... endo delimit the text of the object. Immediately after the initial
keyword obj comes the object name, AEXP or SMtP for these examples; then a declaration of

what object(s) are imported, in the examples above, lIT or ID (the built-in types for

integers and identifiers, respectively). This is followed by declarations for new data sorts,

here Aezp or Sozp, and then subsort declarations, indicating that integers are considered to

2 Note that one can use icons instead of character strings to represent module, sort and operation names.

, , .[,., ,, e ,, ',,, ...,: .;','..".', " '. .-.":. ' , ,' ,', ..-:. ".,",:" ,','. ','-'."- '.,,,' '' '. , .' < - , , " ., --U '

4

+ D

y z C nil

Figure 1: Some Default Tree Representations

here Aezp or Sexp, and then subsort declarations, indicating that integers are considered to

be arithmetic expressions, and that identifiers are considered to be S-expressions. Finally

come declarations for the constructors, indicated by the keyword cop (which stands for
"constructor operation"). These declarations include both constants3 and operations, such

as z, nil, _*_ and _._, each with information about the distribution and sorts of

arguments and the sort of the result; underbar characters "." are used to indicate

argument places for mixrx operators; thus_. is infix and length would be prefix. After

the operator declarations, some equations might be given; however, these two examples do

not involve any equations. (These examples take some liberties with OBJ2 syntax, for the

sake of simplifying the present exposition.)

object AMCP in
importing INT
sort Exp
subsort Int < Ezp
cops x.y.z :- EKp
cap@. * :Ezp- Ezp

endo

object SEC] is
importing ID
sort Sexp
Subsort Id < Sezp
cop _._ Sexp Sezp -) Seip

od cop nil -) Sezp
endo

3 Constants are considered to be a special kind of operation having an empty string of arguments for input.

Ne !& I" K

5

For many common data types, we can automatically generate default representations that

are more iconic than the default trees. In particular, for (linear) sequences of characters

and for stacks of integers, we can get the usual linear representations, as shown in Figure 2

for the expressions

add (f. add (o. add (o add (p. add (.nil)))))

and

push(.push(7.push(211.pueh(9.puuh(329.empty))))),

respectively. OBJ2 code for these two data types is given in the appendix, Section 8. This

method works for linear data types, having a signature of constructors with only one new

sort and with every new operation having at most one argument of that sort. If there is

just one constant, the default representation assumes that it represents the empty structure,

and gives it the empty representation. If there is more than one non-constant constructor,

it will be necessary to label cells with constructor names; otherwise, this can be omitted.

1 0 1 1o 0 1 j j I 1,,11 9 1 2 "M

Figure 2: Some Linear Data Type Representations

Users could also be given interactive support for generating icons for constructors. This

would permit still more iconic variations, like those shown in Figure 3 for Stacks and S-

expressions. The support provided should include an icon editor and some simple options

for combining icons. For example, one should be able to draw the "spring" shown in

Figure 3 with an icon editor, and then indicate that it should be attached to the bottom of

the default (linear) stack representation, displayed up-to-down, rather than left-to-right as

it is in the default in Figure 2; similarly, one should be able to create the left and right
"sides" and attach them to the top item on the stack, as in Figure 3.

Let us consider a somewhat more complex, but still linear, data type, a file of library cards,

each having an accession number, an author, and a title. Just two constructors are

involved, card with four arguments, and the constant empty. Figure 4 shows a default, a

default linear, and an iconic representation for the file

card(17381, W. Daniel Hill. The Connection Machine.
card(16230, Jeffrey Ullman. Computational Aspects of VLSI. empty))

The OBJ code defining this type is just

5 A

211

9 T D I

329

Figure 3: Iconic Variations of Data Type Representations

obj CARDFILE is
importing NAT. CHARS=RING
sort File
cop empty -) File
cop card Nat Charst Chast File -) File

endo

17381 W. DANIEL THE
HILLIS CONNECTION
CARD MACHINE

CALLDS CAI JEFFREY COMPUTATIONAL
17381 7 1 ULLMAN ASPECTS OF VLSI

W. DANIELWAR
HILLI TCEL

CONNECTION 1623 0/ EMPTY
MACHINE JEFFERY

ULLMAN

COMPUTATIONAL
ASPECTS OF VLSI

16230 JEFFREY COMPUTATIONAL
ULLMAN [ASPECTS OF VLSI

W. DNIEL THE

17361 W.DIL CONNECTION

HILLIS MACHINE

Figure 4: Representations for Card Files

-, 4~d' d~ #~ *'* *. ~ - * .

7

3 Examples of Programming by Generic Example

Iconic programming by generic example proceeds by indicating how to handle generic
examples of data structures, by simply performing direct manipulations on their iconic
representations; of course, one must also show how to handle the constants that occur in
data type signatures (such as nil). There is a simple default representation for generics of
linear abstract data types: first display one constructor cell, then a cell containing "... "
then another constructor cell (this is the "generic" cell), then another ". . . " cell, and then

a final constructor cell. By convention, subscripts will be used to indicate these elements, 1
for the first, k for the generic, and * for the last. For non-linear data types, something
similar can be done, but laying out the representation may become a problem. Examples of
these conventions are shown in Figure 5, for character sequence, S-expression, and card file.

n\ ai, tj,
a, **-.] -

@0 6 o@ @

nk ak tk

a, a a*

Figure 5: Some Representations of Generics

In an example of programming by generic example, the programmer might move a data
item from the top of one stack to the top of another with his mouse by "picking up" the
top item from a generic stack representation (i.e., poping the first stack), then "carrying it
over," and finally "droping it" onto the top of a generic representation of the second stack
(i.e., pushing it onto the second stack); Figure 6 is intended to suggest these actions. The
system will take this behavior as (one case in) the definition of a method. Such a behavior

might be part of an algorithm that uses two ordered stacks of values to sort an input list by
inserting new values from the list one at a time, flipping values from one stack to the other
until the new value lies between the two top stack values. The sorting program will consist
of the rewrite rules generated by a programmer's manipulations of three these generic
structures. Of course this algorithm, which might be called "Tower of Hanoi" sorting, is
not very good for concurrent computation - in fact, it is a very inefficient sequential
algorithm - but it is good for illustrating programming by generic example.

Note that the system can automatically check whether or not all cases have been covered

°,.'.

8

I I
I

r-- L--1 , ,b,
-i '- -- II.-

ak bk

Figure 6: Graphical Representation of an Action on Stacks

by the manipulations that a user provides. This is because the system knows that there are

two constructors for Stack, and therefore knows that two cases have to be covered: the

"initial" (or base) case of the empty stack, and the "loop" (or recursion) case, of a non-

empty generic stack constructed by push. In general, such a check can be more complex,

because of equations holding among constructors, and will require something like Thiel's

algorithm [Thiel 841.

For another example, let us consider a "simple library card file" abstract data type,

consisting of a list of cards, each with an accession number N and an author A, and the

problem of writing a function, called author, to search for the author A associated with a

given accession number N. The generic icon for the card file is like that shown in Figure 4,

but a little simpler since there is no title variable. Figure 7 shows a graphical form of a

rule defining the author function; here we use # as a graphic symbol for the number

variable. Note that the user would actually define this rule by mouse manipulations, and

something special (e.g., with mouse clicks) would be needed to insure that the # variable

occurs in the two places where it is shown. Also, note that Figure 7 shows yet another

graphical representation for function application, here of the author function to its

arguments • and a generic card file. Figure 7 is somewhat misleading because it is static,

whereas what the programmer would actually do is dynamic. The lefthand side shows the

variables involved, including N, which is the key for the search for an author A with that

accession number, and provides a template for matching. The righthand side is created by

/-A UT HORn.a

#LZa> ak

I-
Figure 7: Iconic Representation of a Rewrite Rule

first grasping the A cell with the mouse and then putting it down. We hint at the dynamic

aspect of the rewriting process by placing a "fat arrow" between the two situations. The

resulting program in text format is somewhat sophisticated; it consists of a single rule with
a single tree variable4 F which will match any initial setment of a card file,

author(N, F'(card(A. N. F))) f> A,
where F is a variable denoting the rest of the file. The complete OBJ code for this simple

card file is given in the appendix, Section 8. A tree form of the above rule is shown in

Figure 8; again, we use the "fat arrow" convention. We also use a graphic symbol for the

number variable, # instead of N, and another for the author variable A.

AUTHOR

0000
QV

CARD

3#Q F

Figure 8: Tree Form of a Rewrite Rule

This form of rule is interesting because it is more powerful than the usual rewrite rule;

4More technically, F' is a "second order monadic variable."

: + .. ,,,I .,, ., ;,,,,.,,fl " " ", ' "- -" " " ".' " -• -"- -"- -. - " " " .-.V,-, . , , -. ' ." , , ., , , , • . , . . . , , , . . - , . - . -. .

I

10

however, it is actually equivalent to a facility that is already is OBJ2, called "rewriting

modulo associativity." This is not the place to discuss this equivalence; but it is reassuring

to know that we are not really getting outside the framework of first order equational logic,

which provides the logical foundation of OBJ and FOOPS.

Notice that for the object-oriented case, it will be necessary to distinguish between

manipulations that delete a cell (like pop for stacks) and those that only copy a value from

a cell (like top for stacks). This could be indicated, for example, by using a double push of

a mouse button for the deletion case, and a single push for the copy case.

4 Icons

An Icon is not merely a visual symbol, but rather a sign, possibly in mixed media, that is

perceived to correspond to what it represents. This corresponds to the original sense of

icon in [Peirce 651, as a "sign which refers to the object that it denotes by virtue of

characters of its own." Pierce carefully distinguishes an icon from a symbol, which is a
"sign which is constituted a sign merely or mainly by the fact that it is used and

understood as such." Notice that in current computer jargon, the word "icon" is used for

any graphic sign. Pierce also distinguishes the case of a sign z being used as an Index for

an object y if z and y are regularly connected, in the sense "that always or usually when

there is an z, there is also a y in some more or less exactly specifiable spatio-temporal

relation to the z in question" [Alston 67].

Of course, sign is the most general class; that is, everything is a sign. However, the three

kinds of s~gn cannot always be rigidly distinguished; for example, the "smiley face" sign

used for the author variable in Figure 8 actually has something of the character of both an

icon and a symbol.

Not only objects, but also relationships and situations can be represented iconically. For

example: the magnitude of a quantity might correspond to the size of its representation; the

temperature of an object might correspond to the redness of its representation; the relation

"followed by" might be represented as an ordered pair of "pointings-to" by a mouse; and

an error state might be represented by the sound of a siren.

|

tI
F~

o ° ° *ra- " *
o '

• " " J , 4 .° a" .' " " ," " o -" #" o " ." " , °" " -" °" - - I " g , € , .

................... . S a -- -

1I

5 Animation

Once the constructors are known and icons have been chosen to represent them, it is
possible to automatically generate a display for any given state of the runtime environment.
This capability could be used, for example, to animate programs, i.e., to produce sequences
of "frames" showing how the data structures change as the program is executed. This kind
of animation will clearly be useful for understanding and debugging programs. Our basic
method of program construction is a kind of inverse to this animation "playback," namely
the construction of methods of transitioning from one frame to another, by the
programmer's direct manipulation of icons.

It does not suffice to provide pretty pictures on an ad hoe basis, for example, by attaching
display commands to existing code. In fact, it will be much better if the code is produced
from the direct manipulations on the generalized icons. These can also be used as the basis
for animation; since the user himself chooses to produce the code using certain

representations, we can assume that he would also like to see it displayed that way.

It will be important to provide a zooming capability, in order to deal with large complex

programs without the overwhelming detail. In fact, the user should define an abstraction to
serve as the interface that he wants to see animated. The module and view capability of
FOOPS, generalizing that of OBJ2 to object-oriented programming, seems ideally suited for

this purpose.

An interesting point is that users will often prefer to see continuous, gradual movement of

one situation to another, rather than a sudden discrete jump. For example, consider the
action of "carrying" an item for the top of one stack to another described above. If it just
jumps, it will even be hard to determine where it went; but if it moves continuously from
one place to the other, users will understand what is intended much more easily.

A possibility which seems feasible, and which it would be very interesting to pursue, is to
automatically generate a "sound track" for these "animated movies" of program execution.

A great deal of research has been done on the structure of explanations (for example, 1141)
and on how to generate them; and of course, generating the sounds of speech is no longer a
difficult problem.

12

6 Some Problems in Natural Multimedia Interaction

This section mentions two problems that seem important, but have so far received little

attention. Good solutions to these problems could be enormously helpful for the kind of

system described in this report.

It is clear from experience that not every mode of interaction with a complex system is

equally effective. The display must not be overcrowded or overcomplex: it must highlight

the right details and hide others; and it must help to structure interactions in the right

order. A proper icon for a programming concept may involve not only a display primitive,

but also some understanding of the context in which it appears. In fact, we may want what

is displayed to change as the context does: sometimes it might be hidden, sometimes it

might be highlighted, sometimes smaller, sometimes larger, and sometimes perhaps even

displayed in a different form; also, it might appear in different relationships to other

objects.

One way to explore this very rich problem area is by observing the performance of skilled

humans working in the same role that we would like the system to take. This research

method has produced some surprising findings about the comprehensibility of text-based

programming language features (see the Smoothtalk language [4]). For example,

Smoothtalk does not have any variables as such, but rather uses descriptions, such as "the

previous number" or even "it." Also, Smoothtalk's loop construct does not have an explicit

begin marker, and what is to be iterated over is only indicated at the end of the construct.

These conventions, although very different from those of conventional programming

languages, are how people actually describe programs in natural language.

A basic issue that has been little addressed is the proper ordering of modes in programming:

sometimes the programmer should be creating new code, sometimes planning, sometimes

debugging, sometimes explaining the reason for a choice, sometimes documenting a
sequence of choices, etc. We would like to know what rules govern the sequencing of these

different modes of interaction. Another important problem is how to integrate

representations in various media. For example: When is text appropriate? How should it

be integrated with graphics? When (if at all) is computer generated speech appropriate?

When is speech recognition appropriate? How should color be used? How can information

overload be avoided? Some work relevant to such questions can be found in 112] and 181,

which studies how speech acts are sequenced in aviation discourse.

7 Discusion

This report has introduced programming by generic example as a basic programming style

for functional and object-oriented programming. The main ideas have been the following:

1. programming by direct maniuplation of graphical representation of generic abstract

data type values;

2. interactive support for defining data structures and their representations;

3. suggestive default representations for common data type structures, based on their

constructors;

4. natural multimedia interaction with the system; and

5. audio-visual animation of programs by displaying the changing states of basic data

types, with explanation.

There are (at least) five layers that should be considered:

1. underlying mathematical and psychological principles;

2. choice of display primitives for a given data structure;

3. choice of what to display;

4. choice of how to display it; and

5. providing iconic interactive modes that the programmer can use to express his

intentions.

We believe such considerations can lead to a very intuitive programming style for the

Rewrite Rule Machine [111. This style is in direct correspondence with the underlying

rewrite rule computational model and also utilizes the full power of interactive computer

graphics. Program production should be substantially improved by the systematic use of

this programming style, particularly in connection with the use of its inverse, namely

animation, to support debugging.

8 Appendix: More Specifications

This appendix contains OBJ code for the sequence and stack examples mentioned in the
body of the paper, and also gives full details of the author program for simple card files;

this brings out some further facets of OBJ.

14

obj CHARSTRING is
importing CHAR
sort Chast
cop nil -> Charst
cop add Char Charet -> Charst

endo

obj STACK is
importing INT
sort Stack
cop empty -> Stack
cop push Int Stack -> Stack

endo

Of course, one would also like to define other operations that are not constructors, such as

head and tail for character strings, and pop and top for stacks; however, only the

constructors are directly relevant to the problems discussed in this paper. Also, note that if

we defined these abstractions as objects, in the sense of object-oriented programming,

things would have to be a little more complicated, as described in [Goguen & Meseguer 861.

obj CARDS is
protecting NAT 1D
sort File
cop empty : -> File
cop card : Id Nat File -> File
op author : Nat File -> Id
var N Nat
var F File
var V' File*
eq : author(N. F(card(A. N. F))) = A

endo

Here, var indicates that a variable declaration will follow; the "e" in "File*" indicates

that the variable FV is a tree variable. Note that the operation author is not a constructor.

References

1. Alston, William P. Sign and Symbol. In Encyclopaedia of Philosophy, Paul Edwards,
Ed., Macmilan & Free Press, 1967, pp. 437-441. In 8 volumes; republished 1972 in 4 books..

2. Burstall, Rod and Joseph Goguen. "Putting Theories together to Make Specificationse.
Proceedings, Fifth International Joint Conference on Artificial Intelligence 5 (1977),
1045-1058.

15

3. Burstall, Rod and Joseph Goguen. An Informal Introduction to Specifications using
Clear. In The Correctness Problem in Computer Science, Robert Boyer and J Moore, Eds.,
Academic Press, 1981, pp. 185-213. Reprinted in Software Specification Techniques, edited
by N. Gehani and A. D. McGettrick, Addison-Wesley, 1985, pages 363-390.

4. Burstall, Rod and James Weiner. Making Programs more Readable. . Proceedings,
International Symposium on Programming, Paris, April.

5. Grafton, Robert and Tadao Ichikawa (Ed.). Computer, Special Issue on Visual
Programming. IEEE, 1985.

6. Dahl, Ole-Johann, B. Myhrhaug and Kristen Nygaard. The SIMULA 67 Common Base
Language. Norwegian Computing Center, Oslo, 1970. Publication S-22.

7. Futatsugi, Kokichi, Joseph Goguen, Jean-Pierre Jouannaud and Jos6 Meseguer.
Principles of OBJ2. In Proceedings, Symposium on Principles of Programming
Languages,
Association for Computing Machinery, 1985, pp. 52-66.

8. Goguen, Joseph and Charlotte Linde. Linguistic Methodology for the Analysis of
Aviation Accidents. Structural Semantics, December, 1983.

9. Goguen, Joseph and Jos6 Meseguer. Order-Sorted Algebra: Algebraic Theory of
Polymorphism. Abstract to appear in the Journal of Symbolic Logic.

10. Goguen, Joseph and Jos6 Meseguer. Extensions and Foundations for Object-Oriented
Programming. In preparation. Preliminary version to appear in SIGPLAN Notices.

11. Goguen, Joseph, Claude Kirchner, Sany Leinwand, Jos6 Meseguer and Timothy
Winkler. Progress Report on the Rewrite Rule Machinee. IEEE Technical Committee
on Computer Architecture Newsletter (1986). To appear.

12. Goguen, Joseph, Charlotte Linde, and Tora Bikson. Optimal Structures for
Multimedia Instruction. SRI International, 1985. Report to Office of Naval Research,
Psychological Sciences Division.

13. Goguen, Joseph, James Thatcher and Eric Wagner. An Initial Algebra Approach to
the Specification, Correctness and Implementation of Abstract Data Types. RC 6487, IBM
T. J. Watson Research Center, October, 1978. Reprinted in Current Trends in
Programming Methodology, IV, edited by Raymond Yeh, Prentice-Hall, 1978, pages 80-149.

14. Goguen, Joseph, James Weiner and Charlotte Linde. "Reasoning and Natural
Explanation8. International Journal of Man-Machine Studies 19 (1983), 521-559.

16. Goldberg, Adele and Alan Kay. Smalltalk-72 Instruction Manual. Xerox, Learning
Research Group, Palo Alto, 1976.

16. London, Ralph and Robert Duisberg. Animating Programs Using Smalltalk. In
Computer, Robert Grafton and Tadao Ichikawa, Ed., IEEE, 1985, pp. 61-71.

18

17. Meseguer, Josi and Joseph Goguen. Initiality, Induction and Computability. In
Algebraic Methods in Semantics, Maurice Nivat and John C. Reynolds, Eds., Cambridge
University Press, 1985, pp. 459-541. Chapter 14; also SRI CSL Technical Report 140,
December 1983.

18. Moriconi, Mark and Dwight Hare. 'The PegaSys System: Pictures as Formal
Documentation of Large Programs'. ACM Transactions on Programming Languages and

Systems (1986). To appear.

19. Peirce, Charles Saunders. Collected Papers of Charles Saunders Peirce. Harvard
University Press, 1965. In 6 volumes; See especially Volume 2: Elements of Logic.

20. Reiss, Steven. 'PECAN: Program Development Systems that Support Multiple
Views'. IEEE Transactions on Software Engineering SE-il, 3 (March 1985), 276-285.

21. Rubin, R. V., E. J. Golin, and Steven Reiss. OThinkPad: A Graphical System for
Programming by Demonstration'. IEEE Software 2, 2 (1985), 73-79.

22. Thiel, Jean-Jacques. Stop Losing Sleep over Incomplete Data Type Specification. In
Proceedings, Symposium on Principles of Programming Languages,
Association for Computing Machinery, 1984.

x - -

4

I
.4

I

